确定二次函数的表达式教案

合集下载

《确定二次函数的表达式》(优秀教案)

《确定二次函数的表达式》(优秀教案)
情感态度价值观:
4.逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考的能力、勇于创新的精神,以及良好的学习习惯。
重点
难点
1.学会用特定系数法确定二次函数的表达式。
2.灵活选用三种表达形式来确定二次函数的表达式,解决实际问题。
关键
问题
1.掌握二次函数解析式的三种不同表达形式。
2.学生能够在小组内畅所欲言,进行有序有效的交流,并在同伴交流时认真倾听,做好记录;
3.学科长组织组员围绕任务目标热烈讨论,及时进行修改,统一认识,做好展示准备
展示交流
规范评价
15---20
min
创设展示交流情境
1.每个小组上台,按问题顺序进行展示交流,解决问题;
2.要求学生规范上台讲解展示的语言,强调生生互动,激发学生质疑的热情;
《确定二次函数的表达式》课堂学习过程设计
上课
年级
九年级
学科:数学
主题
确定二次函数的表达式
指导教师
学生主持
第几
课时
1
课型
问题综合解决评价课
学习日期
学习
目标
知识技能:
1.掌握二次函数解析式的三种不同表达形式。
2.学会用特定系数法确定二次函数的表达式。
过程方法:
3.经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识。
1.学生主持呈现学习目标,学生展读学习目标;
2.学生主持呈现学生生成问题;
3.希望学生能积极进入状态,准备讨论问题。
自主学习
合作讨论
8---12
min
创设讨论
学习情境
1.教师巡回检查指导;

2.3 确定二次函数的表达式 教案

2.3  确定二次函数的表达式 教案

一、情境导入一副眼镜镜片的下半部分轮廓对应的两条抛物线关于y 轴对称,如图.AB ∥x 轴,AB =4cm ,最低点C 在x 轴上,高CH =1cm ,BD =2cm.你能确定右轮廓线DFE 所在抛物线的函数解析式吗?二、合作探究探究点:用待定系数法确定二次函数解析式 【类型一】 已知顶点坐标确定二次函数解析式已知抛物线的顶点坐标为M (1,-2),且经过点N (2,3),求此二次函数的解析式.解析:因为抛物线的顶点坐标为M (1,-2),所以设此二次函数的解析式为y =a (x -1)2-2,把点N (2,3)代入解析式解答.解:已知抛物线的顶点坐标为M (1,-2),设此二次函数的解析式为y =a (x -1)2-2,把点N (2,3)代入解析式,得a -2=3,即a =5,∴此函数的解析式为y =5(x -1)2-2.方法总结:若题目给出了二次函数的顶点坐标,则采用顶点式求解简单. 变式训练:见《学练优》本课时练习“课堂达标训练” 第9题 【类型二】 已知三个点确定二次函数解析式已知:抛物线经过A (-1,8)、B (3,0)、C (0,3)三点. (1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.解析:(1)设一般式y =ax 2+bx +c ,再把A 、B 、C 三点坐标代入得到关于a 、b 、c 的方程组,然后解方程组求出a 、b 、c 即可;(2)把(1)中的解析式配成顶点式即可得到抛物线的顶点坐标.解:(1)设抛物线的解析式为y =ax 2+bx +c ,根据题意得⎩⎪⎨⎪⎧a -b +c =8,9a +3b +c =0,c =3,解得⎩⎪⎨⎪⎧a =1,b =-4,c =3.所以抛物线的解析式为y =x 2-4x +3;(2)y =x 2-4x +3=(x -2)2-1,所以抛物线的顶点坐标为(2,-1).方法总结:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式.变式训练:见《学练优》本课时练习“课堂达标训练” 第4题 【类型三】 已知两交点或一交点和对称轴确定二次函数解析式已知下列抛物线满足以下条件,求各个抛物线的函数表达式. (1)抛物线经过两点A (1,0),B (0,-3),且对称轴是直线x =2;(2)抛物线与x 轴交于(-2,0),(4,0)两点,且该抛物线的顶点为(1,-92).解析:(1)可设交点式y =a (x -1)(x -3),然后把B 点坐标代入求出a 即可;(2)可设交点式y =a (x +2)(x -4),然后把点(1,-92)代入求出a 即可.解:(1)∵对称轴是直线x =2,∴抛物线与x 轴另一个交点坐标为(3,0).设抛物线解析式为y =a (x -1)(x -3),把B (0,-3)代入得a (-1)×(-3)=-3,解得a =-1,∴抛物线解析式为y =-(x -1)(x -3)=-x 2+4x -3;(2)设抛物线解析式为y =a (x +2)(x -4),把(1,-92)代入得a (1+2)×(1-4)=-92,解得a =12,所以抛物线解析式为y =12(x +2)(x -4)=12x 2-x -4.方法总结:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型四】 二次函数解析式的综合运用如图,抛物线y =x 2+bx +c 过点A (-4,-3),与y 轴交于点B ,对称轴是x =-3,请解答下列问题:(1)求抛物线的解析式;(2)若和x 轴平行的直线与抛物线交于C ,D 两点,点C 在对称轴左侧,且CD =8,求△BCD 的面积.解析:(1)把点A (-4,-3)代入y =x 2+bx +c 得16-4b +c =-3,根据对称轴是x =-3,求出b =6,即可得出答案;(2)根据CD ∥x 轴,得出点C 与点D 关于x =-3对称,根据点C 在对称轴左侧,且CD =8,求出点C 的横坐标和纵坐标,再根据点B 的坐标为(0,5),求出△BCD 中CD 边上的高,即可求出△BCD 的面积.解:(1)把点A (-4,-3)代入y =x 2+bx +c 得16-4b +c =-3,∴c -4b =-19.∵对称轴是x =-3,∴-b2=-3,∴b =6,∴c =5,∴抛物线的解析式是y =x 2+6x +5;(2)∵CD ∥x 轴,∴点C 与点D 关于x =-3对称.∵点C 在对称轴左侧,且CD =8,∴点C 的横坐标为-7,∴点C 的纵坐标为(-7)2+6×(-7)+5=12.∵点B 的坐标为(0,5),∴△BCD 中CD 边上的高为12-5=7,∴△BCD 的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.变式训练:见《学练优》本课时练习“课后巩固提升”第6题 三、板书设计确定二次函数的表达式1.运用顶点式确定二次函数解析式 2.运用三点式确定二次函数解析式 3.运用交点式确定二次函数解析式。

初中数学_确定二次函数的表达式教学设计学情分析教材分析课后反思

初中数学_确定二次函数的表达式教学设计学情分析教材分析课后反思

2.3(1)确定二次函数的表达式教学设计一、教学目标经历用待定系数法求二次函数关系式的过程,加深对二次函数的理解,二、教学重点和难点重点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式. 难点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.三、教学过程(一)复习回顾:1.二次函数表达式的一般形式是什么?2.二次函数表达式的顶点式是什么?3.若二次函数y=ax ²+bx+c(a ≠0)与x 轴两交点为(1x ,0),( 2x ,0)则其函数表达式可以表示成什么形式?4.我们在用待定系数法确定一次函数y=kx+b (k,b 为常数,k ≠0)的关系式时,通常需要 个独立的条件;确定反比例函数xk y =(k ≠0)的关系式时,通常只需要 个条件. 如果要确定二次函数的关系式y=ax ²+bx+c (a,b,c 为常数,a ≠0),通常又需要几个条件 ?(二)初步探索1、已知二次函数2ax y =的图象经过点A (2,-3)、B (3,m )(1)求a 与m 的值;(2)写出该图象上点B 的对称点的坐标:_________(3)当x_________时,y 随x 的增大而减小(4)当x_________时,y 有最_________值,是_________。

2.已知二次函数c ax y +=2的图象经过点(2,3)和(-1,-3),求二次函数的表达式3.已知二次函数bx ax y +=2的图象经过点(1,2)、(2,3),求二次函数的表达式.4.已知二次函数c bx x y ++=2图象经过点M (1,—2)、N(—1,6),求二次函数的表达式.探索1:在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式?小结:用一般式y=ax ²+bx+c 确定二次函数时,如果系数a,b,c 中有两个是未知的,知道图象上两个点的坐标,也可以确定二次函数的表达式.如果系数a,b,c 中三个都是未知的,这个我们将在下节课中进行研究.(三)深入探索5.如图是一名学生推铅球时,铅球行进高度y(m)与水平距离x(m)的图象,你能求出其 表达式吗?6.已知二次函数的图象与y 轴的交点的横纵坐标是为1,且经过点M(2,5)、N(-2,13),(1)求这个二次函数的解析式;(2)写出抛物线的开口方向,对称轴和顶点坐标.(3)求这个二次函数的最大值或最小值。

北师大版数学九年级下册2.3.1《确定二次函数的表达式》说课稿1

北师大版数学九年级下册2.3.1《确定二次函数的表达式》说课稿1

北师大版数学九年级下册2.3.1《确定二次函数的表达式》说课稿1一. 教材分析北师大版数学九年级下册2.3.1《确定二次函数的表达式》这一节主要介绍了二次函数的表达式以及如何确定二次函数的表达式。

二次函数是中学数学中的重要内容,对于学生来说,掌握二次函数的表达式以及确定方法具有重要意义。

本节课通过实例引导学生掌握待定系数法确定二次函数的表达式,培养学生运用数学知识解决实际问题的能力。

二. 学情分析九年级的学生已经学习了函数、方程等基础知识,对函数的概念有一定的了解。

同时,学生已经掌握了二次函数的一般形式,具备了一定的数学思维能力。

但是,对于如何确定二次函数的表达式,学生可能还存在一定的困惑。

因此,在教学过程中,教师需要关注学生的认知基础,引导学生逐步掌握确定二次函数表达式的方法。

三. 说教学目标1.知识与技能目标:让学生掌握待定系数法确定二次函数的表达式,能运用所学知识解决实际问题。

2.过程与方法目标:通过观察、分析、归纳等数学活动,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用价值。

四. 说教学重难点1.教学重点:待定系数法确定二次函数的表达式。

2.教学难点:如何引导学生运用待定系数法确定二次函数的表达式,以及如何将实际问题转化为数学问题。

五.说教学方法与手段1.教学方法:采用启发式教学法、案例教学法、小组合作学习法等。

2.教学手段:利用多媒体课件、黑板、粉笔等。

六. 说教学过程1.导入新课:通过复习二次函数的一般形式,引导学生思考如何确定二次函数的表达式。

2.新课讲解:讲解待定系数法确定二次函数的表达式,并通过实例进行分析。

3.课堂互动:学生分组讨论,尝试运用待定系数法确定给定二次函数的表达式。

4.总结提升:教师引导学生总结确定二次函数表达式的步骤,并强调其在实际问题中的应用。

5.课堂练习:布置相关练习题,让学生巩固所学知识。

初中数学教学课例《确定二次函数的表达式》教学设计及总结反思

初中数学教学课例《确定二次函数的表达式》教学设计及总结反思


型,是初中阶段数学学习的一个重要内容.在本节教学
设计中,利用已经学习过的知识,进一步探究待定系数
法解决二次函数表达式的确定,同时通过对给出条件的 分析,选择合适的二次函数表达式和方法来解决问题。
(2)突出重点、突破难点的策略 本节课是在学生已经掌握了二次函数的有关性质 和表达式的基础上,对有关知识进行应用和拓展.在教 学过程中,教师应通过问题情境的创设,激发学生的学 习兴趣,并注意通过有层次的问题串的精心设计,引导 学生进行探究活动.在师生互动、生生互动的探究活动 中,提高学生解决实际问题的能力
分别代入表达式,得
பைடு நூலகம்
解这个方程组,得
∴所求函数表达式为
方法二
解:A(0,1)与 C(2,1)的纵坐标相同
∴A,C 两点关于二次函数的对称轴对称
根据对称轴性质可得对称轴的横坐标
∴所以 B(1,2)为二次函数的顶点
∴可设,将 A(0,1)代入
解得
(1)设计理念
课例研究综
二次函数是研究现实世界变化规律的一个重要模
达式的一般方法------待定系数法,此问题解决后及时
引导学生总结解法.
探究活动:一个二次函数的图象经过点 A(0,1),
B(1,2),C(2,1),你能确定这个二次函数的表达
式吗?你有几种方法?与同伴进行交流.
方法一
解:设所求的二次函数的表达式为
由已知,将三点(0,1),(1,2),(2,1),
初中数学教学课例《确定二次函数的表达式》教学设计及总 结反思
学科
初中数学
教学课例名
《确定二次函数的表达式》

本节课是北师大版义务教育教科书九年级(下)第
二章《二次函数》第三节的第 2 课时,主要是通过对用

沪科版数学九年级上册《二次函数表达式的确定》教学设计1

沪科版数学九年级上册《二次函数表达式的确定》教学设计1

沪科版数学九年级上册《二次函数表达式的确定》教学设计1一. 教材分析《二次函数表达式的确定》是沪科版数学九年级上册的一章内容,主要介绍了二次函数的标准形式以及如何确定二次函数的表达式。

本节课的内容对于学生理解二次函数的性质和图像具有重要意义。

教材通过引入二次函数的定义和性质,引导学生探究如何从给定的条件中确定二次函数的表达式,从而加深学生对二次函数的理解。

二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,对于函数的理解有一定的基础。

但是,二次函数的概念和性质较为抽象,学生可能难以理解和掌握。

因此,在教学过程中,需要注重引导学生从实际问题中抽象出二次函数模型,并通过探究活动帮助学生建立二次函数的表达式。

三. 教学目标1.了解二次函数的定义和性质,理解二次函数的表达式。

2.能够从给定的条件中确定二次函数的表达式。

3.培养学生的抽象思维能力和问题解决能力。

四. 教学重难点1.二次函数的定义和性质的理解。

2.如何从给定的条件中确定二次函数的表达式。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出二次函数模型。

2.通过探究活动,帮助学生理解和掌握二次函数的表达式。

3.利用多媒体辅助教学,直观展示二次函数的图像和性质。

六. 教学准备1.多媒体教学设备。

2.教学课件和教学素材。

3.练习题和测试题。

七. 教学过程1.导入(5分钟)通过一个实际问题引入二次函数的概念,例如:一个抛物线形的风力发电机,其发电量与风速的平方成正比,求该风力发电机的发电量与风速的关系式。

2.呈现(15分钟)呈现二次函数的定义和性质,引导学生从实际问题中抽象出二次函数模型。

通过多媒体展示二次函数的图像,帮助学生直观理解二次函数的性质。

3.操练(20分钟)让学生通过探究活动,从给定的条件中确定二次函数的表达式。

可以设置一些具有代表性的例题,让学生分组讨论和解答,然后进行分享和讨论。

4.巩固(10分钟)针对学生在探究活动中遇到的问题,进行讲解和巩固。

确定二次函数的表达式

确定二次函数的表达式

第二章 二次函数2.3 确定二次函数的表达式(1)一、知识点用待定系数法求解二次函数表达式二、教学目标知识与技能:1.能够根据二次函数的图像和性质建立合适的直角坐标系,确定函数关系式.2.会根据条件利用待定系数法求二次函数的表达式.过程与方法:经历确定适当的直角坐标系以及根据点的坐标确定二次函数表达式的思维过程,类比求一次函数的表达式的方法,体会求二次函数表达式的思想方法.情感与态度:1.能把实际问题抽象为数学问题,也能把所学知识运用于实践,培养学生积极参与的意识,加深学生在生活中学数学,将数学知识服务于生活的学习理念.2.养成学生善于主动学习、乐于合作交流、学会总结提升的学习习惯,激发和调动学生学习的积极性和主动性,培养数学的应用意识.三、重点与难点重点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.难点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.四、引入新课(放幻灯片2、3、4)1.二次函数表达式的一般形式是什么?2.二次函数表达式的顶点式是什么?3.我们在用待定系数法确定一次函数y=kx+b(k,b 为常数,k ≠0)的关系式时,通常需要 个独立的条件;确定反比例函数xk y (k ≠0)的关系式时,通常只需要 个条件. 如果要确定二次函数的关系式y=ax ²+bx+c (a,b,c 为常数,a ≠0),通常又需要几个条件 ?(学生思考讨论后,回答)设计意图:利用类比的方法学习待定系数法确定二次函数的表达式.五、探究新知1.初步探究(放幻灯片5)(1)如图2-7是一名学生推铅球时,铅球行进高度y(m)与水平距离x(m)的图象,你能求出其表达式吗?分析:要求y 与x 之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.解:根据图象是一抛物线且顶点坐标为(4,3),因此设它的关系式为3)4(2+-=x a y ,又∵图象过点(10,0),∴03)410(2=+-a ,解得 121-=a , ∴图象的表达式为3)4(1212+--=x y . (2)想一想:确定二次函数的表达式需要几个条件?(放幻灯片6)小结:确定二次函数的关系式y=ax ²+bx+c (a,b,c 为常数,a ≠0),通常需要3 个条件; 当知道顶点坐标(h,k )和知道图象上的另一点坐标两个条件,用顶点式k h x a y +-=2)(可以确定二次函数的关系式.设计意图:以一个推铅球的实际情境引入,教学时要引导学生观察图象中隐含的信息,鼓励他们尝试确定二次函数的表达式.2.初步探究例1 (放幻灯片7)已知二次函数y=ax 2+c 的图象经过点(2,3)和(-1,-3),求出这个二次函数的表达式.分析:二次函数y=ax 2+c 中只需确定a,c 两个系数,需要知道两个点坐标,因此此题只要把已知两点代入即可.解:将点(2,3)和(-1,-3)分别代入二次函数y=ax 2+c 中,得 ⎩⎨⎧+=-+=,3,43c a c a 解这个方程组,得⎩⎨⎧-==.5,2c a ∴所求二次函数表达式为:y=2x 2-5.3.深入探究(1)已知二次函数的图象与y 轴交点的纵坐标为1,且经过点(2,5)和(-2,13),求这个二次函数的表达式. (放幻灯片8、9)解法1 解:因为抛物线与y 轴交点纵坐标为1,所以设抛物线关系式为12++=bx ax y ,∵图象经过点(2,5)和(-2,13)∴⎩⎨⎧=+-=++,13124,5124b a b a 解得:a=2,b=-2.∴这个二次函数关系式为 1222+-=x x y .解法2 解:设抛物线关系式为 y=ax ²+bx+c ,由题意可知,图象经过点(0,1),(2,5)和(-2,13), ∴⎪⎩⎪⎨⎧=+-=++=,1324,524,1c b a c b a c 解方程组得:a =2,b =-2,c =1.∴这个二次函数关系式为 1222+-=x x y设计意图:此例求二次函数的表达式,一方面让学生深入探究根据不同的条件灵活选用二次函数的不同形式,通过待定系数法求出函数关系式,另一方面让学生通过实践感受到二次函数一般式y=ax ²+bx+c 确定二次函数需要三个条件.但由于这个二次函数图象与y 轴交点的纵坐标为1,所以c=1,因此可设y=ax ²+bx+1把已知的二点代入关系式求出a,b 的值即可.(2)想一想(放幻灯片10)在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式?六、课堂练习(放幻灯片11)七、课堂小结(放幻灯片12、13)1.用顶点式k h x a y +-=2)(确定二次函数关系式,当知道顶点(h,k )坐标时,那么再知道图象上的另一点坐标,就可以确定这个二次函数的关系式.2.用一般式y=ax ²+bx+c 确定二次函数时,如果系数a,b,c 中有两个是未知的,知道图象上两个点的坐标,也可以确定二次函数的表达式.3.用待定系数法确定二次函数表达式的步骤:(设-列-解-答)八、课后作业(放幻灯片14)。

北师大版九年级数学下册:第二章 2.3.1《确定二次函数的表达式》精品教案

北师大版九年级数学下册:第二章 2.3.1《确定二次函数的表达式》精品教案

北师大版九年级数学下册:第二章 2.3.1《确定二次函数的表达式》精品教案一. 教材分析《确定二次函数的表达式》是北师大版九年级数学下册第二章第三节的第一课时内容。

本节课的主要目的是让学生掌握二次函数的解析式,并能够根据实际问题确定二次函数的系数。

教材通过简单的实例引导学生探究二次函数的解析式,培养学生的探究能力和数学思维。

二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,对函数有了初步的认识。

但是,对于二次函数的理解还需要进一步的引导和培养。

在导入环节,我会利用学生已有的知识基础,通过一次函数的图像引导学生思考二次函数的特点,激发学生的学习兴趣。

三. 教学目标1.理解二次函数的解析式的概念,掌握二次函数的解析式的形式。

2.能够根据实际问题确定二次函数的系数。

3.培养学生的探究能力和数学思维。

四. 教学重难点1.重点:二次函数的解析式的概念和形式。

2.难点:如何根据实际问题确定二次函数的系数。

五. 教学方法1.引导法:通过问题的引导,让学生主动探究二次函数的解析式。

2.实例分析法:通过具体的实例,让学生理解二次函数的解析式的应用。

六. 教学准备1.教学课件:制作相关的教学课件,帮助学生直观地理解二次函数的解析式。

2.实例素材:准备一些实际的例子,用于引导学生分析二次函数的解析式。

七. 教学过程1.导入(5分钟)通过展示一次函数的图像,引导学生思考二次函数的特点。

提出问题:“如果我们把一次函数的图像旋转90度,会得到怎样的图像?”让学生思考二次函数的图像特征。

2.呈现(10分钟)通过课件展示二次函数的一般形式:y=ax^2+bx+c(a≠0)。

解释二次函数的各个系数的含义,引导学生理解二次函数的解析式。

3.操练(10分钟)让学生分组讨论,每组选取一个实际的例子,尝试确定二次函数的解析式。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)请各组学生汇报他们的讨论结果,教师点评并总结。

2.3第1课时由两点确定二次函数的表达式(教案)

2.3第1课时由两点确定二次函数的表达式(教案)
2.逻辑推理:培养学生运用逻辑推理能力,推导由两点确定二次函数的一般方法,理解数学知识之间的内在逻辑关系;
3.数学建模:让学生学会运用数学建模方法,解决实际问题时能够将问题转化为数学问题,并用数学语言进行表达;
4.数形结合:培养学生通过图形直观地理解二次函数的性质,提高数形结合的能力过程中,学生可能会遇到的求解困难,如去括号、移项、合并同类项等。
(2)理解二次函数的顶点式:帮助学生理解顶点式y = a(x - h)^2 + k的含义,并与两点式求解方法相互转化。
难点举例:如何从两点式中推导出顶点式,以及理解顶点式中h、k的几何意义。
(3)数形结合能力的培养:引导学生通过观察图形,理解二次函数的性质,提高数形结合能力。
三、教学难点与重点
1.教学重点
(1)理解由两点确定二次函数表达式的方法:强调两点式求二次函数的一般步骤,即根据给定的两点(x1, y1)和(x2, y2),建立方程组,解出二次函数的三个参数a、b、c。
举例:给定两点(1, 4)和(3, 0),求解过这两点的二次函数表达式。
(2)运用数形结合理解二次函数性质:通过绘制抛物线图形,让学生观察并理解二次函数的顶点、开口方向、对称轴等性质。
2.3第1课时由两点确定二次函数的表达式(教案)
一、教学内容
本节课选自教材第二章第三节“二次函数”,第1课时“由两点确定二次函数的表达式”。教学内容主要包括:1.理解由两点确定二次函数的一般方法;2.学会运用两点求解二次函数表达式;3.掌握如何将实际问题抽象为由两点确定二次函数模型。通过以下示例进行教学:
难点举例:如何根据图形判断抛物线的开口方向、顶点、对称轴等,以及将这些性质与二次函数表达式相互关联。
(4)解决实际问题时建模能力的培养:指导学生从实际问题中抽象出二次函数模型,并学会运用所学知识解决问题。

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。

初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。

难点:各种性质的应用。

教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。

课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

二次函数数学教案优秀5篇

二次函数数学教案优秀5篇

二次函数数学教案优秀5篇初二二次函数教案篇一一。

学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。

2.了解二次函数关系式,会确定二次函数关系式中各项的系数。

二。

知识导学(一)情景导学1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是。

2.用16米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大?设长方形的长为x 米,则宽为米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为.3.要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽0.8米,那么总费用y为多少元?在这个问题中,地板的费用与有关,为元,踢脚线的费用与有关,为元;其他费用固定不变为元,所以总费用y(元)与x(m)之间的函数关系式是。

(二)归纳提高。

上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?一般地,我们称表示的函数为二次函数。

其中是自变量,函数。

一般地,二次函数中自变量x的取值范围是,你能说出上述三个问题中自变量的取值范围吗?(三)典例分析例1、判断:下列函数是否为二次函数,如果是,指出其中常数a.b.c的值。

(1) y=1― (2)y=x(x-5) (3)y=-x+1 (4) y=3x(2-x)+3x2(5)y=(6) y=(7)y=x4+2x2-1 (8)y=ax2+bx+c例2.当k为何值时,函数为二次函数?例3.写出下列各函数关系,并判断它们是什么类型的函数.⑴正方体的表面积S(cm2)与棱长a(cm)之间的函数关系;⑴圆的面积y(cm2)与它的周长x(cm)之间的函数关系;⑴某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;⑴菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.三。

二次函数教学设计(精选9篇)

二次函数教学设计(精选9篇)

二次函数教学设计(精选9篇)《二次函数》数学教案篇一教学目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

重点难点:重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

难点:会运用二次函数知识解决有关综合问题。

教学过程:一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y 轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

二、知识点串联,综合应用例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交次函数教案篇二教学目标熟练地掌握二次函数的最值及其求法。

2024北师大版数学九年级下册2.3.1《确定二次函数的表达式》教案

2024北师大版数学九年级下册2.3.1《确定二次函数的表达式》教案

2024北师大版数学九年级下册2.3.1《确定二次函数的表达式》教案一. 教材分析《确定二次函数的表达式》是北师大版数学九年级下册第2章第3节的内容。

本节课的主要目的是让学生掌握二次函数的解析式,并能够利用待定系数法求解二次函数的解析式。

教材通过实例引导学生探究二次函数的解析式,让学生在实际问题中体会数学的应用价值。

二. 学情分析学生在学习本节课之前,已经掌握了二次函数的基本概念,并了解了一次函数和正比例函数的解析式。

因此,学生在学习本节课时,具备了一定的数学基础。

但部分学生对于待定系数法求解二次函数解析式的理解可能存在困难,因此,在教学过程中,需要关注这部分学生的学习情况,通过实例和讲解,帮助他们理解和掌握待定系数法的运用。

三. 教学目标1.知识与技能:让学生掌握二次函数的解析式,并能够利用待定系数法求解二次函数的解析式。

2.过程与方法:通过探究二次函数的解析式,培养学生的观察、分析和解决问题的能力。

3.情感态度与价值观:让学生感受数学在实际生活中的应用价值,激发学生学习数学的兴趣。

四. 教学重难点1.重点:二次函数的解析式及其求解方法。

2.难点:待定系数法在求解二次函数解析式中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题,引导学生探究二次函数的解析式;以实际案例为例,讲解待定系数法的运用;小组讨论,促进学生之间的交流与合作。

六. 教学准备1.准备相关案例和问题,用于引导学生探究二次函数的解析式。

2.准备PPT,展示二次函数的图像和解析式。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT展示二次函数的图像,引导学生回顾二次函数的基本概念。

然后提出问题:“如何表示这个二次函数?”引发学生的思考。

2.呈现(15分钟)通过PPT呈现二次函数的解析式,解释二次函数的各个系数代表的意义。

同时,引导学生观察解析式与图像之间的关系。

3.操练(20分钟)以实际案例为例,讲解待定系数法在求解二次函数解析式中的应用。

确定二次函数的表达式优秀教案

确定二次函数的表达式优秀教案
给出一个具有挑战性的实际问题通过解决此问题让学生体会求二次函数表达式的一般方法待定系数法此问题解决后及时引导学生总结解法
确定二次函数的表达式
【教学目标】
1.知识与技能:经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识。
2.方法与过程:会用待定系数法求二次函数的表达式。
3.情感与态度:逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
问题1:如何建立坐标系呢?
问题2:分别选用哪种形式?
问题3:建立坐标系后如何将已知条件中的高度、跨度等转化为点的坐标呢?
给出一个具有挑战性的实际问题,通过解决此问题,让学生体会求二次函数表达式的一般方法——待定系数法,此问题解决后及时引导学生总结解法。
从现实情境和已有知识经回顾本节课所学知识。
1.掌握求二次函数的解析式的方法——待定系数法;
2.能根据不同的条件,恰当地选用二次函数解析式的形式,尽量使解题简捷;
3.解题时,应根据题目特点,灵活选用,必要时数形结合以便于理解。
学生回顾总结。
培养学生良好的反思习惯,加深对知识的理解。
二、议一议
我们可以一起总结此问题的解法:
(一)先建立适当的直角坐标系。
(二)设出抛物线的表达式。
(三)写出相关点的坐标。
(四)列方程。
(五)解方程组,求出待定系数。
(六)写出二次函数表达式。
活动(二)
已知二次函数图像过三点,求解析式,可以设一般式。
已知抛物线经过三点A(0,2),B(1,0),C(-2,3),求二次函数的解析式。
(二)已知二次函数的图像过点A(1,-1)B(-1,7)C(2,1)求此二次函数解析式;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.根据不同表示方式,研究函数的性质.
教学难点
能够根据题目提供的条件,灵活选用恰当的方法求函数表达式.
教学步骤
教学过程设计
教学方法与设计意图
一、知识梳理
(1-2分钟)
1.二次函数表达式的一般形式是什么?
2.二次函数表达式的顶点式是什么?
3.二次函数表达式的交点式是什么?
复习二次函数的三种表达式,为本节课做好铺垫
训练法,及时巩固用待定系数法求解二次函数表达式。
四、课堂练习
(5-10分钟)
1、(2014•贵州)如图:某古城有一个抛物线形石拱门,拱门地面的最大宽度AB=4米,拱门的最大高度OC=4米.
(1)请你建立适当的直角坐标系,求出石拱门所在的抛物线的解析式;
(2)一辆高3米,宽米的货车能否通过此门?试说明理由.
二、新课导入
(1-2分钟)
我们在用待定系数法确定一次函数y=kx+b(k,b为常数,k≠0)的关系式时,通常需要个独立的条件.确定反比例函数 (k≠0)关系式时,通常需要___个条件.
如果确定二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的关系式时,通常又需要几个条件?
预习并导入
本节的内容
(1)已知二次函数的图象的顶点坐标是(-1,1),且经过点(1,-3)
(2)已知二次函数的图象经过点(1,0)与(3,0)和(2,3)
(3)已知二次函数的图象经过点(0,-1),(1,1)与(2,3)
2、一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为( )
七、作业布置
(1分钟)
以考试课作业为主
八、板书设计
确定函数关系式
一、三种表达式
①一般式:y=ax2+bx+c(a≠0)
②顶点式:y=a(x-h)2+k(a≠0)
③交点式:y=a (x-x1)(x-x2)(a≠0)
二、解题思路:
1、找关键词、特殊点(判断用何种解析式)
2、用待定系数法
(1)当a<0时,求a和k的值;
(2)判定C、G两点是否能同时在抛物线y=a(x-1)2+k(a≠0)上,若能,求出a和k的值;若不能,请说明理由;
(3)若抛物线经过七个点中的三个,直接写出所有满足这样的条件的抛物线条数.
训练法,拓展提升关于二次函数三种表达式的综合应用。
六、课堂小结
(1-2分钟)
总结法,总结已学过的二次函数三种表达式,以及相关题型的解题思路和数学思ቤተ መጻሕፍቲ ባይዱ方法
初中部数学科备课格式
第周年级组别:组长:
教师姓名
授课时间
月日
课型
新授课
课 题
确定函数关系式
课时
第课时
教学目标
1.能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题;
2.能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究.
教学重点
1. 能够分析和表示变量之间的二次函数关系,会用待定系数法求函数表达式.
A.y=﹣2(x-1)2+3B.y=﹣2(x+1)2+3
C.y=﹣(2x+1)2+3D.y=﹣(2x-1)2+3
3、已知二次函数的图象如图所示,则这个二次函数的解析式为( )
A.y=﹣3(x﹣1)2+3
B.y=3(x﹣1)2+3
C.y=﹣3(x+1)2+3
D.y=3(x+1)2+3
讲授法,例题讲解用待定系数法求解二次函数的表达式,并分析三种表达式的用法。
三、课程讲授
(10-12分钟)
一、例题讲解
例1、已知二次函数y=ax2+c的图象经过点(2,3)
和(-1,-3),求出这个二次函数的表达式.
例2:已知二次函数的图象的顶点坐标是(1,4),且
经过点(-1,0),(3,0),求这个二次函数的表达式.
法一:
法二:
二、当堂检测
1、判断下列题目应设哪个表达式?
2.(2016•厦门)已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法求出抛物线解析式.
训练法,及时巩固新知识,并与历年中考题接轨。
五、拓展提升
(10-15分钟)
已知A(1,0),B(0,-1),C(-1,2),D(2,-1),E(0,10,F(2,1),G(4,2)七个点,抛物线y=a(x-1)2+k(a≠0)经过其中的三个点.
相关文档
最新文档