5月青岛市高考二模文科数学试题及答案复习课程

合集下载

山东省青岛市2020届高三5月模拟检测数学试题 Word版含解析

山东省青岛市2020届高三5月模拟检测数学试题 Word版含解析

山东省青岛市2020年5月高三模拟检测数学试题一、单项选择题1.已知全集U =R ,集合{}2320A x x x =-+≤,{}131x B x -=≥,()U A B =I ð( )A. []1,2B. ()2,+∞C. [)1,+∞D. (),1-∞【答案】B 【解析】 【分析】将集合A ,B 化简,再求出U A ð,根据交集的定义即可得到答案. 【详解】因为{}{}2320=12A x x x x x =-+≤≤≤,{}{}{}1103133=1x x B x x x x --=≥=≥≥,所以(){|1U A B x x ⋂=<ð或}{}{}212x x x x x >⋂≥=>. 故选:B.【点睛】本题主要考查交集、补集的运算,同时考查一元二次不等式的解法及指数不等式的解法,属于基础题.2.若复数z 满足)|i z i -=(其中i 是虚数单位),则复数z 的共轭复数z 的虚部为( ) A.12B.12i C. 12-D. 12i -【答案】C 【解析】 【分析】根据复数模的定义可得)2i z =,从而可得z =,再根据复数的乘除运算即可求出复数z ,再根据共轭复数的定义,求出z 即可得到答案.【详解】由)|i z i -=得)2i z ==,所以)1422i z i ===+,所以12z i =,所以z的虚部为12-. 故选:C.【点睛】本题主要考查复数的模,复数代数形式的乘除运算及共轭复数的概念,属于基础题.3.已知向量()1cos ,2a x =+r ,()sin ,1b x =r ,0,2x π⎛⎫∈ ⎪⎝⎭,若//a b r r ,则sin x =( )A.45B.35C.25D.【答案】A 【解析】 【分析】根据向量平行的坐标表示列出方程可得cos 2sin 1x x =-,代入22sin cos 1x x +=解方程即可求出sin x .【详解】因为//a b r r,所以1cos 2sin 0x x +-=,所以cos 2sin 1x x =-,又因为22sin cos 1x x +=,所以22sin (2sin 1)1x x +-=, 即25sin 4sin 0x x -=,解得4sin 5x =或sin 0x =,又0,2x π⎛⎫∈ ⎪⎝⎭, 所以4sin 5x =. 故选:A.【点睛】本题主要考查向量平行的坐标表示,同角三角函数平方关系,属于基础题. 4.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数解析式来分析函数的图象与性质,下列函数的解析式(其中 2.71828e =L 为自然对数的底数)与所给图象最契合的是( )A. ()sin x xy e e -=+B. ()sin x xy e e-=-C. ()tan x xy e e -=-D. ()cos x xy e e -=+【答案】D 【解析】 【分析】根据0x =时的函数值排除即可.【详解】当0x =时,对于A ,()00sin sin20y e e =+=>,故排除A ;对于B ,()00sin 0y e e=-=,故排除B ; 对于C ,()00tan 0y e e=-=,故排除C ;对于D ,()00cos cos20y e e =+=<,符合题意.故选:D.【点睛】本题主要考查函数表示方法中的图象法与解析法之间的对应关系,可利用从函数图象上的特殊点,排除不合要求的解析式.5.从编号为1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,则第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率为( ) A.29B.14C.718D.112【答案】C 【解析】 分析】基本事件的总数有6636⨯=种,利用列举法求出第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的基本事件有14种,根据古典概型概率计算公式,即可求出答案.【详解】从编号为1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,有36个基本事件,其中第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除有如下基本事件 (第一次抽得的卡片1,第二次摸到卡片2用(1,2)表示):(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,2),(2,4),(2,6),(3,3),(3,6), (4,4),(5,5),(6,6),共14个,所以第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率1473618P ==. 故选:C.【点睛】本题主要考查古典概型的概率的求法,属于基础题.6.“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆.若椭圆C :2211x y a a+=+(0)a >的离心率为12,则椭圆C 的蒙日圆方程为( ) A. 229x y += B.227x y += C. 225x y +=D.224x y +=【答案】B 【解析】 【分析】根据椭圆C 的离心率可求出3a =,根据题意知椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,利用过上顶点和右顶点的切线可得蒙日圆上的一点,即可椭圆C 的蒙日圆方程.【详解】因为椭圆C :2211x y a a+=+(0)a >的离心率为12,12=,解得3a =,所以椭圆C 的方程为22143x y +=,所以椭圆的上顶点A ,右顶点(2,0)B ,所以经过,A B 两点的切线方程分别为y =2x =,所以两条切线的交点坐标为,又过A ,B 的切线互相垂直,由题意知交点必在一个与椭圆C 同心的圆上,可得圆的半径r ==所以椭圆C 的蒙日圆方程为227x y +=.故选:B.【点睛】本题主要考查椭圆的几何性质,同时考查圆的方程,属于基础题.7.已知O 是ABC V 内部一点,20OA OB OC ++=u u u r u u u r u u u r r ,4BA BC ⋅=u u u r u u u r 且6ABC π∠=,则OACV 的面积为( )A.B.23C.D.43【答案】A 【解析】 【分析】由20OA OB OC ++=u u u r u u u r u u u r r可得1()2BO OA OC =+u u u r u u u r u u u r ,设D 为AC 的中点,则1()2OA O OC D =+u u u u r u u r u u u r ,可得BO OD =u u u r u u u r ,从而可得O 为BD 的中点,进而可得12AOC ABC S S =△△,由4BA BC ⋅=u u u r u u u r 可得||||BA BC ⋅=u u u r u u u r ,再由12||||sin ABC BA AB S BC C ⋅⋅=∠u u u r u u u r △即可求出ABC S V .【详解】在ABC V 中,由20OA OB OC ++=u u u r u u u r u u u r r ,得22OA OC OB BO +=-=u u u r u u u r u u u r u u u r,所以1()2BO OA OC =+u u u r u u u r u u u r ,设D 为AC 的中点,则1()2OA O OC D =+u u u u r u u r u u u r,所以BO OD =u u u r u u u r,所以O 为BD 的中点,所以12AOC ABC S S =△△, 因为4BA BC ⋅=u u u r u u u r ,所以3||||cos ||||4BA BC BA BC ABC BA BC ⋅=⋅⋅∠=⋅=u u u r u u u r u u u r u u u ru u u ru u u r, 所以83||||3BA BC ⋅=u u u r u u u r ,所以183123||||sin 232312ABCBA BC AB S C ⋅⋅∠==⨯=u u u r u u u r △, 所以1233233=AOC S =⨯△. 故选:A.【点睛】本题主要考查向量的线性运算,向量的数量积及三角形的面积公式,属于中档题. 8.已知函数()2ln x f x x =,若()21f x m x<-在(0,)+∞上恒成立, 2.71828e =⋅⋅⋅为自然对数的底数,则实数m 的取值范围是( ) A. m e > B. 2em >C. 1m >D. m e >【答案】B 【解析】 【分析】()21f x m x <-在(0,)+∞上恒成立,即()21f x m x+<在(0,)+∞上恒成立,令221ln 1()()x g x f x x x+=+=,故只需max ()g x m <即可,利用导数求出()g x 的最大值即可. 【详解】若()21f x m x <-在(0,)+∞上恒成立,即()21f x m x+<在(0,)+∞上恒成立, 令221ln 1()()x g x f x x x+=+=,故只需max ()g x m <即可, 2431(ln 1)22ln 1()x x x x x g x x x ⋅-+⋅--'==,令()0g x '=,得12x e -=, 当120x e -<<时,()0g x '>;当12x e ->时,()0g x '<, 所以()g x 在12(0)e -,上是单调递增,在12(,)e -+∞上是单调递减, 所以当12max ()()2e g x g e -==, 所以实数m 的取值范围是2e m >. 故选:B.【点睛】本题主要考查分离参数法处理恒成立问题,同时考查利用导数求函数的最值,属于中档题.二、多项选择题9.设a ,b ,c 为实数,且0a b >>,则下列不等式中正确的是( ) A. ()222log log ab b >B. 22ac bc >C. 1b a a b<<D. 1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【答案】AC 【解析】 【分析】对A ,利用作差法比较即可;对B ,利用不等式的性质判断即可;对C ,利用作差法比较即可;对D ,利用指数函数的单调性比较即可. 【详解】对A ,因为0a b >>,所以1ab>,所以2222222log ()log log log log 10ab a ab b b b-==>=, 所以222log ()log ab b >,故A 正确;对B ,当0c =时,22ac bc >不成立,故B 错误; 对C ,因为0a b >>,所以10b b a a a --=<,10a b a b b--=<, 所以1b aa b<<,故C 正确; 对D ,因为函数12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,又a b >,所以1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故D 错误. 故选:AC【点睛】本题主要考查作差法比较大小,不等式的性质及指数函数的单调性,属于基础题. 10.已知等差数列{}n a 的前n 项和为()n S n N *∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A. 122a =B. 2d =-C. 当10n =或11n =时,n S 取得最大值D. 当0n S >时,n 的最大值为20【答案】BCD 【解析】 【分析】由690S =可得12530a d +=,由7a 是3a 与9a 的等比中项可得110a d =-,联立方程可求出120a =,2d =-,即可判断A ,B 选项,求出等差数列{}n a 的前n 项和为n S ,即可判断C ,D.【详解】因为690S =,所以1656902a d ⨯+=,即12530a d +=,① 又因为7a 是3a 与9a 的等比中项,所以2739a a a =⋅, 所以2111(6)(2)(8)a d a d a d +=++,整理得110a d =-,②由①②解得120a =,2d =-,故A 错误; 所以22(1)2144120(2)21()224n n n S n n n n -=+⨯-=-+=--+, 又n *∈N ,所以当10n =或11n =时,n S 取得最大值,故C 正确;令2210n S n n =-+>,解得021n <<,又n *∈N ,所以n 的最大值为20,故D 正确. 故选:BCD【点睛】本题主要考查等差数列的通项公式,等差数列前n 项和公式,等比中项的应用,同时考查等差数列和的最值问题,属于基础题.11.声音是由物体振动产生的声波,纯音的数学模型是函数sin y A t ω=,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数()sin f x x x =+则下列结论正确的是( ) A. ()f x 是偶函数 B. ()f x 是周期函数 C. ()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增 D. ()f x 最大值为2【答案】ABD 【解析】 【分析】根据奇偶性的定义和周期函数的定义可判断A ,B ;当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 可化为()sin 2sin()3f x x x x =+=+π,可判断C ;结合函数()f x 的周期性对x 进行分类讨论,将函数()f x 的绝对值去掉,再求其最大值可判断D. 【详解】函数()f x 的定义域为R ,因为())sin()sin ()f x x x x x f x -=-+-=+=, 所以()f x 是偶函数,故A 正确;因为sin cos s )()(i ()n f x πx πx x x π+++=++-sin ()x x f x +=,所以()f x 是以π为周期的周期函数,故B 正确;当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 可化为1()sin 2sin 2sin()223f x x x x x x ⎛⎫=+=+=+ ⎪ ⎪⎝⎭π, 此时()f x 在06π⎡⎤⎢⎥⎣⎦,上单调递增,在,62ππ⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;由于函数()f x 是以π为周期的周期函数,故只需研究一个周期内的最大值即可, 不妨取[0,]x π∈,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 可化为()2sin()3f x x π=+, 由0,2x π⎡⎤∈⎢⎥⎣⎦,得5,336x πππ⎡⎤+∈⎢⎥⎣⎦, 所以当32x ππ+=,即6x π=时,()f x 取得最大值2,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,1()sin 2sin 2sin()23f x x x x x x ⎛⎫=+==- ⎪ ⎪⎝⎭π, 由,2x ππ⎡⎤∈⎢⎥⎣⎦,得2,363x πππ⎡⎤-∈⎢⎥⎣⎦, 所以32x ππ-=,即56x π=时,()f x 取得最大值2, 故当[0,]x π∈时,()f x 取得最大值2,故D 正确. 故选:ABD.【点睛】本题主要考查三角函数的奇偶性、周期性、单调性的判断及最值的求法,同时考查两角和与差的正弦公式的逆用,属于中档题.12.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A. 11B E A B ⊥B. 平面1//B CE 平面1A BDC. 三棱锥11C B CE -的体积为83D. 三棱锥111C B CD -的外接球的表面积为24π 【答案】CD 【解析】 【分析】以1{,,}AB AD AA u u u r u u u r u u u r 为正交基底建立空间直角坐标系,写出各点坐标,计算11B E A B ⋅u u u r u u u r 值即可判断A ;分别求出平面1B CE ,平面1A BD 的法向量,判断它们的法向量是否共线,即可判断B ;利用等体积法,求出三棱锥11-B CC E 的体积即可判断C ;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故求出长方体1111ABCD A B C D -的外接球的表面积即可判断D.【详解】以1{,,}AB AD AA u u u r u u u r u u u r 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--u u u r ,1(2,0,4)A B =-u u u r , 因为1140840B E A B ⋅=-++=≠u u u r u u u r ,所以1B E u u u r 与1A B uuu r 不垂直,故A 错误; 1(0,2,4)CB =-u u u r ,(2,0,2)CE =-u u u r设平面1B CE 的一个法向量为111(,,)n x y z =r,则 由100n CB n CE ⎧⋅=⎨⋅=⎩u u u v v u u u v v ,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y =所以(1,2,1)n =r,同理可得设平面1A BD 的一个法向量为(2,2,1)m =u r,故不存在实数λ使得n λm =r u r,故平面1B CE 与平面1A BD 不平行,故B 错误;在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2R ==所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD.【点睛】本题主要考查用向量法判断线线垂直、面面平行,等体积法的应用及几何体外接球的表面积.三、填空题13.已知命题“2,10x R x ax ∃∈-+<”为假命题,则实数a 的取值范围是_______【答案】[]22-,【解析】命题“2,10x R x ax ∃∈-+<”假命题,则“2,10x R x ax ∀∈-+≥”为真命题.所以240a =-≤n ,解得22a -≤≤. 答案为:[]2,2-.14.()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为______. 【答案】25- 【解析】 【分析】先求得61x x ⎛⎫- ⎪⎝⎭中含21x 的项与常数项,进而可得()6212x x x ⎛⎫+- ⎪⎝⎭的常数项.【详解】61x x ⎛⎫- ⎪⎝⎭的展开式中含21x 的项为44262115C x x x ⎛⎫-= ⎪⎝⎭,61x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为3336120C x x ⎛⎫-=- ⎪⎝⎭,所以()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为154025-=-.故答案为:25-.【点睛】本题考查二项展开式中常数项的求法,解题时要认真审题,注意二项式定理的合理运用,属于基础题.15.已知()f x 为奇函数,当0x >时,()ln xf x x=,则曲线()y f x =在点()1,0-处的切线方程是______. 【答案】10x y -+= 【解析】 【分析】利用函数()f x 为奇函数,可求出当0x <时,()f x 的表达式为ln()()x f x x-=,然后根据在一点处的切线方程的求法,即可求出曲线()y f x =在点()1,0-处的切线方程.【详解】因为()f x 为奇函数,所以()()f x f x -=-, 当0x <时,则0x ->,所以ln()ln()()()x x f xf x x x--=--=-=-, 所以221(1)ln()1ln()()x x x x f x x x ⨯-⨯-----'==, 所以曲线()y f x =在点()1,0-处的切线的斜率(1)1k f '=-=, 所以切线方程是01y x -=+,即10x y -+=. 故答案为:10x y -+=【点睛】本题主要考查根据函数的奇偶性求函数的解析式,在一点处的切线方程的求法,同时考查复合函数的导数,属于中档题.16.已知抛物线C :22y px =()06p <<的准线交圆1O :()2234x y ++=于A ,B 两点,若23AB =,则抛物线C 的方程为______,已知点()1,2M ,点E 在抛物线C 上运动,点N 在圆2O :()2221x y -+=上运动,则EM EN +的最小值为______.【答案】 (1). 28y x = (2). 2.【解析】【详解】(1)设抛物线C 的准线与x 轴交于点D ,抛物线C 的准线方程为2px =-,则22211AO AD DO =+,即224|3|2p =+-+, 整理得212320p p -+=,解得4p =或8p =,又06p <<,所以4p =,所以抛物线C 的方程为28y x =.(2)由题意知 圆2O 的圆心坐标为(2,0)与抛物线的焦点坐标重合, 过E 作抛物线C 的准线2x =-的垂线,垂足为F ,则2||||EO EF =, 所以22211EM EN EM EO NO EM EO EM EF +≥+-=+-=+-, 所以当M ,E ,F 三点共线时,EM EF +最小,最小值为3, 所以1312EM EN EM EF +≥+-≥-=, 所以EM EN +的最小值为2. 故答案为:①28y x =;②2【点睛】本题主要考查抛物线的定义和准线方程,圆中的弦长公式,抛物线中的最值问题,同时考查数形结合思想和转化与化归思想.四、解答题17.设数列{}n a 的前n 项和为n S ,11a =,______. 给出下列三个条件:条件①:数列{}n a 为等比数列,数列{}1n S a +也为等比数列;条件②:点{}1,n n S a +在直线1y x =+上;条件③:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的三个条件中任选一个,补充在上面的横线上,完成下列两问的解答: (1)求数列{}n a 的通项公式; (2)设21231log log n n n b a a ++=⋅,求数列{}n b 的前n 项和n T .【答案】(1)不论选择哪个条件,1=2n n a -()N n *∈;(2)()()3234212n n T n n +=-++ 【解析】 【分析】(1) 方案一:选条件①.数列{}1n S a +也为等比数列,可根据其前3项也成等比数列列出方程,再将123,,S S S 用1,a q 表示解出q,即可求出n a ;方案二:选条件②,可得11n n a S +=+()N n *∈,再将n 用1n -代换可得11n n a S -=+()2n ≥,两式相减可得12n n a a +=()2n ≥,再验证212a a =即可,从而可得数列{}n a 是首项为1,公比为2的等比数列,即可求出n a ;方案三:选条件③.可得当2n ≥时,1121222n n n n a a a na -+++⋅⋅⋅+=()N n *∈,再将n 用1n -代换可得()121212221n n n n a a a n a ---++⋅⋅⋅+=-,两式相减可得12n n a a +=()2n ≥,再验证212a a =即可,从而可得数列{}n a 是首项为1,公比为2的等比数列,即可求出n a ;(2)由(1)不论选择哪个条件,1=2n n a -()N n *∈,代入化简可得()12n b n n =+,利用裂项相消法求和,即可求出数列{}n b 的前n 项和n T . 【详解】(1)方案一:选条件①. 因为数列{}1n S a +为等比数列,所以()()()2211131S a S a S a +=++,即()()2121123222a a a a a a +=++, 设等比数列{}n a 的公比为q ,因为11a =, 所以()()22222q q q+=++,解得2q =或0q =(舍), 所以1112n n n a a q --==()N n *∈,(2)由(1)得12n n a -=()N n *∈, 所以()212311111log log 222n n n b a a n n n n ++⎛⎫===- ⎪⋅++⎝⎭,所以11111111111232435112n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()()13113232212442123111212n n n n n n n ⎛⎫=-=⎭+⎛-+ +⎫-=- ⎪+++⎝⎭⎝++⎪, 方案二:(1)选条件②.因为点()1,n n S a +在直线1y x =+上,所以11n n a S +=+()N n *∈,所以11n n a S -=+()2n ≥,两式相减得1n n n a a a +-=,12n na a +=()2n ≥, 因为11a =,211112a S a =+=+=,212a a =适合上式, 所以数列{}n a 是首项为1,公比为2的等比数列,所以1112n n n a a q --==()N n *∈(2)同方案一的(2). 方案三:(1)选条件③.当2n ≥时,因为1121222n n n n a a a na -+++⋅⋅⋅+=()N n *∈⋅⋅⋅(i )所以()121212221n n n n a a a n a ---++⋅⋅⋅+=-,所以()1212122221nn n n a a a n a --++⋅⋅⋅+=-⋅⋅⋅(ii )(i )-(ii )得122(1)n n n a na n a +=--,即12n na a +=()2n ≥, 当1n =时,122a a =,212a a =适合上式, 所以数列{}n a 是首项为1,公比为2的等比数列所以1112n n n a a q --==()N n *∈(2)同方案一的(2).【点睛】本题主要考查等比数列通项公式求法,裂项相消法求和,属于基础题.18.在ABC V 中,a ,b ,c 分别为角A ,B ,C 的对边,且满足cos2cos sin a C a C c A =-. (1)求角C ;(2)若ABC V 为锐角三角形,12c =,求ABC V 面积S 的最大值.【答案】(1)4C π=;(2))361【解析】 【分析】(1)对cos2cos sin a C a C c A =-,利用正弦定理得sin cos2sin cos sin sin A C A C C A =-,进而可得cos2cos sin C C C =-,再利用二倍角公式即可求出角C ;(2)由已知可得4C π=,故要求ABC V 面积S 的最大值,只需求出ab 的最大值即可,利用余弦定理可得222144c a b ==+,再利用基本不等式即可求出ab 的最大值. 【详解】(1)因为cos2cos sin a C a C c A =-,所以由正弦定理可得:sin cos2sin cos sin sin A C A C C A =-, 因为()0,A π∈,sin 0A ≠,所以cos2cos sin C C C =-, 所以22cos sin cos sin C C C C -=-, 即()()cos sin cos sin 10C C C C -+-=, 所以cos sin 0C C -=或cos sin 10C C +-=, 即cos sin C C =或cos sin 10C C +-=, ①若cos sin C C =,则4C π=,②若cos sin 10C C +-=,则sin 42C π⎛⎫+= ⎪⎝⎭, 因为5444C πππ<+<,所以344C ππ+=,即2C π=, 综上,4C π=或2C π=.(2)因为ABC V 为锐角三角形,所以4C π=,因为(222221442cos 224c a b ab a b ab ab π==+-=+-≥=,即(722ab ≤=(当且仅当a b =等号成立),所以()11sin sin 72236122444S ab C ab π===≤+=,即ABC V 面积S 的最大值是()3621+.【点睛】本题主要考查正弦定理,二倍角公式,基本不等式及三角形的面积公式,同时考查三角形中面积的最大值求法,属于基础题.19.如图,四棱柱1111ABCD A B C D -中,底面ABCD 和侧面11BCC B 都是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==.(1)求证:平面11CC D D ⊥底面ABCD ;(2)若平面11BCC B 与平面1BED 所成的锐二面角的大小为3π,求直线1CA 和平面11BCC B 所成角的正弦值.【答案】(1)见解析;6 【解析】 【分析】(1)要证平面11CC D D ⊥底面ABCD ,只需证明其中一个面内一条线垂直于另一个平面即可,可证1D E ⊥底面ABCD ,由底面ABCD 和侧面11BCC B 都是矩形,可得BC ⊥平面11DCC D ,又1D E ⊂平面11DCC D ,从而可得1BC D E ⊥,又1D E CD ⊥,从而可证出1D E ⊥底面ABCD ;(2) 取AB 的中点F ,以1{,,}EF EC ED u u u r u u u r u u u u r为正交基底建系,设1ED a =()0a >,写出各点坐标,分别求出平面1BED 与平面11BCC B 的法向量()11,1,0n =-u r ,()20,,1n a =-u u r,根据它们所成的锐二面角的大小为3π,利用夹角公式列出方程可求出1a =,再求出()11,1,1CA =-u u u r ,设直线1CA 和平面11BCC B 所成的角为θ,由12sin cos CA n =〈⋅〉u u u r u u rθ即可求出答案.【详解】(1)因为底面ABCD 和侧面11BCC B 都是矩形,所以BC CD ⊥,1BC CC ⊥,又1CD CC C =I ,1,CD CC ⊂平面11DCC D , 所以BC ⊥平面11DCC D ,又1D E ⊂平面11DCC D ,所以1BC D E ⊥,又1D E CD ⊥,BC CD C ⋂=,,BC CD ⊂底面ABCD , 所以1D E ⊥底面ABCD ,又1D E ⊂平面11CC D D , 所以平面11CC D D ⊥底面ABCD .(2)取AB 的中点F ,因为E 是CD 的中点,底面ABCD 是矩形,所以EF CD ⊥,以E 为原点,以EF ,EC ,1ED 所在直线分别为x ,y ,z 轴, 建立空间直角坐标系E xyz -,如图所示:设1ED a =()0a >,则()0,0,0E ,()1,1,0B ,()10,0,D a ,()0,1,0C ,()10,2,C a设平面1BED 的法向量()111,,n x y z =r ,()1,1,0EB =u u u r ,()10,0,ED a =u u u u r.由11100n EB n ED ⎧⋅=⎪⎨⋅=⎪⎩u v u u u v u v u u u u v 可得:11100x y az +=⎧⎨=⎩, 令11x =可得11y =-,10z =,所以()11,1,0n =-u r,设平面11BCC B 的法向量()2222,,n x y z =u u r ,()1,0,0CB =u u u r ,()10,1,CC a =u u u u r. 由22100n CB n CC ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u vu u v u u u u v 可得,22200x y az =⎧⎨+=⎩,令21z =可得2y a =-,所以()20,,1n a =-u u r由于平面11BCC B 与平面1BED 所成的锐二面角的平面角为3π, 所以1212212cos ,cos 321n n n n n n a π⋅===⋅⨯+u r u u ru r u u r u r u u r ,解得1a =.所以平面11BCC B 的法向量()20,1,1n =-u u r,由于()1,1,0A -,()0,1,0C ,()0,1,0D -,()10,0,1D ,所以()()()1111,2,00,1,11,1,1CA CA AA CA DD =+=+=-+=-u u u r u u u r u u u r u u u r u u u u r, 设直线1CA 和平面11BCC B 所成的角为θ,则12126sin 323CA n CA n θ⋅===⨯⋅u u u r u u ru u u r u u r .【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,根据所成二面角的大小逆向求参数值及利用向量法求线面角的正弦值,属于中档题.20.某专业机械生产厂为甲乙两地(两地仅气候条件差异较大,其他条件相同)的两个不同机器生产厂配套生产同一种零件,在甲乙两地分别任意选取100个零件进行抗疲劳破坏性试验,统计每个零件的抗疲劳次数(抗疲劳次数是指从开始试验到零件磨损至无法正常使用时的循环加载次数),将甲乙两地的试验的结果,即每个零件的抗疲劳次数(单位:万次)分别按(]7,8,(]8,9,(]9,10,(]10,11,(]11,12分组进行统计,甲地的实验结果整理为如下的频率分布直方图(其中a ,b ,c 成等差数列,且23c b =),乙地的统计结果整理为如下的频数分布表.(1)求a ,b ,c 的值并计算甲地实验结果的平均数x .(2)如果零件抗疲劳次数超过9万次,则认为零件质量优秀,完成下列的22⨯列联表: 质量不优秀 质量优秀 总计 甲地 乙地试根据上面完成的22⨯列联表,通过计算分析判断,能否有97.5%的把握认为零件质量优秀与否与气候条件有关? 附:临界值表其中2K 的观测值()()()()()2n ad bc k a b c d a c b d -=++++(3)如果将抗疲劳次数超过10万次的零件称为特优件,在甲地实验条件下,以频率为概率,随机打开一个4个装的零件包装箱,记其中特优件的个数为ξ,求ξ的分布列和数学期望. 【答案】(1)0.1a =,0.2b =,0.3c =,平均数9.3x =万次;(2)见解析,有;(3)见解析,1 【解析】 【分析】(1)根据频率分布直方图的的矩形面积和为1,可得0.6a b c ++=,再由a ,b ,c 成等差数列,可得2b a c =+,再结合23c b =解方程即可求出a ,b ,c 的值;利用组中值乘以相应的频率再求和即可求出平均数x ;(2)根据已知条件分别求出甲、乙抗疲劳次数超过9万次的零件数和不超过9万次的零件数,即可完成22⨯列联表,然后根据22⨯列联表求出观测值k ,查对临界值,即可作出判断;(3)根据已知条件可得任意抽取一件产品为特优件的概率14p =,ξ的取值可能为0,1,2,3,4,根据二项分布分别求出相应的概率,即可列出分布列并求出数学期望.【详解】(1)由频率分布直方图的性质可得:0.050.351a b c ++++=,即0.6a b c ++= 因为a ,b ,c 成等差数列,所以2b a c =+,所以0.2b = 又23c b =,解之得:0.3c =,0.1a =所以7.50.18.50.39.50.3510.50.211.50.059.3x =⨯+⨯+⨯+⨯+⨯= 即抗疲劳次数的平均数9.3x =万次(2)由甲地试验结果的频率分布直方图可得:抗疲劳次数超过9万次的零件数为()1000.350.20.0560⨯++=件,不超过9万次的件数为1006040-=件,由乙地试验结果的分布表可得:抗疲劳次数超过9万次的零件数为4125975++=, 不超过9万次的零件数为25件,所以22⨯列联表为所以()220040752560200 5.128 5.0246513510010039k ⨯-⨯==≈>⨯⨯⨯, 所以在犯错误的概率不超过0.025的前提下,认为零件质量优秀与否与气候条件有关, 即有97.5%的把握认为零件质量优秀与否与气候条件有关.(3)在甲地实验条件下,随机抽取一件产品为特优件的频率为0.25, 以频率为概率,所以任意抽取一件产品为特优件的概率14p = 则ξ的取值可能为0,1,2,3,4所以()400431********P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭; ()311431812714425664P C ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭; ()2224315427244256128P C ξ⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭; ()13343112334425664P C ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭; ()0444311444256P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. 所以ξ的分布列为ξ0 1 2 3 4P81256 2764 27128 364 1256ξ的数学期望()8110854121012341256256256256256E ξ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题主要考查频率分布直方图的性质,利用组中值估计平均数,独立性检验的应用,二项分布及数学期望,属于中档题.21.已知椭圆E :22221x y a b+=()0a b >>的离心率为12,其左右顶点分别为1A ,2A ,上下顶点分别为2B ,1B ,四边形1122A B A B 的面积为43.(1)求椭圆E 的方程;(2)若椭圆E 的左右焦点分别为1F ,2F ,过2F 的直线l 与椭圆交于不同的两点M ,N ,记1F MN △的内切圆的半径为r ,试求r 的取值范围.【答案】(1)22143x y +=;(2)304r <≤【解析】 【分析】(1)根据离心率为12,四边形1122A B A B 的面积为222a b c =+,即可求出,a b ,进而求出椭圆E 的方程;(2)由1F MN △的周长1148F M F N MN a ++==,可得()111142F MN S F M F N MN r r =++=△,即114F MN r S =△, 对直线l 的斜率是否存在进行分类讨论,当l x ⊥轴时,l 的方程为:1x =,可求得34r =;当l 与x 轴不垂直时,设l :()()10y k x k =-≠,将椭圆的方程与直线l 的方程联立消去x ,由根与系数的关系可求出12y y +,12y y ,代入11212F MN F F M F F N S S S =+△△△1212F F =k 的函数,利用换元法即可求出r 的取值范围. 【详解】(1)因为椭圆E 的离心率为12,所以12c e a ==,因为四边形1122A B A B 的面积为1222a b ⨯⨯=又222a b c =+,解得:2a =,b =1c =,所以椭圆E方程为:22143x y +=.(2)设()11,M x y ,()22,N x y ,则1F MN △的周长48a ==,()111142F MN S F M F N MN r r =++=△,即114F MN r S =△, 当l x ⊥轴时,l 的方程为:1x =,3MN =,11211134424F MN r S MN F F ==⨯⨯=△, 当l 与x 轴不垂直时,设l :()()10y k x k =-≠,由()221143y k x x y ⎧=-⎪⎨+=⎪⎩,得()22243690k y ky k ++-=,所以122643k y y k +=-+,2122943k y y k =-+,112121221211221111222F MN F F M F F N S S S F F y F F y F F y y =+=⋅+⋅=⋅-△△△1211222F F ==⨯=所以114F MN r S ==△ 令243k t +=,则3t >,r ===, 因为3t >,所以1103t <<,所以304r << 综上可知:304r <≤【点睛】本题主要考查求椭圆的标准方程,直线与椭圆的位置关系,同时考查椭圆中的范围问题,对于第(2)问关键是借助于“算两次”面积相等得到114F MN r S =△,将问题转化为求1MN F S V 的面积问题.22.已知函数()22xa f x e x =-( 2.71828e =⋅⋅⋅为自然对数的底数)有两个极值点1x ,2x . (1)求a 的取值范围; (2)求证:122ln x x a +<. 【答案】(1)(),e +∞;(2)见解析 【解析】 【分析】(1)求()x f x e ax '=-,令()()xg x f x e ax '==-,利用导数研究函数()g x 的单调性:当0a ≤时,()0xg x e a '=->,此时()g x 在R 上单调递增,至多有一个零点,不符合题意;当0a >时,只需()()min ln 0g x g a =<,同时使得(),ln a -∞和()ln ,a +∞各有一个零点即可;(2) 不妨设12x x <,则()1,ln x a ∈-∞,()2ln ,x a ∈+∞,所以12ln x a x <<,要证122ln x x a +<,即证122ln x a x <-,而当(),ln x a ∈-∞时,函数()g x 单调递减,即证()()122ln g x g a x >-,而()()12g x g x =,即证()()222ln g x g a x >-,故可构造函数()()()2ln p x g x g a x =--,利用导数判断()p x 的单调性转化即可.【详解】(1)由已知得()xf x e ax '=-,因为函数()f x 有两个极值点1x ,2x ,所以方程()0xf x e ax '=-=有两个不相等的根1x ,2x设()()xg x f x e ax '==-,则()xg x e a '=-①当0a ≤时,()0xg x e a '=->,所以()g x 在R 上单调递增,至多有一个零点,不符合题意 ②当0a >时,由()0xg x e a '=-=得ln x a =.当(),ln x a ∈-∞时,()0g x '<,函数()g x 单调递减; 当()ln ,x a ∈+∞时,()0g x '>,函数()g x 单调递增. 所以()()min ln ln 0g x g a a a a ==-<,即a e >, 令()2ln a a a ϕ=-()0a >,则()221a a a aϕ-'=-=, 当()0,2a ∈时,()0a ϕ'<,()a ϕ为减函数; 当()2,a ∈+∞时,()0a ϕ'>,()a ϕ为增函数; 所以()()()min 222ln 221ln 20a ϕϕ==-=->所以()0a ϕ>,即2ln a a >,从而ln 2aa a <<,2a e a > 所以()20ag a e a =->,又因为()010g =>,所以()g x 在区间()0,ln a 和()ln ,a a 上各有一个零点,符合题意, 综上,实数a 的取值范围为(),e +∞.(2)不妨设12x x <,则()1,ln x a ∈-∞,()2ln ,x a ∈+∞,所以12ln x a x << 设()()()()2ln 2ln 2ln xa xp x g x g a x e ax ea a x -⎡⎤=--=----⎣⎦222ln x x e a e ax a a -=--+,则()222220x x p x e a e a a a a -'=+-≥=-=, 当且仅当2x x e a e -=,即ln x a =时,等号成立. 所以函数()p x 在R 上单调递增.由2ln x a >,可得()()2ln 0p x p a >=,即()()222ln 0g x g a x -->, 又因为1x ,2x 为函数()g x 的两个零点,所以()()12g x g x =, 所以()()122ln g x g a x >-, 又2ln x a >,所以22ln ln a x a -<, 又函数()g x 在(),ln a -∞上单调递减, 所以122ln x a x <-,即122ln x x a +<.【点睛】本题主要考查利用导数研究函数的性质,构造函数证明不等式,同时考查极值点偏移问题,属于难题.。

青岛二中2020届高三5月模拟数学(文科)试题 (解析版)

青岛二中2020届高三5月模拟数学(文科)试题 (解析版)

2020年高考数学模拟试卷(文科)(5月份)一、选择题(共12小题).1.集合M={x|2x2﹣x﹣1<0|},N={x|2x+a>0|},U=R,若M∩∁U N=∅,则a的取值范围是()A.a>1 B.a≥1 C.a<1 D.a≤12.已知命题p:直线l1:x﹣2y+3=0与l2:2x+y+3=0相交但不垂直;命题q:∃x0∈(0,+∞),x0+2>e x0,则下列命题中是真命题的是()A.(¬p)∧q B.p∧q C.p∨(¬q)D.(¬p)∧(¬q)3.已知复数z=1−i2+i,其中i为虚数单位,则|z|=()A.√103B.√53C.√105D.√554.某四棱锥的三视图如图所示,其中a+b=1,且a>b.若四个侧面的面积中最小的为19,则a的值为()A.12B.23C.34D.565.已知A(0,﹣4),B(﹣2,0),C(0,2),光线从点A射出,经过线段BC(含线段端点)反射,恰好与圆(x﹣a)2+(y﹣2a)2=95相切,则()A.﹣1≤a≤1−3√510B.15≤a≤1−3√510C.15≤a≤1+3√510D.﹣1≤a≤1+3√5106.若向量m→=(2k﹣1,k)与向量n→=(4,1)共线,则m→⋅n→=()A.0 B.4 C.−92D.−1727.为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时气温的中位数小于乙地该月14时气温的中位数;④甲地该月14时气温的中位数大于乙地该月14时气温的中位数.其中根据茎叶图能得到的正确的统计结论的标号为()A.①③B.②④C.②③D.①④8.“珠算之父”程大位是我国明代著名的数学家,他的应用巨著《算法统综》中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节四升五,上梢四节三升八,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”(【注】四升五:4.5升,次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节竹的容积为()A.2.2升B.2.3升C.2.4升D.2.5升9.已知抛物线y2=2x的焦点为F,点P在抛物线上,以PF为边作一个等边三角形PFQ,若点Q在抛物线的准线上,则|PF|=()A.1 B.2 C.2√2D.2√310.函数f (x )=ln|x|x的图象大致为( ) A . B .C .D .11.若函数f (x )=2sin (2x +φ)(|φ|<π2)的图象向左平移π12个单位长度后关于y 轴对称,则函数f (x )在区间[0,π2]上的最小值为( ) A .−√3 B .﹣1 C .1D .√3 12.已知函数f (x )=|lnx |,g(x)={0,0<x ≤1,|x 2−4|−2,x >1若关于x 的方程f (x )+m =g(x )恰有三个不相等的实数解,则m 的取值范围是( )A .[0,ln 2]B .(﹣2﹣ln 2,0)C .(﹣2﹣ln 2,0]D .[0,2+ln 2)二、填空题(本大题共4小题,每小题5分,共20分)13.某校高三科创班共48人,班主任为了解学生高考前的心理状况,将学生按1至48的学号用系统抽样方法抽取8人进行调查,若抽到的最大学号为48,则抽到的最小学号为 .14.在△ABC 中,已知C =120°,sin B =2sin A ,且△ABC 的面积为2√3,则AB 的长为 .15.设变量x ,y 满足约束条件{x +2≥0x −y +3≥02x +y −3≤0,则目标函数z =x +6y 的最大值为 .16.已知f (x )是R 上的偶函数,且当x ≥0时,f (x )=|x 2﹣3x |,则不等式f (x ﹣2)≤2的解集为 .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}是递增数列,且a1a5=9,a2+a4=10.(1)求数列{a n}的通项公式;(n∈N*),求数列{b n}的前n项和S n.(2)若b n=1a n⋅a n+118.今年年初,习近平在《告台湾同胞书》发表40周年纪念会上的讲话中说道:“我们要积极推进两岸经济合作制度化打造两岸共同市场,为发展增动力,为合作添活力,壮大中华民族经济两岸要应通尽通,提升经贸合作畅通、基础设施联通、能源资源互通、行业标准共通,可以率先实现金门、马祖同福建沿海地区通水、通电、通气、通桥.要推动两岸文化教育、医疗卫生合作,社会保障和公共资源共享,支持两岸邻近或条件相当地区基本公共服务均等化、普惠化、便捷化”某外贸企业积极响应习主席的号召,在春节前夕特地从台湾进口优质大米向国内100家大型农贸市场提供货源,据统计,每家大型农贸市场的年平均销售量(单位:吨),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值和年平均销售量的众数和中位数;(2)在年平均销售量为[220,240),[240,260),[260,280),[280,300)的四组大型农贸市场中,用分层抽样的方法抽取11家大型农贸市场,求年平均销售量在[240,260),[260,280)[280,300)的农贸市场中应各抽取多少家?(3)在(2)的条件下,再从这三组中抽取的农贸市场中随机抽取2家参加国台办的宣传交流活动,求恰有1家在[240,260)组的概率.19.如图,四棱锥P﹣ABCD中,PA⊥菱形ABCD所在的平面,∠ABC=60°,E是BC中点,M是PD的中点.(1)求证:平面AEM⊥平面PAD;(2)若F是PC上的中点,且AB=AP=2,求三棱锥P﹣AMF的体积.20.已知抛物线C1:y2=2px(p>0)与椭圆C2:x 24+y23=1有一个相同的焦点,过点A(2,0)且与x轴不垂直的直线l与抛物线C1交于P,Q两点,P关于x轴的对称点为M.(1)求抛物线C1的方程;(2)试问直线MQ是否过定点?若是,求出该定点的坐标;若不是,请说明理由.21.已知f(x)=e xx+alnx﹣ax.(1)若a<0,讨论函数f(x)的单调性;(2)当a=﹣1时,若不等式f(x)+(bx−b−1x)e x−x≥0在[1,+∞)上恒成立,求b 的取值范围.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.(本小题满分10分)[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C的参数方程为{x=1+4cosθy=−1+4sinθ(θ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,直线l:ρ=2√2m(m为常数).sin(θ+π4)(1)求曲线C的普通方程与直线l的直角坐标方程;(2)若直线l与曲线C相交于A、B两点,当|AB|=4时,求实数m的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|.(1)若不等式f(x)≤4的解集为[﹣1,7],求实数a的值;(2)在(1)的条件下,若x0∈R,使得f(x0)+f(x0+5)<4m,求实数m的取值范围.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合M={x|2x2﹣x﹣1<0|},N={x|2x+a>0|},U=R,若M∩∁U N=∅,则a的取值范围是()A.a>1 B.a≥1 C.a<1 D.a≤1【分析】求出集合,M,N的等价条件,结合条件M∩∁U N=∅,建立不等式关系进行求解即可.解:M={x|2x2﹣x﹣1<0|}={x|−1<x<1},N={x|2x+a>0|}={x|x>−a2},2∁U N={x|x≤−a2},若M∩∁U N=∅,则−a≤−12,2即a≥1,故选:B.2.已知命题p:直线l1:x﹣2y+3=0与l2:2x+y+3=0相交但不垂直;命题q:∃x0∈(0,+∞),x0+2>e x0,则下列命题中是真命题的是()A.(¬p)∧q B.p∧q C.p∨(¬q)D.(¬p)∧(¬q)【分析】判断两个命题的真假,然后判断命题的否定命题的真假,利用复合命题判断即可.解:命题p:直线l1:x﹣2y+3=0与l2:2x+y+3=0相交并且垂直;所以命题p是假命题;则¬p是真命题;命题q:∃x0∈(0,+∞),x0+2>e x0,因为x0=1时,命题是真命题,所以q是真命题,¬p是假命题;则:(¬p)∧q是真命题;p∧q、p∨(¬q)、(¬p)∧(¬q)都是假命题;故选:A.3.已知复数z=1−i2+i,其中i为虚数单位,则|z|=()A.√103B.√53C.√105D.√55【分析】直接利用商的模等于模的商求解.解:∵z=1−i2+i,∴|z|=|1−i2+i |=|1−i||2+i|=√25=√105.故选:C.4.某四棱锥的三视图如图所示,其中a+b=1,且a>b.若四个侧面的面积中最小的为19,则a的值为()A.12B.23C.34D.56【分析】画出几何体的直观图,利用三视图的数据求解侧面积,转化求解a即可.解:几何体的直观图如图:是长方体的一部分,P﹣ABCD,侧面积S PAB=12ab,S PAD=12ab,S PCD=12a√a2+b2,S PCD=12a√a2+b2,四个侧面的面积中最小的为19,可得12ab =19,a +b =1,且a >b ,解得a =23, 故选:B .5.已知A (0,﹣4),B (﹣2,0),C (0,2),光线从点A 射出,经过线段BC (含线段端点)反射,恰好与圆(x ﹣a )2+(y ﹣2a )2=95相切,则( ) A .﹣1≤a ≤1−3√510 B .15≤a ≤1−3√510C .15≤a ≤1+3√510D .﹣1≤a ≤1+3√510【分析】根据题意求出A 关于线段BC 的对称点,要使得要使得反射光线与圆(x ﹣a )2+(y ﹣2a )2=95相切,只要使得射线DB ,DC 与圆相切即可,结合图象即可求a 的范围. 解:由题意可得,A (0,﹣4)关于BC 所在的直线的对称点D (﹣6,2),要使得反射光线与圆(x ﹣a )2+(y ﹣2a )2=95相切,只要使得射线DB ,DC 与圆相切即可, 易得直线DB 的方程x +2y +2=0,直线DC 的方程y =2, 由√5=3√55,可得,a =﹣1或a =15, 由|2a ﹣2|=3√55可得a =1±3√510, 结合图象可知,﹣1≤a ≤1+3√510. 故选:D .6.若向量m→=(2k﹣1,k)与向量n→=(4,1)共线,则m→⋅n→=()A.0 B.4 C.−92D.−172【分析】根据向量共线定理,列方程求出k的值,再计算m→⋅n→的值.解:向量m→=(2k−1,k)与向量n→=(4,1)共线,则2k﹣1﹣4k=0,解得k=−12,∴m→=(﹣2,−12),∴m→⋅n→=−2×4+(−12)×1=−172.故选:D.7.为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时气温的中位数小于乙地该月14时气温的中位数;④甲地该月14时气温的中位数大于乙地该月14时气温的中位数.其中根据茎叶图能得到的正确的统计结论的标号为()A.①③B.②④C.②③D.①④【分析】利用茎叶图分别求出甲、乙两地某月14时的气温的平均值和标准差,由此能求出结果.解:甲地该月14时的平均气温x=15(26+28+29+31+31)=29,中位数为:29,甲乙地该月14时的平均气温x=15(28+29+30+31+32)=30,中位数为:30,乙∴甲地该月14时的平均气温低于乙地该月14时的平均气温,甲地该月14时的平均气温的中位数小于乙地该月14时的气温的中位数.∴根据茎叶图能得到的统计结论的标号为①③.故选:A.8.“珠算之父”程大位是我国明代著名的数学家,他的应用巨著《算法统综》中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节四升五,上梢四节三升八,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”(【注】四升五:4.5升,次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节竹的容积为()A.2.2升B.2.3升C.2.4升D.2.5升【分析】设从下至上各节容积分别为a1,a2,…,a9,则{a n}是等差数列,设公差为d,由题意利用等差数列通项公式列出方程组,由此能求出中间两节的容积.解:设从下至上各节容积分别为a1,a2,…,a9,则{a n}是等差数列,设公差为d,由题意得{a 1+(a 1+d)+(a 1+2d)=4.5(a 1+5d)+(a 1+6d)+(a 1+7d)+(a 1+8d)=3.8,解得a 1=1.6,d =﹣0.1,∴中间两节的容积为:a 4+a 5=(1.6﹣0.1×3)+(1.6﹣0.1×4)=2.5(升). 故选:D .9.已知抛物线y 2=2x 的焦点为F ,点P 在抛物线上,以PF 为边作一个等边三角形PFQ ,若点Q 在抛物线的准线上,则|PF |=( ) A .1B .2C .2√2D .2√3【分析】求出抛物线的焦点坐标(12,0),利用抛物线的简单性质求出直线方程,然后求出结果.解:抛物线的焦点坐标(12,0),可得直线PF :y =√3(x −12),可得:{y 2=2x y =√3(x −12),可得:x =32,则y =±√3,|PF |=32+12=2.故选:B .10.函数f (x )=ln|x|x的图象大致为( )A .B .C .D .【分析】判断f (x )的奇偶性,及f (x )的函数值的符号即可得出答案. 解:∵f (﹣x )=ln|−x|−x=−ln|x|x=−f (x ),∴f (x )是奇函数,故f (x )的图象关于原点对称, 当x >0时,f (x )=lnx x,∴当0<x <1时,f (x )<0,当x >1时,f (x )>0, 故选:A .11.若函数f (x )=2sin (2x +φ)(|φ|<π2)的图象向左平移π12个单位长度后关于y 轴对称,则函数f (x )在区间[0,π2]上的最小值为( )A .−√3B .﹣1C .1D .√3【分析】由三角函数图象的性质、平移变换得:g (x )=2sin[2(x +π12)+φ]=2sin (2x +π6+φ),由g (x )关于y 轴对称,则π6+φ=k π+π2,φ=k π+π3,k ∈Z ,又|φ|<π2,所以φ=π3,由三角函数在区间上的最值得:当x ∈[0,π2]时,所以2x +π3∈[π3,4π3],f (x )min =f (4π3)=−√3,得解解:函数f (x )=2sin (2x +φ)(|φ|<π2)的图象向左平移π12个单位长度后图象所对应解析式为:g (x )=2sin[2(x +π12)+φ]=2sin (2x +π6+φ), 由g (x )关于y 轴对称,则π6+φ=k π+π2,φ=k π+π3,k ∈Z , 又|φ|<π2,所以φ=π3,即f (x )=2sin (2x +π3),当x ∈[0,π2]时,所以2x +π3∈[π3,4π3],f (x )min =f (4π3)=−√3,故选:A .12.已知函数f (x )=|lnx |,g(x)={0,0<x ≤1,|x 2−4|−2,x >1若关于x 的方程f (x )+m =g(x )恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,ln 2]B .(﹣2﹣ln 2,0)C .(﹣2﹣ln 2,0]D .[0,2+ln 2)【分析】设h (x )=f (x )+m ,则h (x )是f (x )的图象沿着x =1上下平移得到,作出函数h (x )与g (x )的图象,利用图象关系确定两个函数满足的条件进行求解即可. 解:设h (x )=f (x )+m , 作出函数f (x )和g (x )的图象如图则h (x )是f (x )的图象沿着x =1上下平移得到, 由图象知B 点的纵坐标为h (1)=f (1)+m =ln 1+m =m ,A 点的纵坐标为g (2)=﹣2,当x =2时,h (2)=ln 2+m ,g (1)=0,要使方程f (x )+m =g (x )恰有三个不相等的实数解, 则等价为h (x )与g (x )的图象有三个不同的交点, 则满足{h(1)≤g(1)h(2)>g(2),即{m≤0m+ln2>−2得{m≤0m>−2−ln2,即﹣2﹣ln2<m≤0,即实数m的取值范围是(﹣2﹣ln2,0],故选:C.二、填空题(本大题共4小题,每小题5分,共20分)13.某校高三科创班共48人,班主任为了解学生高考前的心理状况,将学生按1至48的学号用系统抽样方法抽取8人进行调查,若抽到的最大学号为48,则抽到的最小学号为6 .【分析】求出系统抽样的抽取间隔,即可得出结论.解:系统抽样的抽取间隔为488=6,则48﹣6×7=6,则抽到的最小学号为6,故答案为:6.14.在△ABC中,已知C=120°,sin B=2sin A,且△ABC的面积为2√3,则AB的长为2√7.【分析】由正弦定理可得,b=2a,代入三角形的面积公式可求a,b,然后由余弦定理可求c.解:∵sin B=2sin A,由正弦定理可得,b=2a,∴s△ABC=12absinC=12a×2a×√32=2√3,∴a=2,b=4,由余弦定理可得,c2=a2+b2﹣2ab cos C=4+16−2×2×4×(−12)=28,∴c=2√7,故答案为:2√7.15.设变量x,y满足约束条件{x+2≥0x−y+3≥02x+y−3≤0,则目标函数z=x+6y的最大值为18 .【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合的得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.解:由约束条件{x+2≥0x−y+3≥02x+y−3≤0作出可行域如图,A(0,3),化目标函数z=x+6y为y=−x6+z6,由图可知,当直线y=−x6+z6过A时,直线在y轴上的截距最大,z有最大值为18.故答案为:18.16.已知f(x)是R上的偶函数,且当x≥0时,f(x)=|x2﹣3x|,则不等式f(x﹣2)≤2的解集为{x|1≤x≤3或4≤x≤√17+72或√172≤x≤0} .【分析】根据题意,由函数的解析式求出当x≥0时,不等式f(x)≤2的解集,结合函数的奇偶性可得f(x)≤2的解集,据此由函数图象的性质分析可得f(x﹣2)≤2的解集,即可得答案.解:根据题意,当x≥0时,f(x)=|x2﹣3x|,此时若有f(x)≤2,即{x≥0|x2−3x|≤2,解可得0≤x≤1或2≤x≤3+√172,即此时f(x)≤2的解集为{x|0≤x≤1或2≤x≤3+√172},又由f(x)为偶函数,则当x≤0时,f(x)≤2的解集为{x|﹣1≤x≤0或−3+√172≤x≤﹣2},综合可得:f(x)≤2的解集为{x|﹣1≤x≤1或2≤x≤3+√172或−3+√172≤x≤﹣2};对于f(x﹣2)≤2,则有﹣1≤x﹣2≤1或2≤x﹣2≤3+√172或−3+√172≤x﹣2≤﹣2则不等式f(x﹣2)≤2的解集{x|1≤x≤3或4≤x≤√17+72或1−√172≤x≤0};故答案为:{x|1≤x≤3或4≤x≤√17+72或1−√172≤x≤0}.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}是递增数列,且a1a5=9,a2+a4=10.(1)求数列{a n}的通项公式;(2)若b n=1a n⋅a n+1(n∈N*),求数列{b n}的前n项和S n.【分析】(1)直接利用递推关系式求出数列的通项公式.(2)利用(1)的结论,进一步利用裂项相消法求出数列的和.解:(1)设首项为a1,公差为d的等差数列{a n}是递增数列,且a1a5=9,a2+a4=10.则:{a1(a1+4d)=9a1+d+a1+3d=10,解得:a1=1或9,a5=9或1,由于数列为递增数列,则:a1=1,a5=9.故:d=2则:a n=1+2(n﹣1)=2n﹣1.(2)由于a n=2n﹣1,则:b n=1a n⋅a n+1=1(2n−1)(2n+1),=1 4n2−1=1(2n+1)(2n−1),=12(12n−1−12n+1).所以:S n=b1+b2+…+b n,=12[1−13+13−15+⋯+12n−1−12n+1],=12(1−12n+1),=n2n+1.18.今年年初,习近平在《告台湾同胞书》发表40周年纪念会上的讲话中说道:“我们要积极推进两岸经济合作制度化打造两岸共同市场,为发展增动力,为合作添活力,壮大中华民族经济两岸要应通尽通,提升经贸合作畅通、基础设施联通、能源资源互通、行业标准共通,可以率先实现金门、马祖同福建沿海地区通水、通电、通气、通桥.要推动两岸文化教育、医疗卫生合作,社会保障和公共资源共享,支持两岸邻近或条件相当地区基本公共服务均等化、普惠化、便捷化”某外贸企业积极响应习主席的号召,在春节前夕特地从台湾进口优质大米向国内100家大型农贸市场提供货源,据统计,每家大型农贸市场的年平均销售量(单位:吨),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值和年平均销售量的众数和中位数;(2)在年平均销售量为[220,240),[240,260),[260,280),[280,300)的四组大型农贸市场中,用分层抽样的方法抽取11家大型农贸市场,求年平均销售量在[240,260),[260,280)[280,300)的农贸市场中应各抽取多少家?(3)在(2)的条件下,再从这三组中抽取的农贸市场中随机抽取2家参加国台办的宣传交流活动,求恰有1家在[240,260)组的概率.【分析】(1)由直方图的性质能求出直方图中x的值和年平均销售量的众数和中位数.(2)年平均销售量为[220,240)的农贸市场有25,年平均销售量为[240,260)的农贸市场有15,年平均销售量为[260,280)的农贸市场有5,由此利用分层抽样能求出年平均销售量在[240,260),[260,280)[280,300)的农贸市场中应各抽取多少家.(3)年平均销售量在[240,260),[260,280)[280,300)的农贸市场中应各抽取3家,2家,1家.设从这三组中抽取的农贸市场中随机抽取2家参加国台办的宣传交流活动,基本事件总数n=C62=15,恰有1家在[240,260)组包含的基本事件的个数m=C31C31=9,由此能求出恰有1家在[240,260)组的概率.解:(1)由直方图的性质得:(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程得x=0.0075,∴直方图中x=0.0075.年平均销售量的众数是220+2402=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴年平均销售量的中位数在[220,240)内,设中位数为a,则:(0.002+0.0095+0.011)×20+0.0125×(220)=0.5,解得a=224,∴年平均销售量的中位数为224.(2)年平均销售量为[220,240)的农贸市场有:0.0125×20×100=25,年平均销售量为[240,260)的农贸市场有:0.0075×20×100=15,年平均销售量为[260,280)的农贸市场有:0.0025×20×100=5,∴抽取比例为:1125+15+10+5=1 5,∴年平均销售量在[240,260)的农贸市场中应抽取15×15=3家,年平均销售量在[260,280)的农贸市场中应抽取10×15=2家,年平均销售量在[280,300)的农贸市场中应抽取5×15=1家,故年平均销售量在[240,260),[260,280)[280,300)的农贸市场中应各抽取3家,2家,1家.(3)由(2)知年平均销售量在[240,260),[260,280)[280,300)的农贸市场中应各抽取3家,2家,1家.设从这三组中抽取的农贸市场中随机抽取2家参加国台办的宣传交流活动,基本事件总数n=C62=15,恰有1家在[240,260)组包含的基本事件的个数m=C31C31=9,∴恰有1家在[240,260)组的概率p=m=915=35.n19.如图,四棱锥P﹣ABCD中,PA⊥菱形ABCD所在的平面,∠ABC=60°,E是BC中点,M是PD的中点.(1)求证:平面AEM⊥平面PAD;(2)若F是PC上的中点,且AB=AP=2,求三棱锥P﹣AMF的体积.【分析】(1)连结AC,推导出AE⊥BC,AE⊥AD,PA⊥AE,从而AE⊥平面PAD,由此能证明平面AEM⊥平面PAD.(2)三棱锥P﹣AMF的体积:V P﹣AMF=V M﹣APF=1V F−PAD=12×12V C−PAD,由此能求出2结果.【解答】证明:(1)连结AC,∵底面ABCD为菱形,∠ABC=60°,∴△ABC是正三角形,∵E是BC中点,∴AE⊥BC,又AD∥BC,∴AE⊥AD,∵PA⊥平面ABCD,AE⊂平面ABCD,∴PA⊥AE,∵PA∩AD=A,∴AE⊥平面PAD,又AE⊂平面AEM,∴平面AEM⊥平面PAD.解:(2)∵F是PC上的中点,且AB=AP=2,∴AD=2,AE=√3,∴三棱锥P﹣AMF的体积:V P﹣AMF=V M﹣APF=12V F−PAD=12×12V C−PAD=14V P−ACD=14×13×S△ACD×PA=112×12×AD×AE×PA=124×2×√3×2=√36.20.已知抛物线C1:y2=2px(p>0)与椭圆C2:x 24+y23=1有一个相同的焦点,过点A(2,0)且与x轴不垂直的直线l与抛物线C1交于P,Q两点,P关于x轴的对称点为M.(1)求抛物线C1的方程;(2)试问直线MQ是否过定点?若是,求出该定点的坐标;若不是,请说明理由.【分析】(1)根据椭圆的性质和抛物线的定义即可求出,(2)设P(x1,y1),Q(x2,y2),则M(x1,﹣y1),设直线PQ的方程为y=k(x﹣2),根据韦达定理可得x1x2=4,设直线MQ的方程无y=mx+n,再根据韦达定理可得x1x2= n2m2=4,即可求出直线MQ过定点解:(1)由题意可得抛物线的焦点为椭圆的右焦点,坐标为(1,0),所以p=2,故抛物线的方程为y2=4x,(2)因为点P关于x轴的对称点为M,设P(x1,y1),Q(x2,y2),则M(x1,﹣y1),设直线PQ的方程为y=k(x﹣2),代入y2=4x得k2x2﹣4(k2+1)x+4k2=0,∴x1x2=4,设直线MQ的方程无y=mx+n,代入y2=4x得m2x2﹣(2mn﹣4)x+n2=0,∴x1x2=n2m2=4,∵x1>0,x2>0,∴nm=2,即n=2m,∴直线MQ的方程为y=m(x+2),故过定点(﹣2,0).21.已知f(x)=e xx+alnx﹣ax.(1)若a<0,讨论函数f(x)的单调性;(2)当a =﹣1时,若不等式f(x)+(bx −b −1x)e x −x ≥0在[1,+∞)上恒成立,求b 的取值范围.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)通过讨论b 的范围,求出函数的单调性求出函数的单调区间,确定b 的范围即可. 解:(1)f (x )的定义域为(0,+∞)………………(1分)∵f ′(x)=(x−1)(e x −ax)x 2,a <0,……………… ∴当x ∈(0,1)时,f '(x )<0;x ∈(1,+∞)时,f '(x )>0,∴函数f (x )在(0,1)上单调递减;在(1,+∞)上单调递增. ………………(2)当a =﹣1时,f(x)+(bx −b −1x)e x −x =b(x −1)e x −lnx , 由题意,b (x ﹣1)e x ﹣lnx ≥0在[1,+∞)上恒成立①若b ≤0,当x ≥1时,显然有b (x ﹣1)e x ﹣lnx ≤0恒成立;不符题意. ……………… ②若b >0,记h (x )=b (x ﹣1)e x ﹣lnx ,则h ′(x)=bxe x −1x.……………… 显然h '(x )在[1,+∞)单调递增,当b ≥1e时,当x ≥1(3)时,h '(x )≥h '(1)=be ﹣1≥0(4) ∴x ∈[1,+∞)时,h (x )≥h (1)=0………………当0<b <1e(6),h '(1)=be ﹣1<(7)0, h ′(1b)=e 1b −b >e −1>0(8) ∴存在x 0>1,使h '(x )=0.………………当x ∈(1,x 0)时,h '(x )<0,x ∈(x 0,+∞)时,h '(x )>0,∴h(x)在(1,x0)上单调递减;在(x0,+∞)上单调递增………………∴当x∈(1,x0)时,h(x)<h(1)=0,不全题意………………综上所述,所求b的取值范围是[1e,+∞)⋯⋯⋯⋯⋯⋯一、选择题22.在直角坐标系xOy中,曲线C的参数方程为{x=1+4cosθy=−1+4sinθ(θ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,直线l:ρ=2√2msin(θ+π4)(m为常数).(1)求曲线C的普通方程与直线l的直角坐标方程;(2)若直线l与曲线C相交于A、B两点,当|AB|=4时,求实数m的值.【分析】(1)利用三种方程的转化方法,求曲线C的普通方程与直线l的直角坐标方程;(2)由题意,圆心到直线的距离d=√16−4=2√3,即可求实数m的值.解:(1)曲线C的参数方程为{x=1+4cosθy=−1+4sinθ(θ为参数),普通方程为(x﹣1)2+(y+1)2=16,直线l:ρ=2√2msin(θ+π4),即ρsinθ+ρcosθ=4m,直角坐标方程为x+y﹣4m=0;(2)由题意,圆心到直线的距离d=√16−4=2√3,∴√2=2√3,∴m=±√62.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|.(1)若不等式f(x)≤4的解集为[﹣1,7],求实数a的值;(2)在(1)的条件下,若x0∈R,使得f(x0)+f(x0+5)<4m,求实数m的取值范围.【分析】(1)由不等式f(x)≤4,求得a﹣4≤x≤a+4.再根据不等式f(x)≤4的解集为{x|﹣1≤x≤7},可得a﹣4=﹣1,且a+4=7,由此求得a的值.(2)由题意可得|x﹣3|+|x+2|的最小值小于4m,求出m的范围即可.解:(1)不等式f(x)≤4,即|x﹣a|≤4,即﹣4≤x﹣a≤4,求得a﹣4≤x≤a+4.再根据不等式f(x)≤4的解集为{x|﹣1≤x≤7},可得a﹣4=﹣1,且a+4=7,求得a =3.(2)在(1)的条件下,若f(x)+f(x+5)<4m成立,即|x﹣3|+|x+2|<4m成立,故(|x﹣3|+|x+2|)min<4m,而|x﹣3|+|x+2|≥|(x﹣3)+(﹣x﹣2)|=5,,∴4m>5,解得:m>54,+∞).即m的范围为(54。

2020届山东省青岛市高三5月模拟检测数学试题(含解析)

2020届山东省青岛市高三5月模拟检测数学试题(含解析)

山东省青岛市2020年5月高三模拟检测数学试题一、单项选择题1.已知全集U =R ,集合{}2320A x x x =-+≤,{}131x B x -=≥,()U A B =I ð( )A. []1,2B. ()2,+∞C. [)1,+∞D. (),1-∞2.若复数z 满足(3)|3|i z i -=+(其中i 是虚数单位),则复数z 的共轭复数z 的虚部为( ) A.12B.12i C. 12-D. 12i -3.已知向量()1cos ,2a x =+r ,()sin ,1b x =r ,0,2x π⎛⎫∈ ⎪⎝⎭,若//a b r r ,则sin x =( )A.45B.35C.25D.254.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数解析式来分析函数的图象与性质,下列函数的解析式(其中 2.71828e =L 为自然对数的底数)与所给图象最契合的是( )A. ()sin x xy e e -=+B. ()sin x xy e e-=-C. ()tan x xy e e-=-D. ()cos x xy e e -=+5.从编号为1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,则第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率为( ) A.29B.14C.718D.1126.“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆.若椭圆C :2211x y a a+=+(0)a >的离心率为12,则椭圆C的蒙日圆方程为( ) A. 229x y +=B.227x y +=C. 225x y +=D. 224x y +=7.已知O 是ABC V 内部一点,20OA OB OC ++=u u u ru u u r u u u rr ,4BA BC ⋅=u u u r u u u r且6ABC π∠=,则OAC V 的面积为( )A.B.23C.D.438.已知函数()2ln x f x x =,若()21f x m x<-在(0,)+∞上恒成立, 2.71828e =⋅⋅⋅为自然对数的底数,则实数m 的取值范围是( ) A.m e >B. 2em >C. 1m >D. m >二、多项选择题9.设a ,b ,c 为实数,且0a b >>,则下列不等式中正确的是( ) A. ()222log log ab b >B. 22ac bc >C. 1b a a b<<D. 1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭10.已知等差数列{}n a 的前n 项和为()n S n N*∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A. 122a =B. 2d =-C. 当10n =或11n =时,n S 取得最大值D. 当0n S >时,n 的最大值为2011.声音是由物体振动产生的声波,纯音的数学模型是函数sin y A t ω=,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数()sin f x x x =+则下列结论正确的是( ) A. ()f x 是偶函数 B. ()f x 是周期函数 C. ()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增 D. ()f x 最大值212.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A. 11B E A B ⊥B. 平面1//B CE 平面1A BDC. 三棱锥11C B CE -的体积为83D. 三棱锥111C B CD -的外接球的表面积为24π三、填空题13.已知命题“2,10x R x ax ∃∈-+<”为假命题,则实数a 的取值范围是_______14.()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为______.15.已知()f x 为奇函数,当0x >时,()ln xf x x=,则曲线()y f x =在点()1,0-处的切线方程是______. 16.已知抛物线C :22y px =()06p <<的准线交圆1O :()2234x y ++=于A ,B 两点,若23AB =则抛物线C 的方程为______,已知点()1,2M ,点E 在抛物线C 上运动,点N 在圆2O :()2221x y -+=上运动,则EM EN +的最小值为______.四、解答题17.设数列{}n a 的前n 项和为n S ,11a =,______. 给出下列三个条件:条件①:数列{}n a 为等比数列,数列{}1n S a +也为等比数列;条件②:点{}1,n n S a +在直线1y x =+上;条件③:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的三个条件中任选一个,补充在上面的横线上,完成下列两问的解答: (1)求数列{}n a 的通项公式; (2)设21231log log n n n b a a ++=⋅,求数列{}n b 的前n 项和n T .18.在ABC V 中,a ,b ,c 分别为角A ,B ,C 的对边,且满足cos2cos sin a C a C c A =-.(1)求角C ;(2)若ABC V 为锐角三角形,12c =,求ABC V 面积S的最大值.19.如图,四棱柱1111ABCD A B C D -中,底面ABCD 和侧面11BCC B 都是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==.(1)求证:平面11CC D D ⊥底面ABCD ;(2)若平面11BCC B 与平面1BED 所成的锐二面角的大小为3π,求直线1CA 和平面11BCC B 所成角的正弦值. 20.某专业机械生产厂为甲乙两地(两地仅气候条件差异较大,其他条件相同)的两个不同机器生产厂配套生产同一种零件,在甲乙两地分别任意选取100个零件进行抗疲劳破坏性试验,统计每个零件的抗疲劳次数(抗疲劳次数是指从开始试验到零件磨损至无法正常使用时的循环加载次数),将甲乙两地的试验的结果,即每个零件的抗疲劳次数(单位:万次)分别按(]7,8,(]8,9,(]9,10,(]10,11,(]11,12分组进行统计,甲地的实验结果整理为如下的频率分布直方图(其中a ,b ,c 成等差数列,且23c b =),乙地的统计结果整理为如下的频数分布表.(1)求a ,b ,c 的值并计算甲地实验结果的平均数x .(2)如果零件抗疲劳次数超过9万次,则认为零件质量优秀,完成下列的22⨯列联表: 质量不优秀 质量优秀 总计 甲地 乙地总计试根据上面完成的22⨯列联表,通过计算分析判断,能否有97.5%的把握认为零件质量优秀与否与气候条件有关?附:临界值表()2P K k≥0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828 其中2K的观测值()()()()()2n ad bc k a b c d a c b d-=++++(3)如果将抗疲劳次数超过10万次的零件称为特优件,在甲地实验条件下,以频率为概率,随机打开一个4个装的零件包装箱,记其中特优件的个数为ξ,求ξ的分布列和数学期望.21.已知椭圆E:22221x ya b+=()0a b>>的离心率为12,其左右顶点分别为1A,2A,上下顶点分别为2B,1B,四边形1122A B A B的面积为43.(1)求椭圆E的方程;(2)若椭圆E左右焦点分别为1F,2F,过2F的直线l与椭圆交于不同的两点M,N,记1F MN△的内切圆的半径为r,试求r的取值范围.22.已知函数()22xaf x e x=-( 2.71828e=⋅⋅⋅为自然对数的底数)有两个极值点1x,2x.(1)求a的取值范围;(2)求证:122ln x x a +<.山东省青岛市2020年5月高三模拟检测数学试题一、单项选择题1.已知全集U =R ,集合{}2320A x x x =-+≤,{}131x B x -=≥,()U A B =I ð( )A. []1,2B. ()2,+∞C. [)1,+∞D. (),1-∞【答案】B 【解析】 【分析】将集合A ,B 化简,再求出U A ð,根据交集的定义即可得到答案. 【详解】因为{}{}2320=12A x x x x x =-+≤≤≤,{}{}{}1103133=1x x B x x x x --=≥=≥≥,所以(){|1U A B x x ⋂=<ð或}{}{}212x x x x x >⋂≥=>.故选:B.【点睛】本题主要考查交集、补集的运算,同时考查一元二次不等式的解法及指数不等式的解法,属于基础题.2.若复数z 满足)|i z i =(其中i 是虚数单位),则复数z 的共轭复数z 的虚部为( ) A.12B.12i C. 12-D. 12i -【答案】C 【解析】 【分析】根据复数模的定义可得)2i z =,从而可得z =,再根据复数的乘除运算即可求出复数z ,再根据共轭复数的定义,求出z 即可得到答案.【详解】由)|i z i =得)2i z ==,所以2(3)2(3)31=4223(3)(3)i i z i i i i ++===+--+,所以3122z i =-,所以z的虚部为12-. 故选:C.【点睛】本题主要考查复数的模,复数代数形式的乘除运算及共轭复数的概念,属于基础题.3.已知向量()1cos ,2a x =+r ,()sin ,1b x =r ,0,2x π⎛⎫∈ ⎪⎝⎭,若//a b r r ,则sin x =( ) A.45B.35C.25D.25【答案】A 【解析】 【分析】根据向量平行的坐标表示列出方程可得cos 2sin 1x x =-,代入22sin cos 1x x +=解方程即可求出sin x .【详解】因为//a b r r,所以1cos 2sin 0x x +-=,所以cos 2sin 1x x =-,又因为22sin cos 1x x +=,所以22sin (2sin 1)1x x +-=, 即25sin 4sin 0x x -=,解得4sin 5x =或sin 0x =,又0,2x π⎛⎫∈ ⎪⎝⎭, 所以4sin 5x =. 故选:A.【点睛】本题主要考查向量平行的坐标表示,同角三角函数平方关系,属于基础题.4.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数解析式来分析函数的图象与性质,下列函数的解析式(其中 2.71828e =L 为自然对数的底数)与所给图象最契合的是( )A. ()sin x xy e e -=+B. ()sin x xy e e-=-C. ()tan x xy e e -=-D. ()cos x xy e e -=+【答案】D 【解析】 【分析】根据0x =时的函数值排除即可.【详解】当0x =时,对于A ,()00sin sin20y e e =+=>,故排除A ;对于B ,()00sin 0y e e=-=,故排除B ; 对于C ,()00tan 0y e e=-=,故排除C ;对于D ,()00cos cos20y e e =+=<,符合题意.故选:D.【点睛】本题主要考查函数表示方法中的图象法与解析法之间的对应关系,可利用从函数图象上的特殊点,排除不合要求的解析式.5.从编号为1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,则第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率为( ) A.29B.14C.718D.112【答案】C 【解析】 分析】基本事件的总数有6636⨯=种,利用列举法求出第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的基本事件有14种,根据古典概型概率计算公式,即可求出答案.【详解】从编号为1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,有36个基本事件,其中第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除有如下基本事件 (第一次抽得的卡片1,第二次摸到卡片2用(1,2)表示):(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6), (4,4),(5,5),(6,6),共14个,所以第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率1473618P ==. 故选:C.【点睛】本题主要考查古典概型的概率的求法,属于基础题.6.“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆.若椭圆C :2211x y a a+=+(0)a >的离心率为12,则椭圆C的蒙日圆方程为( ) A. 229x y += B.227x y += C. 225x y += D. 224x y +=【答案】B 【解析】 【分析】根据椭圆C 的离心率可求出3a =,根据题意知椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,利用过上顶点和右顶点的切线可得蒙日圆上的一点,即可椭圆C 的蒙日圆方程.【详解】因为椭圆C :2211x y a a+=+(0)a >的离心率为12,12=,解得3a =,所以椭圆C 的方程为22143x y +=,所以椭圆的上顶点A ,右顶点(2,0)B ,所以经过,A B 两点的切线方程分别为y =2x =,所以两条切线的交点坐标为,又过A ,B 的切线互相垂直,由题意知交点必在一个与椭圆C 同心的圆上,可得圆的半径r ==所以椭圆C 的蒙日圆方程为227x y +=.故选:B.【点睛】本题主要考查椭圆的几何性质,同时考查圆的方程,属于基础题.7.已知O 是ABC V 内部一点,20OA OB OC ++=u u u r u u u r u u u r r ,4BA BC ⋅=u u u r u u u r 且6ABC π∠=,则OAC V 的面积为( ) A.3 B.23C.23D.43【答案】A 【解析】 【分析】由20OA OB OC ++=u u u r u u u r u u u r r可得1()2BO OA OC =+u u u r u u u r u u u r ,设D 为AC 的中点,则1()2OA O OC D =+u u u u r u u r u u u r ,可得BO OD =u u u r u u u r ,从而可得O 为BD 的中点,进而可得12AOC ABC S S =△△,由4BA BC ⋅=u u u r u u u r 可得83||||3BA BC ⋅=u u u r u u u r ,再由12||||sin ABC BA AB S BC C ⋅⋅=∠u uu r u u u r △即可求出ABC S V . 【详解】在ABC V 中,由20OA OB OC ++=u u u r u u u r u u u r r ,得22OA OC OB BO +=-=u u u r u u u r u u u r u u u r,所以1()2BO OA OC =+u u u r u u u r u u u r,设D 为AC 的中点,则1()2OA O OC D =+u u u u r u u r u u u r,所以BO OD =u u u r u u u r,所以O 为BD 的中点,所以12AOC ABC S S =△△, 因为4BA BC ⋅=u u u r u u u r ,所以3||||cos ||||4BA BC BA BC ABC BA BC ⋅=⋅⋅∠=⋅=u u u r u u u r u u u r u u u r u u u r u u u r ,所以83||||BA BC ⋅=u u u r u u u r ,所以11||||sin 232312ABCBA BC AB S C ⋅⋅∠==⨯=u u u r u u u r △,所以1233AOC S =⨯△. 故选:A.【点睛】本题主要考查向量的线性运算,向量的数量积及三角形的面积公式,属于中档题. 8.已知函数()2ln x f x x =,若()21f x m x<-在(0,)+∞上恒成立, 2.71828e =⋅⋅⋅为自然对数的底数,则实数m 的取值范围是( ) A. m e > B. 2em >C. 1m >D. m >【答案】B 【解析】 【分析】()21f x m x <-在(0,)+∞上恒成立,即()21f x m x +<在(0,)+∞上恒成立,令221ln 1()()x g x f x x x+=+=,故只需max ()g x m <即可,利用导数求出()g x 的最大值即可. 【详解】若()21f x m x <-在(0,)+∞上恒成立,即()21f x m x +<在(0,)+∞上恒成立, 令221ln 1()()x g x f x x x+=+=,故只需max ()g x m <即可, 2431(ln 1)22ln 1()x x x x x g x x x ⋅-+⋅--'==,令()0g x '=,得12x e -=, 当120x e -<<时,()0g x '>;当12x e ->时,()0g x '<, 所以()g x 在12(0)e -,上是单调递增,在12(,)e -+∞上是单调递减, 所以当12max ()()2e g x g e -==, 所以实数m 取值范围是2e m >. 故选:B.【点睛】本题主要考查分离参数法处理恒成立问题,同时考查利用导数求函数的最值,属于中档题.二、多项选择题9.设a ,b ,c 为实数,且0a b >>,则下列不等式中正确的是( ) A. ()222log log ab b >B. 22ac bc >C. 1b a a b<<D. 1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【答案】AC 【解析】 【分析】对A ,利用作差法比较即可;对B ,利用不等式的性质判断即可;对C ,利用作差法比较即可;对D ,利用指数函数的单调性比较即可. 【详解】对A ,因为0a b >>,所以1ab>, 所以2222222log ()log log log log 10ab a ab b b b-==>=, 所以222log ()log ab b >,故A 正确;对B ,当0c =时,22ac bc >不成立,故B 错误; 对C ,因为0a b >>,所以10b b a a a --=<,10a b a b b--=<, 所以1b aa b<<,故C 正确; 对D ,因为函数12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,又a b >,所以1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故D 错误. 故选:AC【点睛】本题主要考查作差法比较大小,不等式的性质及指数函数的单调性,属于基础题. 10.已知等差数列{}n a 的前n 项和为()n S n N*∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A. 122a =B. 2d =-C. 当10n =或11n =时,n S 取得最大值D. 当0n S >时,n 的最大值为20【答案】BCD 【解析】 【分析】由690S =可得12530a d +=,由7a 是3a 与9a 的等比中项可得110a d =-,联立方程可求出120a =,2d =-,即可判断A ,B 选项,求出等差数列{}n a 的前n 项和为n S ,即可判断C ,D.【详解】因为690S =,所以1656902a d ⨯+=,即12530a d +=,① 又因为7a 是3a 与9a 的等比中项,所以2739a a a =⋅, 所以2111(6)(2)(8)a d a d a d +=++,整理得110a d =-,②由①②解得120a =,2d =-,故A 错误; 所以22(1)2144120(2)21()224n n n S n n n n -=+⨯-=-+=--+, 又n *∈N ,所以当10n =或11n =时,n S 取得最大值,故C 正确;令2210n S n n =-+>,解得021n <<,又n *∈N ,所以n 的最大值为20,故D 正确. 故选:BCD【点睛】本题主要考查等差数列的通项公式,等差数列前n 项和公式,等比中项的应用,同时考查等差数列和的最值问题,属于基础题.11.声音是由物体振动产生的声波,纯音的数学模型是函数sin y A t ω=,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数()sin f x x x =+则下列结论正确的是( ) A. ()f x 是偶函数 B. ()f x 是周期函数 C. ()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增 D. ()f x 最大值为2【答案】ABD 【解析】 【分析】根据奇偶性的定义和周期函数的定义可判断A ,B ;当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 可化为()sin 2sin()3f x x x x =+=+π,可判断C ;结合函数()f x 的周期性对x 进行分类讨论,将函数()f x 的绝对值去掉,再求其最大值可判断D. 【详解】函数()f x 的定义域为R ,因为())sin()sin ()f x x x x x f x -=-+-=+=, 所以()f x 是偶函数,故A 正确;因为sin cos s )()(i ()n f x πx πx x x π+++=+=+-sin ()x x f x =+=,所以()f x 是以π为周期的周期函数,故B 正确;当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 可化为1()sin 2sin 2sin()23f x x x x x x ⎫=+=+=+⎪⎪⎝⎭π, 此时()f x 在06π⎡⎤⎢⎥⎣⎦,上单调递增,在,62ππ⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;由于函数()f x 是以π为周期的周期函数,故只需研究一个周期内的最大值即可, 不妨取[0,]x π∈,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 可化为()2sin()3f x x π=+, 由0,2x π⎡⎤∈⎢⎥⎣⎦,得5,336x πππ⎡⎤+∈⎢⎥⎣⎦, 所以当32x ππ+=,即6x π=时,()f x 取得最大值2,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,1()sin 2sin 2sin()23f x x x x x x ⎛⎫=+==- ⎪ ⎪⎝⎭π, 由,2x ππ⎡⎤∈⎢⎥⎣⎦,得2,363x πππ⎡⎤-∈⎢⎥⎣⎦, 所以32x ππ-=,即56x π=时,()f x 取得最大值2, 故当[0,]x π∈时,()f x 取得最大值2,故D 正确. 故选:ABD.【点睛】本题主要考查三角函数的奇偶性、周期性、单调性的判断及最值的求法,同时考查两角和与差的正弦公式的逆用,属于中档题.12.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A. 11B E A B ⊥B. 平面1//B CE 平面1A BDC. 三棱锥11C B CE -的体积为83D. 三棱锥111C B CD -的外接球的表面积为24π【答案】CD 【解析】 【分析】以1{,,}AB AD AA u u u r u u u r u u u r 为正交基底建立空间直角坐标系,写出各点坐标,计算11B E A B ⋅u u u r u u u r 值即可判断A ;分别求出平面1B CE ,平面1A BD 的法向量,判断它们的法向量是否共线,即可判断B ;利用等体积法,求出三棱锥11-B CC E 的体积即可判断C ;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故求出长方体1111ABCD A B C D -的外接球的表面积即可判断D.【详解】以1{,,}AB AD AA u u u r u u u r u u u r 为正交基底建立如图所示的空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--u u u r ,1(2,0,4)A B =-u u u r , 因为1140840B E A B ⋅=-++=≠u u u r u u u r ,所以1B E u u u r 与1A B uuu r 不垂直,故A 错误; 1(0,2,4)CB =-u u u r ,(2,0,2)CE =-u u u r设平面1B CE 的一个法向量为111(,,)n x y z =r,则 由100n CB n CE ⎧⋅=⎨⋅=⎩u u u v v u u u v v ,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y =所以(1,2,1)n =r,同理可得设平面1A BD 的一个法向量为(2,2,1)m =u r,故不存在实数λ使得n λm =r u r,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2R ==所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD.【点睛】本题主要考查用向量法判断线线垂直、面面平行,等体积法的应用及几何体外接球的表面积.三、填空题13.已知命题“2,10x R x ax ∃∈-+<”为假命题,则实数a 的取值范围是_______【答案】[]22-,【解析】命题“2,10x R x ax ∃∈-+<”假命题,则“2,10x R x ax ∀∈-+≥”为真命题.所以240a =-≤n ,解得22a -≤≤. 答案为:[]2,2-.14.()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为______.【答案】25- 【解析】 【分析】先求得61x x ⎛⎫- ⎪⎝⎭中含21x 的项与常数项,进而可得()6212x x x ⎛⎫+- ⎪⎝⎭的常数项.【详解】61x x ⎛⎫- ⎪⎝⎭的展开式中含21x 的项为44262115C x x x ⎛⎫-= ⎪⎝⎭,61x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为3336120C x x ⎛⎫-=- ⎪⎝⎭,所以()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为154025-=-.故答案为:25-.【点睛】本题考查二项展开式中常数项的求法,解题时要认真审题,注意二项式定理的合理运用,属于基础题.15.已知()f x 为奇函数,当0x >时,()ln xf x x=,则曲线()y f x =在点()1,0-处的切线方程是______. 【答案】10x y -+= 【解析】 【分析】利用函数()f x 为奇函数,可求出当0x <时,()f x 的表达式为ln()()x f x x-=,然后根据在一点处的切线方程的求法,即可求出曲线()y f x =在点()1,0-处的切线方程. 【详解】因为()f x 为奇函数,所以()()f x f x -=-, 当0x <时,则0x ->,所以ln()ln()()()x x f x f x x x--=--=-=-, 所以221(1)ln()1ln()()x x x x f x x x ⨯-⨯-----'==,所以曲线()y f x =在点()1,0-处的切线的斜率(1)1k f '=-=, 所以切线方程是01y x -=+,即10x y -+=. 故答案为:10x y -+=【点睛】本题主要考查根据函数的奇偶性求函数的解析式,在一点处的切线方程的求法,同时考查复合函数的导数,属于中档题.16.已知抛物线C :22y px =()06p <<的准线交圆1O :()2234x y ++=于A ,B 两点,若23AB =,则抛物线C 的方程为______,已知点()1,2M ,点E 在抛物线C 上运动,点N 在圆2O :()2221x y -+=上运动,则EM EN +的最小值为______. 【答案】 (1). 28y x = (2). 2. 【解析】【详解】(1)设抛物线C 的准线与x 轴交于点D ,抛物线C 的准线方程为2px =-,则22211AO AD DO =+,即224(3)|3|2p =+-+, 整理得212320p p -+=,解得4p =或8p =,又06p <<,所以4p =,所以抛物线C 的方程为28y x =.(2)由题意知 圆2O 的圆心坐标为(2,0)与抛物线的焦点坐标重合, 过E 作抛物线C 的准线2x =-的垂线,垂足为F ,则2||||EO EF =,所以22211EM EN EM EO NO EM EO EM EF +≥+-=+-=+-, 所以当M ,E ,F 三点共线时,EM EF +最小,最小值为3, 所以1312EM EN EM EF +≥+-≥-=, 所以EM EN +的最小值为2. 故答案为:①28y x =;②2【点睛】本题主要考查抛物线的定义和准线方程,圆中的弦长公式,抛物线中的最值问题,同时考查数形结合思想和转化与化归思想.四、解答题17.设数列{}n a 的前n 项和为n S ,11a =,______. 给出下列三个条件:条件①:数列{}n a 为等比数列,数列{}1n S a +也为等比数列;条件②:点{}1,n n S a +在直线1y x =+上;条件③:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的三个条件中任选一个,补充在上面的横线上,完成下列两问的解答: (1)求数列{}n a 的通项公式; (2)设21231log log n n n b a a ++=⋅,求数列{}n b 的前n 项和n T .【答案】(1)不论选择哪个条件,1=2n n a -()N n *∈;(2)()()3234212n n T n n +=-++ 【解析】 【分析】(1) 方案一:选条件①.数列{}1n S a +也为等比数列,可根据其前3项也成等比数列列出方程,再将123,,S S S 用1,a q 表示解出q ,即可求出n a ;方案二:选条件②,可得11n n a S +=+()N n *∈,再将n 用1n -代换可得11n n a S -=+()2n ≥,两式相减可得12n n a a +=()2n ≥,再验证212aa =即可,从而可得数列{}n a 是首项为1,公比为2的等比数列,即可求出n a ;方案三:选条件③.可得当2n ≥时,1121222n n n n a a a na -+++⋅⋅⋅+=()N n *∈,再将n 用1n -代换可得()121212221n n n n a a a n a ---++⋅⋅⋅+=-,两式相减可得12n n a a +=()2n ≥,再验证212a a =即可,从而可得数列{}n a 是首项为1,公比为2的等比数列,即可求出n a ;(2)由(1)不论选择哪个条件,1=2n n a -()N n *∈,代入化简可得()12n b n n =+,利用裂项相消法求和,即可求出数列{}n b 的前n 项和n T . 【详解】(1)方案一:选条件①. 因为数列{}1n S a +为等比数列,所以()()()2211131S a S a S a +=++,即()()2121123222a a a a a a +=++, 设等比数列{}n a 的公比为q ,因为11a =, 所以()()22222q q q+=++,解得2q =或0q =(舍), 所以1112n n n a a q --==()N n *∈, (2)由(1)得12n n a -=()N n *∈,所以()212311111log log 222n n n b a a n n n n ++⎛⎫===- ⎪⋅++⎝⎭,所以11111111111232435112n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ()()13113232212442123111212n n n n n n n ⎛⎫=-=⎭+⎛-+ +⎫-=- ⎪+++⎝⎭⎝++⎪, 方案二:(1)选条件②.因为点()1,n n S a +在直线1y x =+上,所以11n n a S +=+()N n *∈,所以11n n a S -=+()2n ≥,两式相减得1n n n a a a +-=,12n na a +=()2n ≥, 因为11a =,211112a S a =+=+=,212a a =适合上式,所以数列{}n a 是首项为1,公比为2的等比数列,所以1112n n n a a q --==()N n *∈ (2)同方案一的(2). 方案三:(1)选条件③.当2n ≥时,因为1121222n n n n a a a na -+++⋅⋅⋅+=()N n *∈⋅⋅⋅(i )所以()121212221n n n n a a a n a ---++⋅⋅⋅+=-,所以()1212122221nn n n a a a n a --++⋅⋅⋅+=-⋅⋅⋅(ii )(i )-(ii )得122(1)n n n a na n a +=--,即12n na a +=()2n ≥, 当1n =时,122a a =,212a a =适合上式, 所以数列{}n a 是首项为1,公比为2的等比数列所以1112n n n a a q --==()N n *∈ (2)同方案一的(2).【点睛】本题主要考查等比数列通项公式求法,裂项相消法求和,属于基础题.18.在ABC V 中,a ,b ,c 分别为角A ,B ,C 的对边,且满足cos2cos sin a C a C c A =-. (1)求角C ;(2)若ABC V 为锐角三角形,12c =,求ABC V 面积S 的最大值. 【答案】(1)4C π=;(2))361【解析】 【分析】(1)对cos2cos sin a C a C c A =-,利用正弦定理得sin cos2sin cos sin sin A C A C C A =-,进而可得cos2cos sin C C C =-,再利用二倍角公式即可求出角C ;(2)由已知可得4C π=,故要求ABC V 面积S 的最大值,只需求出ab的最大值即可,利用余弦定理可得222144c a b ==+,再利用基本不等式即可求出ab 的最大值.【详解】(1)因为cos2cos sin a C a C c A =-,所以由正弦定理可得:sin cos2sin cos sin sin A C A C C A =-, 因为()0,A π∈,sin 0A ≠,所以cos2cos sin C C C =-, 所以22cos sin cos sin C C C C -=-, 即()()cos sin cos sin 10C C C C -+-=, 所以cos sin 0C C -=或cos sin 10C C +-=, 即cos sin C C =或cos sin 10C C +-=, ①若cos sin C C =,则4C π=,②若cos sin 10C C +-=,则2sin 42C π⎛⎫+= ⎪⎝⎭, 因为5444C πππ<+<,所以344C ππ+=,即2C π=, 综上,4C π=或2C π=.(2)因为ABC V 为锐角三角形,所以4C π=,因为()222221442cos 222224c a b ab a b ab ab ab ab π==+-=+-≥-=-,即()722222ab ≤=+-(当且仅当a b =等号成立),所以()()1122sin sin 7222362122444S ab C ab ab π===≤⨯+=+,即ABC V 面积S 的最大值是()3621+.【点睛】本题主要考查正弦定理,二倍角公式,基本不等式及三角形的面积公式,同时考查三角形中面积的最大值求法,属于基础题.19.如图,四棱柱1111ABCD A B C D -中,底面ABCD 和侧面11BCC B 都是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==.(1)求证:平面11CC D D ⊥底面ABCD ;(2)若平面11BCC B 与平面1BED 所成的锐二面角的大小为3π,求直线1CA 和平面11BCC B 所成角的正弦值.【答案】(1)见解析;【解析】 【分析】(1)要证平面11CC D D ⊥底面ABCD ,只需证明其中一个面内一条线垂直于另一个平面即可,可证1D E ⊥底面ABCD ,由底面ABCD 和侧面11BCC B 都是矩形,可得BC ⊥平面11DCC D ,又1D E ⊂平面11DCC D ,从而可得1BC D E ⊥,又1D E CD ⊥,从而可证出1D E ⊥底面ABCD ;(2) 取AB 的中点F ,以1{,,}EF EC ED u u u r u u u r u u u u r为正交基底建系,设1ED a =()0a >,写出各点坐标,分别求出平面1BED 与平面11BCC B 的法向量()11,1,0n =-u r ,()20,,1n a =-u u r ,根据它们所成的锐二面角的大小为3π,利用夹角公式列出方程可求出1a =,再求出()11,1,1CA =-u u u r,设直线1CA 和平面11BCC B 所成的角为θ,由12sin cos CA n =〈⋅〉u u u r u u rθ即可求出答案.【详解】(1)因为底面ABCD 和侧面11BCC B 都是矩形,所以BC CD ⊥,1BC CC ⊥,又1CD CC C =I ,1,CD CC ⊂平面11DCC D , 所以BC ⊥平面11DCC D ,又1D E ⊂平面11DCC D ,所以1BC D E ⊥,又1D E CD ⊥,BC CD C ⋂=,,BC CD ⊂底面ABCD , 所以1D E ⊥底面ABCD ,又1D E ⊂平面11CC D D , 所以平面11CC D D ⊥底面ABCD .(2)取AB 的中点F ,因为E 是CD 的中点,底面ABCD 是矩形,所以EF CD ⊥,以E 为原点,以EF ,EC ,1ED 所在直线分别为x ,y ,z 轴, 建立空间直角坐标系E xyz -,如图所示:设1ED a =()0a >,则()0,0,0E ,()1,1,0B ,()10,0,D a ,()0,1,0C ,()10,2,C a设平面1BED 的法向量()111,,n x y z =r ,()1,1,0EB =u u u r ,()10,0,ED a =u u u u r.由11100n EB n ED ⎧⋅=⎪⎨⋅=⎪⎩u v u u u v u v u u u u v 可得:11100x y az +=⎧⎨=⎩,令11x =可得11y =-,10z =,所以()11,1,0n =-u r,设平面11BCC B 的法向量()2222,,n x y z =u u r ,()1,0,0CB =u u u r ,()10,1,CC a =u u u u r.由22100n CB n CC ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u vu u v u u u u v 可得,22200x y az =⎧⎨+=⎩,令21z =可得2y a =-,所以()20,,1n a =-u u r由于平面11BCC B 与平面1BED 所成的锐二面角的平面角为3π, 所以1212212cos ,cos 321n n n n n n a π⋅===⋅⨯+u r u u ru r u u r ur u u r , 解得1a =.所以平面11BCC B 的法向量()20,1,1n =-u u r,由于()1,1,0A -,()0,1,0C ,()0,1,0D -,()10,0,1D ,所以()()()1111,2,00,1,11,1,1CA CA AA CA DD =+=+=-+=-u u u r u u u r u u u r u u u r u u u u r, 设直线1CA 和平面11BCC B 所成的角为θ,则12126sin 23CA n CA n θ⋅===⨯⋅u u u r u u ru u u r u u r【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,根据所成二面角的大小逆向求参数值及利用向量法求线面角的正弦值,属于中档题.20.某专业机械生产厂为甲乙两地(两地仅气候条件差异较大,其他条件相同)的两个不同机器生产厂配套生产同一种零件,在甲乙两地分别任意选取100个零件进行抗疲劳破坏性试验,统计每个零件的抗疲劳次数(抗疲劳次数是指从开始试验到零件磨损至无法正常使用时的循环加载次数),将甲乙两地的试验的结果,即每个零件的抗疲劳次数(单位:万次)分别按(]7,8,(]8,9,(]9,10,(]10,11,(]11,12分组进行统计,甲地的实验结果整理为如下的频率分布直方图(其中a ,b ,c 成等差数列,且23c b =),乙地的统计结果整理为如下的频数分布表.(1)求a ,b ,c 的值并计算甲地实验结果的平均数x .(2)如果零件抗疲劳次数超过9万次,则认为零件质量优秀,完成下列的22⨯列联表: 质量不优秀 质量优秀 总计 甲地 乙地 总计试根据上面完成的22⨯列联表,通过计算分析判断,能否有97.5%的把握认为零件质量优秀与否与气候条件有关? 附:临界值表()2P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828其中2K 的观测值()()()()()2n ad bc k a b c d a c b d -=++++(3)如果将抗疲劳次数超过10万次的零件称为特优件,在甲地实验条件下,以频率为概率,随机打开一个4个装的零件包装箱,记其中特优件的个数为ξ,求ξ的分布列和数学期望.【答案】(1)0.1a =,0.2b =,0.3c =,平均数9.3x =万次;(2)见解析,有;(3)见解析,1 【解析】 【分析】(1)根据频率分布直方图的的矩形面积和为1,可得0.6a b c ++=,再由a ,b ,c 成等差数列,可得2b a c =+,再结合23c b =解方程即可求出a ,b ,c 的值;利用组中值乘以相应的频率再求和即可求出平均数x ;(2)根据已知条件分别求出甲、乙抗疲劳次数超过9万次的零件数和不超过9万次的零件数,即可完成22⨯列联表,然后根据22⨯列联表求出观测值k ,查对临界值,即可作出判断;(3)根据已知条件可得任意抽取一件产品为特优件的概率14p =,ξ的取值可能为0,1,2,3,4,根据二项分布分别求出相应的概率,即可列出分布列并求出数学期望.【详解】(1)由频率分布直方图的性质可得:0.050.351a b c ++++=,即0.6a b c ++= 因为a ,b ,c 成等差数列,所以2b a c =+,所以0.2b = 又23c b =,解之得:0.3c =,0.1a =所以7.50.18.50.39.50.3510.50.211.50.059.3x =⨯+⨯+⨯+⨯+⨯= 即抗疲劳次数的平均数9.3x =万次(2)由甲地试验结果的频率分布直方图可得:抗疲劳次数超过9万次的零件数为()1000.350.20.0560⨯++=件,不超过9万次的件数为1006040-=件,由乙地试验结果分布表可得:抗疲劳次数超过9万次的零件数为4125975++=, 不超过9万次的零件数为25件,所以22⨯列联表为所以()220040752560200 5.128 5.0246513510010039k ⨯-⨯==≈>⨯⨯⨯, 所以在犯错误的概率不超过0.025的前提下,认为零件质量优秀与否与气候条件有关, 即有97.5%的把握认为零件质量优秀与否与气候条件有关.(3)在甲地实验条件下,随机抽取一件产品为特优件的频率为0.25, 以频率为概率,所以任意抽取一件产品为特优件的概率14p = 则ξ的取值可能为0,1,2,3,4所以()40043181044256P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭;()311431812714425664P C ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭; ()2224315427244256128P C ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭; ()13343112334425664P C ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭; ()0444311444256P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. 所以ξ的分布列为ξ的数学期望()8110854121012341256256256256256E ξ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题主要考查频率分布直方图的性质,利用组中值估计平均数,独立性检验的应用,二项分布及数学期望,属于中档题.21.已知椭圆E :22221x y a b+=()0a b >>的离心率为12,其左右顶点分别为1A ,2A ,上下顶点分别为2B ,1B ,四边形1122A B A B 的面积为43.(1)求椭圆E 的方程;(2)若椭圆E 的左右焦点分别为1F ,2F ,过2F 的直线l 与椭圆交于不同的两点M ,N ,记1F MN △的内切圆的半径为r ,试求r 的取值范围.【答案】(1)22143x y +=;(2)304r <≤【解析】 【分析】 (1)根据离心率为12,四边形1122A B A B 的面积为3222a b c =+,即可求出,a b ,进而求出椭圆E 的方程;(2)由1F MN △的周长1148F M F N MN a ++==,可得()111142F MN S F M F N MN r r =++=△,即114F MN r S =△, 对直线l 的斜率是否存在进行分类讨论,当l x ⊥轴时,l 的方程为:1x =,可求得34r =;当l 与x 轴不垂直时,设l :()()10y k x k =-≠,将椭圆的方程与直线l 的方程联立消去x ,由根与系数的关系可求出12y y +,12y y ,代入11212F MN F F M F F N S S S =+△△△1212F F =k 的函数,利用换元法即可求出r 的取值范围. 【详解】(1)因为椭圆E 的离心率为12,所以12c e a ==, 因为四边形1122A BA B 的面积为1222a b ⨯⨯= 又222a b c =+,解得:2a =,b =1c =,所以椭圆E的方程为:22143x y +=.(2)设()11,M x y ,()22,N x y ,则1F MN △的周长48a ==,()111142F MN S F M FN MN r r =++=△,即114F MN r S=△, 当l x ⊥轴时,l 的方程为:1x =,3MN =,11211134424F MN r S MN F F ==⨯⨯=△, 当l 与x 轴不垂直时,设l :()()10y k x k =-≠,由()221143y k x x y ⎧=-⎪⎨+=⎪⎩,得()22243690k y ky k ++-=,所以122643k y y k +=-+,2122943k y y k =-+,112121221211221111222F MN F F M F F N S S S F F y F F y F F y y =+=⋅+⋅=⋅-△△△ 1211222F F ==⨯=所以114F MN r S ==△ 令243k t +=,则3t >,r ===, 因为3t >,所以1103t <<,所以304r <<综上可知:304r <≤【点睛】本题主要考查求椭圆的标准方程,直线与椭圆的位置关系,同时考查椭圆中的范围问题,对于第(2)问关键是借助于“算两次”面积相等得到114F MN r S =△,将问题转化为求1MN F S V 的面积问题. 22.已知函数()22xa f x e x =-( 2.71828e =⋅⋅⋅为自然对数的底数)有两个极值点1x ,2x . (1)求a 的取值范围; (2)求证:122ln x x a +<. 【答案】(1)(),e +∞;(2)见解析 【解析】 【分析】(1)求()xf x e ax '=-,令()()xg x f x e ax '==-,利用导数研究函数()g x 的单调性:当0a ≤时,()0x g x e a '=->,此时()g x 在R 上单调递增,至多有一个零点,不符合题意;当0a >时,只需()()min ln 0g x g a =<,同时使得(),ln a -∞和()ln ,a +∞各有一个零点即可;(2) 不妨设12x x <,则()1,ln x a ∈-∞,()2ln ,x a ∈+∞,所以12ln x a x <<,要证122ln x x a +<,即证122ln x a x <-,而当(),ln x a ∈-∞时,函数()g x 单调递减,即证()()122ln g x g a x >-,而()()12g x g x =,即证()()222ln g x g a x >-,故可构造函数()()()2ln p x g x g a x =--,利用导数判断()p x 的单调性转化即可.【详解】(1)由已知得()xf x e ax '=-,因为函数()f x 有两个极值点1x ,2x ,所以方程()0xf x e ax '=-=有两个不相等的根1x ,2x设()()xg x f x e ax '==-,则()xg x e a '=-①当0a ≤时,()0xg x e a '=->,所以()g x 在R 上单调递增,至多有一个零点,不符合题意 ②当0a >时,由()0xg x e a '=-=得ln x a =.。

山东省青岛市2020届高三数学5月模拟检测试题(含解析)

山东省青岛市2020届高三数学5月模拟检测试题(含解析)

山东省青岛市2020届高三数学5月模拟检测试题(含解析)一、单项选择题1.已知全集U =R ,集合{}2320A x x x =-+≤,{}131x B x -=≥,()U A B =( )A. []1,2B. ()2,+∞C. [)1,+∞ D. (),1-∞【答案】B 【解析】 【分析】将集合A ,B 化简,再求出UA ,根据交集的定义即可得到答案.【详解】因为{}{}2320=12A x x x x x =-+≤≤≤,{}{}{}1103133=1x x B x x x x --=≥=≥≥,所以(){|1UA B x x ⋂=<或}{}{}212x x x x x >⋂≥=>.故选:B.【点睛】本题主要考查交集、补集的运算,同时考查一元二次不等式的解法及指数不等式的解法,属于基础题.2.若复数z 满足)|i z i =(其中i 是虚数单位),则复数z 的共轭复数z 的虚部为( ) A.12B.12i C. 12-D. 12i -【答案】C 【解析】 【分析】根据复数模的定义可得)2i z =,从而可得z =,再根据复数的乘除运算即可求出复数z ,再根据共轭复数的定义,求出z 即可得到答案.【详解】由)|i z i -=得)2i z ==,所以)1422i z i ===+,所以312z i =-,所以z 的虚部为12-.故选:C.【点睛】本题主要考查复数的模,复数代数形式的乘除运算及共轭复数的概念,属于基础题. 3.已知向量()1cos ,2a x =+,()sin ,1b x =,0,2x π⎛⎫∈ ⎪⎝⎭,若//a b ,则sin x =( ) A.45B.35C.25D.25【答案】A 【解析】 【分析】根据向量平行的坐标表示列出方程可得cos 2sin 1x x =-,代入22sin cos 1x x +=解方程即可求出sin x .【详解】因为//a b ,所以1cos 2sin 0x x +-=,所以cos 2sin 1x x =-, 又因为22sin cos 1x x +=,所以22sin (2sin 1)1x x +-=, 即25sin 4sin 0x x -=,解得4sin 5x =或sin 0x =,又0,2x π⎛⎫∈ ⎪⎝⎭, 所以4sin 5x =. 故选:A.【点睛】本题主要考查向量平行的坐标表示,同角三角函数平方关系,属于基础题. 4.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数解析式来分析函数的图象与性质,下列函数的解析式(其中 2.71828e =为自然对数的底数)与所给图象最契合的是( )A. ()sin x xy e e -=+B. ()sin x xy e e-=-C. ()tan x xy e e -=-D. ()cos x xy e e -=+【答案】D 【解析】 【分析】根据0x =时的函数值排除即可.【详解】当0x =时,对于A ,()00sin sin20y e e =+=>,故排除A ;对于B ,()00sin 0y e e=-=,故排除B ; 对于C ,()00tan 0y e e=-=,故排除C ;对于D ,()00cos cos20y e e =+=<,符合题意.故选:D.【点睛】本题主要考查函数表示方法中的图象法与解析法之间的对应关系,可利用从函数图象上的特殊点,排除不合要求的解析式.5.从编号为1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,则第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率为( ) A.29B.14C.718D.112【答案】C 【解析】 分析】基本事件的总数有6636⨯=种,利用列举法求出第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的基本事件有14种,根据古典概型概率计算公式,即可求出答案. 【详解】从编号为1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,有36个基本事件,其中第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除有如下基本事件 (第一次抽得的卡片1,第二次摸到卡片2用(1,2)表示):(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6), (4,4),(5,5),(6,6),共14个,所以第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率1473618P ==. 故选:C.【点睛】本题主要考查古典概型的概率的求法,属于基础题.6.“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆.若椭圆C :2211x y a a+=+(0)a >的离心率为12,则椭圆C 的蒙日圆方程为( )A. 229x y +=B. 227xy +=C. 225x y +=D.224x y +=【答案】B 【解析】 【分析】根据椭圆C 的离心率可求出3a =,根据题意知椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,利用过上顶点和右顶点的切线可得蒙日圆上的一点,即可椭圆C 的蒙日圆方程.【详解】因为椭圆C :2211x y a a+=+(0)a >的离心率为12,12=,解得3a =,所以椭圆C 的方程为22143x y +=,所以椭圆的上顶点A ,右顶点(2,0)B ,所以经过,A B 两点的切线方程分别为y =2x =,所以两条切线的交点坐标为,又过A ,B 的切线互相垂直,由题意知交点必在一个与椭圆C 同心的圆上,可得圆的半径r ==所以椭圆C 的蒙日圆方程为227xy +=.故选:B.【点睛】本题主要考查椭圆的几何性质,同时考查圆的方程,属于基础题. 7.已知O 是ABC 内部一点,20OA OB OC ++=,4BA BC ⋅=且6ABC π∠=,则OAC的面积为( ) A.3 B.23C.23D.43【答案】A 【解析】 【分析】由20OA OB OC ++=可得1()2BO OA OC =+,设D 为AC 的中点,则1()2OA O OC D =+,可得BO OD =,从而可得O 为BD 的中点,进而可得12AOC ABC S S =△△,由4BA BC ⋅=可得83||||BA BC ⋅=,再由12||||sin ABC BA AB S BC C ⋅⋅=∠△即可求出ABCS.【详解】在ABC 中,由20OA OB OC ++=,得22OA OC OB BO +=-=, 所以1()2BO OA OC =+,设D 为AC 的中点,则1()2OA O OC D =+, 所以BO OD =,所以O 为BD 的中点,所以12AOC ABC S S =△△,因为4BA BC ⋅=,所以3||||cos ||||4BA BC BA BC ABC BA BC ⋅=⋅⋅∠=⋅⋅=,所以83||||3BA BC ⋅=, 所以11||||sin 232312ABCBA BC AB S C ⋅⋅∠==⨯=△, 所以1233=AOC S =⨯△. 故选:A.【点睛】本题主要考查向量的线性运算,向量的数量积及三角形的面积公式,属于中档题.8.已知函数()2ln x f x x =,若()21f x m x<-在(0,)+∞上恒成立, 2.71828e =⋅⋅⋅为自然对数的底数,则实数m 的取值范围是( )A. m e >B. 2e m >C. 1mD. m >【答案】B 【解析】 【分析】()21f x m x <-在(0,)+∞上恒成立,即()21f x m x +<在(0,)+∞上恒成立,令221ln 1()()x g x f x x x+=+=,故只需max ()g x m <即可,利用导数求出()g x 的最大值即可. 【详解】若()21f x m x <-在(0,)+∞上恒成立,即()21f x m x+<在(0,)+∞上恒成立, 令221ln 1()()x g x f x x x+=+=,故只需max ()g x m <即可, 2431(ln 1)22ln 1()x x x x x g x x x ⋅-+⋅--'==,令()0g x '=,得12x e -=, 当120x e -<<时,()0g x '>;当12x e ->时,()0g x '<, 所以()g x 在12(0)e -,上是单调递增,在12(,)e -+∞上是单调递减,所以当12max ()()2e g x g e -==, 所以实数m 的取值范围是2e m >. 故选:B.【点睛】本题主要考查分离参数法处理恒成立问题,同时考查利用导数求函数的最值,属于中档题.二、多项选择题9.设a ,b ,c 为实数,且0a b >>,则下列不等式中正确的是( ) A. ()222log log ab b >B. 22ac bc >C. 1b a a b<<D. 1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【答案】AC 【解析】 【分析】对A ,利用作差法比较即可;对B ,利用不等式的性质判断即可;对C ,利用作差法比较即可;对D ,利用指数函数的单调性比较即可. 【详解】对A ,因为0a b >>,所以1ab>, 所以2222222log ()log log log log 10ab a ab b b b-==>=, 所以222log ()log ab b >,故A 正确; 对B ,当0c时,22ac bc >不成立,故B 错误;对C ,因为0a b >>,所以10b b a a a --=<,10a b a b b--=<, 所以1b aa b<<,故C 正确; 对D ,因为函数12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,又a b >,所以1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故D 错误.故选:AC【点睛】本题主要考查作差法比较大小,不等式的性质及指数函数的单调性,属于基础题. 10.已知等差数列{}n a 的前n 项和为()n S n N *∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A. 122a =B. 2d =-C. 当10n =或11n =时,n S 取得最大值D. 当0n S >时,n 的最大值为20【答案】BCD 【解析】 【分析】由690S =可得12530a d +=,由7a 是3a 与9a 的等比中项可得110a d =-,联立方程可求出120a =,2d =-,即可判断A ,B 选项,求出等差数列{}n a 的前n 项和为n S ,即可判断C ,D.【详解】因为690S =,所以1656902a d ⨯+=,即12530a d +=,① 又因为7a 是3a 与9a 的等比中项,所以2739a a a =⋅, 所以2111(6)(2)(8)a d a d a d +=++,整理得110a d =-,②由①②解得120a =,2d =-,故A 错误; 所以22(1)2144120(2)21()224n n n S n n n n -=+⨯-=-+=--+, 又n *∈N ,所以当10n =或11n =时,n S 取得最大值,故C 正确;令2210n S n n =-+>,解得021n <<,又n *∈N ,所以n 的最大值为20,故D 正确. 故选:BCD【点睛】本题主要考查等差数列的通项公式,等差数列前n 项和公式,等比中项的应用,同时考查等差数列和的最值问题,属于基础题.11.声音是由物体振动产生的声波,纯音的数学模型是函数sin y A t ω=,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数()sin f x x x =+则下列结论正确的是( ) A. ()f x 是偶函数 B. ()f x 是周期函数 C. ()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增 D. ()f x 最大值为2【答案】ABD 【解析】 【分析】根据奇偶性的定义和周期函数的定义可判断A ,B ;当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x可化为()sin 2sin()3f x x x x =+=+π,可判断C ;结合函数()f x 的周期性对x 进行分类讨论,将函数()f x 的绝对值去掉,再求其最大值可判断D. 【详解】函数()f x 的定义域为R ,因为())sin()sin ()f x x x x x f x -=-+-=+=, 所以()f x 是偶函数,故A 正确;因为sin cos s )()(i ()n f x πx πx x x π+++=++-sin ()x x f x +=,所以()f x 是以π为周期的周期函数,故B 正确;当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 可化为1()sin 2sin 2sin()23f x x x x x x ⎫=+=+=+⎪⎪⎝⎭π, 此时()f x 在06π⎡⎤⎢⎥⎣⎦,上单调递增,在,62ππ⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;由于函数()f x 是以π为周期的周期函数,故只需研究一个周期内的最大值即可, 不妨取[0,]x π∈,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 可化为()2sin()3f x x π=+, 由0,2x π⎡⎤∈⎢⎥⎣⎦,得5,336x πππ⎡⎤+∈⎢⎥⎣⎦, 所以当32x ππ+=,即6x π=时,()f x 取得最大值2,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,13()3cos sin 2sin cos 2sin()223f x x x x x x ⎛⎫=-+=-=- ⎪ ⎪⎝⎭π, 由,2x ππ⎡⎤∈⎢⎥⎣⎦,得2,363x πππ⎡⎤-∈⎢⎥⎣⎦, 所以32x ππ-=,即56x π=时,()f x 取得最大值2, 故当[0,]x π∈时,()f x 取得最大值2,故D 正确. 故选:ABD.【点睛】本题主要考查三角函数的奇偶性、周期性、单调性的判断及最值的求法,同时考查两角和与差的正弦公式的逆用,属于中档题.12.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A. 11B E A B ⊥B. 平面1//B CE 平面1A BDC. 三棱锥11C B CE -的体积为83D. 三棱锥111C B CD -的外接球的表面积为24π 【答案】CD 【解析】 【分析】以1{,,}AB AD AA 为正交基底建立空间直角坐标系,写出各点坐标,计算11B E A B ⋅值即可判断A ;分别求出平面1B CE ,平面1A BD 的法向量,判断它们的法向量是否共线,即可判断B ;利用等体积法,求出三棱锥11-B CC E 的体积即可判断C ;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故求出长方体1111ABCD A B C D -的外接球的表面积即可判断D.【详解】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-, 因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则 由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高,所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2R ==所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD.【点睛】本题主要考查用向量法判断线线垂直、面面平行,等体积法的应用及几何体外接球的表面积. 三、填空题13.已知命题“2,10x R x ax ∃∈-+<”为假命题,则实数a 的取值范围是_______【答案】[]22-,【解析】命题“2,10x R x ax ∃∈-+<”假命题,则“2,10x R x ax ∀∈-+≥”为真命题.所以240a =-≤,解得22a -≤≤.答案为:[]2,2-.14.()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为______.【答案】25- 【解析】 【分析】先求得61x x ⎛⎫- ⎪⎝⎭中含21x 的项与常数项,进而可得()6212x x x ⎛⎫+- ⎪⎝⎭的常数项.【详解】61x x ⎛⎫- ⎪⎝⎭的展开式中含21x 的项为44262115C x x x ⎛⎫-= ⎪⎝⎭,61x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为3336120C x x ⎛⎫-=- ⎪⎝⎭,所以()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为154025-=-.故答案为:25-.【点睛】本题考查二项展开式中常数项的求法,解题时要认真审题,注意二项式定理的合理运用,属于基础题.15.已知()f x 为奇函数,当0x >时,()ln xf x x=,则曲线()y f x =在点()1,0-处的切线方程是______. 【答案】10x y -+= 【解析】 【分析】利用函数()f x 为奇函数,可求出当0x <时,()f x 的表达式为ln()()x f x x-=,然后根据在一点处的切线方程的求法,即可求出曲线()y f x =在点()1,0-处的切线方程. 【详解】因为()f x 为奇函数,所以()()f x f x -=-, 当0x <时,则0x ->,所以ln()ln()()()x x f x f x x x--=--=-=-, 所以221(1)ln()1ln()()x x x x f x x x ⨯-⨯-----'==, 所以曲线()y f x =在点()1,0-处的切线的斜率(1)1k f '=-=, 所以切线方程是01y x -=+,即10x y -+=. 故答案为:10x y -+=【点睛】本题主要考查根据函数的奇偶性求函数的解析式,在一点处的切线方程的求法,同时考查复合函数的导数,属于中档题.16.已知抛物线C :22y px =()06p <<的准线交圆1O :()2234x y ++=于A ,B 两点,若AB =C 的方程为______,已知点()1,2M ,点E 在抛物线C 上运动,点N 在圆2O :()2221x y -+=上运动,则EM EN +的最小值为______.【答案】 (1). 28y x = (2). 2. 【解析】【详解】(1)设抛物线C 的准线与x 轴交于点D ,抛物线C 的准线方程为2px =-,则22211AO AD DO =+,即224(3)|3|2p =+-+, 整理得212320p p -+=,解得4p =或8p =,又06p <<,所以4p =,所以抛物线C 的方程为28y x =.(2)由题意知 圆2O 的圆心坐标为(2,0)与抛物线的焦点坐标重合, 过E 作抛物线C 的准线2x =-的垂线,垂足为F ,则2||||EO EF =, 所以22211EM EN EM EO NO EM EO EM EF +≥+-=+-=+-, 所以当M ,E ,F 三点共线时,EM EF +最小,最小值为3, 所以1312EM EN EM EF +≥+-≥-=, 所以EM EN +的最小值为2. 故答案为:①28y x =;②2【点睛】本题主要考查抛物线的定义和准线方程,圆中的弦长公式,抛物线中的最值问题,同时考查数形结合思想和转化与化归思想. 四、解答题17.设数列{}n a 的前n 项和为n S ,11a =,______. 给出下列三个条件:条件①:数列{}n a 为等比数列,数列{}1n S a +也为等比数列;条件②:点{}1,n n S a +在直线1y x =+上;条件③:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的三个条件中任选一个,补充在上面的横线上,完成下列两问的解答: (1)求数列{}n a 的通项公式; (2)设21231log log n n n b a a ++=⋅,求数列{}n b 的前n 项和n T .【答案】(1)不论选择哪个条件,1=2n n a -()N n *∈;(2)()()3234212n n T n n +=-++ 【解析】 【分析】(1) 方案一:选条件①.数列{}1n S a +也为等比数列,可根据其前3项也成等比数列列出方程,再将123,,S S S 用1,a q 表示解出q ,即可求出na ;方案二:选条件②,可得11n n a S +=+()N n *∈,再将n 用1n -代换可得11n n a S -=+()2n ≥,两式相减可得12n n a a +=()2n ≥,再验证212a a =即可,从而可得数列{}n a 是首项为1,公比为2的等比数列,即可求出n a ;方案三:选条件③.可得当2n ≥时,1121222n n n n a a a na -+++⋅⋅⋅+=()N n *∈,再将n 用1n -代换可得()121212221n n n n a a a n a ---++⋅⋅⋅+=-,两式相减可得12n n a a +=()2n ≥,再验证212a a =即可,从而可得数列{}n a 是首项为1,公比为2的等比数列,即可求出n a ;(2)由(1)不论选择哪个条件,1=2n n a -()N n *∈,代入化简可得()12n b n n =+,利用裂项相消法求和,即可求出数列{}n b 的前n 项和n T . 【详解】(1)方案一:选条件①. 因为数列{}1n S a +为等比数列,所以()()()2211131S a S a S a +=++,即()()2121123222a a a a a a +=++, 设等比数列{}n a 的公比为q ,因为11a =, 所以()()22222q q q+=++,解得2q或0q =(舍),所以1112n n n a a q --==()N n *∈,(2)由(1)得12nn a ()N n *∈,所以()212311111log log 222n n n b a a n n n n ++⎛⎫===- ⎪⋅++⎝⎭,所以11111111111232435112n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ()()13113232212442123111212n n n n n n n ⎛⎫=-=⎭+⎛-+ +⎫-=- ⎪+++⎝⎭⎝++⎪, 方案二:(1)选条件②.因为点()1,n n S a +在直线1y x =+上,所以11n n a S +=+()N n *∈,所以11n n a S -=+()2n ≥,两式相减得1n n n a a a +-=,12n na a +=()2n ≥, 因为11a =,211112a S a =+=+=,212a a =适合上式, 所以数列{}n a 是首项为1,公比为2的等比数列,所以1112n n n a a q --==()N n *∈(2)同方案一的(2). 方案三:(1)选条件③.当2n ≥时,因为1121222n n n n a a a na -+++⋅⋅⋅+=()N n *∈⋅⋅⋅(i )所以()121212221n n n n a a a n a ---++⋅⋅⋅+=-,所以()1212122221nn n n a a a n a --++⋅⋅⋅+=-⋅⋅⋅(ii )(i )-(ii )得122(1)n n n a na n a +=--,即12n na a +=()2n ≥, 当1n =时,122a a =,212a a =适合上式, 所以数列{}n a 是首项为1,公比为2的等比数列所以1112n n n a a q --==()N n *∈(2)同方案一的(2).【点睛】本题主要考查等比数列通项公式求法,裂项相消法求和,属于基础题.18.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且满足cos2cos sin a C a C c A =-. (1)求角C ;(2)若ABC 为锐角三角形,12c =,求ABC 面积S 的最大值. 【答案】(1)4C π;(2))361【解析】 【分析】(1)对cos2cos sin a C a C c A =-,利用正弦定理得sin cos2sin cos sin sin A C A C C A =-,进而可得cos2cos sin C C C =-,再利用二倍角公式即可求出角C ;(2)由已知可得4Cπ,故要求ABC 面积S 的最大值,只需求出ab 的最大值即可,利用余弦定理可得222144c a b ==+,再利用基本不等式即可求出ab 的最大值. 【详解】(1)因为cos2cos sin a C a C c A =-,所以由正弦定理可得:sin cos2sin cos sin sin A C A C C A =-, 因为()0,A π∈,sin 0A ≠,所以cos2cos sin C C C =-, 所以22cos sin cos sin C C C C -=-, 即()()cos sin cos sin 10C C C C -+-=, 所以cos sin 0C C -=或cos sin 10C C +-=, 即cos sin C C =或cos sin 10C C +-=,①若cos sin C C =,则4Cπ,②若cos sin 10C C +-=,则2sin 42C π⎛⎫+= ⎪⎝⎭, 因为5444C πππ<+<,所以344C ππ+=,即2C π=, 综上,4Cπ或2C π=.(2)因为ABC 为锐角三角形,所以4C π,因为()222221442cos 222224c a b ab a b ab ab ab ab π==+-=+-≥-=-,即()722222ab ≤=+-(当且仅当a b =等号成立),所以()()1122sin sin 7222362122444S ab C ab ab π===≤⨯+=+,即ABC 面积S 的最大值是()3621+.【点睛】本题主要考查正弦定理,二倍角公式,基本不等式及三角形的面积公式,同时考查三角形中面积的最大值求法,属于基础题.19.如图,四棱柱1111ABCD A B C D -中,底面ABCD 和侧面11BCC B 都是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==.(1)求证:平面11CC D D ⊥底面ABCD ;(2)若平面11BCC B 与平面1BED 所成的锐二面角的大小为3π,求直线1CA 和平面11BCC B 所成角的正弦值.【答案】(1)见解析;6 【解析】【分析】(1)要证平面11CC D D ⊥底面ABCD ,只需证明其中一个面内一条线垂直于另一个平面即可,可证1D E ⊥底面ABCD ,由底面ABCD 和侧面11BCC B 都是矩形,可得BC ⊥平面11DCC D ,又1D E ⊂平面11DCC D ,从而可得1BC D E ⊥,又1D E CD ⊥,从而可证出1D E ⊥底面ABCD ;(2) 取AB 的中点F ,以1{,,}EF EC ED 为正交基底建系,设1ED a =()0a >,写出各点坐标,分别求出平面1BED 与平面11BCC B 的法向量()11,1,0n =-,()20,,1n a =-,根据它们所成的锐二面角的大小为3π,利用夹角公式列出方程可求出1a =,再求出()11,1,1CA =-,设直线1CA 和平面11BCC B 所成的角为θ,由12sin cos CA n =〈⋅〉θ即可求出答案. 【详解】(1)因为底面ABCD 和侧面11BCC B 都是矩形, 所以BC CD ⊥,1BC CC ⊥,又1CDCC C =,1,CD CC ⊂平面11DCC D ,所以BC ⊥平面11DCC D ,又1D E ⊂平面11DCC D ,所以1BC D E ⊥,又1D E CD ⊥,BC CD C ⋂=,,BC CD ⊂底面ABCD , 所以1D E ⊥底面ABCD ,又1D E ⊂平面11CC D D , 所以平面11CC D D ⊥底面ABCD .(2)取AB 的中点F ,因为E 是CD 的中点,底面ABCD 是矩形,所以EF CD ⊥,以E 为原点,以EF ,EC ,1ED 所在直线分别为x ,y ,z 轴, 建立空间直角坐标系E xyz -,如图所示:设1ED a =()0a >,则()0,0,0E ,()1,1,0B ,()10,0,D a ,()0,1,0C ,()10,2,C a 设平面1BED 的法向量()111,,n x y z =,()1,1,0EB =,()10,0,ED a =.由11100n EB n ED ⎧⋅=⎪⎨⋅=⎪⎩可得:11100x y az +=⎧⎨=⎩,令11x =可得11y =-,10z =,所以()11,1,0n =-,设平面11BCC B 的法向量()2222,,n x y z =,()1,0,0CB =,()10,1,CC a =.由22100n CB n CC ⎧⋅=⎪⎨⋅=⎪⎩可得,22200x y az =⎧⎨+=⎩,令21z =可得2y a =-,所以()20,,1n a =-由于平面11BCC B 与平面1BED 所成的锐二面角的平面角为3π,所以121212cos ,cos32n n n n n n π⋅===⋅,解得1a =.所以平面11BCC B 的法向量()20,1,1n =-,由于()1,1,0A -,()0,1,0C ,()0,1,0D -,()10,0,1D ,所以()()()1111,2,00,1,11,1,1CA CA AA CA DD =+=+=-+=-,设直线1CA 和平面11BCC B 所成的角为θ,则1212sin 32CA n CA n θ⋅===⋅. 【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,根据所成二面角的大小逆向求参数值及利用向量法求线面角的正弦值,属于中档题.20.某专业机械生产厂为甲乙两地(两地仅气候条件差异较大,其他条件相同)的两个不同机器生产厂配套生产同一种零件,在甲乙两地分别任意选取100个零件进行抗疲劳破坏性试验,统计每个零件的抗疲劳次数(抗疲劳次数是指从开始试验到零件磨损至无法正常使用时的循环加载次数),将甲乙两地的试验的结果,即每个零件的抗疲劳次数(单位:万次)分别按(]7,8,(]8,9,(]9,10,(]10,11,(]11,12分组进行统计,甲地的实验结果整理为如下的频率分布直方图(其中a ,b ,c 成等差数列,且23c b =),乙地的统计结果整理为如下的频数分布表.(1)求a ,b ,c 的值并计算甲地实验结果的平均数x .(2)如果零件抗疲劳次数超过9万次,则认为零件质量优秀,完成下列的22⨯列联表: 质量不优秀 质量优秀 总计 甲地 乙地 总计试根据上面完成的22⨯列联表,通过计算分析判断,能否有97.5%的把握认为零件质量优秀与否与气候条件有关? 附:临界值表()2P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828其中2K 的观测值()()()()()2n ad bc k a b c d a c b d -=++++(3)如果将抗疲劳次数超过10万次的零件称为特优件,在甲地实验条件下,以频率为概率,随机打开一个4个装的零件包装箱,记其中特优件的个数为ξ,求ξ的分布列和数学期望. 【答案】(1)0.1a =,0.2b =,0.3c =,平均数9.3x =万次;(2)见解析,有;(3)见解析,1 【解析】 【分析】(1)根据频率分布直方图的的矩形面积和为1,可得0.6a b c ++=,再由a ,b ,c 成等差数列,可得2b a c =+,再结合23c b =解方程即可求出a ,b ,c 的值;利用组中值乘以相应的频率再求和即可求出平均数x ;(2)根据已知条件分别求出甲、乙抗疲劳次数超过9万次的零件数和不超过9万次的零件数,即可完成22⨯列联表,然后根据22⨯列联表求出观测值k ,查对临界值,即可作出判断;(3)根据已知条件可得任意抽取一件产品为特优件的概率14p =,ξ的取值可能为0,1,2,3,4,根据二项分布分别求出相应的概率,即可列出分布列并求出数学期望.【详解】(1)由频率分布直方图的性质可得:0.050.351a b c ++++=,即0.6a b c ++= 因为a ,b ,c 成等差数列,所以2b a c =+,所以0.2b = 又23c b =,解之得:0.3c =,0.1a =所以7.50.18.50.39.50.3510.50.211.50.059.3x =⨯+⨯+⨯+⨯+⨯= 即抗疲劳次数的平均数9.3x =万次(2)由甲地试验结果的频率分布直方图可得:抗疲劳次数超过9万次的零件数为()1000.350.20.0560⨯++=件,不超过9万次的件数为1006040-=件,由乙地试验结果分布表可得:抗疲劳次数超过9万次的零件数为4125975++=, 不超过9万次的零件数为25件,所以22⨯列联表为所以()220040752560200 5.128 5.0246513510010039k ⨯-⨯==≈>⨯⨯⨯, 所以在犯错误的概率不超过0.025的前提下,认为零件质量优秀与否与气候条件有关, 即有97.5%的把握认为零件质量优秀与否与气候条件有关.(3)在甲地实验条件下,随机抽取一件产品为特优件的频率为0.25, 以频率为概率,所以任意抽取一件产品为特优件的概率14p = 则ξ的取值可能为0,1,2,3,4所以()400431********P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭; ()311431812714425664P C ξ⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭; ()2224315427244256128P C ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭; ()13343112334425664P C ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭; ()0444311444256P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. 所以ξ的分布列为ξ的数学期望()8110854121012341256256256256256E ξ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题主要考查频率分布直方图的性质,利用组中值估计平均数,独立性检验的应用,二项分布及数学期望,属于中档题.21.已知椭圆E :22221x y a b+=()0a b >>的离心率为12,其左右顶点分别为1A ,2A ,上下顶点分别为2B ,1B ,四边形1122A B A B 的面积为43.(1)求椭圆E 的方程;(2)若椭圆E 的左右焦点分别为1F ,2F ,过2F 的直线l 与椭圆交于不同的两点M ,N ,记1F MN △的内切圆的半径为r ,试求r 的取值范围.【答案】(1)22143x y +=;(2)304r <≤ 【解析】 【分析】 (1)根据离心率为12,四边形1122A B A B 的面积为43222a b c =+,即可求出,a b ,进而求出椭圆E 的方程;(2)由1F MN △的周长1148F M F N MN a ++==,可得()111142F MN S F M F N MN r r =++=△,即114F MN r S =△, 对直线l 的斜率是否存在进行分类讨论,当l x ⊥轴时,l 的方程为:1x =,可求得34r =;当l 与x 轴不垂直时,设l :()()10y k x k =-≠,将椭圆的方程与直线l 的方程联立消去x ,由根与系数的关系可求出12y y +,12y y ,代入11212F MN F F M F F N S S S =+△△△()2122112142F F y y y y =+-k 的函数,利用换元法即可求出r 的取值范围. 【详解】(1)因为椭圆E 的离心率为12,所以12c e a ==, 因为四边形1122A B A B的面积为1222a b ⨯⨯= 又222a b c =+,解得:2a =,b =1c =,所以椭圆E的方程为:22143x y +=.(2)设()11,M x y ,()22,N x y ,则1F MN △的周长48a ==,()111142F MN S F M FN MN r r =++=△,即114F MN r S =△, 当l x ⊥轴时,l 的方程为:1x =,3MN =,11211134424F MN r S MN F F ==⨯⨯=△, 当l 与x 轴不垂直时,设l :()()10y k x k =-≠,由()221143y k x x y ⎧=-⎪⎨+=⎪⎩,得()22243690k y ky k ++-=,所以122643k y y k +=-+,2122943k y y k =-+,112121221211221111222F MN F F M F F N S S S F F y F F y F F y y =+=⋅+⋅=⋅-△△△ 1211222F F ==⨯=所以114F MN r S ==△ 令243k t +=,则3t >,r ===, 因为3t >,所以1103t <<,所以304r << 综上可知:304r <≤【点睛】本题主要考查求椭圆的标准方程,直线与椭圆的位置关系,同时考查椭圆中的范围问题,对于第(2)问关键是借助于“算两次”面积相等得到114F MN r S =△,将问题转化为求1MNF S的面积问题.22.已知函数()22xa f x e x =-( 2.71828e =⋅⋅⋅为自然对数的底数)有两个极值点1x ,2x . (1)求a 的取值范围;(2)求证:122ln x x a +<. 【答案】(1)(),e +∞;(2)见解析 【解析】 【分析】(1)求()xf x e ax '=-,令()()xg x f x e ax '==-,利用导数研究函数()g x 的单调性:当0a ≤时,()0xg x e a '=->,此时()g x 在R 上单调递增,至多有一个零点,不符合题意;当0a >时,只需()()min ln 0g x g a =<,同时使得(),ln a -∞和()ln ,a +∞各有一个零点即可;(2) 不妨设12x x <,则()1,ln x a ∈-∞,()2ln ,x a ∈+∞,所以12ln x a x <<,要证122ln x x a +<,即证122ln x a x <-,而当(),ln x a ∈-∞时,函数()g x 单调递减,即证()()122ln g x g a x >-,而()()12g x g x =,即证()()222ln g x g a x >-,故可构造函数()()()2ln p x g x g a x =--,利用导数判断()p x 的单调性转化即可.【详解】(1)由已知得()xf x e ax '=-,因为函数()f x 有两个极值点1x ,2x ,所以方程()0xf x e ax '=-=有两个不相等的根1x ,2x设()()xg x f x e ax '==-,则()xg x e a '=-①当0a ≤时,()0xg x e a '=->,所以()g x 在R 上单调递增,至多有一个零点,不符合题意②当0a >时,由()0xg x e a '=-=得ln x a =.当(),ln x a ∈-∞时,()0g x '<,函数()g x 单调递减; 当()ln ,x a ∈+∞时,()0g x '>,函数()g x 单调递增. 所以()()min ln ln 0g x g a a a a ==-<,即a e >, 令()2ln a a a ϕ=-()0a >,则()221a a a aϕ-'=-=, 当()0,2a ∈时,()0a ϕ'<,()a ϕ为减函数; 当()2,a ∈+∞时,()0a ϕ'>,()a ϕ为增函数; 所以()()()min 222ln 221ln 20a ϕϕ==-=-> 所以()0a ϕ>,即2ln a a >,从而ln 2aa a <<,2a e a > 所以()20ag a e a =->,又因为()010g =>,所以()g x 在区间()0,ln a 和()ln ,a a 上各有一个零点,符合题意, 综上,实数a 的取值范围为(),e +∞.(2)不妨设12x x <,则()1,ln x a ∈-∞,()2ln ,x a ∈+∞,所以12ln x a x << 设()()()()2ln 2ln 2ln xa xp x g x g a x e ax ea a x -⎡⎤=--=----⎣⎦222ln x x e a e ax a a -=--+,则()222220x x p x e a e a a a a -'=+-≥=-=, 当且仅当2x x e a e -=,即ln x a =时,等号成立. 所以函数()p x 在R 上单调递增.由2ln x a >,可得()()2ln 0p x p a >=,即()()222ln 0g x g a x -->, 又因为1x ,2x 为函数()g x 的两个零点,所以()()12g x g x =, 所以()()122ln g x g a x >-, 又2ln x a >,所以22ln ln a x a -<,又函数()g x 在(),ln a -∞上单调递减, 所以122ln x a x <-,即122ln x x a +<.【点睛】本题主要考查利用导数研究函数的性质,构造函数证明不等式,同时考查极值点偏移问题,属于难题.。

山东省青岛市高三5月模拟考试数学文试题及答案

山东省青岛市高三5月模拟考试数学文试题及答案

1 青岛市高考模拟数学检测试题(文科)本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|ln },{|A x y x B x y ====,则AB =( )A .{|02}x x <≤B .{|02}x x ≤<C .{|12}x x ≤<D .{|12}x x <≤2.在复平面内,设复数1z ,2z 对应的点关于虚轴对称,112z i =+(i 是虚数单位), 则12z z =( )A .5B .5-C .14i --D .14i -+3.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A .215πB .320πC .2115π-D .3120π- 4. 在如图所示的框图中,若输出360S =,那么判断框中应填入的关于k 的判断条件是( )A .2?k >B .2?k <C .3?k >D .3?k <5.若函数()sin()12f x x πα=+-为偶函数,则cos 2α的值为( )A. 12- B.12C.2- D.22 6.已知函数1()ln 1f x x x =--,则()y f x =的图像大致为( )7.若,x y 满足约束条件0010x x y x y ≥⎧⎪-≤⎨⎪+-≥⎩,则3z x y =+的取值范围是( )A. (,2]-∞B. [2,3]C. [3,)+∞D. [2,)+∞ 8.将函数()=2sin(2+)3f x x π图像上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x 的图像,在()g x 图像的所有对称轴中,离原点最近的对称轴方程为( ) A .24x π=-B .4x π=C .524x π=D .12x π= 9.某几何体的三视图如图所示, 则该几何体的体积为( ) A .4 B .2 C .43 D .2310.已知直线20x y a -+=与圆O :222x y +=相交于A ,B 两点(O 为坐标原点),则“a =0OA OB ⋅=”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件正视图 侧视图AB D3 11.已知定义域为R 的奇函数()f x ,当0x >则(1)(2)(3)(2020)f f f f +++⋅⋅⋅+=( )A .2l o g 5B .2l o g 5-C .2-D .0 12.已知函数22()()(ln 2)f x x m x m =-+-,当()f x 取最小值时,则m =( ) A .12 B .1l n 22-- C .12ln 2105- D .2l n 2- 二、填空题:本大题共4个小题,每小题5分. 13.已知||2,||3a b ==,a 与b 的夹角为23π,且0a b c ++=,则||c = ; 14.在ABC ∆中,a b c 、、分别为内角A B C 、、的对边,若2sin sin sin ,B A C =+3cos 5B =且4ABC S ∆=,则b 的值为 ; 15.已知三棱锥A BCD -中,BC ⊥面ABD,3,1,4AB AD BD BC ====,则三棱锥A BCD -外接球的体积为 ;16.已知过抛物线22(0)y px p =>的焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =,抛物线的准线l 与x 轴交于点C ,1AA l ⊥于点1A ,若四边形1AACF的面积为p 的值为 .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分.17.(12分)已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若4120S =,且43a 是6a ,5a -的等差中项.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足321log n n b a +=,且{}n b 的前n 项和为n T ,求12111nT T T +++.4 18.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:(1)请利用所给数据求违章人数y 与月份x 之间的回归直线方程ˆˆybx a =+; (2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数; (3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”参考公式:1122211()()ˆˆˆ,()nni iiii i nni ii i x y nx y x x y y bay bx x nxx x ====---===---∑∑∑∑. 22()()()()()n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)519.(12分)如图所示,在三棱柱111ABC A B C -中,侧棱1BB ⊥底面ABC ,14BB =,AB BC ⊥,且4AB BC ==,点,M N 分别为棱,AB BC 上的动点,且AM BN =. (1)求证:无论M 在何处,总有11B C C M ⊥; (2)求三棱锥1B MNB -体积的最大值.BC1B 1A1CMN6 20.(12分)在平面直角坐标系中,点1F 、2F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,双曲线C 的离心率为2,点3(1,)2在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形12PFQF的周长为(1)求动点P 的轨迹方程;(2)已知动直线:l y kx m =+与轨迹P 交于不同的两点M N 、, 且与圆223:2W x y +=交于不同的两点G 、H ,当m 变化时,||||MN GH 恒为定值, 求常数k 的值.7 21.(12分)已知函数,)(a x ae x f x --= 2.71828e =⋅⋅⋅是自然对数的底数. (1)讨论函数)(x f 的单调性;(2)若)(x f 恰有2个零点,求实数a 的取值范围.8(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题记分.22.选修44-:坐标系与参数方程(10分)以直角坐标系的原点O 为极点,x 轴非负半轴为极轴,并在两种坐标系中取相同的长度单位,曲线1C 的极坐标方程为2s i n 4c o s 0ρθθ-=,曲线2C 的参数方程是12c o s 2s i n x y ϕϕ=-+⎧⎨=⎩(ϕ为参数).(1)求曲线1C 的直角坐标方程及2C 的普通方程;(2)已知点1(,0)2P ,直线l的参数方程为122x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),设直线l 与曲线1C 相交于,M N 两点,求11||||PM PN +的值.23.选修45-:不等式选讲(10分) 已知函数()|1||2|f x x x =++-. (1)求函数()f x 的最小值k ;(2)在(1)的结论下,若正实数,a b满足11a b +=22122a b+≥.9 参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分. A B C D C B D A D A B C二、填空题:本大题共4小题,每小题5分,共20分. 131415.1256π 16. 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分.17. (本小题满分12分) 解:(1)43a 是6a ,5a -的等差中项,4656a a a ∴=-,设数列{}n a 的公比为q ,则3541116a q a q a q =-260q q ∴--=,解得3q =或2q =-(舍);…………………………………………3分 4141(1)401201a q S a q -∴===-,13a ∴=所以3nn a =…………………………………………………………………………………6分(2)由已知得213log 321n n b n +==+;所以3521(2)n T n n n =++⋅⋅⋅⋅⋅⋅++=+,………………………………………………8分 11111()(2)22n T n n n n ==-++ 1231111n T T T T +++⋅⋅⋅+1111111[()()()2132435=-+-+-1111()()]112n n n n ⋅⋅⋅+-+--++ 1231111n T T T T ∴+++⋅⋅⋅+1311()2212n n =--++………………………………………12分 18.(本小题满分12分)解:(1)由表中数据知,3,100x y ==,…………………………………………………1分10 ∴1221ni ii ni i x y nx yb x nx==-=-∑∑141515008.55545-==--,……………………………………………4分ˆ125.5ay bx =-=, ∴所求回归直线方程为ˆ8.5125.5yx =-+ ………………………………………………6分 (2)由(1)知,令7x =,则ˆ8.57125.566y=-⨯+=人. …………………………8分 (3)由表中数据得2250(221288)50302030209K ⨯⨯-⨯==⨯⨯⨯ 5.556 5.024≈>,根据统计有97.5%的把握认为“礼让斑马线”行为与驾龄有关.………………12分19.(本小题满分12分)解:(1)要证明无论M 在何处,总有11B C C M ⊥只要证明1B C ⊥面1AC B 即可1BB ⊥底面ABC1BB AB ∴⊥,又AB BC ⊥,1BC B B B = ∴AB ⊥面11BCC B ,……………3分1B C AB ∴⊥11BCC B 为正方形11B C BC ∴⊥又1AB BC B =1B C ∴⊥面1AC B原命题得证…………………………………………………………………………6分(2)11B MNB B BMN V V --=11432BM BN =⋅⋅⋅ 2228()3323BM BN BM BN +=⋅≤⋅= ∴三棱锥1B MNB -体积的最大值为83……………………………………………12分20.(本小题满分12分)解:(1)设点1F 、2F 分别为(,0),(,0)(0)c c c ->由已知2ca=,所以2c a =,224c a =,22223b c a a =-= 又因为点3(1,)2在双曲线C 上,所以229141a b-= ABC1B1A 1CMN11则222294b a a b -=,即2249334a a a -=,解得214a =,12a = 所以1c =………………………………………………………………………………………3分 连接PQ ,因为12,OF OF OP OQ ==,所以四边形12PFQF 为平行四边形 因为四边形12PFQF的周长为所以21122PF PF F F +=>=所以动点P 的轨迹是以点1F 、2F 分别为左、右焦点,长轴长为可得动点P 的轨迹方程为:221(0)2x y y +=≠…………………………………………5分 (2)设11(,)M x y ,22(,)N x y ,由题意:2212y kx m x y =+⎧⎪⎨+=⎪⎩得:0224)21222=-+++m kmx x k (, 所以2121222422,1+21+2km m x x x x k k -+=-=又0∆>;………………………………………6分所以MN ==22222)21()21)(1(22k m k k +-++=……………………………………………………………8分 又直线m kx y l +=:到定圆2322=+y x 圆心的距离为21k m d +=,所以GH ==…………………………………………………10分 因为MN GH = 所以设22222222(1)(12)((12)(332)k k m k k m λλ++-=++-为定值) 化简得22222222222[2(12)(1)](1)(12)3(12)(1)0k k m k k k k λλ+-++++-++=所以22222(12)(1)0k k λ+-+=且222222(1)(12)3(12)(1)0k k k k λ++-++=解得1k =±…………………………………………………………………………………12分21.(本小题满分12分)解:(1)1)(-='xae x f , ……………………………………………………………………1分 当0≤a 时,,01)(<-='xae x f 所以(,),()0,()x f x f x '∈-∞+∞<在(,)-∞+∞上单调递减;…………………………2分12当0>a 时,,01)(=-='x ae x f 得ln x a =-;所以(,ln ),()0,()x a f x f x '∈-∞-<在(,ln )a -∞-上单调递减;(ln ),()0,()x a f x f x '∈-+∞>,在(ln )a -+∞,上单调递增;…………………………4分(2)由题(1)知: 当0≤a 时,所以)(x f 在(,)-∞+∞上单调递减;又知 0)0(=f ,所以)(x f 仅有1个零点; ……………………………………………5分 当10<<a 时,0)0(=f , 所以0)ln (<-a f , 取,ln 21)ln 2(a a a a f -+=-再令函数,ln 21)(a a a a g -+=得,0)1()(22<--='a a a g 所以()(1)0,g a g >= 所以0ln 21)ln 2(>-+=-a a aa f 得)(x f 在)ln 2,ln (a a --上也有1个零点………8分 当1=a 时,,0)0()(=≥f x f 所以)(x f 仅有1个零点, ………………………………9分 当1>a 时,0)0(=f 所以0)ln (<-a f ,令函数1,ln )(>-=a a a a h 得,011)(>-='aa h 所以()(1)0,h a h >> 所以a a a a ln ,ln -<-∴>取,0)(>=--a ae a f 得)(x f 在)ln ,(a a --上也有1个零点综上知:若)(x f 恰有2个零点,则(0,1)(1,)a ∈+∞. ………………………………12分(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题记分.22.(本小题满分10分)选修44-:坐标系与参数方程解:(1)因为2sin 4cos 0ρθθ-=,所以22sin 4cos 0ρθρθ-=,所以24y x = ……………………………………………2分因为12cos 2sin x y ϕϕ=-+⎧⎨=⎩,所以22(1)4x y ++=……………………………………………4分 (2)将直线l的参数方程122x y ⎧=+⎪⎪⎨⎪=⎪⎩代入24y x =得,240t --=设,M N 两点对应的参数为12,t t则12124t t t t +==-……………………………………………………………………6分 所以1212121212||||||1111||||||||||||t t t t PM PN t t t t t t +-+=+==1312==10分 23.(本小题满分10分)选修45-:不等式选讲 解:(1)因为12(1)(2)3x x x x ++-≥+--=所以函数()f x 的最小值为3…………………………………………………………………5分(2)由(1)知,11a b+=因为2222222222()()()2()0m n c d mc nd m d n c mcnd md nc ++-+=+-=-≥所以22222121()[1](13a b a ++≥⨯= 所以22122a b+≥ ……………………………………………………………………………10分。

山东省青岛第二中学2024届高三下学期二模考试数学试题(含答案与解析)_2131

山东省青岛第二中学2024届高三下学期二模考试数学试题(含答案与解析)_2131

山东省青岛第二中学2024届高三下学期二模考试数学试题本试卷共6页,满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.选择题部分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}=1,2,3M ,{}=0,1,2,3,4,7N ,若M A N ⊆⊆,则满足集合A 的个数为( )A. 4B. 6C. 7D. 82. 抛物线2:6C y x =的焦准距是( ) A.112B.16C. 3D. 63. 在正三棱台111ABC A B C -中,已知AB =,11A B =1AA 的长为2,则此正三棱台的体积为( ) A.212B.74C.214D.724. 628log 3x ⎛ ⎝展开式的常数项为( ) A. 512 B. 512- C. 136 D. 136-5. 已知()()1cos cos cos cos 3αβγαβγ+-+=,则()()sin sin sin sin αβγαβγ+-+=( )A 16- B. 13- C. 16D. 13 6. 为了解某中学学生假期中每天自主学习的时间,采用样本量比例分配的分层随机抽样,现抽取高一学生40人,其每天学习时间均值为8小时,方差为0.5,抽取高二学生60人,其每天学习时间均值为9小时,.方差为0.8,抽取高三学生100人,其每天学习时间均值为10小时,方差为1,则估计该校学生每天学习时间的方差为( ) A. 1.4B. 1.45C. 1.5D. 1.557. 已知函数()f x 满足对任意的(),1,x y ∈+∞且x y <都有111x y f f f xy x y ⎛⎫⎛⎫-⎛⎫=-⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,若2155n a f n n ⎛⎫= ⎪++⎝⎭,*n ∈N ,则1232024a a a a ++++= ( ) A. 253385f ⎛⎫⎪⎝⎭B. 253380f ⎛⎫⎪⎝⎭C. 253765f ⎛⎫⎪⎝⎭D. 253760f ⎛⎫⎪⎝⎭8. 古人把正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数、正矢函数、余矢函数这八种三角函数的函数线合称为八线.其中余切函数1cot tan θθ=,正割函数1sec cos θθ=,余割函数1csc sin θθ=,正矢函数sin 1cos ver θθ=-,余矢函数cos 1sin ver θθ=-.如图角θ始边为x 轴的非负半轴,其终边与单位圆交点P ,A 、B 分别是单位圆与x 轴和y 轴正半轴的交点,过点P 作PM 垂直x 轴,作PN 垂直y 轴,垂足分别为M 、N ,过点A 作x 轴的垂线,过点B 作y 轴的垂线分别交θ的终边于T 、S ,其中AM 、PS 、BS 、NB 为有向线段,下列表示正确的是( )A. sin ver AM θ=B. csc PS θ=C. cot BS θ=D. sec NB θ=二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 正方体1111ABCD A B C D -中,E ,F 分别为棱AD 和1DD 的中点,则下列说法正确的是( ) A. 1//AD 平面BEF B. 1B C ⊥平面BEFC. 异面直线11B D 与EF 所成角为60°D. 平面BEF 截正方体所得截面为等腰梯形10. 已知正实数a ,b ,c ,且a b c >>,x ,y ,z 为自然数,则满足0x y z a b b c c a++>---恒成立的x ,y ,z 可以是( ) A. 1x =,1y =,4z = B. 1x =,2y =,5z = C. 2x =,2y =,7z =D. 1x =,3y =,9z =11. 已知椭圆()222:1039x y C b b+=<<左右两个焦点分别为1F 和2F ,动直线l 经过椭圆左焦点1F 与椭圆交于,A B 两点,且228AF BF +≤恒成立,下列说法正确是( ) Ab =B. []4,6AB ∈C.离心率e = D. 若OA OB ⊥,则2211518OAOB+=非选择题部分三、填空题:本题共3小题,每小题5分,共15分.12. 已知复数1i +与3i 在复平面内用向量OA 和OB 表示(其中i 是虚数单位,O 为坐标原点),则OA与OB夹角为__________.13. 将函数()cos 2g x x =的图象上的每个点横坐标不变,纵坐标扩大为原来的2倍,再将所得图象向右平移π4得到函数()y h x =的图象,若函数()y g x =与函数()1y h x =+图象交于点()(),g αα,其中π02α-<<,则sin α的值为__________. 14. 如图为世界名画《星月夜》,在这幅画中,文森特·梵高用夸张的手法,生动地描绘了充满运动和变化的星空.假设月亮可看作半径为1的圆O 的一段圆弧E ,且弧E 所对的圆心角为4π5.设圆C 的圆心C 在点O 与弧E 中点的连线所在直线上.若存在圆C 满足:弧E 上存在四点满足过这四点作圆O 的切线,这四条切线与圆C 也相切,则弧E 上的点与圆C 上的点的最短距离的取值范围为__________.(参考数据:2πcos5=) 的.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 如图,已知多面体111111,,,ABC A B C A A B B C C -均垂直于平面111,120,4,1,2ABC ABC A A C C AB BC B B ∠=︒=====.(Ⅰ)求证:1AB ⊥平面111A B C ;(Ⅱ)求直线1AC 与平面1ABB 所成角的正弦值.16. 欧拉函数()()*Nn n ϕ∈的函数值等于所有不超过正整数n 且与n 互素的正整数的个数,例如:()11ϕ=,()42ϕ=,()84ϕ=,数列{}n a 满足()()*2N n n a n ϕ=∈.(1)求1a ,2a ,3a ,并求数列{}n a 的通项公式; (2)记()222log 1nnn na b a =-,求数列{}n b 的前n 和n S . 17. 已知双曲线()2222:10,0x y C a b a b-=>>左右焦点分别为1F ,2F ,点()3,2P 在双曲线上,且点()3,2P 到双曲线两条渐近线的距离乘积为65,过1F 分别作两条斜率存在且互相垂直的直线1l ,2l ,已知1l 与C 双曲线左支交于A ,B 两点,2l 与C 左右两支分别交于E ,F 两点.(1)求双曲线C 的方程;(2)若线段AB ,EF 的中点分别为M ,N ,求证:直线MN 恒过定点,并求出该定点坐标.18. 定义{},max ,,a a b a b b a b≥⎧=⎨<⎩,已知函数(){}3max ln ,41f x x x mx =-+-,其中R m ∈. (1)当5m =时,求过原点的切线方程;(2)若函数()f x 只有一个零点,求实数m 的取值范围.19. 甲、乙两人进行知识问答比赛,共有n 道抢答题,甲、乙抢题的成功率相同.假设每题甲乙答题正确的概率分别为p 和13,各题答题相互独立.规则为:初始双方均为0分,答对一题得1分,答错一题得﹣1分,未抢到题得0分,最后累计总分多的人获胜. (1)若3n =,12p =,求甲获胜概率; (2)若20n =,设甲第i 题得分为随机变量i X ,一次比赛中得到i X 的一组观测值()1,2,,20i x i = ,如下表.现利用统计方法来估计p 的值:①设随机变量11ni i X X n ==∑,若以观测值()1,2,,20i x i = 的均值x 作为X 的数学期望,请以此求出p 的估计值 1p ;②设随机变量i X 取到观测值()1,2,,20i x i = 的概率为()L p ,即()L p ()11222020,,,P X x X x X x ==== ;在一次抽样中获得这一组特殊观测值的概率应该最大,随着p 的变化,用使得()L p 达到最大时p 的取值 2p 作为参数p 的一个估计值.求 2p . 题目 1 2 3 4 5 6 7 8 9 10 得分 1 0 0 ﹣1 1 1 ﹣1 0 0 0 题目 11 12 13 14 15 16 17 18 19 20 得分﹣111﹣11表1:甲得分的一组观测值.附:若随机变量X ,Y 的期望()E X ,()E Y 都存在,则()()()E X Y E X E Y +=+.参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有的的一项是符合题目要求的.1. 已知集合{}=1,2,3M ,{}=0,1,2,3,4,7N ,若M A N ⊆⊆,则满足集合A 的个数为( )A. 4B. 6C. 7D. 8【答案】D 【解析】【分析】根据包含关系,写出所有满足条件的集合A 即可得解. 【详解】因为M A N ⊆⊆, 所以A 可以是{}{}{}{}{}{}{}{}1,2,3,1,2,3,4,1,2,3,0,1,2,3,7,1,2,3,0,4,1,2,3,0,7,1,2,3,7,4,1,2,3,0,4,7,共8个,故选:D2. 抛物线2:6C y x =的焦准距是( ) A.112B.16C. 3D. 6【答案】A 【解析】【分析】根据抛物线标准方程求出p 即可得解. 【详解】2:6C y x =化为标准方程为216x y =, 所以126p =,112p =, 即焦点与准线的距离为112p =, 故选:A3. 在正三棱台111ABC A B C -中,已知AB =,11A B =1AA 的长为2,则此正三棱台的体积为( ) A.212B.74C.214D.72【答案】C 【解析】【分析】先计算出三棱台的上下底面的面积,再根据底面边长与侧棱长求解三棱台的高,进而计算出三棱台的体积.【详解】正三棱台111ABC A B C -中,已知AB =,11A B =所以ABC 的面积为12=111A B C △的面积为12⨯=,设O ,1O 分别是ABC ,111A B C △的中心, 设D ,1D 分别是BC ,11B C 的中点,A ∴,O ,D 三点共线,1A ,1O ,1D 三点共线,π3sin 32AD AB =⨯==,1111πsin 33A D A B =⨯==, 1132OD AD ∴==,1111113O D A D ==,1DD ===,过D 作11DE A D ⊥,垂足为E ,则1//DE OO ,DE === ∴∴三棱台的体积为12134V =+=.故选:C .4. 628log 3x ⎛ ⎝展开式的常数项为( ) A. 512 B. 512- C. 136D. 136-【答案】A【分析】写出二项展开式的通项公式,令x 的指数为0,得出常数项的项数,即可得常数项. 【详解】展开式的通项公式为()()(66212316868C log 3C log 3rr r r r r rr T x x---+⎛=⋅⋅=⋅⋅⋅ ⎝, 令1230r -=,解得4r =,所以常数项为()(242445686231115C log 3C log 3log 215323612T ⎛⎫=⋅⋅=⋅⨯=⨯= ⎪⎝⎭.故选:A.5. 已知()()1cos cos cos cos 3αβγαβγ+-+=,则()()sin sin sin sin αβγαβγ+-+=( ) A. 16-B. 13-C. 16D. 13【答案】B 【解析】【分析】根据余弦两角和公式将()cos αβγ++展开成角αβ+与γ的两角和形式与α与βγ+的两角和形式,建立等式关系结合已知等式即可得结论.【详解】因为()()()cos cos cos sin sin αβγαβγαβγ++=+-+, 又()()()cos cos cos sin sin αβγαβγαβγ++=+-+,所以()()cos cos sin sin αβγαβγ+-+()()cos cos sin sin αβγαβγ=+-+, 因为()()1cos cos cos cos 3αβγαβγ+-+=, 则()()sin sin sin sin αβγαβγ+-+=()()1cos cos cos cos 3αβγαβγ+-+=-. 故选:B.6. 为了解某中学学生假期中每天自主学习的时间,采用样本量比例分配的分层随机抽样,现抽取高一学生40人,其每天学习时间均值为8小时,方差为0.5,抽取高二学生60人,其每天学习时间均值为9小时,方差为0.8,抽取高三学生100人,其每天学习时间均值为10小时,方差为1,则估计该校学生每天学习时间的方差为( ) A 1.4B. 1.45C. 1.5D. 1.55【答案】B.【分析】利用分层随机抽样的均值与方差公式即可解决. 【详解】由题意可得,该校学生每天学习时间的均值为40601008910200200200x =⨯+⨯+⨯9.3=, 该校学生每天学习时间的方差为()22400.589.3200s ⎡⎤=⨯+-⎣⎦()2600.899.3200⎡⎤+⨯+-⎣⎦()21001109.3200⎡⎤+⨯+-⎣⎦ 1.45=.故选:B7. 已知函数()f x 满足对任意的(),1,x y ∈+∞且x y <都有111x y f f f xy x y ⎛⎫⎛⎫-⎛⎫=-⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,若2155n a f n n ⎛⎫= ⎪++⎝⎭,*n ∈N ,则1232024a a a a ++++= ( ) A. 253385f ⎛⎫⎪⎝⎭B. 253380f ⎛⎫⎪⎝⎭C. 253765f ⎛⎫⎪⎝⎭D. 253760f ⎛⎫⎪⎝⎭【答案】D 【解析】 【分析】根据111x y f f f xy x y ⎛⎫⎛⎫-⎛⎫=-⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭将21115523n a f f f n n n n ⎛⎫⎛⎫⎛⎫==-⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭,再用裂项相消法求1232024a a a a ++++ 的值.【详解】∵函数()f x 满足对任意的(),1,x y ∞∈+且x y <都有111x y f f f xy x y ⎛⎫⎛⎫-⎛⎫=-⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∴令2,3x n y n =+=+,则()()()()2231112355n n x y xy n n n n +-+-==--++++, ∴21115523n a f f f n n n n ⎛⎫⎛⎫⎛⎫==-⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭ ∴1232024111111344520262027a a a a f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-++- ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭113202725332027132027760f f f f -⎛⎫⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪ ⎪-⨯⎝⎭⎝⎭⎝⎭⎝⎭. 故选:D【点睛】关键点点睛:本题主要考查数列的求和问题,关键是理解数列的规律,即研究透通项,本题的关键是将通项分析为:2111.5523n a f f f n n n n ⎛⎫⎛⎫⎛⎫==-⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭8. 古人把正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数、正矢函数、余矢函数这八种三角函数的函数线合称为八线.其中余切函数1cot tan θθ=,正割函数1sec cos θθ=,余割函数1csc sin θθ=,正矢函数sin 1cos ver θθ=-,余矢函数cos 1sin ver θθ=-.如图角θ始边为x 轴的非负半轴,其终边与单位圆交点P ,A 、B 分别是单位圆与x 轴和y 轴正半轴的交点,过点P 作PM 垂直x 轴,作PN 垂直y 轴,垂足分别为M 、N ,过点A 作x 轴的垂线,过点B 作y 轴的垂线分别交θ的终边于T 、S ,其中AM 、PS 、BS 、NB 为有向线段,下列表示正确的是( )A. sin ver AM θ=B. csc PS θ=C. cot BS θ=D. sec NB θ=【答案】C 【解析】【分析】利用单位圆以及三角函数的定义可知sin =MP θ,cos OM θ=,tan =AT θ,然后结合新定义简单计算可判断各个选项.【详解】根据题意,易得OMP OAT SBO PNO V :V :V :V ,对于A ,因为1cos 1OM MA θ-=-=,即sin ver MA θ=,故A 错误; 对于B ,根据三角函数定义结合相似三角形相似比可得,11csc sin BO OSOS MP MP OPθθ=====,故B 错误; 对于C ,11cot tan tan BS OSBθθ===∠,故C 正确; 对于D ,根据三角函数定义结合相似三角形相似比可得11sec cos OA OTOT OM OM OPθθ=====,故D 错误. 故选:C.【点睛】关键点睛:本题属于新定义题,解题关键是读懂题意,根据新定义,利用三角函数定义结合相似三角形相似比求解,注意有向线段.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 正方体1111ABCD A B C D -中,E ,F 分别为棱AD 和1DD 的中点,则下列说法正确的是( ) A. 1//AD 平面BEF B. 1B C ⊥平面BEFC. 异面直线11B D 与EF 所成角为60°D. 平面BEF 截正方体所得截面为等腰梯形 【答案】ACD 【解析】【分析】于A ,连接1AD ,利用三角形中位线证得1//AD EF ,结合线面平行判定定理即可判断A ;对于B ,取1AA 中点Q ,连接1,,A D QE QB ,设正方体棱长为2,根据线段长度结合勾股定理判断QE 与BE 是否垂直,即判断1B C 与BE 是否垂直,从而可判断B ;对于C ,连接11,AD B A ,根据正方体的面对角线性质,即可得异面直线11B D 与EF 所成角的大小,从而判断C ;对于D ,连接111,,AD BC C F ,确定截面完整图形为四边形1BEFC ,再计算其四边长度与位置关系,即可判断D.【详解】对于A ,如图,连接1AD ,因为E ,F 分别为棱AD 和1DD 的中点,所以1//AD EF ,又1AD ⊄平面BEF ,EF ⊂平面BEF ,所以1//AD 平面BEF ,故A 正确; 对于B ,如图,取1AA 中点Q ,连接1,,A D QE QB ,在正方体1111ABCD A B C D -中,1111,//A B CD A B CD =,所以四边形11A B CD 为平行四边形, 所以11//B C A D ,又,Q E 分别为1AA ,1A D 中点,则1//QE A D ,故1//B C QE ,设正方体棱长为2,则BE BQ QE ======,故222QE BE BQ +≠,所以QE 不垂直于BE ,故1B C 不垂直于BE ,又BE ⊂平面BEF ,所以1B C 不垂直平面BEF ,故B 错误; 对于C ,如图,连接11,AD B A ,在正方体1111ABCD A B C D -中,1111AB B D AD ==,即11AB D 为正三角形,又因为E ,F 分别为棱AD 和1DD 的中点,所以1//EF AD ,故异面直线11B D 与EF 所成角即为1160B D A ∠=︒,故C 正确;对于D ,如图,连接111,,AD BC C F ,在正方体1111ABCD A B C D -中,1111,//C D AB C D AB =,所以四边形11ABC D 为平行四边形, 则11//AD BC ,又1//EF AD ,所以1//EF BC ,所以1,,,B E F C 四点共面, 故平面BEF 截正方体所得截面为四边形1BEFC , 设正方体棱长为2,则11BE C F EF BC ========所以11,C F BE EF BC =≠,又1//EF BC ,故截面为四边形1BEFC 为等腰梯形,故D 正确. 故选:ACD.10. 已知正实数a ,b ,c ,且a b c >>,x ,y ,z 为自然数,则满足0x y z a b b c c a++>---恒成立的x ,y ,z 可以是( ) A. 1x =,1y =,4z = B. 1x =,2y =,5z = C. 2x =,2y =,7z = D. 1x =,3y =,9z =【答案】BC 【解析】【分析】利用基本不等式“1”的妙用得到x y a b b c+≥--2z >即可,再依次判断四个选项即可.【详解】要满足0x y z a b b c c a ++>---,只需满足x y z a b b c a c+>---, 其中正实数a ,b ,c ,且a b c >>,x ,y ,z 为正数,()()a b b c x yx y a b b c a c a b b c -+-⎛⎫+=+ ⎪-----⎝⎭()()()()()()b c x a b y xy a c a b a c a c b c a c--=+++------x y a c a c≥++--x ya c a c =+=--,当且仅当()()()()()()b c x a b y a b a c a c b c --=----,即()()22b c x a b y -=-时,等号成立,z a c>-,故只需2z >即可,A 选项,1x =,1y =,4z =时,24=,A 错误;B 选项,1x =,2y =,5z =时,235=+>,B 正确; C 选项,2x =,2y =,7z =时,287=>,C 正确;D 选项,1x =,3y =,9z =时,249=+<,D 错误.故选:BC.11. 已知椭圆()222:1039x y C b b+=<<左右两个焦点分别为1F 和2F ,动直线l 经过椭圆左焦点1F 与椭圆交于,A B 两点,且228AF BF +≤恒成立,下列说法正确的是() A. b =B. []4,6AB ∈C.离心率e = D. 若OA OB ⊥,则2211518OAOB+=【答案】AB 【解析】【分析】根据椭圆定义利用通径长可求得b =,由椭圆性质可得[]4,6AB∈,且离心率e =直线和椭圆方程可知当OA OB ⊥,方程无解,因此D 错误. 【详解】如下图所示:易知3a =,由椭圆定义可知22412AB AF BFa ++==,因为228AF BF +≤恒成立,所以4AB ≥,当AB x ⊥轴,即AB 为通径时,AB 最小,所以2min 24b AB a==,解得b =,所以A 正确;当AB 为长轴时,AB 最大,此时26AB a ==,所以[]4,6AB ∈,即B 正确;可得椭圆方程为22:196x y C +=,易知c ==c e a ==C 错误;因为()1F ,可设直线l的方程为x my =-()()1122,,,A x y B x y ,联立22196x my x y ⎧=-⎪⎨+=⎪⎩,整理可得()2223120m y +--=,因此121221223y y y y m +==-+; 若OA OB ⊥,可得0OA OB ⋅= ,即12120x x y y +=,所以()()21212130m y y y y +-++=;整理得2610m +=,此时方程无解,因此D 错误. 故选:AB非选择题部分三、填空题:本题共3小题,每小题5分,共15分.12. 已知复数1i +与3i 在复平面内用向量OA 和OB 表示(其中i 是虚数单位,O 为坐标原点),则OA与OB夹角为__________.【答案】45°(或π4) 【解析】【分析】根据复数的几何意义、向量夹角公式运算得解.【详解】根据题意,()1,1OA = ,()0,3OB =,cos ,OA OB OA OB OA OB⋅∴===u u u r u u u ru u u r u u u r u u u r u u u r ,又0,πOA OB ≤≤ ,所以向量OA 与OB 的夹角为π4.故答案为:o 45(或π4).13. 将函数()cos 2g x x =的图象上的每个点横坐标不变,纵坐标扩大为原来的2倍,再将所得图象向右平移π4得到函数()y h x =的图象,若函数()y g x =与函数()1y h x =+图象交于点()(),g αα,其中π02α-<<,则sin α的值为__________.【答案】##【解析】【分析】先利用伸缩变换和平移变换得到()h x ,再根据题意,由()()1h g αα+=求解. 【详解】解:由题意得:()2sin 2h x x =, 因为函数()y g x =与函数()1y h x =+图象交于点()(),g αα,所以2sin 21cos 2αα+=,即 22224sin cos sin cos cos sin αααααα++=-, 整理得()2sin 2cos sin 0ααα+=, 因为π02α-<<,所以2cos sin 0αα+=,又因为22sin cos 1αα+=,所以sin α=,故答案为:14. 如图为世界名画《星月夜》,在这幅画中,文森特·梵高用夸张的手法,生动地描绘了充满运动和变化的星空.假设月亮可看作半径为1的圆O 的一段圆弧E ,且弧E 所对的圆心角为4π5.设圆C 的圆心C 在点O 与弧E 中点的连线所在直线上.若存在圆C 满足:弧E 上存在四点满足过这四点作圆O 的切线,这四条切线与圆C 也相切,则弧E 上的点与圆C 上的点的最短距离的取值范围为__________.(参考数据:2πcos5=)【答案】( 【解析】【分析】设弧E 的中点为M ,根据圆与圆相离,确定两圆的外公切线与内公切线,确定圆O 的位置,分析可得弧E 上的点与圆C 上的点的最短距离. 【详解】如图,设弧E 的中点为M ,弧E 所对的圆心角为4π5, 圆O 的半径1OM =,在弧E 上取两点,A B ,则4π5AOB ∠≤, 分别过点,A B 作圆O 的切线,并交直线OM 于点D ,当过点,A B 的切线刚好是圆O 与圆C 的外公切线时,劣弧AB 上一定还存在点,S T ,使过点,S T 的切线为两圆的内公切线,则圆C 的圆心C 只能在线段MD 上,且不包括端点,过点C ,分别向,AD BD 作垂线,垂足为,R P ,则CR 即为圆C 的半径,设线段OC 交圆C 于点N ,则弧E 上的点与圆C 上的点的最短距离即为线段MN 的长度.在Rt AOD中,12πcos cos cos 25OAOA OAOD AOB AOD ==≤==∠∠,则11011MN OC OM CN OC CR OD =--=--<--=+-=即弧E 上的点与圆C上的点的最短距离的取值范围为(.故答案为:(.【点睛】结论点睛:本题考查了根据两圆位置关系求距离的范围的问题.可按如下结论求解:相离的两个圆(圆心分别为1O 和2O ,半径分别为R 和r )上的两个动点之间的距离L 的最小值是两圆心之间的距离减去两圆的半径,最大值是两圆心之间的距离加上两圆的半径,即min 12max 12,L O O R r L O O R r =--=++.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 如图,已知多面体111111,,,ABC A B C A A B B C C -均垂直于平面111,120,4,1,2ABC ABC A A C C AB BC B B ∠=︒=====.(Ⅰ)求证:1AB ⊥平面111A B C ;(Ⅱ)求直线1AC 与平面1ABB 所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ【解析】【分析】(Ⅰ)方法一:通过计算,根据勾股定理得111111,AB A B AB B C ⊥⊥,再根据线面垂直的判定定理得结论;(Ⅱ)方法一:找出直线AC 1与平面ABB 1所成的角,再在直角三角形中求解即可. 【详解】(Ⅰ)[方法一]:几何法由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB A B ==,所以2221111A B AB AA +=,即有111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C =,由2,120AB BC ABC ==∠=︒得AC =由1CC AC ⊥,得1AC =2221111AB B C AC +=,即有111AB B C ⊥,又11111A B B C B = ,因此1AB ⊥平面111A B C .[方法二]:向量法如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:()()()()()1110,,1,0,0,0,4,1,0,2,,A B A B C因此111112),2),(0,3)AB A B A C ==-=-, 由1110AB A B ⋅= 得111AB A B ⊥;由1110AB A C ⋅=得111AB A C ⊥,所以1AB ⊥平面111A B C . (Ⅱ)[方法一]:定义法如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD .由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB ,所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111B C A B A C ===得111111cos C A B C A B ∠=∠=,所以1C D =,故111sin C D C AD AC ∠==因此,直线1AC 与平面1ABB[方法二]:向量法设直线1AC 与平面1ABB 所成的角为θ.由(I)可知11(0,(0,0,2)AC AB BB ===,设平面1ABB 的法向量(,,)n x y z =.由100n AB n BB ⎧⋅=⎪⎨⋅=⎪⎩即020x z ⎧=⎪⎨=⎪⎩,可取(n = ,所以111sin cos ,||AC n AC n AC n θ⋅===⋅. 因此,直线1AC 与平面1ABB[方法三]:【最优解】定义法+等积法设直线1AC 与平面1ABB 所成角为θ,点1C 到平面1ABB 距离为d (下同).因为1C C ∥平面1ABB ,所以点C 到平面1ABB 的距离等于点1C 到平面1ABB 的距离.由条件易得,点C 到平面1ABB 的距离等于点C 到直线AB 的距离,而点C 到直线ABd =.故1sin d AC θ===. [方法四]:定义法+等积法设直线1AC 与平面1ABB 所成的角为θ,由条件易得111111A B B C AC ===2221111111111111cos 2A B B C AC A B C A B B C +-∠==⋅,因此111sin A B C ∠=于是得11111111111sin 2A B C S A B B C A B C =⋅⋅∠=△,易得114AA B S =△. 由111111C AA B A A B C V V --=得1111111133AA B A B C S d S AB ⋅=⋅△△,解得d =故1sin d AC θ===. [方法五]:三正弦定理的应用设直线1AC 与平面1ABB 所成的角为θ,易知二面角11C AA B --的平面角为6BAC π∠=,易得11sin C AA ∠=,所以由三正弦定理得111sin sin sin 2C AA BAC θ=∠⋅∠=⨯= [方法六]:三余弦定理的应用设直线1AC 与平面1ABB 所成的角为θ,如图2,过点C 作CG AB ⊥,垂足为G ,易得CG ⊥平面1ABB ,所以CG可看作平面1ABB 的一个法向量.结合三余弦定理得11sin cos ,cos cos AC CG C AC GCA θ=〈=∠⋅∠=〉=. [方法七]:转化法+定义法如图3,延长线段1A A 至E ,使得1AE C C =.联结CE ,易得1EC AC ∥,所以1AC 与平面1ABB 所成角等于直线EC 与平面1ABB 所成角.过点C 作CG AB ⊥,垂足为G ,联结GE ,易得CG ⊥平面1ABB ,因此EG 为EC 在平面1ABB 上的射影,所以CEG ∠为直线EC 与平面1ABB 所成的角.易得CE =,CG =,因此sin CG CEG CE ∠===[方法八]:定义法+等积法如图4,延长11,A B AB 交于点E ,易知2BE =,又2AB BC ==,所以A C C E ⊥,故CE ⊥面11AAC C .设点1C 到平面1ABB 的距离为h ,由1111E AA C C AA E V V --=得1111113232AA AE h AA AC CE ⨯⋅⋅=⨯⋅⋅,解得h =.又1AC =,设直线1AC 与平面1ABB 所成角为θ,所以sin θ==. 【整体点评】(Ⅰ)方法一:通过线面垂直的判定定理证出,是该题的通性通法; 方法二: 通过建系,根据数量积为零,证出;(Ⅱ)方法一:根据线面角的定义以及几何法求线面角的步骤,“一作二证三计算”解出;方法二:根据线面角的向量公式求出;方法三:根据线面角的定义以及计算公式,由等积法求出点面距,即可求出,该法是本题的最优解; 方法四:基本解题思想同方法三,只是求点面距的方式不同; 方法五:直接利用三正弦定理求出; 方法六:直接利用三余弦定理求出;方法七:通过直线平移,利用等价转化思想和线面角的定义解出;方法八:通过等价转化以及线面角的定义,计算公式,由等积法求出点面距,即求出. 16. 欧拉函数()()*Nn n ϕ∈的函数值等于所有不超过正整数n 且与n 互素的正整数的个数,例如:()11ϕ=,()42ϕ=,()84ϕ=,数列{}n a 满足()()*2N n n a n ϕ=∈.(1)求1a ,2a ,3a ,并求数列{}n a 的通项公式; (2)记()222log 1nnn na b a =-,求数列{}n b 的前n 和n S . 【答案】(1)11a =,22a =,34a =,12n n a -=(2)()620625254n nn S +=-+⨯- 【解析】【分析】(1)根据题意理解可求1a ,2a ,3a ,结合与2n 互素的个数可求数列{}n a 的通项公式; (2)求出数列{}n b 的通项公式,利用错位相减法求和即可. 【小问1详解】由题意可知()121a ϕ==,()242a ϕ==,()384a ϕ==,由题意可知,正偶数与2n 不互素,所有正奇数与2n 互素,比2n 小的正奇数有12n -个, 所以()122nn n a ϕ-==;小问2详解】 由(1)知()122nn n a ϕ-==,所以()221222nn n a ϕ-==,所以()()()()()21222212log log 2211112142244nn nn n n n n n n a b n n a --⎛⎫=-=-=--=-- ⎪⎝⎭,【12n n S b b b =+++ ,所以()()12111112646424444n nn S n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-++-⨯-+-⨯- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,①()()2311111126464244444nn n S n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=⨯-+⨯-++-⨯-+-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,②所以①-②得()12151111244244444n n n S n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-++---⨯-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()111111641144212414n n n -+⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+⨯--⨯-⎪⎛⎫⎝⎭-- ⎪⎝⎭()()1111111320614225441054n n n n n -++⎡⎤+⎛⎫⎛⎫=-+----⨯-=--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⨯-⎢⎥⎣⎦,所以()620625254n nn S +=-+⨯-. 17. 已知双曲线()2222:10,0x y C a b a b-=>>左右焦点分别为1F ,2F ,点()3,2P 在双曲线上,且点()3,2P 到双曲线两条渐近线的距离乘积为65,过1F 分别作两条斜率存在且互相垂直的直线1l ,2l ,已知1l 与C 双曲线左支交于A ,B 两点,2l 与C 左右两支分别交于E ,F 两点.(1)求双曲线C 的方程;(2)若线段AB ,EF 的中点分别为M ,N ,求证:直线MN 恒过定点,并求出该定点坐标.【答案】(1)22132x y -=(2)证明见解析,()- 【解析】【分析】(1)根据题意,列出,,a b c 方程组求出22,a b 得解; (2)设直线1l的方程为(y k x =+,可得2l的方程(1y x k=-,分别与双曲线方程联立,结合的韦达定理求出点,M N 的坐标,表示直线MN 的方程,令0y =求得x 是定值. 【小问1详解】设双曲线C 的两渐近线方程分别为b y x a=,by x a =-,点()3,2P 到双曲线两渐近线的距离乘积为22294323265b a b a b ac c c --+⨯==, 由题意可得:222222229465941a b c b a c a b ⎧+=⎪⎪-⎪=⎨⎪⎪-=⎪⎩,解得23a =,22b =, 所以双曲线C 的方程为22132x y -=.【小问2详解】设直线1l的方程为(y k x =, 由1l ,2l 互相垂直得2l的方程(1y x k=-,联立方程得(22132y k x x y ⎧=⎪⎨⎪-=⎩,消y 得()2222231560k x x k ----=, 0∆>成立,所以122M x x x +==,(M M y k x =+=, 所以点M坐标为,联立方程得(221132y x k x y ⎧=-+⎪⎪⎨⎪-=⎪⎩,所以342N x x x +==(1N N y x k =-=, 所以点N坐标为,根据对称性判断知定点在x 轴上,直线MN 的方程为()N MM M N My y y y x x x x --=--,则当0y =时,M N N M N M x y x y x y y -====--, 所以直线MN恒过定点,定点坐标为()-.【点睛】关键点点睛:本题第二问的关键是采用设线法再联立双曲线方程从而解出点,M N 的坐标,再得到直线MN 的方程,最后令0y =即可得到其定点坐标.18. 定义{},max ,,a a b a b b a b≥⎧=⎨<⎩,已知函数(){}3max ln ,41f x x x mx =-+-,其中R m ∈. (1)当5m =时,求过原点的切线方程;(2)若函数()f x 只有一个零点,求实数m 的取值范围. 【答案】(1)e 0x y -=或20x y -=(2)3m <或5m > 【解析】【分析】(1)当5m =时,求出()f x ,利用导数的几何意义得出切线斜率,即可求切线方程; (2)对m 分类讨论,根据函数只有一个零点,结合函数的单调性分别分析求出m 的取值范围. 【小问1详解】由题意知()f x 定义域()0,∞+,当5m =时,()333451,451ln ln ,451ln x x x x x f x x x x x ⎧-+--+-≥=⎨-+-<⎩, 令()3451g x x x =-+-,()212500g x x x '=-+>⇒<<, ()g x ⇒在⎛ ⎝单调递增,⎫+∞⎪⎪⎭单调递减,且()10g =,令()ln h x x =,则在()0,∞+单调递增,而()()101f h ==,又13416g ⎛⎫= ⎪⎝⎭,11ln 144h ⎛⎫=<- ⎪⎝⎭,而()01g =-, 所以当104x <<时,()()>g x h x ,当114x ≤<时,()()0g x h x >>,所以当01x <<时,()()f x g x =,当1x ≥时,()()f x h x =,所以()3451,01ln ,1x x x f x x x ⎧-+-<<=⎨≥⎩,所以()f x在⎛ ⎝和()1,+∞单调递增,在⎫⎪⎪⎭单调递减.(ⅰ)当01x <<时,()2125f x x '=-+,设切点()3000,451M x x x -+-,则此切线方程为()()230000125451y x x x xx =-+--+-,又此切线过原点,所以()()23000001250451x x x x =-+--+-,解得012x =, 即此时切线方程是20x y -= ;(ⅱ)当1x ≥时,()ln f x x =,所以()1f x x'=, 设切点为()00,ln x x ,此时切线方程()0001ln y x x x x =-+, 又此切线过原点,所以()000100ln x x x =-+,解得0e x =, 所以此时切线方程e 0x y -=,综上所述,所求切线方程是:e 0x y -=或20x y -=;小问2详解】 (ⅰ)当5m =时,【由(1)知,()f x在⎛ ⎝和()1,+∞单调递增,⎫⎪⎪⎭单调递减,且()01f =,130416f ⎛⎫=>⎪⎝⎭,()10f = , 此时()f x 有两个零点; (ⅱ)当5m >时,当01x <<时,3345141x x x mx -+-<-+-,由(1)知:()3451g x x x =-+-在⎛ ⎝递增,⎫⎪⎪⎭递减,且()10g =,所以x ⎫∈+∞⎪⎪⎭时,()0f x >,而()01f =-,所以()f x在⎛ ⎝只有一个零点,⎫+∞⎪⎪⎭没有零点;(ⅲ)当05m <<时,341y x mx =-+-,此时2120y x m '=-+>得0x <<<, 由(1)知,当1x ≥时,()ln f x x =只有一个零点1x =,要保证()f x 只有一个零点,只需要当01x <<时,()341f x x mx =-+-没有零点,3411001f m ⎧⎪=-+-=-<⎪⎨⎪<<⎪⎩,得03m <<; (ⅳ)当0m ≤时,当()0,x ∈+∞时,()3410g x x mx =-+-<,此时()f x 只有一个零点1x =,综上,()f x 只有一个零点时,3m <或5m > .【点睛】关键点点睛:通过对m 的分类讨论,得出()f x 解析式,再由函数的单调性,结合函数只有一个零点,分别分析或列出不等式求m 的范围,解题过程较繁琐.19. 甲、乙两人进行知识问答比赛,共有n 道抢答题,甲、乙抢题的成功率相同.假设每题甲乙答题正确的概率分别为p 和13,各题答题相互独立.规则为:初始双方均为0分,答对一题得1分,答错一题得﹣1分,未抢到题得0分,最后累计总分多的人获胜. (1)若3n =,12p =,求甲获胜的概率; (2)若20n =,设甲第i 题的得分为随机变量i X ,一次比赛中得到i X 的一组观测值()1,2,,20i x i = ,如下表.现利用统计方法来估计p 的值:①设随机变量11ni i X X n ==∑,若以观测值()1,2,,20i x i = 的均值x 作为X 的数学期望,请以此求出p 的估计值 1p ;②设随机变量i X 取到观测值()1,2,,20i x i = 的概率为()L p ,即()L p ()11222020,,,P X x X x X x ==== ;在一次抽样中获得这一组特殊观测值的概率应该最大,随着p 的变化,用使得()L p 达到最大时p 的取值 2p 作为参数p 的一个估计值.求 2p . 题目 1 2 3 4 5 6 7 8 9 10 得分 1 0 0 ﹣1 1 1 ﹣1 0 0 0 题目 11 12 13 14 15 16 17 18 19 20 得分﹣111﹣11表1:甲得分的一组观测值.附:若随机变量X ,Y 的期望()E X ,()E Y 都存在,则()()()E X Y E X E Y +=+.【答案】(1)539864 (2)①135p =;② 235p = 【解析】【分析】(1)根据甲抢到题目数,分类讨论利用条件概率和全概率公式求解. (2)①由公式计算的数学期望与观测值的均值x 相等,可求出p 的估计值 1p ; ②由概率()L p 的表达式,利用导数求取最大值时时p 的取值. 【小问1详解】记甲获胜事件A ,甲抢到3道题为事件3A ,甲抢到2道题为事件2A ,甲抢到1道题为事件1A ,甲抢到0道题为事件0A ,则()331128P A ⎛⎫== ⎪⎝⎭,()322313C 28P A ⎛⎫== ⎪⎝⎭, ()311313C 28P A ⎛⎫== ⎪⎝⎭,()301128P A ⎛⎫== ⎪⎝⎭,而()322331111|C 12222P A A ⎛⎫⎛⎫⎛⎫=+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,()212211117|C 11222312P A A ⎛⎫⎛⎫⎛⎫=+⋅⋅--= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, ()1122211222|21233332333P A A ⎛⎫⎛⎫=⋅+⋅⋅+-⋅⋅= ⎪ ⎪⎝⎭⎝⎭,()3210321220|C 33327P A A ⎛⎫⎛⎫=+⋅⋅= ⎪ ⎪⎝⎭⎝⎭, 所以()()()()()()()()()33221100||||P A P A P A A P A P A A P A P A A P A P A A =+++1137321205398281283827864=⋅+⋅+⋅+⋅=. 【小问2详解】①()12i p P X ==,()102i P X ==,()112i p P X -=-=, 所以()11211012222i p p p E X --=⨯+⨯-⨯=;因为()()1111111212122n n ni i i i i i p p E X E X E X E X n n n n n ===--⎛⎫⎛⎫====⋅⋅= ⎪ ⎪⎝⎭⎝⎭∑∑∑,由表中数据可知110x =, 所以 1211210p -=, 135p =. ②因为()1,2,,20i X i = 取值相互独立,所以()()()()()1122202011222020,,,L p P X x X x X x P X x P X x P X x ========为()()()6104610411101222i i i p p P X P X P X -⎛⎫⎛⎫⎛⎫==⨯=⨯=-=⎡⎤⎡⎤⎡⎤ ⎪ ⎪ ⎪⎣⎦⎣⎦⎣⎦⎝⎭⎝⎭⎝⎭, 所以()10546310531111135322222222222p p p p p p p L p ⎡⎤---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'=-=-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦; 令()0L p '=得35p =, 又01p <<, 所以当30,5p ⎛⎫∈ ⎪⎝⎭时,()0L p '>,()L p 单调递增; 当3,15p ⎛⎫∈ ⎪⎝⎭时,()0L p '<,()L p 单调递减; 即当35p =时()L p 取到最大值,从而 235p =. 【点睛】方法点睛:正确提取题干中的新概念、新公式、新性质、新模式等信息,确定新定义的名称或符号、概念、法则等,并进行信息再加工,寻求相近知识点,明确它们的共同点和不同点,探求解决方法,在此基础上进行知识转换,有效输出,合理归纳,结合相关的数学技巧与方法来分析与解决!。

青岛2019届高三5月份第二次模拟考试(文科数学)

青岛2019届高三5月份第二次模拟考试(文科数学)

2019年青岛市高考模拟检测数学(文科)本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

祝考试顺利注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5.考试结束后,请将答题卡上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{2,1,0,1,2}A =--,2{20}B x x x =--=,则A B =A.{1,2}-B.{2,1}-C.{1,2}D.∅2.“2a =-”是“复数(2)(1)(R)z a i i a =+-+∈为纯虚数”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知平面向量,a b 的夹角为23π,且||3,||2a b == ,则(2)a a b ⋅-=A.3B.9C.12D.154.函数()sin ln ||f x x x x =+在区间[2,2]ππ-上的大致图象为5.已知在ABC ∆中,,,a b c 分别为角,,A B C 的对边,A 为最小角,且a =,2,b =5cos 8A =,则ABC ∆的面积等于A.16B.16C.4D.46.已知O 为坐标原点,点12,F F 分别为椭圆22:143x y C +=的左、右焦点,A 为椭圆C 上的一点,且212AF F F ⊥,1AF 与y 轴交于点B ,则||OB 的值为A.34B.32C.54D.527.若129()4a =,83log 3b =,132()3c =,则,,a b c 的大小关系为A.c b a <<B.a b c <<C.b a c<<D.c a b<<xOyBOyxC xOyxOyA8.已知圆22:1C x y +=和直线:(2)l y k x =+,在(上随机选取一个数k ,则事件“直线l 与圆C 相交”发生的概率为A.15B.14C.13D.129.某四棱锥的三视图如图所示,则该四棱锥的侧面为等腰直角三角形个数为A.1B.2C.3D.410.将函数()sin(2)()22f x x ππθθ=+-<<的图象向右平移(0)ϕϕ>个单位长度后得到函数()g x 的图象,若(),()f x g x 的图象都经过点3(0,2P ,则ϕ的值可以是A.53πB.56πC.2πD.6π11.已知函数log ,3()8,3a x x f x mx x ≥⎧=⎨+<⎩,若(2)4f =,且函数()f x 存在最小值,则实数a 的取值范围为A.B.(1,2]C.(0,]3D.)+∞12.已知三棱锥O ABC -的底面ABC ∆的顶点都在球O 的表面上,且6AB =,BC =,AC =,且三棱锥O ABC -的体积为,则球O 的体积为A.323πB.643πC.1283πD.2563π2正视图侧视图俯视图211二、填空题:本大题共4个小题,每小题5分.13.已知1cos(43πα+=,则sin 2α=.14.已知实数,x y 满足条件2221y x x y x ≤⎧⎪+≥⎨⎪≤⎩,则x y +的最大值是.15.直线y =与双曲线22221(0,0)x y a b a b-=>>的左、右两支分别交于,B C 两点,A为双曲线的右顶点,O 为坐标原点,若OC 平分AOB ∠,则该双曲线的离心率为.16.设函数()xf x e x =--的图象上任意一点处的切线为1l ,若函数()cosg x ax x =+的图象上总存在一点,使得在该点处的切线2l 满足12l l ⊥,则a 的取值范围是.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答.(一)必考题:共60分.17.(12分)已知数列{}n a 的各项均为正数,13a =,且对任意*N n ∈,2n a 为213n a ++和1的等比中项,数列{}n b 满足2*1(N )n n b a n =-∈.(1)求证:数列{}n b 为等比数列,并求{}n a 通项公式;(2)若2log n n c b =,{}n c 的前n 项和为n T ,求使n T 不小于360的n 的最小值.18.(12分)如图,在圆柱W 中,点1O 、2O 分别为上、下底面的圆心,平面MNFE 是轴截面,点H 在上底面圆周上(异于N F 、),点G 为下底面圆弧ME 的中点,点H 与点G 在平面MNFE 的同侧,圆柱W 的底面半径为1.(1)若平面⊥FNH 平面NHG ,证明:FH NG ⊥;(2)若直线//1H O 平面FGE ,求H 到平面FGE 的距离.19.(12分)鲤鱼是中国五千年文化传承的载体之一,它既是拼搏进取、敢于突破自我、敢于冒险奋进精神的载体,又是富裕、吉庆、幸运的美好象征.某水产养殖研究所为发扬传统文化,准备进行“中国红鲤”和“中华彩鲤”杂交育种实验.研究所对200尾中国红鲤和160尾中华彩鲤幼苗进行2个月培育后,将根据体长分别选择生长快的10尾中国红鲤和8尾中华彩鲤作为种鱼进一步培育.为了解培育2个月后全体幼鱼的体长情况,按照品种进行分层抽样,其中共抽取40尾中国红鲤的体长数据(单位:cm )如下:5677.588.44 3.5 4.5 4.3543 2.541.66 6.5 5.5 5.73.1 5.2 4.45 6.4 3.5743 3.46.94.85.655.66.53676.6(1)根据以上样本数据推断,若某尾中国红鲤的体长为8.3cm ,它能否被选为种鱼?说明理由;(2)通过计算得到中国红鲤样本数据平均值为5.1cm ,中华彩鲤样本数据平均值为4.875cm ,求所有样本数据的平均值;(3)如果将8尾中华彩鲤种鱼随机两两组合,求体长最长的2尾组合到一起的概率.MN1O 2O EFHG∙∙20.(12分)已知圆22:(1)1F x y -+=,动点(,)(0)Q x y x ≥,线段QF 与圆F 相交于点P ,线段PQ 的长度与点Q 到y 轴的距离相等.(1)求动点Q 的轨迹W 的方程;(2)过点F 的直线l 交曲线W 于D A ,两点,交圆F 于C B ,两点,其中B 在线段AF 上,C 在线段DF 上.求||4||AB CD +的最小值及此时直线l 的斜率.21.(12分)已知函数ln ()(0)x g x m x m =<-,2()h x x m=+.(1)若()g x 在2(0,]e 上为单调递增,求实数m 的取值范围;(2)若1m =-,且()()()f x g x h x =⋅,求证:对定义域内的任意实数x ,不等式1()f x x<恒成立.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题记分.22.选修44-:坐标系与参数方程(10分)已知平面直角坐标系xOy ,直线l 过点P ,且倾斜角为α,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为24cos()103πρρθ---=.(1)求直线l 的参数方程和圆C 的标准方程;(2)设直线l 与圆C 交于M 、N 两点,若||||PM PN -=求直线l 的倾斜角的α值.23.选修45-:不等式选讲(10分)已知0,0,0a b c >>>,函数()||||f x a x x b c =-+++.(1)当2a b c ===时,求不等式()8f x <的解集;(2)若函数()f x 的最小值为1,证明:22213a b c ++≥.。

山东省青岛市2021届高三5月份二模数学试题含标准答案

山东省青岛市2021届高三5月份二模数学试题含标准答案

13.命题“ x R , ex a ex ”为假命题,则实数 a 的取值范围为

14.在平行四边形
ABCD
中,
AB
AD
AB
2
1

AC
5 ,则 BAD
15.若(3
2 x)2021
a0
a1x
a2x2
a x2021 2021
,则 a1
2a2
3a3
2021a2021
; ;
16.某校学生去工厂进行劳动实践,加工制作某种零件.如图,将边长为10 2cm 正方形铁皮
,则下列结论正
A. z0 在复平面内对应的点位于第四象限 B. | z0 | 1
C.
z0
的实部为
1 2
D. z0 的虚部为
3 2
10.已知函数 f (x) (2 cos2 x 1) sin 2 x 1 cos 4 x ( 0) ,则下列说法正确的是 2
A.若 f (x) 的两个相邻的极值点之差的绝对值等于 π ,则 2 4
A.甲
B.乙
C.丙
数学试题 第 2 页 共 7 页
D.丁
8.在平面直角坐标系中,双曲线
C
:
x a
2 2
y2 b2
1(a
0, b 0) 的左右焦点分别为
F1, F2 ,抛
物线 Z : y2 2 px( p 0) 的焦点恰为 F2 ,点 P 是双曲线 C 和抛物线 Z 的一个交点,且
| PF2 | | F1F2 | ,则双曲线 C 的离心率为
补充在下面的横线上,并解答.
已知 ABC 的内角 A, B, C 的对边分别为 a, b, c ,___________. (1)求 A ; (2)设 AD 是 A 的平分线, b c 10 且 ABC 面积为 2 3 ,求线段 AD 的长度.

山东省青岛市2021届高三数学5月模拟检测试题(含解析).doc

山东省青岛市2021届高三数学5月模拟检测试题(含解析).doc

山东省青岛市2021届高三数学5月模拟检测试题(含解析)一、单项选择题1.已知全集U =R ,集合{}2320A x x x =-+≤,{}131x B x -=≥,()U A B =( )A. []1,2B. ()2,+∞C. [)1,+∞ D. (),1-∞【答案】B 【解析】 【分析】将集合A ,B 化简,再求出UA ,根据交集的定义即可得到答案.【详解】因为{}{}2320=12A x x x x x =-+≤≤≤,{}{}{}1103133=1x x B x x x x --=≥=≥≥,所以(){|1UA B x x ⋂=<或}{}{}212x x x x x >⋂≥=>.故选:B.【点睛】本题主要考查交集、补集的运算,同时考查一元二次不等式的解法及指数不等式的解法,属于基础题.2.若复数z 满足)|i z i =(其中i 是虚数单位),则复数z 的共轭复数z 的虚部为( ) A.12B.12i C. 12-D. 12i -【答案】C 【解析】 【分析】根据复数模的定义可得)2i z =,从而可得z =,再根据复数的乘除运算即可求出复数z ,再根据共轭复数的定义,求出z 即可得到答案.【详解】由)|i z i -=得)2i z ==,所以)1422i z i ===+,所以312z i =-,所以z 的虚部为12-.故选:C.【点睛】本题主要考查复数的模,复数代数形式的乘除运算及共轭复数的概念,属于基础题. 3.已知向量()1cos ,2a x =+,()sin ,1b x =,0,2x π⎛⎫∈ ⎪⎝⎭,若//a b ,则sin x =( ) A.45B.35C.25D.25【答案】A 【解析】 【分析】根据向量平行的坐标表示列出方程可得cos 2sin 1x x =-,代入22sin cos 1x x +=解方程即可求出sin x .【详解】因为//a b ,所以1cos 2sin 0x x +-=,所以cos 2sin 1x x =-, 又因为22sin cos 1x x +=,所以22sin (2sin 1)1x x +-=, 即25sin 4sin 0x x -=,解得4sin 5x =或sin 0x =,又0,2x π⎛⎫∈ ⎪⎝⎭, 所以4sin 5x =. 故选:A.【点睛】本题主要考查向量平行的坐标表示,同角三角函数平方关系,属于基础题. 4.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数解析式来分析函数的图象与性质,下列函数的解析式(其中 2.71828e =为自然对数的底数)与所给图象最契合的是( )A. ()sin x xy e e -=+B. ()sin x xy e e-=-C. ()tan x xy e e -=-D. ()cos x xy e e -=+【答案】D 【解析】 【分析】根据0x =时的函数值排除即可.【详解】当0x =时,对于A ,()00sin sin20y e e =+=>,故排除A ;对于B ,()00sin 0y e e=-=,故排除B ; 对于C ,()00tan 0y e e=-=,故排除C ;对于D ,()00cos cos20y e e =+=<,符合题意.故选:D.【点睛】本题主要考查函数表示方法中的图象法与解析法之间的对应关系,可利用从函数图象上的特殊点,排除不合要求的解析式.5.从编号为1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,则第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率为( ) A.29B.14C.718D.112【答案】C 【解析】 分析】基本事件的总数有6636⨯=种,利用列举法求出第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的基本事件有14种,根据古典概型概率计算公式,即可求出答案. 【详解】从编号为1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,有36个基本事件,其中第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除有如下基本事件 (第一次抽得的卡片1,第二次摸到卡片2用(1,2)表示):(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6), (4,4),(5,5),(6,6),共14个,所以第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率1473618P ==. 故选:C.【点睛】本题主要考查古典概型的概率的求法,属于基础题.6.“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆.若椭圆C :2211x y a a+=+(0)a >的离心率为12,则椭圆C 的蒙日圆方程为( )A. 229x y +=B. 227xy +=C. 225x y +=D.224x y +=【答案】B 【解析】 【分析】根据椭圆C 的离心率可求出3a =,根据题意知椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,利用过上顶点和右顶点的切线可得蒙日圆上的一点,即可椭圆C 的蒙日圆方程.【详解】因为椭圆C :2211x y a a+=+(0)a >的离心率为12,12=,解得3a =,所以椭圆C 的方程为22143x y +=,所以椭圆的上顶点A ,右顶点(2,0)B ,所以经过,A B 两点的切线方程分别为y =2x =,所以两条切线的交点坐标为,又过A ,B 的切线互相垂直,由题意知交点必在一个与椭圆C 同心的圆上,可得圆的半径r ==所以椭圆C 的蒙日圆方程为227xy +=.故选:B.【点睛】本题主要考查椭圆的几何性质,同时考查圆的方程,属于基础题. 7.已知O 是ABC 内部一点,20OA OB OC ++=,4BA BC ⋅=且6ABC π∠=,则OAC的面积为( ) A.3 B.23C.23D.43【答案】A 【解析】 【分析】由20OA OB OC ++=可得1()2BO OA OC =+,设D 为AC 的中点,则1()2OA O OC D =+,可得BO OD =,从而可得O 为BD 的中点,进而可得12AOC ABC S S =△△,由4BA BC ⋅=可得83||||BA BC ⋅=,再由12||||sin ABC BA AB S BC C ⋅⋅=∠△即可求出ABCS.【详解】在ABC 中,由20OA OB OC ++=,得22OA OC OB BO +=-=, 所以1()2BO OA OC =+,设D 为AC 的中点,则1()2OA O OC D =+, 所以BO OD =,所以O 为BD 的中点,所以12AOC ABC S S =△△,因为4BA BC ⋅=,所以3||||cos ||||4BA BC BA BC ABC BA BC ⋅=⋅⋅∠=⋅⋅=,所以83||||3BA BC ⋅=, 所以11||||sin 232312ABCBA BC AB S C ⋅⋅∠==⨯=△, 所以1233=AOC S =⨯△. 故选:A.【点睛】本题主要考查向量的线性运算,向量的数量积及三角形的面积公式,属于中档题.8.已知函数()2ln x f x x =,若()21f x m x<-在(0,)+∞上恒成立, 2.71828e =⋅⋅⋅为自然对数的底数,则实数m 的取值范围是( )A. m e >B. 2e m >C. 1mD. m >【答案】B 【解析】 【分析】()21f x m x <-在(0,)+∞上恒成立,即()21f x m x +<在(0,)+∞上恒成立,令221ln 1()()x g x f x x x+=+=,故只需max ()g x m <即可,利用导数求出()g x 的最大值即可. 【详解】若()21f x m x <-在(0,)+∞上恒成立,即()21f x m x+<在(0,)+∞上恒成立, 令221ln 1()()x g x f x x x+=+=,故只需max ()g x m <即可, 2431(ln 1)22ln 1()x x x x x g x x x ⋅-+⋅--'==,令()0g x '=,得12x e -=, 当120x e -<<时,()0g x '>;当12x e ->时,()0g x '<, 所以()g x 在12(0)e -,上是单调递增,在12(,)e -+∞上是单调递减,所以当12max ()()2e g x g e -==, 所以实数m 的取值范围是2e m >. 故选:B.【点睛】本题主要考查分离参数法处理恒成立问题,同时考查利用导数求函数的最值,属于中档题.二、多项选择题9.设a ,b ,c 为实数,且0a b >>,则下列不等式中正确的是( ) A. ()222log log ab b >B. 22ac bc >C. 1b a a b<<D. 1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【答案】AC 【解析】 【分析】对A ,利用作差法比较即可;对B ,利用不等式的性质判断即可;对C ,利用作差法比较即可;对D ,利用指数函数的单调性比较即可. 【详解】对A ,因为0a b >>,所以1ab>, 所以2222222log ()log log log log 10ab a ab b b b-==>=, 所以222log ()log ab b >,故A 正确; 对B ,当0c时,22ac bc >不成立,故B 错误;对C ,因为0a b >>,所以10b b a a a --=<,10a b a b b--=<, 所以1b aa b<<,故C 正确; 对D ,因为函数12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,又a b >,所以1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故D 错误.故选:AC【点睛】本题主要考查作差法比较大小,不等式的性质及指数函数的单调性,属于基础题. 10.已知等差数列{}n a 的前n 项和为()n S n N *∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A. 122a =B. 2d =-C. 当10n =或11n =时,n S 取得最大值D. 当0n S >时,n 的最大值为20【答案】BCD 【解析】 【分析】由690S =可得12530a d +=,由7a 是3a 与9a 的等比中项可得110a d =-,联立方程可求出120a =,2d =-,即可判断A ,B 选项,求出等差数列{}n a 的前n 项和为n S ,即可判断C ,D.【详解】因为690S =,所以1656902a d ⨯+=,即12530a d +=,① 又因为7a 是3a 与9a 的等比中项,所以2739a a a =⋅, 所以2111(6)(2)(8)a d a d a d +=++,整理得110a d =-,②由①②解得120a =,2d =-,故A 错误; 所以22(1)2144120(2)21()224n n n S n n n n -=+⨯-=-+=--+, 又n *∈N ,所以当10n =或11n =时,n S 取得最大值,故C 正确;令2210n S n n =-+>,解得021n <<,又n *∈N ,所以n 的最大值为20,故D 正确. 故选:BCD【点睛】本题主要考查等差数列的通项公式,等差数列前n 项和公式,等比中项的应用,同时考查等差数列和的最值问题,属于基础题.11.声音是由物体振动产生的声波,纯音的数学模型是函数sin y A t ω=,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数()sin f x x x =+则下列结论正确的是( ) A. ()f x 是偶函数 B. ()f x 是周期函数 C. ()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增 D. ()f x 最大值为2【答案】ABD 【解析】 【分析】根据奇偶性的定义和周期函数的定义可判断A ,B ;当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x可化为()sin 2sin()3f x x x x =+=+π,可判断C ;结合函数()f x 的周期性对x 进行分类讨论,将函数()f x 的绝对值去掉,再求其最大值可判断D. 【详解】函数()f x 的定义域为R ,因为())sin()sin ()f x x x x x f x -=-+-=+=, 所以()f x 是偶函数,故A 正确;因为sin cos s )()(i ()n f x πx πx x x π+++=++-sin ()x x f x +=,所以()f x 是以π为周期的周期函数,故B 正确;当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 可化为1()sin 2sin 2sin()23f x x x x x x ⎫=+=+=+⎪⎪⎝⎭π, 此时()f x 在06π⎡⎤⎢⎥⎣⎦,上单调递增,在,62ππ⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;由于函数()f x 是以π为周期的周期函数,故只需研究一个周期内的最大值即可, 不妨取[0,]x π∈,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 可化为()2sin()3f x x π=+, 由0,2x π⎡⎤∈⎢⎥⎣⎦,得5,336x πππ⎡⎤+∈⎢⎥⎣⎦, 所以当32x ππ+=,即6x π=时,()f x 取得最大值2,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,13()3cos sin 2sin cos 2sin()223f x x x x x x ⎛⎫=-+=-=- ⎪ ⎪⎝⎭π, 由,2x ππ⎡⎤∈⎢⎥⎣⎦,得2,363x πππ⎡⎤-∈⎢⎥⎣⎦, 所以32x ππ-=,即56x π=时,()f x 取得最大值2, 故当[0,]x π∈时,()f x 取得最大值2,故D 正确. 故选:ABD.【点睛】本题主要考查三角函数的奇偶性、周期性、单调性的判断及最值的求法,同时考查两角和与差的正弦公式的逆用,属于中档题.12.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A. 11B E A B ⊥B. 平面1//B CE 平面1A BDC. 三棱锥11C B CE -的体积为83D. 三棱锥111C B CD -的外接球的表面积为24π 【答案】CD 【解析】 【分析】以1{,,}AB AD AA 为正交基底建立空间直角坐标系,写出各点坐标,计算11B E A B ⋅值即可判断A ;分别求出平面1B CE ,平面1A BD 的法向量,判断它们的法向量是否共线,即可判断B ;利用等体积法,求出三棱锥11-B CC E 的体积即可判断C ;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故求出长方体1111ABCD A B C D -的外接球的表面积即可判断D.【详解】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-, 因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则 由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高,所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2R ==所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD.【点睛】本题主要考查用向量法判断线线垂直、面面平行,等体积法的应用及几何体外接球的表面积. 三、填空题13.已知命题“2,10x R x ax ∃∈-+<”为假命题,则实数a 的取值范围是_______【答案】[]22-,【解析】命题“2,10x R x ax ∃∈-+<”假命题,则“2,10x R x ax ∀∈-+≥”为真命题.所以240a =-≤,解得22a -≤≤.答案为:[]2,2-.14.()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为______.【答案】25- 【解析】 【分析】先求得61x x ⎛⎫- ⎪⎝⎭中含21x 的项与常数项,进而可得()6212x x x ⎛⎫+- ⎪⎝⎭的常数项.【详解】61x x ⎛⎫- ⎪⎝⎭的展开式中含21x 的项为44262115C x x x ⎛⎫-= ⎪⎝⎭,61x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为3336120C x x ⎛⎫-=- ⎪⎝⎭,所以()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为154025-=-.故答案为:25-.【点睛】本题考查二项展开式中常数项的求法,解题时要认真审题,注意二项式定理的合理运用,属于基础题.15.已知()f x 为奇函数,当0x >时,()ln xf x x=,则曲线()y f x =在点()1,0-处的切线方程是______. 【答案】10x y -+= 【解析】 【分析】利用函数()f x 为奇函数,可求出当0x <时,()f x 的表达式为ln()()x f x x-=,然后根据在一点处的切线方程的求法,即可求出曲线()y f x =在点()1,0-处的切线方程. 【详解】因为()f x 为奇函数,所以()()f x f x -=-, 当0x <时,则0x ->,所以ln()ln()()()x x f x f x x x--=--=-=-, 所以221(1)ln()1ln()()x x x x f x x x ⨯-⨯-----'==, 所以曲线()y f x =在点()1,0-处的切线的斜率(1)1k f '=-=, 所以切线方程是01y x -=+,即10x y -+=. 故答案为:10x y -+=【点睛】本题主要考查根据函数的奇偶性求函数的解析式,在一点处的切线方程的求法,同时考查复合函数的导数,属于中档题.16.已知抛物线C :22y px =()06p <<的准线交圆1O :()2234x y ++=于A ,B 两点,若AB =C 的方程为______,已知点()1,2M ,点E 在抛物线C 上运动,点N 在圆2O :()2221x y -+=上运动,则EM EN +的最小值为______.【答案】 (1). 28y x = (2). 2. 【解析】【详解】(1)设抛物线C 的准线与x 轴交于点D ,抛物线C 的准线方程为2px =-,则22211AO AD DO =+,即224(3)|3|2p =+-+, 整理得212320p p -+=,解得4p =或8p =,又06p <<,所以4p =,所以抛物线C 的方程为28y x =.(2)由题意知 圆2O 的圆心坐标为(2,0)与抛物线的焦点坐标重合, 过E 作抛物线C 的准线2x =-的垂线,垂足为F ,则2||||EO EF =, 所以22211EM EN EM EO NO EM EO EM EF +≥+-=+-=+-, 所以当M ,E ,F 三点共线时,EM EF +最小,最小值为3, 所以1312EM EN EM EF +≥+-≥-=, 所以EM EN +的最小值为2. 故答案为:①28y x =;②2【点睛】本题主要考查抛物线的定义和准线方程,圆中的弦长公式,抛物线中的最值问题,同时考查数形结合思想和转化与化归思想. 四、解答题17.设数列{}n a 的前n 项和为n S ,11a =,______. 给出下列三个条件:条件①:数列{}n a 为等比数列,数列{}1n S a +也为等比数列;条件②:点{}1,n n S a +在直线1y x =+上;条件③:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的三个条件中任选一个,补充在上面的横线上,完成下列两问的解答: (1)求数列{}n a 的通项公式; (2)设21231log log n n n b a a ++=⋅,求数列{}n b 的前n 项和n T .【答案】(1)不论选择哪个条件,1=2n n a -()N n *∈;(2)()()3234212n n T n n +=-++ 【解析】 【分析】(1) 方案一:选条件①.数列{}1n S a +也为等比数列,可根据其前3项也成等比数列列出方程,再将123,,S S S 用1,a q 表示解出q ,即可求出na ;方案二:选条件②,可得11n n a S +=+()N n *∈,再将n 用1n -代换可得11n n a S -=+()2n ≥,两式相减可得12n n a a +=()2n ≥,再验证212a a =即可,从而可得数列{}n a 是首项为1,公比为2的等比数列,即可求出n a ;方案三:选条件③.可得当2n ≥时,1121222n n n n a a a na -+++⋅⋅⋅+=()N n *∈,再将n 用1n -代换可得()121212221n n n n a a a n a ---++⋅⋅⋅+=-,两式相减可得12n n a a +=()2n ≥,再验证212a a =即可,从而可得数列{}n a 是首项为1,公比为2的等比数列,即可求出n a ;(2)由(1)不论选择哪个条件,1=2n n a -()N n *∈,代入化简可得()12n b n n =+,利用裂项相消法求和,即可求出数列{}n b 的前n 项和n T . 【详解】(1)方案一:选条件①. 因为数列{}1n S a +为等比数列,所以()()()2211131S a S a S a +=++,即()()2121123222a a a a a a +=++, 设等比数列{}n a 的公比为q ,因为11a =, 所以()()22222q q q+=++,解得2q或0q =(舍),所以1112n n n a a q --==()N n *∈,(2)由(1)得12nn a ()N n *∈,所以()212311111log log 222n n n b a a n n n n ++⎛⎫===- ⎪⋅++⎝⎭,所以11111111111232435112n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ()()13113232212442123111212n n n n n n n ⎛⎫=-=⎭+⎛-+ +⎫-=- ⎪+++⎝⎭⎝++⎪, 方案二:(1)选条件②.因为点()1,n n S a +在直线1y x =+上,所以11n n a S +=+()N n *∈,所以11n n a S -=+()2n ≥,两式相减得1n n n a a a +-=,12n na a +=()2n ≥, 因为11a =,211112a S a =+=+=,212a a =适合上式, 所以数列{}n a 是首项为1,公比为2的等比数列,所以1112n n n a a q --==()N n *∈(2)同方案一的(2). 方案三:(1)选条件③.当2n ≥时,因为1121222n n n n a a a na -+++⋅⋅⋅+=()N n *∈⋅⋅⋅(i )所以()121212221n n n n a a a n a ---++⋅⋅⋅+=-,所以()1212122221nn n n a a a n a --++⋅⋅⋅+=-⋅⋅⋅(ii )(i )-(ii )得122(1)n n n a na n a +=--,即12n na a +=()2n ≥, 当1n =时,122a a =,212a a =适合上式, 所以数列{}n a 是首项为1,公比为2的等比数列所以1112n n n a a q --==()N n *∈(2)同方案一的(2).【点睛】本题主要考查等比数列通项公式求法,裂项相消法求和,属于基础题.18.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且满足cos2cos sin a C a C c A =-. (1)求角C ;(2)若ABC 为锐角三角形,12c =,求ABC 面积S 的最大值. 【答案】(1)4C π;(2))361【解析】 【分析】(1)对cos2cos sin a C a C c A =-,利用正弦定理得sin cos2sin cos sin sin A C A C C A =-,进而可得cos2cos sin C C C =-,再利用二倍角公式即可求出角C ;(2)由已知可得4Cπ,故要求ABC 面积S 的最大值,只需求出ab 的最大值即可,利用余弦定理可得222144c a b ==+,再利用基本不等式即可求出ab 的最大值. 【详解】(1)因为cos2cos sin a C a C c A =-,所以由正弦定理可得:sin cos2sin cos sin sin A C A C C A =-, 因为()0,A π∈,sin 0A ≠,所以cos2cos sin C C C =-, 所以22cos sin cos sin C C C C -=-, 即()()cos sin cos sin 10C C C C -+-=, 所以cos sin 0C C -=或cos sin 10C C +-=, 即cos sin C C =或cos sin 10C C +-=,①若cos sin C C =,则4Cπ,②若cos sin 10C C +-=,则2sin 42C π⎛⎫+= ⎪⎝⎭, 因为5444C πππ<+<,所以344C ππ+=,即2C π=, 综上,4Cπ或2C π=.(2)因为ABC 为锐角三角形,所以4C π,因为()222221442cos 222224c a b ab a b ab ab ab ab π==+-=+-≥-=-,即()722222ab ≤=+-(当且仅当a b =等号成立),所以()()1122sin sin 7222362122444S ab C ab ab π===≤⨯+=+,即ABC 面积S 的最大值是()3621+.【点睛】本题主要考查正弦定理,二倍角公式,基本不等式及三角形的面积公式,同时考查三角形中面积的最大值求法,属于基础题.19.如图,四棱柱1111ABCD A B C D -中,底面ABCD 和侧面11BCC B 都是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==.(1)求证:平面11CC D D ⊥底面ABCD ;(2)若平面11BCC B 与平面1BED 所成的锐二面角的大小为3π,求直线1CA 和平面11BCC B 所成角的正弦值.【答案】(1)见解析;6 【解析】【分析】(1)要证平面11CC D D ⊥底面ABCD ,只需证明其中一个面内一条线垂直于另一个平面即可,可证1D E ⊥底面ABCD ,由底面ABCD 和侧面11BCC B 都是矩形,可得BC ⊥平面11DCC D ,又1D E ⊂平面11DCC D ,从而可得1BC D E ⊥,又1D E CD ⊥,从而可证出1D E ⊥底面ABCD ;(2) 取AB 的中点F ,以1{,,}EF EC ED 为正交基底建系,设1ED a =()0a >,写出各点坐标,分别求出平面1BED 与平面11BCC B 的法向量()11,1,0n =-,()20,,1n a =-,根据它们所成的锐二面角的大小为3π,利用夹角公式列出方程可求出1a =,再求出()11,1,1CA =-,设直线1CA 和平面11BCC B 所成的角为θ,由12sin cos CA n =〈⋅〉θ即可求出答案. 【详解】(1)因为底面ABCD 和侧面11BCC B 都是矩形, 所以BC CD ⊥,1BC CC ⊥,又1CDCC C =,1,CD CC ⊂平面11DCC D ,所以BC ⊥平面11DCC D ,又1D E ⊂平面11DCC D ,所以1BC D E ⊥,又1D E CD ⊥,BC CD C ⋂=,,BC CD ⊂底面ABCD , 所以1D E ⊥底面ABCD ,又1D E ⊂平面11CC D D , 所以平面11CC D D ⊥底面ABCD .(2)取AB 的中点F ,因为E 是CD 的中点,底面ABCD 是矩形,所以EF CD ⊥,以E 为原点,以EF ,EC ,1ED 所在直线分别为x ,y ,z 轴, 建立空间直角坐标系E xyz -,如图所示:设1ED a =()0a >,则()0,0,0E ,()1,1,0B ,()10,0,D a ,()0,1,0C ,()10,2,C a 设平面1BED 的法向量()111,,n x y z =,()1,1,0EB =,()10,0,ED a =.由11100n EB n ED ⎧⋅=⎪⎨⋅=⎪⎩可得:11100x y az +=⎧⎨=⎩,令11x =可得11y =-,10z =,所以()11,1,0n =-,设平面11BCC B 的法向量()2222,,n x y z =,()1,0,0CB =,()10,1,CC a =.由22100n CB n CC ⎧⋅=⎪⎨⋅=⎪⎩可得,22200x y az =⎧⎨+=⎩,令21z =可得2y a =-,所以()20,,1n a =-由于平面11BCC B 与平面1BED 所成的锐二面角的平面角为3π,所以121212cos ,cos32n n n n n n π⋅===⋅,解得1a =.所以平面11BCC B 的法向量()20,1,1n =-,由于()1,1,0A -,()0,1,0C ,()0,1,0D -,()10,0,1D ,所以()()()1111,2,00,1,11,1,1CA CA AA CA DD =+=+=-+=-,设直线1CA 和平面11BCC B 所成的角为θ,则1212sin 32CA n CA n θ⋅===⋅. 【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,根据所成二面角的大小逆向求参数值及利用向量法求线面角的正弦值,属于中档题.20.某专业机械生产厂为甲乙两地(两地仅气候条件差异较大,其他条件相同)的两个不同机器生产厂配套生产同一种零件,在甲乙两地分别任意选取100个零件进行抗疲劳破坏性试验,统计每个零件的抗疲劳次数(抗疲劳次数是指从开始试验到零件磨损至无法正常使用时的循环加载次数),将甲乙两地的试验的结果,即每个零件的抗疲劳次数(单位:万次)分别按(]7,8,(]8,9,(]9,10,(]10,11,(]11,12分组进行统计,甲地的实验结果整理为如下的频率分布直方图(其中a ,b ,c 成等差数列,且23c b =),乙地的统计结果整理为如下的频数分布表.(1)求a ,b ,c 的值并计算甲地实验结果的平均数x .(2)如果零件抗疲劳次数超过9万次,则认为零件质量优秀,完成下列的22⨯列联表: 质量不优秀 质量优秀 总计 甲地 乙地 总计试根据上面完成的22⨯列联表,通过计算分析判断,能否有97.5%的把握认为零件质量优秀与否与气候条件有关? 附:临界值表()2P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828其中2K 的观测值()()()()()2n ad bc k a b c d a c b d -=++++(3)如果将抗疲劳次数超过10万次的零件称为特优件,在甲地实验条件下,以频率为概率,随机打开一个4个装的零件包装箱,记其中特优件的个数为ξ,求ξ的分布列和数学期望. 【答案】(1)0.1a =,0.2b =,0.3c =,平均数9.3x =万次;(2)见解析,有;(3)见解析,1 【解析】 【分析】(1)根据频率分布直方图的的矩形面积和为1,可得0.6a b c ++=,再由a ,b ,c 成等差数列,可得2b a c =+,再结合23c b =解方程即可求出a ,b ,c 的值;利用组中值乘以相应的频率再求和即可求出平均数x ;(2)根据已知条件分别求出甲、乙抗疲劳次数超过9万次的零件数和不超过9万次的零件数,即可完成22⨯列联表,然后根据22⨯列联表求出观测值k ,查对临界值,即可作出判断;(3)根据已知条件可得任意抽取一件产品为特优件的概率14p =,ξ的取值可能为0,1,2,3,4,根据二项分布分别求出相应的概率,即可列出分布列并求出数学期望.【详解】(1)由频率分布直方图的性质可得:0.050.351a b c ++++=,即0.6a b c ++= 因为a ,b ,c 成等差数列,所以2b a c =+,所以0.2b = 又23c b =,解之得:0.3c =,0.1a =所以7.50.18.50.39.50.3510.50.211.50.059.3x =⨯+⨯+⨯+⨯+⨯= 即抗疲劳次数的平均数9.3x =万次(2)由甲地试验结果的频率分布直方图可得:抗疲劳次数超过9万次的零件数为()1000.350.20.0560⨯++=件,不超过9万次的件数为1006040-=件,由乙地试验结果分布表可得:抗疲劳次数超过9万次的零件数为4125975++=, 不超过9万次的零件数为25件,所以22⨯列联表为所以()220040752560200 5.128 5.0246513510010039k ⨯-⨯==≈>⨯⨯⨯, 所以在犯错误的概率不超过0.025的前提下,认为零件质量优秀与否与气候条件有关, 即有97.5%的把握认为零件质量优秀与否与气候条件有关.(3)在甲地实验条件下,随机抽取一件产品为特优件的频率为0.25, 以频率为概率,所以任意抽取一件产品为特优件的概率14p = 则ξ的取值可能为0,1,2,3,4所以()400431********P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭; ()311431812714425664P C ξ⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭; ()2224315427244256128P C ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭; ()13343112334425664P C ξ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭; ()0444311444256P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. 所以ξ的分布列为ξ的数学期望()8110854121012341256256256256256E ξ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题主要考查频率分布直方图的性质,利用组中值估计平均数,独立性检验的应用,二项分布及数学期望,属于中档题.21.已知椭圆E :22221x y a b+=()0a b >>的离心率为12,其左右顶点分别为1A ,2A ,上下顶点分别为2B ,1B ,四边形1122A B A B 的面积为43.(1)求椭圆E 的方程;(2)若椭圆E 的左右焦点分别为1F ,2F ,过2F 的直线l 与椭圆交于不同的两点M ,N ,记1F MN △的内切圆的半径为r ,试求r 的取值范围.【答案】(1)22143x y +=;(2)304r <≤ 【解析】 【分析】 (1)根据离心率为12,四边形1122A B A B 的面积为43222a b c =+,即可求出,a b ,进而求出椭圆E 的方程;(2)由1F MN △的周长1148F M F N MN a ++==,可得()111142F MN S F M F N MN r r =++=△,即114F MN r S =△, 对直线l 的斜率是否存在进行分类讨论,当l x ⊥轴时,l 的方程为:1x =,可求得34r =;当l 与x 轴不垂直时,设l :()()10y k x k =-≠,将椭圆的方程与直线l 的方程联立消去x ,由根与系数的关系可求出12y y +,12y y ,代入11212F MN F F M F F N S S S =+△△△()2122112142F F y y y y =+-k 的函数,利用换元法即可求出r 的取值范围. 【详解】(1)因为椭圆E 的离心率为12,所以12c e a ==, 因为四边形1122A B A B的面积为1222a b ⨯⨯= 又222a b c =+,解得:2a =,b =1c =,所以椭圆E的方程为:22143x y +=.(2)设()11,M x y ,()22,N x y ,则1F MN △的周长48a ==,()111142F MN S F M FN MN r r =++=△,即114F MN r S =△, 当l x ⊥轴时,l 的方程为:1x =,3MN =,11211134424F MN r S MN F F ==⨯⨯=△, 当l 与x 轴不垂直时,设l :()()10y k x k =-≠,由()221143y k x x y ⎧=-⎪⎨+=⎪⎩,得()22243690k y ky k ++-=,所以122643k y y k +=-+,2122943k y y k =-+,112121221211221111222F MN F F M F F N S S S F F y F F y F F y y =+=⋅+⋅=⋅-△△△ 1211222F F ==⨯=所以114F MN r S ==△ 令243k t +=,则3t >,r ===, 因为3t >,所以1103t <<,所以304r << 综上可知:304r <≤【点睛】本题主要考查求椭圆的标准方程,直线与椭圆的位置关系,同时考查椭圆中的范围问题,对于第(2)问关键是借助于“算两次”面积相等得到114F MN r S =△,将问题转化为求1MNF S的面积问题.22.已知函数()22xa f x e x =-( 2.71828e =⋅⋅⋅为自然对数的底数)有两个极值点1x ,2x . (1)求a 的取值范围;(2)求证:122ln x x a +<. 【答案】(1)(),e +∞;(2)见解析 【解析】 【分析】(1)求()xf x e ax '=-,令()()xg x f x e ax '==-,利用导数研究函数()g x 的单调性:当0a ≤时,()0xg x e a '=->,此时()g x 在R 上单调递增,至多有一个零点,不符合题意;当0a >时,只需()()min ln 0g x g a =<,同时使得(),ln a -∞和()ln ,a +∞各有一个零点即可;(2) 不妨设12x x <,则()1,ln x a ∈-∞,()2ln ,x a ∈+∞,所以12ln x a x <<,要证122ln x x a +<,即证122ln x a x <-,而当(),ln x a ∈-∞时,函数()g x 单调递减,即证()()122ln g x g a x >-,而()()12g x g x =,即证()()222ln g x g a x >-,故可构造函数()()()2ln p x g x g a x =--,利用导数判断()p x 的单调性转化即可.【详解】(1)由已知得()xf x e ax '=-,因为函数()f x 有两个极值点1x ,2x ,所以方程()0xf x e ax '=-=有两个不相等的根1x ,2x设()()xg x f x e ax '==-,则()xg x e a '=-①当0a ≤时,()0xg x e a '=->,所以()g x 在R 上单调递增,至多有一个零点,不符合题意②当0a >时,由()0xg x e a '=-=得ln x a =.当(),ln x a ∈-∞时,()0g x '<,函数()g x 单调递减; 当()ln ,x a ∈+∞时,()0g x '>,函数()g x 单调递增. 所以()()min ln ln 0g x g a a a a ==-<,即a e >, 令()2ln a a a ϕ=-()0a >,则()221a a a aϕ-'=-=, 当()0,2a ∈时,()0a ϕ'<,()a ϕ为减函数; 当()2,a ∈+∞时,()0a ϕ'>,()a ϕ为增函数; 所以()()()min 222ln 221ln 20a ϕϕ==-=-> 所以()0a ϕ>,即2ln a a >,从而ln 2aa a <<,2a e a > 所以()20ag a e a =->,又因为()010g =>,所以()g x 在区间()0,ln a 和()ln ,a a 上各有一个零点,符合题意, 综上,实数a 的取值范围为(),e +∞.(2)不妨设12x x <,则()1,ln x a ∈-∞,()2ln ,x a ∈+∞,所以12ln x a x << 设()()()()2ln 2ln 2ln xa xp x g x g a x e ax ea a x -⎡⎤=--=----⎣⎦222ln x x e a e ax a a -=--+,则()222220x x p x e a e a a a a -'=+-≥=-=, 当且仅当2x x e a e -=,即ln x a =时,等号成立. 所以函数()p x 在R 上单调递增.由2ln x a >,可得()()2ln 0p x p a >=,即()()222ln 0g x g a x -->, 又因为1x ,2x 为函数()g x 的两个零点,所以()()12g x g x =, 所以()()122ln g x g a x >-, 又2ln x a >,所以22ln ln a x a -<,又函数()g x 在(),ln a -∞上单调递减, 所以122ln x a x <-,即122ln x x a +<.【点睛】本题主要考查利用导数研究函数的性质,构造函数证明不等式,同时考查极值点偏移问题,属于难题.。

2025届山东省青岛市崂山区青岛第二中学高考数学二模试卷含解析

2025届山东省青岛市崂山区青岛第二中学高考数学二模试卷含解析

2025届山东省青岛市崂山区青岛第二中学高考数学二模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知抛物线y 2= 4x 的焦点为F ,抛物线上任意一点P ,且PQ ⊥y 轴交y 轴于点Q ,则 PQ PF ⋅的最小值为( ) A .-14B .-12C .-lD .12.复数z 满足()12(i i z +=为虚数单位),则z 的虚部为( ) A .iB .i -C .1-D .13.如下的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为176,320,则输出的a 为( )A .16B .18C .20D .154.函数()()sin f x x θ=+在[]0,π上为增函数,则θ的值可以是( ) A .0B .2π C .πD .32π 5.已知ABC ∆的内角,,A B C 的对边分别是,,,a b c 且444222222a b c a b c a b+++=+,若c 为最大边,则a b c +的取值范围是( )A .313⎛ ⎝⎭,B .(3C .2313⎛ ⎝⎦,D .3]6.某三棱锥的三视图如图所示,则该三棱锥的体积为A .23B .43C .2D .837.已知向量()()1,2,2,2a b λ==-,且a b ⊥,则λ等于( ) A .4B .3C .2D .18.已知正四面体的内切球体积为v ,外接球的体积为V ,则Vv=( ) A .4B .8C .9D .279.已知实数0a >,1a ≠,函数()2,14ln ,1x a x f x x a x x x ⎧<⎪=⎨++≥⎪⎩在R 上单调递增,则实数a 的取值范围是( )A .12a <≤B .5a <C .35a <<D .25a ≤≤10.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若()22cos cos b A a B c +=,3b =,3cos 1A =,则a =( ) A .5B .3C .10D .411.半正多面体(semiregular solid ) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为( )A .83B .4C .163D .20312.把函数2()sin f x x =的图象向右平移12π个单位,得到函数()g x 的图象.给出下列四个命题①()g x 的值域为(0,1] ②()g x 的一个对称轴是12x π=③()g x 的一个对称中心是1,32π⎛⎫⎪⎝⎭ ④()g x 存在两条互相垂直的切线 其中正确的命题个数是( ) A .1B .2C .3D .4二、填空题:本题共4小题,每小题5分,共20分。

青岛市重点中学2025届高考仿真模拟数学试卷含解析

青岛市重点中学2025届高考仿真模拟数学试卷含解析

青岛市重点中学2025届高考仿真模拟数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是( )A .764B .1132C .5764D .11162.已知双曲线C :22221(0,0)x y a b a b-=>>的焦点为1F ,2F ,且C 上点P 满足120PF PF ⋅=,13PF =,24PF =,则双曲线C 的离心率为 A .102B .5C .52D .53.定义在上的函数满足,且为奇函数,则的图象可能是( )A .B .C .D .4.已知()f x 是定义在[]2,2-上的奇函数,当(]0,2x ∈时,()21x f x =-,则()()20f f -+=( ) A .3-B .2C .3D .2-5.著名的斐波那契数列{}n a :1,1,2,3,5,8,…,满足121a a ==,21n n n a a a ++=+,*N n ∈,若2020211n n k a a-==∑,则k =( ) A .2020B .4038C .4039D .40406.将函数22cos 128x y π⎛⎫=+-⎪⎝⎭的图像向左平移()0m m >个单位长度后,得到的图像关于坐标原点对称,则m 的最小值为( ) A .3π B .4π C .2π D .π7.已知抛物线C :()220y px p =>,直线()02p y k x k ⎛⎫=-> ⎪⎝⎭与C 分别相交于点A ,M 与C 的准线相交于点N ,若AM MN =,则k =( )A .3B .223 C .22D .138.已知集合1|2A x x ⎧⎫=<-⎨⎬⎩⎭,{|10}B x x =-<<则AB =( )A .{|0}x x <B .1|2x xC .1|12x x ⎧⎫-<<-⎨⎬⎩⎭D .{|1}x x >-9.若函数()y f x =的定义域为M ={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数()y f x =的图像可能是( )A .B .C .D .10.已知命题p :若1a >,1b c >>,则log log b c a a <;命题q :()00,x ∃+∞,使得0302log xx <”,则以下命题为真命题的是( ) A .p q ∧B .()p q ∧⌝C .()p q ⌝∧D .()()p q ⌝∧⌝11.设函数1,2()21,2,1a x f x log x x a =⎧=⎨-+≠>⎩,若函数2()()()g x f x bf x c =++有三个零点123,,x x x ,则122313x x x x x x ++=( )A .12B .11C .6D .312.如图,在矩形OABC 中的曲线分别是sin y x =,cos y x =的一部分,,02A π⎛⎫⎪⎝⎭,()0,1C ,在矩形OABC 内随机取一点,若此点取自阴影部分的概率为1P ,取自非阴影部分的概率为2P ,则( )A .12P P <B .12P P >C .12P P =D .大小关系不能确定二、填空题:本题共4小题,每小题5分,共20分。

2023年山东省青岛市高考数学二模试卷【答案版】

2023年山东省青岛市高考数学二模试卷【答案版】

2023年山东省青岛市高考数学二模试卷一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x 2+2x ﹣8<0},B ={x |x =2n ﹣1,n ∈Z },则A ∩B =( ) A .{﹣3,﹣1,1}B .{﹣1,1,3}C .(﹣4,2)D .(﹣2,4)2.已知O 为坐标原点,复数z 1=1+i ,z 2=2﹣i ,z 3=1+mi (m ∈R )分别表示向量OA →,OB →,OC →,若AB →⊥OC →,则|z 3|=( ) A .√2B .√3C .√52D .√723.已知函数f (x )=x ,g (x )=2x +2﹣x ,则大致图象如图的函数可能是( )A .f (x )+g (x )B .f (x )﹣g (x )C .f (x )g (x )D .f(x)g(x)4.某教育局为振兴乡村教育,将5名教师安排到3所乡村学校支教,若每名教师仅去一所学校,每所学校至少安排1名教师,则不同的安排情况有( ) A .300种B .210种C .180种D .150种5.在边长为1的小正方形组成的网格中,△ABC 如图所示,则tan A =( )A .74B .1C .53D .√526.已知O 为坐标原点,直线l 过抛物线D :y 2=2px (p >0)的焦点F ,与D 及其准线依次交于A ,B ,C 三点(其中点B 在A ,C 之间),若|AF |=4,|BC |=2|BF |.则△OAB 的面积是( ) A .√3B .4√33C .2√3D .8√337.三面角是立体几何的基本概念之一,而三面角余弦定理是解决三面角问题的重要依据.三面角P ﹣ABC 是由有公共端点P 且不共面的三条射线P A ,PB ,PC 以及相邻两射线间的平面部分所组成的图形,设∠APC =α,∠BPC =β,∠APB =γ,平面APC 与平面BPC 所成的角为θ,由三面角余弦定理得cosθ=cosγ−cosα⋅cosβsinα⋅sinβ.在三棱锥P ﹣ABC 中,P A =6,∠APC =60°,∠BPC =45°,∠APB =90°,PB +PC=6,则三棱锥P ﹣ABC 体积的最大值为( ) A .27√24B .274C .92D .948.设[x ]表示不超过x 的最大整数(例如:[3.5]=3,[﹣1.5]=﹣2),则[log 21]+[log 22]+[log 23]+⋯+[log 22046]=( ) A .9×210﹣8B .9×211﹣8C .9×210+2D .9×211+2二、多项选择题:本题共4小题,每小题5分,共20分。

山东省青岛市2019届高三数学5月第二次模考试卷文(含解析)

山东省青岛市2019届高三数学5月第二次模考试卷文(含解析)

2019年青岛市高考模拟检测数学(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】A【解析】【分析】求解出集合,再根据交集的定义得到结果.【详解】本题正确选项:【点睛】本题考查集合运算中的交集运算,属于基础题.2.“”是“复数为纯虚数”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据充要条件的判定,分别验证充分条件和必要条件是否成立,从而得到结果.【详解】当时,,则为纯虚数可知“”是“复数为纯虚数”充分条件;当为纯虚数时,,解得:可知“”是“复数为纯虚数”的必要条件;综上所述,“”是“复数为纯虚数”的充要条件本题正确选项:【点睛】本题考查充分条件和必要条件的判定问题,属于基础题.3.已知平面向量,的夹角为,且,,则()A. 3B. 9C. 12D. 15 【答案】D【解析】【分析】根据数量积的运算法则求解即可得到结果.【详解】本题正确选项:【点睛】本题考查向量的数量积运算,属于基础题.4.函数在区间上的大致图象为()A. B.C. D.【答案】B【解析】【分析】根据题意,分析函数的奇偶性可得函数f(x)为偶函数,据此可以排除A、D;又由x→0时,x sin x+lnx<0,分析可得答案.【详解】根据题意,f(x)=x sin x+ln|x|,其定义域为{x|x≠0},有f(﹣x)=(﹣x)sin(﹣x)+ln|(﹣x)|=x sin x+ln|x|=f(x),即函数f(x)为偶函数,在区间[﹣2π,0)∪(0,2π]上关于y轴对称,排除A、D;又由x→0时,x sin x+lnx<0,排除C;故选:B.【点睛】本题考查函数图象的判断,考查函数的奇偶性,此类题目一般用排除法分析.5.已知在中,,,分别为角,,的对边,为最小角,且,,,则的面积等于()A. B. C. D.【答案】C【解析】【分析】根据同角三角函数求出;利用余弦定理构造关于的方程解出,再根据三角形面积公式求得结果.【详解】由余弦定理得:,即解得:或为最小角本题正确选项:【点睛】本题考查余弦定理解三角形、三角形面积公式的应用、同角三角函数关系,关键是能够利用余弦定理构造关于边角关系的方程,从而求得边长.6.已知为坐标原点,点,分别为椭圆:的左、右焦点,为椭圆上的一点,且,与轴交于点,则的值为()A. B. C. D.【答案】A【解析】【分析】根据垂直关系可知为通径,从而得到;利用平行关系可知,从而得到结果.【详解】由可知:为通径且为中点本题正确选项:【点睛】本题考查椭圆几何性质的应用问题,属于基础题.7.若,,,则,,的大小关系是()A. B. C. D.【答案】D【解析】【分析】本道题结合指数,对数运算性质,结合1和对数单调性进行判断,即可.【详解】,,故,故选D.【点睛】本道题考查了指数、对数比较大小,可以结合1以及对数性质进行比较,难度中等。

青岛市2019届高三数学5月二模试题 文

青岛市2019届高三数学5月二模试题 文

山东省青岛市2019届高三数学5月二模试题 文本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将答题卡上交.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{2,1,0,1,2}A =--,2{20}B x x x =--=,则A B =A .{1,2}-B .{2,1}-C .{1,2}D .∅2.“2a =-”是“复数(2)(1)(R)z a i i a =+-+∈为纯虚数”的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知平面向量,a b 的夹角为23π ,且||3,||2a b ==,则(2)a a b ⋅-=A .3B .9C .12D .154.函数()sin ln ||f x x x x =+在区间[2,2]ππ-上的大致图象为5.,c 为最小角,且a =,2,b =5cos 8A =,则ABC ∆的面积等于A .16B .16C .4D .46.已知O 为坐标原点,点12,F F 分别为椭圆22:143x y C +=的左、右焦点,A 为椭圆C 上的一点,且212AF F F ⊥,1AF 与y 轴交于点B ,则||OB 的值为 A .34B .32C .54D .527.若129()4a =,83log 3b =,132()3c =,则,,a b c 的大小关系为A.c b a<<B.a b c<<C.b a c<<D.c a b<<8.已知圆22:1C x y+=和直线:(2)l y k x=+,在(上随机选取一个数k,则事件“直线l与圆C相交”发生的概率为A.15B.14C.13D.129.某四棱锥的三视图如图所示,则该四棱锥的侧面为等腰直角三角形个数为A.1B.2C.3D.410.将函数()sin(2)()22f x xππθθ=+-<<的图象向右平移(0)ϕϕ>个单位长度后得到函数()g x的图象,若(),()f xg x的图象都经过点P,则ϕ的值可以是A.53πB.56πC.2πD.6π11.已知函数log,3()8,3ax xf xmx x≥⎧=⎨+<⎩,若(2)4f=,且函数()f x存在最小值,则实数a 的取值范围为A.(1B.(1,2]C.D.)+∞12.已知三棱锥O ABC-的底面ABC∆的顶点都在球O的表面上,且6AB=,BC=AC=O ABC-的体积为O的体积为俯视图A .323πB .643πC .1283πD .2563π二、填空题:本大题共4个小题,每小题5分. 13.已知1cos()43πα+=,则sin 2α= .14.已知实数,x y 满足条件2221y xx y x ≤⎧⎪+≥⎨⎪≤⎩,则x y +的最大值是 .15.直线y =与双曲线22221(0,0)x y a b a b-=>>的左、右两支分别交于,B C 两点,A 为双曲线的右顶点,O 为坐标原点,若OC 平分AOB ∠,则该双曲线的离心率为 .16.设函数()x f x e x=--的图象上任意一点处的切线为1l ,若函数()cos g x ax x =+的图象上总存在一点,使得在该点处的切线2l 满足12l l ⊥,则a 的取值范围是.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分.17.(12分)已知数列{}na 的各项均为正数,13a=,且对任意*N n ∈,2n a 为213n a ++和1的等比中项,数列{}n b 满足2*1(N )n n b a n =-∈.(1)求证:数列{}nb 为等比数列,并求{}na 通项公式;(2)若2log nn cb =,{}nc 的前n 项和为n T ,求使n T 不小于360的n 的最小值.18.(12分)如图,在圆柱W 中,点1O 、2O 分别为上、下底面的圆心,平面MNFE 是轴截面,点H 在上底面圆周上(异于N F 、),点G 为下底面圆弧ME 的中点,点H 与点G 在平面MNFE 的同侧,圆柱W 的底面半径为1. (1)若平面⊥FNH 平面NHG ,证明:FH NG ⊥;(2)若直线//1H O 平面FGE ,求H 到平面FGE 的距离.19.(12分)鲤鱼是中国五千年文化传承的载体之一,它既是拼搏进取、敢于突破自我、敢于冒险奋进精神的载体,又是富裕、吉庆、幸运的美好象征.某水产养殖研究所为发扬传统文化,准备进行“中国红鲤"和“中华彩鲤”杂交育种实验.研究所对200尾中国红鲤和160尾中华彩鲤幼苗进行2个月培育后,将根据体长分别选择生长快的10尾中国红鲤和8尾中华彩鲤作为种鱼进一步培育.为了解培育2个月后全体幼鱼的体长情况,按照品种进行分层抽样,其中共抽取40尾MN1O2O EFHG• •中国红鲤的体长数据(单位:cm )如下:(1)根据以上样本数据推断,若某尾中国红鲤的体长为8.3cm ,它能否被选为种鱼?说明理由;(2)通过计算得到中国红鲤样本数据平均值为5.1cm ,中华彩鲤样本数据平均值为4.875cm ,求所有样本数据的平均值;(3)如果将8尾中华彩鲤种鱼随机两两组合,求体长最长的2尾组合到一起的概率.20.(12分)已知圆22:(1)1F x y -+=,动点(,)(0)Q x y x ≥,线段QF 与圆F 相交于点P ,线段PQ 的长度与点Q 到y 轴的距离相等. (1)求动点Q 的轨迹W 的方程;(2)过点F 的直线l 交曲线W 于D A ,两点,交圆F 于C B ,两点,其中B 在线段AF 上,C 在线段DF上.求||4||AB CD +的最小值及此时直线l 的斜率.21.(12分)已知函数ln ()(0)x g x m x m =<-,2()h x x m=+. (1)若()g x 在2(0,]e 上为单调递增,求实数m 的取值范围;(2)若1m =-,且()()()f x g x h x =⋅,求证:对定义域内的任意实数x ,不等式1()f x x< 恒成立.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题记分.22.选修44-:坐标系与参数方程(10分)已知平面直角坐标系xOy ,直线l 过点P ,且倾斜角为α,以O为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为24cos()103πρρθ---=.(1)求直线l 的参数方程和圆C 的标准方程; (2)设直线l 与圆C 交于M 、N 两点,若||||PM PN -=l 的倾斜角的α值.23.选修45-:不等式选讲(10分)已知0,0,0a b c >>>,函数()||||f x a x x b c =-+++.(1)当2a b c ===时,求不等式()8f x <的解集; (2)若函数()f x 的最小值为1,证明:22213ab c ++≥.2019年青岛市高考模拟检测 数学(文科)参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分. A C D B C A D C B B D D二、填空题:本大题共4小题,每小题5分,共20分. 13.7914.3 1516.[0,1]三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分. 17。

【青岛二模】山东省青岛市高三第二次模拟考试 文科数学.pdf

【青岛二模】山东省青岛市高三第二次模拟考试 文科数学.pdf

高三自评试题 数学(文科) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项: 1.答卷前,考生务必用2B铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上. 2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上. 3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效. 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集,,则 A. B. C. 或 D. 2.若,是虚数单位,,则为 A. B. C. D. 3.“”是“”为真命题的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D. 既不充分也不必要条件 4.执行如图所示的程序框图.若输出, 则框图中①处可以填入 A. B. C. D. 5.下列函数中,与函数定义域相同的函数为 A. B. C. D. 6.设变量、满足线性约束条件,则目标函数的最小值为 A. B. C. D. 7.已知函数,为了得到函数的图象,只需要将的图象 A.向右平移个单位长度 B.向左平移个单位长度 C.向右平移个单位长度 D.向左平移个单位长度 8.已知、分别是双曲线:的左、右焦点,为双曲线右支上的一点, ,且,则双曲线的离心率为 A. B. C. D. 9.已知,是两条不同的直线,,是两个不同的平面,有下列五个命题: ①若,且,则;②若,且,则; ③若,且,则;④若,且,则;⑤若,,,则.则所有正确命题的序号是A. ①③⑤B. ②④⑤C. ①②⑤D. ①②④ 10.已知数列是以为公差的等差数列,是其前项和,若是数列中的唯一最小项,则数列的首项的取值范围是 A. B. C. D. 11.某几何体的三视图如图所示,当这个几何体的体积最大时,以下结果正确的是 A. B. C. D. 12.设函数在内有定义,对于给定的实数,定义函数,设函数=,若对任意的恒有,则A. 的最大值为B. 的最小值为C. 的最大值为D. 的最小值为 第Ⅱ卷(非选择题 共90分) 二、填空题:本大题共4小题,每小题4分,共16分. 13.已知两条直线和互相垂直,则等于 ; 14.已知回归直线的斜率的估计值为,样本的中心点为,则回归直线方程 是 ; 15.无限循环小数可以化为分数,如, 请你归纳出 ; 16.一同学为研究函数的性质,构造了如图所示的两个边长为的正方形和点是边上的一动点,设则.请你参考这些信息,推知函数的零点的个数是 . 三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演 算步骤. 17.(本小题满分12分)已知函数. (Ⅰ)求函数在上的单调递减区间; (Ⅱ)设的内角的对应边分别为,且,若向量与向量共线,求的值. 18.(本小题满分12分)已知集合,. (Ⅰ)从中任取两个不同的整数,记事件{两个不同的整数中至少有一个是集合中的元素},求; (Ⅱ)从中任取一个实数,从中任取一个实数,记事件{与之差的绝对值不超过},求. 19.(本小题满分12分)如图,在长方形中,,,为的中点, 为的中点.现在沿将三角形向上折起,在折起的图形中解答下列两问: (Ⅰ)在线段上是否存在一点,使∥面?若存在,请证明你的结论;若不存在,请说明理由; (Ⅱ)若面面,求证:面面. 20.(本小题满分12分) 已知数列满足,(且). (Ⅰ)求数列的通项公式; (Ⅱ)设,求数列的前项和. 21.(本小题满分13分)已知点为椭圆的右焦点,过点、的直线与圆相切. (Ⅰ)求椭圆的方程; (Ⅱ) 过点的直线交椭圆于、两点,求证:为定值. 22.(本小题满分13分) 已知函数(其中为常数) (Ⅰ)若在区间上不单调,求的取值范围; (Ⅱ)若存在一条与轴垂直的直线和函数的图象相切,且切点的横坐标满足,求实数的取值范围; (Ⅲ)记函数的极大值点为,极小值点为,若对于恒成立,试求的取值范围. 高三自评试题 数学 (文科) 参考答案及评分标准 一、选择题:本大题共12小题.每小题5分,共60分.二、填空:本大题共4小题,每小题4分,共16分.14. 15. 16. 三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.(本小题满分12分) ……………………………………………3分 由得: 所以,在上的单调递减区间为………………………………………6分 (Ⅱ),则 ,,,………………………8分 向量与向量共线,, 由正弦定理得, …………………………………………………………………10分 由余弦定理得,,即 ………………………………………………………………………12分 18. (本小题满分12分),, , 中的整数为,从中任取两个的所有可能情况为共种,…3分 中的整数为,事件包含的基本事件为共个, …………………………5分 ………………………………………………………………………………6分 (Ⅱ)可看成平面上的点,全部结果构成的区域为,其面积为, …………………………………………8分 事件构成的区域为,其为图中阴影部分,它的面积为……………………………………11分 …………………………………………………………………………12分 19.(本小题满分12分)上存在一点,且当时,∥面 ………1分 证明如下: 设为的中点,连结,则∥ 又因为,为的中点 所以∥,所以∥,………………………………………………………4分 面,面,∥面…………………………………5分 (Ⅱ)因为为的中点,, 所以.………………………………………6分 因为面面,所以面 因为面,所以 …………8分 又因为在折起前的图形中为的中点,,, 所以在折起后的图形中:, 从而 所以………………………………………………………………………………10分 因为,所以面, 因为平面,所以面面. ………………………………………12分 20.(本小题满分12分) 解: (Ⅰ)由题……① ……② 由①②得:,即…………………………………………3分 当时,,,, 所以,数列是首项为,公比为的等比数列 故()………………………………………………………………………6分 (Ⅱ)由(Ⅰ)() 所以 …………………9分 所以 …………………………………………………………………12分 21.(本小题满分1分)为椭圆的右焦点……① ……………………1分 的直线方程为,即 所以,化简得……② …………………………3分 由①②得:, 所以椭圆的方程 …………………………………………………………4分 (Ⅱ) 设、 当直线的斜率不存在时,,则,解得 所以,则………………………………………………6分 当直线的斜率存在时,设,联立 化简得 …………………………………………………………8分 同理 不妨设,则 所以为定值 ………………………………………………………………13分 22.(本小题满分1分), 因为函数在区间不单调,所以函数在上存在零点. 而的两根为,,区间长为, ∴在区间上不可能有2个零点. 所以, …………………………………………………………………2分 即,又由题意可知: ∴.………………………………………………………………………3分 (Ⅱ),, 存在一条与轴垂直的直线和函数的图象相切,且切点的横坐标, , ………………………5分 令,则 当时,, 在上为增函数, 从而,又由题意可知: ……………………………………………………………………………………8分 (Ⅲ), 由得:,或, 当变化时,变化如下表 极大值极小值 由表可知: 的极大值点,极小值点 ……………………………………………………………………10分 令,,则, 由, 当时,,当时,, 当时,取最大值为,…………………………………………12分 为满足题意,必须,所以, 又由题意可知:, ……………………………………………………13分 ① 是 输出 结束 开始 否。

山东省青岛市高考数学二模试卷(文科)

山东省青岛市高考数学二模试卷(文科)

高考数学二模试卷(文科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={-2,-1,0,1,2},B={x|x2-x-2=0},则A∩B=()A. {-1,2}B. {-2,1}C. {1,2}D. ∅2.“a=-2”是“复数z=(a+2i)(-1+i)(a∈R)为纯虚数”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.已知平面向量的夹角为,且,则=()A. 3B. 9C. 12D. 154.函数f(x)=x sinx+ln|x|在区间[-2π,0)∪(0,2π]上的大致图象为()A. B.C. D.5.已知在△ABC中,a,b,c分别为角A,B,C的对边,A为最小角,且,b=2,,则△ABC的面积等于()A. B. C. D.6.已知O为坐标原点,点F1,F2分别为椭圆的左、右焦点,A为椭圆C上的一点,且AF2⊥F1F2,AF1与y轴交于点B,则|OB|的值为()A. B. C. D.7.若,b=3log83,,则a,b,c的大小关系是()A. c<b<aB. a<b<cC. b<a<cD. c<a<b8.已知圆和直线,在上随机选取一个数,则事件“直线与圆相交”发生的概率为A. B. C. D.9.某四棱锥的三视图如图所示,则该四棱锥的侧面为等腰直角三角形个数为()A. 1B. 2C. 3D. 410.将函数f(x)=sin(2x+θ)(-<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则φ的值可以是()A. B. C. D.11.已知函数,若f(2)=4,且函数f(x)存在最小值,则实数a的取值范围为()A. B. (1,2] C. D.12.已知三棱锥O-ABC的底面△ABC的顶点都在球O的表面上,且AB=6,,,且三棱锥O-ABC的体积为,则球O的体积为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知cos()=,则sin2α=______.14.已知实数x,y满足条件,则x+y的最大值为______.15.直线与双曲线的左、右两支分别交于B,C两点,A为双曲线的右顶点,O为坐标原点,若OC平分∠AOB,则该双曲线的离心率为______.16.设函数f(x)=-e x-x的图象上任意一点处的切线为l1,若函数g(x)=ax+cos x的图象上总存在一点,使得在该点处的切线l2满足l1⊥l2,则a的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.已知数列{a n}的各项均为正数,a1=3,且对任意n∈N*,2a n为a n+12+3和1的等比中项,数列{b n}满足b n=a n2-1(n∈N*).(1)求证:数列{b n}为等比数列,并求{a n}通项公式;(2)若c n=log2b n,{c n}的前n项和为T n,求使T n不小于360的n的最小值.18.如图,在圆柱W中,点O1、O2分别为上、下底面的圆心,平面MNFE是轴截面,点H在上底面圆周上(异于N、F),点G为下底面圆弧的中点,点H与点G在平面MNFE的同侧,圆柱W的底面半径为1.(1)若平面FNH⊥平面NHG,证明:NG⊥FH;(2)若直线O1H∥平面FGE,求H到平面FGE的距离.19.鲤鱼是中国五千年文化传承的载体之一,它既是拼搏进取、敢于突破自我、敢于冒险奋进精神的载体,又是富裕、吉庆、幸运的美好象征.某水产养殖研究所为发扬传统文化,准备进行“中国红鲤”和“中华彩鲤”杂交育种实验.研究所对200尾中国红鲤和160尾中华彩鲤幼苗进行2个月培育后,将根据体长分别选择生长快的10尾中国红鲤和8尾中华彩鲤作为种鱼进一步培育.为了解培育2个月后全体幼鱼的体长情况,按照品种进行分层抽样,其中共抽取40尾中国红鲤的体长数据(单cm()根据以上样本数据推断,若某尾中国红鲤的体长为,它能否被选为种鱼?说明理由;(2)通过计算得到中国红鲤样本数据平均值为5.1cm,中华彩鲤样本数据平均值为4.875cm,求所有样本数据的平均值;(3)如果将8尾中华彩鲤种鱼随机两两组合,求体长最长的2尾组合到一起的概率.20.已知圆F:(x-1)2+y2=1,动点Q(x,y)(x≥0),线段QF与圆F相交于点P,线段PQ的长度与点Q到y轴的距离相等.(1)求动点Q的轨迹W的方程;(2)过点F的直线l交曲线W于A,D两点,交圆F于B,C两点,其中B在线段AF上,C在线段DF上.求|AB|+4|CD|的最小值及此时直线l的斜率.21.已知函数,.(1)若g(x)在(0,e2]上为单调递增,求实数m的取值范围;(2)若m=-1,且f(x)=g(x)•h(x),求证:对定义域内的任意实数x,不等式恒成立.22.已知平面直角坐标系xOy,直线l过点,且倾斜角为α,以O为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)求直线l的参数方程和圆C的标准方程;(2)设直线l与圆C交于M、N两点,若,求直线l的倾斜角的α值.23.已知,函数.(1)当时,求不等式的解集;(2)若函数的最小值为,证明:.答案和解析1.【答案】A【解析】解:∵B={-1,2},∴A∩B={-1,2}.故选:A.首先转化B={-1,2},然后得A∩B={-1,2}.本题考查了交集及其运算,是基础题.2.【答案】C【解析】解:a=-2时,复数z=(-2+2i)(-1+i)=2(-1+i)(-1+i)=2•(1-2i+i2)=-4i,是纯虚数,充分性成立;复数z=(a+2i)(-1+i)=(-a-2)+(a-2)i为纯虚数时,,解得a=-2,必要性成立;所以是充要条件.故选:C.判断“a=-2时复数z为纯虚数,复数z为纯虚数时a=-2”是否成立即可.本题利用复数的定义考查了充分与必要条件的应用问题,是基础题.3.【答案】D【解析】解:=3×2×cos=-3,∴=-2=9-2×(-3)=15.故选:D.先计算,再根据平面向量的数量积运算律计算.本题考查了平面向量的数量积运算,属于基础题.4.【答案】B【解析】解:根据题意,f(x)=x sinx+ln|x|,其定义域为{x|x≠0},有f(-x)=(-x)sin(-x)+ln|(-x)|=x sinx+ln|x|=f(x),即函数f(x)为偶函数,在区间[-2π,0)∪(0,2π]上关于y轴对称,排除A、D;又由x→0时,x sinx+ln x<0,排除C;故选:B.根据题意,分析函数的奇偶性可得函数f(x)为偶函数,据此可以排除A、D;又由x→0时,x sinx+ln x<0,分析可得答案.本题考查函数图象的判断,此类题目一般用排除法分析.5.【答案】C【解析】解:△ABC中,a,b,c分别为角A,B,C的对边,A为最小角,且,b=2,,所以:sin A=.则:=,解得:(2c-1)(c-2)=0,解得:c=或2,根据大边对大角,整理得:c=2,故:.故选:C.直接利用余弦定理和三角形的面积公式的应用求出结果.本题考查的知识要点:余弦定理和三角形面积公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.6.【答案】A【解析】解:O为坐标原点,点F1,F2分别为椭圆的左、右焦点,A为椭圆C上的一点,且AF2⊥F1F2,AF1与y轴交于点B,则|OB|=|AF2|==.故选:A.直接利用椭圆的性质,以及三角形的中位线求解即可.本题考查椭圆的简单性质的应用,考查计算能力.7.【答案】D【解析】解:∵=,b=3log83=log23>=,<()0=1,∴a,b,c的大小关系是c<a<b.故选:D.利用指数函数、对数函数的单调性直接求解.本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.8.【答案】C【解析】【分析】直线l与圆C相交⇔<1,解得k范围,再利用几何概率计算公式即可得出.本题考查了直线与圆相交问题、几何概率、不等式的解法,考查了推理能力与计算能力,属于中档题.【解答】解:直线l与圆C相交⇔<1,解得<k<.∴在上随机选取一个数k,则事件“直线l与圆C相交”发生的概率==.故选:C.9.【答案】C【解析】解:在这个四棱锥的四个侧面中,主视图中能确定△ABC,△ADE为直角三角形,左视图中能确定△ABE为直角三角形,从俯视图中可以确定另外一个侧面不是直角三角形,即该四棱锥的侧面为等腰直角三角形个数为3个,故选:C.由空间几何体的三视图得:主视图中能确定两个直角三角形,左视图中能确定一个直角三角形,从俯视图中可以确定另外一个侧面不是直角三角形,即该四棱锥的侧面为等腰直角三角形个数为3个,得解.本题考查了空间几何体的三视图,属中档题.10.【答案】B【解析】解:将函数f(x)=sin(2x+θ)(-<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g(x)=sin(2x-2φ+θ)的图象,若f(x),g(x)的图象都经过点P(0,),则sinθ=,∴θ=,再根据sin(-2φ+θ)=sin(-2φ+)=,则φ的值可以是,故选:B.由条件利用函数y=A sin(ωx+φ)的图象变换规律,求得θ的值,可得φ的值.本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于基础题.11.【答案】D【解析】【分析】本题考查了函数的最值及其几何意义,属中档题,先得m=-2,然后根据题意得x≥3时,f(x)必为增函数且f(3)≤2.解不等式可得.【解答】解:∵f(2)=2m+8=4,解得m=-2,∴f(x)=,当x<3时,f(x)=-2x+8是递减函数,f(x)>f(3)=2,此段无最小值,所以当x≥3时,f(x)必存在最小值,所以f(x)=log a x必为[3,+∞)上的递增函数,所以a>1,且f(3)≤2,∴log a3≤2,解得a.综上得a.故选D.12.【答案】D【解析】【分析】由OA=OB=OC=R,且△ABC为AC斜边的直角三角形,O在底面ABC的射影为斜边AC的中点M,有棱锥的体积公式,可得OM,由勾股定理可得球的半径,运用球的体积公式计算可得.本题考查球的截面性质和体积的计算,考查点在平面上的射影,考查化简计算能力,属于中档题.【解答】解:由O为球心,OA=OB=OC=R,可得O在底面ABC的射影为△ABC的外心,AB=6,,,可得△ABC为AC斜边的直角三角形,O在底面ABC的射影为斜边AC的中点M,可得•OM•AB•BC=OM•12=4,解得OM=2,R2=OM2+AM2=4+12=16,即R=4,球O的体积为πR3=π•64=π.故选D.13.【答案】【解析】解:∵cos()=,∴cos(2α+)=2-1=2×-1=-,即-sin2α=-,∴sin2α=,故答案为:.先利用二倍角的余弦公式求得cos(2α+)的值,再利用诱导公式求得sin2α的值.本题主要考查二倍角的余弦公式、诱导公式,属于基础题.14.【答案】3【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+y得y=-x+z,平移直线y=-x+z,由图象可知当直线y=-x+z经过点A时,直线y=-x+z的截距最大,此时z最大.由,解得A(1,2),代入目标函数z=x+y得z=1+2=3.即目标函数z=x+y的最大值为3.故答案为:3.作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键.15.【答案】【解析】解:∵OC平分∠AOB,∴∠AOC=∠COB,由双曲线的对称性可知∠BOy=∠COy,∴∠AOC=2∠COy,∴∠AOC=60°,故直线OC的方程为y=x,令x=b可得x=b,即C(b,b),代入双曲线方程可得-3=1,即=2,∴b=2a,∴c==a,∴e==.故答案为:.根据对称性和角平分线性质可得∠AOC=60°,进而可求出C点坐标,代入双曲线方程得出a,b的关系,从而可计算双曲线的离心率.本题考查了双曲线的性质,离心率的计算,属于中档题.16.【答案】[0,1]【解析】解:由f(x)=-e x-x,得f′(x)=-e x-1,∵e x+1>1,∴∈(0,1),由g(x)=ax+cos x,得g′(x)=a-sin x,又-sin x∈[-1,1],∴a-sin x∈[-1+a,1+a],要使过曲线f(x)=-e x-x上任意一点的切线为l1,总存在过曲线g(x)=ax+cos x上一点处的切线l2,使得l1⊥l2,则,解得0≤a≤1.即a的取值范围为[0,1],故答案为:[0,1].求出函数f(x)=-e x-x的导函数,进一步求得∈(0,1),再求出g(x)的导函数的范围,然后把过曲线f(x)=-e x-x上任意一点的切线为l1,总存在过曲线g(x)=ax+cos x 上一点处的切线l2,使得l1⊥l2转化为集合间的关系求解.本题考查了利用导数研究过曲线上的某点的切线方程,考查了数学转化思想方法,解答此题的关键是把问题转化为集合间的关系求解,是中档题.17.【答案】(1)证明:对任意n∈N*,2a n都为和1的等比中项,所以,即,也即;…(2分)所以,因为,所以b n+1=4b n,所以数列{b n}成等比数列,首项为,公比为4,所以;…(5分)所以,又{a n}为正项数列,所以;…(6分)(2)解:由,…(7分)所以T n=c1+c2+…+c n=(2×1+1)+(2×2+1)+…+(2n+1)=2(1+2+3+…+n)+n=2×+n=n2+2n;…(10分)由T n不小于360,即,即n2+2n-360≥0,也即(n+20)(n-18)≥0,解得n≥18或n≤-20(不合题意,舍去);所以T n不小于360的n的最小值为18…(12分)【解析】(1)根据等比中项的定义列方程并化简,从而判断{b n}为等比数列,写出{b n}的通项公式,由此求得数列{a n}的通项公式;(2)写出数列{c n}的通项公式与前n项和公式T n,计算T n不小于360时n的取值范围,从而求得n的最小值.本题考查了数列求和与递推数列的应用问题,也考查了等差与等比数列的应用问题,是中档题.18.【答案】(1)证明:由题知面FNH⊥面NHG,面FNH∩面NHG=NH,因为NH⊥FH,又因为FH⊂平面FHN,所以FH⊥平面NHG,…(3分)所以FH⊥NG;…(4分)(2)解:连接O1O2,如图所示,因为O1O2∥EF,O1O2⊄平面FGE,EF⊂平面FGE,所以O1O2∥平面FGE;…(6分)又因为直线O1H∥平面FGE,O1H∩O1O2=O1,所以平面O1HO2∥平面FGE,所以H到平面FGE的距离等于O2到平面FGE的距离;…(9分)取线段EG的中点V,因为O2V⊥EG,O2V⊥EF,EG∩EF=E,所以O2V⊥平面FGE,所以H到平面FGE的距离为O2V,…(11分)在等腰直角三角形EO2G中,O2E=O2G=1,所以O2V=,所以所求的距离为…(12分)【解析】(1)由面FNH⊥面NHG得出FH⊥平面NHG,即可证明FH⊥NG;(2)连接O1O2,由O1O2∥EF得出O1O2∥平面FGE,再证明平面O1HO2∥平面FGE,得出H到平面FGE的距离等于O2到平面FGE的距离,取线段EG的中点V,证明O2V⊥平面FGE,得出H到平面FGE的距离为O2V,利用等腰Rt△EO2G求出O2V的值.本题考查了空间中的平行与垂直关系应用问题,也考查了点、线、面之间的距离计算问题,是中档题.19.【答案】解:(1)能被选为种鱼;因为200尾中国红鲤中有10尾能被选为种鱼,所以40尾中国红鲤样本中有2尾能被选为种鱼;…(2分)样本数据中身长为8.4cm和8cm的中国红鲤能被选为种鱼,身长为7.5cm以下的中国红鲤不能被选为种鱼,由于8.3>8,所以该尾中国红鲤能被选为种鱼;…(4分)(2)根据分层抽样的原则,抽取中华彩鲤样本数为32尾,…(6分)所有样本数据平均值为(cm);…(8分)(3)记体长最长的2尾中华彩鲤为A1,A2,其他6尾中华彩鲤为B1,B2,B3,B4,B5,B6;考虑与A1组合的中华彩鲤,共有A2,B1,B2,B3,B4,B5,B6七种情况,…(10分)所以,体长最长的2尾组合到一起的概率为…(12分)【解析】(1)根据分层抽样原理,结合题意判断能被选为种鱼;(2)根据分层抽样原理,计算抽取中华彩鲤样本数和样本平均值;(3)利用列举法计算所求的基本事件数,求出对应的概率值.本题考查了分层抽样原理与应用问题,也考查了平均数与古典概型的概率计算问题,是基础题.20.【答案】解:(1)由题知点Q到F的距离|QF|等于Q到y轴的距离加1,所以|QF|等于Q到直线x=-1的距离,由抛物线的定义可知,点Q的轨迹W是以F为焦点,以x=-1为准线的抛物线,所以动点Q的轨迹W的方程为y2=4x.(2)设,,因为A,F,D三点共线,所以与共线,所以,得y1y2=-4(*),由抛物线的定义:,由基本不等式:,等号当且仅当|AB|=4|CD|时成立,即,也即成立.又因为y1y2=-4,所以,所以或,所以或,所以|AB|+4|CD|的最小值为4,此时直线l的斜率为.【解析】(1)推导出点Q到F的距离|QF|等于Q到y轴的距离加1,从而|QF|等于Q 到直线x=-1的距离,由抛物线的定义可知点Q的轨迹W是以F为焦点,以x=-1为准线的抛物线,由此能求出动点Q的轨迹W的方程.(2)推导出与共线,从而y1y2=-4,由抛物线的定义:,推导出成立,由此能求出|AB|+4|CD|的最小值为及此时直线l的斜率.本题考查动点的轨迹方程的求法,考查线段和的最小值及相应的直线的斜率的求法,考查抛物线、直线、基本不等式等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.21.【答案】(本小题满分12分)解:(1)由已知的定义域为(0,+∞),所以(1分)因为g(x)在(0,e2]上单调递增,所以对任意x∈(0,e2],都有所以,所以即m≤x(1-ln x),(3分)令h(x)=x(1-ln x),h'(x)=-ln x所以当0<x<1时,h'(x)=-ln x>0;当x=1时,h'(1)=0,当x>1时,h'(x)<0,所以函数h(x)=x(1-ln x)在(0,1)上单调递增,在(1,e2]上单调递减,因为0<x<1时,总有h(x)=x(1-ln x)>0,所以所以m≤-e2,故实数m的取值范围是(-∞,-e2].(5分)证明:(2)当m=-1时,对定义域内的任意正数x,不等式恒成立,即x>0时,因为当x>1时,x2-1>0;当0<x<1时,x2-1<0所以只须证:当x>1时,2x lnx<x2-1;当0<x<1时,2x lnx>x2-(17分)令G(x)=x2-1-2x lnx所以G'(x)=(x2-1-2x lnx)'=2x-(2x lnx)'=2x-2ln x-2=2(x-ln x-1)令m(x)=x-ln x-1,则所以x=1是m(x)的极值点,从而m(x)有极小值m(1)=0(10分)所以G'(x)=2(x-ln x-1)>0恒成立所以G(x)=x2-1-2x lnx在(0,+∞)上单调递增,又因为G(1)=0,所以当x>1时,G(x)=x2-1-2x lnx>0,即2x lnx<x2-1恒成立;当0<x<1时,G(x)=x2-1-2x lnx<0,即2x lnx>x2-1恒成立所以,对定义域内的任意实数x,不等式恒成立.(12分)【解析】(1)推导出g(x)的定义域为(0,+∞),,由g(x)在(0,e2]上单调递增,从而对任意x∈(0,e2],都有,进而m≤x(1-ln x),令h(x)=x(1-ln x),h'(x)=-ln x,利用导数性质能求出实数m的取值范围.(2)当m=-1时,,只须证:当x>1时,2x lnx<x2-1;当0<x<1时,2x lnx>x2-(17分)令G(x)=x2-1-2x lnx,mjG'(x)=2(x-ln x-1),令m(x)=x-ln x-1,则m′(x)=,从而m(x)有极小值m(1)=0,进而G'(x)=2(x-ln x-1)>0恒成立,由此能证明对定义域内的任意实数x,不等式恒成立.本题考查实数的取值范围的求法,考查不等的证明,考查导数性质、函数的单调性、最值等基础知识,考查运算求解能力,考查化归与转化思想,考查函数与方程思想,是中档题.22.【答案】解:(1)因为直线l过点,且倾斜角为α,所以直线l的参数方程为(t为参数).因为圆C的极坐标方程为,所以,所以圆C的普通方程为:,圆C的标准方程为:.(2)直线l的参数方程为,代入圆C的标准方程得(t cosα-1)2+(t sinα)2=5整理得t2-2t cosα-4=0设M、N两点对应的参数分别为t1、t2,则t1+t2=2cosα,所以|PM|-|PN|=,,因为0≤α<π,所以或.【解析】本题考查了参数方程、极坐标方程与直角坐标方程的转化,考查直线与圆的位置关系,属于中档题.(1)根据直线参数方程的几何意义得出参数方程,根据极坐标与直角坐标的关系化简得出圆的标准方程;(2)把直线l的参数方程代入圆的标准方程,根据参数的几何意义及根与系数的关系得出α.23.【答案】解:(1)当a=b=c=2时,f(x)=|2-x|+|x+2|+2,所以f(x)<8或或,所以不等式的解集为{x|-3<x<3};(2)因为a>0,b>0,c>0,所以f(x)=|a-x|+|x+b|+c≥|a-x+x+b|+c=|a+b|+c=a+b+c,因为f(x)的最小值为1,所以a+b+c=1,所以(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=1,因为2ab≤a2+b2,2bc≤b2+c2,2ac≤a2+c2,所以1=a2+b2+c2+2ab+2ac+2bc≤3(a2+b2+c2),所以.【解析】本题考查绝对值不等式的性质以及不等式的证明,涉及基本不等式的性质,属于中档题.(1)根据题意,当a=b=c=2时,f(x)=|x-2|+|x+2|+2,据此可得f(x)<8或或,解可得不等式的解集;(2)根据题意,由绝对值不等式的性质可得a+b+c=1,进而可得(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=1,结合基本不等式的性质分析可得结论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年青岛市高考模拟检测数学(文科)本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5.考试结束后,请将答题卡上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|ln },{|A x y x B x y ====,则A B =A .{|02}x x <≤B .{|02}x x ≤<C .{|12}x x ≤<D .{|12}x x <≤ 2.在复平面内,设复数1z ,2z 对应的点关于虚轴对称,112z i =+(i 是虚数单位), 则12z z =A .5B .5-C .14i --D .14i -+ 3.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 A .215π B .320π C .2115π- D .3120π-4. 在如图所示的框图中,若输出360S =,那么判断框中应填入的关于k 的判断条件是 A .2?k > B .2?k <C .3?k >D .3?k <5.若函数()sin()12f x x πα=+-为偶函数,则cos2α的值为A. 12- B.12C. 2-D.26.已知函数1()ln 1f x x x =--,则()y f x =的图像大致为7.若,x y 满足约束条件0010x x y x y ≥⎧⎪-≤⎨⎪+-≥⎩,则3z x y =+的取值范围是A. (,2]-∞B. [2,3]C. [3,)+∞D. [2,)+∞ 8.将函数()=2sin(2+)3f x x π图像上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x 的图像,在()g x 图像的所有对称轴中,离原点最近的对称轴方程为 A .24x π=-B .4x π=C .524x π=D .12x π=AB D9.某几何体的三视图如图所示, 则该几何体的体积为A .4B .2C .43 D .2310.已知直线20x y a -+=与圆O :222x y +=相交于A ,B 两点(O 为坐标原点),则“a =0OA OB ⋅=”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.已知定义域为R 的奇函数()f x ,当0x >时,则(1)(2)(3)(2020)f f f f +++⋅⋅⋅+= A .2log 5B .2log 5-C .2-D .012.已知函数22()()(ln 2)f x x m x m =-+-,当()f x 取最小值时,则m = A .12 B .1ln 22-- C .12ln 2105- D .2ln2-二、填空题:本大题共4个小题,每小题5分. 13.已知||2,||3a b ==,a 与b 的夹角为23π,且0a b c ++=,则||c = ; 14.在ABC ∆中,a b c 、、分别为内角AB C 、、的对边,若2sin sin sin ,B A C =+ 3cos 5B =且4ABC S ∆=,则b 的值为 ; 15.已知三棱锥A BCD -中,BC ⊥面ABD,3,1,4AB AD BD BC ====,则三棱锥A BCD -外接球的体积为 ;正视图 侧视图16.已知过抛物线22(0)y px p =>的焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =,抛物线的准线l 与x 轴交于点C ,1AA l ⊥于点1A ,若四边形1AA CF的面积为p 的值为 .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分.17.(12分)已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若4120S =,且43a 是6a ,5a -的等差中项.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足321log n n b a +=,且{}n b 的前n 项和为n T ,求12111nT T T +++.18.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:(1)请利用所给数据求违章人数y 与月份x 之间的回归直线方程ˆˆybx a =+; (2)预测该路口 7月份的不“礼让斑马线”违章驾驶员人数;(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让参考公式:1122211()()ˆˆˆ,()n ni iiii i nni ii i x y nx y x x y y bay bx x nxx x ====---===---∑∑∑∑. 22()()()()()n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)19.(12分)如图所示,在三棱柱111ABC A B C -中,侧棱1BB ⊥底面ABC ,14BB =,AB BC ⊥,且4AB BC ==,点,M N 分别为棱,AB BC 上的动点,且AM BN =.(1)求证:无论M 在何处,总有11B C C M ⊥; (2)求三棱锥1B MNB -体积的最大值.20.(12分)在平面直角坐标系中,点1F 、2F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,双曲线C 的离心率为2,点3(1,)2在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形12PF QF的周长为. (1)求动点P 的轨迹方程;(2)已知动直线:l y kx m =+与轨迹P 交于不同的两点M N 、, 且与圆223:2W x y +=交于不同的两点G 、H ,当m 变化时,||||MN GH 恒为定值,求常数k 的值.AB C1B 1A1CMN21.(12分)已知函数,)(a x ae x f x--= 2.71828e =⋅⋅⋅是自然对数的底数. (1)讨论函数)(x f 的单调性;(2)若)(x f 恰有2个零点,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题记分.22.选修44-:坐标系与参数方程(10分)以直角坐标系的原点O 为极点,x 轴非负半轴为极轴,并在两种坐标系中取相同的长度单位,曲线1C 的极坐标方程为2sin 4cos 0ρθθ-=,曲线2C 的参数方程是12cos 2sin x y ϕϕ=-+⎧⎨=⎩(ϕ为参数). (1)求曲线1C 的直角坐标方程及2C 的普通方程;(2)已知点1(,0)2P ,直线l的参数方程为1222x t y t⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),设直线l 与曲线1C相交于,M N 两点,求11||||PM PN +的值.23.选修45-:不等式选讲(10分) 已知函数()|1||2|f x x x =++-. (1)求函数()f x 的最小值k ;(2)在(1)的结论下,若正实数,a b满足11a b +,求证:22122a b+≥.2018年青岛市高考模拟检测数学(文科)参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分. A B C D C B D A D A B C二、填空题:本大题共4小题,每小题5分,共20分. 131415.1256π 16. 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分.17. (本小题满分12分) 解:(1)43a 是6a ,5a -的等差中项,4656a a a ∴=-,设数列{}n a 的公比为q ,则3541116a q a q a q =-260q q ∴--=,解得3q =或2q =-(舍);…………………………………………3分 4141(1)401201a q S a q -∴===-,13a ∴=所以3nn a =…………………………………………………………………………………6分(2)由已知得213log 321n n b n +==+; 所以3521(2)n T n n n =++⋅⋅⋅⋅⋅⋅++=+,………………………………………………8分11111()(2)22n T n n n n ==-++ 1231111n T T T T +++⋅⋅⋅+1111111[()()()2132435=-+-+-1111()()]112n n n n ⋅⋅⋅+-+--++ 1231111n T T T T ∴+++⋅⋅⋅+1311()2212n n =--++………………………………………12分18.(本小题满分12分)解:(1)由表中数据知,3,100x y ==,…………………………………………………1分∴1221ni ii ni i x y nx yb x nx==-=-∑∑141515008.55545-==--,……………………………………………4分ˆ125.5ay bx =-=, ∴所求回归直线方程为ˆ8.5125.5yx =-+ ………………………………………………6分 (2)由(1)知,令7x =,则ˆ8.57125.566y=-⨯+=人. …………………………8分 (3)由表中数据得2250(221288)50302030209K ⨯⨯-⨯==⨯⨯⨯ 5.556 5.024≈>,根据统计有97.5%的把握认为“礼让斑马线”行为与驾龄有关.………………12分19.(本小题满分12分)解:(1)要证明无论M 在何处,总有11B C C M ⊥只要证明1B C ⊥面1AC B 即可1BB ⊥底面ABC1BB AB ∴⊥,又AB BC ⊥,1BC B B B =∴AB ⊥面11BCC B ,……………3分1B C AB ∴⊥11BCC B 为正方形11B C BC ∴⊥又1ABBC B =1B C ∴⊥面1AC B原命题得证…………………………………………………………………………6分(2)11B MNB B BMN V V --=11432BM BN =⋅⋅⋅ 2228()3323BM BN BM BN +=⋅≤⋅=∴三棱锥1B MNB -体积的最大值为83……………………………………………12分20.(本小题满分12分)解:(1)设点1F 、2F 分别为(,0),(,0)(0)c c c ->AB C1B 1A1CMN由已知2ca=,所以2c a =,224c a =,22223b c a a =-= 又因为点3(1,)2在双曲线C 上,所以229141a b -= 则222294b a a b -=,即2249334a a a -=,解得214a =,12a =所以1c =………………………………………………………………………………………3分连接PQ ,因为12,OF OF OP OQ ==,所以四边形12PF QF 为平行四边形 因为四边形12PF QF的周长为所以21122PF PF F F +=>=所以动点P 的轨迹是以点1F 、2F 分别为左、右焦点,长轴长为可得动点P 的轨迹方程为:221(0)2x y y +=≠…………………………………………5分(2)设11(,)M x y ,22(,)N x y ,由题意:2212y kx m x y =+⎧⎪⎨+=⎪⎩得:0224)21222=-+++m kmx x k (,所以2121222422,1+21+2km m x x x x k k -+=-=又0∆>;………………………………………6分所以MN ==22222)21()21)(1(22k m k k +-++=……………………………………………………………8分又直线m kx y l +=:到定圆2322=+y x 圆心的距离为21km d +=,所以GH ==…………………………………………………10分因为MNGH = 所以设22222222(1)(12)((12)(332)k k m k k m λλ++-=++-为定值) 化简得22222222222[2(12)(1)](1)(12)3(12)(1)0k k m k k k k λλ+-++++-++=所以22222(12)(1)0k k λ+-+=且222222(1)(12)3(12)(1)0k k k k λ++-++= 解得1k =±…………………………………………………………………………………12分 21.(本小题满分12分) 解:(1)1)(-='xae x f , ……………………………………………………………………1分当0≤a 时,,01)(<-='x ae x f所以(,),()0,()x f x f x '∈-∞+∞<在(,)-∞+∞上单调递减;…………………………2分 当0>a 时,,01)(=-='xae x f 得ln x a =-;所以(,ln ),()0,()x a f x f x '∈-∞-<在(,ln )a -∞-上单调递减;(ln ),()0,()x a f x f x '∈-+∞>,在(ln )a -+∞,上单调递增;…………………………4分 (2)由题(1)知: 当0≤a 时,所以)(x f 在(,)-∞+∞上单调递减;又知 0)0(=f ,所以)(x f 仅有1个零点; ……………………………………………5分 当10<<a 时,0)0(=f , 所以0)ln (<-a f ,取,ln 21)ln 2(a a a a f -+=-再令函数,ln 21)(a a a a g -+=得,0)1()(22<--='a a a g所以()(1)0,g a g >=所以0ln 21)ln 2(>-+=-a a aa f 得)(x f 在)ln 2,ln (a a --上也有1个零点………8分当1=a 时,,0)0()(=≥f x f 所以)(x f 仅有1个零点, ………………………………9分 当1>a 时,0)0(=f 所以0)ln (<-a f ,令函数1,ln )(>-=a a a a h 得,011)(>-='aa h 所以()(1)0,h a h >>所以a a a a ln ,ln -<-∴><<<<<<精品资料》》》》》<<<<<<精品资料》》》》》 取,0)(>=--a ae a f 得)(x f 在)ln ,(a a --上也有1个零点综上知:若)(x f 恰有2个零点,则(0,1)(1,)a ∈+∞. ………………………………12分(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题记分.22.(本小题满分10分)选修44-:坐标系与参数方程解:(1)因为2sin 4cos 0ρθθ-=,所以22sin 4cos 0ρθρθ-=,所以24y x = ……………………………………………2分 因为12cos 2sin x y ϕϕ=-+⎧⎨=⎩,所以22(1)4x y ++=……………………………………………4分 (2)将直线l的参数方程1222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩代入24y x =得,240t --=设,M N 两点对应的参数为12,t t则12124t t t t +==-……………………………………………………………………6分 所以1212121212||||||1111||||||||||||t t t t PM PN t t t t t t +-+=+==12==…………………………………………………………………10分 23.(本小题满分10分)选修45-:不等式选讲 解:(1)因为12(1)(2)3x x x x ++-≥+--=所以函数()f x 的最小值为3…………………………………………………………………5分(2)由(1)知,11a b+= 因为2222222222()()()2()0m n c d mc nd m d n c mcnd md nc ++-+=+-=-≥所以22222121()[1](13a b a ++≥⨯+= 所以22122a b+≥ ……………………………………………………………………………10分。

相关文档
最新文档