2018届高考数学二轮直线与圆锥曲线综合练专题卷(全国通用)
2018高三数学全国二模汇编(理科)专题07圆锥曲线
【2018高三数学各地优质二模试题分项精品】一、单选题1.【2018黑龙江大庆高三二模】已知分别是双曲线的左、右焦点,为双曲线右支上一点,若,,则双曲线的离心率为( )A. B. C. D. 2【答案】A点睛:本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).2.【2018广东惠州高三4月模拟】已知F是抛物线2x4y=的焦点,P为抛物线上的动点,且点A的坐标为() 0,1-,则PFPA的最小值是()A.14 B. 12C. 22D. 3【答案】C设切点()2,P a a ,由214y x =的导数为12y x '=,则PA 的斜率为1222a a a⋅==. ∴1a =,则()2,1P . ∴2PM =, 22PA =∴2sin 2PM PAM PA∠==故选C .点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化,这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题.3.【2018河南郑州高三二模】如图,已知抛物线1C 的顶点在坐标原点,焦点在x 轴上,且过点()24,,圆222:430C x y x +-+=,过圆心2C 的直线l 与抛物线和圆分别交于,,,P Q M N ,则4PN QM +的最小值为( )A. 23B. 42C. 12D. 52 【答案】A【点睛】当抛物线方程为22(p>0)y px =,,过焦点的直线l 与抛物线交于,P Q ,则有112F PF Q P+=,抛物线的极坐标方程为1cos p ρθ=-,所以1PF ρ== 1cos pθ-,()21cos 1cos p p QF ρθπθ===-++,所以112F PF Q P+=,即证。
2018年高考数学(理)二轮复习讲练测专题2.11圆锥曲线中的综合问题(讲)含解析
2018年高考数学(理)二轮复习讲练测热点十一圆锥曲线的综合问题纵观近几年高考圆锥曲线的综合问题是高考中的一个热点和重点,在历年高考中出现的频率较高,主要注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力.其中直线与椭圆、抛物线的位置关系常常与平面向量、三角函数、函数的性质、不等式等知识交汇命题.涉及求轨迹、与圆相结合、定点、定值、最值、参数范围、存在性问题等.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.1.求轨迹方程求轨迹方程的基本方法有:直接法、定义法、相关点法、参数法、交轨法、向量法等.(1)求轨迹方程时,先看轨迹的形状能否预知,若能预先知道轨迹为何种圆锥曲线,则可考虑用定义法求解或用待定系数法求解;否则利用直接法或代入法.(2)讨论轨迹方程的解与轨迹上的点是否对应,要注意字母的取值范围.例1【2017课标II,理】设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P 满足。
(1)求点P的轨迹方程;(2)设点Q在直线上,且。
证明:过点P且垂直于OQ的直线l过C的左焦点F。
【答案】(1) 。
(2)证明略。
【解析】(2)由题意知。
设,则,。
由得,又由(1)知,故。
所以,即。
又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线过C的左焦点F.例2【2018届湖北省荆州中学、宜昌一中等“荆、荆、襄、宜四地七校考试联盟”高三2月联考】如图,一张坐标纸上一已作出圆及点,折叠此纸片,使与圆周上某点重合,每次折叠都会留下折痕,设折痕与直线的交点为,令点的轨迹为.(1)求轨迹的方程;(2)若直线与轨迹交于两个不同的点,且直线与以为直径的圆相切,若,求的面积的取值范围.【答案】 (1) ;(2) .试题解析:(1)折痕为的垂直平分线,则,由题意知圆的半径为,∴,∴的轨迹是以为焦点的椭圆,且,,∴,∴的轨迹的方程为.(2)与以为直径的圆相切,则到即直线的距离:,即,由,消去,得,∵直线与椭圆交于两个不同点,∴,,设,,则,,,又,∴,∴,设,则,∴,,∵关于在单调递增,∴,∴的面积的取值范围是.2. 圆锥曲线与圆相结合的问题处理有关圆锥曲线与圆相结合的问题,要特别注意圆心、半径及平面几何知识的应用,如直径对的圆心角为直角,构成了垂直关系;弦心距、半径、弦长的一半构成直角三角形.利用圆的一些特殊几何性质解题,往往使问题简化.例3【2017课标3,理20】已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点,求直线l与圆M的方程.【答案】(1)证明略;(2)直线的方程为,圆的方程为 .或直线的方程为,圆的方程为 .【解析】所以,解得或 .当时,直线的方程为,圆心的坐标为,圆的半径为,圆的方程为.当时,直线的方程为,圆心的坐标为,圆的半径为,圆的方程为 .3.定值定点问题(1)求解定点和定值问题的基本思想是一致的,定值是证明求解的一个量与参数无关,定点问题是求解的一个点(或几个点)的坐标,使得方程的成立与参数值无关.解这类试题时要会合理选择参数(参数可能是直线的斜率、截距,也可能是动点的坐标等),使用参数表达其中变化的量,再使用这些变化的量表达需要求解的解题目标.当使用直线的斜率和截距表达直线方程时,在解题过程中要注意建立斜率和截距之间的关系,把双参数问题化为单参数问题解决.(2)证明直线过定点的基本思想是使用一个参数表示直线方程,根据方程的成立与参数值无关得出x,y的方程组,以方程组的解为坐标的点就是直线所过的定点.例4【2018届河北省唐山市高三上学期期末】已知抛物线:的焦点,过点作两条互相垂直的直线,直线交于不同的两点,直线交于不同的两点,记直线的斜率为.(1)求的取值范围;(2)设线段的中点分别为点,证明:直线过定点.【答案】(1) {k|k<-2或0<k<} (2)见解析【解析】试题分析:(1)写出直线的方程,与抛物线方程联立方程组,利用判别式求出的一个范围,另外直线的方程为与抛物线方程联立同样又得出的一个范围,两者求交集即得;(2)设,利用韦达定理可得即点坐标,用代替可得点坐标,计算出,得证结论.试题解析:(1)由题设可知k≠0,所以直线m的方程为y=kx+2,与y2=4x联立,整理得ky2-4y+8=0,①由Δ1=16-32k>0,解得k<.直线n的方程为y=-x+2,与y2=4x联立,整理得y2+4ky-8k=0,由Δ2=16k2+32k>0,解得k>0或k<-2.所以故k的取值范围为{k|k<-2或0<k<}.(2)设A(x 1,y1),B(x2,y2),M(x0,y0).由①得,y1+y2=,则y0=,x0=-,则M(-,).同理可得N(2k2+2k,-2k).直线MQ的斜率k MQ==,直线NQ的斜率k NQ===k MQ,所以直线MN过定点Q(2,0).例5【2018届河南省商丘市高三上学期期末】在平面直角坐标系中,已知两点,,动点满足,线段的中垂线交线段于点.(1)求点的轨迹的方程;(2)过点的直线与轨迹相交于两点,设点,直线的斜率分别为,问是否为定值?并证明你的结论.【答案】(1) ;(2)答案见解析.【解析】试题分析:(1)利用椭圆定义求出点的轨迹的方程;(2)讨论直线的斜率,当直线的斜率存在时,设直线的方程为,联立方程得,利用根与系数关系表示,即可得到定值.试题解析:(Ⅰ)以题意可得:,,所以点的轨迹是以为焦点,长轴长为的椭圆,且所以,所以轨迹的方程为.(Ⅱ)①当直线的斜率不存在时,由,解得,设,.②当直线的斜率存在时,设直线的方程为,将代入整理化简,得,依题意,直线与轨迹必相交于两点,设,则,,又,,所以综上得:为定值2.(说明:若假设直线为,按相应步骤给分)4.最值、范围问题求解范围、最值问题的基本解题思想是建立求解目标与其他变量的关系(不等关系、函数关系等),通过其他变量表达求解目标,然后通过解不等式、求函数值域(最值)等方法确定求解目标的取值范围和最值.在解题时要注意其他约束条件对求解目标的影响,如直线与曲线交于不同两点时对直线方程中参数的约束、圆锥曲线上点的坐标范围等.例6【2018届吉林省长春市第十一高中、东北师范大学附属中学、吉林一中,重庆一中等五校高三1月联考】已知椭圆的短轴长为,离心率为,点,是上的动点,为的左焦点.(Ⅰ)求椭圆的方程;(Ⅱ)若点在轴的右侧,以为底边的等腰的顶点在轴上,求四边形面积的最小值. 【答案】(Ⅰ) ;(Ⅱ) .试题解析:(Ⅰ)依题意得解得∴椭圆的方程是(Ⅱ)设设线段中点为∵∴中点,直线斜率为由是以为底边的等腰三角形∴∴直线的垂直平分线方程为令得∵∴由∴四边形面积当且仅当即时等号成立,四边形面积的最小值为.5.探索性问题解决直线与圆锥曲线位置关系的存在性问题,往往是先假设所求的元素存在,然后再推理论证,检验说明假设是否正确. 其解题步骤为:(1)先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组).(2)解此方程(组)或不等式(组),若有解则存在;若无解则不存在.(3)得出结论.例7【2018届河北省石家庄市高三上学期期末】已知椭圆的离心率为,左、右焦点分别为,过的直线交椭圆于两点.(1)若以为直径的动圆内切于圆,求椭圆的长轴长;(2)当时,问在轴上是否存在定点,使得为定值?并说明理由.【答案】(Ⅰ)6(Ⅱ)见解析【解析】试题分析:(1)设的中点为,可得 ,当两个圆相内切时,两个圆的圆心距等于两个圆的半径差,即,所以,椭圆长轴长为;(2)先求得椭圆方程为,设直线AB方程为:,联立可得,设根据韦达定理及平面向量数量积公式可得,当即时为定值.试题解析:(Ⅰ)设的中点为M,在三角形中,由中位线得:当两个圆相内切时,两个圆的圆心距等于两个圆的半径差,即所以,椭圆长轴长为6.(Ⅱ)由已知,,所以椭圆方程为当直线AB斜率存在时,设直线AB方程为:设由得恒成立设当即时为定值当直线AB斜率不存在时,不妨设当时,为定值综上:在X轴上存在定点,使得为定值【反思提升】1.高考涉及考查轨迹问题通常是以下两类:一类是容易题,以定义法、相关点法、待定系数法等为主,另一类是高难度的纯轨迹问题,综合考查各种方法.“轨迹”、“方程”要区分求轨迹方程,求得方程就可以了;若是求轨迹,求得方程还不够,还应指出方程所表示的曲线类型(定形、定位、定量).处理轨迹问题成败在于:对各种方法的领悟与解题经验的积累.所以在处理轨迹问题时一定要善于根据题目的特点选择恰当的方法(什么情况下用什么方法上面已有介绍,这里不在重复)确定轨迹的范围是处理轨迹问题的难点,也是学生容易出现错误的地方,在确定轨迹范围时,应注意以下几个方面:①准确理解题意,挖掘隐含条件;②列式不改变题意,并且要全面考虑各种情形;③推理要严密,方程化简要等价;④消参时要保持范围的等价性;⑤数形结合,查“漏”补“缺”.在处理轨迹问题时,要特别注意运用平面几何知识,其作用主要有:①题中没有给出明显的条件式时,可帮助列式;②简化条件式;③转化化归.2.涉及求取值范围的问题时,首先要找到产生范围的几个因素:(1)直线与曲线相交(判别式);(2)曲线上点的坐标的范围;(3)题目中给出的限制条件.其次要建立结论中的量与这些范围中的因素的关系;最后利用函数或不等式求变量的取值范围.3.解析几何中最值问题的基本解法有几何法和代数法.几何法是根据已知的几何量之间的相互关系,通过平面几何和解析几何的知识加以解决(如抛物线上的点到某个定点和焦点的距离之和、光线反射问题等);代数法是建立求解目标关于某个或某两个变量的函数,通过求解函数的最值(普通方法、基本不等式方法、导数方法等)解决.4.存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.注意以下几点:(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.。
2018圆锥曲线高考题全国卷真题汇总
20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改)
20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改)的全部内容。
,
A
点为
>0
两点,若,则圆。
[推荐学习]新课标2018届高考数学二轮复习专题六直线圆圆锥曲线专题能力训练17椭圆双曲线抛物线理
专题能力训练17 椭圆、双曲线、抛物线能力突破训练1.(2017全国Ⅲ,理5)已知双曲线C:=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆=1有公共焦点,则C的方程为()A.=1B.=1C.=1D.=12.已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点.若<0,则y0的取值范围是() A.-B.-C.-D.-3.以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.84.已知双曲线=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为()A.=1B.=1C.=1D.=15.设双曲线=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,与双曲线的一个交点为P,设O为坐标原点.若=m+n(m,n∈R),且mn=,则该双曲线的离心率为()A. B.C. D.6.双曲线=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=.7.(2017全国Ⅰ,理15)已知双曲线C:=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若∠MAN=60°,则C的离心率为.如图,已知抛物线C1:y=x2,圆C2:x2+(y-1)2=1,过点P(t,0)(t>0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(1)求点A,B的坐标;(2)求△PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.9.如图,动点M与两定点A(-1,0),B(1,0)构成△MAB,且直线MA,MB的斜率之积为4,设动点M的轨迹为C.(1)求轨迹C的方程;(2)设直线y=x+m(m>0)与y轴相交于点P,与轨迹C相交于点Q,R,且|PQ|<|PR|,求的取值范围.10.已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足||=·()+2.(1)求曲线C的方程;(2)点Q(x0,y0)(-2<x0<2)是曲线C上动点,曲线C在点Q处的切线为l,点P的坐标是(0,-1),l 与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.思维提升训练11.(2017全国Ⅰ,理10)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为()A.16B.14C.12D.1012.(2017全国Ⅱ,理16)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N,若M为FN的中点,则|FN|=.13.(2017山东,理14)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.14.已知圆C:(x+1)2+y2=20,点B(1,0),点A是圆C上的动点,线段AB的垂直平分线与线段AC 交于点P.(1)求动点P的轨迹C1的方程;(2)设M,N为抛物线C2:y=x2上的一动点,过点N作抛物线C2的切线交曲线C1于P,Q两点,求△MPQ面积的最大值.15.已知动点C是椭圆Ω:+y2=1(a>1)上的任意一点,AB是圆G:x2+(y-2)2=的一条直径(A,B 是端点),的最大值是.(1)求椭圆Ω的方程;(2)已知椭圆Ω的左、右焦点分别为点F1,F2,过点F2且与x轴不垂直的直线l交椭圆Ω于P,Q 两点.在线段OF2上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.参考答案专题能力训练17椭圆、双曲线、抛物线能力突破训练1.B解析由题意得,c=3.又a2+b2=c2,所以a2=4,b2=5,故C的方程为=1.2.A解析由条件知F1(-,0),F2(,0),=(--x0,-y0),=(-x0,-y0),-3<0. ①=1,=2+2.代入①得,∴-<y0<3.B解析不妨设抛物线C的方程为y2=2px(p>0),圆的方程为x2+y2=R2.因为|AB|=4,所以可设A(m,2).又因为|DE|=2,所以解得p2=16.故p=4,即C的焦点到准线的距离是4.4.D解析根据对称性,不妨设点A在第一象限,其坐标为(x,y),于是有则xy=b2=12.故所求双曲线的方程为=1,故选D.5.C解析在y=±x中令x=c,得A,B-,在双曲线=1中令x=c得P当点P的坐标为时,由=m+n,得-则-由得或(舍去),,-,∴e=同理,当点P的坐标为-时,e=故该双曲线的离心率为6.2解析∵四边形OABC是正方形,∴∠AOB=45°,∴不妨设直线OA的方程即双曲线的一条渐近线的方程为y=x=1,即a=b.又|OB|=2,∴c=2a2+b2=c2,即a2+a2=(2)2,可得a=2. 7解析如图所示,由题意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴|AP|=b,|OP|=--设双曲线C的一条渐近线y=x的倾斜角为θ,则tanθ=-tanθ=, -,解得a2=3b2,∴e=8.解(1)由题意知直线PA的斜率存在,故可设直线PA的方程为y=k(x-t),由-消去y,整理得:x2-4kx+4kt=0,由于直线PA与抛物线相切,得k=t.因此,点A的坐标为(2t,t2).设圆C2的圆心为D(0,1),点B的坐标为(x0,y0),由题意知:点B,O关于直线PD对称,故--解得因此,点B的坐标为(2)由(1)知|AP|=t和直线PA的方程tx-y-t2=0.点B到直线PA的距离是d=设△PAB的面积为S(t),所以S(t)=|AP|·d=9.解(1)设M的坐标为(x,y),当x=-1时,直线MA的斜率不存在;当x=1时,直线MB的斜率不存在.于是x≠1,且x≠-1.此时,MA的斜率为,MB的斜率为-由题意,有-=4.整理,得4x2-y2-4=0.故动点M的轨迹C的方程为4x2-y2-4=0(x≠±1).(2)由--消去y,可得3x2-2mx-m2-4=0. ①对于方程①,其判别式Δ=(-2m)2-4×3(-m2-4)=16m2+48>0,而当1或-1为方程①的根时,m的值为-1或1.结合题设(m>0)可知,m>0,且m≠1.设Q,R的坐标分别为(x Q,y Q),(x R,y R),则x Q,x R为方程①的两根,因为|PQ|<|PR|,所以|x Q|<|x R|.因为x Q=-,x R=,且Q,R在同一条直线上,所以-=1+-此时>1,且2,所以1<1+-<3,且1+-,所以1<<3,且综上所述,的取值范围是10.解(1)由题意可知=(-2-x,1-y),=(2-x,1-y),=(x,y),=(0,2).∵||=()+2,-=2y+2,∴x2=4y.∴曲线C的方程为x2=4y.(2)设Q,则S△QAB=2-=2-∵y=,∴y'=x,∴k l=x0,∴切线l的方程为y-x0(x-x0)与y轴交点H-,|PH|=-=1-直线PA的方程为y=-x-1,直线PB的方程为y=x-1,由---得x D=-由--得x E=,∴S△PDE=|x D-x E|·|PH|=1-,∴△QAB与△PDE的面积之比为2.思维提升训练11.A解析方法一:由题意,易知直线l1,l2斜率不存在时,不合题意.设直线l1方程为y=k1(x-1),联立抛物线方程,得-消去y,得x2-2x-4x+=0,所以x1+x2=同理,直线l2与抛物线的交点满足x3+x4=由抛物线定义可知|AB|+|DE|=x1+x2+x3+x4+2p=+4=+8≥2+8=16, 当且仅当k1=-k2=1(或-1)时,取得等号.方法二:如图所示,由题意可得F(1,0),设AB倾斜角为不妨令∈作AK1垂直准线,AK2垂直x轴,结合图形,根据抛物线的定义,可得所以|AF|·cosθ+2=|AF|,即|AF|=-同理可得|BF|=,所以|AB|=-又DE与AB垂直,即DE的倾斜角为+θ,则|DE|=,所以|AB|+|DE|=16,当θ=时取等号,即|AB|+|DE|最小值为16,故选A.12.6解析设N(0,a),由题意可知F(2,0).又M为FN的中点,则M因为点M在抛物线C上,所以=8,即a2=32,即a=±4所以N(0,±4.所以|FN|=-=6.13.y=±x 解析抛物线x2=2py的焦点F,准线方程为y=-设A(x1,y1),B(x2,y2),则|AF|+|BF|=y1++y2+=y1+y2+p=4|OF|=4=2p.所以y1+y2=p.联立双曲线与抛物线方程得-消去x,得a2y2-2pb2y+a2b2=0.所以y1+y2==p,所以所以该双曲线的渐近线方程为y=±x.14.解(1)由已知可得,点P满足|PB|+|PC|=|AC|=2>2=|BC|,所以动点P的轨迹C1是一个椭圆,其中2a=2c=2.动点P的轨迹C1的方程为=1.(2)设N(t,t2),则PQ的方程为y-t2=2t(x-t)y=2tx-t2.联立方程组-消去y整理,得(4+20t2)x2-20t3x+5t4-20=0,有--而|PQ|=|x1-x2|=-,点M到PQ的高为h=,由S△MPQ=|PQ|h代入化简,得S△MPQ=--,当且仅当t2=10时,S△MPQ可取最大值15.解(1)设点C的坐标为(x,y),则+y2=1.连接CG,由,又G(0,2),=(-x,2-y),可得=x2+(y-2)2-=a(1-y2)+(y-2)2-=-(a-1)y2-4y+a+,其中y∈[-1,1].因为a>1,所以当y=--1,即1<a≤3时,取y=-1,得有最大值-(a-1)+4+a+,与条件矛盾;当y=->-1,即a>3时,的最大值是---,由条件得---,即a2-7a+10=0,解得a=5或a=2(舍去).综上所述,椭圆Ω的方程是+y2=1.(2)设点P(x1,y1),Q(x2,y2),PQ的中点坐标为(x0,y0),则满足=1,=1,两式相减,整理,得--=-=-,从而直线PQ的方程为y-y0=-(x-x0).又右焦点F2的坐标是(2,0),将点F2的坐标代入PQ的方程得-y0=-(2-x0),因为直线l与x轴不垂直,所以2x0-=5>0,从而0<x0<2.假设在线段OF2上存在点M(m,0)(0<m<2),使得以MP,MQ为邻边的平行四边形是菱形,则线段PQ的垂直平分线必过点M,而线段PQ的垂直平分线方程是y-y0=(x-x0),将点M(m,0)代入生活的色彩就是学习得-y0=(m-x0),得m=x0,从而m K12的学习需要努力专业专心坚持。
圆锥曲线、导数2018年全国高考数学分类真题(含答案)(精编文档).doc
【最新整理,下载后即可编辑】圆锥曲线、导数2018年全国高考数学分类真题(含答案)一.选择题(共7小题)1.双曲线﹣y 2=1的焦点坐标是( ) A .(﹣,0),(,0) B .(﹣2,0),(2,0) C .(0,﹣),(0,) D .(0,﹣2),(0,2)2.已知双曲线=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A .﹣=1B .﹣=1C .﹣=1D .﹣=1 3.设F 1,F 2是双曲线C :﹣=1(a >0.b >0)的左,右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P ,若|PF 1|=|OP|,则C 的离心率为( )A .B .2C .D .4.已知F 1,F 2是椭圆C :=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P=120°,则C 的离心率为( )A .B .C .D .5.双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN 为直角三角形,则|MN|=()A.B.3 C.2D.47.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x二.填空题(共6小题)8.在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.9.已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.10.已知点P (0,1),椭圆+y 2=m (m >1)上两点A ,B 满足=2,则当m= 时,点B 横坐标的绝对值最大.11.已知点M (﹣1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB=90°,则k= .12.曲线y=(ax+1)e x 在点(0,1)处的切线的斜率为﹣2,则a= .13.曲线y=2ln (x+1)在点(0,0)处的切线方程为 .三.解答题(共13小题)14.设函数f (x )=[ax 2﹣(4a+1)x+4a+3]e x .(Ⅰ)若曲线y=f (x )在点(1,f (1))处的切线与x 轴平行,求a ;(Ⅱ)若f (x )在x=2处取得极小值,求a 的取值范围.15.如图,在平面直角坐标系xOy 中,椭圆C 过点(),焦点F 1(﹣,0),F 2(,0),圆O 的直径为F 1F 2. (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为,求直线l 的方程.16.如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.17.设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O为原点),求k 的值.18.已知斜率为k 的直线l 与椭圆C :+=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <﹣;(2)设F 为C 的右焦点,P 为C 上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差.19.设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB|=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.20.设椭圆C :+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:∠OMA=∠OMB .21.记f′(x ),g′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f′(x 0)=g′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x ﹣2不存在“S 点”;(2)若函数f (x )=ax 2﹣1与g (x )=lnx 存在“S 点”,求实数a 的值;(3)已知函数f (x )=﹣x 2+a ,g (x )=.对任意a >0,判断是否存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”,并说明理由.22.已知函数f (x )=﹣lnx .(Ⅰ)若f (x )在x=x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8﹣8ln2;(Ⅱ)若a ≤3﹣4ln2,证明:对于任意k >0,直线y=kx+a 与曲线y=f (x )有唯一公共点.23.已知函数f (x )=a x ,g (x )=log a x ,其中a >1.(Ⅰ)求函数h (x )=f (x )﹣xlna 的单调区间;(Ⅱ)若曲线y=f (x )在点(x 1,f (x 1))处的切线与曲线y=g (x )在点(x 2,g (x 2))处的切线平行,证明x 1+g (x 2)=; (Ⅲ)证明当a ≥e 时,存在直线l ,使l 是曲线y=f (x )的切线,也是曲线y=g (x )的切线.24.已知函数f (x )=(2+x+ax 2)ln (1+x )﹣2x .(1)若a=0,证明:当﹣1<x <0时,f (x )<0;当x >0时,f (x )>0;(2)若x=0是f (x )的极大值点,求a .25.已知函数f (x )=e x ﹣ax 2.(1)若a=1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .26.已知函数f (x )=﹣x+alnx .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:<a ﹣2.圆锥曲线、导数2018年全国高考数学分类真题(含答案)参考答案与试题解析一.选择题(共7小题)1.双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)【解答】解:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,由此可得c==2,∴该双曲线的焦点坐标为(±2,0)故选:B.2.已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx ﹣ay=0,F (c ,0),AC ⊥CD ,BD ⊥CD ,FE ⊥CD ,ACDB 是梯形,F 是AB 的中点,EF==3, EF==b ,所以b=3,双曲线=1(a >0,b >0)的离心率为2,可得, 可得:,解得a=. 则双曲线的方程为:﹣=1. 故选:C .3.设F 1,F 2是双曲线C :﹣=1(a >0.b >0)的左,右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P ,若|PF 1|=|OP|,则C 的离心率为( )A .B .2C .D .【解答】解:双曲线C :﹣=1(a >0.b >0)的一条渐近线方程为y=x ,∴点F 2到渐近线的距离d==b ,即|PF 2|=b , ∴|OP|===a ,cos ∠PF 2O=,∵|PF 1|=|OP|,∴|PF 1|=a , 在三角形F 1PF 2中,由余弦定理可得|PF 1|2=|PF 2|2+|F 1F 2|2﹣2|PF 2|•|F 1F 2|COS ∠PF 2O ,∴6a 2=b 2+4c 2﹣2×b ×2c ×=4c 2﹣3b 2=4c 2﹣3(c 2﹣a 2), 即3a 2=c 2, 即a=c ,∴e==,故选:C .4.已知F 1,F 2是椭圆C :=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P=120°,则C 的离心率为( )A .B .C .D .【解答】解:由题意可知:A (﹣a ,0),F 1(﹣c ,0),F 2(c ,0),直线AP 的方程为:y=(x+a ),由∠F 1F 2P=120°,|PF 2|=|F 1F 2|=2c ,则P (2c ,c ),代入直线AP :c=(2c+a ),整理得:a=4c ,∴题意的离心率e==. 故选:D .5.双曲线=1(a >0,b >0)的离心率为,则其渐近线方程为( ) A .y=±x B .y=±x C .y=±x D .y=±x【解答】解:∵双曲线的离心率为e==,则=====,即双曲线的渐近线方程为y=±x=±x ,故选:A .6.已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN 为直角三角形,则|MN|=()A.B.3 C.2D.4【解答】解:双曲线C:﹣y2=1的渐近线方程为:y=,渐近线的夹角为:60°,不妨设过F(2,0)的直线为:y=,则:解得M(,),解得:N(),则|MN|==3.故选:B.7.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.二.填空题(共6小题)8.在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为 2 .【解答】解:双曲线=1(a>0,b>0)的右焦点F(c,0)到一条渐近线y=x的距离为c,可得:=b=,可得,即c=2a,所以双曲线的离心率为:e=.故答案为:2.9.已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为 2 .【解答】解:椭圆M :+=1(a >b >0),双曲线N :﹣=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,可得椭圆的焦点坐标(c ,0),正六边形的一个顶点(,),可得:,可得,可得e 4﹣8e 2+4=0,e ∈(0,1), 解得e=.同时,双曲线的渐近线的斜率为,即,可得:,即,可得双曲线的离心率为e==2.故答案为:;2.10.已知点P (0,1),椭圆+y 2=m (m >1)上两点A ,B 满足=2,则当m= 5 时,点B 横坐标的绝对值最大. 【解答】解:设A (x 1,y 1),B (x 2,y 2), 由P (0,1),=2,可得﹣x 1=2x 2,1﹣y 1=2(y 2﹣1), 即有x 1=﹣2x 2,y 1+2y 2=3, 又x 12+4y 12=4m ,即为x 22+y 12=m ,① x 22+4y 22=4m ,②①﹣②得(y 1﹣2y 2)(y 1+2y 2)=﹣3m , 可得y 1﹣2y 2=﹣m , 解得y 1=,y 2=,则m=x 22+()2, 即有x 22=m ﹣()2==,即有m=5时,x 22有最大值16, 即点B 横坐标的绝对值最大. 故答案为:5.11.已知点M (﹣1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB=90°,则k= 2 .【解答】解:∵抛物线C :y 2=4x 的焦点F (1,0), ∴过A ,B 两点的直线方程为y=k (x ﹣1), 联立可得,k 2x 2﹣2(2+k 2)x+k 2=0,设A (x 1,y 1),B (x 2,y 2), 则 x 1+x 2=,x 1x 2=1,∴y 1+y 2=k (x 1+x 2﹣2)=,y 1y 2=k 2(x 1﹣1)(x 2﹣1)=k 2[x 1x 2﹣(x 1+x 2)+1]=﹣4, ∵M (﹣1,1),∴=(x 1+1,y 1﹣1),=(x 2+1,y 2﹣1), ∵∠AMB=90°=0,∴•=0∴(x 1+1)(x 2+1)+(y 1﹣1)(y 2﹣1)=0, 整理可得,x 1x 2+(x 1+x 2)+y 1y 2﹣(y 1+y 2)+2=0, ∴1+2+﹣4﹣+2=0,即k 2﹣4k+4=0, ∴k=2. 故答案为:212.曲线y=(ax+1)e x 在点(0,1)处的切线的斜率为﹣2,则a= ﹣3 .【解答】解:曲线y=(ax+1)e x ,可得y′=ae x +(ax+1)e x , 曲线y=(ax+1)e x 在点(0,1)处的切线的斜率为﹣2, 可得:a+1=﹣2,解得a=﹣3. 故答案为:﹣3.13.曲线y=2ln (x+1)在点(0,0)处的切线方程为 y=2x . 【解答】解:∵y=2ln (x+1), ∴y′=,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.故答案为:y=2x.三.解答题(共13小题)14.设函数f(x)=[ax2﹣(4a+1)x+4a+3]e x.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.【解答】解:(Ⅰ)函数f(x)=[ax2﹣(4a+1)x+4a+3]e x的导数为f′(x)=[ax2﹣(2a+1)x+2]e x.由题意可得曲线y=f(x)在点(1,f(1))处的切线斜率为0,可得(a﹣2a﹣1+2)e=0,解得a=1;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(2a+1)x+2]e x=(x﹣2)(ax﹣1)e x,若a=0则x<2时,f′(x)>0,f(x)递增;x>2,f′(x)<0,f(x)递减.x=2处f(x)取得极大值,不符题意;若a>0,且a=,则f′(x)=(x﹣2)2e x≥0,f(x)递增,无极值;若a >,则<2,f (x )在(,2)递减;在(2,+∞),(﹣∞,)递增,可得f (x )在x=2处取得极小值;若0<a <,则>2,f (x )在(2,)递减;在(,+∞),(﹣∞,2)递增,可得f (x )在x=2处取得极大值,不符题意;若a <0,则<2,f (x )在(,2)递增;在(2,+∞),(﹣∞,)递减,可得f (x )在x=2处取得极大值,不符题意. 综上可得,a 的范围是(,+∞).15.如图,在平面直角坐标系xOy 中,椭圆C 过点(),焦点F 1(﹣,0),F 2(,0),圆O 的直径为F 1F 2.(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为,求直线l 的方程.【解答】解:(1)由题意可设椭圆方程为,∵焦点F 1(﹣,0),F 2(,0),∴.∵∴,又a 2+b 2=c 2=3,解得a=2,b=1. ∴椭圆C 的方程为:,圆O 的方程为:x 2+y 2=3.(2)①可知直线l 与圆O 相切,也与椭圆C ,且切点在第一象限,∴可设直线l 的方程为y=kx+m ,(k <0,m >0). 由圆心(0,0)到直线l 的距离等于圆半径,可得.由,可得(4k 2+1)x 2+8kmx+4m 2﹣4=0,△=(8km )2﹣4(4k 2+1)(4m 2﹣4)=0,可得m 2=4k 2+1,∴3k 2+3=4k 2+1,结合k <0,m >0,解得k=﹣,m=3.将k=﹣,m=3代入可得,解得x=,y=1,故点P 的坐标为(.②设A (x 1,y 1),B (x 2,y 2), 由⇒k <﹣.联立直线与椭圆方程得(4k 2+1)x 2+8kmx+4m 2﹣4=0, |x 2﹣x 1|==,O 到直线l 的距离d=,|AB|=|x 2﹣x 1|=, △OAB的面积为S===,解得k=﹣,(正值舍去),m=3.∴y=﹣为所求.16.如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上. (Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴; (Ⅱ)若P 是半椭圆x 2+=1(x <0)上的动点,求△PAB 面积的取值范围.【解答】解:(Ⅰ)证明:可设P (m ,n ),A (,y 1),B (,y 2),AB 中点为M 的坐标为(,),抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上,可得()2=4•,()2=4•,化简可得y 1,y 2为关于y 的方程y 2﹣2ny+8m ﹣n 2=0的两根, 可得y 1+y 2=2n ,y 1y 2=8m ﹣n 2, 可得n=,则PM 垂直于y 轴; (Ⅱ)若P 是半椭圆x 2+=1(x <0)上的动点,可得m 2+=1,﹣1≤m <0,﹣2<n <2,由(Ⅰ)可得y 1+y 2=2n ,y 1y 2=8m ﹣n 2,由PM 垂直于y 轴,可得△PAB 面积为S=|PM|•|y 1﹣y 2| =(﹣m )•=[•(4n 2﹣16m+2n 2)﹣m]•=(n 2﹣4m ), 可令t===,可得m=﹣时,t 取得最大值;m=﹣1时,t 取得最小值2, 即2≤t ≤, 则S=t 3在2≤t ≤递增,可得S ∈[6,],△PAB 面积的取值范围为[6,].17.设椭圆+=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为,点A 的坐标为(b ,0),且|FB|•|AB|=6.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l :y=kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若=sin ∠AOQ (O 为原点),求k 的值.【解答】解:(Ⅰ)设椭圆+=1(a >b >0)的焦距为2c , 由椭圆的离心率为e=,∴=;又a 2=b 2+c 2, ∴2a=3b ,由|FB|=a ,|AB|=b ,且|FB|•|AB|=6;可得ab=6,从而解得a=3,b=2, ∴椭圆的方程为+=1;(Ⅱ)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2),由已知y 1>y 2>0;∴|PQ|sin ∠AOQ=y 1﹣y 2; 又|AQ|=,且∠OAB=,∴|AQ|=y ,由=sin ∠AOQ ,可得5y 1=9y 2;由方程组,消去x ,可得y 1=,∴直线AB 的方程为x+y ﹣2=0; 由方程组,消去x ,可得y 2=;由5y 1=9y 2,可得5(k+1)=3,两边平方,整理得56k 2﹣50k+11=0, 解得k=或k=; ∴k 的值为或.18.已知斜率为k 的直线l 与椭圆C :+=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <﹣;(2)设F 为C 的右焦点,P 为C 上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差. 【解答】解:(1)设A (x 1,y 1),B (x 2,y 2), ∵线段AB 的中点为M (1,m ), ∴x 1+x 2=2,y 1+y 2=2m 将A ,B 代入椭圆C :+=1中,可得,两式相减可得,3(x 1+x 2)(x 1﹣x 2)+4(y 1+y 2)(y 1﹣y 2)=0, 即6(x 1﹣x 2)+8m (y 1﹣y 2)=0, ∴k==﹣=﹣点M (1,m )在椭圆内,即,解得0<m ∴.(2)证明:设A (x 1,y 1),B (x 2,y 2),P (x 3,y 3), 可得x 1+x 2=2,∵++=,F (1,0),∴x 1﹣1+x 2﹣1+x 3﹣1=0,y 1+y 2+y 3=0, ∴x 3=1,∵m >0,可得P 在第一象限,故,m=,k=﹣1由椭圆的焦半径公式得则|FA|=a ﹣ex 1=2﹣x 1,|FB|=2﹣x 2,|FP|=2﹣x 3=. 则|FA|+|FB|=4﹣,∴|FA|+|FB|=2|FP|,联立,可得|x 1﹣x 2|=所以该数列的公差d 满足2d=|x 1﹣x 2|=,∴该数列的公差为±.19.设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB|=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【解答】解:(1)方法一:抛物线C :y 2=4x 的焦点为F (1,0),当直线的斜率不存在时,|AB|=4,不满足;设直线AB 的方程为:y=k (x ﹣1),设A (x 1,y 1),B (x 2,y 2), 则,整理得:k 2x 2﹣2(k 2+2)x+k 2=0,则x 1+x 2=,x 1x 2=1,由|AB|=x 1+x 2+p=+2=8,解得:k 2=1,则k=1,∴直线l 的方程y=x ﹣1;方法二:抛物线C :y 2=4x 的焦点为F (1,0),设直线AB 的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin 2θ=, ∴θ=,则直线的斜率k=1,∴直线l 的方程y=x ﹣1;(2)过A ,B 分别向准线x=﹣1作垂线,垂足分别为A 1,B 1,设AB 的中点为D ,过D 作DD 1⊥准线l ,垂足为D ,则|DD 1|=(|AA 1|+|BB 1|)由抛物线的定义可知:|AA 1|=|AF|,|BB 1|=|BF|,则r=|DD 1|=4,以AB 为直径的圆与x=﹣1相切,且该圆的圆心为AB 的中点D , 由(1)可知:x 1+x 2=6,y 1+y 2=x 1+x 2﹣2=4, 则D (3,2),过点A ,B 且与C 的准线相切的圆的方程(x ﹣3)2+(y ﹣2)2=16..20.设椭圆C :+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA=∠OMB . 【解答】解:(1)c==1,∴F (1,0), ∵l 与x 轴垂直,∴x=1, 由,解得或,∴A (1.),或(1,﹣), ∴直线AM 的方程为y=﹣x+,y=x ﹣,证明:(2)当l 与x 轴重合时,∠OMA=∠OMB=0°, 当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA=∠OMB , 当l 与x 轴不重合也不垂直时,设l 的方程为y=k (x ﹣1),k ≠0, A (x 1,y 1),B (x 2,y 2),则x 1<,x 2<,直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =+,由y 1=kx 1﹣k ,y 2=kx 2﹣k 得k MA +k MB =,将y=k (x ﹣1)代入+y 2=1可得(2k 2+1)x 2﹣4k 2x+2k 2﹣2=0,∴x 1+x 2=,x 1x 2=,∴2kx 1x 2﹣3k (x 1+x 2)+4k=(4k 2﹣4k ﹣12k 2+8k 2+4k )=0从而k MA +k MB =0,故MA ,MB 的倾斜角互补, ∴∠OMA=∠OMB , 综上∠OMA=∠OMB .21.记f′(x ),g′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f′(x 0)=g′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x ﹣2不存在“S 点”; (2)若函数f (x )=ax 2﹣1与g (x )=lnx 存在“S 点”,求实数a 的值;(3)已知函数f (x )=﹣x 2+a ,g (x )=.对任意a >0,判断是否存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”,并说明理由.【解答】解:(1)证明:f′(x )=1,g′(x )=2x+2, 则由定义得,得方程无解,则f (x )=x 与g (x )=x 2+2x﹣2不存在“S 点”;(2)f′(x )=2ax ,g′(x )=,x >0, 由f′(x )=g′(x )得=2ax ,得x=,f ()=﹣=g ()=﹣lna2,得a=;(3)f′(x )=﹣2x ,g′(x )=,(x ≠0), 由f′(x 0)=g′(x 0),得b =﹣>0,得0<x 0<1,由f (x 0)=g (x 0),得﹣x 02+a==﹣,得a=x 02﹣,令h (x )=x 2﹣﹣a=,(a >0,0<x <1),设m (x )=﹣x 3+3x 2+ax ﹣a ,(a >0,0<x <1),则m (0)=﹣a <0,m (1)=2>0,得m (0)m (1)<0, 又m (x )的图象在(0,1)上连续不断, 则m (x )在(0,1)上有零点, 则h (x )在(0,1)上有零点,则f (x )与g (x )在区间(0,+∞)内存在“S”点.22.已知函数f (x )=﹣lnx .(Ⅰ)若f (x )在x=x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8﹣8ln2;(Ⅱ)若a ≤3﹣4ln2,证明:对于任意k >0,直线y=kx+a 与曲线y=f (x )有唯一公共点.【解答】证明:(Ⅰ)∵函数f (x )=﹣lnx , ∴x >0,f′(x )=﹣,∵f (x )在x=x 1,x 2(x 1≠x 2)处导数相等, ∴=﹣, ∵x 1≠x 2,∴+=,由基本不等式得:=≥,∵x 1≠x 2,∴x 1x 2>256,由题意得f (x 1)+f (x 2)==﹣ln (x 1x 2),设g (x )=,则,∴列表讨论:x (0,16)16 (16,+∞)g′(x ) ﹣ 0+ g (x )↓2﹣4ln2↑∴g (x )在[256,+∞)上单调递增, ∴g (x 1x 2)>g (256)=8﹣8ln2, ∴f (x 1)+f (x 2)>8﹣8ln2. (Ⅱ)令m=e ﹣(|a|+k ),n=()2+1,则f (m )﹣km ﹣a >|a|+k ﹣k ﹣a ≥0, f (n )﹣kn ﹣a <n (﹣﹣k )≤n (﹣k )<0,∴存在x 0∈(m ,n ),使f (x 0)=kx 0+a ,∴对于任意的a ∈R 及k ∈(0,+∞),直线y=kx+a 与曲线y=f (x )有公共点, 由f (x )=kx+a ,得k=,设h (x )=,则h′(x )==,其中g (x )=﹣lnx ,由(1)知g (x )≥g (16),又a ≤3﹣4ln2,∴﹣g (x )﹣1+a ≤﹣g (16)﹣1+a=﹣3+4ln2+a ≤0,∴h′(x )≤0,即函数h (x )在(0,+∞)上单调递减, ∴方程f (x )﹣kx ﹣a=0至多有一个实根,综上,a ≤3﹣4ln2时,对于任意k >0,直线y=kx+a 与曲线y=f (x )有唯一公共点.23.已知函数f (x )=a x ,g (x )=log a x ,其中a >1. (Ⅰ)求函数h (x )=f (x )﹣xlna 的单调区间;(Ⅱ)若曲线y=f (x )在点(x 1,f (x 1))处的切线与曲线y=g (x )在点(x 2,g (x 2))处的切线平行,证明x 1+g (x 2)=;(Ⅲ)证明当a ≥e时,存在直线l ,使l 是曲线y=f (x )的切线,也是曲线y=g (x )的切线.【解答】(Ⅰ)解:由已知,h (x )=a x ﹣xlna ,有h′(x )=a x lna ﹣lna ,令h′(x )=0,解得x=0.由a >1,可知当x 变化时,h′(x ),h (x )的变化情况如下表:x (﹣∞,0)0 (0,+∞)h′(x ) ﹣ 0 + h (x )↓极小值↑∴函数h (x )的单调减区间为(﹣∞,0),单调递增区间为(0,+∞);(Ⅱ)证明:由f′(x )=a x lna ,可得曲线y=f (x )在点(x 1,f (x 1))处的切线的斜率为lna .由g′(x )=,可得曲线y=g (x )在点(x 2,g (x 2))处的切线的斜率为.∵这两条切线平行,故有,即,两边取以a 为底数的对数,得log a x 2+x 1+2log a lna=0, ∴x 1+g (x 2)=;(Ⅲ)证明:曲线y=f (x )在点()处的切线l 1:,曲线y=g (x )在点(x 2,log a x 2)处的切线l 2:.要证明当a ≥时,存在直线l ,使l 是曲线y=f (x )的切线,也是曲线y=g (x )的切线, 只需证明当a ≥时,存在x 1∈(﹣∞,+∞),x 2∈(0,+∞)使得l 1与l 2重合, 即只需证明当a ≥时,方程组由①得,代入②得:,③因此,只需证明当a ≥时,关于x 1 的方程③存在实数解.设函数u (x )=,既要证明当a ≥时,函数y=u (x )存在零点.u′(x )=1﹣(lna )2xa x ,可知x ∈(﹣∞,0)时,u′(x )>0;x ∈(0,+∞)时,u′(x )单调递减, 又u′(0)=1>0,u′=<0,故存在唯一的x 0,且x 0>0,使得u′(x 0)=0,即.由此可得,u (x )在(﹣∞,x 0)上单调递增,在(x 0,+∞)上单调递减,u (x )在x=x 0处取得极大值u (x 0). ∵,故lnlna ≥﹣1.∴=.下面证明存在实数t ,使得u (t )<0, 由(Ⅰ)可得a x ≥1+xlna ,当时,有 u (x )≤=.∴存在实数t ,使得u (t )<0. 因此,当a ≥时,存在x 1∈(﹣∞,+∞),使得u (x 1)=0.∴当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.24.已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f (x)>0;(2)若x=0是f(x)的极大值点,求a.【解答】(1)证明:当a=0时,f(x)=(2+x)ln(1+x)﹣2x,(x>﹣1).,,可得x∈(﹣1,0)时,f″(x)≤0,x∈(0,+∞)时,f″(x)≥0∴f′(x)在(﹣1,0)递减,在(0,+∞)递增,∴f′(x)≥f′(0)=0,∴f(x)=(2+x)ln(1+x)﹣2x在(﹣1,+∞)上单调递增,又f(0)=0.∴当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)解:由f(x)=(2+x+ax2)ln(1+x)﹣2x,得f′(x)=(1+2ax)ln(1+x)+﹣2=,令h(x)=ax2﹣x+(1+2ax)(1+x)ln(x+1),h′(x)=4ax+(4ax+2a+1)ln(x+1).当a≥0,x>0时,h′(x)>0,h(x)单调递增,∴h(x)>h(0)=0,即f′(x)>0,∴f(x)在(0,+∞)上单调递增,故x=0不是f(x)的极大值点,不符合题意.当a<0时,h″(x)=8a+4aln(x+1)+,显然h″(x)单调递减,①令h″(0)=0,解得a=﹣.∴当﹣1<x<0时,h″(x)>0,当x>0时,h″(x)<0,∴h′(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴h′(x)≤h′(0)=0,∴h(x)单调递减,又h(0)=0,∴当﹣1<x<0时,h(x)>0,即f′(x)>0,当x>0时,h(x)<0,即f′(x)<0,∴f(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴x=0是f(x)的极大值点,符合题意;②若﹣<a<0,则h″(0)=1+6a>0,h″(e﹣1)=(2a ﹣1)(1﹣e)<0,∴h″(x)=0在(0,+∞)上有唯一一个零点,设为x,时,h″(x)>0,h′(x)单调递增,∴当0<x<x∴h′(x)>h′(0)=0,即f′(x)>0,)上单调递增,不符合题意;∴f(x)在(0,x③若a<﹣,则h″(0)=1+6a<0,h″(﹣1)=(1﹣2a)e2>0,,∴h″(x)=0在(﹣1,0)上有唯一一个零点,设为x1∴当x<x<0时,h″(x)<0,h′(x)单调递减,1∴h′(x)>h′(0)=0,∴h(x)单调递增,∴h(x)<h(0)=0,即f′(x)<0,∴f(x)在(x,0)上单调递减,不符合题意.1综上,a=﹣.25.已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【解答】证明:(1)当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g′(x)=0,得x=ln2.当x∈(0,ln2)时,g′(x)<0,当x∈(ln2,+∞)时,g′(x)>0,∴g(x)≥g(ln2)=e ln2﹣2•ln2=2﹣2ln2>0,∴f (x )在[0,+∞)单调递增,∴f (x )≥f (0)=1, 解:(2),f (x )在(0,+∞)只有一个零点⇔方程e x ﹣ax 2=0在(0,+∞)只有一个根, ⇔a=在(0,+∞)只有一个根,即函数y=a 与G (x )=的图象在(0,+∞)只有一个交点.G,当x ∈(0,2)时,G′(x )<0,当∈(2,+∞)时,G′(x )>0,∴G (x )在(0,2)递减,在(2,+∞)递增, 当→0时,G (x )→+∞,当→+∞时,G (x )→+∞, ∴f (x )在(0,+∞)只有一个零点时,a=G (2)=.26.已知函数f (x )=﹣x+alnx . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:<a ﹣2.【解答】解:(1)函数的定义域为(0,+∞), 函数的导数f′(x )=﹣﹣1+=﹣,设g (x )=x 2﹣ax+1,当a ≤0时,g (x )>0恒成立,即f′(x )<0恒成立,此时函数f (x )在(0,+∞)上是减函数, 当a >0时,判别式△=a 2﹣4,①当0<a ≤2时,△≤0,即g (x )>0,即f′(x )<0恒成立,此时函数f (x )在(0,+∞)上是减函数, ②当a >2时,x ,f′(x ),f (x )的变化如下表: x(0,)(,)(,+∞) f′(x ) ﹣+0 ﹣ f (x )递减递增递减综上当a ≤2时,f (x )在(0,+∞)上是减函数, 当a >2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a >2,0<x 1<1<x 2,x 1x 2=1, 则f (x 1)﹣f (x 2)=(x 2﹣x 1)(1+)+a (lnx 1﹣lnx 2)=2(x 2﹣x 1)+a (lnx 1﹣lnx 2), 则=﹣2+,则问题转为证明<1即可,即证明lnx 1﹣lnx 2>x 1﹣x 2, 即证2lnx 1>x 1﹣在(0,1)上恒成立,设h (x )=2lnx ﹣x+,(0<x <1),其中h (1)=0, 求导得h′(x )=﹣1﹣=﹣=﹣<0,则h (x )在(0,1)上单调递减, ∴h (x )>h (1),即2lnx ﹣x+>0, 故2lnx >x ﹣, 则<a ﹣2成立.。
2018届高考数学二轮复习疯狂专练11圆锥曲线理 Word版 含答案
圆锥曲线1.[2017·达州零诊]若方程C (a 是常数),则下列结论正确的是( ) A .a +∀∈R ,方程C 表示椭圆 B .a -∀∈R ,方程C 表示双曲线 C .a -∃∈R ,方程C 表示椭圆 D .a ∃∈R ,方程C 表示抛物线【答案】B【解析】∵当1a =时,方程C 即221x y +=,表示单位圆,a +∴∃∈R ,使方程C 不表示椭圆.故A 项不正确;∵当0a <时,方程C 表示焦点在x 轴上的双曲线,a -∴∀∈R ,方程C 表示双曲线,得B 项正确;a -∀∈R ,方程C 不表示椭圆,得C 项不正确;∵不论a 取何值,方程C 中没有一次项,a ∴∀∈R ,方程C 不能表示抛物线,故D 项不正确,故选B .2.[2017·正阳二中]以221124y x -=的顶点为焦点,长半轴长为4的椭圆方程为( ) A .2216452x y += B .2211612x y += C .221164x y +=D .221416x y += 【答案】D【解析】∵双曲线221124y x -=的焦点为()0,4,()0,4-,顶点为((0,0,-、,∴双曲线的顶点为焦点,长半轴长为4的椭圆中,4a =,c =,2b ∴=,∴椭圆的方一、选择题(5分/题)程为221164y x +=,故选D . 3.[2017·桂林十八中]若双曲线()22x my m m +=∈R 的焦距4,则该双曲线的渐近线方程为( )A B C.D 【答案】D【解析】m <0,∴21a =,2b m =-,又2c =, ∴14m -=,∴3m =-,∴该双曲线的渐近线方程为D . 4.[2017·新余一中]动点P 到点()0,2A 的距离比它到直线:4l y =-的距离小2,则动点P 的轨迹方程为( ) A .24y x = B .28y x = C .24x y=D .28x y =【答案】D【解析】 动点P 到()0,2A 点的距离比它到直线::4l y =-的距离小2,∴动点M 到点()0,2A 的距离与它到直线2y =-的距离相等,根据抛物线的定义可得点M 的轨迹为以()0,2A 为焦点,以直线2y =-为准线的抛物线,其标准方程为28x y =,故选D .5.[2017·兰州一中]已知过抛物线24y x =焦点F 的直线l 交抛物线于A 、B 两点(点A 在第一象限),若3AF FB = ,则直线l 的斜率为( )A B C D .2【答案】A【解析】设过抛物线24y x =焦点F 的直线:1l x ty =+交抛物线于()11,A x y ,()22,B x y 两点,因为点A 在第一象限且3AF FB = ,所以1230y y =->,联立24 1y xx ty ==+⎧⎨⎩,得2440y ty --=,则12221222434y y y t y y y +=-==-=-⎧⎨⎩,即直线l 的斜率为故选A .6.[2017·资阳期末]的右顶点为A ,抛物线2:8C y ax =的焦点为F .若在E 的渐近线上存在点P ,使得AP FP ⊥,则E 的离心率的取值范围是( ) A .()1,2BC.D .()2,+∞【答案】B【解析】由题意得,(),0A a ,()2,0F a ,由AP FP ⊥ ,,因为在E 的渐近线上存在点P ,则0∆≥,又因为E 为双曲线,则B . 7.[2017·湖师附中]已知圆O 的方程为229x y +=,若抛物线C 过点()1,0A -,()1,0B ,且以圆O 的切线为准线,则抛物线C 的焦点F 的轨迹方程为( )ABC.D【答案】D【解析】设抛物线的焦点为(),F x y ,准线为l ,过点A ,B ,O 分别作AA l '⊥,BB l '⊥,OP l ⊥,其中A ',B ',P 分别为垂足,则l 为圆的切线,P 为切点,且,因为抛物线过点A ,B BB FB '=,所以,所以点F 的轨迹是以,,A B 为焦点的椭圆,且点F 不在轴上,所以抛物线C 的焦点F 的轨迹方程为D .8.[2017·黄山二模]在ABC △中,()2,0B -,()2,0C ,(),A x y ,给出ABC △满足的条件,就能得到动点A 的轨迹方程,下表给出了一些条件及方程:则满足条件①,②,③的轨迹方程依次为( ) A .1C ,2C ,3CB .3C ,1C ,2CC .3C ,2C ,1CD .1C ,3C ,2C【答案】B【解析】ABC △周长为10,动点A 的轨迹方程为椭圆方程②ABC △面积为10,则A 到BC 的距离为5,即5y =±,动点A 的轨迹方程为225y =;③ABC △中,90A ∠=︒,则,动点A 的轨迹方程为()2240x y y +=≠,故选B .9.[2017·新津中学]如图,椭圆的中心在坐标原点,焦点在x 轴上,1212,,,A A B B 为椭圆。
2018年高考数学圆锥曲线压轴专项练习集(一)
2018年高考数学圆锥曲线压轴专项练习集(一)1.设,A B 分别是直线255y x =和255y x =-上的两个动点,并且20=→AB ,动点P 满足→→→+=OB OA OP ,记动点P 的轨迹为C 。
(1)求曲线C 的方程;(2)若点D 的坐标为(0,16),,M N 是曲线C 上的两个动点,并且→→=DN DM λ,求实数λ的取值范围;(3),M N 是曲线C 上的任意两点,并且直线MN 不与y 轴垂直,线段MN 的中垂线l 交y 轴于点0(0,)E y ,求0y 的取值范围。
2.如图,已知椭圆E :22221(0)x y a b a b+=>>的离心率为22,A 、B 为椭圆的左右顶点,焦点到短轴端点的距离为2,P 、Q 为椭圆E 上异于A 、B 的两点,且直线BQ 的斜率等于直线AP 斜率的2倍.(Ⅰ)求证:直线BP 与直线BQ 的斜率乘积为定值; (Ⅱ)求三角形APQ 的面积S 的最大值.3.已知椭圆E :2221x a b2y +=(a>b>0)的离心率e =22,左、右焦点分别为F 1、F 2,点P(3),点F 2在线段PF 1的中垂线上. (1)求椭圆E 的方程;(2)设l 1,l 2是过点G (32,0)且互相垂直的两条直线,l 1交E 于A , B 两点,l 2交E 于C ,D 两点,求l 1的斜率k 的取值范围;(3)在(2)的条件下,设AB ,CD 的中点分别为M ,N ,试问直线MN 是否恒过定点?若经过,求出该定点坐标;若不经过,请说明理由。
4.已知圆E :x 2+(y ﹣)2=经过椭圆C :+=1(a >b >0)的左右焦点F 1,F 2,且与椭圆C 在第一象限的交点为A ,且F 1,E ,A 三点共线,直线l 交椭圆C 于M ,N 两点,且=λ(λ≠0)(1)求椭圆C 的方程;(2)当三角形AMN 的面积取得最大值时,求直线l 的方程.5.已知:一动圆过(1,0)B 且与圆A:222430(01)x y x λλ+++-=<<相切。
2018年全国卷新课标高考大题专项-直线与圆锥曲线
高考大题专项训练-直线与圆锥曲线1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x +3与椭圆E 有且只有一个公共点T .(1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A ,B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|P A |·|PB |,并求λ的值.解 (1)由已知,得a =2b ,则椭圆E 的方程为x 22b 2+y 2b 2=1. 由方程组⎩⎪⎨⎪⎧ x 22b 2+y 2b 2=1,y =-x +3,得3x 2-12x +(18-2b 2)=0.① 方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x =2,所以椭圆E 的方程为x 26+y 23=1. 点T 的坐标为(2,1).(2)由已知可设直线l ′的方程为y =12x +m (m ≠0), 由方程组⎩⎪⎨⎪⎧ y =12x +m ,y =-x +3,可得⎩⎨⎧ x =2-2m 3,y =1+2m 3,所以P 点坐标为⎝⎛⎭⎫2-2m 3,1+2m 3,|PT |2=89m 2. 设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2).由方程组⎩⎨⎧ x 26+y 23=1,y =12x +m ,可得3x 2+4mx +(4m 2-12)=0.②方程②的判别式为Δ=16(9-2m 2),由Δ>0,解得-322<m <322. 由②得x 1+x 2=-4m 3,x 1x 2=4m 2-123.所以|P A |= ⎝⎛⎭⎫2-2m 3-x 12+⎝⎛⎭⎫1+2m 3-y 12=52⎪⎪⎪⎪2-2m 3-x 1, 同理|PB |=52⎪⎪⎪⎪2-2m 3-x 2. 所以|P A |·|PB |=54⎪⎪⎪⎪⎝⎛⎭⎫2-2m 3-x 1⎝⎛⎭⎫2-2m 3-x 2 =54⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3(x 1+x 2)+x 1x 2 =54⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3⎝⎛⎭⎫-4m 3+4m 2-123=109m 2. 故存在常数λ=45,使得|PT |2=λ|P A |·|PB |. 2.在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |; (2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. 解 (1)如图,由已知得M (0,t ),P ⎝⎛⎭⎫t 22p ,t ,又N 为M 关于点P 的对称点,故N ⎝⎛⎭⎫t 2p ,t ,ON 的方程为y =p tx ,代入y 2=2px 整理得px 2-2t 2x =0, 解得x 1=0,x 2=2t 2p,因此H ⎝⎛⎭⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2. (2)直线MH 与C 除H 以外没有其他公共点,理由如下:直线MH 的方程为y -t =p 2t x ,即x =2t p(y -t ). 代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.3.如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 解 (1)设直线y =kx +1被椭圆截得的线段为AM ,由⎩⎪⎨⎪⎧y =kx +1,x 2a 2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0, 故x 1=0,x 2=-2a 2k 1+a 2k 2, 因此|AM |=1+k 2|x 1-x 2|=2a 2|k |1+a 2k 2·1+k 2. (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP |=|AQ |.记直线AP ,AQ 的斜率分别为k 1,k 2,且k 1,k 2>0,k 1≠k 2.由(1)知|AP |=2a 2|k 1|1+k 211+a 2k 21,|AQ |=2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22, 所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.由k 1≠k 2,k 1,k 2>0得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝⎛⎭⎫1k 21+1⎝⎛⎭⎫1k 22+1=1+a 2(a 2-2),① 因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,所以a > 2.因此任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2,由e =c a =a 2-1a ,得0<e ≤22. 所以离心率的取值范围为(0,22]. 4.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.(1)证明 由题意知F ⎝⎛⎭⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝⎛⎭⎫a 22,a ,B ⎝⎛⎭⎫b 22,b ,P ⎝⎛⎭⎫-12,a ,Q ⎝⎛⎭⎫-12,b ,R ⎝⎛⎭⎫-12,a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0.由于F 在线段AB 上,故1+ab =0.记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-ab a =-b =b -0-12-12=k 2.所以 AR ∥FQ .(2)解 设过AB 的直线为l ,l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪x 1-12, S △PQF =|a -b |2. 由题意可得|b -a |⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=1,x 1=0(舍去).设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =y x -1(x ≠1).而a +b 2=y ,所以y 2=x -1(x ≠1). 当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0),所以所求轨迹方程为y 2=x -1.。
高三数学-2018届高三数学专项训练(2018)《圆锥曲线》精品
C. 9
D. 16
12.给出下列结论 , 其中正确的是
()
A.渐近线方程为 y
b x a 0,b 0 的双曲线的标准方程一定是
a
x2 y2 a2 b2 1
B.抛物线 y
1 x2 的准线方程是 x 1
2
2
C.等轴双曲线的离心率是 2
D.椭圆 x2 m2
y2 n2
1 m 0, n 0 的焦点坐标是 F1
x1 1· x2 1 x1·x 2
x1 x21ຫໍສະໝຸດ 44 ………………( 10 分) k2
m n mn ,即 1
1 1
mn
综上可知 1 1 为定值。………………( mn
20.(本小题满分 12 分)
12 分)
解:(1) AM 2AP, NP AM 0. ∴ NP为 AM的垂直平分线,∴ |NA|=|NM|. ………………………… 2 分
由椭圆的对称性知 | OC|=| OB|, 由 AC · BC =0 得 AC⊥ BC,
A
O
x
∵ | BC|=2| AC| ,∴ | OC|=| AC| ,∴△ AOC是等腰直角三角形,∴ C 的坐标为( 1,1),
∵ C 点在椭圆上∴ 12 4
1 b2
1 , ∴ b2 = 4 , 所求的椭圆方程为 3
二、填空题(本题每小题 4 分,共 16 分)
m2 n2 ,0 , F2 m2 n2 ,0
13.如果正△ ABC 中 , D
AB,E
AC , 向量 DE
1 BC , 那么以 B , C 为焦点且过点 D , E 的双曲线
2
的离心率是
2
14.已知椭圆 x m
.
(新课标版)备战2018高考数学二轮复习专题1.6圆锥曲线测试卷
1,设切线 l 的方程为 y
k x m, k
0 ,由
y kx m
x2
,得
y2 1
4
1 4k 2 x2 8k 2mx 4k2m2 4 0.设 A x1, y1 、B x2, y2 ,则
64k 4m2 16 1 4k 2 4k 2m2 4
48k2
0 . x1 x2
8k2m 2 , x1 x2
1 4k
4k 2m2 2 4 ,由过点 1 4k
21.【 2018 江西南昌摸底联考】已知椭圆
x2 C: 2
y2 2 1(a b 0) 的离心率为
3 ,短轴长为 2.
ab
2
( 1)求椭圆 C 的标准方程; ( 2)设直线 l : y kx m 与椭圆 C 交于 M , N 两点, O 为坐标原点,若 kOM kON l 的距离的取值范围 .
5 ,求原点 O 到直线 4
4 ,0
3
5
15 .【2018 河南名校联考】已知直线 l 的方程为 x y 2 0 ,抛物线为 y 2 2 x ,若点 P 是抛物线上任一 点,则点 P 到直线 l 的最短距离是 __________ .
【答案】 3 2 4
【 解 析 】 设 抛 物 线 y2 2x 的 与 直 线 l 平 行 的 切 线 方 程 为 x y k 0 , 由 { y2 2x
( 1)求椭圆 C 的方程; ( 2)过点 P m,0 作圆 x2 y2 1的切线 l 交椭圆 C 于 A、 B 两点,求弦长 AB 的最大值.
【解析】( 1)由题得: c a
3
,
4a
8 ,所以 a
2, c
2
3 .又 b2 a2 c2 ,所以 b 1,即 椭圆 C 的
2016-2018年高考理科圆锥曲线真题(全国卷)
2016~2018高考圆锥曲线(全国卷)1.(2016全国一)已知方程132222=--+n m y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则m 的取值范围是(A )(1-,3)(B )(1-,3)(C )(0,3)(D )(0,3)2.(两点.已知=AB (A )23.(l 交圆A 于C ,(Ⅱ)Q P ,两4.(2016轴垂直,2sin MF ∠(A 5.(2016全国二)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.6.(2016全国三)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A.13B.12C.23D.347.(2016全国三)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B(1)若F (2)若△8.(2017A 、B 两点,直线l A .169.(2017A ,圆A与双曲线10.(20171⎛ ⎝⎭中(1)求C (2)l 过定点.11.(所截得的弦长为2,则C 的离心率为()A.2 12.(2017全国二)已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N ,若M 为FN 的中点,则FN =_____________.13.(2017全国二)设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ =,证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .14.(221123x y +=A 15.(2为直径的A 16.(AB 为直(1(217.(交于M ,N 两点,则FM FN ⋅=B .619.(2018全国一)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |=A .32B .3C .D .420.(2018全国一)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.21.(C.22.(,是椭圆的左,右焦点,是的左顶点,点且斜率为的直线上,为等腰三角形,,则的离心率为 B. D.23.(的焦点为,过且斜率为的直线与交于,两点,.(1且与的准线相切的圆的方程.24.(2F 作C 25.(2018全国三)已知点M (-1,1)和抛物线C:24y x =,过C 的焦点且斜率为k 的直线与C 交于A,B 两点,若∠AMB=90。
2018届二轮 圆锥曲线的综合问题 专题卷(全国通用)13
第九节 圆锥曲线的综合问题班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共10小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【2016高考天津】已知双曲线)0,0(12222>>=-b a by a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为( )(A )1422=-y x(B )1422=-y x (C )15320322=-y x (D )12035322=-y x【答案】A【解析】由题意得2212,11241b x yc a b a ==⇒==⇒-=,选A.2.【浙江省温州市2017届高三8月模拟】点P 到图形C 上所有点的距离的最小值称为点P 到图形C 的距离,那么平面内到定圆C 的距离与到圆C 外的定点A 的距离相等的点的轨迹是 A .射线B .椭圆C .双曲线的一支D .抛物线【答案】C.3.【2017届广东省广雅中学、江西省南昌二中高三下联考】自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到原点的长,则点轨迹方程为( ) A. B. C. D.【答案】D 【解析】由题意得 ,所以 ,即,选D.4.【2018届黑龙江省海林市朝鲜中学高三高考综合卷(一)】已知两点(),0A a , (),0B a -(0a >),若曲线22230x y y +--+=上存在点P ,使得90APB ∠=︒,则正实数a 的取值范围为( )A. (]0,3B. []1,3C. []2,3D. []1,2 【答案】B5.【2017届江西省抚州市临川区第一中学高三4月模拟】已知B 、C 为单位圆上不重合的两个定点, A 为此单位圆上的动点,若点P 满足AP PB PC =+,则点P 的轨迹为( ) A. 椭圆 B. 双曲线 C. 抛物线 D. 圆 【答案】D【解析】设(),P x y , ()cos ,sin A θθ, ()11,B x y , ()22,C x y ,设单位圆圆心为O ,则根据AP PB PC =+可有: 0PA PB PC ++=,所以点P 为ABC ∆的重心,根据重心坐标公式有1212cos 3{sin 3x x x y y y θθ++=++= ,整理得2212121339x x y y x y ++⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以点P 的轨迹为圆,故选择D.6.【2017届贵州省贵阳市第一中学、凯里市第一中学高三下月考七】已知直线()():21440l m x m y m ++-+-=上总存在点M ,使得过M 点作的圆C : 222430x y x y ++-+=的两条切线互相垂直,则实数m 的取值范围是( ) A. 1m ≤或2m ≥ B. 28m ≤≤ C. 210m -≤≤ D. 2m ≤-或8m ≥ 【答案】C【解析】7.【2016高考天津理数】已知双曲线2224=1x y b-(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为( )(A )22443=1y x -(B )22344=1y x -(C )2224=1x y b -(D )2224=11x y -【答案】D【解析】根据对称性,不妨设A 在第一象限,(,)A x y,∴22422x x y bb y x y ⎧=⎧+=⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩, ∴221612422b b xy b b =⋅=⇒=+,故双曲线的方程为221412x y -=,故选D. 8.【2017届河北省石家庄市二模】已知动点P 在椭圆2213627x y +=上,若点A 的坐标为()3,0,点M 满足1AM =, 0PM AM ⋅=,则PM 的最小值是( )D. 3 【答案】C【解析】0PM AM PM AM ⋅=∴⊥ ,9.【2018届广西钦州市高三上学期第一次检测】抛物线的焦点为,点为该抛物线上的动点,点是抛物线的准线与坐标轴的交点,则的最小值是( )A. B. C.D.【答案】B【解析】由题意可知,抛物线的准线方程为x=﹣1,A (﹣1,0),过P 作PN 垂直直线x=﹣1于N ,由抛物线的定义可知PF=PN ,连结PA ,当PA 是抛物线的切线时,有最小值,则∠APN 最大,即∠PAF 最大,就是直线PA 的斜率最大, 设在PA 的方程为:y=k (x+1),所以,解得:k 2x 2+(2k 2﹣4)x+k 2=0,所以△=(2k 2﹣4)2﹣4k 4=0,解得k=±1, 所以∠NPA=45°,=cos∠NPA=.故选B .10. 设圆()22125x y ++=的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为 ( )A 、224412521x y +=B 、224412125x y += C 、224412521x y -= D 、224412125x y -= 【答案】A11.【2018届云南省昆明一中高三第一次摸底】设O 为坐标原点, P 是以F 为焦点的抛物线22y px =(0p >)上任意一点, M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )23 C. 【答案】A【解析】由题意可得,02p F ⎛⎫⎪⎝⎭,设2000,,(0)2y P y y p ⎛⎫> ⎪⎝⎭,则()2001112,3333633y y p OM OF FM OF FP OF OP OF OP OF p ⎛⎫=+=+=+-=+=+ ⎪⎝⎭,可得200013263k y p y p p y p ==≤=++.当且仅当002y pp y =时取得等号,选A. 12.【2017届云南省师范大学附属中学高三高考适应性月考(五)】已知抛物线的焦点为,准线为,抛物线的对称轴与准线交于点,为抛物线上的动点,,当最小时,点恰好在以为焦点的椭圆上,则椭圆的离心率为( ) A.B.C.D.【答案】D 【解析】二、填空题13.【2018届海南省(海南中学、文昌中学、海口市第一中学、农垦中学)等八校联考】已知F 是抛物线2:16C y x =的焦点,过F 的直线l与直线10x -=垂直,且直线l 与抛物线C 交于A , B 两点,则AB =__________. 【答案】643【解析】F 是抛物线2:16C y x =的焦点,∴()4,0F ,又过F 的直线l与直线10x -=垂直∴直线l 的方程为:)y 4x =-,带入抛物线2:16C y x =,易得: 2340480x x -+= 设()11A x y =,, ()22B x y =,, 121240163x x x x +==,643AB ==。
2018年高考数学二轮复习压轴大题规范练1直线与圆锥曲线(1)文
(一)直线与圆锥曲线(1)1.(2017·全国Ⅰ)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 解 (1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,y 1=x 214,y 2=x 224,x 1+x 2=4, 于是直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1. (2)由y =x 24,得y ′=x 2. 设M (x 3,y 3),由题设知x 32=1,解得x 3=2,于是M (2,1). 设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y =x +m 代入y =x 24,得x 2-4x -4m =0. 当Δ=16(m +1)>0,即m >-1时,x 1,2=2±2m +1.从而|AB |=2|x 1-x 2|=42(m +1).由题设知|AB |=2|MN |,即42(m +1)=2(m +1),解得m =7.所以直线AB 的方程为y =x +7. 2.(2017届辽宁省锦州市质检)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的上、下两个焦点分别为F 1,F 2,过点F 1与y 轴垂直的直线交椭圆C 于M ,N 两点,△MNF 2的面积为3,椭圆C 的离心率为32. (1)求椭圆C 的标准方程;(2)已知O 为坐标原点,直线l :y =kx +m 与y 轴交于点P ,与椭圆C 交于A ,B 两个不同的点,若AP →=3PB →,求m 的取值范围.解 (1)由已知可知,椭圆C 的焦距为2c ,当y =c 时,|MN |=|x M -x N |=2b 2a, 由题意△MNF 2的面积为12|F 1F 2||MN |=c |MN |=2b 2c a =3, 由已知得c a =32, ∴b 2=1,∴a 2=4,∴椭圆C 的标准方程为x 2+y 24=1. (2)显然m ≠0,设A (x 1,kx 1+m ),B (x 2,kx 2+m ),由⎩⎪⎨⎪⎧ y =kx +m ,4x 2+y 2-4=0, 得(k 2+4)x 2+2mkx +m 2-4=0,由已知得Δ=4m 2k 2-4(k 2+4)(m 2-4)>0,即k 2-m 2+4>0,且x 1+x 2=-2km k 2+4,x 1x 2=m 2-4k 2+4. 由AP →=3PB →,得-x 1=3x 2,即x 1=-3x 2,∴3(x 1+x 2)2+4x 1x 2=0,∴12k 2m 2(k 2+4)2+4(m 2-4)k 2+4=0, 即m 2k 2+m 2-k 2-4=0.当m 2=1时,m 2k 2+m 2-k 2-4=0不成立,∴k 2=4-m 2m 2-1. ∵k 2-m 2+4>0,∴4-m 2m 2-1-m 2+4>0, 即(4-m 2)m 2m 2-1>0, ∴1<m 2<4,解得-2<m <-1或1<m <2.综上所述,m 的取值范围为(-2,-1)∪(1,2).3.在平面直角坐标系xOy 中,已知动点M 到定点F (1,0)的距离与到定直线x =3的距离之比为3∶3.(1)求动点M 的轨迹C 的方程;(2)已知P 为定直线x =3上一点.①过点F 作FP 的垂线交轨迹C 于点G (G 不在y 轴上),求证:直线PG 与OG 的斜率之积是定值;②若点P 的坐标为(3,3),过点P 作动直线l 交轨迹C 于不同的两点R ,T ,线段RT 上的点H 满足|PR ||PT |=|RH ||HT |,求证:点H 恒在一条定直线上.(1)解 设M (x ,y ),则|MF |=(x -1)2+y 2,点M 到直线x =3的距离d =|x -3|,由|MF |d =33,得(x -1)2+y 2|x -3|2=13,化简得x 23+y 22=1,即动点M 的轨迹C 的方程为x 23+y 22=1.(2)证明 因为P 为直线x =3上的一点,所以令P 的坐标为(3,t ).①令G (x 0,y 0),由FG ⊥FP ,得FG →·FP →=0,即(x 0-1,y 0)·(2,t )=0,即ty 0=2-2x 0,又因为点G (x 0,y 0)在椭圆x 23+y 22=1上,所以y 20=2-2x 23,而PG ,OG 的斜率分别为k PG =y 0-t x 0-3,k OG =y 0x 0,于是k PG ·k OG =(y 0-t )y 0(x 0-3)x 0=y 20-ty 0x 20-3x 0=2-2x 203-2+2x 0x 20-3x 0=-23(x 20-3x 0)x 0-3x 0=-23,即直线PG 与OG 的斜率之积为定值-23. ②令PR PT =RHHT =λ(λ>0),则PR →=λPT →,RH →=λHT →,令点H (x ,y ),R (x 1,y 1),T (x 2,y 2),则⎩⎪⎨⎪⎧ (x 1-3,y 1-3)=λ(x 2-3,y 2-3),(x -x 1,y -y 1)=λ(x 2-x ,y 2-y ),即⎩⎪⎨⎪⎧ x 1-3=λx 2-3λ,y 1-3=λy 2-3λ,x -x 1=λx 2-λx ,y -y 1=λy 2-λy ,即⎩⎪⎪⎨⎪⎪⎧ 3=λx 2-x 1λ-1, ①3=λy 2-y 1λ-1,②x =λx 2+x 1λ+1, ③y =λy 2+y 1λ+1, ④由①×③,②×④,得⎩⎪⎨⎪⎧ 3x =λ2x 22-x 21λ2-1, ⑤3y =λ2y 22-y 21λ2-1. ⑥因为R (x 1,y 1),T (x 2,y 2)在椭圆x 23+y 22=1上,所以⎩⎪⎨⎪⎧ 2x 21+3y 21=6,2x 22+3y 22=6,⑤×2+⑥×3,得6x +9y =2λ2x 22-2x 21+3λ2y 22-3y 21λ2-1=λ2(2x 22+3y 22)-(2x 21+3y 21)λ2-1=6λ2-6λ-1=6(λ2-1)λ-1=6,即2x +3y -2=0,所以点H 在定直线2x +3y -2=0上.4.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为(-2,0),且椭圆C 与直线y =62x +3相切.(1)求椭圆C 的标准方程;(2)过点P (0,1)的动直线与椭圆C 交于A ,B 两点,设O 为坐标原点,是否存在常数λ,使得OA →·OB →+λPA →·PB →=-7?请说明理由.解 (1)根据题意可知,a =2,所以x 24+y 2b 2=1.由椭圆C 与直线y =62x +3相切,联立得⎩⎪⎨⎪⎧ x 24+y 2b 2=1,y =62x +3,消去y 可得(b 2+6)x 2+126x +36-4b 2=0,Δ=0,即(126)2-4(b 2+6)(36-4b 2)=0,解得b 2=0(舍)或3.所以椭圆C 的标准方程为x 24+y 23=1.(2)当过点P 的直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧ x 24+y23=1,y =kx +1,化简得(3+4k 2)x 2+8kx -8=0,所以⎩⎪⎨⎪⎧ x 1+x 2=-8k4k 2+3,x 1x 2=-84k 2+3,Δ≥0,所以OA →·OB →+λPA →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)]=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=-8(1+λ)(1+k 2)4k 2+3-8k24k 2+3+1=-2λ+4-4(4k 2+3)-2λ(4k 2+3)4k 2+3+1=-2λ+44k 2+3-2λ-3, 所以当λ=2时,OA →·OB →+λPA →·PB →=-7.当过点P 的直线AB 的斜率不存在时,即直线与y 轴重合,此时A (0,3),B (0,-3), 所以OA →·OB →+λPA →·PB →=-3+λ[(3-1)(-3-1)]=-3-2λ,所以当λ=2时,OA →·OB →+λPA →·PB →=-7,综上所述,当λ=2时,OA →·OB →+λPA →·PB →=-7.。
全国2018学高考数学第2轮复习 练酷专题 高考第20题 圆锥曲线 文共54页
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
Hale Waihona Puke 全国2018学高考数学第 2轮复习 练酷专题 高考
第20题 圆锥曲线 文
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
2018年高考数学二轮复习专项精练压轴大题突破练一直线与圆锥曲线1理20171219343
(一)直线与圆锥曲线(1)1.(2017届南京、盐城模拟)如图,在平面直角坐标系xOy中,焦点在xx2 y2轴上的椭圆C:+=1经过点(b,2e),其中e为椭圆C的离心率.过点8 b2T(1,0)作斜率为k(k>0)的直线l交椭圆C于A,B两点(A在x轴下方).(1)求椭圆C的标准方程;|AT|·|BT|(2)过点O且平行于l的直线交椭圆C于点M,N,求的值;|MN|2→2→(3)记直线l与y轴的交点为P.若AP=TB,求直线l的斜率k.5x2 y2解(1)因为椭圆+=1经过点(b,2e),8 b2b2 4e2所以+=1.8 b2c2 c2 b2 c2因为e2==,所以+=1.a2 8 8 2b2b2 8-b2因为a2=b2+c2,所以+=1.8 2b2整理得b4-12b2+32=0,解得b2=4或b2=8(舍) .x2 y2所以椭圆C的标准方程为+=1.8 4(2)设A(x1,y1),B(x2,y2).因为T(1,0),则直线l的方程为y=k(x-1).联立直线l与椭圆方程Error!消去y,得(2k2+1)x2-4k2x+2k2-8=0,所以Error!因为MN∥l,所以直线MN的方程为y=kx,联立直线MN与椭圆方程Error!8消去y,得(2k2+1)x2=8,解得x2=.2k2+1|AT|·|BT|1-x1·x2-1因为MN∥l,所以=.|MN|2x M-x N27因为(1-x1)·(x2-1)=-[x1x2-(x1+x2)+1]=,2k2+132(x M-x N)2=4x2=,2k2+11|AT|·|BT|1-x1·x2-1所以=|MN|2 x M-x N27 2k2+1 7=·=.2k2+1 32 32(3)在y=k(x-1)中,令x=0,则y=-k,所以P(0,-k),→→从而AP=(-x1,-k-y1),TB=(x2-1,y2).→2→ 2因为AP=TB,所以-x1=(x2-1),5 52 2即x1+x2=.5 5由(2)知,Error!由Error!-4k2+2 16k2-2解得x1=,x2=.32k2+132k2+12k2-8因为x1x2=,2k2+1-4k2+2 16k2-2 2k2-8所以×=,32k2+132k2+12k2+1整理得50k4-83k2-34=0,17解得k2=2或k2=-(舍).50又因为k>0,所以k= 2.2.(2017·福建省福州第一中学质检)已知圆C:(x-1)2+y2=16,F(-1,0),M是圆C上的一个动点,线段MF的垂直平分线与线段MC相交于点P.(1)求点P的轨迹方程;(2)记点P的轨迹为C1,A,B是直线x=-2上的两点,满足AF⊥BF,曲线C1上过A,B的两条切线(异于x=-2)交于点Q,求四边形AQBF面积的取值范围.解(1)依题意得圆心C(1,0),半径r=4,由于|PF|+|PC|=r=4>|CF|=2,所以点P的轨迹方程是以C,F为焦点,长轴长为4的椭圆,即a=2,c=1,则b2=22-1=3,x2 y2所以点P的轨迹方程是+=1.4 32(2)依题意,直线AF的斜率存在且不为零,设y=k(x+1),令x=-2,得A(-2,-k),1(-2,k).同理B设过点A的切线为y=k1(x+2)-k,x2 y2代入+=1,4 3得(3+4k21)x2+8k1(2k1-k)x+4(2k1-k)2-12=0.由Δ=64k21(2k1-k)2-16(3+4k21)[(2k1-k)2-3]=0,k2-3解得k1=,同理过点B的切线的斜率4k1(-k)2-33k2-1k2==.1 4k4(-k)联立两条切线Error!解得x=-4.1 3 1S四边形AQBF=|AB||x F-x Q|=2|k+k|≥3,2当且仅当k=±1时等号成立,所以四边形AQBF面积的取值范围是[3,+∞).3.在平面直角坐标系xOy中,已知动点M到定点F(1,0)的距离与到定直线x=3的距离之比3为.3(1)求动点M的轨迹C的方程;(2)已知P为定直线x=3上一点.①过点F作FP的垂线交轨迹C于点G(G不在y轴上),求证:直线PG与OG的斜率之积是定值;②若点P的坐标为(3,3),过点P作动直线l交轨迹C于不同的两点R,T,线段RT上的点H|PR| |RH|满足=,求证:点H恒在一条定直线上.|PT| |HT|(1)解设M(x,y),则|MF|=x-12+y2,点M到直线x=3的距离d=|x-3|,3|MF| 3 1由=,得=,d 3 |x-3|2 3x-12+y2x2 y2化简得+=1,3 2x2 y2即动点M的轨迹C的方程为+=1.3 2(2)证明因为P为直线x=3上的一点,所以令P的坐标为(3,t).→→①令G(x0,y0),由FG⊥FP,得FG·FP=0,即(x0-1,y0)·(2,t)=0,即ty0=2-2x0,x2 y2 又因为点G(x0,y0)在椭圆+=1上,3 22x20所以y20=2-,3而PG,OG的斜率分别为y0-t y0k PG=,k OG=,x0-3 x0y0-t y0 y20-ty0于是k PG·k OG==x0-3x0x20-3x02x202--2+2x03=x20-3x02-3x22==-,x20-3x0 32即直线PG与OG的斜率之积为定值-.3 |PR| |RH|②令==λ(λ>0),|PT| |HT|→→→→则PR=λPT,RH=λHT,令点H(x,y),R(x1,y1),T(x2,y2),则Error!即Error!即Error!由①×③,②×④,得Error!x2 y2 因为R(x1,y1),T(x2,y2)在椭圆+=1上,3 2所以Error!4⑤×2+⑥×3,得2λ2x2-2x21+3λ2y2-3y216x+9y=λ2-1λ22x2+3y2-2x21+3y21=λ2-16λ2-66λ2-1===6,λ2-1 λ2-1即2x+3y-2=0,所以点H在定直线2x+3y-2=0上.x2 y24.(2017届辽宁省锦州市质检)已知椭圆C:+=1(a>b>1)的左焦点F与抛物线y2=-4xa2 b22的焦点重合,直线x-y+=0与以原点O为圆心,以椭圆的离心率e为半径的圆相切.2(1)求该椭圆C的方程;(2)过点F的直线交椭圆于A,B两点,线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点.记△GFD的面积为S1,△OED的面积为S2.问:是否存在直线AB,使得S1=S 2,若存在,求直线AB的方程,若不存在,说明理由.2|0-0+2|1解(1)由题意,得c=1,e==,2 2c 1即=,∴a=2,b=3,a 2x2 y2∴所求椭圆C的方程为+=1.4 3(2)假设存在直线AB使S1=S2,显然直线AB不能与x轴,y轴垂直,∴直线AB的斜率存在,设其方程为y=k(x+1)(k≠0),x2 y2将其代入+=1,4 3整理得(4k2+3)x2+8k2x+4k2-12=0,-8k2设A(x1,y1),B(x2,y2),x1+x2=,4k2+36ky1+y2=k(x1+1)+k(x2+1)=,4k2+3-4k2 3k(,4k2+3).∴G4k2+353k4k2+3∵DG⊥AB,∴×k=-1,-4k2-x D4k2+3-k2 -k2解得x D=4k2+3,即D(,0).4k2+3|GF| |DG| ∵△GFD∽△OED,∴=,|OE| |OD| |GF| |DG| |DG| ∴·|OD|=(|OD| )2,|OE|S1 |DG|即S2=(|OD| )2.又∵S1=S2,∴|GD|=|OD|,-k2 -4k2 3k-k2∴(=,-4k2+3)2+(4k2+3)2 |4k2+3|4k2+3整理得8k2+9=0,∵此方程无解,∴不存在直线AB满足S1=S2.6。
(新课标)高考数学二轮复习专题六直线、圆、圆锥曲线专题能力训练18直线与圆锥曲线理(2021学年)
(新课标)2018届高考数学二轮复习专题六直线、圆、圆锥曲线专题能力训练18直线与圆锥曲线理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((新课标)2018届高考数学二轮复习专题六直线、圆、圆锥曲线专题能力训练18 直线与圆锥曲线理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(新课标)2018届高考数学二轮复习专题六直线、圆、圆锥曲线专题能力训练18直线与圆锥曲线理的全部内容。
专题能力训练18直线与圆锥曲线能力突破训练1.已知O为坐标原点,F是椭圆C:=1(a>b〉0)的左焦点,A,B分别为C的左、右顶点.P 为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E。
若直线B M经过OE的中点,则C的离心率为ﻩ()A。
ﻩ B. C.D。
2。
(2017江西赣州二模)已知双曲线=1(a,b>0)的离心率为,则抛物线x2=4y的焦点到双曲线的渐近线的距离是()A.ﻩB。
C.ﻩ D.3.如果与抛物线y2=8x相切倾斜角为135°的直线l与x轴和y轴的交点分别是A和B,那么过A,B两点的最小圆截抛物线y2=8x的准线所得的弦长为()A。
4ﻩB.2 C.2 D。
4。
(2017河南六市第二次联考)已知双曲线Γ1:=1(a〉0,b〉0)的左、右焦点分别为F1,F2,椭圆Γ2:=1的离心率为e,直线MN过F2与双曲线交于M,N两点,若cos∠F 1MN=cos∠F1F2M,=e,则双曲线Γ1的两条渐近线的倾斜角分别为()A。
30°和150°B。
45°和135°C。
60°和120°ﻩD。
最新-2018届高三数学二轮复习 专题高效升级卷14 直线与圆锥曲线课件 文 新人教A版 精品
-y2
9
-
=1 =1 =1
答案:B
4.已知抛物线y2=2px(p>0),过其焦点且斜 率为1的直线交抛物线于A、B两点,若线段 AB的中点的纵坐标为2,则该抛物线的准线 方程为( )
A.x=1
B.x=-1
C.x=2
D.x=-2
答案:B
5. 若椭圆的中心在原点,一个焦点为(0,
5 2 ),直线y=3x-2与它相交所得的中点
(1)求考察区域边界曲线的方程; ((2)不如考图虑所其示他,边设界线)段,P当1P冰2是川冰融川化的时部,分边边界界线线沿
与其垂直的方向朝考察区域平行移动,第一年移 动0.2 km,以后每年移动的距离为前一年的2倍. 问:经过多长时间,点A恰好在冰川边界线上?
解:(1)设边界曲线上点P的坐标为(x,y),
A.2
B.4
C.6
D.8
答案:C
10. 抛物线y2=4x的焦点为F,准线为l,经过F 且斜率为3 的直线与抛物线在x轴上方的部 分相交于点A,AK⊥l,垂足为K,则△AKF 的面积是( )
A.4
B.3 3
C.4 3
D.8
答案:C
11. 若点O和点F(-2,0)分别为双曲线ax22 - y2=1(a>0)的中心和左焦点,点P为双曲 线右支上的任意一点,O则P FP· 的取值范围 为( )
专题高效升级卷14 直线与圆锥曲线
一、选择题(本大题共12小题,每小题4分, 共48分)
1.已知抛物线y2=2px(p>0)的准线与圆(x -3)2+y2=16相切,则p的值为( )
A.
1 2
B.1
C.2
D.4
答案:C
2.若一个椭圆长轴的长度、短轴的长度和焦距 成等差数列,则该椭圆的离心率是( )
2018年高考数学(文)二轮复习讲练测专题2.11 圆锥曲线的综合问题(测) 含解析
2018年高考数学(文)二轮复习讲练测总分_______ 时间_______ 班级_______ 学号_______ 得分_______(一)选择题(12*5=60分)1.双曲线的左右焦点分别为,为右支上一点,且,,则双曲线的渐近线方程是()A.B.C.D.【答案】B【解析】2.【018届河南省商丘市2高三第一学期期末】以为焦点的抛物线的准线与双曲线相交于两点,若为正三角形,则抛物线的标准方程为()A. B. C. D.【答案】C【解析】由题意, 以为焦点的抛物线的准线y=代入双曲线,可得,∵△MNF为正三角形,∴,∵p>0,∴,∴抛物线C的方程为,故选:C.3.【2018届福建省福州市高三上学期期末】过椭圆的右焦点作轴的垂线,交于两点,直线过的左焦点和上顶点.若以为直径的圆与存在公共点,则的离心率的取值范围是()A. B. C. D.【答案】A4.点M到点F(4,0)的距离比它到直线的距离小1,则点M的轨迹方程为( )A. B. C. D.【答案】B【解答】依题意,点M到点F(4,0)的距离与它到直线的距离相等.则点M的轨迹是以F(4,0)为焦点、为准线的抛物线.故所求轨迹方程为.5.已知圆的弦过点P(1,2),当弦长最短时,该弦所在直线方程为()A.B.C.D.【答案】A.【解析】因为弦长最短,所以该直线与直线OP垂直,又因为,所以直线的斜率为,由点斜式可求得直线方程为,故选A.6.【2018届湖南省常德市高三上学期期末】已知分别为双曲线的左右顶点,两个不同动点在双曲线上且关于轴对称,设直线的斜率分别为,则当取最小值时,双曲线的离心率为()A. B. C. D.【答案】B【解析】设所以时取最小值,此时,选B7.【2018届安徽省马鞍山市高三上学期期末】已知圆与抛物线的准线相切,则的值是( )A. 0B. 2C. 或1D. 0或2【答案】D【解析】的准线方程为的圆心到的距离为圆相切,或,故选D.学科@网8.【2018届吉林省长春市第十一高中、东北师范大学附属中学、吉林一中,重庆一中等五校高三1月联合模拟】已知双曲线的右支与抛物线交于两点,是抛物线的焦点,是坐标原点,且,则双曲线的离心率为()A. B. C. D.【答案】A【解析】把代入双曲线,可得:,∵故选A.9.【2018届福建省福州市高三上学期期末】过椭圆的右焦点作轴的垂线,交于两点,直线过的左焦点和上顶点.若以为直径的圆与存在公共点,则的离心率的取值范围是()A. B. C. D.【答案】A【解析】直线的方程为,圆心坐标为,半径为与圆有公共点,,可得,,,故选A.10.【2018届新疆乌鲁木齐地区高三第一次诊断】已知抛物线与圆,过点作直线,自上而下顺次与上述两曲线交于点,则下列关于的值的说法中,正确的是( )A. 等于1B. 等于16C. 最小值为4D. 最大值为4【答案】A11.已知动点在椭圆上,若点的坐标为,点满足,,则的最小值是()A. B. C. D.【答案】C12.【2018届云南省昆明一中高三第一次摸底】设为坐标原点,是以为焦点的抛物线()上任意一点,是线段上的点,且,则直线的斜率的最大值为()A. B. C. D. 1【答案】A【解析】由题意可得,设,则,可得.当且仅当时取得等号,选A.(二)填空题(4*5=20分)13.【2018届安徽省蚌埠市高三上学期第一次教学质量检查】已知是抛物线的焦点,是上一点,是坐标原点,的延长线交轴于点,若,则点的纵坐标为__________.学科@网【答案】【解析】由于三角形为直角三角形,而,即为中点,设,而,故,代入抛物线方程得,即点的纵坐标为.14.【2018届四川省南充高级中学高三1月检测】已知抛物线的焦点为,是抛物线上的两个动点,若,则的最大值为__________.【答案】(或)【解析】由可得:的最大值为(或15.【2018届广东省佛山市普通高中高三教学质量检测(一)】双曲线的左右焦点分别为,焦距,以右顶点为圆心,半径为的圆过的直线相切与点,设与交点为,若,则双曲线的离心率为__________.【答案】2.16.【2018届湖北省稳派教育高三上学期第二次联考】已知椭圆的半焦距为c,且满足,则该椭圆的离心率e的取值范围是__________.【答案】(三)解答题(6*12=72分)17.【河南省新乡市2017届高三上学期第一次调研】设为坐标原点,已知椭圆的离心率为,抛物线的准线方程为.(1)求椭圆和抛物线的方程;(2)设过定点的直线与椭圆交于不同的两点,若在以为直径的圆的外部,求直线的斜率的取值范围.【答案】(1),;(2).【解析】(1)由题意得,∴,故抛物线的方程为,又,∴,∴,从而椭圆的方程为..............................5分(2)显然直线不满足题设条件,可设直线.18.【2018届山东省寿光市高三上学期期末】已知椭圆的左右焦点分别为,上的动点到两焦点的距离之和为4,当点运动到椭圆的上顶点时,直线恰与以原点为圆心,以椭圆的离心率为半径的圆相切.(1)求椭圆的方程;(2)设椭圆的左右顶点分别为,若交直线于两点.问以为直径的圆是否过定点?若过定点,请求出该定点坐标;若不过定点,请说明理由.【答案】(1).(2),.【解析】试题分析:(1)由椭圆定义可知,,由原点到直线的距离求出,得到椭圆的标准方程;(2)设,,则,,由,得,求出M,N的坐标,因为,故以为直径的圆与轴交于两点,在以为直径的圆中应用相交弦定理求出,从而以为直径的圆恒过两个定点,.试题解析:(1)由椭圆定义可知,,直线,故,∴,,因为,所以,从而以为直径的圆恒过两个定点,.19.【2018届四川省成都市第七中学高三上学期模拟】已知椭圆的一个焦点,且过点,右顶点为,经过点的动直线与椭圆交于两点. (1)求椭圆的方程;(2)是椭圆上一点,的角平分线交轴于,求的长;(3)在轴上是否存在一点,使得点关于轴的对称点落在上?若存在,求出的坐标;若不存在,请说明理由.【答案】(1);(2) ;(3)存在点满足条件.(2)依题可得,由平面几何角平分线定理得,即,得所以(3)假设在轴上存在一点满足已知条件,则即整理得:,∵任意,∴故存在点满足条件.20.【2018届四川省绵阳南山中学高三二诊】已知椭圆的焦距为,且经过点.过点的斜率为的直线与椭圆交于两点,与轴交于点,点关于轴的对称点,直线交轴于点.(1)求的取值范围;(2)试问:是否为定值?若是,求出定值;否则,说明理由.【答案】(1) ;(2)答案见解析.21.【2018届天津市耀华中学高三上学期第三次月考】已知椭圆的一个焦点在直线(1)求该椭圆的方程;(2)若与是该椭圆上不同的两点,且线段的中点在直线上,试证:轴上存在定点,对于所有满足条件的与,恒有;(3)在(2)的条件下,能否为等腰直角三角形?并证明你的结论.【答案】(1)(2)见解析(3)见解析(2)当直线的斜率存在时,设直线的方程为,,,学@科@网设,则,,∵弦的中点在直线上,∴,∴,∴,将代入得,假设在轴上存在定点,,∴,∴,即,22.【2017课标3,文20】在直角坐标系xOy中,曲线与x轴交于A,B两点,点C 的坐标为.当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.【答案】(1)不会;(2)详见解析【解析】试题分析:(1)设,由AC⊥BC得;由韦达定理得,矛盾,所以不存在(2)可设圆方程为,因为过,所以,令得,即弦长为3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2017²郑州质检)过抛物线y 2=8x 的焦点F 作倾斜角为135°的直线交抛物线于A ,B 两点,则弦AB 的长为( ) A .4 B .8 C .12D .162.设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( ) A .0 B .1 C .2D .33.已知直线l 的斜率为k ,它与抛物线y 2=4x 相交于A ,B 两点,F 为抛物线的焦点,若AF →=2FB →,则|k |等于( ) A .2 2 B. 3 C.24D.33二、填空题4.已知直线kx -y +1=0与双曲线x 22-y 2=1相交于两个不同的点A ,B ,若x 轴上的点M (3,0)到A ,B 两点的距离相等,则k 的值为________.5.(2016²唐山一模)F 是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,过点F 向C 的一条渐近线引垂线,垂足为A ,交另一条渐近线于点B .若2AF →=FB →,则C 的离心率是________.6.设F 1,F 2为椭圆C 1:x 2a 21+y 2b 21=1(a 1>b 1>0)与双曲线C 2的公共的左,右焦点,椭圆C 1与双曲线C 2在第一象限内交于点M ,△MF 1F 2是以线段MF 1为底边的等腰三角形,且|MF 1|=2,若椭圆C 1的离心率e ∈⎣⎢⎡⎦⎥⎤38,49,则双曲线C 2的离心率的取值范围是________. 三、解答题7.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),其焦点为F 1,F 2,离心率为22,直线l :x +2y -2=0与x 轴,y 轴分别交于点A ,B ,(1)若点A 是椭圆E 的一个顶点,求椭圆的方程;(2)若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,求a 的取值范围.8.(2016²山东实验中学第三次诊断)已知点A (-2,0),B (2,0),曲线C 上的动点P 满足A P →²B P →=-3.(1)求曲线C 的方程;(2)若过定点M (0,-2)的直线l 与曲线C 有公共点,求直线l 的斜率k 的取值范围; (3)若动点Q (x ,y )在曲线C 上,求u =y +2x -1的取值范围.9.(2016²重庆巫溪中学第五次月考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点与抛物线y2=-4x 的焦点相同,且椭圆C 上一点与椭圆C 的左,右焦点F 1,F 2构成的三角形的周长为22+2.(1)求椭圆C 的方程;(2)若直线l :y =kx +m (k ,m ∈R )与椭圆C 交于A ,B 两点,O 为坐标原点,△AOB 的重心G 满足:F 1G →²F 2G →=-59,求实数m 的取值范围.答案精析1.D [由题意得,抛物线y 2=8x 的焦点F 的坐标为(2,0),又直线AB 的倾斜角为135°,故直线AB 的方程为y =-x +2.代入抛物线方程y 2=8x ,得x 2-12x +4=0.设A (x 1,y 1),B (x 2,y 2),则弦AB 的长应为x 1+x 2+4=12+4=16.]2.A [由根与系数的关系,得a +b =-tan θ,ab =0,则a ,b 中必有一个为0,另一个为-tan θ.不妨设A (0,0),B (-tan θ,tan 2θ),则直线AB 的方程为y =-x tan θ.根据双曲线的标准方程,得双曲线的渐近线方程为y =±x tan θ,显然直线AB 是双曲线的一条渐近线,所以过A ,B 两点的直线与双曲线没有公共点.]3.A [根据抛物线过焦点弦的结论1|AF |+1|BF |=2p ,得1|AF |+1|BF |=1,又因为|AF |=2|BF |,所以|BF |=32,|AF |=3,则弦长|AB |=92,又弦长|AB |=2psin 2α(α为直线AB 的倾斜角), 所以sin 2α=89,则cos 2α=19,tan 2α=8,即k 2=8,所以|k |=22,故选A.]4.12解析 联立直线与双曲线方程⎩⎪⎨⎪⎧kx -y +1=0,x 22-y 2=1得(1-2k 2)x 2-4kx -4=0,∵直线与双曲线相交于两个不同的点,∴⎩⎪⎨⎪⎧1-2k 2≠0,Δ=16k 2+16(1-2k 2)=16(1-k 2)>0,解得-1<k <1且k ≠±22. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k1-2k2. 设P 为AB 的中点, 则P (x 1+x 22,k (x 1+x 2)2+1),即P (2k 1-2k 2,11-2k2). ∵M (3,0)到A ,B 两点距离相等,∴MP ⊥AB ,∴k MP ²k AB =-1,即k ²11-2k 22k 1-2k 2-3=-1,得k =12或k =-1(舍),∴k =12.5.233 解析 由已知得渐近线为l 1:y =b a x ,l 2:y =-b ax ,由条件得,F 到渐近线的距离|FA |=b ,则|FB |=2b ,在Rt △AOF 中,|OF |=c ,则|OA |=c 2-b 2=a .设l 1的倾斜角为θ,即∠AOF =θ,则∠AOB =2θ.在Rt △AOF 中,tan θ=b a,在Rt △AOB 中,tan 2θ=3ba ,而tan 2θ=2tan θ1-tan 2θ, 即3b a =2ba 1-b2a2,即a 2=3b 2, 所以a 2=3(c 2-a 2),所以e 2=c 2a 2=43,又e >1,所以e =233.6.⎣⎢⎡⎦⎥⎤32,4 解析 设双曲线C 2的方程为x 2a 22-y 2b 22=1(a 2>0,b 2>0),由题意知|MF 1|=2,|F 1F 2|=|MF 2|=2c ,其中c 2=a 22+b 22=a 21-b 21,又根据椭圆与双曲线的定义得⎩⎪⎨⎪⎧|MF 1|+|MF 2|=2a 1,|MF 1|-|MF 2|=2a 2⇒⎩⎪⎨⎪⎧2+2c =2a 1,2-2c =2a 2⇒a 1-a 2=2c ,其中2a 1,2a 2分别为椭圆的长轴长和双曲线的实轴长.因为椭圆的离心率e ∈⎣⎢⎡⎦⎥⎤38,49,所以38≤c a 1≤49,所以94c ≤a 1≤83c ,而a 2=a 1-2c ,所以14c ≤a 2≤23c ,所以32≤c a 2≤4,即双曲线C 2的离心率的取值范围是⎣⎢⎡⎦⎥⎤32,4.7.解 (1)由椭圆的离心率为22, 得a =2c ,∵直线l 与x 轴交于A 点,∴A (2,0),∴a =2,c =2,b =2, ∴椭圆方程为x 24+y 22=1.(2)由e =22,可设椭圆E 的方程为x 2a 2+2y2a2=1,联立⎩⎪⎨⎪⎧x 2a 2+2y 2a2=1,x +2y -2=0,得6y 2-8y +4-a 2=0,若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,则线段AB 与椭圆E 有公共点,等价于方程6y 2-8y +4-a 2=0在y ∈[0,1]上有解. 设f (y )=6y 2-8y +4-a 2,∴⎩⎪⎨⎪⎧Δ≥0,f ?0?≥0,即⎩⎪⎨⎪⎧a 2≥43,4-a 2≥0,∴43≤a 2≤4, 故a 的取值范围是233≤a ≤2.8.解 (1)设P (x ,y ),A P →²B P →=(x +2,y )(x -2,y )=x 2-4+y 2=-3, 得P 点轨迹(曲线C )方程为x 2+y 2=1, 即曲线C 是圆.(2)可设直线l 的方程为y =kx -2, 其一般方程为kx -y -2=0,由直线l 与曲线C 有交点,得|0-0-2|k 2+1≤1,得k ≤-3或k ≥3, 即所求k 的取值范围是(-∞,- 3 ]∪[3,+∞). (3)由动点Q (x ,y ),设定点N (1,-2), 则直线QN 的斜率k QN =y +2x -1=u , 又点Q 在曲线C 上,故直线QN 与圆有交点, 设直线QN 的方程为y +2=u (x -1), 即ux -y -u -2=0.当直线与圆相切时,|-u -2|u 2+1=1,解得u =-34,当u 不存在时,直线与圆相切, 所以u ∈(-∞,-34].9.解 (1)依题意得⎩⎨⎧c =1,2a +2c =22+2,a 2=b 2+c 2,即⎩⎪⎨⎪⎧a 2=2,b 2=1,所以椭圆C 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),联立得方程组⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2-2=0,消去y 并整理得(1+2k 2)x 2+4kmx +2m 2-2=0,则⎩⎪⎨⎪⎧Δ>0⇒1+2k 2>m 2?*?,x 1+x 2=-4km 1+2k 2, ①x 1x 2=2m 2-21+2k 2,设△AOB 的重心为G (x ,y ), 由F 1G →²F 2G →=-59,可得x 2+y 2=49.②由重心公式可得G (x 1+x 23,y 1+y 23),代入②式,整理可得(x 1+x 2)2+(y 1+y 2)2=4⇒(x 1+x 2)2+[k (x 1+x 2)+2m ]2=4,③ 将①式代入③式并整理, 得m 2=?1+2k 2?21+4k2,代入(*)得k ≠0,则m 2=(1+2k 2)21+4k 2=1+4k 41+4k 2=1+44k 2+1k4.∵k≠0,∴t=1k2>0,∴t2+4t>0,∴m2>1,∴m∈(-∞,-1)∪(1,+∞).。