数量关系-例题习题及答案解析
数量关系八种必考题型讲解
数量关系分类型讲解--等差数列及其变式【例题1】2,5,8,()A 10B 11C 12D 13【解答】从上题的前3个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。
题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B。
【例题2】3,4,6,9,(),18A 11B 12C 13D 14【解答】答案为C。
这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目。
顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,……。
显然,括号内的数字应填13。
在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式。
□ 等比数列及其变式【例题3】3,9,27,81()A 243B 342C 433D 135【解答】答案为A。
这也是一种最基本的排列方式,等比数列。
其特点为相邻两个数字之间的商是一个常数。
该题中后项与前项相除得数均为3,故括号内的数字应填243。
【例题4】8,8,12,24,60,()A 90B 120C 180D 240【解答】答案为C。
该题难度较大,可以视为等比数列的一个变形。
题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的;1,1 5,2,2 5,3,因此括号内的数字应为60×3=180。
这种规律对于没有类似实践经验的应试者往往很难想到。
我们在这里作为例题专门加以强调。
该题是1997年中央国家机关录用大学毕业生考试的原题。
【例题5】8,14,26,50,()A 76B 98C 100D 104【解答】答案为B。
这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的2倍减2之后得到后一项。
故括号内的数字应为50×2-2=98。
公务员考试数量关系
一、容斥原理容斥原理关键就两个公式:1. 两个集合的容斥关系公式:A+B=A∪B+A∩B2. 三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C请看例题:【例题1】某大学某班学生总数是32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没及格的有4人,那么两次考试都及格的人数是( )A.22B.18C.28D.26【解析】设A=第一次考试中及格的人数(26人),B=第二次考试中及格的人数(24人),显然,A+B=26+24=50; A∪B=32-4=28,则根据A∩B=A+B-A∪B=50-28=22。
答案为A。
【例题2】电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。
问两个频道都没看过的有多少人?【解析】设A=看过2频道的人(62),B=看过8频道的人(34),显然,A+B=62+34=96;A∩B=两个频道都看过的人(11),则根据公式A∪B= A+B-A∩B=96-11=85,所以,两个频道都没看过的人数为100-85=15人。
二、作对或做错题问题【例题】某次考试由30到判断题,每作对一道题得4分,做错一题倒扣2分,小周共得96分,问他做错了多少道题?A.12B.4C.2D.5【解析】方法一假设某人在做题时前面24道题都做对了,这时他应该得到96分,后面还有6道题,如果让这最后6道题的得分为0,即可满足题意.这6道题的得分怎么才能为0分呢?根据规则,只要作对2道题,做错4道题即可,据此我们可知做错的题为4道,作对的题为26道.方法二作对一道可得4分,如果每作对反而扣2分,这一正一负差距就变成了6分.30道题全做对可得120分,而现在只得到96分,意味着差距为24分,用24÷6=4即可得到做错的题,所以可知选择B三、植树问题核心要点提示:①总路线长②间距(棵距)长③棵数。
小学五年级上册应用题(一)必背数量关系及例题(含答案)
小学五年级上册应用题(一)必背数量关系及例题(含答案)以下是应用题中常见的数量关系,需要牢记。
一、相遇问题:路程=速度×时间;速度=路程÷时间;时间=路程÷速度。
二、价钱问题:总价=单价×数量;单价=总价÷数量;数量=总价÷单价。
三、份数问题:总数=每份数×份数;份数=总数÷每份数;每份数=总数÷份数。
四、工作问题:工总(工作总量)=工效×工时;工效=工总÷工时;工时=工总÷工效。
五、倍数问题:几倍数=一倍数×倍数;一倍数=几倍数÷倍数;倍数=几倍数÷一倍数。
1、明明和强强同时从各自家里骑车到学校,明明每小时骑9千米,用了0.5千米,强强每小时骑11千米,用了0.6小时,明明还是强强家离学校远?远多少千米?2、周末轩轩和妈妈到超市买东西,超市里鸡蛋4元/千克,西红柿3.9元/千克,妈妈想买2.5千克鸡蛋和2千克西红柿,她身上一共带了17元八角,这些钱够吗?3、装修工李师傅每小时能刷8.7平米的墙面,那么他刷8个小时能刷多少平米?4、比萨店送来了5份比萨,每份比萨里面装有3块比萨饼,比萨店一共送来几块比萨饼?5、一张纸的厚度是0.09毫米,将这张纸连续对折3次,那么这时纸的厚度是多少?1、明明家离学校:9×0.5=4.5(千米);强强家离学校:11×0.6=6.6(千米);6.6-4.5=2.1(千米);答:强强家离学校远,远2.1千米。
2、2.5千克鸡蛋和2千克西红柿需要花:2.5×4+2×3.9=10+7.8=17.8(元)。
17元八角=17.8元。
答:妈妈带的17元八角够。
3、8.7×8=69.6(平米)。
答:李师傅8小时能刷69.6平米。
4、5×3=15(块)。
答:一共送来15块比萨饼。
公务员行测考试—数量关系
公务员行测考试——数量关系1、数字推理题型及讲解(1)数字推理的题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间的关系,找出其中的规律,然后在四个选项中选择一个最合理的一个作为答案.按照数字排列的规律, 数字推理题一般可分为以下几种类型:一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:1、全是奇数:例题:1 5 3 7 ()A .2 B.8 C.9 D.12解析:答案是C ,整个数列中全都是奇数,而答案中只有答案C是奇数2、全是偶数:例题:2 6 4 8 ()A. 1B. 3C. 5D. 10解析:答案是D ,整个数列中全都是偶数,只有答案D是偶数。
3、奇、偶相间例题:2 13 4 17 6 ()A.8B. 10C. 19D. 12解析:整个数列奇偶相间,偶数后面应该是奇数,答案是C练习:2,1,4,3,(),5 99年考题二、排序:题目中的间隔的数字之间有排序规律1、例题:34,21,35,20,36()A.19B.18C.17D.16解析:数列中34,35,36为顺序,21,20为逆序,因此,答案为A。
三、加法:题目中的数字通过相加寻找规律1、前两个数相加等于第三个数例题:4,5,(),14,23,37A.6B.7C.8D.9注意:空缺项在中间,从两边找规律,这个方法可以用到任何题型;解析:4+5=9 5+9=14 9+14=23 14+23=37,因此,答案为D;练习:6,9,(),24,39 // 1,0,1,1,2,3,5,()2、前两数相加再加或者减一个常数等于第三数例题:22,35,56,90,()99年考题A.162 B.156 C.148 D.145解析: 22+35-1=56 35+56-1=90 56+90-1=145,答案为D四、减法:题目中的数字通过相减,寻找减得的差值之间的规律1、前两个数的差等于第三个数:例题:6,3,3,(),3,-3A.0B.1C.2D.3答案是A解析:6-3=3 3-3=0 3-0=3 0-3=-3提醒您别忘了:“空缺项在中间,从两边找规律”2、等差数列:例题:5,10,15,( )A. 16B.20C.25D.30答案是B.解析:通过相减发现:相邻的数之间的差都是5,典型等差数列;3、二级等差:相减的差值之间是等差数列例题:115,110,106,103,()A.102B.101C.100D.99 答案是B解析:邻数之间的差值为5、4、3、(2),等差数列,差值为1103-2=101练习:8,8,6,2,()// 1,3,7,13,21,31,()4、二级等比:相减的差是等比数列例题:0,3,9,21,45, ( )相邻的数的差为3,6,12,24,48,答案为93例题:-2,-1,1,5,( ),29 ---99年考题解析:-1-(-2)=1 ,1-(-1)=2,5-1=4,13-5=8,29-13=16后一个数减前一个数的差值为:1,2,4, 8,16,所以答案是135、相减的差为完全平方或开方或其他规律例题:1,5,14,30,55,()相邻的数的差为4,9,16,25,则答案为55+36=916、相隔数相减呈上述规律:例题:53,48,50,45,47A.38B.42C.46D.51解析:53-50=3 50-47=3 48-45=345-3=42 答案为B注意:“相隔”可以在任何题型中出现五、乘法:1、前两个数的乘积等于第三个数例题:1,2,2,4,8,32,( )前两个数的乘积等于第三个数,答案是256 2、前一个数乘以一个数加一个常数等于第二个数,n1×m+a=n2例题:6,14,30,62,( )A.85B.92C.126D.250解析:6×2+2=14 14×2+2=30 30×2+2=62 62×2+2=126,答案为C练习:28,54,106,210,()3、两数相乘的积呈现规律:等差,等比,平方,...例题:3/2,2/3,3/4,1/3,3/8 ()(99年海关考题)A. 1/6B.2/9C.4/3D.4/9解析:3/2×2/3=1 2/3×3/4=1/2 3/4×1/3=1/4 1/3×3/8=1/83/8×?=1/16 答案是A六、除法:1、两数相除等于第三数2、两数相除的商呈现规律:顺序,等差,等比,平方,...七、平方:1、完全平方数列:正序:4,9,16,25逆序:100,81,64,49,36间序:1,1,2,4,3,9,4,(16)2、前一个数的平方是第二个数。
数量关系模板典型例题
第一部分:数学解析====================经典数算题总结====================1、在999张牌上分别写上数字001,002,003……998,999,甲乙两人分这些牌分配方法是:凡是纸牌上写三位数字的三个数码都不大于5的纸牌属于甲,凡是纸牌上有一个或一个以上的数码大于5的属于乙。
例如324,501属于甲,007,387属于乙,则甲分得的牌张数为多少()A.215B.216C.214D.217解析:不大于就是可以是0,1,2,3,4,5 这6个数字可以选择因此三位数三个位置就是 6×6×6=216因为数字不含000 则答案是216-1=2152、A、B、C、D、E五个人在一次满分为100分的考试中,得分都是大于91的整数。
如果A、B、C的平均分为95分,B、C、D的平均分为94分,A是第一名,E是第三名得96分。
则D 的得分是:()A.96分B.98分C.97分D.99分解析:A+B+C-(B+C+D)=A-D=3*95-3*94=3由于A是第一名 E是第三名96 A只能是100/99/98所以D=A-3=97/96/95由于ABC平均数为95 而A>97 则BC平均数<93 而BCD平均数为94 则D>95如果D为96 则E和D并列第2 (因为BC都不可能大于96 否则必然另一个数小于91)所以D为97 A为1003、甲乙两班同学同时去离学校12.1千米的陵园,甲班先乘车后步行,乙班先步行,当送甲班同学的车回来时乙立即乘车前去。
两班步行速度都是每小时5千米,车速度都是每小时40千米,已知两班同时到达陵园,那么甲在离陵园多远的地方下车?A 2千米 B2.2千米 C2.5千米 D3 千米解析:设甲在C点下车,乙在B点上车A------------B-----------------------------C----------D时间一定,路程比等于速度比速度比是8:1路程比是AB+2BC:AB=8:1所以2BC:AB=7:1BC:AB=7:2三段的比是2:7:212.1*2/11=2.24、姐弟俩出游,弟弟先走一步,每分钟走40米,走了80米后姐姐去追他。
数量关系49个问题解析
一.页码问题对多少页出现多少1或2的公式如果是X千里找几,公式是1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。
依次类推!请注意,要找的数一定要小于X ,如果大于X就不要加100 0或者100一类的了,比如,7000页中有多少3 就是1000+700*3=3100(个)20000页中有多少6就是2000*4=8000 (个)友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二,握手问题N个人彼此握手,则总握手数S=N×(N-1)/2例题:某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有( )人A、16B、17C、18D、19【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。
按照排列组合假设总数为X人则Cx取3=152 但是在计算X时却是相当的麻烦。
我们仔细来分析该题目。
以某个人为研究对象。
则这个人需要握x-3次手。
每个人都是这样。
则总共握了x*(x-3)次手。
但是每2个人之间的握手都重复计算了1次。
则实际的握手次数是x×(x-3)÷2=152 计算的x=19人三,钟表重合公式牢记公式:T=T0+T0/11四,时钟成角度的问题设X时时,夹角为30X ,Y分时,分针追时针5.5,设夹角为A.(请大家掌握钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。
)因为在钟面上分针时针成某一角度的情况有两种,故公式为:【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式)五,往返平均速度公式及其应用(引用)某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v =2ab/(a+b )。
证明:设A、B两地相距S,则往返总路程2S,往返总共花费时间s/a+s/b故v=2s/(s/a+s/b)=2ab/(a+b)六,空心方阵的总数空心方阵的总数= (最外层边人数—空心方阵的层数)×空心方阵的层数×4= 最外层的每一边的人数^2-(最外层每边人数—2x层数)^2空心方阵最外层每边人数=总人数/4/层数+层数③中实方阵总人数=(最外层总人数÷4+1)^2=(每边人数)^2例:①某部队排成一方阵,最外层人数是80人,问方阵共有多少官兵?(441人)思路:N=(80/4+1)^2=441②某校学生刚好排成一个方队,最外层每边的人数是24人,问该方阵有多少名学生? (576名)解题方法:方阵人数=(外层人数÷4+1)^2=24^2=576③参加中学生运动会团体操比赛的运动员排成了一个正方形队列。
数量关系
第二:
本题此前答案错误了!已经更新正确答案,谢谢大家的批评!
一、数字推理:给你一个数列,但其中缺少一项,要求你仔细观察数列的排列规律,然后从四个选择的选项中选择你认为最合理的一项,来填补空缺项
1.题目: 22 35 56 90 ( ) 234
A.162
B.156
C.148
14.C【解析】 因为同样的天数甲、乙按不同的轮流方法完成的零件个数却不一样,说明上次轮流完成所用的天数肯定是奇数。因此,40个就是乙比甲一天少做的个数,而甲、乙工作效率之比为7:3,所以甲每天做的个数应该是70个。
15.D【解析】设每个注水管每小时注水为l,12个注水管8小时注水l2×8=96;9个注水管24小时注水24×9=216。那么排水管每小时排水为(216—96)÷(24—8)=7.5。那么水池里可以装水l2×8—7.5×8=36。如果用8个注水管注水,需要的时间则为36÷(8—7.5)=72小时。
A.27
B.54
C.63
D.72
10.题目:有一货车分别以时速40Km和60Km往返于两个城市,往返这两个城市一次的平均时速为多少?
A.55Km
B.50Km
C.48Km
D.45Km
11.题目:若某人以1000元购买A、B、C三种商品,且所用金额之比是1:1.5:2.5,则他购买A、B、C三种商品的金额(单位:元)依此是:()
请开始答题:
1.-2,0,1,1,( )
A.-l B.0 C.1 D.2
2.0,0,1,5,23,( )
A.119 B.79 C.63 D.47
3.3,2,11,14,( )
A.17 B.19 C.24 D.27
数量关系
三、例题解析【例1】0,0,6,24,60,120,()。
(2010年4月25日公务员联考行测试卷)A. 180B. 196C. 210D. 216解析:先从“24,60,120”这三个数看,24=27-3, 60=64-4,120=125-5;差距分别为“3,4,5”很有规律,因此可以考虑幂次,答案选C。
【例2】2,2,3,4,9,32,()。
(2010年4月25日公务员联考行测试卷)A. 129B. 215C. 257D. 283解析:“2,2,3,4”这四个数字相差很小,必然没有那么多幂次与其相邻,因此不考虑幂次,但是从大数“4,9,32”可以看出联系49-4=32, 可以考虑递推,答案选D。
【例3】0,4,16,48,128,()。
(2010年4月25日公务员联考行测试卷)A. 280B. 320C. 350D. 420解析:从“16,48,128”这三个数字很容易看出,与相邻幂次的差距分别为5,1,3,规律不明显,因此不考虑幂次。
【例4】0,2,10,30,()。
(2007年国家公务员联考行测试卷第45题)A. 68B. 74C. 60D. 70解析:从“10,30”可看出,30=27+3, 10=8+2, 规律很显然,答案选A。
【例5】14,20,54,76,()。
(2008年国家公务员考试行测试卷第45题)A. 104B. 116C. 126D. 144解析:从“20,54,76”看出,20=25-5,54=49+5,76=81-5,差距是常数5,考虑幂次,答案选C。
【例6】3,2,11,14,(),34。
(2010年国家公务员考试行测试卷第44题)A. 18B. 21C. 24D. 27解析:从“11,14,34”看出,11=9+2,14=16-2,34=36-2,差距是常数2,考虑幂次,答案选D。
方法介绍】在数字特性法中,常见的是其中的三种:加减奇偶法,十字交叉法,以及整除判断法。
数量关系经典例题300题【题库+解析】
行政能力测试—典型例题试题分析1. 256 ,269 ,286 ,302 ,()A.254B.307C.294D.316解析:2+5+6=13 256+13=2692+6+9=17 269+17=2862+8+6=16 286+16=302=302+3+2=3072. 72 , 36 , 24 , 18 , ( )A.12B.16C.14.4D.16.4解析:(方法一)相邻两项相除,72 36 24 18\ / \ / \ /2/1 3/2 4/3 (分子与分母相差1且前一项的分子是后一项的分母)接下来貌似该轮到5/4,而18/14.4=5/4. 选C(方法二)6×12=72,6×6=36,6×4=24,6×3 =18,6×X 现在转化为求X12,6,4,3,X12/6 ,6/4 ,4/3 ,3/X化简得2/1,3/2,4/3,3/X,注意前三项有规律,即分子比分母大一,则3/X=5/4 可解得:X=12/5再用6×12/5=14.43. 8 , 10 , 14 , 18 ,()A. 24B. 32C. 26D. 20分析:8,10,14,18分别相差2,4,4,?可考虑满足2/4=4/?则?=8所以,此题选18+8=264. 3 , 11 , 13 , 29 , 31 ,()A.52B.53C.54D.55分析:奇偶项分别相差11-3=8,29-13=16=8×2,?-31=24=8×3则可得?=55,故此题选D5.-2/5,1/5,-8/750,()。
A 11/375B 9/375C 7/375D 8/375解析:-2/5,1/5,-8/750,11/375=>4/(-10),1/5,8/(-750),11/375=>分子 4、1、8、11=>头尾相减=>7、7分母 -10、5、-750、375=>分2组(-10,5)、(-750,375)=>每组第二项除以第一项=>-1/2,-1/2所以答案为A6. 16 , 8 , 8 , 12 , 24 , 60 , ( )A.90B.120C.180D.240分析:后项÷前项,得相邻两项的商为0.5,1,1.5,2,2.5,3,所以选1807.一次师生座谈会,老师看学生,人数一样多,学生看老师,老师的人数是学生的3倍,问老师和学生各有多少人?分析:(方法一)设:老师= X , 学生=Y;老师看学生,人数一样多(在看的老师不包括在内)即可以列为方程:X-1=Y;学生看老师,老师的人数是学生的3倍(在看的学生不包括在内)即可列为方程:3×(Y-1)=X;所以:解得Y=2,X=3分析:(方法二)3个老师,当其中一位老师看学生的时候,把自己忽略了,2个学生。
数量关系
【例题】164,100,68,(),44。
A.50B.55C.52D.49【解析】仔细观察可知,164-100=64,100-68=32,即前一项减后一项的差是首项为64,公比为1/2的递减等比数列。
因此,下一项应为68-16=52,选C。
【例题】2,3,19,446,()。
A.198025B.205224C.312546D.215333【解析】19=(2+3)2-2×3,446=(3+19)2-2×19,故空缺处应为(446+1 9)2-2×446=4652-892,推算至此,我们就可以采用尾数估算法,4652的尾数为5,5减去2等于3,故空缺处数字的尾数肯定为3,只有选项D符合。
【例题】34,36,35,35,(),34,37,()A.36,33B.33,36C.37,34D.34,37【解析】这是个奇偶间隔数列:34,35,(),37和36,35,34,()。
很明显,一个是递增数列,一个是递减数列,括号中应分别为36、33,选A。
【例题】4,2,7,12,81,()A.968B.547C.465D.211【例题】0,9,26,65,()A.97B.124C.136D.192【例题】1,1/2,1/4,1/4,1,()A.10 B.11 C.32 D.64【解析】该数列为积数列的变式,即an+2=an+1×an-n。
7=4×2-1,12=2×7-2,81=7×l2-3。
故空缺处应为l2×81-4=968。
所以答案选A项。
【解析】该数列为幂数列的变式,即an=n3+(-1)n。
0=13+(-1)1,9=23 +(-l)2,26=33+(-1))3,65=43+(-1)4。
故空缺处应为53+(-1)5=124。
所以答案选B项。
【解析】该数列为三级等比数列所以答案选C项。
【例题】5,9,14,27,48,86,()。
A.170B.162C.157D.134【例题】2,2,8,21,42,()A.72B.74C.86D.90【例题】0,3,26,255,()A.479B.3124C.2600D.3104【例题】19,7,23,47,31,()A.14B.44C.57D.61【解析】该数列为和数列的变式,即a n+3=(a n+a n+1+a n+2)-n。
数量关系题目精选及答案汇总
数量关系题目精选及答案汇总(一)数字推理1、平方(立方)及变式例题0 ,2,10,30,()A .68B .74C .60D .70答案:A分析:根据数列波动特点,考察平方关系或者立方关系。
方法一:从平方关系角度考察:0=0*(0*0+1)2=1*(1*1+1)10=2*(2*2+1)30=3*(3*3+1)4*(4*4+1)=68方法二:考察立方关系:0*0*0+0=01*1*1+1=22*2*2+2=103*3*3+3=30 4*4*4+4=68事实上,看看下面几个数列,就可以清楚的发现本题的命题思路。
(1)1,2,3,4,5,6(2)1,4,9,16,25,36,(3)1,8,27,64,125,216(1)+(3)就得到本题数列。
通过对几道真题的分析不难发现两点:第一,命题规律确实存在。
而且这种命题规律特别明显。
第二,解题也有规律,也有技巧。
(1)1,2,3,4,5,6(2)1,4,9,16,25,36,(3)1,8,27,64,125,216这三个数列简单变化后,得到的公考真题是占很大比重的。
2007年国考第41题2 ,12,36,80,()A .100B .125C .150D .175由(2)+(3)得到。
2007年国考第45题0 ,2,10,30,()A .68B .74C .60D .70由(1)+(3)得到。
2007年国考第43题0 ,9,26,65,124,()A .165B .193C .217D .239由(3)减1或者加1得到。
正序:4,9,16,25逆序:100,81,64,49,36间序:1,1,2,4,3,9,4,(16)(1)前一个数的平方是第二个数,前一个数的平方加一个常数(数列)等于第三个数。
例题:1,2,5,26,()A.124 B.255 C.677 D.696(2)数字自身的平方加减一个常数(数列、后一个数、前一个数)例题:1,2,3,7,46,()(2005年题)A.2109B.1289C.322D.147例题:2,3,13,175,( )(2006年真题)A.30625B.30651C.30759D.30952(3)隐含完全平方数列:①通过加减化归成完全平方数列:例题:0,3,8,15,24,()A.35B.32C.30D.26②通过乘除化归成完全平方数列:例题:3,12,27,48,()A.75B.81C.90D.120例题:14,20,54,76,()(2008年真题)A.104 B.116 C.126 D.144(二)数学运算1、比例问题变量守恒之比例是通过这个恒量在整个比例中所得的比例点的不同参照物下的变化来反向了解整体变化,或者是与之相关联的变量变化的情况。
行测专项题库数量关系
数量关系(1-20)及参考答案(共20题,参考时限15分钟)本部分包括两种类型的试题,均为单项选择题。
一、数字推理:共5题。
给你一个数列,但其中缺少一项,要求你仔细观察数列的排列规律,然后从四个选项中选出你认为最合理的一项来填补空缺项。
【例题】2,9,16,23,30,( )。
A.35B.37C.39D.41解答:这一数列的排列规律是前一个数加7等于后一个数,故空缺项应为37,正确答案为B。
请开始答题:1.4,5,7,11,19,( )。
A.27B.31C.35D.412.3,4,7,16,( )。
A.23B.27C.39D.433.32,27,23,20,18,( )。
A.14B.15C.16D.174.25,15,10,5,5,( )。
A.10B.5C.0D.-55.-2,1,7,16,( ),43。
A.25B.28C.31D.35二、数学运算:共15题。
你可以在草稿纸上运算,遇到难题,你可以跳过不做,待你有时间返回来做。
【例题】84.78元、59.50元、121.61元、12.43元以及66.50元的总和是( )。
A.343.73 B.343.83 C.344.73 D.344.82解答:正确答案为D。
实际上你只要把最后一位小数加一下,就会发现和的最后一位数是2,只有D符合要求。
就是说你应当动脑筋想出解题的捷径。
请开始答题:6.甲、乙、丙三人买书共花费96元钱,已知丙比甲多花16元,乙比甲多花8元,则甲、乙、丙三人花的钱的比是( )。
A.3∶5∶4B.4∶5∶6C.2∶3∶4 D.3∶4∶57.把一个边长为4厘米的正方形铁丝框制成两个等周长的圆形铁丝框,铁丝的总长不变,则每个圆铁丝框的面积为( )。
A.16πcm2B.8πcm2C.8/πcm2D.16/πcm28.若干学生住若干房间,如果每间住4人,则有20人没地方住,如果每间房住8人,则有一间只有4人住,问共有多少学生?( )。
A.30人B.34人C.40人D.44人9. 12.5×0.76×0.4×8×2.5的值是( )。
数量关系试题及答案
数量关系1、数字推理题型及讲解(1)数字推理的题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间的关系,找出其中的规律,然后在四个选项中选择一个最合理的一个作为答案.按照数字排列的规律, 数字推理题一般可分为以下几种类型:一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:1、全是奇数:例题:1 5 3 7 ()A .2 B.8 C.9 D.12解析:答案是C ,整个数列中全都是奇数,而答案中只有答案C是奇数2、全是偶数:例题:2 6 4 8 ()A. 1B. 3C. 5D. 10解析:答案是D ,整个数列中全都是偶数,只有答案D是偶数。
3、奇、偶相间例题:2 13 4 17 6 ()A.8B. 10C. 19D. 12解析:整个数列奇偶相间,偶数后面应该是奇数,答案是C练习:2,1,4,3,(),5 二、排序:题目中的间隔的数字之间有排序规律1、例题:34,21,35,20,36()A.19B.18C.17D.16解析:数列中34,35,36为顺序,21,20为逆序,因此,答案为A。
三、加法:题目中的数字通过相加寻找规律1、前两个数相加等于第三个数例题:4,5,(),14,23,37A.6B.7C.8D.9注意:空缺项在中间,从两边找规律,这个方法可以用到任何题型;解析:4+5=9 5+9=14 9+14=23 14+23=37,因此,答案为D;61.某单位有50人,男女性别比为3:2,其中有15人未入党,如从中任选1人,则此人为男性党员的概率最大为多少()A. B. C. D.62、某技校安排本届所有毕业生分别去甲、乙、丙3个不同的工厂实习。
去甲厂实习的毕业生占毕业生总数的32%,去乙厂实习的毕业生比甲厂少6人,且占毕业生总数的24%.问去丙厂实习的人数比去甲厂实习的人数()A.少9人 B.多9人C.少6人 D.多6人63、某农场有36台收割机,要收割完所有的麦子需要14天时间。
数量关系
行测数学运算题型实例解读(三)2012-12-02 21:54:08| 分类:公务员考试|字号大中小订阅十、工程问题【例1】某计算机厂要在规定的时间内生产一批计算机,如果每天生产140台,可以提前3天完成;如果每天生产120台,就要再生产3天才能完成,问规定完成的时间是多少天?()A.30B.33C.36D.39【解析】本题正确答案为D。
解法如下:设规定完成时间为x天,则有140(x-3)=120(x+3),解得x=39,故应选D。
【点评】本题是一个工程问题,可用整除法。
注意数字140,这说明x+3可以被7整除,而四个选项中,只有39符合条件,故应选D。
【易错点分析】整除法便于计算,但思考过程相对复杂,也容易出错。
建议考生根据自己的实际情况选用。
【例2】一个浴缸放满水需要30分钟,排光水需要50分钟,假如忘记关上出水口,将这个浴缸放满水需要多少分钟?()【2003年国家公务员考试行政职业能力测验真题B类卷-11题】A.65B.75C.85D.95【解析】本题正确答案为B。
设浴缸的容积为“x”,则放满水需要30分钟,每分钟流进x÷30=x/30体积;排光水需要50分钟,每分钟流出x÷50=x/50体积;因此每分钟浴缸内的水,净增加x/30-x/50=x/75体积。
根据x÷x/75=75,这个浴缸放满水要75分钟。
【点评】本题也可以用设“1”法。
1÷(1/30-1/50)=75。
十一、利润问题【例1】太平商场1996年创利润比西北商场多20%,请问西北商场1996年创利润比太平商场少多少?()A.16.7%B.20%C.24%D.25%【解析】解法如下:设1996年西北商场创利润为X,因为太平商场1996年创利润比西北商场多20%,所以太平商场创利润为1.2X。
而(1.2X-X)÷1.2X=16≈16.7%,故应选A。
【点评】本题为一个经济利润题,也可是一个比例问题。
数量关系-例题习题及答案解析
平均数问题求平均数问题是小学学习阶段经常接触的一类典型应用题,如“求一个班级学生的平均年龄、平均身高、平均分数……”。
平均数问题包括算术平均数、加权平均数、连续数和求平均数、调和平均数和基准数求平均数。
解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数。
一、算术平均数例1用4个同样的杯子装水,水面高度分别是4厘米、5厘米、7厘米和8厘米,这4个杯子水面平均高度是多少厘米?分析求4个杯子水面的平均高度,就相当于把4个杯子里的水合在一起,再平均倒入4个杯子里,看每个杯子里水面的高度。
解:(4+5+7+8)÷4=6(厘米)答:这4个杯子水面平均高度是6厘米。
例2蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分。
政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分。
政治、英语两科的平均分是86分,而且英语比语文多10分。
问蔡琛这次考试的各科成绩应是多少分?分析解题关键是根据语文、英语两科平均分是84分求出两科的总分,又知道两科的分数差是10分,用和差问题的解法求出语文、英语各得多少分后,就可以求出其他各科成绩。
解:①英语:(84×2+10)÷2=89(分)②语文: 89—10=79(分)③政治:86×2-89=83(分)④数学: 91。
5×2-83=100(分)⑤生物: 89×5-(89+79+83+100)=94(分)答:蔡琛这次考试英语、语文、政治、数学、生物的成绩分别是89分、79分、83分、100分、94分。
二、加权平均数例3果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什锦糖。
已知酥糖每千克4。
40元,水果糖每千克4.20元,奶糖每千克7.20元。
问:什锦糖每千克多少元?分析要求混合后的什锦糖每千克的价钱,必须知道混合后的总钱数和与总钱数相对应的总千克数。
小学数学最典型的30道应用题:定义+数量关系+例题详解
小学数学最典型的30道应用题:定义+数量关系+例题详解归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量;1份数量×所占份数=所求几份的数量;另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1. 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:买1支铅笔多少钱?0.6÷5=0.12(元)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2. 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例3. 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解:1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)7辆汽车1次能运多少吨钢材?5×7=35(吨)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均数问题求平均数问题是小学学习阶段经常接触的一类典型应用题,如“求一个班级学生的平均年龄、平均身高、平均分数……”。
平均数问题包括算术平均数、加权平均数、连续数和求平均数、调和平均数和基准数求平均数。
解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数。
一、算术平均数例1用4个同样的杯子装水,水面高度分别是4厘米、5厘米、7厘米和8厘米,这4个杯子水面平均高度是多少厘米?分析求4个杯子水面的平均高度,就相当于把4个杯子里的水合在一起,再平均倒入4个杯子里,看每个杯子里水面的高度。
解:(4+5+7+8)÷4=6(厘米)答:这4个杯子水面平均高度是6厘米。
例2蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分?分析解题关键是根据语文、英语两科平均分是84分求出两科的总分,又知道两科的分数差是10分,用和差问题的解法求出语文、英语各得多少分后,就可以求出其他各科成绩。
解:①英语:(84×2+10)÷2=89(分)②语文: 89-10=79(分)③政治:86×2-89=83(分)④数学: 91.5×2-83=100(分)⑤生物: 89×5-(89+79+83+100)=94(分)答:蔡琛这次考试英语、语文、政治、数学、生物的成绩分别是89分、79分、83分、100分、94分。
二、加权平均数例3果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什锦糖.已知酥糖每千克4.40元,水果糖每千克4.20元,奶糖每千克7.20元.问:什锦糖每千克多少元?分析要求混合后的什锦糖每千克的价钱,必须知道混合后的总钱数和与总钱数相对应的总千克数。
解:①什锦糖的总价:4.40×2+4.20×3+7.20×5=57.4(元)②什锦糖的总千克数: 2+3+5=10(千克)③什锦糖的单价:57.4÷10=5.74(元)答:混合后的什锦糖每千克5.74元。
我们把上述这种平均数问题叫做“加权平均数”.例3中的5.74元叫做4.40元、4.20元、7.20元的加权平均数.2千克、3千克、5千克这三个数很重要,对什锦糖的单价产生不同影响,有权衡轻重的作用,所以这样的数叫做“权数”。
例4甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩?分析此题是已知两个数的加权平均数、两个数和其中一个数的权数,求另一个数的权数的问题.甲棉田平均亩产籽棉203斤比甲乙棉田平均亩产多18斤,5亩共多出90斤.乙棉田平均亩产比甲乙棉田平均亩产少15斤,乙少的部分用甲多的部分补足,也就是看90斤里面包含几个15斤,从而求出的是乙棉田的亩数,即“权数”。
解:①甲棉田5亩比甲乙平均亩产多多少斤?(203-185)×5=90(斤)②乙棉田有几亩?90÷(185-170)=6(亩)答:乙棉田有6亩。
三、连续数平均问题我们学过的连续数有“连续自然数”、“连续奇数”、“连续偶数”.已知几个连续数的和求出这几个数,也叫平均问题。
例5已知八个连续奇数的和是144,求这八个连续奇数。
分析已知偶数个奇数的和是144.连续数的个数为偶数时,它的特点是首项与末项之和等于第二项与倒数第二项之和,等于第三项与倒数第三项之和……即每两个数分为一组,八个数分成4组,每一组两个数的和是144÷4=36.这样可以确定出中间的两个数,再依次求出其他各数。
解:①每组数之和:144÷4=36②中间两个数中较大的一个:(36+2)÷2=19③中间两个数中较小的一个:19-2=17∴这八个连续奇数为11、13、15、17、19、21、23和25。
答:这八个连续奇数分别为:11、13、15、17、19、21、23和25。
四、调和平均数例6一个运动员进行爬山训练.从A地出发,上山路长11千米,每小时行4.4千米.爬到山顶后,沿原路下山,下山每小时行5.5千米.求这位运动员上山、下山的平均速度。
分析这道题目是行程问题中关于求上、下山平均速度的问题.解题时应区分平均速度和速度的平均数这两个不同的概念.速度的平均数=(上山速度+下山速度)÷2,而平均速度=上、下山的总路程÷上、下山所用的时间和。
解:①上山时间: 11÷4.4=2.5(小时)②下山时间:11÷5.5=2(小时)五、基准数平均数例7中关村三小有15名同学参加跳绳比赛,他们每分钟跳绳的个数分别为93、94、85、92、86、88、94、91、88、89、92、86、93、90、89,求每个人平均每分钟跳绳多少个?分析从他们每人跳绳的个数可以看出,每人跳绳的个数很接近,所以可以选择其中一个数90做为基准数,再找出每个加数与这个基准数的差.大于基准数的差作为加数,如93=90+3,3作为加数;小于基准数的差作为减数,如 87=90-3,3作为减数.把这些差累计起来,用和数的项数乘以基准数,加上累计差,再除以和数的个数就可以算出结果。
解:①跳绳总个数。
93+94+85+92+86+88+94+91+88+89+92+86+93+90+89=90×15+(3+4+2+4+1+2+3)-(5+4+2+2+1+4+1)=1350+19-19=1350(个)②每人平均每分钟跳多少个?1350÷15=90(个)答:每人平均每分钟跳90个.习题1.某次数学考试,甲乙的成绩和是184分,乙丙的成绩和是187分,丙丁的成绩和是188分,甲比丁多1分,问甲、乙、丙、丁各多少分?2.求1962、1973、1981、1994、2005的平均数。
3.缝纫机厂第一季度平均每月生产缝纫机750台,第二季度生产的是第一季度生产的2倍多66台,下半年平均月生产1200台,求这个厂一年的平均月产量。
4.甲种糖每千克8.8元,乙种糖每千克7.2元,用甲种糖5千克和多少乙种糖混合,才能使每千克糖的价钱为8.2元?5.7个连续偶数的和是1988,求这7个连续偶数。
6.6个学生的年龄正好是连续自然数,他们的年龄和与小明爸爸的年龄相同,7个人年龄一共是126岁,求这6个学生各几岁?7.食堂买来5只羊,每次取出两只合称一次重量,得到十种不同的重量(千克):47、50、51、52、53、54、55、57、58、59.问这五只羊各重多少千克?解答1.∵甲+乙=184 (1)乙+丙=187 (2)丙+丁=188 (3)(2)-(1)丙-甲=3 (4)(3)-(4)丁+甲=185∴甲=(185+1)÷2=93(分)丁=93-1=92(分)乙=184-93=91(分)丙=187-91=96(分)答:甲、乙、丙、丁的成绩分别为93分、91分、96分、和92分。
2.1962+1973+1981+1994+2005=1981×5+(13+24)-(8+19)=9915。
9915÷5=1983。
3.①上半年总产量:750×3+750×3×2+66=6816(台)②下半年总产量:1200×6=7200(台)③平均月产量:(6816+7200)÷12=1168(台)答:平均月产量是1168台。
4.(8.8-8.2)×5÷(8.2-7.2)=3(千克)答:与乙种糖3千克混合。
5.分析已知奇数个偶数的和,可以用和除以个数求出中间数,再求出其他各偶数。
中间数:1988÷7=284其他六个数分别为278、280、282、284、286、288、290。
答:这7个偶数分别为:278、280、282、284、286、288、290。
6.分析 6个孩子年龄和与小明爸爸年龄相同,说明小明爸爸年龄是126岁的一半,是63岁.其他6个学生的年龄和也是63岁. 63÷3=21(岁), 21=10+11为中间两个数,所以其他四人年龄依次为8、9、12、13岁。
答:这六个学生的年龄分别为:8、9、10、11、12、13岁。
7.解:设5只羊的重量从轻到重依次为A1、A2、A3、A4、A5.A1+A2=47,A1+A3=50……A3+A5=58,A4+A5=59.10次称重5只羊各称过4次,所以它们的重量和应是:A1+A2+A3+A4+A5=(47+50+51+52+53+54+55+57+58+59)÷4=134A3=134-(A1+A2)-(A4+A5)=28A1=50-28=22 A2=47-22=25A5=58-28=30 A4=59-30=29答:这5只羊的重量分别为22千克、25千克、28千克、29千克、30千克.和差问题和差问题是已知大小两个数的和与两个数的差,求大小两个数各是多少的应用题。
为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。
例:“把姐姐的铅笔拿出3支后,姐姐、弟弟的铅笔支数就同样多.”这说明姐姐的铅笔比弟弟多3支,也说明姐姐和弟弟铅笔相差3支。
再例:“把姐姐的铅笔给弟弟3支后,两人铅笔支数就同样多.”如果认为姐姐的铅笔比弟弟多3支(差是3),那就错了.实际上姐姐比弟弟多2个3支.姐姐给弟弟3支后,自己留下3支,再加上他们原有的铅笔数,他们的铅笔支数才可能一样多.这里3×2=6支,就是暗差。
“把姐姐的铅笔给弟弟3支后还比弟弟多1支”,这就说明姐姐的铅笔支数比弟弟多3×2+1=7(支)。
例1两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克?分析这样想:假设第二筐和第一筐重量相等时,两筐共重150+8=158(千克);假设第一筐重量和第二筐相等时,两筐共重150-8=142(千克).解法1:①第二筐重多少千克?(150-8)÷2=71(千克)②第一筐重多少千克?71+8=79(千克)或 150-71=79(千克)解法2:①第一筐重多少千克?(150+8)÷2=79(千克)②第二筐重多少千克?79-8=71(千克)或150-79=71(千克)答:第一筐重79千克,第二筐重71千克。
例2今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?分析题中没有给出小强和爸爸年龄之差,但是已知两人今年的年龄,那么今年两人的年龄差是35-7=28(岁).不论过多少年,两人的年龄差是保持不变的.所以,当两人年龄和为58岁时他们年龄差仍是28岁.根据和差问题的解题思路就能解此题。