2019高考数学一轮复习单元质检卷七不等式推理与证明理新人教B版2018040427
高考数学一轮总复习单元质检卷7不等式推理与证明新人教A版
单元质检卷七不等式、推理与证明(时间:100分钟满分:120分)一、选择题:本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目要求.1.下面几种推理中是演绎推理的为()A.某年级有21个班,一班51人,二班53人,三班52人,由此推测各班都超过50人B.猜想数列,…的通项公式为a n=(n∈N+)C.由平面三角形的性质,推测空间四面体性质D.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180°2.已知x,y满足约束条件则z=2x+y的最小值为()A.2B.4C.6D.103.若x,y∈R,2x+2y=1,则x+y的取值范围是()A.(∞,2]B.(0,1)C.(∞,0]D.(1,+∞)4.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一个城市.由此可判断乙去过的城市为()A.AB.BC.CD.无法判断5.观察下列各式:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,510=9 765 625,…,则52 023的末四位数字为()A.0 625B.3 125C.5 625D.8 1256.已知a>b>0,且a+b=1,则下列结论正确的是()A.ln(ab)>0B.>2C.b a>a bD.>47.由于冬季气候干燥,冷空气频繁袭来,为提高居民的取暖水平,某社区决定建立一个取暖供热站.已知供热站每月自然消费与供热站到社区的距离成反比,每月供热费与供热站到社区的距离成正比,如果在距离社区20千米处建立供热站,这两项费用分别为5千元和8万元,那么要使这两项费用之和最小,供热站应建在离社区()A.5千米B.6千米C.7千米D.8千米8.已知x>0,y>0,且=1,若x+2y≥m2+2m恒成立,则实数m的最小值是()A.2B.4C.4D.29.用数学归纳法证明“1++…+<n(n≥2)”时,由n=k的假设证明n=k+1时,不等式左边需增加的项数为()A.2k1B.2k1C.2kD.2k+110.若实数x,y满足不等式组且ax+y+1≥0恒成立,则实数a的取值范围是()A.,+∞B.∞,C.,1D.1,二、填空题:本题共4小题,每小题5分,共20分.11.根据事实1=12;1+3=22;1+3+5=32;1+3+5+7=42;….写出一个含有量词的全称命题:.12.若实数x,y满足约束条件则当z=ax+by(a>b>0)取最大值4时,的最小值为.13.若e x e y=e,x,y∈R,则2xy的最小值为.14.在平面几何中,有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何中的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥PABC中的三个侧面PAB,PBC,PAC两两相互垂直,则.”三、解答题:共50分.解答应写出文字说明、证明过程或演算步骤.15.(12分)(1)用分析法证明:当n≥0时,;(2)已知x∈R,a=x21,b=2x+2,用反证法证明:a,b中至少有一个不小于0.16.(12分)某地的刺绣有着悠久的历史,如图1,2,3,4为刺绣中最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(1)求出f(5)的值;(2)归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;(3)求+…+(n≥2,n∈N*)的值.17.(12分)已知数列{a n}的前n项和为S n,a n=,a1=.(1)求a2,a3的值;(2)由此猜想数列{a n}的通项公式a n;(3)用数学归纳法加以证明.18.(14分)已知数列{a n}的前n项和S n满足S n=1,且a n>0.(1)求a1,a2,a3;(2)猜想{a n}的通项公式,并用数学归纳法证明.答案:单元质检卷七不等式、推理与证明1.D根据归纳推理的定义,选项A,B为归纳推理;由类比推理的定义,选项C为类比推理;由演绎推理的定义,选项D为演绎推理,故选D.2.A不等式组表示的可行域如图所示,由z=2x+y得y=2x+z,作出直线y=2x,平移直线y=2x,当直线过点C时,直线在y轴上的截距最小,此时z取最小值,由即C(0,2),所以z=2x+y的最小值为2×0+2=2.3.A因为1=2x+2y≥2=2,所以2x+y,即x+y≤2,当且仅当2x=2y=,即x=y=1时取等号,所以x+y的取值范围是(∞,2].4.A由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的其中一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故选A.5.D由题意可得5n(n≥5,n∈N*)的末四位数字的周期为4,所以52023=5504×4+7,所以52023的末四位数字为8125.6.D∵a>b>0,且a+b=1,<a<1,0<b<,∴0<ab<1,ln(ab)<0,故A错;∵1>a>b>0,<1+1=2,故B错;令f(x)=(0<x<1),则f'(x)=>0,故f(x)在(0,1)上单调递增,故,即b ln a>a ln b,即ln a b>ln b a,∴a b>b a,故C错;∵a>0,b>0,a+b=1,=2+2+2=4,当且仅当,即a=b=时,等式成立,又a>b,故>4,故D正确.故选D.7.A设供热站应建在离社区x千米处,则自然消费y1=,供热费y2=k2x,由题意得,当x=20时,y1=0.5,y2=8,所以k1=xy1=10,k2=,所以y1=,y2=x,所以两项费用之和y1+y2=2=4,当且仅当,即x=5时,等号成立,所以要使这两项费用之和最小,供热站应建在离社区5千米处.8.B∵x>0,y>0,且=1,∴x+2y=(x+2y)=4+4+2=8,当且仅当,即x=4,y=2时取等号,∵x+2y≥m2+2m恒成立,∴(x+2y)min≥m2+2m,即8≥m2+2m,解不等式可得4≤m≤2,故实数m的最小值为4.9.C当n=k时,左边=1++…+,当n=k+1时,左边=1++…++…+,所以左边增加了+…+,分母是连续的正整数,所以共增加了(2k+11)2k+1=2×2k2k=2k(项),所以由n=k的假设证明n=k+1时,不等式左边需增加的项数为2k.10.A作出可行域,如图,其中A(5,3),C(3,5),因为ax+y+1≥0恒成立,结合图形知x≥0,y>0,所以当x=0时,y+1≥0恒成立;当x>0时,则a≥,即a≥max,而表示可行域内的点(x,y)与点(0,1)连接所形成的直线的斜率的相反数,因此当直线ax+y+1=0经过点A(5,3)时,最大,为=,所以a≥综上,a的取值范围为,+∞.11.∀n∈N*,1+3+5+…+(2n1)=n2∵1=12,1+(2×21)=22,1+3+(2×31)=32,1+3+5+(2×41)=42,由此可归纳得出:∀n∈N*,1+3+5+…+(2n1)=n2.12.由约束条件可得可行域如图阴影部分所示.当z=ax+by(a>b>0)最大时,直线y=x+在y轴截距最大,∵a>b>0,∴<1,则由图可知,当直线y=x+过点A时,在y轴截距最大,由即A(1,1),∴z max=a+b=4,(a+b)=5+5+2=当且仅当,即a=2b=时取等号,的最小值为13.1+2ln 2∵e x e y=e,∴e x=e y+e,∴e2xy==e y++2e≥2+2e=4e,当且仅当e y=,即e y=e,即y=1时取等号,∴e2xy≥4e,则2xy≥ln4e=lne+ln4=1+2ln2.1415.证明(1)要证,即证<2,即证()2<(2)2,即证2n+2+2<4n+4,即证<n+1,只要证n2+2n<n2+2n+1,而上式显然成立.所以成立.(2)假设a<0且b<0,则由a=x21<0得1<x<1,由b=2x+2<0得x<1,这与1<x<1矛盾,所以假设错误.所以a,b中至少有一个不小于0.16.解(1)f(5)=41.(2)因为f(2)f(1)=4=4×1,f(3)f(2)=8=4×2,f(4)f(3)=12=4×3,f(5)f(4)=16=4×4,…,由上式规律,所以得出f(n+1)f(n)=4n.所以f(n+1)=f(n)+4n,f(n)=f(n1)+4(n1)=f(n2)+4(n1)+4(n2)=f(n3)+4(n1)+4(n2)+4(n3)=…=f(1)+4(n1)+4(n2)+4(n3)+…+4=1+=2n22n+1.(3)当n≥2时,,所以+…+=1+1+…+=1+1=17.(1)解因为a n=,a1=,所以a2=,解得a2=;a3=,解得a3=(2)解由a1=,a2=,a3=,…,猜想:a n=(3)证明①当n=1时,a1=,猜想成立;②假设当n=k(k∈N*)时猜想成立,即a k=,那么,当n=k+1时,由题设a n=,得a k=,a k+1=,所以S k=k(2k1)a k=k(2k1),S k+1=(k+1)·(2k+1)a k+1,a k+1=S k+1S k=(k+1)(2k+1)·a k+1因此k(2k+3)a k+1=,所以a k+1=这就证明了当n=k+1时猜想成立.由①②可知猜想成立.18.解(1)对任意的n∈N*,S n=1,且a n>0.当n=1时,a1=S1=1,整理得+2a11=0,且a n>0,所以a1=1(负值舍去); 当n=2时,S2=a1+a2=1,整理得+2a21=0,且a n>0,所以a2=(负值舍去);当n=3时,S3=a1+a2+a3=1,整理得+2a31=0,且a n>0,所以a3=2(负值舍去).(2)由(1)猜想a n=,n∈N*.下面用数学归纳法加以证明:当n=1时,由(1)知a1=1,猜想成立;假设当n=k(k∈N*)时,a k=成立,则当n=k+1时,a k+1=S k+1S k=11=, 所以+2a k+11=0,且a k+1>0,所以a k+1=,即当n=k+1时,猜想也成立.综上可知,猜想对一切n∈N*都成立.。
2019届高考数学一轮复习 第七章 不等式 推理与证明 课时跟踪训练34 不等关系与不等式 文
课时跟踪训练(三十四) 不等关系与不等式[基础巩固]一、选择题1.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是( ) A .a +c ≥b -c B .ac >bc C.c 2a -b>0D .(a -b )c 2≥0[解析] 当c =0时,B ,C 不成立;当a =1,b =0,c =-2时,A 不成立;因为a -b >0,c 2≥0,所以D 成立.[答案] D2.(2018·陕西商洛商南高中模拟)下列命题为真命题的是( ) A .若ac >bc ,则a >b B .若a 2>b 2,则a >b C .若1a >1b,则a <bD .若a <b ,则a <b[解析] 由ac >bc ,当c <0时,有a <b ,选项A 错误;若a 2>b 2,不一定有a >b ,如(-3)2>(-2)2,但-3<-2,选项B 错误; 若1a >1b ,不一定有a <b ,如12>-13,但2>-3,选项C 错误; 若a <b ,则(a )2<(b )2,即a <b ,选项D 正确. 故选D. [答案] D3.若m =3+5,n =2+6,则下列结论正确的是( ) A .m <n B .n <mC .n =mD .不能确定m ,n 的大小[解析] ∵m =3+5,∴m 2=8+215,∵n =2+6,∴n 2=8+212,∴m 2>n 2,∴m >n .[答案] B4.(2018·吉林省吉林一中月考)若a >b ,x >y ,下列不等式不正确的是( ) A .a +x >b +y B .y -a <x -b C .|a |x >|a |yD .(a -b )x >(a -b )y[解析] 当a ≠0时,|a |>0,不等式两边同乘一个大于零的数,不等号方向不变. 当a =0时,|a |x =|a |y ,故|a |x ≥|a |y .故选C. [答案] C5.若a ,b 为实数,则“ab <1”是“0<a <1b”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 由a ,b 为实数,ab <1,可令a =-1,b =1,则ab =-1<1成立,但推不出0<a <1b;由0<a <1b ,可得b >0,∴0<ab <1,可推出ab <1,∴“ab <1”是“0<a <1b”的必要不充分条件.[答案] B6.(2016·浙江卷)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0 D .(b -1)(b -a )>0[解析][答案] D 二、填空题7.若ab <0,且a >b ,则1a 与1b的大小关系是________.[解析] ∵a >b ,∴b -a <0, 又ab <0,则1a -1b =b -a ab >0,即1a >1b.[答案] 1a >1b8.若a =ln33,b =ln22,则a 与b 的大小关系为________.[解析] ∵a =ln33>0,b =ln22>0,∴a b =ln33·2ln2=2ln33ln2=ln9ln8=log 89>1,∴a >b . [答案] a >b9.若角α,β满足-π2<α<β<π2,则2α-β的取值范围是________.[解析] ∵-π2<α<β<π2,∴-π2<α<π2,-π2<β<π2,-π2<-β<π2,而α<β.∴-π<α-β<0,∴2α-β=(α-β)+α∈⎝ ⎛⎭⎪⎫-3π2,π2.[答案] ⎝ ⎛⎭⎪⎫-3π2,π2三、解答题10.比较下列各组中两个代数式的大小. (1)3m 2-m +1与2m 2+m -3;(2)a 2b +b 2a与a +b (a >0,b >0).[解] (1)∵(3m 2-m +1)-(2m 2+m -3)=m 2-2m +4=(m -1)2+3>0, ∴3m 2-m +1>2m 2+m -3.(2)∵a 2b +b 2a -(a +b )=a 3+b 3-a 2b -ab 2ab=a 2a -b +b 2b -a ab =a -b a 2-b 2ab=a -b2a +bab.又∵a >0,b >0, ∴a -b2a +bab≥0,故a 2b +b 2a≥a +b .[能力提升]11.(2018·黑龙江大庆实验中学期末)若x ∈(0,1),a =ln x ,b =⎝ ⎛⎭⎪⎫12ln x ,c =2ln x,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .b >c >aD .c >b >a[解析] 因为x ∈(0,1),所以a =ln x <0,b =⎝ ⎛⎭⎪⎫12ln x >1,0<c =2ln x<1,所以b >c >a ,故选C.[答案] C12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9[解析] 由f (-1)=f (-2)=f (-3)得,-1+a -b +c =-8+4a -2b +c =-27+9a-3b +c ,消去c 得⎩⎪⎨⎪⎧3a -b =7,5a -b =19,解得⎩⎪⎨⎪⎧a =6,b =11,于是0<c -6≤3,即6<c ≤9.故选C.[答案] C13.用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,要求菜园的面积不小于216 m 2,靠墙的一边长为x m ,其中的不等关系可用不等式(组)表示为________.[解析] 矩形靠墙的一边长为x m ,则另一边长为30-x 2 m ,即⎝⎛⎭⎪⎫15-x 2 m ,根据题意知⎩⎪⎨⎪⎧0<x ≤18,x ⎝⎛⎭⎪⎫15-x 2≥216.[答案] ⎩⎪⎨⎪⎧0<x ≤18,x ⎝⎛⎭⎪⎫15-x 2≥21614.已知存在实数a 满足ab 2>a >ab ,则实数b 的取值范围是________. [解析] ∵ab 2>a >ab ,∴a ≠0, 当a >0时,b 2>1>b ,即⎩⎪⎨⎪⎧ b 2>1,b <1,解得b <-1;当a <0时,b 2<1<b ,即⎩⎪⎨⎪⎧b 2<1,b >1,此式无解.综上可得实数b 的取值范围为(-∞,-1). [答案] (-∞,-1)15.已知b >a >0,x >y >0,求证:xx +a >yy +b.[证明]x x +a -yy +b =x y +b -y x +a x +a y +b =bx -ayx +a y +b.∵b >a >0,x >y >0,∴bx >ay ,x +a >0,y +b >0, ∴bx -ayx +a y +b >0,∴x x +a >yy +b.16.(2017·大连模拟)设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,求f (-2)的取值范围.[解] 解法一:设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ),即4a -2b =(m +n )a +(n -m )b .于是得⎩⎪⎨⎪⎧m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1,∴f (-2)=3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.解法二:由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分,当f (-2)=4a -2b 过点A ⎝ ⎛⎭⎪⎫32,12时,取得最小值4×32-2×12=5, 当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10.[延伸拓展](2017·安徽合肥质检)已知△ABC 的三边长分别为a ,b ,c ,且满足b +c ≤3a ,则c a的取值范围为( )A .(1,+∞)B .(0,2)C .(1,3)D .(0,3)[解析] 由已知及三角形三边关系得⎩⎪⎨⎪⎧a <b +c ≤3a ,a +b >c ,a +c >b ,∴⎩⎪⎨⎪⎧1<b a +c a≤3,1+b a >ca ,1+c a >b a ,∴⎩⎪⎨⎪⎧1<b a +ca ≤3,-1<c a -ba <1,两式相加得,0<2×c a<4,∴c a的取值范围为(0,2),故选B. [答案] B。
2019版高考数学大一轮复习人教B版全国通用文档:第七
§7.3 一元二次不等式及其解法1.“三个二次”的关系2.常用结论(x -a )(x -b )>0或(x -a )(x -b )<0型不等式的解法口诀:大于取两边,小于取中间. 知识拓展(1)f (x )g (x )>0(<0)⇔f (x )·g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔f (x )·g (x )≥0(≤0)且g (x )≠0. 以上两式的核心要义是将分式不等式转化为整式不等式.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( √ )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × )(5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( √ ) 题组二 教材改编2.已知全集U =R ,集合A ={x |x 2-x -6≤0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪4-xx +1≤0,那么集合A ∩(∁U B )等于( ) A .[-2,4) B .(-1,3] C .[-2,-1] D .[-1,3]答案 D解析 因为A ={x |-2≤x ≤3},B ={x |x <-1或x ≥4}, 故∁U B ={x |-1≤x <4},所以A ∩(∁U B )={x |-1≤x ≤3},故选D. 3.y =log 2(3x 2-2x -2)的定义域是________________. 答案 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞解析 由题意,得3x 2-2x -2>0,令3x 2-2x -2=0,得x 1=1-73,x 2=1+73,∴3x 2-2x -2>0的解集为⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞. 题组三 易错自纠4.不等式-x 2-3x +4>0的解集为________.(用区间表示) 答案 (-4,1)解析 由-x 2-3x +4>0可知,(x +4)(x -1)<0, 得-4<x <1.5.若关于x 的不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b =________. 答案 -14解析 ∵x 1=-12,x 2=13是方程ax 2+bx +2=0的两个根,∴⎩⎨⎧a 4-b2+2=0,a 9+b3+2=0,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.6.已知关于x 的不等式(a 2-4)x 2+(a +2)x -1≥0的解集为空集,则实数a 的取值范围为____________. 答案 ⎣⎡⎭⎫-2,65 解析 当a 2-4=0时,a =±2.若a =-2,不等式可化为-1≥0,显然无解,满足题意;若a =2,不等式的解集不是空集,所以不满足题意;当a ≠±2时,要使不等式的解集为空集,则⎩⎪⎨⎪⎧a 2-4<0,(a +2)2+4(a 2-4)<0, 解得-2<a <65.综上,实数a 的取值范围为⎣⎡⎭⎫-2,65.题型一 一元二次不等式的求解命题点1 不含参的不等式典例 求不等式-2x 2+x +3<0的解集.解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0,得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞, 即原不等式的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞. 命题点2 含参不等式典例 解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≥0,解得x ≥2a 或x ≤-1. ③当a <0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≤0. 当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即-2<a <0时,解得2a≤x ≤-1. 综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥2a或x ≤-1; 当-2<a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ 2a ≤x ≤-1;当a =-2时,不等式的解集为{-1};当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x ≤2a . 思维升华 含有参数的不等式的求解,往往需要对参数进行分类讨论(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式; (3)对方程的根进行讨论,比较大小,以便写出解集. 跟踪训练 解下列不等式: (1)0<x 2-x -2≤4; (2)12x 2-ax >a 2(a ∈R ).解 (1)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4,则⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0, 可得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,∴原不等式的解集为{x |-2≤x <-1或2<x ≤3}. (2)∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得x 1=-a 4,x 2=a 3.当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-a 4或x >a 3; 当a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};当a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <a 3或x >-a 4. 综上所述,当a >0时,不等式的解集为 ⎩⎨⎧x ⎪⎪⎭⎬⎫x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <a 3或x >-a 4.题型二 一元二次不等式恒成立问题命题点1 在R 上的恒成立问题典例 (1)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0]B .[-3,0)C .[-3,0]D .(-3,0)答案 D解析 ∵2kx 2+kx -38<0为一元二次不等式,∴k ≠0,又2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0,解得-3<k <0. (2)设a 为常数,对于∀x ∈R ,ax 2+ax +1>0,则a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,+∞) D .(-∞,4)答案 B解析 对于∀x ∈R ,ax 2+ax +1>0,则必有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0或a =0,∴0≤a <4. 命题点2 在给定区间上的恒成立问题典例 设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 解 要使f (x )<-m +5在x ∈[1,3]上恒成立, 即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 命题点3 给定参数范围的恒成立问题典例 对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围. 解 由f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4, 令g (m )=(x -2)m +x 2-4x +4.由题意,知在[-1,1]上,g (m )的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0. 解得x <1或x >3.故当x 的取值范围为(-∞,1)∪(3,+∞)时,对任意的m ∈[-1,1],函数f (x )的值恒大于零. 思维升华 (1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数. 跟踪训练 函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求实数a 的取值范围; (2)当x ∈[-2,2]时,f (x )≥a 恒成立,求实数a 的取值范围; (3)当a ∈[4,6]时,f (x )≥0恒成立,求实数x 的取值范围. 解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立, 需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, ∴实数a 的取值范围是[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0,分如下三种情况讨论(如图所示): ①如图①,当g (x )的图象恒在x 轴上方且满足条件时,有Δ=a 2-4(3-a )≤0,即-6≤a ≤2. ②如图②,g (x )的图象与x 轴有交点, 但当x ∈[-2,+∞)时,g (x )≥0, 即⎩⎪⎨⎪⎧Δ≥0,x =-a2≤-2,g (-2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )≥0,-a2≤-2,4-2a +3-a ≥0,可得⎩⎪⎨⎪⎧a ≥2或a ≤-6,a ≥4,a ≤73,解得a ∈∅.③如图③,g (x )的图象与x 轴有交点,但当x ∈(-∞,2]时,g (x )≥0.即⎩⎪⎨⎪⎧Δ≥0,x =-a2≥2,g (2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )≥0,-a2≥2,7+a ≥0,可得⎩⎪⎨⎪⎧a ≥2或a ≤-6,a ≤-4,a ≥-7.∴-7≤a ≤-6,综上,实数a 的取值范围是[-7,2].(3)令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6.∴实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞). 题型三 一元二次不等式的应用典例 甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100·⎝⎛⎭⎫5x +1-3x 元. (1)要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润. 解 (1)根据题意,得200⎝⎛⎭⎫5x +1-3x ≥3 000, 整理得5x -14-3x ≥0,即5x 2-14x -3≥0,又1≤x ≤10,可解得3≤x ≤10.即要使生产该产品2小时获得的利润不低于3 000元,x 的取值范围是[3,10]. (2)设利润为y 元,则 y =900x·100⎝⎛⎭⎫5x +1-3x=9×104⎝⎛⎭⎫5+1x -3x 2 =9×104⎣⎡⎦⎤-3⎝⎛⎭⎫1x -162+6112,故当x =6时,y max =457 500元.即甲厂以6千克/小时的生产速度生产900千克该产品时获得的利润最大,最大利润为457 500元. 思维升华 求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型. (3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.跟踪训练 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解 (1)由题意,得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价, 所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=40(10-x )(25+4x ),定义域为x ∈[0,2]. (2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0,解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.转化与化归思想在不等式中的应用典例 (1)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.(2)已知函数f (x )=x 2+2x +a x ,若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.思想方法指导 函数的值域和不等式的解集转化为a ,b 满足的条件;不等式恒成立可以分离常数,转化为函数值域问题. 解析 (1)由题意知f (x )=x 2+ax +b=⎝⎛⎭⎫x +a 22+b -a 24. ∵f (x )的值域为[0,+∞), ∴b -a 24=0,即b =a 24.∴f (x )=⎝⎛⎭⎫x +a 22. 又∵f (x )<c ,∴⎝⎛⎭⎫x +a22<c , 即-a 2-c <x <-a2+c .∴⎩⎨⎧-a2-c =m , ①-a2+c =m +6. ②②-①,得2c =6,∴c =9.(2)∵当x ∈[1,+∞)时,f (x )=x 2+2x +a x >0恒成立,即x 2+2x +a >0恒成立.即当x ≥1时,a >-(x 2+2x )恒成立. 令g (x )=-(x 2+2x ),则g (x )=-(x 2+2x )=-(x +1)2+1在[1,+∞)上单调递减, ∴g (x )max =g (1)=-3,故a >-3. ∴实数a 的取值范围是{a |a >-3}. 答案 (1)9 (2){a |a >-3}1.不等式(x -1)(2-x )≥0的解集为( ) A .{x |1≤x ≤2} B .{x |x ≤1或x ≥2} C .{x |1<x <2} D .{x |x <1或x >2}答案 A解析 由(x -1)(2-x )≥0可知,(x -2)(x -1)≤0, 所以不等式的解集为{x |1≤x ≤2}.2.(2018·河北三市联考)若集合A ={x |3+2x -x 2>0},集合B ={x |2x <2},则A ∩B 等于( ) A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1)答案 C 解析 依题意,可求得A =(-1,3),B =(-∞,1),∴A ∩B =(-1,1).3.(2018·商丘调研)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( ) A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]答案 A 解析 方法一 当x ≤0时,x +2≥x 2,∴-1≤x ≤0;①当x >0时,-x +2≥x 2,∴0<x ≤1.②由①②得原不等式的解集为{x |-1≤x ≤1}.方法二 作出函数y =f (x )和函数y =x 2的图象,如图所示,由图知f (x )≥x 2的解集为[-1,1].4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( )A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4} 答案 D解析 由题意知,当a =0时,满足条件.当a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0, 得0<a ≤4,所以0≤a ≤4.5.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件售价提高1元,销售量就会减少10件.那么要保证每天所赚的利润在320元以上,售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间答案 C解析 设售价定为每件x 元,利润为y ,则y =(x -8)[100-10(x -10)],依题意有(x -8)[100-10(x -10)]>320,即x 2-28x +192<0,解得12<x <16,所以每件售价应定为12元到16元之间.6.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( )A .[-4,1]B .[-4,3]C .[1,3]D .[-1,3]答案 B解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3.7.若不等式-2≤x 2-2ax +a ≤-1有唯一解,则a 的值为________.答案 1±52 解析 若不等式-2≤x 2-2ax +a ≤-1有唯一解,则x 2-2ax +a =-1有两个相等的实根,所以Δ=4a 2-4(a +1)=0,解得a =1±52. 8.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是____________. 答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪ a <x <1a 解析 原不等式即(x -a )⎝⎛⎭⎫x -1a <0, 由0<a <1,得a <1a ,∴a <x <1a. ∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ a <x <1a . 9.(2018·济南模拟)若不等式mx 2+2mx -4<2x 2+4x 对任意x 都成立,则实数m 的取值范围是________.答案 (-2,2]解析 原不等式等价于,(m -2)x 2+2(m -2)x -4<0,①当m -2=0,即m =2时,对任意x ,不等式都成立;②当m -2<0,即m <2时,Δ=4(m -2)2+16(m -2)<0,解得-2<m <2.综合①②,得m ∈(-2,2].10.(2018·湛江调研)已知函数f (x )=ax 2+bx +c (a ≠0),若不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <12或x >3,则f (e x )>0(e 是自然对数的底数)的解集是__________. 答案 {x |-ln 2<x <ln 3}解析 依题意可得f (x )=a ⎝⎛⎭⎫x -12(x -3)(a <0), 则f (e x )=a ⎝⎛⎭⎫e x -12(e x -3)(a <0), 由f (e x )=a ⎝⎛⎭⎫e x -12(e x -3)>0,可得12<e x <3, 解得-ln 2<x <ln 3.11.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小. 解 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ).当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a, ∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .12.已知不等式(a +b )x +2a -3b <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >-34,求不等式(a -2b )x 2+2(a -b -1)x +a -2>0的解集.解 因为(a +b )x +2a -3b <0,所以(a +b )x <3b -2a ,因为不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >-34, 所以a +b <0,且3b -2a a +b=-34, 解得a =3b <0,则不等式(a -2b )x 2+2(a -b -1)x +a -2>0,等价于bx 2+(4b -2)x +3b -2>0,即x 2+⎝⎛⎭⎫4-2b x +3-2b<0, 即(x +1)⎝⎛⎭⎫x +3-2b <0.因为-3+2b<-1, 所以所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3+2b <x <-1.13.若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围是____________.答案 ⎝⎛⎭⎫-235,+∞ 解析 方法一 ∵x 2+ax -2>0在x ∈[1,5]上有解,令f (x )=x 2+ax -2,∵f (0)=-2<0,f (x )的图象开口向上,∴只需f (5)>0,即25+5a -2>0,解得a >-235. 方法二 由x 2+ax -2>0在x ∈[1,5]上有解,可得a >2-x 2x =2x-x 在x ∈[1,5]上有解. 又f (x )=2x-x 在x ∈[1,5]上是减函数, ∴⎝⎛⎭⎫2x -x min =-235,只需a >-235. 14.不等式a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,则实数λ的取值范围为__________. 答案 [-8,4]解析 因为a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,所以a 2+8b 2-λb (a +b )≥0对于任意的a ,b ∈R 恒成立,即a 2-λba +(8-λ)b 2≥0恒成立,由一元二次不等式的性质可知,Δ=λ2b 2+4(λ-8)b 2=b 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0,解得-8≤λ≤4.15.(2018·郑州质检)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≥0,x 2-2x ,x <0, 若关于x 的不等式[f (x )]2+af (x )-b 2<0恰有1个整数解,则实数a 的最大值是( )A .2B .3C .5D .8答案 D解析 作出函数f (x )的图象如图实线部分所示,由[f (x )]2+af (x )-b 2<0,得-a -a 2+4b 22<f (x )<-a +a 2+4b 22, 若b ≠0,则f (x )=0满足不等式,即不等式有2个整数解,不满足题意,所以b =0,所以-a <f (x )<0,且整数解x 只能是3,当2<x <4时,-8<f (x )<0,所以-8≤-a <-3,即a 的最大值为8,故选D.16.(2017·宿州模拟)若关于x 的不等式4x -2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为__________.答案 (-∞,0]解析 因为不等式4x -2x +1-a ≥0在[1,2]上恒成立, 所以4x -2x +1≥a 在[1,2]上恒成立. 令y =4x -2x +1=(2x )2-2×2x +1-1=(2x -1)2-1. 因为1≤x ≤2,所以2≤2x ≤4.由二次函数的性质可知,当2x =2,即x =1时,y 取得最小值0,所以实数a 的取值范围为(-∞,0].。
2019版高考数学一轮总复习第七章不等式及推理与证明专题研究2数学归纳法名师课件理科
数学归纳法
专 题 要 点
1.数学归纳法的适证对象 数学归纳法是用来证明关于正整数命题的一种方法,若 n0 是起始值,则 n0 是使命题成立的最小正整数. 2.数学归纳法的步骤 用数学归纳法证明命题时,其步骤如下: (1)当 n=n0(n0=N*)时,验证命题成立; (2)假设 n=k,(k≥n0,k∈N*)时命题成立,推证 n=k+1 时 命题也成立,从而推出对所有的 n≥n0,n∈N*命题成立,其中第 一步是归纳基础,第二步是归纳递推二者缺一不可.
题型二
证明不等式
用数学归纳法证明:对一切大于 1 的自然数 n,不等式 2n+1 1 1 1 (1+3)(1+5)…(1+ )> 2 成立. 2n-1
1 4 5 【证明】 ①当 n=2 时,左=1+3=3,右= 2 ,左>右, 1 1 ∴不等式成立. ②假设 n=k 时, 不等式成立, 即(1+3)(1+5)…(1 2k+1 1 1 1 + ) > 2 ,那么当 n = k + 1 时, (1 + 3 )(1 + 5 )…(1 + 2k-1 1 1 )[1 + ]> 2k-1 2(k+1)-1 4k2+8k+4 2 2k+1 > 2k+1 2k+2 2k+2 · = = 2 2k+1 2 2k+1 = 2k+3· 2k+1 2· 2k+1 =
专 题 讲 解
题型一
证明恒等式
1 1 1 1 1 1 1 求证:1-2+3-4+…+ - = + +… 2n-1 2n n+1 n+2 1 +2n(n∈N*).
【解析】 边=右边. 1 1 1 1 (1)当 n=1 时,左边=1-2=2,右边= = .左 1+1 2
1 1 1 1 1 (2)假设 n=k 时等式成立,即 1-2+3-4+…+ - = 2k-1 2k 1 1 1 1 1 1 1 + +…+2k,则当 n=k+1 时,1-2+3-4+…+ - k+1 k+2 2k-1 1 1 1 1 1 1 1 1 2k+(2k+1-2k+2)=k+1+k+2+…+2k+(2k+1-2k+2) 1 1 1 1 = + +…+ + . k+2 k+3 2k+1 2k+2 即当 n=k+1 时,等式也成立. 综合(1),(2)可知,对一切 n∈N*,等式成立. 【答案】 略
2019版高考数学大一轮复习人教B版全国通用文档:第七章 不等式7.1 Word版含答案
§7.1 不等关系与不等式 最新考纲考情考向分析 1.了解现实世界和日常生活中存在着大量的不等关系.2.了解不等式(组)的实际背景. 以理解不等式的性质为主,本节在高考中主要以客观题形式考查不等式的性质;以主观题形式考查不等式与其他知识的综合.1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧ a -b >0⇔a >b a -b =0⇔a =b a -b <0⇔a <b (a ,b ∈R )(2)作商法⎩⎪⎨⎪⎧ a b >1⇔a >b a b =1⇔a =bab<1⇔a <b (a ∈R ,b >0) 2.不等式的基本性质 性质性质内容 特别提醒 对称性a >b ⇔b <a ⇔ 传递性a >b ,b >c ⇒a >c ⇒ 可加性 a >b ⇔a +c >b +c ⇔可乘性 ⎭⎬⎫a >b c >0⇒ac >bc 注意c 的符号⎭⎬⎫a >b c <0⇒ac <bc 同向可加性⎭⎬⎫a >b c >d ⇒a +c >b +d ⇒ 同向同正可乘性⎭⎬⎫a >b >0c >d >0⇒ac >bd ⇒ 可乘方性a >b >0⇒a n >b n (n ∈N +,n >1) a ,b 同为正数可开方性a >b >0⇒n a >n b (n ∈N +,n >1)3.不等式的一些常用性质(1)倒数的性质①a >b ,ab >0⇒1a <1b. ②a <0<b ⇒1a <1b. ③a >b >0,0<c <d ⇒a c >b d. ④0<a <x <b 或a <x <b <0⇒1b <1x <1a. (2)有关分数的性质若a >b >0,m >0,则①b a <b +m a +m ;b a >b -m a -m(b -m >0). ②a b >a +m b +m ;a b <a -m b -m (b -m >0).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ )(2)若a b>1,则a >b .( × ) (3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × )(4)a >b >0,c >d >0⇒a d >b c .( √ )。
2019届高三数学课标一轮复习单元质检: 七不等式、推理与证明
1
������������ + 1
22.(15 分)(2017 浙江五校联考)已知数列{an}中,满足 a1=2,an+1= 2 ,记 Sn 为数列{an}的前 n 项和.
(1)证明:an+1>an;
������
(2)证明:an=cos3·2������ - 1;
单元质检七 不等式、推理与证明
(时间:120 分钟 满分:150 分)
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一
项是符合题目要求的)
1.已知不等式 x2-2x-3<0 的解集为 A,不等式 x2+x-6<0 的解集为 B,不等式 x2+ax+b<0 的解集为 A∩B,
A.4
B.3
C.2
D.1
10.已知实数 a,b,c.( )
A.若|a2+b+c|+|a+b2+c|≤1,则 a2+b2+c2<100
B.若|a2+b+c|+|a2+b-c|≤1,则 a2+b2+c2<100
C.若|a+b+c2|+|a+b-c2|≤1,则 a2+b2+c2<100
D.若|a2+b+c|+|a+b2-c|≤1,则 a2+b2+c2<100
1
20.(15 分)设函数 f(x)=ax2+bx+c,g(x)=c|x|+bx+a,对任意的 x∈[-1,1]都有|f(x)|≤2.
(福建专用)2019高考数学一轮复习-第七章 不等式、推理与证明 7.2 基本不等式及其应用课件 理
考点1
考点2
考点3
(2)∵a+b=1,
1
1
1
∴ + + =2
1
+
1
.
∵a+b=1,a>0,b>0,
1
1
+
1
1
∴ + =
1
+
+
1
=2+ + ≥2+2=4,当且仅当 a=b=2时,等号成立.
1
∴ + + ≥8,当且仅当 a=b=2时,等号成立.
考点1
意等号能否取到.
考点1
考点2
考点3
对点训练 1 已知 a>0,b>0,a+b=1,求证: 1 +
1
1+
=2+ .
+
证明: (方法一)∵a>0,b>0,a+b=1,∴1+ =1+
1
1
1
≥9.
同理,1+ =2+ .
1
1
∴ 1+
1+ = 2+
当且仅当 = ,
1
即 a=b=2时,等号成立.
2 = 22 ,
1
4 = ,
即
2 =
2 =
2
2
2
,
时取等号.
4
(2)因为 x>2,所以 x-2>0.
1
1
1
【配套K12】[学习]2019高考数学一轮复习 第7章 不等式及推理与证明 第1课时 不等式与不等关
第1课时 不等式与不等关系1.(2018·北京大兴期末)若a<5,则一定有( ) A .aln 23<5ln 23B .|a|ln 23<5ln 23C .|aln 23|<|5ln 23|D .a|ln 23|<5|ln 23|答案 D2.若a ,b 是任意实数,且a>b ,则下列不等式成立的是( ) A .a 2>b 2B.ba <1 C .lg(a -b)>0 D .(13)a <(13)b答案 D解析 方法一:利用性质判断.方法二(特值法):令a =-1,b =-2,则a 2<b 2,b a >1,lg(a -b)=0,可排除A ,B ,C 三项.故选D.3.设a∈R ,则a>1是1a <1的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 若a>1,则1a <1成立;反之,若1a <1,则a>1或a<0.即a>1⇒1a <1,而1a <1错误!a>1,故选A.4.若a ,b 为实数,则1a <1b 成立的一个充分而不必要的条件是( )A .b <a <0B .a <bC .b(a -b)>0D .a >b答案 A解析 由a>b ⇒1a <1b 成立的条件是ab >0,即a ,b 同号时,若a >b ,则1a <1b ;a ,b 异号时,若a>b ,则1a >1b .5.(2017·广东东莞一模)设a ,b ∈R ,若a +|b|<0,则下列不等式成立的是( ) A .a -b>0 B .a 3+b 3>0 C .a 2-b 2<0 D .a +b<0答案 D6.设a ,b 为实数,则“0<ab<1”是“b<1a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 一方面,若0<ab<1,则当a<0时,0>b>1a ,∴b<1a 不成立;另一方面,若b<1a ,则当a<0时,ab>1,∴0<ab<1不成立,故选D.7.已知0<a<b ,且a +b =1,下列不等式成立的是( ) A .log 2a>0 B .2a -b>1C .2ab>2 D .log 2(ab)<-2答案 D解析 方法一(特殊值法):取a =14,b =34验证即可.方法二:(直接法)由已知,0<a<1,0<b<1,a -b<0,0<ab<14,log 2(ab)<-2,故选D.8.设0<b<a<1,则下列不等式成立的是( ) A .ab<b 2<1 B .log 12b<log 12a<0C .2b<2a <2 D .a 2<ab<1答案 C解析 方法一(特殊值法):取b =14,a =12.方法二(单调性法): 0<b<a ⇒b 2<ab ,A 不对;y =log 12x 在(0,+∞)上为减函数,∴log 12b>log 12a ,B 不对;a>b>0⇒a 2>ab ,D 不对,故选C.9.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,若两人步行速度、跑步速度均相同,则( ) A .甲先到教室 B .乙先到教室 C .两人同时到教室 D .谁先到教室不确定答案 B解析 设步行速度与跑步速度分别为v 1和v 2显然0<v 1<v 2,总路程为2s ,则甲用时间为s v 1+s v 2,乙用时间为4s v 1+v 2,而s v 1+s v 2-4s v 1+v 2=s (v 1+v 2)2-4sv 1v 2v 1v 2(v 1+v 2)=s (v 1-v 2)2v 1v 2(v 1+v 2)>0, 故s v 1+s v 2>4s v 1+v 2,故乙先到教室. 10.(2018·浙江台州一模)下列四个数中最大的是( ) A .lg2 B .lg 2 C .(lg2)2D .lg(lg2)答案 A解析 因为lg2∈(0,1),所以lg(lg2)<0; lg 2-(lg2)2=lg2(12-lg2)>lg2(12-lg 10)=0,即lg 2>(lg2)2;lg2-lg 2=12lg2>0,即lg2>lg 2.所以最大的是lg2.11.设a =log 36,b =log 510,c =log 714,则( ) A .c>b>a B .b>c>a C .a>c>b D .a>b>c答案 D解析 a =log 36=1+log 32,b =log 510=1+log 52,c =log 714=1+log 72,则只要比较log 32,log 52,log 72的大小即可,在同一坐标系中作出函数y =log 3x ,y =log 5x ,y =log 7x 的图像,由三个图像的相对位置关系,可知a>b>c ,故选D.12.已知实数x ,y ,z 满足x +y +z =0,且xyz>0,设M =1x +1y +1z ,则( )A .M>0B .M<0C .M =0D .M 不确定答案 B解析 ∵xyz>0,∴x ≠0,y ≠0,z ≠0.又∵x+y +z =0,∴x =-(y +z),M =1x +1y +1z =yz +xz +xyxyz =yz +x (y +z )xyz =yz -(y +z )(y +z )xyz =-y 2-z 2-yz xyz .∵-y 2-z 2-yz =-[(y +12z)2+34z 2]<0,xyz>0,∴M<0.故选B.13.(1)若角α,β满足-π2<α<β<π2,则2α-β的取值范围是________.答案 (-3π2,π2)解析 ∵-π2<α<β<π2,∴-π<α-β<0.∵2α-β=α+α-β,∴-3π2<2α-β<π2.(2)若1<α<3,-4<β<2,则α-|β|的取值范围是________. 答案 (-3,3)解析 ∵-4<β<2,∴0≤|β|<4.∴-4<-|β|≤0.又∵1<α<3,∴-3<α-|β|<3.14.(2017·《高考调研》原创题)设α∈(0,12),T 1=cos(1+α),T 2=cos(1-α),则T 1与T 2的大小关系为________. 答案 T 1<T 2解析 T 1-T 2=(cos1cos α-sin1sin α)-(cos1cos α+sin1sin α)=-2sin1sin α<0.15.(1)若a>1,b<1,则下列两式的大小关系为ab +1________a +b. 答案 <解析 (ab +1)-(a +b)=1-a -b +ab =(1-a)(1-b),∵a>1,b<1,∴1-a<0,1-b>0,∴(1-a)(1-b)<0,∴ab +1<a +b. (2)若a>0,b>0,则不等式-b<1x <a 的解集________.答案 (-∞,-1b )∪(1a,+∞)解析 由已知,-b<0,a>0,∴1x ∈(-b ,a)=(-b ,0)∪{0}∪(0,a).∴x ∈(-∞,-1b )∪(1a,+∞).16.设a>b>c>0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________. 答案 z>y>x解析 方法一(特值法):取a =3,b =2,c =1验证即可.方法二(比较法):∵a>b>c>0,∴y 2-x 2=b 2+(c +a)2-a 2-(b +c)2=2c(a -b)>0,∴y 2>x 2,即y>x. z 2-y 2=c 2+(a +b)2-b 2-(c +a)2=2a(b -c)>0, 故z 2>y 2,即z>y ,故z>y>x.17.已知a +b>0,比较a b 2+b a 2与1a +1b 的大小.答案 a b 2+b a 2≥1a +1b解析a b 2+b a 2-⎝ ⎛⎭⎪⎫1a +1b =a -b b 2+b -a a2= (a -b)⎝ ⎛⎭⎪⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2.∵a +b>0,(a -b)2≥0,∴(a +b )(a -b )2a 2b2≥0. ∴a b 2+b a 2≥1a +1b. 18.已知a>0且a≠1,比较log a (a 3+1)和log a (a 2+1)的大小. 答案 log a (a 3+1)>log a (a 2+1) 解析 当a>1时,a 3>a 2,a 3+1>a 2+1. 又y =log a x 为增函数, 所以log a (a 3+1)>log a (a 2+1); 当0<a<1时,a 3<a 2,a 3+1<a 2+1. 又y =log a x 为减函数, 所以log a (a 3+1)>log a (a 2+1).综上,对a>0且a≠1,总有log a (a 3+1)>log a (a 2+1).1.(2016·山东)已知实数x ,y 满足a x<a y(0<a<1),则下列关系式恒成立的是( ) A .ln(x 2+1)>ln(y 2+1) B .sinx>siny C .x 3>y3 D.1x 2+1>1y 2+1答案 C解析 方法一:因为实数x ,y 满足a x<a y(0<a<1),所以x>y. 对于A ,取x =1,y =-3,不成立; 对于B ,取x =π,y =-π,不成立;对于C ,由于f(x)=x 3在R 上单调递增,故x 3>y 3成立; 对于D ,取x =2,y =-1,不成立.选C.方法二:根据指数函数的性质得x>y ,此时x 2,y 2的大小不确定,故选项A 、D 中的不等式不恒成立;根据三角函数的性质,选项B 中的不等式也不恒成立;根据不等式的性质知,选项C 中的不等式成立. 2.(2017·北京平谷区质检)已知a ,b ,c ,d 均为实数,有下列命题: ①若ab>0,bc -ad>0,则c a -db >0;②若ab>0,c a -db >0,则bc -ad>0;③若bc -ad>0,c a -db >0,则ab>0.其中正确命题的个数是( ) A .0 B .1 C .2 D .3答案 D解析 对于①,∵ab>0,bc -ad>0,c a -d b =bc -ad ab >0,∴①正确;对于②,∵ab>0,又c a -d b >0,即bc -adab >0,∴②正确;对于③,∵bc -ad>0,又c a -d b >0,即bc -adab >0,∴ab>0,∴③正确.3.(2017·浙江温州质检)设a ,b ∈R ,则“a>1,b>1”是“ab>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 A解析 a>1,b>1⇒ab>1;但ab>1,则a>1,b>1不一定成立,如a =-2,b =-2时,ab =4>1.故选A. 4.(2017·湖北黄冈质检)已知x>y>z ,x +y +z =0,则下列不等式中成立的是( ) A .xy>yz B .xz>yz C .xy>xz D .x|y|>z|y| 答案 C5.下面四个条件中,使a>b 成立的充分而不必要的条件是( )A .a>b +1B .a>b -1C .a 2>b 2D .a 3>b 3答案 A解析 ①由a>b +1,得a>b +1>b ,即a>b.而由a>b 不能得出a>b +1,因此,使a>b 成立的充分不必要条件是a>b +1;②B 是非充分必要条件;③C 是非充分也非必要条件;④D 是充要条件,故选A. 6.若a ,b ,c ∈R ,a>b ,则下列不等式成立的是( ) A .a 2>b 2B .a|c|>b|c| C.1a <1b D.a c 2+1>b c 2+1答案 D解析 方法一:(特殊值法)令a =1,b =-2,c =0,代入A ,B ,C ,D 中,可知A ,B ,C 均错,故选D. 方法二:(直接法) ∵a>b ,c 2+1>0,∴a c 2+1>bc 2+1,故选D. 7.如果a ,b ,c 满足c<b<a ,且ac<0,那么下列选项中不一定成立的是( ) A .ab>ac B .c(b -a)>0 C .cb 2<ab 2D .ac(c -a)>0答案 C解析 由题意知c<0,a>0,则A ,B ,D 一定正确,若b =0,则cb 2=ab 2.故选C. 8.已知a>b>0,且ab =1,设c =2a +b,P =log c a ,N =log c b ,M =log c (ab),则有( ) A .P<M<N B .M<P<N C .N<P<M D .P<N<M答案 A解析 因为a>b>0,且ab =1,所以a>1,0<b<1,a +b>2ab =2,0<c =2a +b<1,所以log c a<log c (ab)<log c b ,即P<M<N ,选A.9.已知有三个条件:①ac 2>bc 2;②a c >b c ;③a 2>b 2,其中能成为a>b 的充分条件的是________.答案 ①解析 由ac 2>bc 2可知c 2>0,即a>b ,故“ac 2>bc 2”是“a>b”的充分条件;②当c<0时,a<b ;③当a<0,b<0时,a<b ,故②③不是a>b 的充分条件.10.(2017·皖南七校联考)若a<b<0,则下列不等式不能成立的是( ) A.1a >1b B .2a>2bC .|a|>|b|D .(12)a >(12)b答案 B解析 由a<b<0知ab>0,因此a·1ab <b ·1ab ,即1a >1b 成立;由a<b<0,得-a>-b>0,因此|a|>|b|>0成立;又y =(12)x 是减函数,所以(12)a >(12)b成立.11.已知m>1,a =m +1-m ,b =m -m -1,则以下结论正确的是( ) A .a>b B .a =bC .a<bD .a ,b 的大小不确定答案 C解析 a =m +1-m =1m +1+m ,b =m -m -1=1m +m -1,因为m +1+m>m +m -1,所以a<b ,故选C.12.已知a<0,-1<b<0,则a ,ab ,ab 2的大小关系是________. 答案 a<ab 2<ab解析 ∵a-ab =a(1-b)<0,∴a<ab.∵ab -ab 2=ab(1-b)>0,∴ab>ab 2.∵a -ab 2=a(1-b 2)<0,∴a<ab 2.综上,a<ab 2<ab.故填a<ab 2<ab.13.设a ,b 为正实数,现有下列命题:①若a 2-b 2=1,则a -b<1;②若1b -1a =1,则a -b<1;③若|a -b|=1,则|a -b|<1;④若|a 3-b 3|=1,则|a -b|<1.其中的真命题有________.(写出所有真命题的编号) 答案 ①④解析 对于①,a 2-b 2=(a -b)(a +b)=1,若a -b≥1,又a>0,b>0,则a +b>a -b≥1,此时(a +b)·(a-b)>1,这与“a 2-b 2=(a +b)(a -b)=1”相矛盾,因此a -b<1,①正确.对于②,取a =2,b =23,有1b -1a =1,此时a -b>1,因此②不正确.对于③,取a =9,b =4,有|a -b|=1,但此时|a -b|=5>1,因此③不正确.对于④,由|a 3-b 3|=1,得|a -b|(a 2+ab +b 2)=1,|a -b|(a 2+ab +b 2)>|a -b|·(a 2-2ab +b 2)=|a -b|3,于是有|a -b|3<1,|a -b|<1,因此④正确. 综上所述,其中的真命题有①④.14.(2018·吉林一中期末)若0<a<b 且a +b =1,则下列四个数中最大的是( ) A.12 B .a 2+b 2C .2abD .b答案 D解析 方法一:0<a<b 且a +b =1,所以b =1-a>a ,所以2a<1,所以0<a<12.同理a =1-b<b ,所以b>12,所以12<b<1.由此可排除A 项.对B ,C 两项作差有a 2+b 2-2ab =(a -b)2>0.可排除C 项.再对B ,D 两项作差有a 2+b 2-b =(1-b)2+b 2-b =2b 2-3b +1=2(b -34)2-18.把结果视为关于b 的函数,定义域b∈(12,1),得a2+b 2-b<0,所以a 2+b 2<b.故选D.方法二:用特殊值法.根据题目条件0<a<b 且a +b =1,不妨设a =0.4,b =0.6,则a 2+b 2=0.16+0.36=0.52,2ab =2×0.4×0.6=0.48,可见b 最大,故选D.15.(2018·湖南长沙雅礼中学月考)已知log 14b<log 14a<log 14c ,则( ) A .2b>2a>2cB .2a >2b >2cC .2c>2b>2aD .2c>2a>2b答案 A解析 因为log 14b<log 14a<log 14c ,而对数函数y =log 14x 是单调减函数,所以b>a>c ,又因为指数函数y =2x是单调增函数,所以2b>2a>2c,故选A.16.已知2b<2a<1,则下列结论错误的是( ) A .a 2<b 2B.b a +ab >2 C .ab<b 2 D.1a >1b答案 D解析 因为函数h(x)=2x在R 上单调递增,由2b<2a<1,即2b<2a<20,可得b<a<0.由b<a<0,可得a 2<b 2,ab<b 2,排除A ,C ;由b a >0,a b >0,a ≠b ,可得b a +ab>2,排除B ,选D.。
高考数学一轮复习 第七章 不等式、推理与证明7
高考数学一轮复习 第七章 不等式、推理与证明7.1 等式性质与不等式性质 考试要求 1.掌握等式性质.2.会比较两个数的大小.3.理解不等式的性质,并能简单应用. 知识梳理1.两个实数比较大小的方法作差法⎩⎪⎨⎪⎧ a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b . (a ,b ∈R )2.等式的性质性质1 对称性:如果a =b ,那么b =a ;性质2 传递性:如果a =b ,b =c ,那么a =c ;性质3 可加(减)性:如果a =b ,那么a ±c =b ±c ;性质4 可乘性:如果a =b ,那么ac =bc ;性质5 可除性:如果a =b ,c ≠0,那么a c =b c. 3.不等式的性质性质1 对称性:a >b ⇔b <a ;性质2 传递性:a >b ,b >c ⇒a >c ;性质3 可加性:a >b ⇔a +c >b +c ;性质4 可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;性质5 同向可加性:a >b ,c >d ⇒a +c >b +d ;性质6 同向同正可乘性:a >b >0,c >d >0⇒ac >bd ;性质7 同正可乘方性:a >b >0⇒a n >b n (n ∈N ,n ≥2).常用结论1.若ab >0,且a >b ⇔1a <1b . 2.若a >b >0,m >0⇒b a <b +ma +m ; 若b >a >0,m >0⇒b a >b +ma +m .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.(√ )(2)若ba >1,则b >a .( × )(3)若x >y ,则x 2>y 2.( × )(4)若1a >1b ,则b <a .( × )教材改编题1.设b >a >0,c ∈R ,则下列不等式不正确的是( )A .12a <12b B.1a >1bC.a +2b +2>ab D .ac 3<bc 3答案 D解析 因为y =12x 在(0,+∞)上单调递增,所以12a <12b ,A 正确;因为y =1x 在(0,+∞)上单调递减,所以1a >1b ,B 正确;因为a +2b +2-a b =2b -ab +2b >0,所以a +2b +2>ab ,C 正确;当c =0时,ac 3=bc 3,所以D 不正确.2.已知M =x 2-3x ,N =-3x 2+x -3,则M ,N 的大小关系是________.答案 M >N解析 M -N =(x 2-3x )-(-3x 2+x -3)=4x 2-4x +3=(2x -1)2+2>0,∴M >N .3.已知-1<a <2,-3<b <5,则a +2b 的取值范围是______.答案 (-7,12)解析 ∵-3<b <5,∴-6<2b <10,又-1<a <2,∴-7<a +2b <12.题型一 比较两个数(式)的大小例1 (1)若a <0,b <0,则p =b 2a +a 2b与q =a +b 的大小关系为( ) A .p <q B .p ≤q C .p >q D .p ≥q答案 B解析 p -q =b 2a +a 2b-a -b =b 2-a 2a +a 2-b 2b=(b 2-a 2)·⎝⎛⎭⎫1a -1b =b 2-a 2b -a ab =b -a 2b +aab ,因为a <0,b <0,所以a +b <0,ab >0.若a =b ,则p -q =0,故p =q ;若a ≠b ,则p -q <0,故p <q .综上,p ≤q .(2)若a =ln 33,b =ln 44,c =ln 55,则( ) A .a <b <cB .c <b <aC .c <a <bD .b <a <c 答案 B解析 令函数f (x )=ln x x ,则f ′(x )=1-ln x x 2, 易知当x >e 时,f ′(x )<0,函数f (x )单调递减,因为e<3<4<5,所以f (3)>f (4)>f (5),即c <b <a .教师备选已知M =e 2 021+1e 2 022+1,N =e 2 022+1e 2 023+1,则M ,N 的大小关系为________. 答案 M >N解析 方法一 M -N =e 2 021+1e 2 022+1-e 2 022+1e 2 023+1=e 2 021+1e 2 023+1-e 2 022+12e 2 022+1e 2 023+1=e 2 021+e 2 023-2e 2 022e 2 022+1e 2 023+1=e 2 021e -12e 2 022+1e 2 023+1>0. ∴M >N .方法二 令f (x )=e x +1e x +1+1=1e e x +1+1+1-1e e x +1+1=1e +1-1e e x +1+1, 显然f (x )是R 上的减函数,∴f (2 021)>f (2 022),即M >N .思维升华 比较大小的常用方法(1)作差法:①作差;②变形;③定号;④得出结论.(2)作商法:①作商;②变形;③判断商与1的大小关系;④得出结论.(3)构造函数,利用函数的单调性比较大小.跟踪训练1 (1)已知0<a <1b ,且M =11+a +11+b,N =a 1+a +b 1+b ,则M ,N 的大小关系是( ) A .M >N B .M <NC .M =ND .不能确定答案 A解析 ∵0<a <1b ,∴1+a >0,1+b >0,1-ab >0. ∴M -N =1-a 1+a +1-b 1+b =21-ab1+a 1+b >0,∴M >N .(2)e π·πe 与e e ·ππ的大小关系为________.答案 e π·πe <e e ·ππ解析 e π·πe e e ·ππ=e π-eππ-e =⎝⎛⎭⎫eππ-e ,又0<eπ<1,0<π-e<1,∴⎝⎛⎭⎫eππ-e <1,即e π·πee e ·ππ<1,即e π·πe <e e ·ππ.题型二 不等式的性质例2 (1)(2022·滨州模拟)下列命题为真命题的是() A .若a >b ,则ac 2>bc 2B .若a <b <0,则a 2<ab <b 2C .若c >a >b >0,则a c -a <bc -bD .若a >b >c >0,则a b >a +c b +c 答案 D 解析 对于A 选项,当c =0时,显然不成立,故A 选项为假命题; 对于B 选项,当a =-3,b =-2时,满足a <b <0,但不满足a 2<ab <b 2,故B 选项为假命题;对于C 选项,当c =3,a =2,b =1时,a c -a =23-2>b c -b =12,故C 选项为假命题; 对于D 选项,由于a >b >c >0,所以a b -a +c b +c=a b +c -b a +c b b +c =ac -bc b b +c=a -b c b b +c>0,即a b >a +c b +c ,故D 选项为真命题. (2)若1a <1b<0,则下列不等式正确的是________.(填序号) ①1a +b <1ab ; ②|a |+b >0; ③a -1a >b -1b; ④ln a 2>ln b 2.答案 ①③解析 由1a <1b <0,可知b <a <0. ①中,因为a +b <0,ab >0,所以1a +b <0,1ab >0.故有1a +b <1ab,即①正确; ②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误;③中,因为b <a <0,又1a <1b<0, 则-1a >-1b >0,所以a -1a >b -1b,故③正确; ④中,因为b <a <0,根据y =x 2在(-∞,0)上单调递减,可得b 2>a 2>0,而y =ln x 在定义域 (0,+∞)上单调递增,所以ln b 2>ln a 2,故④错误.教师备选若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( )A.1a <1b B .a 2>b 2C .a |c |>b |c | D.a c 2+1>bc 2+1答案 D解析 对于A ,若a >0>b ,则1a >1b ,故A 错误;对于B ,取a =1,b =-2,则a 2<b 2,故B 错误;对于C ,若c =0,a |c |=b |c |,故C 错误;对于D ,因为c 2+1≥1,所以1c 2+1>0,又a >b ,所以a c 2+1>bc 2+1,故D 正确.思维升华 判断不等式的常用方法(1)利用不等式的性质逐个验证.(2)利用特殊值法排除错误选项.(3)作差法.(4)构造函数,利用函数的单调性.跟踪训练2 (1)(2022·珠海模拟)已知a ,b ∈R ,满足ab <0,a +b >0,a >b ,则() A.1a <1b B.b a +a b >0C .a 2>b 2D .a <|b |答案 C解析 因为ab <0,a >b ,则a >0,b <0,1a >0,1b <0,A 不正确;b a <0,a b <0,则b a +a b <0,B 不正确;又a+b>0,即a>-b>0,则a2>(-b)2,a2>b2,C正确;由a>-b>0得a>|b|,D不正确.(2)设a>b>1>c>0,下列四个结论正确的是________.(填序号)①1ac>1bc;②ba c>ab c;③(1-c)a<(1-c)b;④log b(a+c)>log a(b+c).答案③④解析由题意知,a>b>1>c>0,所以对于①,ac>bc>0,故1ac<1bc,所以①错误;对于②,取a=3,b=2,c=1 2,则ba c=23,ab c=32,所以ba c<ab c,故②错误;对于③,因为0<1-c<1,且a>b,所以(1-c)a<(1-c)b,故③正确;对于④,a+c>b+c>1,所以log b(a+c)>log b(b+c)>log a(b+c),故④正确.题型三不等式性质的综合应用例3(1)已知-1<x<4,2<y<3,则x-y的取值范围是________,3x+2y的取值范围是________.答案(-4,2)(1,18)解析∵-1<x<4,2<y<3,∴-3<-y <-2,∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6,∴1<3x +2y <18.(2)已知3<a <8,4<b <9,则a b的取值范围是________. 答案 ⎝⎛⎭⎫13,2解析 ∵4<b <9,∴19<1b <14, 又3<a <8,∴19×3<a b <14×8, 即13<a b<2. 延伸探究 若将本例(1)中条件改为-1<x +y <4,2<x -y <3,求3x +2y 的取值范围. 解 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧ m +n =3,m -n =2,∴⎩⎨⎧ m =52,n =12.即3x +2y =52(x +y )+12(x -y ), 又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32, ∴-32<52(x +y )+12(x -y )<232, 即-32<3x +2y <232,∴3x +2y 的取值范围为⎝⎛⎭⎫-32,232. 教师备选已知0<β<α<π2,则α-β的取值范围是________. 答案 ⎝⎛⎭⎫0,π2 解析 ∵0<β<π2,∴-π2<-β<0, 又0<α<π2,∴-π2<α-β<π2, 又β<α,∴α-β>0,即0<α-β<π2. 思维升华 求代数式的取值范围,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围.跟踪训练3 (1)已知a >b >c ,2a +b +c =0,则c a的取值范围是( ) A .-3<c a<-1 B .-1<c a <-13 C .-2<c a<-1 D .-1<c a <-12 答案 A解析 因为a >b >c ,2a +b +c =0,所以a >0,c <0,b =-2a -c ,因为a >b >c ,所以-2a -c <a ,即3a >-c ,解得c a>-3, 将b =-2a -c 代入b >c 中,得-2a -c >c ,即a <-c ,得c a <-1,所以-3<c a <-1. (2)已知1<a <b <3,则a -b 的取值范围是________,a b的取值范围是________. 答案 (-2,0) ⎝⎛⎭⎫13,1解析 ∵1<b <3,∴-3<-b <-1,又1<a <3,∴-2<a -b <2,又a <b ,∴a -b <0,∴-2<a -b <0,又13<1b <1a ,∴a3<ab <1,又a3>13,∴13<ab <1.综上所述,a -b 的取值范围为(-2,0);a b 的取值范围为⎝⎛⎭⎫13,1.课时精练1.已知a >0,b >0,M =a +b ,N =a +b ,则M 与N 的大小关系为() A .M >NB .M <NC .M ≤ND .M ,N 大小关系不确定答案 B解析 M 2-N 2=(a +b )-(a +b +2ab )=-2ab <0,∴M <N .2.已知非零实数a ,b 满足a <b ,则下列命题成立的是( )A .a 2<b 2B .ab 2<a 2bC.1ab 2<1a 2b D.b a <a b答案 C解析 若a <b <0,则a 2>b 2,故A 不成立;若⎩⎪⎨⎪⎧ ab >0,a <b ,则a 2b <ab 2,故B 不成立;若a =1,b =2,则b a =2,a b =12,b a >a b ,故D 不成立,由不等式的性质知,C 正确.3.已知-3<a <-2,3<b <4,则a 2b 的取值范围为( )A .(1,3) B.⎝⎛⎭⎫43,94C.⎝⎛⎭⎫23,34D.⎝⎛⎭⎫12,1答案 A解析 因为-3<a <-2,所以a 2∈(4,9),而3<b <4,故a 2b 的取值范围为(1,3).4.若a >1,m =log a (a 2+1),n =log a (a +1),p =log a (2a ),则m ,n ,p 的大小关系是() A .n >m >p B .m >p >nC .m >n >pD .p >m >n答案 B解析 由a >1知,a 2+1-2a =(a -1)2>0,即a 2+1>2a ,而2a -(a +1)=a -1>0,即2a >a +1,∴a 2+1>2a >a +1,而y =log a x 在定义域上单调递增,∴m >p >n .5.已知a ,b ∈R ,则“|a |>|b |”是“a b >1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 不妨令a =1,b =0,故|a |>|b |不能推出a b >1,若a b >1,故a ,b 同号,若a ,b 都大于0,则a >b >0,从而|a |>|b |;若a ,b 都小于0,则a <b <0,从而|a |>|b |,故a b >1能推出|a |>|b |,从而“|a |>|b |”是“a b >1”成立的必要不充分条件.6.(2022·济宁模拟)已知x >y >z ,x +y +z =0,则下列不等式恒成立的是() A .xy >yz B .xy >xzC .xz >yzD .x |y |>|y |z答案 B解析 因为x >y >z ,x +y +z =0,所以x >0,z <0,y 的符号无法确定,对于A ,因为x >0>z ,若y <0,则xy <0<yz ,故A 错误;对于B ,因为y >z ,x >0,所以xy >xz ,故B 正确;对于C ,因为x >y ,z <0,所以xz <yz ,故C 错误;对于D ,因为x >z ,当|y |=0时,x |y |=|y |z ,故D 错误.7.设a ,b ,c ,d 为实数,且a >b >0>c >d ,则下列不等式正确的是( )A .c 2>cdB .a -c <b -dC .ac <bdD.c a -d b >0 答案 D解析 因为a >b >0>c >d ,所以a >b >0,0>c >d ,对于A ,因为0>c >d ,由不等式的性质可得c 2<cd ,故选项A 错误;对于B ,取a =2,b =1,c =-1,d =-2,则a -c =3,b -d =3,所以a -c =b -d ,故选项B 错误;对于C ,取a =2,b =1,c =-1,d =-2,则ac =-2,bd =-2,所以ac =bd ,故选项C 错误;对于D ,因为a >b >0,d <c <0,则ad <bc ,所以c a >d b, 故c a -d b>0,故选项D 正确. 8.若0<a <1,b >c >1,则( )A.⎝⎛⎭⎫b c a <1B.c -a b -a >c b C .c a -1<b a -1D .log c a <log b a答案 D解析 对于A ,∵b >c >1,∴b c>1. ∵0<a <1,则⎝⎛⎭⎫b c a >⎝⎛⎭⎫b c 0=1,故选项A 错误;对于B ,若c -a b -a >c b, 则bc -ab >bc -ac ,即a (c -b )>0,这与0<a <1,b >c >1矛盾,故选项B 错误;对于C ,∵0<a <1,∴a -1<0.∵b >c >1,∴c a -1>b a -1,故选项C 错误;对于D ,∵0<a <1,b >c >1,∴log c a <log b a ,故选项D 正确.9.已知M =x 2+y 2+z 2,N =2x +2y +2z -π,则M ________N .(填“>”“<”或“=”) 答案 >解析 M -N =x 2+y 2+z 2-2x -2y -2z +π=(x -1)2+(y -1)2+(z -1)2+π-3≥π-3>0,故M >N .10.(2022·宜丰模拟)若1a <1b <0,已知下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +a b>2.其中正确的不等式的序号为________.答案 ①④解析 因为1a <1b<0, 所以b <a <0,故③错误;所以a +b <0<ab ,故①正确;所以|a |<|b |,故②错误;所以b a >0,a b >0且均不为1,b a +a b ≥2b a ·a b =2,当且仅当b a =a b =1时,等号成立,所以b a +a b>2,故④正确. 11.若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为________________. 答案 a <2ab <12<a 2+b 2<b 解析 方法一 令a =13,b =23, 则2ab =49,a 2+b 2=19+49=59, 故a <2ab <12<a 2+b 2<b . 方法二 ∵0<a <b 且a +b =1,∴a <12<b <1,∴2b >1且2a <1, ∴a <2b ·a =2a (1-a )=-2a 2+2a=-2⎝⎛⎭⎫a -122+12<12, 即a <2ab <12. 又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12, 即a 2+b 2>12.∵12<b <1, ∴(a 2+b 2)-b =[(1-b )2+b 2]-b =2b 2-3b +1=(2b -1)(b -1)<0,即a 2+b 2<b ,综上可知a <2ab <12<a 2+b 2<b . 12.若α,β满足-π2<α<β<π2,则2α-β的取值范围是________. 答案 ⎝⎛⎭⎫-3π2,π2 解析 ∵-π2<α<π2,∴-π<2α<π.∵-π2<β<π2,∴-π2<-β<π2, ∴-3π2<2α-β<3π2. 又α-β<0,α<π2,∴2α-β<π2. 故-3π2<2α-β<π2.13.(2022·长沙模拟)设实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则下列不等式恒成立的是( )A .c <bB .b ≤1C .b ≤aD .a <c 答案 D解析 ∵⎩⎪⎨⎪⎧ b +c =6-4a +3a 2,c -b =4-4a +a 2, 两式相减得2b =2a 2+2,即b =a 2+1,∴b ≥1.又b -a =a 2+1-a =⎝⎛⎭⎫a -122+34>0, ∴b >a .而c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b ,从而c ≥b >a .14.实数a ,b ,c ,d 满足下列三个条件:①d >c ;②a +b =c +d ;③a +d <b +c .那么a ,b ,c ,d 的大小关系是________.答案 b >d >c >a解析 由题意知d >c ①,②+③得2a +b +d <2c +b +d ,化简得a <c ④,由②式a +b =c +d及a <c 可得到,要使②成立,必须b >d ⑤成立,综合①④⑤式得到b >d >c >a .15.已知函数f (x )=ax 2+bx +c 满足f (1)=0,且a >b >c ,则c a的取值范围是________. 答案 ⎝⎛⎭⎫-2,-12 解析 因为f (1)=0,所以a +b +c =0,所以b =-(a +c ).又a >b >c ,所以a >-(a +c )>c ,且a >0,c <0,所以1>-a +c a >c a ,即1>-1-c a >c a. 所以⎩⎨⎧ 2c a <-1,c a >-2,解得-2<c a <-12. 即c a的取值范围为⎝⎛⎭⎫-2,-12. 16.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(1)男学生人数多于女学生人数;(2)女学生人数多于教师人数;(3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________.②该小组人数的最小值为________.答案 ①6 ②12解析 设男学生人数为x ,女学生人数为y ,教师人数为z ,由已知得⎩⎪⎨⎪⎧ x >y ,y >z ,2z >x ,且x ,y ,z均为正整数.①当z =4时,8>x >y >4,∴x 的最大值为7,y 的最大值为6,故女学生人数的最大值为6.②x >y >z >x 2,当x =3时,条件不成立,当x =4时,条件不成立,当x =5时,5>y >z >52,此时z =3,y =4.∴该小组人数的最小值为12.。
2019版高考数学大一轮复习人教B版全国通用文档:第七章 不等式7.4 Word版含答案
§7.4二元一次不等式(组)与简单的线性规划问题最新考纲考情考向分析1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元一次线性规划问题,并能加以解决.以画二元一次不等式(组)表示的平面区域、目标函数最值的求法为主,兼顾由最优解(可行域)情况确定参数的范围,以及简单线性规划问题的实际应用,加强转化与化归和数形结合思想的应用意识.本节内容在高考中以选择、填空题的形式进行考查,难度中低档.1.二元一次不等式(组)所表示的平面区域(1)以不等式解(x,y)为坐标的所有点构成的集合,叫做不等式表示的区域或不等式的图象.(2)直线l:Ax+By+C=0把坐标平面内不在直线l上的点分成两部分,直线l的同一侧的点的坐标使式子Ax+By+C的值具有相同的符号,并且两侧的点的坐标使Ax+By+C的值的符号相反,一侧都大于0,另一侧都小于0.2.线性规划的相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或等式)组成的不等式组目标函数要求最大值或最小值的函数线性目标函数关于x,y的一次函数可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的点的坐标线性规划问题在线性约束条件下,求线性目标函数的最大值或最小值问题3.重要结论画二元一次不等式表示的平面区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证. 知识拓展1.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于Ax +By +C >0或Ax +By +C <0,则有(1)当B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方;(2)当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方.2.最优解和可行解的关系最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.( √ )(2)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × )(3)点(x 1,y 1),(x 2,y 2)在直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0,异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.( √ )(4)第二、四象限表示的平面区域可以用不等式xy <0表示.( √ )(5)线性目标函数的最优解是唯一的.( × )(6)最优解指的是使目标函数取得最大值或最小值的可行解.( √ )(7)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × ) 题组二 教材改编2.不等式组⎩⎪⎨⎪⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )答案 B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元质检卷七不等式、推理与
证明
(时间:45分钟满分:100分)
一、选择题(本大题共12小题,每小题6分,共72分)
1.若2x+2y=1,则x+y的取值范围是()
A.[0,2]
B.[-2,0]
C.[-2,+∞)
D.(-∞,-2]
1 1
2.已知不等式ax2-5x+b>0的解集为{푥| 푥< -2},则不等式bx2-5x+a>0的解集为()
或푥>
3
A.{푥| -1
3 < 푥<
1
2}
B.{푥| 푥< -1
3
或푥>
1
2}
C.{x|-3<x<2}
D.{x|x<-3或x>2}
3.下面四个推理中,属于演绎推理的是()
A.观察下列各式:72=49,73=343,74=2 401,…,则72 015的末两位数字为43
B.观察(x2)'=2x,(x4)'=4x3,(cos x)'=-sin x,可得偶函数的导函数为奇函数
C.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似的,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积之比为1∶8
D.已知碱金属都能与水发生还原反应,钠为碱金属,所以钠能与水发生反应
푥≥0,
4.(2017浙江,4)若x,y满足约束条件
{则z=x+2y的取值范围是()
푥+ 푦-3 ≥0,
푥-2푦≤0,
A.[0,6]
B.[0,4]
1
C.[6,+∞)
D.[4,+∞)
5.(2017北京丰台一模,理7)某校举行了以“重温时代经典,唱响回声嘹亮”为主题的“红
歌”歌咏比赛.该校高一年级有1,2,3,4四个班参加了比赛,其中有两个班获奖.比赛结果揭晓
之前,甲同学说:“两个获奖班级在2班、3班、4班中”,乙同学说:“2班没有获奖,3班获奖了”,丙同学说:“1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”.已知这四人
中有且只有两人的说法是正确的,则这两人是()
A.乙,丁
B.甲,丙
C.甲,丁
D.乙,丙
3푥+4푦-18≤0,
3
6.(2017山东临沂一模,理9)已知平面区域Ω:{夹在两条斜率为-的平行直
푥≥2,
4
푦≥0
线之间,且这两条平行直线间的最短距离为m.若点P(x,y)∈Ω,则z=mx-y的最小值为()
9
A. B.3
5
24
C. D.6
5
7.(2017湖南岳阳一模,理9)已知O为坐标原点,点A的坐标为(3,-1),点P(x,y)的坐标满足
푦≤2,
不等式组{若z=的最大值为7,则实数a的值为()
푥+푦≥1,푂푃·푂퐴
푥-푦≤푎,
A.-7
B.-1
C.1
D.7 〚导学号21500633〛
8.用数学归纳法证明1+2+3+…+2n=2n-1+22n-1(n∈N*)时,假设当n=k时命题成立,则当n=k+1时, 左端增加的项数是()
A.1项
B.k-1项
C.k项
D.2k项
9.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间
푥
为天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之8
和最小,每批应生产产品()
A.60件
B.80件
C.100件
D.120件
푥-푦+1≥0,
푦+1
{若z=的最小值
10.(2017山东菏泽一模,理8)已知实数x,y满足约束条件
2푥+푦-푎≥0,
푥+1
2푥-푦-4≤0,
1
为-,则正数a的值为()
4
2
7
A. B.1
6
38
C. D.
49
11.(2017山东,理7)若a>b>0,且ab=1,则下列不等式成立的是()
1푏
A.a+ <log2(a+b)
푏<
2푎
푏1
B. <log2(a+b)<a+
2푎
푏
1푏
C.a+ <log2(a+b)<
푏2푎
1푏
D.log2(a+b)<a+ 〚导学号21500634〛
푏<
2푎
12.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()
A.乙盒中黑球不多于丙盒中黑球
B.乙盒中红球与丙盒中黑球一样多
C.乙盒中红球不多于丙盒中红球
D.乙盒中黑球与丙盒中红球一样多
二、填空题(本大题共4小题,每小题7分,共28分)
13.观察分析下表中的数据:
多面体面数(F) 顶点数(V) 棱数(E)
三棱柱 5 6 9
五棱锥 6 6 10
正方体 6 8 12
猜想一般凸多面体中F,V,E所满足的等式是.
14.(2017广东揭阳一模)已知抛物线y=ax2+2x-a-1(a∈R),恒过第三象限上一定点A,且点A在
11
直线3mx+ny+1=0(m>0,n>0)上,则的最小值为.
푚+
푛
푛4+푛2
15.用数学归纳法证明1+2+3+…+n2= ,则当n=k+1时左端应在n=k的基础上加上的项
2
为.
3
16.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n个三
푛(푛+1)11
角形数为2=n2+n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第22
n个数的表达式:
11
三角形数N(n,3)=n2+n,
22
正方形数N(n,4)=n2,
31
五边形数N(n,5)=n2-n,
22
六边形数N(n,6)=2n2-n,
……
可以推测N(n,k)的表达式,由此计算N(10,24)=.〚导学号21500635 〛
参考答案
单元质检卷七不等式、推理与证明
2
1
1.D∵2x+2y=1≥22푥+푦,∴(2)≥2x+y,即2x+y≤2-
2.∴x+y≤-2.
11
2.C由题意知a>0,且,-是方程ax2-5x+b=0的两根,
23
115
-3+2=
푎,
∴{解得a=30,b=-5,
11푏
-푎,
×2=
3
∴bx2-5x+a>0为-5x2-5x+30>0,即x2+x-6<0,解得-3<x<2,故选C.
3.D选项A,B都是归纳推理,选项C为类比推理,选项D为演绎推理.故选D.
푥≥0,
4.D画出约束条件{所表示的平面区域为图中阴影部分,
푥+푦-3≥0,
푥-2푦≤0
11
由目标函数z=x+2y得直线l:y=-x+z,
22
4
当l经过点B(2,1)时,z取最小值,z min=2+2×1=4.
又z无最大值,所以z的取值范围是[4,+∞),故选D.
5.B假设乙的说法是正确的,则丁也是正确的,那么甲和丙的说法都是错误的,如果丙是错误的,那么1班、4班都获奖或1班、4班都没有获奖,与乙的说法矛盾,故乙的说法是错误的,则丁也是错误的,故说法正确的是甲、丙.
6.A由约束条件作出可行域如图阴影部分所示.
3
因为平面区域Ω夹在两条斜率为-的平行直线之间,且两条平行直线间的最短距离为m,
4
|3×2-18|121212
所以m=5=.令z=mx-y=x-y,则y=x-z,
555
12249由图可知,当直线y=x-z过点B(2,3)时,直线在y轴上的截距最大,z有最小值为-3=.
555故选A.
푦≤2,
7.C不等式组{的可行域如图阴影部分所示.
푥+푦≥1,
푥-푦≤푎
O为坐标原点,点A的坐标为(3,-1),点P(x,y),
z=푂푃·푂퐴=3x-y,由z=푂푃·푂퐴的最大值为7,可得3x-y=7.
3푥-푦=7,
푦=2,
由{可得B(3,2),代入x-y=a,可得a=1.
8.D运用数学归纳法证明
1+2+3+…+2n=2n-1+22n-1(n∈N+).
当n=k时,则1+2+3+…+2k=2k-1+22k-1(k∈N+),左边表示的为2k项的和.
当n=k+1时,则
左边=1+2+3+…+2k+(2k+1)+…+2k+1,表示的为2k+1项的和,增加了2k+1-2k=2k项.
5。