7.1.2《用坐标表示平移》同步练习题(1)及答案
七年级数学下册《用坐标表示平移》练习题及答案(人教版)
七年级数学下册《用坐标表示平移》练习题及答案(人教版)一、单选题 1.在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( ) A .()3,1 B .()1,1- C .()1,3 D .1,12.在平面直角坐标系中,将点(),9A m m +向右平移4个单位长度,再向下平移2个单位长度,得到点B ,若点B 在第二象限,则m 的取值范围是( )A .114m -<<-B .74m -<<-C .7m <-D .4m >-3.已知平面内两点M 、N ,如果它们平移的方式相同,那么平移后它们之间的相对位置是( )A .不能确定B .发生变化C .不发生变化D .需分情况说明4.如图,线段AB 经过平移得到线段CD ,其中A 、B 的对应点分别是C 、D ,这四个点都在格点上,若线段AB 上有一点P (a ,b ),则点P 在CD 上的对应点P ′的坐标为:( )A .(a -4,b +2)B .(a -4,b -2)C .(a +4,b +2)D .(a +4,b -2)5.在平面直角坐标系中,点A (3,2)向左平移2个单位,向上平移1个单位后得到对应点B ,则点B 的坐标为( )A .(5,1)B .(5,3)C .(1,3)D .(1,1)6.如图,A ,B 两点的坐标分别为(-2,0),(0,1),将线段AB 平移到线段A 1B 1的位置.若A 1(b ,1),B 1(-1,a ),则b -a 的值是( )A .-7B .-5C .-3D .-17.在平面直角坐标系中,三角形的三个顶点的横坐标保持不变,纵坐标都减去5,则所得图形可看成是将原图形( )A .向左平移5个单位B .向右平移5个单位C .向上平移5个单位D .向下平移5个单位8.将点()2,1A 向右平移2个单位得到点'A ,再将点'A 关于x 轴反射得到点A ″,则点A ″的坐标是( )A .()2,3-B .()4,1-C .()4,1-D .()0,1-9.如图,把Rt ABC △放在平面直角坐标系内,其中90CAB ∠=︒ ,5BC =,点A ,B 的坐标分别为(1,0),(4,0),将ABC 沿x 轴向右平移,当点C 落在直线26y x =-上时,线段BC 平移的距离为( ).A .4B .5C .6D .810.在平面直角坐标系中,将点P(3,-2)向下平移4个单位长度,得到点P 的坐标为( )A .(-1,-2)B .(3,-6)C .(7,-2)D .(3,-2)二、填空题11.已知ABC 的顶点A 的坐标为(1,2),经过平移后的对应点A ′的坐标为(﹣1,3),则顶点B (﹣2,1)平移后的对应点B ′的坐标为_____.12.点(-2,3)向右平移2个单位后的坐标为__________.13.将点A(-2,-1)向右平移3个单位长度得到点B ,则点B 的坐标是________14.将点()2,1P -向左平移1个单位长度,再向上平移2个单位长度,得到点Q ,点Q 的坐标为________.15.如图所示,直角梯形ABCD 沿直线DC 方向平移可得直角梯形HFGE ,如果AB =4,BC =9,BI =1.2,HI =3那么阴影面积为_________.三、解答题16.如图,在平面直角坐标系网格中,三角形ABC 的顶点坐标分别是(1,2),(2,1),(3,2)A B C -- .将三角形ABC 平移,使顶点B 平移到坐标原点O 处,得到三角形11A OC .(1)1A 的坐标是________,1C 的坐标是________.(2)画出平移后的11OA C ∆ .(3)求11OA C ∆的面积.17.如图,在平面直角坐标系中描出下列各点:A (3,0),B (-4,3),C (-4, -2),并解答:(1)点A 到原点O 的距离是 个单位长度;(2)将点B 向下平移__________个单位,它会与点C 重合;(3)连接BC ,直线BC 与y 轴的位置关系是__________.18.如图,在平面直角坐标系中,已知ABC ∆的三个顶点坐标分别是2,1,1,()()2,3,3()A B C ---(1)将ABC ∆向上平移4个单位长度得到111A B C ∆,请画出111A B C ∆;(2)请画出与ABC ∆关于y 轴对称的222A B C ∆;(3)请写出12A A 、的坐标.19.如图,在下面的平面直角坐标系(每个小正方形网格的边长都是1)中,ABC 的顶点都在网格点上,其中点A 坐标为(2,2)-.(1)写出点B 、C 的坐标:B ______ ,C ______ ;(2)若将ABC 先向右平移2个单位长度,再向下平移1个单位长度,得到A B C ''',请你画出A B C '''.(3)求ABC 的面积.20.如图是某台阶的一部分,如果建立适当的坐标系,使A 点的坐标为(0,0),B 点的坐标为(1,1)(1)直接写出C ,D ,E ,F 的坐标;(2)如果台阶有10级,你能求得该台阶的长度和高度吗?参考答案 1.A 2.B3.C4.A5.C6.B7.D8.B9.A10.B11.(-4,2)12.(0,3)13.(1,-1)14.()1,115.8.416.【详解】解:(1)顶点B 平移到坐标原点O 处是先向左平移2个单位,再向下平移1个单位,即横坐标减2,纵坐标减1,点A 、C 的平移规律和点B 一样,所以11A (1,3),C (5,1)---(2)平移后的三角形11A OC 如图所示(3)如图,设线段11AC 与x 轴的交点为D11OA D OC D S S +12= 1=(1)点A 到原点O 的距离是3个单位长度;(3)2,3,),1(()2A A --.)解:如图所示,A B C '''即为所求;1113ABC S=【详解】解:(1)以所以C ,D ,E ,F 各点的坐标分别为C (2,2),D (3,3),E (4,4),F (5,5).(2)每级台阶高为1,宽也为1所以10级台阶的高度是10,长度为10.。
人教版数学七年级下册7.2.2《用坐标表示平移》同步练习 (含答案)
人教版数学七下7.2.2《用坐标表示平移》同步练习一、选择题1.将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是( )A.(2,3)B.(2,-1)C.(4,1)D.(0,1)2.在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点坐标是( )A.(1,3)B.(2,2)C.(2,4)D.(3,3)3.如图,如果将三角形ABC向左平移2格得到三角形A′B′C′,则顶点A′的位置用数对表示为( )A.(5,1)B.(1,1)C.(7,1)D.(3,3)4.如图,将三角形PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是( )A.(-2,-4)B.(-2,4)C.(2,-3)D.(-1,-3)5.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是( )A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)6.如果一个图案沿x轴负方向平移3个单位长度,那么这个图案上的点坐标变化为( )A.横坐标不变,纵坐标减少3个单位长度B.纵坐标不变,横坐标减少3个单位长度C.横纵坐标都没有变化D.横纵坐标都减少3个单位长度7.已知线段CD是由线段AB平移得到的,点A(-1,4)的对应点为点C(4,7),则点B(-4,-1)的对应点D的坐标为( )A.(1,2)B.(2,9)C.(5,3)D.(-9,-4)8.在如图所示的单位正方形网格中,三角形ABC经过平移后得到三角形A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,则P1点的坐标为( )A.(1.4,-1)B.(1.5,2)C.(-1.6,-1)D.(2.4,1)9.点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5 个单位长度,得到G′,则G′的坐标为( )A.(6,5)B.(4,5)C.(6,3)D.(4,3)10.将点A(a,-3)先向右平移2个单位长度,再向上平移4个单位长度得到点B(4,b),则a和b的值分别为( )A.(1,4)B.(4,1)C.(2,1)D.(1,2)二、填空题11.在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是 .12.将点A(-3,1)向右平移5个单位长度,再向上平移6个单位长度,可以得到对应点A′的坐标为 .13.在平面直角坐标系中,三角形ABC的三个顶点的横坐标保持不变,纵坐标都减去2个单位长度,则得到的新三角形与原三角形相比向平移了个单位长度.14.已知三角形ABC,若将三角形ABC平移后,得到三角形A′B′C′,且点A(1,0)的对应点A′的坐标是(-1,0),则三角形ABC是向平移个单位得到三角形A′B′C′.15.在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为 .三、作图题16.如图所示,一小船,将其向左平移6个单位长度,再向下平移5个单位长度,试确定A,B,C,D,E,F,G平移后对应点的坐标并画出平移后的图形.17.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:(1)写出△ABC三个顶点的坐标;(2)画出△ABC向右平移6个单位后的图形△A1B1C1;(3)求△ABC的面积.四、解答题18.如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.19.如图,三角形ABC是由三角形A1B1C1平移后得到的,三角形ABC中任意一点P(x,y)经平移后对应点为P1(x-3,y-5),求A1、B1、C1的坐标.。
人教版数学七年级下册 7.2.2 用坐标表示平移 练习(含答案) (1)
7.2.2 用坐标表示平移练习一、选择题(本大题共10小题,共30.0分)1.点P(2,3)平移后变为点P1(3,−1),下列关于平移的说法中,正确的是()A. 先向左平移1个单位,再向上平移4个单位B. 先向右平移1个单位,再向上平移4个单位C. 先向左平移1个单位,再向下平移4个单位D. 先向右平移1个单位,再向下平移4个单位2.点A(−3,−5)向右平移2个单位,再向下平移3个单位到点B,则点B的坐标为()A. (−5,−8)B. (−5,−2)C. (−1,−8)D. (−1,−2)3.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A. (1,7),(−2,2),(3,4)B. (1,7),(−2,2),(4,3)C. (1,7),(2,2),(3,4)D. (1,7),(2,−2),(3,3)4.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为()A. (a−2,b+3)B. (a−2,b−3)C. (a+2,b+3)D. (a+2,b−3)5.在平面直角坐标系中,点A(5,3)的坐标变为(3,−1),则点A经历了怎样的图形变化()A. 先向左平移2个单位长度,再向下平移4个单位长度B. 先向左平移2个单位长度,再向上平移4个单位长度C. 先向右平移2个单位长度,再向上平移4个单位长度D. 先向右平移2个单位长度,再向下平移4个单位长度6.如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A. (−2,3)B. (3,−1)C. (−3,1)D. (−5,2)7.如图,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC平移到三角形DEF的位置,下面正确的平移步骤是()A. 先向左平移5个单位,再向下平移2个单位B. 先向右平移5个单位,再向下平移2个单位C. 先向左平移5个单位,再向上平移2个单位D. 先向右平移5个单位,再向上平移2个单位8.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(−2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A. (-3,2)B. (2,-3)C. (1,-2)D. (-1,2)9.将点P(−4,3)先向左平移2个单位,再向下平移2个单位得点P′,则点P′的坐标为()A. (−2,5)B. (−6,1)C. (−6,5)D. (−2,1)10.如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(−3,5),B(−4,3),A1(3,3),则B1的坐标为()A. (1,2)B. (2,1)C. (1,4)D. (4,1)二、填空题(本大题共7小题,共21.0分)11.将点P(−3,4)先向下平移2个单位长度,在向左平移2个单位长度,得到点Q,则点Q的坐标是______ .12.已知点M(3a−9,1−a),将M点向左平移3个单位长度后落在y轴上,则a=______.13.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2016的坐标为______ .14.编队飞行(即平行飞行)的两架飞机A、B在直角坐标系中的坐标分别为A(−1,2)、B(−2,3),当飞机A飞到指定位置的坐标是(2,−1)时,飞机B的坐标是______.15.如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,点A1的坐标为(3,1),则点B1的坐标为______.16.如图,把图中的圆A经过平移得到圆O(如图),如果左图⊙A上一点P的坐标为(m,n),那么平移后在右图中的对应点P′的坐标为______.17.如图,△ABC的顶点都在网格点上,将△ABC向右平移3个单位长度,再向上平移2个单位长度,则平移后得到的△A′B′C′三个顶点A′、B′、C′的坐标分别是______.三、解答题(本大题共3小题,共24.0分)18.(1)在如图所示的平面直角坐标系中表示下面各点:A(0,3);B(5,0);C(3,−5);D(−3,−5);E(3,5);(2)A点到原点的距离是______.(3)将点C向x轴的负方向平移6个单位,它与点______重合.(4)连接CE,则直线CE与y轴是什么位置关系?(5)点D分别到x、y轴的距离是多少?19.如图,△A′B′C′是由△ABC平移得到的,已知△ABC中任意一点P(x0,y0)经平移后的对应点为点P′(x0+5,y0−2).(1)已知点A(−1,2)、B(−4,5)、C(−3,0),请写出点A′、B′、C′的坐标;(2)试说明△A′B′C′是如何由△ABC平移得到的?20.三角形ABC与三角形A′B′C′在平面直角坐标系中的位置如图所示,三角形A′B′C′是由三角形ABC平移得到的.(1)分别写出点A′、B′、C′的坐标;(2)说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的?(3)若点F(a,b)是三角形ABC内的一点,则平移后三角形A′B′C′内的对应点为P′,写出点P′的坐标.参考答案1.【答案】D2.【答案】C3.【答案】A4.【答案】A5.【答案】A6.【答案】C7.【答案】A8.【答案】B9.【答案】B10.【答案】B11.【答案】(−5,2)12.【答案】413.【答案】(1008,0)14.【答案】(1,0)15.【答案】(1,2)16.【答案】(m+2,n−1)17.【答案】A′(1,3)、B′(−1,0)、C′(2,−1)18.【答案】解:(1)如图:(2)3;(3)D;(4)直线CE与y轴平行;(5)点D到x轴的距离是5,点D到y轴的距离是3.19.【答案】解:(1)根据题意三角形ABC的平移规律为:向右平移5个单位,向下平移2个单位,则点A′的坐标为(−1+5,2−2)即(4,0),点B′的坐标为(−4+5,5−2)即(1,3),点C′的坐标为(−3+5,0−2)即(2,−2),(2)根据对应点的坐标平移规律即可得出:△ABC向右平移5个单位,向下平移2个单位得到△A′B′C′.20.【答案】解:(1)A′(−3,1)、B′(−2,−2)、C′(−1,−1);(2)△ABC向左平移4个单位,向下平移2个单位得到△A′B′C′;(3)点P′的坐标为(a−4,b−2).。
(完整版)用坐标表示平移练习题(带答案)
用坐标表示平移练习题(带答案)7.1.2《用坐标表示平移》同步练习题(3)知识点: P(x ,y)向右平移a个单位,对应点P’(x+a,y)P(x ,y)向左平移a 个单位,对应点P’(x-a,y)P(x ,y)向上平移a个单位,对应点P’(x,y+a)P(x ,y)向下平移a个单位,对应点P’(x,y-a)同步练习: 1.(综合题)如图,三角形ABC是由三角形A1B1C1平移后得到的,三角形ABC中任意一点P(x,y)经平移后对应点为P1(x-3,y-5),求A1、B1、C1的坐标. 2.如图,一个机器人从O点出发,向正东方向走3米到达A1点,•再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5•点,•按如此规律走下去,•当机器人走到A6点时,•A6点的坐标是________. 3.(创新题)在直角坐标系中,A(-3,4),B(-1,-2),O为原点,求三角形AOB的面积.4.(易错题)把点A(3,2)向下平移4个单位长度,可以得到对应点A1_____,•再向左平移6个单位长度,可以得到对应点A2_______,则点A1与点A关于______对称,点A2与点A关于_______对称,点A2与点A1关于______对称.培优作业 5.如图所示,在直角坐标系中,第一次将△OAB变换成△OA1B1,•第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(•8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按些变换规律将△OA3B3变换成△OA4B4,则A4的坐标是_______,B4的坐标是_________.(2)若按第(1)题的规律将△OAB 进行了n次变换,得到△OAnBn,•比较每次变换中三角形顶点坐标有何变化,找出规律,请推测An的坐标是_______,Bn的坐标是_______. 6.(开放题)如下左图,这是一个利用平面直角坐标系画出的某动物园地图,如果猴山和大象馆的坐标分别是(-5,3)和(-5,-3),虎豹园的地点是(4,2),•你能在此图上标出虎豹园的位置吗?7.(2005年,广东茂名)如上右图,有一条小船,(1)若把小船平移,使点A平移到点B,请你在图中画出平移后的小船;(2)若该小船先从点A航行到达岸边L的点P处补给后,再航行到点B,•但要求航程最短,试在图中画出点P的位置.数学世界蜘蛛网与线路最短问题爸爸出差前,留给小华一道题:下图是某地区的交通网,其中小圈代表城镇,小圈间的连线代表道路,连线旁的a1表示该段道路的千米数,请你选择一条,从A到B的最短线路.小华绞尽脑汁,想了一天还是没有眉目.吃过晚饭,他信步走进小树林,东瞅瞅,•西瞧瞧,一眼落到一张硕大的蜘蛛网上,这张蜘蛛网,多像那张交通图啊!,突然,一只小虫撞到网上,小虫奋力挣扎,于是便不断地拉紧连到网中心的最短的那根丝,•蜘蛛沿着那根丝,迅速出击,抓住了小虫,小华若有所悟,口里直嚷嚷:“有了!有了! ”很快地解出了这道题,你知道小华是用什么方法解决这道题的吗?7.1.2《用坐标表示平移》同步练习题(3)答案: 1.解:由题意知,三角形A1B1C1是由三角形ABC先向左平移3个单位长度,再向下平移5个单位长度得到的.因为A(4,3),B(3,1),C(1,2)所以A1(1,-2),B1(0,-4),C1(-2,-3). 2.解:以点O为原点,正向方向为x轴正方向,正北方向为y轴正方向,•建立如答图所示的平面直角坐标系,题中机器人运动的过程,•实质上是坐标系中点的平移过程,即A1(3,0)→A2(3,6)→A3(-6,6)→A4(-6,-6)→A5(9,-6)→A6(9,12).因此,在以O点为坐标原点,正北方向为y轴正方向的平面坐标系中,A6的坐标为(9,12). 3.解:如答图,作AC⊥y轴,BD⊥y轴,垂足分别为C、D.∵A(-3,4),B(-1,-2),∴AC=3,BD=1,CD=6,OD=2 ∴S△AOB=S 梯形ABCD-(S△OAC+S△OBD)=×(1+3)×6-(×3×4+×1×2)=5.点拨:在平面直角坐标系中求几何图形的面积,通常采取向x 轴或y轴作垂线,•将几何图形割补的方法,同学们想一想,这是为什么? 4.(3,-2);(-3,-2);x轴;原点;y轴点拨:点(a,b)关于x轴的对称点是(a,-b),关于y轴的对称点是(-a,b),关于原点的对称点是(-a,-b). 5.(1)(16,3);(32,0)http: //w ww.xkb 1. com 点拨:A(1,3),A1(2,3),A2(4,3),A3(8,3),其纵坐标都为3,而横坐标依次为20,21,22,23.因此,A4(24,3),即A4(16,3).同理,B(2,0),B1(4,0),B2(8,0),B3(16,0),它们的纵坐标都是0,而横坐标依次是21,22,23,24,因此得出B4(24+1,0),即B4(32,0).(2)(2n,3);(2n+1,0) 6.如答图:点拨:首先确定出平面直角坐标系的原点,x轴、y轴的正方向. 7.解:(1)平移后的小船如答图所示.(2)如答图,点A′与点A关于直线L成轴对称,连接A′B交直线L于点P,则点P为所求.数学世界小华用一种伸缩性很小的细线按交通网的形状和各条道路的长短比例,•编织成一副真正的“交通网”,把网上相当于A、B两地的网结各自向外拉,则由A到B的最短路线所通过的道路一定位于被拉紧的细线上.这种解法叫做“模拟法”.。
七年级下册练习及答案用坐标表示平移
用坐标表示平移一、单选题(共29题;共58分)1.已知点A(3-p,2+p)先向x轴负方向平移2个单位,再向y轴负方向平移3个单位得点B(p,-p),则点B的具体坐标为()A. B. C. D.2.在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位、再向下平移3个单位得到点A1;再将线段OA1绕原点O顺时针旋转90°得到OA2.则A2的坐标为()A. (﹣1,2)B. (2,1)C. (2,﹣1)D. (3,﹣1)3.将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是()A. (1,1)B. (-1,3)C. (5,1)D. (5,3)4.已知△ABC,A(-3,2),B(1,1),C(-1,-2),现将△ABC平移,使点A到点(1,-2) 的位置上,则点B,C平移后对应点的坐标分别为()A. (-3,5),(-6,3)B. (5,-3),(3,-6)C. (-6,3),(-3,5)D. (3,-6),(5,-3)5.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A. (﹣2,﹣4)B. (﹣2,4)C. (2,﹣3)D. (﹣1,﹣3)6.将△ABC的三个顶点的横坐标都加上6,纵坐标都减去5,则所得图形与原图形的关系是()A. 将原图形向x轴的正方向平移了6个单位,向y轴的正方向平移了5个单位B. 将原图形向x轴的负方向平移了6个单位,向y轴的正方向平移了5个单位C. 将原图形向x轴的负方向平移了6个单位,向y轴的负方向平移了5个单位D. 将原图形向x轴的正方向平移了6个单位,向y轴的负方向平移了5个单位7.如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个长度单位,那么平移后对应的点A′的坐标是()A. (﹣2,﹣3)B. (﹣2,6)C. (1,3)D. (﹣2,1)8.点M(﹣3,﹣5)是由N先向上平移4个单位,再向左平移3个单位而得到,则点N的坐标为()A. (0,﹣9)B. (﹣6,﹣1)C. (1,﹣2)D. (1,﹣8)9.点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S.当S=12时,则点P的坐标为()A. (6,2)B. (4,4)C. (2,6)D. (12,﹣4)10.在平面直角坐标系中,已知线段AB的两个端点分别是A(-4,-1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2)则点B′的坐标为()A. (4,3)B. (3,4)C. (-1,-2)D. (-2,-1)11.过点A(﹣3,2)和点B(﹣3,5)作直线,则直线AB()A. 平行于y轴B. 平行于x轴C. 与y轴相交D. 与y轴垂直12.在平面直角坐标系中,已知线段AB的两个端点分别是A(- 4 ,-1).B(1,1) 将线段AB平移后得到线段A ’B’,若点A’的坐标为(-2 , 2 ) ,则点B’的坐标为()A. ( 3 , 4 )B. ( 4 , 3 )C. (-1 ,-2 )D. (-2,-1)13.在平面直角坐标系中,将点关于原点对称得到点,再将点向左平移2个单位长度得到点,则点的坐标是()A. B. C. D.14.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P 在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为()A. (3,4)或(2,4)B. (2,4)或(8,4)C. (3,4)或(8,4)D. (3,4)或(2,4)或(8,4)15.如图,在平面直角坐标系中,点B在x轴上,△AOB是等边三角形,AB=2,则点A的坐标为( )A. (2,)B. (1,2)C. (1,)D. (,1)16.在平面直角坐标系中,将点(1,2)先向左平移2个单位长度,再向下平移3个单位长度,则平移后得到的点是()A. (﹣1,﹣1)B. (﹣1,5)C. (3,﹣1)D. (3,5)17.在平面直角坐标系内,线段CD是由线段AB平移得到的,点A(﹣2,3)的对应点为C(2,5),则点B(﹣4,﹣1)的对应点D的坐标为()A. (﹣8,﹣3)B. (4,2)C. (0,1)D. (1,8)18.在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A. 5个B. 4个C. 3个D. 2个19.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A. (0,2)B. (2,0)C. (4,0)D. (0,-4)20.已知点A(-2 ,4),将点A 往上平移2个单位长度,再往左平移3个单位长度的到点A′,则点A′的坐标是()A. (-5,6)B. (1,2)C. (1,6)D. (-5,2)21.若将点A(m+2,3)先向下平移1个单位,再向左平移2个单位,得到点B(2,n﹣1)则()A. m=2,n=3B. m=2,n=5C. m=﹣6,n=3D. m=﹣6,n=522.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A. -1B. -4C. 2D. 323.在平面直角坐标系中,已知点,,平移线段,使点落在点处,则点的对应点的坐标为()A. B. C. D.24.若点A的坐标是,AB=4,且AB平行于y轴,则点B的坐标为()A. B. 或 C. D. 或25.过点和作直线,则直线()A. 与轴平行B. 与轴平行C. 与轴相交D. 与轴,轴均相交26.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为()A. (0,0)B. (1,2)C. (1,3)D. (3,1)27.在平面直角坐标系中,点向左平移个单位长度得到的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限28.点先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是()A. B. C. D.29.在平面直角坐标系中,点先向左平移个单位,再向下平移个单位,得到的()A. B. C. D.二、填空题(共20题;共25分)30.抛物线y=x2+4x+3向下平移4个单位后所得的新抛物线的表达式是________.31.将点P(a+1,2a)向上平移8个单位得到点在第二象限,则a的取值范围是________.32.在平面直角坐标系中,点A的坐标为(﹣1,3),线段AB∥x轴,且AB=4,则点B的坐标为________ .33.在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是________.34.在平面直角坐标系中,过三点A(0,0),B(2,2),C(4,0)的圆的圆心坐标为________.35.将线段AB平移1cm得到线段A'B',则点A到点A'的距离是________ cm.36.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),若线段AB与x轴有交点,则m的取值范围是________.37.如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),平移线段AB,使点A落在点A1(-2,2)处,则点B的对应点B1的坐标为________ 。
人教版七年级数学下册7.2.2用坐标表示平移同步测试(含答案)
绝密★启用前用坐标表示平移班级:姓名:一、单项选择题1.已知点A( 5,﹣ 1),现将点 A 沿 x 轴正方向挪动 1 个单位长度后抵达点B,那么点 B 的坐标是()A.( 6,﹣ 1)B.( 5,0)C.(4,﹣ 1)D.(﹣ 5, 1)2.将点A 2, 1 向左平移 3 个单位长度,在向上平移4 个单位长度获得点B,则点B的坐标是()A.5,3B.5,5C.1, 5D.1,33.如图,已知点,的坐标分别为( 3,0 ),( 0,4),将线段平移到,若点的对应点的坐标为( 4,2 ),则的对应点的坐标为()A.( 1,6)B.( 2,5)C.( 6, 1)D.( 4, 6)4.将某图形的各极点的横坐标保持不变,纵坐标减去3,可将该图形()A.横向向右平移3个单位B.横向向左平移3个单位C.纵向向上平移3个单位D.纵向向下平移3个单位5.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A.向右平移了 3 个单位B.向左平移了 3 个单位C.向上平移了 3 个单位D.向下平移了 3 个单位6.在内的随意一点经过平移后的对应点为,已知在经过此次平移后对应点的坐标为,则的值为()A.B.C.D.7.已知线段AB 在平面直角坐标系中,A, B 坐标分别为( m, n),( 2, 3),将线段AB 平移至A1B1, A1, B1坐标为( n-1,3-m ),( -1, -2),则 A 点的坐标是()A.( -5, 3)B.( -3, 5)C.( 3, -5)D.( 5, 3)8.如图,将点 A 先向右平移 3 个单位长度,在向下平移 5 个单位长度,获得A’;将点 B 先向下平移5 个单位长度,再向右平移 4 个单位长度,获得B’,则 A’与 B’相距()A. 4 个单位长度B. 5 个单位长度C.6 个单位长度D.7 个单位长度二、填空题9.在平面直角坐标系中,将点A(5,﹣8)向左平移获得点B( x+3,x﹣ 2),则点 B 的坐标为 _____.10.如图,将直角三角形ABC 沿 BC 方向平移必定距离获得三角形DEF ,若AB 8 , BE 3 ,DG 2 则图中暗影部分面积为_____.11.在平面直角坐标系中,将点Q 向下平移 4 个单位长度后获得点2, 6 ,则点 Q 的坐标是__________.12.如图,在△AOB 中, AO=AB,在直角坐标系中,点 A 的坐标是(2,2),点 O 的坐标是( 0,0),将△AOB 平移获得△ A′O′,B使′得点 A′在 y 轴上.点 O′、 B′在 x 轴上.则点 B'的坐标是 ______三、解答题13.如图,在平面直角坐标系中,△ ABC的三个极点的坐标分别为:A( -1, 2), B(-2, -1), C (2,0).( 1)作图:将△ ABC先向右平移4 个单位,再向上平移 3 个单位,则获得△ A1B1C1,作出△A1B1C1;(不要求写作法)(2)写出以下点的坐标: A1______ ;B1______; C1______.(3)求△ ABC 的面积 .一、单项选择题1.在平面直角坐标系中,将点A(﹣ 1,﹣ 2)向右平移 3 个单位长度获得点B,则点 B 对于 x 轴的对称点 B′的坐标为()A.(﹣ 3,﹣ 2)B.( 2, 2)C.(﹣ 2, 2)D.( 2,﹣ 2)2.在直角坐标系中 ,某三角形三个极点的横坐标不变,纵坐标都增添 2 个单位长度 ,则所得三角形与原三角形对比()A.形状不变 ,面积扩大 2 倍B.形状不变 ,地点向上平移 2 个单位长度C.形状不变 ,地点向右平移 2 个单位长度D.以上都不对3.将三角形 ABC的三个极点的纵坐标都加上3,横坐标不变,表示将该三角形()A.沿 x 轴的正方向平移了3个单位长度B.沿 x 轴的负方向平移了3个单位长度C.沿 y 轴的正方向平移了3个单位长度D.沿 y 轴的负方向平移了3个单位长度4.如图,已知一个直角三角板的直角极点与原点重合,另两个极点A, B 的坐标分别为(-1, 0),( 0, 3 ).现将该三角板向右平移使点 A 与点 O 重合,获得△ OCB’,则点 B 的对应点B’的坐标是()A.(1,0)B.(3, 3 )C.(1,3)D.(-1, 3 )5.如图,在 x 轴的正半轴和与x 轴平行的射线上各搁置一块平面镜,发光点(0,1)处沿如下图方向发射一束光,每当遇到镜面时会发生反射(反射时反射角等于入射角,认真看光芒与网格线和镜面的夹角),当光芒第20 次遇到镜面时的坐标为()A.( 60,0)B.( 58,0 )C.( 61,3)D.( 58,3)6.在平面直角坐标系中,线段CF是由线段AB 平移获得的;点A( -1,4)的对应点为C( 4, 1);则点 B( a, b)的对应点 F 的坐标为()A.( a+3, b+5)B.( a+5, b+3)C.( a-5,b+3)D.( a+5,b-3)7.将某图形的横坐标都减去2,纵坐标不变,则该图形()A.向右平移 2 个单位B.向左平移 2 个单位C.向上平移 2 个单位D.向下平移 2 个单位8.点 A(-3, -5)向右平移 2 个单位,再向下平移 3 个单位到点B,则点 B 的坐标为()A.(-5,-8)B. (-5,-2)C. (-1,-8)D. (-1,-2)二、填空题9.如图,△ ABC的极点都在网格点上,将△ ABC向右平移 3 个单位长度,再向上平移 2 个单位长度,则平移后获得的△ A′B′三C个′极点 A′、 B′、C′的坐标分别是 _____.10.如图,线段AB 经过平移获得线段A'B' ,此中点A,B的对应点分别为点A', B' ,这四个点都在格点上,若线段AB 上有一个点P a,b ,则点P在A'B'上的对应点P'的坐标为______.11.若将P 1,m向右平移 2 个单位长度后,再向上平移 1 个单位长度获得点Q n,3 ,则点 m,n的实质坐标是 ______ .12.线段 CD 是由线段 AB 平移获得的,此中点 A(﹣ 1,4)平移到点 C(﹣ 3, 2),点 B( 5,﹣ 8)平移到点 D,则 D 点的坐标是 ________.三、解答题13.如图,△ ABC在直角坐标系中,(1)请写出△ ABC各点的坐标 .(2)求出△ ABC的面积 .(3)若把△ ABC向上平移 2 个单位,再向右平移 2 个单位得△ A′B′,C在′图中画出△ ABC 变化地点。
人教版七年级下册7.2.2 用坐标表示平移(含答案).doc
7.2.2用坐标表示平移一、选择题1.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( )A.(3,1) B.(-1,1) C.(1,3) D.(1,-1)2.在平面直角坐标系中,将点P(-3,2)向下平移4个单位得到点P′,则点P′所在的象限为( ) A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( )A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)4.如图,把三角形ABC先向右平移3个单位,再向上平移2个单位得到三角形DEF,则顶点C(0,-1)的对应点坐标为( )A.(0,0) B.(1,2) C.(1,3) D.(3,1)5.如图,点A(2,1),将线段OA先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A的对应点A′的坐标是( )A.(-3,2) B.(0,4) C.(-1,3) D.(3,-1)6.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为( )A.(1,3) B.(5,1) C.(1,3)或(3,5) D.(1,3)或(5,1)7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,3).现将该三角板向右平移使点A与点O重合,得到三角形OCB′,则点B的对应点B′的坐标是( )A.(1,0) B.(3,3) C.(1,3) D.(-1,3)二、填空题8.点N(-1,3)可以看作由点M(-1,-1)向平移个单位所得到的.9.已知点M(3a-9,1-a),将点M向左平移3个单位长度后落在y轴上,则a=. 10.如图,三角形OAB的顶点A,B的坐标分别为(3,5),(4,0),把三角形OAB沿x轴向右平移得到三角形CDE.如果CB=1,那么点D的坐标为.11.如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(-4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,-4)……按此做法进行下去,则点A10的坐标为.12.如图①是一个斜角坐标系,水平放置的轴称为横轴(记作a轴),斜向放置的轴称为斜轴(记作b轴).类似于直角坐标系,对于斜角坐标平面内的任意一点P,过点P分别作b轴、a轴的平行线交a轴、b轴于点M,N,若点M,N分别在a轴、b轴上所对应的实数为m与n,则称有序实数对(m,n)为点P的坐标.如图②,三角形ABC中,A(1,4),C(3,5),如果平移三角形ABC 得到三角形A′B′C′,使点A′与点C重合,在三角形ABC内部,有一任意点D(x,y),则平移后点D的对应点D′的坐标为________________.三、解答题13.如图,三角形ABC的顶点坐标分别为A(-2,3),B(-3,0),C(-1,-1).将三角形ABC 平移后得到三角形A′B′C′,且点A的对应点是A′(2,3),点B,C的对应点分别是B′,C′.(1)点A,A′之间的距离是;(2)请在图中画出三角形A′B′C′.14.如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0).(1)平移三角形ABO至三角形A1B1O1,当点A1和点B重合时,求点O1的坐标;(2)平移三角形ABO至三角形A2B2O2,需要至少向下平移超过单位,并且至少向左平移超过个单位,才能使三角形A2B2O2位于第三象限.15.在平面直角坐标系中,三角形A′B′C′是由三角形ABC平移后得到的,已知三角形ABC内部的一点P(x0,y0)经平移后的对应点为P′(x0+5,y0-2).(1)三角形A′B′C′是由三角形ABC如何平移得到的?(2)若已知A(-1,2),B(-4,5),C(-3,0),请写出A′,B′,C′的坐标;(3)在(2)的条件下,求三角形A′B′C′的面积.16.如图,第一象限内有两点P(m-3,n),Q(m,n-2),将线段PQ平移,使点P,Q分别落在两条坐标轴上,求点P平移后的对应点的坐标.17.如图,在平面直角坐标系中,A(1,4),B(3,2),O为坐标原点,且OC∥AB,OC=AB.试用平移的知识求C点的坐标,并求四边形ABCO的面积.参考答案一、选择题1.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( A)A.(3,1) B.(-1,1) C.(1,3) D.(1,-1)2.在平面直角坐标系中,将点P(-3,2)向下平移4个单位得到点P′,则点P′所在的象限为( C) A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( A)A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)4.如图,把三角形ABC先向右平移3个单位,再向上平移2个单位得到三角形DEF,则顶点C(0,-1)的对应点坐标为( D)A.(0,0) B.(1,2) C.(1,3) D.(3,1)5.如图,点A(2,1),将线段OA先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A的对应点A′的坐标是( C)A.(-3,2) B.(0,4) C.(-1,3) D.(3,-1)6.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为( D)A.(1,3) B.(5,1) C.(1,3)或(3,5) D.(1,3)或(5,1)7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,3).现将该三角板向右平移使点A与点O重合,得到三角形OCB′,则点B的对应点B′的坐标是( C)A.(1,0) B.(3,3) C.(1,3) D.(-1,3)二、填空题8.点N(-1,3)可以看作由点M(-1,-1)向平移个单位所得到的.【答案】上 49.已知点M(3a-9,1-a),将点M向左平移3个单位长度后落在y轴上,则a=. 【答案】410.如图,三角形OAB的顶点A,B的坐标分别为(3,5),(4,0),把三角形OAB沿x轴向右平移得到三角形CDE.如果CB=1,那么点D的坐标为.【答案】(6,5)11.如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(-4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,-4)……按此做法进行下去,则点A10的坐标为.【答案】(-1,11)12.如图①是一个斜角坐标系,水平放置的轴称为横轴(记作a轴),斜向放置的轴称为斜轴(记作b轴).类似于直角坐标系,对于斜角坐标平面内的任意一点P,过点P分别作b轴、a轴的平行线交a轴、b轴于点M,N,若点M,N分别在a轴、b轴上所对应的实数为m与n,则称有序实数对(m,n)为点P的坐标.如图②,三角形ABC中,A(1,4),C(3,5),如果平移三角形ABC 得到三角形A′B′C′,使点A′与点C重合,在三角形ABC内部,有一任意点D(x,y),则平移后点D的对应点D′的坐标为________________.【答案】(x+2,y+1)三、解答题13.如图,三角形ABC的顶点坐标分别为A(-2,3),B(-3,0),C(-1,-1).将三角形ABC 平移后得到三角形A′B′C′,且点A的对应点是A′(2,3),点B,C的对应点分别是B′,C′.(1)点A,A′之间的距离是;(2)请在图中画出三角形A′B′C′.解:(1)4(2)如图所示,三角形A′B′C′即为所求.14.如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0).(1)平移三角形ABO至三角形A1B1O1,当点A1和点B重合时,求点O1的坐标;(2)平移三角形ABO至三角形A2B2O2,需要至少向下平移超过单位,并且至少向左平移超过个单位,才能使三角形A2B2O2位于第三象限.解:(1)点O1的坐标为(2,-2).(2)3 315.在平面直角坐标系中,三角形A′B′C′是由三角形ABC平移后得到的,已知三角形ABC内部的一点P(x0,y0)经平移后的对应点为P′(x0+5,y0-2).(1)三角形A′B′C′是由三角形ABC如何平移得到的?(2)若已知A(-1,2),B(-4,5),C(-3,0),请写出A′,B′,C′的坐标;(3)在(2)的条件下,求三角形A′B′C′的面积.解:(1)三角形ABC先向右平移5个单位长度,再向下平移2个单位长度(或先向下平移2个单位长度,再向右平移5个单位长度)得到三角形A′B′C′.(2)A′(4,0),B′(1,3),C′(2,-2).(3)将三角形A ′B ′C ′补成如图所示的长方形,则S 三角形A ′B ′C ′=3×5-12×5×1-12×2×2-12×3×3=6.16.如图,第一象限内有两点P (m -3,n ),Q (m ,n -2),将线段PQ 平移,使点P ,Q 分别落在两条坐标轴上,求点P 平移后的对应点的坐标.解:设平移后点P ,Q 的对应点分别是P ′,Q ′.分两种情况:①P ′在y 轴上,Q ′在x 轴上,则P ′的横坐标为0,Q ′的纵坐标为0.∵0-(n -2)=-n +2,∴n -n +2=2.∴点P 平移后的对应点的坐标是(0,2).②P ′在x 轴上,Q ′在y 轴上,则P ′的纵坐标为0,Q ′的横坐标为0.∵0-m =-m ,∴m -3-m =-3.∴点P 平移后的对应点的坐标是(-3,0).综上可知,点P 平移后的对应点的坐标是(0,2)或(-3,0).17.如图,在平面直角坐标系中,A (1,4),B (3,2),O 为坐标原点,且OC ∥AB ,OC =AB .试用平移的知识求C 点的坐标,并求四边形ABCO 的面积.解:∵把A 点向左平移1个单位长度,再向下平移4个单位长度可得到原点O (0,0),又∵OC ∥AB ,OC =AB ,∴OC 可由AB 向左平移1个单位长度,再向下平移4个单位长度得到.∴点B (3,2)向左平移1个单位长度,再向下平移4个单位长度得到点C (2,-2).分别过A ,C 作x 轴的平行线,过B 作y 轴的平行线,交点为D ,E ,F ,G ,如图所示.S 四边形ABCO =S 长方形DEFG-S 三角形AOD -S 三角形COE -S 三角形BCF -S 三角形ABG =3×6-12×1×4-12×2×2-12×1×4-12×2×2=10.。
7.2.2 用坐标表示平移 人教版数学七年级下册同步练习(含解析)
第七章平面直角坐标系7.2坐标方法的简单应用7.2.2用坐标表示平移基础过关全练知识点1坐标系中点的平移1.(2022广东中考)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( )A.(3,1)B.(-1,1)C.(1,3)D.(1,-1)2.在平面直角坐标系中,将点P(-3,4)平移至原点,则平移方式可以是( )A.先向左平移3个单位,再向上平移4个单位B.先向右平移4个单位,再向上平移3个单位C.先向左平移3个单位,再向下平移4个单位D.先向右平移3个单位,再向下平移4个单位3.如图,在平面直角坐标系xO1y中,点A的坐标为(2,2).如果将x轴向上平移6个单位长度,将y轴向左平移4个单位长度,交于点O2,点A 的位置不变,那么在平面直角坐标系xO2y中,点A的坐标是( )A.(-6,4)B.(6,-4)C.(-4,-6)D.(6,8)知识点2坐标系中图形的平移4.如图,点A,B的坐标分别为(-3,1),(-1,-2),若将线段AB平移至A1B1的位置,点A1,B1的坐标分别为(a,4),(3,b),则a+b的值为( )A.2B.3C.4D.55.如图,△ABC经过一定的平移得到△A'B'C',如果△ABC上的点P的坐标为(a,b),那么这个点在△A'B'C'上的对应点P'的坐标为( )A.(a-2,b-3)B.(a-3,b-2)C.(a+3,b+2)D.(a+2,b+3)6.三角形ABC中一点P(x,y)经过平移后对应点为P1(x+4,y-2),将三角形ABC进行同样的平移得到三角形A1B1C1,若点A的坐标为(-4,5),则点A1的坐标为.7.【教材变式·P86T9变式】如图所示,四边形ABCO中,AB∥OC,BC ∥AO,A、C两点的坐标分别为(-√3,√5)、(-2√3,0),A、B两点间的距离等于O、C两点间的距离.(1)点B的坐标为;(2)将这个四边形向下平移2√5个单位长度后得到四边形A'B'C'O',请你写出平移后四边形四个顶点的坐标.8.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,已知点A(1,0),B(4,0),C(3,3),D(1,4).(1)描出A、B、C、D四点的位置,并顺次连接A、B、C、D各点,组成一个封闭图形;(2)四边形ABCD的面积是;(3)四边形ABCD向左平移5个单位长度,再向上平移1个单位长度得到四边形A'B'C'D',在图中画出四边形A'B'C'D',并写出A'、B'、C'、D'的坐标.能力提升全练9.(2021重庆丰都期末,10,★★☆)将点P(m+2,2-m)向右平移2个单位长度得到点Q,且Q在y轴上,那么点P的坐标为( )A.(6,-2)B.(-2,6)C.(2,2)D.(0,4)10.【新素材·密码确定】(2022山东济宁兖州期末,5,★★☆)一组密码的一部分如图,为了保密,不同的情况下可以采用不同的密码.若输入数字密码(7,7),(8,5),对应的中转口令是“数学”,最后输出的口令为“文化”,按此方法,若输入数字密码(2,7),(3,4),则最后输出的口令为( )A.垂直B.平行C.素养D.相交11.【代数推理】(2022福建厦门思明湖滨中学期末,9,★★☆)在平面直角坐标系中,将A(n2,1)沿着x轴的正方向平移3+n2个单位后得到B点.有四个点M(-2n2,1)、N(3n2,1)、P(n2,n2+4)、Q(n2+1,1),一定在线段AB上的是( )A.点MB.点QC.点PD.点N12.【易错题】(2021湖北武汉江岸期末,14,★★☆)如图,第一象限内有两点P(m-4,n),Q(m,n-3),将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是.素养探究全练13.【抽象能力】如图,已知点A1(1,1),点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3;点A3向上平移4个单位,再向右平移8个单位,得到点A4,……,按这个规律平移得到点A n,则点A n的横坐标为.14.【抽象能力】(2022北京师大附中期末)对于平面直角坐标系xOy 中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P'(x+t,y-t)称为将点P进行“t型平移”,点P'称为将点P进行“t型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t型平移”.例如:将点P(x,y)平移到P'(x+1,y-1)称为将点P进行“1型平移”,将点P(x,y)平移到P'(x-1,y+1)称为将点P进行“-1型平移”.已知点A(1,1)和点B(3,1).(1)将点A(1,1)进行“1型平移”后的对应点A'的坐标为;(2)①将线段AB进行“-1型平移”后得到线段A'B',点P1(2,3),P2(1.5,2),P3(3,0)中,在线段A'B'上的点是;②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是.答案全解全析基础过关全练1.A将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选A.2.D将点P(-3,4)的横坐标加3,纵坐标减4即可得原点的坐标(0,0),故可以先向右平移3个单位,再向下平移4个单位.3.B新坐标系如图所示,点A在新坐标系中的坐标为(6,-4),故选B.4.A∵点A,B的坐标分别是为(-3,1),(-1,-2),线段AB平移至A1B1的位置后,A1(a,4),B1(3,b),∴线段AB向右平移了4个单位,向上平移了3个单位,∴a=1,b=1,∴a+b=2,故选A.5.C点B的坐标为(-2,0),点B'的坐标为(1,2),横坐标增加了1-(-2)=3,纵坐标增加了2-0=2,∵△ABC上点P的坐标为(a,b),∴点P'的横坐标为a+3,纵坐标为b+2,∴点P'的坐标为(a+3,b+2),故选C.6.答案(0,3)解析∵三角形ABC中任意一点P(x,y)经过平移后对应点为P1(x+4,y-2),∴该点先向右平移了4个单位长度,又向下平移了2个单位长度,又-4+4=0,5-2=3,∴点A的对应点A1的坐标为(0,3).7.解析(1)∵C点的坐标为(-2√3,0),∴OC=2√3.∵AB∥OC,AB=OC,∴将A点向左平移2√3个单位长度得到B点,又∵A点的坐标为(-√3,√5),∴B点的坐标为(-√3−2√3,√5),即(-3√3,√5).(2)∵将四边形ABCO向下平移2√5个单位长度后得到四边形A'B'C'O',∴A'点的坐标为(-√3,-√5),B'点的坐标为(-3√3,-√5),C'点的坐标为(-2√3,-2√5),O'点的坐标为(0,-2√5).8.解析(1)如图..(2)四边形ABCD的面积是172(3)四边形A'B'C'D'如图.其中A'(-4,1)、B'(-1,1)、C'(-2,4)、D'(-4,5).能力提升全练9.B将点P(m+2,2-m)向右平移2个单位长度后得到的点Q的坐标为(m+4,2-m),∵点Q(m+4,2-m)在y轴上,∴m+4=0,即m=-4,则点P 的坐标为(-2,6),故选B.10.D输入数字密码(7,7),(8,5),对应的中转口令是“数学”,最后输出的口令为“文化”,可得平移规律为向左平移1格,向下平移2格,所以输入数字密码(2,7),(3,4),得最后输出的口令为“相交”,故选D.11.B∵将A(n2,1)沿着x轴的正方向平移3+n2个单位后得到B点,∴B(2n2+3,1),∴点B在点A右侧,且AB与x轴平行,AB上的点都距离x轴1个单位,因为点M(-2n2,1)距离x轴1个单位,当n≠0时,M 点在点A左侧,当n=0时,M点跟A点重合,所以点M不一定在线段AB上.点N(3n2,1)距离x轴1个单位,可看作将点A沿着x轴的正方向平移2n2个单位后得到的,不一定在线段AB上.点P(n2,n2+4)在点A 右侧,且距离x轴n2+4个单位,不在线段AB上.点Q(n2+1,1)距离x 轴1个单位,可看作将A(n2,1)沿着x轴的正方向平移1个单位后得到的,一定在线段AB上.所以一定在线段AB上的是点Q.故选B.12.答案(0,3)或(-4,0)解析设平移后点P、Q的对应点分别是P'、Q'.分两种情况:①P'在y轴上,Q'在x轴上,则P'的横坐标为0,Q'的纵坐标为0,∴点P'的纵坐标为n+0-(n-3)=3,∴点P平移后的对应点的坐标是(0,3);②P'在x轴上,Q'在y轴上,则P'的纵坐标为0,Q'的横坐标为0,∴点P'的横坐标为m-4+0-m=-4,∴点P平移后的对应点的坐标是(-4,0).综上可知,点P平移后的对应点的坐标是(0,3)或(-4,0).素养探究全练13.答案2n-1解析由题意知,点A1的横坐标为1=21-1,点A2的横坐标为3=22-1,点A3的横坐标为7=23-1,点A4的横坐标为15=24-1,……,则点A n的横坐标为2n-1.14.解析(1)将点A(1,1)进行“1型平移”后的对应点A'的坐标为(2,0),故答案为(2,0).(2)①如图,将线段AB进行“-1型平移”后得到线段A'B',点P1(2,3),P2(1.5,2),P3(3,0)中,线段A'B'上的点是P2.②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是-3≤t≤-1或t=1.。
人教版七年级下册数学7.2.2 用坐标表示平移 课时练习01含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!用坐标表示平移一、单选题1.把点()4,2-向左平移一个单位得到的点为()A .()3,2-B .()5,2-C .()4,3-D .()4,1-2.将点P (m +2,3)向右平移1个单位长度到P ′,且P ′在y 轴上,那m 的值是()A .﹣2B .﹣1C .﹣3D .13.在平面直角坐标系中,将点(-1,-3)向左平移3个单位长度得到的点的坐标是()A .(-1,-6)B .(-4,-3)C .(2,-3)D .(-1,0)4.如图,点A 的位置用数对()3,4表示,将点A 先向左平移2格,再向下平移2格,平移后的位置用数对表示为()A .()1,2B .()2,2C .()2,1D .()3,15.线段AB 两端点的坐标分别为A (-1,4),B (-4,1),现将它向左平移4个单位长度,得到线段11A B ,则点1A 、1B 的坐标分为()A .1A (-5,0),1B (-4,1)B .1A (3,7),1B (0,5)C .1A (-5,4),1B (-8,1)D .1A (3,4),1B (0,1)6.点(2,1)P -是平面直角坐标系内一点,将P 向左平移4个单位长度,再向下平移3个单位长度,得到点Q ,则点Q 的坐标是()A .(2,2)-B .(2,4)C .(6,2)--D .(6,4)-7.将点P (−1,-5)平移得到点P ′(-4,-5),则它平移的方式是().A .向左平移3个单位长度B .向右移3个单位长度C .向上移3个单位长度D .向下移3个单位长度8.一只蚂蚁由()0,0先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是()A .(3,2)B .(2,3)C .(4,3)D .(3,4)9.在平面直角坐标系中,将点(),x y 向左平移a 个单位长度,再向下平移b 个单位长度,则平移后得到的点是()A .(,)x a y b -+B .(,)x a y b +-C .(,)x a y b -+D .(,)x a y b --10.将某图形的横坐标减去2,纵坐标保持不变,可将图形()A .横向向右平移2个单位B .横向向左平移2个单位C .纵向向右平移2个单位D .纵向向左平移2个单位11.在平面直角坐标系中,将点(1,2)A m n -+先向左平移3个单位长,再向上平移2个单位长,得到点A ¢,若点A ¢位于第二象限,则m ,n 的取值范围分别是()A .2m <-,0n >B .4m <,0n >C .4m <,4n >-D .1m <,2n >-12.如图,在平面直角坐标系中,已知“蝴蝶”上有两点(3,7)A ,(7,7)B ,将该“蝴蝶”经过平移后点A 的对应点为(1,3)A ¢,则点B 的对应点B ¢的坐标为()A .(9,11)B .(9,3)C .(3,5)D .(5,3)二、填空题13.将点P 向右平移2个单位长度,再向下平移1个单位长度得到点()'1,3P -,则点P 的坐标是_______.14.在平面直角坐标系中,将点(2,3)A -先向左平移4个单位长度,再向下平移2个单位长度,平移后得到的对应点A ¢的坐标是______.15.如图所示,在平面直角坐标系中,()2,0A ,()0,1B ,将线段AB 平移至11A B 的位置,则a b +的值为___________.16.如图,在平面直角坐标系中,已知点()()2,1,1,1M N -,平移线段MN ,使点M 落在点()1,2M ¢-处,则点N 对应的点N ¢的坐标为___________.17.如图,是88´的“密码”图,利用平移对应文字,“今天考试”解密为“祝你成功”,用此“钥匙”解密“遇水架桥”的词语是__________.三、解答题18.如图,所有小正方形的边长都为1,A 、B 、C 都在格点上,点A 的坐标为A (-1,3).(1)若这四个点的纵坐标若保持不变,横坐标变为原来的(1)请说明一种平移的方法.(2)在图中画出将三角形CDE 向右平移2个单位长度,再向上平移3个单位长度得到的三角形FGH ,并写出F ,G ,H 三点的坐标.21.如图,在平面直角坐标系中,已知O 是原点,四边形ABCD 是长方形,且四个顶点都在格点上.(1)分别写出A ,B ,C ,D 四个点的坐标;(2)画出将长方形ABCD 先向下平移4个单位,再向右平移2个单位得到的四边形1111D C B A ,并写出其四个顶点的坐标.参考答案1.B2.C3.B4.A5.C6.C7.A8.A9.D10.B11.C12.D13.(-3,4)-14.(6,1)15.2-16.()2,017.中国崛起18.(1)如图所示,建立平面直角坐标系∴点B的坐标为(-3,1),点C的坐标为(2,1).故答案为:(-3,1),(2,1);(2)如图所示,作AG⊥BC,∴点G的坐标为(-1,1);故答案为:(-1,1);(3)①如图所示,画出线段A1B1,②点A1的坐标为(1,2),点B1的坐标为(-1,0).故答案为:(1,2),(-1,0).19.(1)与原图案相比,图案纵向未变,横向被压缩为原来的一半;(2)与原图案相比,图案大小没有变化,向右平移3个单位;(3)与原图案相比,图案大小没有变化,向上平移3个单位(4)与原图案相比,图案纵向未变,横向被拉长为原来的2倍20.(1)先向右平移2个单位长度,再向下平移4个单位长度(2)(3,2)(4,1)(0,0)F G H -,,21.(1)由图可知:A (-3,1),B (-3,3),C (2,3),D (2,1);(2)∵A (-3,1),B (-3,3),C (2,3),D (2,1),∴向下平移4个单位,再向右平移2个单位后对应点为()11,3A --,()11,1B --,()14,1C -,()14,3D -,作图如下,。
人教版七年级数学下册 7-2-2用坐标表示平移(同步练习)
第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移班级:姓名:知识点1用坐标表示点的平移1.将点A(2,1)向左平移2个单位长度得到点A',则点A'的坐标是()A.(0,1)B.(2,-1)C.(4,1)D.(2,3)2.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,点B的坐标是()A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)3.点P(2,-3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P'的坐标是.4.将点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',则点A'的坐标是.5.将点A(1,-3)向右平移2个单位长度,再向下平移2个单位长度后得到点B(a,b),则ab=.6.(1)如图,将点A向右平移几个单位长度可得到点B()A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度(2)将点A向下平移5个单位长度后,将重合于图中的()A.点CB.点FC.点DD.点E(3)将点A先向右平移3个单位长度,再向下平移5个单位长度,得到A',将点B先向下平移5个单位长度,再向右平移3个单位长度,得到B',则A'与B'相距()A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度(4)点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G',则G'的坐标为()A.(6,5)B.(4,5)C.(6,3)D.(4,3)7.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)知识点2用坐标表示图形的平移8.将一个三角形的三个顶点的坐标分别向上平移1个单位长度,再向左平移4个单位长度所得点的坐标分别是(2,1),(-1,3),(4,-5),则平移前三个顶点的坐标分别是()A.(6,0),(3,2),(8,-6)B.(-1,-5),(2,-7),(3,-1)C.(1,5),(2,-7),(-3,1)D.(-1,5),(2,-7),(-3,1)9.如图,将三角形PQR向右平移2个单位长度,再向下平移3个单位长度,则点P平移后的坐标是()A.(-2,-4)B.(-2,4)C.(2,-3)D.(-1,-3)10.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2),(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.11.如图,三角形OAB 的顶点B 的坐标为(4,0),把三角形OAB 沿x 轴向右平移得到三角形CDE.如果CB=1,那么OE 的长为.12.如图,A,B 的坐标分别为(1,0),(0,2),若将线段AB 平移至A 1B 1,A 1,B 1的坐标分别为(2,a),(b,3),则a+b=.13.如图,梯形A'B'C'D'可以由梯形ABCD 经过怎样的平移得到?对应点的坐标有什么变化?综合点学科内综合14.如图,点A,B 的坐标分别为(1,2),(4,0),将三角形AOB 沿x 轴向右平移,得到三角形CDE,已知DB=1,则点C 的坐标为.15.如图,三角形A'B'C'是由三角形ABC 平移后得到的,已知三角形ABC 中一点P(x 0,y 0)经平移后对应点为P'(x 0+5,y 0-2).(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A',B',C'的坐标;(2)试说明三角形A'B'C'是如何由三角形ABC平移得到的;(3)请直接写出三角形A'B'C'的面积为_____.拓展训练拓展点坐标中的规律探究16.如图,三角形DEF 是三角形ABC 经过某种变换后得到的图形,分别写出点A 与点D,点B 与点E,点C 与点F 的坐标,并观察它们的关系,如果三角形ABC 中任一点M 的坐标(x,y),那么它的对应点N的坐标是什么?第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移答案与点拨1.A(点拨:点A'的横坐标为2-2=0,纵坐标为1,∴A'的坐标为(0,1).故选A.)2.B(点拨:∵A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,∴1+2=3,-2+3=1;点B的坐标是(1,3).故选B.)3.(-2,-2)(点拨:点(2,-3)向左平移4个单位长度,横坐标为:2-4=-2,向上平移1个单位长度,纵坐标为:-3+1=-2,∴点P'(-2,-2).)4.(-7,3)(点拨:点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',∴A'的坐标是(-3-4,-2+5),即(-7,3).)5.-15(点拨:将点A向右平移2个单位长度,纵坐标不变,横坐标增加2,此时点的坐标为(3,-3),再向下平移2个单位长度,横坐标不变,纵坐标减2,此时的坐标为(3,-5),即点B坐标为(3,-5),∴a=3,b=-5,∴ab=3×(-5)=-15.)6.(1)B(2)D(3)A(点拨:先分别找到A',B'的位置,再观察它们之间的距离.)(4)D7.D(点拨:逆向思考,把点(-3,2)先向右平移5个单位长度,再向下平移3个单位长度可得到A点坐标.)8.A(点拨:将平移后各点横坐标加4,纵坐标减1,可得到平移前的点的坐标分别是:(2+4,1-1),(-1+4,3-1),(4+4,-5-1),即(6,0),(3,2),(8,-6).)9.A(点拨:由图形知点P的坐标为P(-4,-1),由平移规律得平移后P点的坐标是(-4+2,-1-3)即(-2,-4).故选A.)10.(5,4)(点拨:左眼坐标由(-4,2)到(3,4)是向右平移7个单位长度,又向上平移2个单位长度,右眼由(-2,2)作同样的平移得坐标为(5,4).)11.7(点拨:因为三角形OAB的顶点B的坐标为(4,0),所以OB=4,所以OC=OB-CB=4-1=3,因此平移的距离为3.因为把三角形OAB沿x轴向右平移得到三角形CDE,所以CE=OB=4,所以OE=OC+CE=3+4=7.)12.2(点拨:∵A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),可知线段AB向右平移了1个单位长度,向上平移了1个单位长度,则a=0+1=1,b=0+1=1,则a+b=1+1=2.)13.可由ABCD向左平移7个单位长度,向上平移7个单位长度得到.各对应点的坐标横坐标减7,纵坐标加7.14.(4,2)(点拨:O与D是一对对应点,因此平移距离为OD=OB-DB=4-1=3,因此平行规律为向右平移3个单位长度,所以A(1,2)的对应点C的坐标为(4,2).)15.(1)A'(4,0),B'(1,3),C'(2,-2)(2)三角形ABC向右平移5个单位长度,再向下平移2个单位长度(或先下平移2个单位长度,再向右平移5个单位长度)即可得到三角形A'B'C'.(3)616.A(4,3),D(-4,-3),B(3,1),E(-3,-1),C(1,2),F(-1,-2);N(-x,-y)。
2019学年新人教版七年级下7.2坐标方法的简单应用同步练习题(1)及答案
(人教版)精品数学教学资料7. 2《用坐标表示地理位置》同步练习题(1)知识点:1.在平面直角坐标系中表示地理位置在平面直角坐标系中表示某一位置的过程:①建立平面直角坐标系,确定原点的位置,x轴、y轴的正方向②确定单位长度③标出点的位置和名称2.用方位角和距离表示地理位置同步练习:1.利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程为:(1)建立坐标系,选择一个适当的______为原点,确定x轴、y轴的_______;(2)确定适当的_______,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的_______和各个地点的________.2.根据以下条件在图中画出小玲、小敏、小凡家的位置,•并标明它们的坐标.小玲家:出校门向西走150米,再向北走100米.小敏家:出校门向东走200米,再向北走300米.小凡家:出校门向南走100米,再向西走300米.最后向北走250米.3.(综合题)星期天,李哲、丁琳、•张瑞三位同学到大明公园春游时相互走散了.以中心广场为坐标原点,以正东、正北方向为x轴、y轴正方向建立坐标系,他们对着景区示意图通过电话相互报出了他们的位置.李哲:“我这里的坐标是(-300,200).”丁琳:“我这里的坐标是(-200,-100).”张瑞:“我这里的坐标是(200,-200).”你能在下图中标出他们的位置吗?•如果他们三人要到某一景点(包括东门、西门、南门)集合,三人所行路程之和最短的选择是哪个景点?7.1.2《用坐标表示地理位置》同步练习题(1)答案:1.(1)参照点;正方向(2)比例尺(3)坐标;名称2.图略.小玲家(-150,100),小敏家(200,300),小凡家(-300,150).3.解:李哲在湖心亭,丁琳在望春亭,张瑞在游乐园.图略.他们三人到望春亭集合,三人所行路程之和最短.。
《用坐标表示平移》练习题(含答案)
《⽤坐标表⽰平移》练习题(含答案)7.2.2 ⽤坐标表⽰平移1.(2014·厦门)在平⾯直⾓坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是__________,A1的坐标是__________.2.将点A(-3,1)向右平移5个单位长度,再向上平移6个单位长度,可以得到对应点A′的坐标为__________.3.在平⾯直⾓坐标系中,△ABC的三个顶点的横坐标保持不变,纵坐标都减去2个单位长度,则得到的新三⾓形与原三⾓形相⽐向__________平移了__________个单位长度.4.已知△ABC,若将△ABC平移后得到△A′B′C′,且点A(1,0)的对应点A′的坐标是(-1,0),则△ABC是向__________平移__________个单位得到△A′B′C′.5.在平⾯直⾓坐标系中,已知线段AB的两个端点分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为__________.6.(2014·呼和浩特)已知线段CD是由线段AB平移得到的,点A(-1,4)的对应点为点C(4,7),则点B(-4,-1)的对应点D的坐标为( )A.(1,2)B.(2,9)C.(5,3)D.(-9,-4)7.(2013·泰安改编)在如图所⽰的单位正⽅形⽹格中,△ABC经过平移后得到△A1B1C1,已知在AC上⼀点P(2.4,2)平移后的对应点为P1,则P1点的坐标为( )A.(1.4,-1)B.(1.5,2)C.(-1.6,-1)D.(2.4,1)8.如图所⽰,在△ABC中,任意⼀点M(x0,y0)经平移后对应点为M1(x0-3,y0-5),将△ABC作同样平移,得到△A1B1C1,求△A1B1C1的三个顶点的坐标.9.如图所⽰,三⾓形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三⾓形ABC 平移到三⾓形A 1B 1C 1的过程,并求出点A 1,B 1,C 1的坐标;(2)由三⾓形ABC 平移到三⾓形A 2B 2C 2⼜是怎样平移的?并求出点A 2,B 2,C 2的坐标.10.在坐标平⾯内描出点A(2,0),B(4,0),C(-1,0),D(-3,0).(1)分别求出线段AB 中点,线段AC 中点及线段CD 中点的坐标,则线段AB 中点的坐标与点A,B 的坐标之间有什么关系?对线段AC 中点和点A,C 及线段CD 中点和点C,D 成⽴吗?(2)已知点M(a,0),N(b,0),请写出线段MN 的中点P 的坐标.参考答案1.(3,0) (4,3)2.(2,7)3.下 24.左 25.(-5,4)6.A7.C8.由M(x 0,y 0)平移后变为M 1(x 0-3,y 0-5)得到A 1(0-3,5-5),B 1(-1-3,2-5),C 1(5-3,1-5),即A 1(-3,0),B 1(-4,-3),C 1(2,-4).9.(1)三⾓形ABC 向下平移7个单位得到三⾓形A 1B 1C 1.A 1(-3,-3),B 1(-4,-6),C 1(-1,-5).(2)三⾓形ABC 向右平移6个单位,再向下平移3个单位得三⾓形A 2B 2C 2.A 2(3,1),B 2(2,-2),C 2(5,-1).10.(1)线段AB 中点的坐标为(242+,0),即(3,0);对AC 中点和点A,C 及线段CD 中点和点C,D 都成⽴. (2)线段MN 的中点P 的坐标为(2a b +,0)。
人教版七年级数学下册《7.2.2用坐标表示平移》同步练习【含答案】
人教版七年级数学下册《7.2.2用坐标表示平移》同步练习【含答案】1. 点M (-2,5)向右平移3个单位长度,所得对应点的坐标为 ;点N (4,6)向上平移6个,所得对应点的坐标为 .2. 在平面直角坐标系内,如果把平行四边形ABCD 的四个顶点的横坐标都减去5,那么所得平行四边形就是把原平行四边形向 平移 个单位长度;如果把平行四边形ABCD 各顶点的纵坐标都加5,那么所得平行四边形就是把原平行四边形向平移 个单位长度.3. 点P (-2,-3)向左平移1个单位长度,再向上平移3个单位长度,则所得到的点的坐标为 .4. 已知△ABC ,A (-3,2),B (1,1),C (-1,-2),现将△ABC 平移,使点A 1到点(1,-2)的位置上,则点B 1、C 1的坐标分别为________,________.5. 将点A 先向右平移4个单位长度,再向上平移6个单位长度,得到点B ,若点B 的坐标为(-6,-8),则点A 的坐标为 .6. 长方形ABCD 四个顶点的坐标分别为A (-2,1),B (-2,-2),C (3,-2),D(3,1).将长方形沿x 轴正方向平移一个单位长度,再沿y 轴正方向平移一个单位长度,则平移后的四个顶点坐标为 .7. 如图,将点A (3,2)向左平移5个单位长度,得到点A 1,请在图上标出这个点,并写出它的坐标.将点A 向下平移4个单位长度,得到点A 2,也请在图中标出这个点,也写出它的坐标.你能判断直线AA 1与x 轴,AA 2与y 轴的位置关系吗?8. 如图,在平面直角坐标系中,已知 点P 和三角形ABC .作三角形PQR , 使三角形PQR 是由三角形ABC 平移 得到的,分别写出平移的过程和点 Q 、R 的坐标.(第 7 题) -4 -5 -3 -2 -1 1 2 2 3 3 1 4 -1 -2 -3x y O ·A B A C (第 8 题) -4 -5 -3 -2 -1 1 2 2 3 314 -1 -2-3xyO ·P用坐标表示平移(2)1. 已知点A (-4,2),B (1,2),则线段AB 的长度是 ( )A .3个单位长度B .4个单位长度C .5个单位长度D .6个单位长度2. 已知点A (-3,-5),B (-3,7),则线段AB 的长度是 ( )A .2个单位长度B .4个单位长度C .12个单位长度D .14个单位长度3. 已知坐标平面内三点D (5,4),E (2,4),F (4,2),那么△DEF 的面积为( )A .3平方单位B .5平方单位C .6平方单位D .7平方单位4.如图,三角形DEF 是三角形ABC 经过某种变换后得到的图形,观察图形分别写出点A 和点D ,点B 和点E ,点C 和点F 的坐标.并根据它们之间的内在联系,试猜想三角形中任意一点P (x ,y )的对应点Q 的坐标是什么?5. 在直角坐标系中,描出点A (1,1),B (-1,-1),C (2,0),并求出△ABC 的面积.6. 如图,四边形ABCD 的四个顶点的位置在平面直角坐标系内,求四边形ABCD 的面积.-2 1 -1 -3 -4 -5 -4 -5 -3 -2 -1 1 2 3 4 5 x y O D A C B (第6题) B A C E O x 1234567 -6-5-4-3-2-1 y 4 3 2 1 -1 -2 -3 -4 D F用坐标表示平移(1)1.(1,5);(4,12) 2.左,5;上,5 3.(-1,0) 4.B 1(5,-3),C 1(3,-6)5.(-10,-14) 6.(-1,2),(-1,-1),(4,-1),(4,2) 7.A 1(-2,2),A 2(3,-2);AA 1∥x 轴,AA 2∥y 轴 8.向上平移3个单位长度,再向右平移6个单位长度,Q (1,0),R (4,0)用坐标表示平移(2)1.C 2.C 3.A 4. A (0,4),D (0,-4),B (-2,0),E (2,0),C (4,-3),F (-4,3);由上述对应点坐标的特点,猜想三角形ABC 中任意一点P (x ,y )的对应点Q 的坐标是(-x ,-y ) 5.2平方单位 6.平方单位 392。
用坐标表示平移练习题
1、将点A(2,1)向左平移2个单位长度,得到点A′,则A′的坐标为____。
2、2、将点P-3,-4)向右平移5个单位长度,得到点,则的坐标为___;把点P向上平移4个单位长度,得到点P′,则点P′的坐标为____。
将P(-5,1)向右平移2个单位长度,再向下平移4个单位长度,所得的点的坐标为____。
将点A(-1,2)先向右平移3个单位长度,再向上平移2个单位长度,得到的点A′的坐标为____。
将点A(-2,1)先向上移动2个单位长度,再向右移动3个单位长度得到点B,则点B的坐标为____。
将点B(-4,-6)先向左平移4个单位长度,再向上平移6个单位长度,得到点B′,则点B′的坐标为____。
将点A(-5,4)先向右平移6个单位长度,再向下平移4个单位长度得点A′,则点A′的坐标为____。
通过平移把点A(2,-3)移到点A′(3,-5),以同样的平移方式,点B(3,1)平移后的点B′的坐标为____。
将点A(1,-3)向右平移2个单位,再向下平移2个单位后得到点B(a,b),则ab=____。
10、已知A(-2,3),B(-3,-1),连接AB,把线段AB 向右平移3个单位,得到的线段的两个端点的坐标分别是________;若把AB向下平移4个单位,得到的线段的两个端点的坐标分别是________。
11、线段CD由线段AB平移得到,点A(-2,1)对应点C(3,6),则点B(-5,2)的对应点D的坐标是____。
12、将△ABC的A(—4,-1),B(1,1),C(-1,4)三点向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标分别是____。
13、已知△ABC,A(-3,2),B(1,1),C(-1,-2),现将△ABC平移,使点A到点(1,-2)的位置上,则点B、C 的坐标分别为____。
14、将一个三角形的三个点的坐标分别向上平移1个单位,再向左平移4个单位所得点的坐标分别是(2,1),(-1,3),(4,-5),则平移前三个点的坐标分别是________。
人教版七年级用坐标表示平移精选试卷练习(含答案)1
第1页 共18页 ◎ 第2页 共18页人教版七年级用坐标表示平移精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人 得分 一、单选题 1.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)2.在平面直角坐标系中,将点A (﹣1,﹣2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点B′的坐标为( )A .(﹣3,﹣2)B .(2,2)C .(﹣2,2)D .(2,﹣2)3.在平面直角坐标系中,将点()2,3-向右平移4个单位长度后得到的点的坐标为( )A .()2,3B .()6,3-C .()2,7-D .()2,1-- 4.点E (m ,n )在平面直角坐标系中的位置如图所示,则坐标(m +1,n ﹣1)对应的点可能是( ) A .A 点 B .B 点 C .C 点 D .D 点 5.如图,在平面直角坐标系xOy 中,已知点A (2,0),B (1,1),若平移点A 到点C ,使得以点O ,A ,B ,C 为顶点的四边形为菱形,正确的是( ) A .向左平移1个单位,再向下平移1个单位. B .向右平移1个单位,再向上平移1个单位. C .向左平移2个单位,再向下平移1个单位. D .向右平移2个单位,再向上平移1个单位.6.如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2的坐标是( )A .(-3,2)B .(2,-3)C .(1,-2)D .(-1,2)7.在平面直角坐标系中,将点A (m ,n )先向右平移2个单位,再向上平移3个单位,得到点A ′,若点A ′位于第二象限,则m 、n 的取值范围分别是( )A .m <2,n >3B .m <2,n >﹣3C .m <﹣2,n <﹣3D .m <﹣2,n >﹣38.已知点A (m +1,-2)和点B (3,m -1),若直线AB ∥x 轴,则m 的值为( )A .1-B .4-C .2D .39.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是( ) A .(-2,2),(3,4),(1,7)B .(-2,2),(4,3),(1,7)C .(2,2),(3,4),(1,7)D .(2,-2),(3,3),(1,7) 10.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )第3页 共18页 ◎ 第4页 共18页A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)11.将点()2,1A -向左平移3个单位长度,在向上平移4个单位长度得到点B ,则点B 的坐标是( )A .()5,3B .()5,5-C .()1,5--D .()1,3-12.如图,若将线段AB 平移至A 1B 1,则a+b 的值为( )A .﹣3B .3C .﹣2D .0 13.如图,把Rt ABC △放在平面直角坐标系内,其中90CAB ∠=︒ ,5BC =,点A ,B 的坐标分别为(1,0),(4,0),将ABC V 沿x 轴向右平移,当点C 落在直线26y x =-上时,线段BC 平移的距离为( ).A .4B .5C .6D .8 14.如图,在边长为1的正方形网格中,两个三角形的顶点都在格点(网线的交点)上,下列方案中不能把△ABC 平移至△DEF 位置的是( )A .先把△ABC 沿水平方向向右平移4个单位长度,再向上平移3个单位长度B .先把△ABC 向上平移3个单位长度,再沿水平方向向右平移4个单位长度C .把△ABC 沿BE 方向移动5个单位长度D .把△ABC 沿BE 方向移动6个单位长度15.右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-);第5页 共18页 ◎ 第6页 共18页④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是A .①②③B .②③④C .①④D .①②③④ 16.将点A (-2,-3)向左平移3个单位长度得到点B ,则点B 的坐标是( )A .(1,-3)B .(-2,0)C .(-5,-3)D .(-2,-6)评卷人得分 二、填空题 17.在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A 9B 9C 9,则点A 的对应点A 9的坐标是____. 18.在平面直角坐标系中,将点A (﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A ′的坐标是_____.19.如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至A 1B 1,则a +b 的值为_____. 20.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________21.通过平移将点()7,6A -移到点()2,2A '-,若按同样的方法移动点()3,1B 到点B ',则点B '的坐标是______. 22.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米. 23.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为___________.24.若点(1,2)A a a -+在x 轴上,将点A 向上平移4个单位长度得点B ,则点B 的坐标是_________.评卷人得分 三、解答题25.如图,△ABC 在直角坐标系中,(1)请写出△ABC 各点的坐标.(2)求出△ABC 的面积.第7页 共18页 ◎ 第8页 共18页(3)若把△ABC 向上平移2个单位,再向右平移2个单位得到△A′B′C′,请在图中画出△A′B′C′,并写出点A′、B′、C′的坐标.26.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (1,0),B (2,-3),C (4,-2).(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)画出△A 1B 1C 1向左平移3个单位长度后得到的△A 2B 2C 2;(3)如果AC 上有一点P (m ,n )经过上述两次变换,那么对应A 2C 2上的点P 2的坐标是______.27.已知坐标平面内的三个点(1,3)A ,(3,1)B ,(0,0)O ,把ABO ∆向下平移3个单位再向右平移2个单位后得DEF ∆.(1)画出DEF ∆;(2)DEF ∆的面积为 .28.如图,在平面直角坐标系xOy 中,点A 的坐标为(0,4),线段MN 的位置如图所示,其中点M 的坐标为(3-,1-),点N 的坐标为(3,2-).(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对应点为点B .①点M 平移到点A 的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;②点B 的坐标为 .(2)在(1)的条件下,若点C 的坐标为(4,0),连接AC BC 、,画出图形并求ABC ∆的面积. 29.已知三角形ABC 在平面直角坐标系中的位置如图(1)平移三角形ABC ,使B 点对应点B’的坐标为(-2,0),画出三角形A'B'C';(2)若点P(a ,b)是三角形ABC 内部一点,则平移后三角形A'B'C'内的对应点P'的坐标为________.(3)求三角形ABC 的面积.30.如图,在平面直角坐标系中,点A ,B 的坐标分别为A (0,a ),B (b ,a ),且a ,b 满足(a ﹣3)2+|b ﹣6|=0,现同时将点A ,B 分别向下平移3个单位,再向左平移2个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,AB .第9页 共18页 ◎ 第10页 共18页(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABCD ;(2)在y 轴上是否存在一点M ,连接MC ,MD ,使S △MCD =13S 四边形ABCD ?若存在这样一点,求出点M 的坐标,若不存在,试说明理由;(3)点P 是直线BD 上的一个动点,连接P A ,PO ,当点P 在BD 上移动时(不与B ,D 重合),直接写出∠BAP ,∠DOP ,∠APO 之间满足的数量关系.31.如图,已知△ABC 在平面直角坐标系中的位置如图所示,(1)写出△ABC 三个顶点的坐标;(2)求出△ABC 的面积;(3)在图中画出把△ABC 先向左平移5个单位,再向上平移2个单位后所得的△A ′B ′C ′,并写出各顶点坐标.32.在如图网格坐标系中,△ABC 的各顶点均位于格点处,其中网格小正方形的边长为1个单位. (1)平移△ABC ,使得点A 平移到点A '处,作出平移后的△A B C ''';(2)请说出△ABC 是通过怎样的平移得到△A B C '''。
用坐标表示平移过关练习
用坐标表示平移过关练习一、选择题1.在平面直角坐标系中,将点A(1,一2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是()A.(-1,1)B.(3,1)C.(4,-4)D.(4,0)2.两架编队飞行(即相对位置不变)的飞机A,B在平面直角坐标系中的坐标分别为(-1,2),(-2,3),当飞机A飞到指定位置的坐标为(2,-1)时,飞机B所在位置的坐标是()A.(1,5)B.(-4,5)C.(1,0)D.(-5,6)3.如图,在平面直角坐标系xoy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(-3,5),B(-4,3) ,A1(3,3),则B1的坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)4.如图①,圆A经过平移得到圆O,如图②.如果图①中圆A上的一点P的坐标为(m,n),那么平移后在图②中的对应点P'的坐标为( )A.(m+2,n+1)B.(m-2,n-1)C.(m-2,n+1) D(m+2,n-1)二、填空题5.在平面直角坐标系中,将点A(一2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A'的坐标为_______6. 点A ,B 的坐标分别为(1,2),(4,0) ,将三角形AOB 沿x 轴向右平移,得到三角形CDE .已知DB =3,则点C 的坐标为_______7.将点A (3,-5)向右平移m 个单位长度,再向上平移n 个单位长度,得到点B (-5,3),则m =_____,n =_____8.如图,点A ,B 的坐标分别为(2,0),(0,4),若将线段AB 平移到线段A 1B 1的位置,点A 1,B 1的坐标分别为(4,a ),(b ,6),则a +b 的平方根为_______三、解答题9.如图,在平面直角坐标系中,右边的图案是由左边的图案经过平移得到的.左图案中左、右眼睛的坐标分别是(-2,2),(-4,2),右图案中右眼的坐标是(3,4),求右图案中左眼的坐标.10. 如图,已知把△ABC 向上平移3个单位长度,再向右平移2个单位长度,得到C B A '''∆.(1)在图中画出C B A '''∆;(2)写出B A '',的坐标;(3)在y 轴上是否存在一点P ,使得△BCP 与△ABC 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.11. 在平面直角坐标系中,已知点A (3,0)B (-5,3),将点A 向左平移6个单位长度到达点C ,将点B 向下平移6个单位长度到达点D .(1)写出点C ,D 的坐标:C _________,D _________;(2)把这些点在如图所示的坐标系中,按A -B -C -D -A 顺次连接起来,这个图形的面积是_________.12. 三角形ABC 与三角形C B A '''在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A '_________;B '_________;C '_________;(2)三角形C B A '''由三角形ABC 经过怎样的平移得到?(3)若点P (a ,b )是三角形ABC 内部一点,则平移后三角形C B A '''内的对应点P '的坐标为_________;(4)求△ABC 的面积.13. 在平面直角坐标系中,一只蚂蚁从原点O 出发,按向上、向下、向右的方向依次不断移动,每次移动1个长度,其行走路线如图所示.(1)填写下列各点的坐标:4A (_________,_________)8A (_________,_________)12A (_________,_________)(2)写出n 4A 的坐标(n 是正整数);(3)指出蚂蚁从点2020A 到点2021A 的移动方向.。
人教版七年级下第七章平面直角坐标系(用坐标表示平移)同步练习题含解析
人教版七年级下第七章平面直角坐标系(用坐标表示平移)同步练习题学校:___________姓名:___________班级:___________考号:___________一、填空题1.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.2.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数t ,将得到的点先向右平移a 个单位,再向上平移b 个单位(a >0,b >0),得到正方形A B C D ''''及其内部的点,其中点A ,B 的对应点分别为A ',B '. ①a =__,b =__;①已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,则点F 的坐标是 __.3.如图,平行四边形ABCD 的顶点A ,B ,C 的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D 的位置用数对表示为 ________.4.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC 的三个顶点均在格点(网格线的交点)上.以原点O 为位似中心,画出111A B C △,使它与△ABC 的相似比为2,且它与△ABC 在位似中心O 的两侧,并写出点B 的对应点1B 的坐标是______.二、单选题5.如图,平移①ABC 到①BDE 的位置,且点D 在边AB 的延长线上,连接EC ,CD ,若AB =BC ,那么在以下四个结论:①四边形ABEC 是平行四边形;①四边形BDEC 是菱形;①AC DC ⊥;①DC 平分①BDE ,正确的有( )A .1个B .2个C .3个D .4个6.将点P (﹣5,4)先向右平移4个单位长度,再向下平移2个单位长度后的坐标是( ) A .(﹣1,6)B .(﹣9,6)C .(﹣1,2)D .(﹣9,2)7.如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''',则点A 的对应点A '的坐标是( )A .(2,0)B .(2,3)--C .(1,3)--D .(3,1)--8.已知1y =4x y +的平方根为( )A B .C .2 D .±29.在平面直角坐标系中,将四边形格点的横坐标都减去2,纵坐标保持不变,所得图形与原图形相比( ) A .向右平移了2个单位 B .向左平移了2个单位 C .向上平移了2个单位D .向下平移了2个单位10.在平面直角坐标系中,将点A ()21,m 沿着y 轴的正方向向上平移()24+m 个单位后得到点B .有四个点E ()21,-m , F ()224,+m m , M ()21,3+m , N ()21,4m ,一定在线段AB 上的是( ) A .点EB .点FC .点MD .点N11.如图,在平面直角坐标系中,点M 到y 轴的距离为2,到x 轴的距离比到y 轴距离的2倍少1,则点M 的坐标为( )A .()3,2B .()3,2-C .()2,3-D .()2,3- 12.将点P (3,4)向下平移1个单位长度后,落在函数ky x=的图象上,则k 的值为( ) A .12k =B .10k =C .9k =D .8k13.A B C '''∆是由ABC ∆平移得到的,点()1,4A -的对应点为()1,7A ',点()1,1B 的对应点为()3,4B ',则点()4,1C --的对应点C '的坐标为( )A .()6,2-B .()6,4--C .()2,2-D .()2,4--三、解答题14.如图,能否通过平移、轴对称或旋转,由ABC 得到DEC ?15.阅读下列材料:问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且①EAF=45°.解决下列问题:(1)图(1)中的线段BE、EF、FD之间的数量关系是______.(2)图(2),已知正方形ABCD的边长为8,E、F分别是BC、CD边上的点,且①EAF =45°,AG①EF于点G,求①EFC的周长.参考答案:1.(8,-4)【分析】直接利用平移中点的变化规律求解即可.【详解】解:原来点的横坐标是5,纵坐标是-2,向右平移3个单位,再向下平移2个单位得到新点的横坐标是5+3=8,纵坐标为-2-2=-4. 则点B 的坐标为(8,-4). 故答案为:(8,-4).【点睛】本题主要考查了坐标与图形变化-平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加. 2.12##0.5 2 (1,4)【分析】首先根据点A 到A ',B 到B '的点的坐标可得方程组3102t a t b -+=-⎧⎨⨯+=⎩,3202t a t b +=⎧⎨⨯+=⎩,解可得t 、a 、b 的值,设F 点的坐标为(x ,y ),点F '点F 重合可列出方程组,再解可得F 点坐标.【详解】解:①由点A 到A ',可得方程组3102t a t b -+=-⎧⎨⨯+=⎩; 由B 到B ',可得方程组3202t a t b +=⎧⎨⨯+=⎩,解得12122t a b ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,故答案为:12,2①设F 点的坐标为(x ,y ),点F '点F 重合得到方程组1122122x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得14x y =⎧⎨=⎩,即F (1,4).故答案为:(1,4).【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,根据点的坐标列出方程组. 3.(8,6)【分析】根据平行四边形的性质:对边平行且相等,得出点的平移方式,解答即可. 【详解】解:∵平行四边形ABCD 的顶点A ,B ,C 的位置用数对分别表示为(4,6),(1,3),(5,3),由A ,B 坐标可得B 向右平移3个单位,向上平移3个单位,可以得到点A ①点D 可由点C 向右平移3个单位,向上平移3个单位得到, ∵点C 坐标为(5,3) 则点D 坐标为(8,6); 故答案为:(8,6).【点睛】此题考查了坐标与图形,涉及了平行四边形的性质以及点的平移,掌握平行四边形的性质以及点的平移规律是解题的关键. 4.图见解析,点1B 的坐标是(-4,-2)【分析】直接利用位似图形的性质画出三角形顶点的对应点,再顺次连接即可画出图形,根据点1B 的位置写出坐标即可.【详解】解:如图所示:111A B C △就是所要求画的,点B 的对应点1B 的坐标是(-4,-2), 故答案为:(-4,-2).【点睛】此题主要考查了位似变换,正确得出对应点位置是解题关键. 5.D【分析】利用平移的性质、平行四边形的判定、菱形的判定与性质逐项判断即可. 【详解】解:①平移①ABC 到①BDE 的位置,且点D 在边AB 的延长线上, ①AD CE AC BE ∥,∥, ①四边形ABEC 是平行四边形, 故①正确;①平移①ABC 到①BDE 的位置, ①AB =BD=CE ,BC =DE , ①AB =BC ,①AB =BD=CE =BC =DE , ①四边形BDEC 是菱形, 故①正确;①四边形BDEC 是菱形, ①BE CD ⊥, ①AC BE ,AC CD ∴⊥, 故①正确;①四边形BDEC 是菱形, ①DC 平分①BDE , 故①正确; ①正确的有4个. 故选D .【点睛】本题主要考查了平移的性质、平行四边形的判定、菱形的判定与性质. 6.C【分析】直接利用平移中点的变化规律求解即可.【详解】将点()54P ﹣,先向右平移4个单位长度,再向下平移2个单位长度后的坐标是()5442+﹣,﹣,即()12﹣,, 故选:C .【点睛】本题主要考查了坐标与图形的变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同,平移点的变化规律是:横坐标右移加、左移减;纵坐标上移加、下移减. 7.C【分析】先画出平移后的图形,再利用旋转的性质画出旋转后的图形即可求解. 【详解】解:先画出①ABC 平移后的①DEF ,再利用旋转得到①A 'B 'C ', 由图像可知A '(-1,-3), 故选:C .【点睛】本题考查了图形的平移和旋转,解题关键是掌握绕原点旋转的图形的坐标特点,即对应点的横纵坐标都互为相反数. 8.B【分析】根据二次根式有意义列不等式组410140x x -≥⎧⎨-≥⎩,求出14x =与1y =,再求代数式的值,然后求平方根即可.【详解】解:410140x x -≥⎧⎨-≥⎩,解得14x =, 当14x =时,1y =, ①144124x y +=⨯+=,①4x y +的平方根为: 故选B .【点睛】本题考查二次根式有意义的条件,代数式的值,平方根,掌握二次根式有意义条件,代数式的值,平方根是解题关键.9.B【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,可得答案.【详解】解:在平面直角坐标系中,将四边形格点的横坐标都减去2,纵坐标保持不变,所得图形与原图形相比向左平移了2个单位.故选:B.【点睛】此题主要考查了坐标与图形变化﹣平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.C【分析】根据平移的过程以及四个点的坐标进行分析比较即可判断.【详解】解:①将A(1,m2)沿着y的正方向向上平移m2+4个单位后得到B点,①B(1,2m2+4),①m2≥0,①2m2+4>0,①线段AB在第一象限,点B在点A上方,且与y轴平行,距离y轴1个单位,因为点E(1,-m2)在点A下方,当m=0时,E点可以跟A点重合,点E不一定在线段AB 上.点F(m2+4,m2)距离y轴(m2+4)个单位,不在线段AB上;点M(1,m2+3)在点A上方,且距离y轴1个单位,在线段AB上;点N(1,4m2)是将A沿着y的正方向向上平移3m2个单位后得到的,不一定在线段AB上,有可能在线段AB延长线上.所以一定在线段AB上的是M点.故选:C.【点睛】本题考查了坐标与图形的变化-平移,解决本题的关键是掌握平移的性质.11.D【分析】根据题意得出点M到x轴的距离为2×2-1=3,然后结合图象即可确定点的坐标.【详解】解:①点M到y轴的距离为2,到x轴的距离比到y轴距离的2倍少1,①点M到x轴的距离为2×2-1=3,①点M在第四象限,①M(2,-3),故选:D.【点睛】题目主要考查坐标系中点到坐标轴的距离,理解题意,结合函数图象求解是解题关键.12.C【分析】首先求出P点平移后得到的点的坐标为(3,3),再利用待定系数法把点代入反比例函数关系式,即可求得k的值.【详解】解:点P(3,4)向下平移1个单位长度后得到点(3,3),把(3,3)代入函数kyx中,得k=9,故选C.【点睛】此题主要考查了求反比例函数解析式,根据平移方式求点的坐标,正确求出P点平移后的点的坐标是解题的关键.13.C【分析】直接利用平移中点的变化规律求解即可.【详解】由点A(−1,4)的对应点为A′(1,7)知平移方式为向右平移2个单位、向上平移3个单位,①点C(−4,−1)的对应点C′的坐标为(−2,2),故选C.【点睛】此题考查坐标与图形变化-平移,解题关键在于得到平移的方式.14.左图中①ACB绕着点C顺时针旋转90°能得到①DCE.右图中①ACB绕着点C顺时针旋转90°,再沿着BC翻折,能得到①DCE.【分析】根据旋转以及轴对称的性质解答即可.【详解】解:左图中①ACB绕着点C顺时针旋转90°得到①DCE.右图中①ACB绕着点C顺时针旋转90°,再沿着BC翻折,得到①DCE.【点睛】本题考查了图形的旋转以及对称翻折,熟知旋转以及轴对称的性质是解题的关键.15.(1)EF=BE+DF(2)过程见解析【分析】对于(1),先将①DAF 绕点A 顺时针旋转90°,得到①BAH ,可得①ADF ①①ABH ,再根据全等三角形的性质得AF=AH ,①EAF=①EAH ,然后根据“SAS ”证明①F AE ①①HAE ,根据全等三角形的对应边相等得出答案;对于(2),先根据(1),得①F AE ①①HAE ,可得AG=AB=AD ,再根据“HL ”证明Rt ①AEG ①Rt ①ABE ,得EG=BE ,同理GF=DF ,可得答案.(1)EF=BE+DF .理由如下:如图,将①DAF 绕点A 顺时针旋转90°,得到①BAH ,①①ADF ①①ABH ,①①DAF=①BAH ,AF=AH ,①①EAF=①EAH=45°.①AE=AE ,①①F AE ①①HAE ,①EF=HE=BE+HB ,①EF=BE+DF ;(2)由(1),得①F AE ①①HAE ,AG ,AB 分别是①F AE 和①HAE 的高,①AG=AB=AD=8.在Rt ①AEG 和Rt ①ABE 中,AE AE AG AB =⎧⎨=⎩, ①Rt ①AEG ①Rt ①ABE (HL ),①EG=BE ,同理GF=DF ,①①EFG 的周长=EC+EF+FC=EC+EG+GF+FC=EC+BE+DF+FC=BC+CD=16.【点睛】这是一道关于正方形和旋转的综合题目,考查了旋转的性质,正方形的性质,全等三角形的判定和性质等.。
人教版七年级下第七章平面直角坐标系(用坐标表示平移)同步练习题含答案和解析
人教版七年级下第七章平面直角坐标系(用坐标表示平移)同步练习题学校:___________姓名:___________班级:___________考号:___________一、填空题1.如图,在平面直角坐标系中,动点P 从原点O 出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得到点()11,1P --;接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点2P ;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点3P ;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点4P ,…,按此作法进行下去,则点2021P 的坐标为___________.2.如图,四边形ABCD 为平行四边形,则点B 的坐标为________.3.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a ),(b ,3),则a 2-2b 的值为______.4.如图,在平面直角坐标系中,P 与x 轴相切于原点O ,平行于y 轴的直线交P 于M ,N 两点.若点M 的坐标是(2,1)-,则点N 的坐标是__.二、单选题5.如图,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A .4.5B .4C .3D .56.在平面直角坐标系中,把点()3,2P -P '的坐标为( )A .(3,2--B .(3,2-+C .(32)-D .(32)-+ 7.如图,点()2,1A ,将线段OA 先向上平移2个单位长度,再向左平移3个单位长度,得到线段''O A ,则点A 的对应点'A 的坐标是( )A .()3,2-B .()0,4C .()1,3-D .()3,1-8.当x =1,代数式2x +2x +1的值是( )A .-4B .2C .4D .09.在平面直角坐标系中,将四边形格点的横坐标都减去2,纵坐标保持不变,所得图形与原图形相比( )A .向右平移了2个单位B .向左平移了2个单位C .向上平移了2个单位D .向下平移了2个单位10.如图,在平面直角坐标系中,已知点()2,1M ,()1,1N -,平移线段MN ,使点M 落在点()1,2M '-处,则点N 对应的点N '的坐标为( )A .()2,0-B .()0,2-C .()1,1-D .()3,1-- 11.如图,方格纸上有M ,N 两点,若以N 为原点建立平面直角坐标系,则点M 的坐标为(3,4);若以M 点为原点建立平面直角坐标系,则点N 的坐标为( )A .(-3,-4)B .(4,0)C .(0,-2)D .(2,0)12.已知()2M m -,为反比例函数6y x=-的图象上的一点,若将这个反比例函数的图象向右平移4个单位,则点M 的对应点的坐标为( )A .()23-,B .()21--,C .()23,D .()27, 13.A B C '''∆是由ABC ∆平移得到的,点()1,4A -的对应点为()1,7A ',点()1,1B 的对应点为()3,4B ',则点()4,1C --的对应点C '的坐标为( ) A .()6,2- B .()6,4-- C .()2,2- D .()2,4--三、解答题14.图,△ABC 是边长为 2 的等边三角形,将△ABC 沿直线 BC 平移到△DCE 的位置,连接 BD ,(1)△ABC 平移的距离为 ;(2)求 BD 的长.15.如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将ABE △绕点B 顺时针旋转90︒到CBF 的位置,连接EF ,EF 的长为(1)求BF 的长;(2)若1,3AE EC ==,求AEB ∠的度数.参考答案:1.(1011,1011)--【分析】先根据点坐标的平移变换规律求出点2345,,,P P P P 的坐标,再归纳类推出一般规律即可得.【详解】解:由题意得:2(12,12)P -+-+,即2(1,1)P ,3(13,13)P --,即3(2,2)P --,4(24,24)P -+-+,即4(2,2)P ,5(25,25)P --,即5(3,3)P --,观察可知,点1P 的坐标为(1,1)--,其中1211=⨯-,点3P 的坐标为(2,2)--,其中3221=⨯-,点5P 的坐标为(3,3)--,其中5231=⨯-,归纳类推得:点21n P -的坐标为(,)n n --,其中n 为正整数,2021210111=⨯-,∴点2021P 的坐标为(1011,1011)--,故答案为:(1011,1011)--.【点睛】本题考查了点坐标的平移变换规律、点坐标的规律探索,正确归纳类推出一般规律是解题关键.2.()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论. 【详解】解:四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --, 故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.3.-1【分析】根据点A 和点B 的坐标以及对应点的坐标确定出平移的方法,从而求出a 、b 的值,再代入代数式进行计算即可.【详解】解:∵A (1,0),A 1(2,a ),B (0,2),B 1(b ,3),∵平移方法为向右平移1个单位,向上平移1个单位,∵a =0+1=1,b =0+1=1,∵a 2-2b =1²-2×1=-1;故答案为:-1.【点睛】本题考查了平面直角坐标系-点的平移,根据题意得出平移方式是解本题的关键. 4.(2,4)-【分析】首先过点P 作P A ∵MN 于点A ,由垂径定理即可求得AM =12MN ,易证得四边形ABOP 是矩形,即可得AB =OP ,P A =OB =2,设OP =a ,在Rt △P AM 中,由PM 2=AM 2+P A 2,可得方程a 2=(a ﹣1)2+4,继而可求得答案.【详解】解:如图,过点P 作PA MN ⊥于点A ,∵12AM MN =,在平面直角坐标系中,P 与x 轴相切于原点O ,平行于y 轴的直线交P 于M ,N 两点,设MN 交x 轴于点B ,∵90POB PAB ABO ∠=∠=∠=︒,∵四边形ABOP 是矩形,∵AB OP =,2PA OB ==,设OP a =,则PM OP a ==,∵点M 的坐标是(2,1)-,∵BM =1,∵1AM a =-,在Rt ΔPAM 中,222PM AM PA =+,即22(1)4a a =-+,解得: 2.5a =,∵ 1.5AM =,∵23MN AM ==,∵134BN BM MN =+=+=,∵点N 的坐标为:(2,4)-.故答案为:(2,4)-.【点睛】此题考查了垂径定理、点与坐标的关系以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.5.B【分析】连接AI 、BI ,因为三角形的内心是角平分线的交点,所以AI 是CAB ∠的平分线,由平行的性质和等角对等边可得:AD DI =,同理BE EI =,所以图中阴影部分的周长就是边AB 的长.【详解】解:连接AI 、BI ,点I 为ABC ∆的内心,AI ∴平分CAB ∠,CAI BAI ∴∠=∠,由平移得://AC DI ,CAI AID ∴∠=∠,BAI AID ∴∠=∠,AD DI ∴=,同理可得:BE EI =,DIE ∴∆的周长4DE DI EI DE AD BE AB =++=++==,即图中阴影部分的周长为4,故选:B .【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.6.C【分析】根据点坐标的平移变换规律即可得.【详解】解:由点坐标的平移变换规律得:点P'的坐标为(32)P-,故选:C.【点睛】本题考查了点坐标的平移变换规律,熟练掌握点坐标的平移变换规律是解题关键.7.C【分析】根据点向上平移a个单位,点向左平移b个单位,坐标P(x,y)⇒P(x,y+a)⇒P(x+a,y+b),进行计算即可.【详解】解:∵点A坐标为(2,1),∵线段OA向上平移2个单位长度,再向左平移3个单位长度,点A的对应点A′的坐标为(2-3,1+2),即(-1,3),故选C.【点睛】此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.8.C【分析】直接把x=1代入计算即可.【详解】解:当x=1时,2x+2x+1=21+2×1+1=1+2+1=4.故选:C.【点睛】本题考查代数式求值,有理数的混合运算,掌握有理数的运算法则和运算顺序是解决本题的关键.9.B【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,可得答案.【详解】解:在平面直角坐标系中,将四边形格点的横坐标都减去2,纵坐标保持不变,所得图形与原图形相比向左平移了2个单位.故选:B .【点睛】此题主要考查了坐标与图形变化﹣平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.A【分析】根据()2,1M 平移后得到()1,2M '-,确定其平移规律是向左平移3个单位,后向上平移1个单位,根据规律确定点N 的平移坐标即可.【详解】∵()2,1M 平移后得到()1,2M '-,∵其平移规律是向左平移3个单位,后向上平移1个单位,∵()1,1N -,∵平移后的坐标为(1-3,-1+1)即()2,0-,故选A .【点睛】本题考查了坐标系中点的坐标平移,准确确定平移方向和平移距离,并熟记左减右加,上加下减的计算法则是解题的关键.11.A【解析】略12.C【分析】将()2M m -,代入6y x=-,即可求得M 点坐标,再根据平移方式即得出答案. 【详解】将()2M m -,代入6y x =-,得:632m =-=-, 即()23M -,. 将这个反比例函数的图象向右平移4个单位,即图象上的点也向右平移4个单位,∵点M 的对应点的坐标为(-2+4,3),即(2,3).故选C .【点睛】本题考查反比例函数图象上点的坐标特征,反比例函数图象的平移.掌握反比例函数图象上的点的坐标满足其解析式是解题关键.13.C【分析】直接利用平移中点的变化规律求解即可.【详解】由点A(−1,4)的对应点为A′(1,7)知平移方式为向右平移2个单位、向上平移3个单位,∵点C(−4,−1)的对应点C′的坐标为(−2,2),故选C.【点睛】此题考查坐标与图形变化-平移,解题关键在于得到平移的方式.14.(1)2(2)BD 的长为【分析】(1)根据平移的性质,即可求出平移距离;(2)首先证得BDE 是以BE 为斜边的直角三角形,利用勾股定理即可进行求值. (1)解:由题意可知,ABC 平移的距离为:BC =2,故答案为:2;(2)∵=60BCA ECD ∠=∠︒,∵=60ACD ∠︒,∵=120BCD ∠︒,∵=BC DC ,∵=30CBD ∠︒,∵=60E ∠︒,∵=90BDE ∠︒,∵BDE 是以BE 为斜边的直角三角形,∵由勾股定理得:222BE BD DE =+,答案第7页,共7页即:BD∵BD的长为【点睛】本题主要考查了平移的性质,以及勾股定理的应用,证出对应的直角三角形是解题的关键.15.(1)BF =2(2)∵AEB =135°【分析】(1)由旋转的性质得到∵BEF 为等腰直角三角形,根据勾股定理即可求出BF 的长; (2)根据AE =1,可得1CF AE ==,根据勾股定理逆定理(22221CF EF +=+=9=32=CE 2得出90EFC ∠=︒,根据等腰直角三角形可求45EFB ∠=︒,再求135BFC EFB EFC ∠=∠+∠=︒,根据旋转性质,可得135AEB BFC ∠=∠=︒即可. (1)解:∵∵ABE 绕点B 顺时针旋转90°得到∵CBF ,∵BE =BF ,∵EBF =∵ABC =90°∵∵BEF 为等腰直角三角形,设 BE =BF =x ,则x 2+x 2=(2 ,解得: x =2;(2)解:∵∵ABE 绕点B 顺时针旋转90°得到∵CBF ,∵∵AEB = ∵BFC ,AE =CF =1,在∵CEF 中,EF,CF =1,EC =3,∵CF 2+EF 2=12+()2=9,CE 2=9,∵CF 2+EF 2=CE 2,∵∵CEF 为直角三角形,∵EFC =90°,∵∵BFC =∵BFE +∵CFE =135°,∵∵AEB =135°.【点睛】本题考查正方形的性质,旋转性质,等腰直角三角形判定与性质,勾股定理逆定理,掌握,三角形旋转性质,等腰直角三角形判定与性质,勾股定理逆定理是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G F E D -2x y 2341-1-3-40-4-3-2-12143(1)
C B A 7.1.2《用坐标表示平移》同步练习题(1)
知识点:
P (x ,y )向右平移a 个单位,对应点P ’(x +a ,y )
P (x ,y )向左平移a 个单位,对应点P ’(x -a ,y )
P (x ,y )向上平移a 个单位,对应点P ’(x ,y +a )
P (x ,y )向下平移a 个单位,对应点P ’(x ,y -a )
同步练习:
1.如图1所示,将点A 向右平移几个单位长度可得到点B ( )
A.3个单位长度
B.4个单位长度;
C.5个单位长度
D.6个单位长度
2.如图1所示,将点A 向下平移5个单位长度后,将重合于图中的 ( )
A.点C
B.点F
C.点D
D.点E
3.如图1所示,将点A 向右平移3个单位长度,再向下平移5个单位长度,得到A ′,将点B 先向下平移5个单位长度,再向右平移3个单位长度,得到B ′,则A ′与B ′相距( )
A.4个单位长度
B.5个单位长度
C.6个单位长度
D.7个单位长度
4.如图1所示,点G (-2,-2),将点G 先向右平移6个单位长度,再向上平移5 个单位长度,得到G ′,则G ′的坐标为( )
A.(6,5)
B.(4,5)
C.(6,3)
D.(4,3)
5.平面直角坐标系中,把点P (-1,-2)向上平移4个单位长度所得点的坐标是。
6. 点A (-4,-6),将点A 先向右平移4个单位长度,再向上平移6个单位长度,得到A ′,则A ′的
坐标为________.
7. 点A(4,3)向平移个单位长度后,其坐标变为( 6, 3 ) 。
8.将平行四边形ABCD向左平移2单位长度,再向上移3个单位长度得到平行四边形
A’B’C’D’,画出平移后的图形,并写出其各个顶点的坐标。
参考答案
1.B
2.D
3.A
4.D
5. (-1,2)
6.(0,0)
7.右2
8. A(-1,-2) B(3,-2))C(4,1)D(0,1)
A’(-3,1)B’(1.1)C’(2,4)D’(-2,4)。