广西北海市2014年中考数学试题含答案(Word版)

合集下载

2014年广西桂林市中考数学试卷及答案-(word整理版)

2014年广西桂林市中考数学试卷及答案-(word整理版)

2014年广西桂林市中考数学试卷-(word整理版)一、选择题(本大题共12小题,每小题3分,满分36分)1. 2014的倒数是()A.12014B.-12014C.|2014|D.-20142.如图,已知AB∥CD,∠1=56°,则∠2的度数是()A.34°B.56°C.65°D.124°3.下列各式中,与2a是同类项的是()A.3a B.2ab C.-3a2 D.a2b4.在下面的四个几何体中,同一几何体的主视图与俯视图相同的是()5.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点坐标为()A.(3,2)B.(2,-3)C.(-2,3)D.(-2,-3)6.一次函数y=kx+b(k≠0)的图像如图所示,则下列结论正确的是()A.k=2 B.k=3 C.b=2 D.b=37.下列命题中,是真命题的是()A.等腰三角形都相似 B.等边三角形都相似 C.锐角三角形都相似 D.直角三角形都相似8.两圆的半径分别为2和3,圆心距为7,则这两圆的位置关系为()A.外离B.外切C.相交D.内切9.下列图形中,既是轴对称图形又是中心对称图形的是()10.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球。

则下列事件是必然事件的是()A.摸出的4个球中至少有一个球是白球B.摸出的4个球中至少有一个球是黑球C.摸出的4个球中至少有两个球是黑球D.摸出的4个球中至少有两个球是白球11.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB`C`的位置,使得CC`∥AB,则∠BAB`的度数是()A.70° B.35° C.40° D.50°12.如图1,在等腰梯形ABCD中,∠B=60°,PQ同时从B出发,以每秒1单位长度分别沿BADC和BCD 方向运动至相遇时停止,设运动时间为t(秒),△BPQ的面积为S(平房单位),S与t的函数图象如图2所示,则下列结论错误的是()A.当t=4秒时,S.AD=4 C.当4≤t≤8时,S.当t=9秒时,BP平分梯形ABCD的面积二、填空题(本大题共6小题,每小题3分,满分18分.)13.分解因式:a2+2a=__。

2014年广西北海市中考数学试卷(word版含解析)

2014年广西北海市中考数学试卷(word版含解析)
菁优网版权所有
A.
1个
B. 2个
C.
3个
D.
4个
考点: 轴对称图形. 分析: 利用关于某条直线对称的图形叫轴对称图形,进而判断得出即 可. 解答: 解:圆弧、角、等腰梯形都是轴对称图形. 故选;C. 点评: 此题主要考查了轴对称图形的定义,轴对称图形的判断方法: 如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么 这个图形叫做轴对称图形. 8.(3分)(2014年广西北海)下列命题中,不正确的是( ) A. n边形的内角和等于(n﹣2)•180° B. 两组对边分别相等的四边形是矩形 C. 垂直于弦的直径平分弦所对的两条弧 D. 直角三角形斜边上的中线等于斜边的一半
菁优网版权所有
A.
8
B.
9
C.
10
D.
11
考点: 三角形中位线定理. 分析: 根据三角形的中位线平行于第三边并且等于第三边的一半可得 BC=2DE. 解答: 解:∵D、E分别是边AB、AC的中点, ∴DE是△ABC的中位线, ∴BC=2DE=2×5=10. 故选C. 点评: 本题考查了三角形的中位线平行于第三边并且等于第三边的一 半,熟记定理是解题的关键. 7.(3分)(2014年广西北海)下面几何图形中,一定是轴对称图形的 有( )
菁优网版权所有
5.(3分)(2014年广西北海)在平面直角坐标系中,点M(﹣2,1) 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象 限 考点: 点的坐标. 分析: 根据各象限内点的坐标特征解答. 解答: 解:点M(﹣2,1)在第二象限. 故选B. 点评: 本题考查了各象限内点的坐标的符号特征,记住各象限内点的 坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限 (+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限 (+,﹣). 6.(3分)(2014年广西北海)如图△ABC中,D、E分别是边AB、AC 的中点,已知DE=5,则BC的长为( )

2014广西壮族自治区玉林市、防城港市中考数学试题及答案(Word解析版)

2014广西壮族自治区玉林市、防城港市中考数学试题及答案(Word解析版)

2014广西玉林市、防城港市中考数学试卷满分:120分,考试时间:120分钟。

一、单项选择题(共12小题,每小题3分,满分36分)B.B两次都摸到白球的概率是:=9.(3分)(2014•玉林)x1,x2是关于x的一元二次方程x﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的是结论是()使=成立,则+=成立,则∴∴的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()B∴y ××=,高为(×x x 二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2014•玉林)3的倒数是.的倒数是.)在第 二 象限.析:则这一天气温的极差是9℃.16.(3分)(2014•玉林)如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=.=故答案为∠ABC,则梯形ABCD的周长是7+.AD=,BD ,=+18.(3分)(2014•玉林)如图,OABC 是平行四边形,对角线OB 在y 轴正半轴上,位于第一象限的点A和第二象限的点C 分别在双曲线y =1k x和y =2k x 的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①AM CN =12k k ;②阴影部分面积是12(k 1+k 2);③当∠AOC =90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是 ①④ (把所有正确的结论的序号都填上).=OM |k ON ,所以有=|k |k()=(|k|k ON,∴=正|k|k=(本题考查了反比例函数的综合题:熟练掌握反比例函数的图象、反比例函数19.(6分)(2014•玉林)计算:(﹣2)2﹣•+(sin60°﹣π)0.×+20.(6分)(2014•玉林)先化简,再求值:﹣,其中x=﹣1.解:原式=﹣==﹣时,原式=可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是90°.22.(8分)(2014•玉林)第一次模拟试后,数学科陈老师把一班的数学成绩制成如图的统计图,并给了几个信息:①前两组的频率和是0.14;②第一组的频率是0.02;③自左到右第二、三、四组的频数比为3:9:8,然后布置学生(也请你一起)结合统计图完成下列问题:(1)全班学生是多少人?(2)成绩不少于90分为优秀,那么全班成绩的优秀率是多少?(3)若不少于100分可以得到A+等级,则小明得到A+的概率是多少?×⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.C,∴=,即=24.(9分)(2014•玉林)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%))分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量的年增长率.绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.BAM)根据同角的余角相等求出∠对应边成比例可得=,根据相似三角形对应边成比例可得,从而得到=,∴2,∴=,,∴=,∴=26.(12分)(2014•玉林)给定直线l:y=kx,抛物线C:y=ax+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.x ,﹣,∴),∴顶点(﹣,﹣=,解得.==,解得.==xx,﹣x===﹣(﹣x)=。

广西桂林市2014年中考数学试卷(word解析版)

广西桂林市2014年中考数学试卷(word解析版)

广西桂林市2014年中考数学试卷(满分120分,考试时间120分钟)一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1. 2014的倒数是( ) A .12014 B.-12014C.|2014|D.-2014考点:倒数.分析:根据倒数的定义求解. 解答:解:2014的倒数是.故选:A .点评:本题主要考查了倒数的定义,解题的关键是熟记定义. 2.如图。

已知AB ∥CD ,∠1=56°,则∠2的度数是( ) A.34° B.56° C.65° D.124°考点:平行线的性质. 分析:根据两直线平行,同位角相等解答即可. 解答:解:∵AB ∥CD ,∠1=56°, ∴∠2=∠1=56°. 故选:B .点评:本题考查了平行线的性质,熟记性质是解题的关键. 3.下列各式中,与2a 是同类项的是( ) A .3a B .2ab C .-3a 2 D .a 2b 考点:同类项.分析:本题是同类项的定义的考查,同类项是所含的字母相同,并且相同字母的指数也相同的项.中的字母是a ,a 的指数为1,解答:解:2a 中的字母是a ,a 的指数为1,A 、3a 中的字母是a ,a 的指数为1,故A 选项正确;B 、2ab 中字母为a 、b ,故B 选项错误;C 、中字母a 的指数为2,故C 选项错误;D 、字母与字母指数都不同,故D 选项错误, 故选:A .点评:考查了同类项的定义.同类项一定要记住两个相同:同类项是所含的字母相同,并且相同字母的指数也相同.4.在下面的四个几何体中,同一几何体的主视图与俯视图相同的是( )DA B C考点:简单几何体的三视图.21A B C D 第2题图分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.解答:解:A、圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同,故A选项错误;B、圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同,故B选项错误;C、三棱柱主视图、俯视图分别是长方形,三角形,主视图与俯视图不相同,故C选项错误;D、球主视图、俯视图都是圆,主视图与俯视图相同,故D选项正确.故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有看到的棱都应表现在三视图中5.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点坐标为()A.(3,2)B.(2,-3)C.(-2,3)D.(-2,-3)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.解答:解:∵点A(2,3),∴点A关于x轴的对称点的坐标为:(2,﹣3).故选:B.点评:此题主要考查了关于x轴对称点的性质,正确记忆关于坐标轴对称点的性质是解题关键.6.一次函数y=kx+b(k≠0)的图像如图所示,则下列结论正确的是()A.k=2 B.k=3 C.b=2 D.b=3考点:一次函数图象上点的坐标特征.分析:直接把点(2,0),(0,3)代入一次函数y=kx+b(k≠0),求出k,b的值即可.解答:解:∵由函数图象可知函数图象过点(2,0),(0,3),∴,解得.故选:D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.下列命题中,是真命题的是()A.等腰三角形都相似B.等边三角形都相似C.锐角三角形都相似D.直角三角形都相似考点:命题与定理;相似三角形的判定.分析:利用相似三角形的判定定理对每个选项逐一判断后即可确定正确的选项.解答:解:A、等腰三角形不一定相似,是假命题,故A选项错误;B、等边三角形都相似,是真命题,故B选项正确;C、锐角三角形不一定都相似,是假命题,故C选项错误;D、直角三角形不一定都相似,是假命题,故D选项错误.故选:B.点评:本题考查了命题与定理及相似三角形的判定的知识,解题的关键是了解相似三角形的判定定理,难度不大.8.两圆的半径分别为2和3,圆心距为7,则这两圆的位置关系为()A.外离B.外切C.相交D.内切考点:圆与圆的位置关系.分析:本题直接告诉了两圆的半径及圆心距,根据数量关系与两圆位置关系的对应情况便可直接得出答案.解答:解:∵两圆的半径分别为2和3,圆心距为7,又∵7>3+2,∴两圆的位置关系是:外离.故选:A.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系是解此题的关键.9.下列图形中,既是轴对称图形又是中心对称图形的是()考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,是轴对称图形,故A选项错误;B、此图形是中心对称图形,不是轴对称图形,故B选项错误;C、此图形是中心对称图形,也是轴对称图形,故C选项正确;D、此图形不是中心对称图形,是轴对称图形,故D选项错误.故选:C.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.10.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球。

广西柳州市2014年中考数学试卷及答案(word解析版)

广西柳州市2014年中考数学试卷及答案(word解析版)

2014 年广西柳州市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3 分,满分36分)1.(3 分)(2014?柳州)如图,李师傅做了一个零件,请你告诉他这个零件的主视图是()解答:解:从正面看,左边是个正方形,右边是个矩形,故选:A .点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.2.(3分)(2014?柳州)在所给的,0,﹣1,3 这四个数中,最小的数是()A.B.0C.﹣1 D.3考点:有理数大小比较.分析:要解答本题可根据正数大于0,0 大于负数,可得答案.解答:解:﹣1<0< < 3.故选:C.点评:本题考查了有理数比较大小,正数大于0,0 大于负数是解题关键.3.(3 分)(2014?柳州)下列选项中,属于无理数的是()A.2 B.πC.D.﹣2考点:无理数.分析:根据无理数是无限不循环小数,可得答案.解答:解:π是无限不循环小数,故选:B .点评:本题考查了无理数,无理数是无限不循环小数.4.(3分)(2014?柳州)如图,直线l∥OB,则∠ 1的度数是(5.(3 分)(2014?柳州)下列计算正确的选项是( )A . ﹣1=B . ( ) 2=5 C . 2a ﹣ b=abD .=:分式的加减法;实数的运算;合并同类项. :计算题.:A 、原式利用平方根定义化简,计算即可得到结果;B 、原式利用平方根定义化简, 计算即可得到结果;C 、原式不能合并,错误;D 、原式利用同分母分式的加法法则计算得到结果,即可做出判断. 解答:解:A 、原式 =2﹣1=1;故选项错误;B 、原式 =5,故选项正确;C 、原式不能合并,故选项错误;D 、原式 = ,故选项错误.故选 B .点评:此题考查了分式的加减法,以及实数的运算,熟练掌握运算法则是解本题的关键.考点 :平行线的性质.分析: 根 据两直线平行,同位角相等解答. 解答:解 :∵直线 l ∥OB ,∴∠ 1=60°.故选 D .点评:本题考查平行线的性质,熟记性质是解题的关键.A . 120°B . 30C . 40°D .60°6.( 3分)( 2014?柳州)如图,直角坐标系中的五角星关于 y 轴对称的图形在( ) 考点 :轴对称的性质. 分析:根据轴对称的性质作出选择.解答:解:如图所示,直角坐标系中的五角星关于 y 轴对称的图形在第一象限.点评:本 题考查了轴对称的性质.此题难度不大,采用了 “数形结合 ”的数学思想.7.(3 分)(2014?柳州)学校 “清洁校园 ”环境爱护志愿者的年龄分布如图,那么这些志愿者 年龄的众数是( )A .12岁B .13 岁C .14岁D .15 岁 考点 :条形统计图;众数. 分析:根据众数的定义,就是出现次数最多的数,据此即可判断. 解答:解:众数是 14 岁.故选 C .点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解 决问题的关键.条形统计图能清楚地表示出每个项目的数据.8.( 3分)( 2014?柳州)如图,当半径分别是 5和 r 的两圆⊙ O 1和⊙O 2 外切时,它们的圆 心距 O 1O 2=8,则⊙ O 2 的半径 r 为( )B . 第二象限C . 第三象限D .第四象限A .第一象限A.12 B.8 C.5 D.3考点 :圆与圆的位置关系.分析:根 据两圆外切时,圆心距 =两圆半径的和求解.解答:解 :根据两圆外切,圆心距等于两圆半径之和,得该圆的半径是 8﹣ 5=3.故选 D .点评:本题考查了圆与圆的位置关系,注意:两圆外切,圆心距等于两圆半径之和.考点 :多 边形.分析:根据菱形的对角线互相垂直即可判断.解答: 解 :菱形的对角线互相垂直,而长方形、平行四边形、直角梯形的对角线不一定互相 垂直.故选 C .点评: 本题考查了长方形、平行四边形、菱形、直角梯形的性质.常见四边形中,菱形与正 方形的对角线互相垂直.10.(3 分)(2014?柳州)如图,正六边形的每一个内角都相等,则其中一个内角 α的度数考点 :多边形内角与外角.分析:多 边形的内角和可以表示成( n ﹣2)?180°,因为所给多边形的每个内角均相等,可设这个正六边形的每一个内角的度数为 x ,故又可表示成 6x ,列方程可求解. 解答:解 :设这个正六边形的每一个内角的度数为 x ,则 6x= ( 6﹣ 2)?180°, 解得 x=120 °.故这个正六边形的每一个内角的度数为 120 °. 故答案选: B .点评:本 题考查根据多边形的内角和计算公式求多边形的内角的度数, 解答时要会根据公式进行正确运算、变形和数据处理.2211.( 3分)( 2014?柳州)小兰画了一个函数 y=x +ax+b 的图象如图,则关于 x 的方程 x +ax+b=0 的解是( )9. B . 120°C .60°D .30°A .考点:抛物线与 x 轴的交点. 考点 :列表法与树状图法. 专题 :计算题.分析:根据题意列出表格,得出所有等可能的情况数,找出至少有一个灯泡发光的情况数, 即可求出所求的概率. 解答:解 :列表如下:灯泡 1 发光 灯泡 1 不发光A .无解 C .x=﹣4 D . x=﹣ 1 或 x=40.5,当合上开关时,至B . 0.5C .0.75D .0.95B . x A . 0.灯泡2 发光(发光,发光)(不发光,发光)灯泡2 不发光(发光,不发光)(不发光,不发光)所有等可能的情况有4 种,其中至少有一个灯泡发光的情况有 3 种,则P= =0.75 .故选C.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(共6小题,每小题3分,满分18 分)13.(3分)(2014?柳州)3的相反数是﹣3 .考点:相反数.分析:此题依据相反数的概念求值.相反数的定义:只有符号不同的两个数互为相反数,0 的相反数是0.解答:解:3 的相反数就是﹣3.点评:此题主要考查相反数的概念.14.(3分)(2014?柳州)如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x < y(用“> 或“<”填空).考点:不等式的定义.分析:由图知1号同学比2 号同学矮,据此可解答.解答:解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.点评:本题主要考查了不等式的定义,仔细看图是解题的关键.如图,等腰梯形ABCD 的周长为16,BC=4 ,CD=3 ,则AB= 5考点:等腰梯形的性质.∴ AD=BC ,∵ BC=4 ,∴ AD=4 ,∵ CD=3 ,等腰梯形ABCD 的周长为16,∴ AB=16 ﹣3﹣4﹣4=5,故答案为5.点评:本题考查了等腰梯形的性质,是基础知识要熟练掌握.16.(3 分)(2014?柳州)方程﹣1=0 的解是x= 2考点:解分式方程.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答:解:去分母得:2﹣x=0 ,解得:x=2 ,经检验x=2 是分式方程的解.故答案为:2.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(3 分)(2014?柳州)将直线y= x 向上平移7 个单位后得到直线y= x+7.考点:一次函数图象与几何变换.分析:直接根据“上加下减”的原则进行解答.解答:解:由“上加下减”的原则可知,将直线y= x 向上平移7 个单位所得直线的解析式为:= x+7 .故答案为:7.点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.18.(3 分)(2014?柳州)如图,在△ABC 中,分别以AC,BC 为边作等边△ACD 和等边△BCE .设△ ACD 、△BCE、△ABC 的面积分别是S1、S2、S3,现有如下结论:22①S1:S2=AC 2:BC2;②连接AE ,BD ,则△ BCD ≌△ ECA;2③若AC ⊥BC ,则S1?S2= S3 .其中结论正确的序号是①②③ .考点:全等三角形的判定与性质;等边三角形的性质.分析:① 根据相似三角形面积的比等于相似比的平方判断;② 根据SAS 即可求得全等;③ 根据面积公式即可判断.解答:① S1:S2=AC 2:BC2正确,解:∵△ ADC 与△ BCE 是等边三角形,∴△ ADC∽△ BCE,22∴ S1:S2=AC 2:BC2.② △BCD ≌△ ECA 正确,证明:∵△ ADC 与△ BCE 是等边三角形,∴∠ ACD= ∠BCE=60 °∴∠ ACD+ ∠ACB= ∠BCE+∠ACD ,即∠ ACE= ∠DCB,在△ ACE 与△ DCB 中,,∴△ BCD≌△ ECA (SAS).2③ 若AC ⊥BC ,则S1?S2= S3 正确,解:设等边三角形ADC 的边长=a,等边三角形BCE 边长=b,则△ADC 的高= a,S32= a2b2,∴ S1?S2= S32.点评:本题考查了三角形全等的判定,等边三角形的性质,面积公式以及相似三角形面积的比等于相似比的平方.三、解答题(共8 小题,满分66分)19.(6 分)(2014?柳州)计算:2×(﹣5)+3.考点:有理数的乘法;有理数的加法.分析:根据异号两数相乘得负,并把绝对值相乘,可得积,再根据有理数的加法,可得答案.解答:解:原式=﹣10+3=﹣7.点评:本题考查了有理数的乘法,先算有理数的乘法,再算有理数的加法,注意运算符号.20.(6 分)(2014?柳州)一位射击运动员在10次射击训练中,命中靶的环数如图.请你根据图表,完成下列问题:)补充完成下面成绩表单的填写:2)求该运动员这10 次射击训练的平均成绩.考点:折线统计图;统计表;算术平均数.分析:根据折线统计图中提供的信息,补全统计表;(2)求出该运动员射击总环数除以10 即可.解答:解:(1)由折线统计图得出第一次射击环数为:8,第二次射击环数为:9,第三次射击环数为:7,故答案为:8,9,7.点评:本题主要考查了折线统计图及统计表和平均数,解题的关键是能从折线统计图中正确找出数据.21.(6 分)(2014?柳州)小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g?考点 : 二元一次方程组的应用.分析: 设 大苹果的重量为 xg ,小苹果的重量为 yg ,根据图示可得:大苹果的重量 =小苹果 50g ,大苹果 +小苹果 =300g+50g ,据此列方程组求解.解答: 解 :设大苹果的重量为 xg ,小苹果的重量为 yg , 由题意得, ,解得: .答:大苹果的重量为 200g ,小苹果的重量为 150g .点评:本题考查了二元一次方程组的应用,解答本题的关键是根据图形,找出等量关系,列 方程组求解.22.(8分)(2014?柳州)如图,在 △ABC 中, BD ⊥ AC ,AB=6 ,AC=5 ,∠A=30 °.① 求 BD 和 AD 的长;② 求 tan ∠ C 的值.考点 :解直角三角形;勾股定理.专题 : 计算题.分析:(1)由 BD ⊥AC 得到∠ ADB= ∠ADC=90 °,在 Rt △ADB 中,根据含 30 度的直角三 角形三边的关系先得到 BD= AB=3 ,再得到 AD= BD=3 ;( 2)先计算出 CD=2 ,然后在 Rt △ADC 中,利用正切的定义求解. 解答: 解:(1)∵BD ⊥AC ,∴∠ ADB= ∠ ADC=90 °,在 Rt △ADB 中, AB=6 ,∠ A=30 °,∴ BD= AB=3 ,∴ AD= BD=3 ;(2)CD=AC ﹣AD=5 ﹣3 =2 ,在Rt△ADC 中,tan∠C= = = .点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了含30 度的直角三角形三边的关系.23.(8 分)(2014?柳州)如图,函数y= 的图象过点A(1,2).(1)求该函数的解析式;(2)过点A 分别向x 轴和y 轴作垂线,垂足为B 和C,求四边形ABOC 的面积;(3)求证:过此函数图象上任意一点分别向x 轴和y 轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.考点:待定系数法求反比例函数解析式;反比例函数系数k 的几何意义.分析: (1)将点A 的坐标代入反比例函数解析式,即可求出k 值;(2)由于点A 是反比例函数上一点,矩形ABOC 的面积S=|k| .(3)设图象上任一点的坐标(x ,y),根据矩形的面积公式,可得出结论.解答:解:(1)∵函数y= 的图象过点A (1,2),∴将点A 的坐标代入反比例函数解析式,得2= ,解得:k=2 ,∴反比例函数的解析式为y= ;(2)∵点A 是反比例函数上一点,∴矩形ABO C 的面积S=AC ?AB=|xy|=|k|=2 .(3)设图象上任一点的坐标(x,y),∴过这点分别向x 轴和y 轴作垂线,矩形面积为|xy|=|k|=2 ,∴矩形的面积为定值.点评:点评:本题主要考查了待定系数法求反比例函数解析式和反比例函数y= 中k 的几何意义,注意掌握过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.24.(10分)(2014?柳州)如图,在△ABC 中,∠BAC 的角平分线AD 交BC 于E,交△ABC 的外接圆⊙ O 于D.(1)求证:△ABE ∽△ ADC ;(2)请连接BD ,OB ,OC ,OD ,且OD 交BC于点F,若点F恰好是OD 的中点.求证:四边形OBDC 是菱形.考点:相似三角形的判定与性质;菱形的判定;圆周角定理.专题:证明题.分析:(1)根据圆周角定理求出∠ B=∠D,根据相似三角形的判定推出即可;(2)根据垂径定理求出OD⊥BC,根据线段垂直平分线性质得出OB=BD ,OC=CD ,根据菱形的判定推出即可.解答:证明:(1)∵∠ BAC 的角平分线AD ,∴∠ BAE= ∠CAD ,∵∠ B=∠ D,∴△ ABE ∽△ ADC ;(2)∵∠ BAD= ∠CAD ,∴弧BD=弧CD,∵ OD 为半径,∴ DO⊥ BC ,∵F为OD 的中点,∴ OB=BD ,OC=CD ,∵ OB=OC ,∴ OB=BD=CD=OC ,∴四边形OBDC 是菱形.点评:本题考查了相似三角形的判定,圆周角定理,垂径定理,菱形的判定,线段垂直平分线性质的应用,主要考查学生的推理能力.25.(10 分)(2014?柳州)如图,正方形ABCD 的边长为l,AB 边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ ⊥AB 的延长线于点Q.1)求线段PQ 的长;2)问:点P 在何处时,△PFD∽△ BFP,并说明理由.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.分析:(1)由题意得:PD=PE ,∠ DPE=90 °,又由正方形ABCD 的边长为l,易证得△ ADP ≌△ QPE ,然后由全等三角形的性质,求得线段PQ 的长;(2)易证得△DAP ∽△ PBF,又由△ PFD∽△ BFP,根据相似三角形的对应边成比例,可得证得PA=PB ,则可求得答案.解答:解:(1)根据题意得:PD=PE,∠ DPE=90°,∴∠ APD+ ∠QPE=90°,∵四边形ABCD 是正方形,∴∠ A=90 °,∴∠ ADP+ ∠ APD=90 °,∴∠ ADP= ∠QPE,∵EQ⊥AB ,∴∠ A= ∠Q=90°,在△ADP 和△QPE 中,,∴△ ADP≌△ QPE(AAS ),∴ PQ=AD=1 ;(2)∵△ PFD ∽△ BFP,∴,∴,∵∠ ADP= ∠EPB,∠CBP=∠A,∴△ DAP∽△ PBF,∴,∴,∴,∴,∴ PA=PB ,∴ PA= AB =∴当PA= 时,△ PFD∽△ BFP.点评:此题考查了相似三角形的判定与性质、正方形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.26.(12 分)(2014?柳州)已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,),直线y=kx+2 与y 轴相交于点P,与二次函数图象交于不同的两点A (x1,y1),B (x2,y2).(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x 取值范围在﹣1< x<3 时,请写出其函数值y 的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y 轴上,必存在定点G,使△ABG 的内切圆的圆心落在y 轴上,并求△ GAB 面积的最小值.(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.2即:设一元二次方程ax +bx+c=0 的两根为x1,x2,则:x1+x2=﹣,x1?x2=能灵活运用这种关系,有时可以使解题更为简单.2例:不解方程,求方程x2﹣3x=15 两根的和与积.2解:原方程变为:x2﹣3x ﹣15=0元二次方程的根与系数有关系:x1+x2=﹣,x1?x2==﹣15.考点:二次函数综合题;完全平方公式;根与系数的关系;待定系数法求一次函数解析式;二次函数的图象;待定系数法求二次函数解析式;三角形的内切圆与内心.专题:压轴题.分析:(1)设二次函数解析式为y=ax2+1,由于点(﹣1,)在二次函数图象上,把该点2的坐标代入y=ax2+1,即可求出a,从而求出二次函数的解析式.(2)先分别求出x= ﹣1,x=0 ,x=3 时y的值,然后结合图象就可得到y 的取值范围.(3)由于△ABG 的内切圆的圆心落在y轴上,因此GP平分∠ AGB .过点A 作GP的对称点A ′,则点A ′必在BG 上.由于点A(x1,y1)、B(x2,y2)在直线y=kx+2 上,从而可以得到点A 的坐标为(x1,kx1+2)、A′的坐标为(﹣x1,kx1+2)、B 的坐标为(x2,kx 2+2).设直线BG 的解析式为y=mx+n ,则点G 的坐标为(0,n).由于点A′(﹣x1,kx1+2)、B(x2,kx2+2)在直线BG 上,可用含有k、x1、x2 的代数式表示n.由于A、B 是直线y=kx+2 与抛物线y= x1 2 3 4+1的交点,由根与系数的关系可得:x1+x2=4k,x1?x2=﹣4.从而求出n=0,即可证出:在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG 的内切圆的圆心落在y 轴上.由S△ABG=S△APG+S△BPG,可以得到5△ABG =x 2﹣解答:(1)解:由于二次函数图象的顶点坐标为(0,1),2因此二次函数的解析式可设为y=ax 2+1 .2∵抛物线y=ax 2+1过点(﹣1,),∴ =a+1 .解得:a= .∴二次函数的解析式为:y= x2+1.(2)解:当x=﹣1时,y= ,当x=0 时,y=1 ,当x=3 时,y= ×32+1= ,结合图1可得:当﹣1<x<3 时,y的取值范围是1≤y< .(3)① 证明:∵△ ABG 的内切圆的圆心落在y 轴上,∴ GP 平分∠ AGB .∴直线GP 是∠ AGB 的对称轴.过点A 作GP 的对称点A′,如图2,则点A ′一定在BG 上.∵点A 的坐标为(x1,y1),∴点A ′的坐标为(﹣x1,y1).∵点A (x1,y1)、B (x2,y2)在直线y=kx+2 上,∴ y1=kx1+2,y2=kx 2+2.∴点A′的坐标为(﹣x1,kx1+2)、点B 的坐标为(x2,kx2+2).设直线BG 的解析式为y=mx+n ,则点G 的坐标为(0,n).∵点A ′(﹣x1,kx1+2)、B(x2,kx2+2)在直线BG 上,x1= =4 ,所以当k=0 时,S△ABG 最小,最小值为4.解得:2∵ A(x1,y1),B(x2,y2)是直线y=kx+2 与抛物线y= x2+1 的交点,∴x1、x2是方程kx+2= x2+1即x2﹣4kx﹣4=0 的两个实数根.∴由根与系数的关系可得;x1+x2=4k ,x1?x 2= ﹣4.∴ n= =﹣2+2=0.∴点G 的坐标为(0,0).∴在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG 的内切圆的圆心落在y 轴上.② 解:过点A 作AC ⊥ OP,垂足为C,过点B 作BD ⊥OP,垂足为D,如图2,∵直线y=kx+2 与y 轴相交于点P,∴点P 的坐标为(0,2).∴ PG=2 .∴ S△ABG=S△APG+S△ BPG= PG?AC+ PG?BD= PG?(AC+BD )= ×2 ×(﹣x1+x2)12=x2﹣x1==4 .∴当k=0 时,S△ ABG最小,最小值为4.∴△ GAB 面积的最小值为4.≡1点评:本题考查了用待定系数法求二次函数及一次函数的解析式、二次函数的图象、三角形的内切圆、根与系数的关系、完全平方公式等知识,综合性比较强,有一定的难度.分析:关于x 的方程x* 2+ax+b=0 的解是抛物线y=x 2+ax+b 与x 轴交点的横坐标.解答:解:如图,∵函数y=x 2+ax+b的图象与x 轴交点坐标分别是(﹣1,0),(4,0),2∴关于x 的方程x +ax+b=0 的解是x= ﹣1 或x=4.2y=ax +bx+c (a,b,c 是常数,a≠0)2与x 轴的交点坐标,令y=0 ,即ax2+bx+c=0 ,解关于x 的一元二次方程即可求得交点横坐标.12.(3 分)(2014?柳州)如图,每个灯泡能否通电发光的概率都是少有一个灯泡发光的概率是()分析:根据等腰梯形的性质可得出AD=BC ,再由BC=4 ,CD=3 ,得出AB 的长.解答:解:∵四边形ABCD 为等腰梯形,=4 .。

2014中考数学试题及答案

2014中考数学试题及答案

2014中考数学试题及答案2014年中考数学试题一、选择题(共10小题,每小题3分,满分30分)1. 下列哪个选项是正确的整数比?A. 2:3B. 1.5:2.5C. 0.6:0.2D. 3.14:2.72. 绝对值不大于5的所有整数之和为:A. 0B. 10C. 15D. 203. 若a、b、c是等差数列,且a+b+c=6,b+c+d=9,则d的值为:A. 1B. 2C. 3D. 44. 一个圆的半径是7厘米,求这个圆的周长(π取3.14):A. 42厘米B. 28厘米C. 18厘米D. 14厘米5. 下列哪个选项是反比例函数的图象?A. 过原点的直线B. 经过第二象限的曲线C. 经过第一、三象限的曲线D. 双曲线6. 一个等腰三角形的底边长为6厘米,腰长为5厘米,这个三角形的面积是多少平方厘米?A. 12B. 14C. 16D. 187. 下列哪个选项是一元二次方程的解?A. x = 2B. x = -2C. x = 1或x = -1D. x = 08. 已知函数f(x) = 2x + 1,求f(3)的值:A. 7B. 6C. 5D. 49. 下列哪个选项是正确的小数与分数之间的转换?A. 0.75 = 3/4B. 0.8 = 4/5C. 0.125 = 1/8D. 0.2 = 1/510. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,求这个长方体的体积:A. 24立方厘米B. 21立方厘米C. 16立方厘米D. 12立方厘米二、填空题(共5小题,每小题4分,满分20分)11. 已知一个等差数列的前三项分别是2、5、8,那么第100项是______。

12. 一个圆的直径是10厘米,那么这个圆的面积(π取3.14)是______平方厘米。

13. 一个三角形的三个内角之比为2:3:5,那么这个三角形的最大内角是______度。

14. 已知函数g(x) = x^2 - 3x + 2,求g(4)的值是______。

2023年广西北海市中招考试数学考卷(word版含解析)[最新]

2023年广西北海市中招考试数学考卷(word版含解析)[最新]

2014年广西北海市中招考试数学考卷(word版含解析)[最新]一、选择题(每题1分,共5分)1. 下列函数中,奇函数是()A. y = x^2B. y = |x|C. y = x^3D. y = x^2 + 12. 已知等差数列{an},a1=1,a3=3,则公差d等于()A. 1B. 2C. 3D. 43. 在平面直角坐标系中,点P(2, 3)关于原点的对称点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)4. 下列各式中,值不等于1的是()A. (sqrt(3))^2 / 3B. (sqrt(2))^2 / 2C. (sqrt(5))^2 / 5D. (sqrt(6))^2 / 65. 下列命题中,真命题是()A. 对任意的实数x,都有x^2 >= 0B. 对任意的实数x,都有x^2 < 0C. 对任意的实数x,都有x^2 = 0D. 对任意的实数x,都有x^2 > 0二、判断题(每题1分,共5分)1. 任何两个平行线的斜率都相等。

()2. 一元二次方程的解一定是实数。

()3. 相似三角形的面积比等于边长比的平方。

()4. 互质的两个数一定是质数。

()5. 函数y = ax^2 + bx + c(a ≠ 0)的图像一定经过原点。

()三、填空题(每题1分,共5分)1. 已知等差数列{an},a1=1,公差d=2,则a5=______。

2. 若直线y=2x+1与x轴的交点为A,则点A的坐标为______。

3. 在平面直角坐标系中,点P(3, 4)关于x轴的对称点坐标为______。

4. 已知一组数据的方差是9,那么这组数据的标准差是______。

5. 一次函数y=kx+b的图像经过一、二、四象限,则k的取值范围是______。

四、简答题(每题2分,共10分)1. 请简要说明一元二次方程的求根公式。

2. 什么是平行线的性质?请举例说明。

3. 简述概率的基本性质。

广西中考数学答案.doc

广西中考数学答案.doc

广西中考数学答案【篇一:2014 年广西南宁市中考数学试卷(含答案和解析)】ss=txt> 一、选择题:本大题共12 小题,每小题 3 分,共36 分,在每小题给出的四个选项中,其中只有一是正确的.3.(3 分)(2014? 南宁)南宁东高铁火车站位于南宁青秀区凤岭北路,火车站总建筑面积约为267000 平方米,其中6.(3 分)(2014? 南宁)在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图.若油面的宽ab=160cm ,则油的最大深度为()8.(3 分)(2014? 南宁)如图所示,把一张长方形纸片对折,折痕为ab ,再以ab 的中点o 为顶点,把平角∠aob 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以o 为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是()9.(3 分)(2014? 南宁)“黄金1 号”玉米种子的价格为 5 元/千克,如果一次购买 2 千克以上的种子,超过 2 千克部210 .(3 分)(2014? 南宁)如图,已知二次函数y= ﹣x+2x ,当﹣1<x<a 时,y 随x 的增大而增大,则实数 a 的取值范围是()11.(3 分)(2014? 南宁)如图,在?abcd 中,点 e 是ad 的中点,延长bc 到点f,使cf :bc=1 :2,连接df ,ec .若ab=5,ad=8 ,sinb= ,则df 的长等于()12.(3 分)(2014? 南宁)已知点 a 在双曲线y=﹣上,点 b 在直线y=x ﹣4 上,且a,b 两点关于y 轴对称.设点a 的坐标为(m,n),则+的值是()二、填空题(本大题共 6 小题,每小题 3 分,共18 分)13.(3 分)(2014? 南宁)比较大小:﹣53(填>,<或=).15.(3 分)(2014? 南宁)分解因式:2a﹣6a= _________ .216.(3 分)(2014? 南宁)第45 届世界体操锦标赛将于2014 年10 月3 日至12 日在南宁隆重举行,届时某校将从小记者团内负责道的3 名同学( 2 男 1 女)2 名前,那么选出的 2 名同学恰好是一男一女的概率是 _________ . 18.(3 分)(2014? 南宁, △abc 是等腰直角三角形,a c =b =a ,a b 上的点圆与 ac ,bc 相切于点e ,f ,与a b 交于点g ,h ,且 e h c b 线交于点 c d 三、:(共2, 12 分,共 12 分)要求写出程.如果果含有根保留根号. 20.( 6 分)( 2014? 南宁)解方程:﹣=1.四、:(共2,16 分,共 16分)要求写出程.如果果含有根保留根号. 2.( 8 分)( 2014? 南宁, △a b c 点为a (1,1), b (4,2), c (3,4).(画出 △a b c 向左平移 5度后得到的 △a1b1c1 ;(画出 △a b c关于称的 △a2b2c2 ;(3)在上求作一点p ,使 △pa b的周小最画出 △pab ,并直接写出p .22.( 8 分)(2014? 南宁前,总会采用各种解 压力,以最迎.该校的部分同学做了一次“最适合考方式 ,学校将减 压方,可根据自己的情其中一 类.学校收集整理数据12 两幅不完, 请中信息解答 (中,一了多少名学生?(补全; (计算中 “享受美食应扇心角的度数; (4)果该校500 名学生中采用“” 方式的人数. 五、:(8分)要求写出程.如果运算结果含有根保留根号. 23.( 8 分)( 2014? 南宁)如图, ab ∥fc ,d是 ab 上一点, df 交ac 于点 e ,de=fe ,分别延长f d 和 cb 交于点 g .(1)求证: △ade≌ △ cfe ;(2)若 gb=2 ,bc=4 ,bd=1 ,求 ab 的长.六、解答题:(本大题满分10 分)要求写出解答过程.如果运算结果含有根号,请保留根号.24.(10 分)(2014? 南宁)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买 a 型和b 型两种环保节能公交车共10 辆,若购买 a 型公交车 1 辆,b 型公交车 2 辆,共需400 万元;若购买 a 型公交车 2 辆,b 型公交车1 辆,共需350 万元.(1)求购买 a 型和b 型公交车每辆各需多少万元?(2)预计在该线路上 a 型和 b 型公交车每辆年均载客量分别为60 万人次和100 万人次.若该公司购买 a 型和b 型公交车的总费用不超过1200 万元,且确保这10 辆公交车在该线路的年均载客总和不少于680 万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?七、解答题:(本大题满分10 分)要求写出解答过程.如果运算结果含有根号,请保留根号.(1)试判断be 与fh 的数量关系,并说明理由;八、解答题:(本大题满分10 分)要求写出解答过程.如果运算结果含有根号,请保留根号.226.(10 分)(2014? 南宁)在平面直角坐标系中,抛物线y=x+(k﹣1)x﹣k 与直线y=kx+1 交于a,b 两点,点 a在点b 的左侧.(1)如图1,当k=1 时,直接写出a,b 两点的坐标;(2)在(1)的条件下,点p 为抛物线上的一个动点,且在直线ab 下方,试求出△abp 面积的最大值及此时点p 的坐标;2【篇二:2013 年广西省南宁市中考数学试卷及答案(word 解析版)】=txt> 一、选择题(本大题共12 小题,每小题 3 分,共36 分)每小题都给出代号(a)、(b)、(c)、(d )四个结论,其中只有一个是正确的,请考上用2b 铅笔在答题卡上将选定答案标号涂黑.2.(3 分)(2013? 南宁)如图所示,将平面图形绕轴旋转一周,得到的几何体是()3.(3 分)(2013? 南宁)2013 年6 月11 日,神舟十号飞船发射成功,神舟十号飞船身高94.(3 分)(2013? 南宁)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这5.(3 分)(2013? 南宁)甲、乙、丙、丁四名选手参加100 米决赛,赛场只设1、2、3、4 四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到 1 号跑道的概6.(3 分)(2013? 南宁)若分式的值为0,则x 的值为()7.(3 分)(2013? 南宁)如图,圆锥形的烟囱底面半径为15cm ,母线长为20cm ,制作这样一个烟囱帽所需要的铁皮面积至少是()9.(3 分)(2013? 南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4 个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()10.(3 分)(2013? 南宁)已知二次函数y=ax+bx+c (a≠0)的图象如图所示,下列说法错误的是()211.(3 分)(2013? 南宁)如图,ab 是⊙o 的直径,弦cd 交ab于点e,且ae=cd=8 ,∠bac= ∠bod ,则⊙o 的半径为()12.(3 分)(2013? 南宁)如图,直线y=y=与双曲线y=(k>0,x>0)交于点a,将直线个单位长度后,与y 轴交于点c,与双曲线y=(k>0,x>0)交于点b,若oa=3bc ,则k 的值为()【篇三:2015 年28 广西南宁市中考数学试题及答案(详细解析版)】ass=txt> 本试卷分第i 卷和第ii 卷,满分120 分,考试时间120 分钟第i 卷(选择题,共36 分)一、选择题(本大题共12 小题,每小题 3 分,共36 分)每小题都给出代号为(a)、(b)、(c)、(d)四个结论,其中只有一个是正确的.请考生用2b 铅笔在答题卷上将选定的答案标号涂黑.考点:绝对值(初一上-有理数)。

广西南北钦防四城2014年中考数学试题汇编

广西南北钦防四城2014年中考数学试题汇编

广西南北钦防四城2014年中考数学试题汇编(1)满分120分,考试时间120分钟。

一、选择题(共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1. 如果收入80元记作+80元,那么支出20元记作( )A . +20元B . ﹣20元C .+100元 D. ﹣100元2. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 要使二次根式2+x 在实数范围内有意义,则实数x 的取值范围是 ( )(A )x >2 (B )x ≥2 (C )x >2- (D )x ≥2-4. 在平面直角坐标系中,点M (﹣2,1)在( )A . 第一象限B .第二象限C . 第三象限D . 第四象限5.下列运算正确的是 ( )(A )2a ·3a = 6a (B )()32x =6x (C )6m ÷2m =3m (D )6a -4a =26.下列命题是假命题的是( )A . 四个角相等的四边形是矩形B . 对角线相等的平行四边形是矩形C . 对角线垂直的四边形是菱形D . 对角线垂直的平行四边形是菱形 7. 在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图1所示,若油面的宽AB =160cm ,则油的最大深度为( )(A )40cm (B )60cm (C )80cm (D )100cm8. 北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时.设原来火车的平均速度为x 千米/时,则下列方程正确的是( )A .+1.8=B .﹣1.8=C .+1.5=D . ﹣1.5=9. x 1,x 2是关于x 的一元二次方程x 2﹣mx+m ﹣2=0的两个实数根,是否存在实数m 使+=0成立?则正确的是结论是( )A . m=0时成立B .m=2时成立C .m=0或2时成立D .不存在10. 如图,等圆⊙O 1和⊙O 2相交于A 、B 两点,⊙O 1经过⊙O 2的圆心O 2,连接AO 1并延长交⊙O 1于点C ,则∠ACO 2的度数为( )A . 60°B .45°C .30°D .20°11. 如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于( )A .30°B . 40°C . 50°D .60°12. 已知点A 在双曲线y x2-=上,点B 在直线4-=x y 上,且A ,B 两点关于y 轴对称,设点A 的坐标为(m ,n ),则n m +mn 的值是( ) (A )-10 (B )-8 (C )6 (D )4二、填空题(本大题共6小题,每小题3分,满分18分)13.已知∠A=43°,则∠A 的补角等于 度.14.因式分解:x 2y ﹣2xy 2= .15.若一元二次方程x 2﹣6x+m=0有两个相等的实数根,则m 的值为 .16. 如图,一渔船由西往东航行,在A 点测得海岛C 位于北偏东60°的方向,前进20海里到B 点,此时,测得海岛C 位于北偏东30°方向,则海岛C 到航线AB 的距离CD 等于 海里.17. 如图,△ABC 中,∠A=40°,AB 的垂直平分线MN 交AC 于点D ,∠DBC=30°,若AB=m ,BC=n ,则△DBC 的周长为 .18. 甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是 分.三、解答题(本大题共8小题,满分66分,解答应写出必要的文字说明、演算步骤或推理过程)19. 解方程组20. 先化简,再求值:﹣,其中x=﹣1.21.如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法),并直接写出旋转角度是.22.某校为了解学生对三种国庆活动方案的意见,对该校学生进行了一次抽样调查(被调查学生至多赞成其中的一种方案),现将调查结果绘制成如图两幅不完整的统计图.请根据图中提供的信息解答下列问题(1)在这次调查中共调查了名学生;扇形统计图中方案1所对应的圆心角的度数为度;(2)请把条形统计图补充完整;(3)已知该校有1000名学生,试估计该校赞成方案1的学生约有多少人?23. 如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.23. “保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆. 若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1) 求购买A型和B型公交车每辆各需多少万元?(2) 预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?24.设二次函数)0,(2≠∈++=a Z c b a c bx ax y 且、、对一切实数x 恒有4122+≤≤x y x 成立,求 二次函数的解析式。

广西柳州市2014年中考数学试卷及答案【Word解析版】

广西柳州市2014年中考数学试卷及答案【Word解析版】

2014年广西柳州市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•柳州)如图,李师傅做了一个零件,请你告诉他这个零件的主视图是()A.B.C.D.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看,左边是个正方形,右边是个矩形,故选:A.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.2.(3分)(2014•柳州)在所给的,0,﹣1,3这四个数中,最小的数是()A.B.0C.﹣1 D.3考点:有理数大小比较.分析:要解答本题可根据正数大于0,0大于负数,可得答案.解答:解:﹣1<0<<3.故选:C.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.3.(3分)(2014•柳州)下列选项中,属于无理数的是()A.2B.πC.D.﹣2考点:无理数.分析:根据无理数是无限不循环小数,可得答案.解答:解:π是无限不循环小数,故选:B.点评:本题考查了无理数,无理数是无限不循环小数.4.(3分)(2014•柳州)如图,直线l∥OB,则∠1的度数是()A.120°B.30°C.40°D.60°考点:平行线的性质.分析:根据两直线平行,同位角相等解答.解答:解:∵直线l∥OB,∴∠1=60°.故选D.点评:本题考查平行线的性质,熟记性质是解题的关键.5.(3分)(2014•柳州)下列计算正确的选项是()A.﹣1=B.()2=5 C.2a﹣b=ab D.=考点:分式的加减法;实数的运算;合并同类项.专题:计算题.分析:A、原式利用平方根定义化简,计算即可得到结果;B、原式利用平方根定义化简,计算即可得到结果;C、原式不能合并,错误;D、原式利用同分母分式的加法法则计算得到结果,即可做出判断.解答:解:A、原式=2﹣1=1;故选项错误;B、原式=5,故选项正确;C、原式不能合并,故选项错误;D、原式=,故选项错误.故选B.点评:此题考查了分式的加减法,以及实数的运算,熟练掌握运算法则是解本题的关键.6.(3分)(2014•柳州)如图,直角坐标系中的五角星关于y轴对称的图形在()A.第一象限B.第二象限C.第三象限D.第四象限考点:轴对称的性质.分析:根据轴对称的性质作出选择.解答:解:如图所示,直角坐标系中的五角星关于y轴对称的图形在第一象限.故选:A.点评:本题考查了轴对称的性质.此题难度不大,采用了“数形结合”的数学思想.7.(3分)(2014•柳州)学校“清洁校园”环境爱护志愿者的年龄分布如图,那么这些志愿者年龄的众数是()A.12岁B.13岁C.14岁D.15岁考点:条形统计图;众数.分析:根据众数的定义,就是出现次数最多的数,据此即可判断.解答:解:众数是14岁.故选C.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.8.(3分)(2014•柳州)如图,当半径分别是5和r的两圆⊙O1和⊙O2外切时,它们的圆心距O1O2=8,则⊙O2的半径r为()A.12 B.8C.5D.3考点:圆与圆的位置关系.分析:根据两圆外切时,圆心距=两圆半径的和求解.解答:解:根据两圆外切,圆心距等于两圆半径之和,得该圆的半径是8﹣5=3.故选D.点评:本题考查了圆与圆的位置关系,注意:两圆外切,圆心距等于两圆半径之和.9.(3分)(2014•柳州)在下列所给出的4个图形中,对角线一定互相垂直的是()A.长方形B.平行四边形C.菱形D.直角梯形考点:多边形.分析:根据菱形的对角线互相垂直即可判断.解答:解:菱形的对角线互相垂直,而长方形、平行四边形、直角梯形的对角线不一定互相垂直.故选C.点评:本题考查了长方形、平行四边形、菱形、直角梯形的性质.常见四边形中,菱形与正方形的对角线互相垂直.10.(3分)(2014•柳州)如图,正六边形的每一个内角都相等,则其中一个内角α的度数是()A.240°B.120°C.60°D.30°考点:多边形内角与外角.分析:多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,可设这个正六边形的每一个内角的度数为x,故又可表示成6x,列方程可求解.解答:解:设这个正六边形的每一个内角的度数为x,则6x=(6﹣2)•180°,解得x=120°.故这个正六边形的每一个内角的度数为120°.故答案选:B.点评:本题考查根据多边形的内角和计算公式求多边形的内角的度数,解答时要会根据公式进行正确运算、变形和数据处理.11.(3分)(2014•柳州)小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A.无解B.x=1 C.x=﹣4 D.x=﹣1或x=4考点:抛物线与x轴的交点.分析:关于x的方程x2+ax+b=0的解是抛物线y=x2+ax+b与x轴交点的横坐标.解答:解:如图,∵函数y=x2+ax+b的图象与x轴交点坐标分别是(﹣1,0),(4,0),∴关于x的方程x2+ax+b=0的解是x=﹣1或x=4.故选:D.点评:本题考查了抛物线与x轴的交点.求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.12.(3分)(2014•柳州)如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是()A.0.25 B.0.5 C.0.75 D.0.95考点:列表法与树状图法.专题:计算题.分析:根据题意列出表格,得出所有等可能的情况数,找出至少有一个灯泡发光的情况数,即可求出所求的概率.解答:解:列表如下:灯泡1发光灯泡1不发光灯泡2发光(发光,发光)(不发光,发光)灯泡2不发光(发光,不发光)(不发光,不发光)所有等可能的情况有4种,其中至少有一个灯泡发光的情况有3种,则P==0.75.故选C.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2014•柳州)3的相反数是﹣3.考点:相反数.分析:此题依据相反数的概念求值.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.解答:解:3的相反数就是﹣3.点评:此题主要考查相反数的概念.14.(3分)(2014•柳州)如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y(用“>”或“<”填空).考点:不等式的定义.分析:由图知1号同学比2号同学矮,据此可解答.解答:解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.点评:本题主要考查了不等式的定义,仔细看图是解题的关键.15.(3分)(2014•柳州)如图,等腰梯形ABCD的周长为16,BC=4,CD=3,则AB=5.考点:等腰梯形的性质.分析:根据等腰梯形的性质可得出AD=BC,再由BC=4,CD=3,得出AB的长.解答:解:∵四边形ABCD为等腰梯形,∴AD=BC,∵BC=4,∴AD=4,∵CD=3,等腰梯形ABCD的周长为16,∴AB=16﹣3﹣4﹣4=5,故答案为5.点评:本题考查了等腰梯形的性质,是基础知识要熟练掌握.16.(3分)(2014•柳州)方程﹣1=0的解是x=2.考点:解分式方程.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2﹣x=0,解得:x=2,经检验x=2是分式方程的解.故答案为:2.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(3分)(2014•柳州)将直线y=x向上平移7个单位后得到直线y=x+7.考点:一次函数图象与几何变换.分析:直接根据“上加下减”的原则进行解答.解答:解:由“上加下减”的原则可知,将直线y=x向上平移7个单位所得直线的解析式为:y=x+7.故答案为:7.点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.18.(3分)(2014•柳州)如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD、△BCE、△ABC的面积分别是S1、S2、S3,现有如下结论:①S1:S2=AC2:BC2;②连接AE,BD,则△BCD≌△ECA;③若AC⊥BC,则S1•S2=S32.其中结论正确的序号是①②③.考点:全等三角形的判定与性质;等边三角形的性质.分析:①根据相似三角形面积的比等于相似比的平方判断;②根据SAS即可求得全等;③根据面积公式即可判断.解答:①S1:S2=AC2:BC2正确,解:∵△ADC与△BCE是等边三角形,∴△ADC∽△BCE,∴S1:S2=AC2:BC2.②△BCD≌△ECA正确,证明:∵△ADC与△BCE是等边三角形,∴∠ACD=∠BCE=60°∴∠ACD+∠ACB=∠BCE+∠ACD,即∠ACE=∠DCB,在△ACE与△DCB中,,∴△BCD≌△ECA(SAS).③若AC⊥BC,则S1•S2=S32正确,解:设等边三角形ADC的边长=a,等边三角形BCE边长=b,则△ADC的高=a,△BCE的高=b,∴S1=a a=a2,S2=b b=b2,∴S1•S2=a2b2=a2b2,∵S3=ab,∴S32=a2b2,∴S1•S2=S32.点评:本题考查了三角形全等的判定,等边三角形的性质,面积公式以及相似三角形面积的比等于相似比的平方.三、解答题(共8小题,满分66分)19.(6分)(2014•柳州)计算:2×(﹣5)+3.考点:有理数的乘法;有理数的加法.分析:根据异号两数相乘得负,并把绝对值相乘,可得积,再根据有理数的加法,可得答案.解答:解:原式=﹣10+3=﹣7.点评:本题考查了有理数的乘法,先算有理数的乘法,再算有理数的加法,注意运算符号.20.(6分)(2014•柳州)一位射击运动员在10次射击训练中,命中靶的环数如图.请你根据图表,完成下列问题:(1)补充完成下面成绩表单的填写:射击序次 1 2 3 4 5 6 7 8 9 10成绩/环8 10 7 9 10 7 10(2)求该运动员这10次射击训练的平均成绩.考点:折线统计图;统计表;算术平均数.分析:根据折线统计图中提供的信息,补全统计表;(2)求出该运动员射击总环数除以10即可.解答:解:(1)由折线统计图得出第一次射击环数为:8,第二次射击环数为:9,第三次射击环数为:7,故答案为:8,9,7.(2)运动员这10次射击训练的平均成绩:(8+9+7+8+10+7+9+10+7+10)÷10=8.5(环).点评:本题主要考查了折线统计图及统计表和平均数,解题的关键是能从折线统计图中正确找出数据.21.(6分)(2014•柳州)小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g?考点:二元一次方程组的应用.分析:设大苹果的重量为xg,小苹果的重量为yg,根据图示可得:大苹果的重量=小苹果+50g,大苹果+小苹果=300g+50g,据此列方程组求解.解答:解:设大苹果的重量为xg,小苹果的重量为yg,由题意得,,解得:.答:大苹果的重量为200g,小苹果的重量为150g.点评:本题考查了二元一次方程组的应用,解答本题的关键是根据图形,找出等量关系,列方程组求解.22.(8分)(2014•柳州)如图,在△ABC中,BD⊥AC,AB=6,AC=5,∠A=30°.①求BD和AD的长;②求tan∠C的值.考点:解直角三角形;勾股定理.专题:计算题.分析:(1)由BD⊥AC得到∠ADB=∠ADC=90°,在Rt△ADB中,根据含30度的直角三角形三边的关系先得到BD=AB=3,再得到AD=BD=3;(2)先计算出CD=2,然后在Rt△ADC中,利用正切的定义求解.解答:解:(1)∵BD⊥AC,∴∠ADB=∠ADC=90°,在Rt△ADB中,AB=6,∠A=30°,∴BD=AB=3,∴AD=BD=3;(2)CD=AC﹣AD=5﹣3=2,在Rt△ADC中,tan∠C===.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了含30度的直角三角形三边的关系.23.(8分)(2014•柳州)如图,函数y=的图象过点A(1,2).(1)求该函数的解析式;(2)过点A分别向x轴和y轴作垂线,垂足为B和C,求四边形ABOC的面积;(3)求证:过此函数图象上任意一点分别向x轴和y轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义.分析:(1)将点A的坐标代入反比例函数解析式,即可求出k值;(2)由于点A是反比例函数上一点,矩形ABOC的面积S=|k|.(3)设图象上任一点的坐标(x,y),根据矩形的面积公式,可得出结论.解答:解:(1)∵函数y=的图象过点A(1,2),∴将点A的坐标代入反比例函数解析式,得2=,解得:k=2,∴反比例函数的解析式为y=;(2)∵点A是反比例函数上一点,∴矩形ABO C的面积S=AC•AB=|xy|=|k|=2.(3)设图象上任一点的坐标(x,y),∴过这点分别向x轴和y轴作垂线,矩形面积为|xy|=|k|=2,∴矩形的面积为定值.点评:本题主要考查了待定系数法求反比例函数解析式和反比例函数y=中k的几何意义,注意掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.24.(10分)(2014•柳州)如图,在△ABC中,∠BAC的角平分线AD交BC于E,交△ABC 的外接圆⊙O于D.(1)求证:△ABE∽△ADC;(2)请连接BD,OB,OC,OD,且OD交BC于点F,若点F恰好是OD的中点.求证:四边形OBDC是菱形.考点:相似三角形的判定与性质;菱形的判定;圆周角定理.专题:证明题.分析:(1)根据圆周角定理求出∠B=∠D,根据相似三角形的判定推出即可;(2)根据垂径定理求出OD⊥BC,根据线段垂直平分线性质得出OB=BD,OC=CD,根据菱形的判定推出即可.解答:证明:(1)∵∠BAC的角平分线AD,∴∠BAE=∠CAD,∵∠B=∠D,∴△ABE∽△ADC;(2)∵∠BAD=∠CAD,∴弧BD=弧CD,∵OD为半径,∴DO⊥BC,∵F为OD的中点,∴OB=BD,OC=CD,∵OB=OC,∴OB=BD=CD=OC,∴四边形OBDC是菱形.点评:本题考查了相似三角形的判定,圆周角定理,垂径定理,菱形的判定,线段垂直平分线性质的应用,主要考查学生的推理能力.25.(10分)(2014•柳州)如图,正方形ABCD的边长为l,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.(1)求线段PQ的长;(2)问:点P在何处时,△PFD∽△BFP,并说明理由.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.分析:(1)由题意得:PD=PE,∠DPE=90°,又由正方形ABCD的边长为l,易证得△ADP≌△QPE,然后由全等三角形的性质,求得线段PQ的长;(2)易证得△DAP∽△PBF,又由△PFD∽△BFP,根据相似三角形的对应边成比例,可得证得PA=PB,则可求得答案.解答:解:(1)根据题意得:PD=PE,∠DPE=90°,∴∠APD+∠QPE=90°,∵四边形ABCD是正方形,∴∠A=90°,∴∠ADP+∠APD=90°,∴∠ADP=∠QPE,∵EQ⊥AB,∴∠A=∠Q=90°,在△ADP和△QPE中,,∴△ADP≌△QPE(AAS),∴PQ=AD=1;(2)∵△PFD∽△BFP,∴,∵∠ADP=∠EPB,∠CBP=∠A,∴△DAP∽△PBF,∴,∴,∴PA=PB,∴PA=AB=∴当PA=时,△PFD∽△BFP.点评:此题考查了相似三角形的判定与性质、正方形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.26.(12分)(2014•柳州)已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,),直线y=kx+2与y轴相交于点P,与二次函数图象交于不同的两点A(x1,y1),B(x2,y2).(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x取值范围在﹣1<x<3时,请写出其函数值y的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y轴上,必存在定点G,使△ABG的内切圆的圆心落在y轴上,并求△GAB面积的最小值.(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:设一元二次方程ax2+bx+c=0的两根为x1,x2,则:x1+x2=﹣,x1•x2=能灵活运用这种关系,有时可以使解题更为简单.例:不解方程,求方程x2﹣3x=15两根的和与积.解:原方程变为:x2﹣3x﹣15=0∵一元二次方程的根与系数有关系:x1+x2=﹣,x1•x2=∴原方程两根之和=﹣=3,两根之积==﹣15.考点:二次函数综合题;完全平方公式;根与系数的关系;待定系数法求一次函数解析式;二次函数的图象;待定系数法求二次函数解析式;三角形的内切圆与内心.专题:压轴题.分析:(1)设二次函数解析式为y=ax2+1,由于点(﹣1,)在二次函数图象上,把该点的坐标代入y=ax2+1,即可求出a,从而求出二次函数的解析式.(2)先分别求出x=﹣1,x=0,x=3时y的值,然后结合图象就可得到y的取值范围.(3)由于△ABG的内切圆的圆心落在y轴上,因此GP平分∠AGB.过点A作GP 的对称点A′,则点A′必在BG上.由于点A(x1,y1)、B(x2,y2)在直线y=kx+2上,从而可以得到点A的坐标为(x1,kx1+2)、A′的坐标为(﹣x1,kx1+2)、B的坐标为(x2,kx2+2).设直线BG的解析式为y=mx+n,则点G的坐标为(0,n).由于点A′(﹣x1,kx1+2)、B(x2,kx2+2)在直线BG上,可用含有k、x1、x2的代数式表示n.由于A、B是直线y=kx+2与抛物线y=x2+1的交点,由根与系数的关系可得:x1+x2=4k,x1•x2=﹣4.从而求出n=0,即可证出:在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG的内切圆的圆心落在y轴上.由S△ABG=S△APG+S△BPG,可以得到S△ABG=x2﹣x1==4,所以当k=0时,S△ABG最小,最小值为4.解答:(1)解:由于二次函数图象的顶点坐标为(0,1),因此二次函数的解析式可设为y=ax2+1.∵抛物线y=ax2+1过点(﹣1,),∴=a+1.解得:a=.∴二次函数的解析式为:y=x2+1.(2)解:当x=﹣1时,y=,当x=0时,y=1,当x=3时,y=×32+1=,结合图1可得:当﹣1<x<3时,y的取值范围是1≤y<.(3)①证明:∵△ABG的内切圆的圆心落在y轴上,∴GP平分∠AGB.∴直线GP是∠AGB的对称轴.过点A作GP的对称点A′,如图2,则点A′一定在BG上.∵点A的坐标为(x1,y1),∴点A′的坐标为(﹣x1,y1).∵点A(x1,y1)、B(x2,y2)在直线y=kx+2上,∴y1=kx1+2,y2=kx2+2.∴点A′的坐标为(﹣x1,kx1+2)、点B的坐标为(x2,kx2+2).设直线BG的解析式为y=mx+n,则点G的坐标为(0,n).∵点A′(﹣x1,kx1+2)、B(x2,kx2+2)在直线BG上,∴.解得:.∵A(x1,y1),B(x2,y2)是直线y=kx+2与抛物线y=x2+1的交点,∴x1、x2是方程kx+2=x2+1即x2﹣4kx﹣4=0的两个实数根.∴由根与系数的关系可得;x1+x2=4k,x1•x2=﹣4.∴n==﹣2+2=0.∴点G的坐标为(0,0).∴在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG的内切圆的圆心落在y轴上.②解:过点A作AC⊥OP,垂足为C,过点B作BD⊥OP,垂足为D,如图2,∵直线y=kx+2与y轴相交于点P,∴点P的坐标为(0,2).∴PG=2.∴S△ABG=S△APG+S△BPG=PG•AC+PG•BD=PG•(AC+BD)=×2×(﹣x1+x2)=x2﹣x1====4.∴当k=0时,S△ABG最小,最小值为4.∴△GAB面积的最小值为4.点评:本题考查了用待定系数法求二次函数及一次函数的解析式、二次函数的图象、三角形的内切圆、根与系数的关系、完全平方公式等知识,综合性比较强,有一定的难度.。

2014年数学中考试题及答案word版

2014年数学中考试题及答案word版
15.已知y=x-1,则(x-y)2+(y-x)+1的值为__________.
16.在1×2的正方形网格格点上放三枚棋子,按图8所示的位置已放置了两枚棋子,
若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直
角三角形的概率为_______.
17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(+1),第2位同学报(+1),第1位同学报(+1)……这样得到的20个数的积为___________.
C.必有5次正面向上D.不可能有10次正面向上
7.如图3,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,FG是()
A.以点C为圆心,OD为半径的弧
B.以点C为圆心,DM为半径的弧
C.以点E为圆心,OD为半径的弧
D.以点E为圆心,DM为半径的弧
8.用配方法解方程x2+4x+1=0,配方后的方程是()
2014数学中考复习资料
数学试卷
卷Ⅰ(选择题,共30分)
一、选择题(本大题共12个小题;1~6小题,每小题2分,7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列各数中,为负数的是()
A.0B.-2C.1D.
2.计算(ab)3的结果是()A.ab3B.a3bC.a3b3D.3ab
19.(本小题满分8分)
计算:|-5|-(-3)0+6×(-)+(-1)2.
20.(本小题满分8分)
如图10,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD-DC-CB这两条公路围成等腰梯形ABCD,其中CD∥AB,AB︰AD︰DC=10︰5︰2.

2014年广西桂林市中考真题数学

2014年广西桂林市中考真题数学

2014年广西桂林市中考真题数学一、选择题1.(3分)2014的倒数是( )A.B.-C. |2014|D. -2014解析:2014的倒数是.答案:A.2.(3分)如图,已知AB∥CD,∠1=56°,则∠2的度数是( )A. 34°B. 56°C. 65°D. 124°解析:∵AB∥CD,∠1=56°,∴∠2=∠1=56°.答案:B.3.(3分)下列各式中,与2a的同类项的是( )A. 3aB. 2abC. -3a2D. a2b解析:2a中的字母是a,a的指数为1,A、3a中的字母是a,a的指数为1,故A选项正确;B、2ab中字母为a、b,故B选项错误;C、中字母a的指数为2,故C选项错误;D、字母与字母指数都不同,故D选项错误,答案:A.4.(3分)在下列的四个几何体中,同一几何体的主视图与俯视图相同的是( )A.B.C.D.解析:A、圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同,故A选项错误;B、圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同,故B选项错误;C、三棱柱主视图、俯视图分别是长方形,三角形,主视图与俯视图不相同,故C选项错误;D、球主视图、俯视图都是圆,主视图与俯视图相同,故D选项正确.答案:D.5.(3分)在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为( )A. (3,2)B. (2,-3)C. (-2,3)D. (-2,-3)解析:∵点A(2,3),∴点A关于x轴的对称点的坐标为:(2,-3).答案:B.6.(3分)一次函数y=kx+b(k≠0)的图象如图,则下列结论正确的是( )A. k=2B. k=3C. b=2D. b=3解析:∵由函数图象可知函数图象过点(2,0),(0,3),∴,解得.答案:D.7.(3分)下列命题中,是真命题的是( )A. 等腰三角形都相似B. 等边三角形都相似C. 锐角三角形都相似D. 直角三角形都相似解析:A、等腰三角形不一定相似,是假命题,故A选项错误;B、等边三角形都相似,是真命题,故B选项正确;C、锐角三角形不一定都相似,是假命题,故C选项错误;D、直角三角形不一定都相似,是假命题,故D选项错误.答案:B.8.(3分)两圆的半径分别为2和3,圆心距为7,则这两个圆的位置关系为( )A. 外离B. 外切C. 相交D. 内切解析:∵两圆的半径分别为2和3,圆心距为7,又∵7>3+2,∴两圆的位置关系是:外离. 答案:A.9.(3分)下列图形中,即是轴对称图形又是中心对称图形的是( )A.B.C.D.解析:A、此图形不是中心对称图形,是轴对称图形,故A选项错误;B、此图形是中心对称图形,不是轴对称图形,故B选项错误;C、此图形是中心对称图形,也是轴对称图形,故C选项正确;D、此图形不是中心对称图形,是轴对称图形,故D选项错误.答案:C.10.(3分)一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质点完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )A. 摸出的四个球中至少有一个球是白球B. 摸出的四个球中至少有一个球是黑球C. 摸出的四个球中至少有两个球是黑球D. 摸出的四个球中至少有两个球是白球解析:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.答案:B.11.(3分)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是( )A. 70°B. 35°C. 40°D. 50°解析:∵△ABC绕点A逆时针旋转到△AB′C′的位置,∴AC′=AC,∠B′AB=∠C′AC,∴∠AC′C=∠ACC′,∵CC′∥AB,∴∠ACC′=∠CAB=70°,∴∠AC′C=∠ACC′=70°,∴∠CAC′=180°-2×70°=40°,∴∠B′AB=40°,答案:C.12.(3分)如图1,在等腰梯形ABCD中,∠B=60°,P、Q同时从B出发,以每秒1个单位长度分别沿B→A→D→C和B→C→D方向运动至相遇时停止.设运动时间为t(秒),△BPQ的面积为S(平方单位),S与t的函数图象如图2,则下列结论错误的是( )A. 当t=4秒时,S=4B. A D=4C. 当4≤t≤8时,S=2tD. 当t=9秒时,BP平分梯形ABCD的面积解析:由答图2所示,动点运动过程分为三个阶段:(1)OE段,函数图象为抛物线,运动图形如答图1-1所示.此时点P在线段AB上、点Q在线段BC上运动.△BPQ为等边三角形,其边长BP=BQ=t,高h=t,∴S=BQ·h=t·t=t2.由函数图象可知,当t=4秒时,S=4,答案:项A正确.(2)EF段,函数图象为直线,运动图形如答图1-2所示.此时点P在线段AD上、点Q在线段BC上运动.由函数图象可知,此阶段运动时间为4s,∴AD=1×4=4,答案:项B正确.设直线EF的解析式为:S=kt+b,将E(4,4)、F(8,8)代入得:,解得,∴S=t,答案:项C错误.(3)FG段,函数图象为直线,运动图形如答图1-3所示.此时点P、Q均在线段CD上运动.设梯形高为h,则S梯形ABCD=(AD+BC)·h=(4+8)·h=6h;当t=9s时,DP=1,则CP=3,∴S△BCP=S△BCD=××8×h=3h,∴S△BCP=S梯形ABCD,即BP平分梯形ABCD的面积,答案:项D正确.综上所述,错误的结论是C.答案:C.二、填空题13.(3分)分解因式:a2+2a= .解析:a2+2a=a(a+2).答案:a(a+2).14.(3分)震惊世界的MH370失联事件发生后第30天,中国“海巡01”轮在南印度洋海域搜索过程中首次侦听到疑是飞机黑匣子的脉冲信号,探测到的信号所在海域水深4500米左右,其中4500用科学记数法表示为.解析:将4500用科学记数法表示为4.5×103.答案:4.5×103.15.(3分)如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是.解析:∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,BO=DO=BD,∴OA=OC=OB=OD,∴等腰三角形有△OAB,△OAD,△OBC,△OCD,共4个.答案:4.16.(3分)已知点P(1,-4)在反比例函数y=的图象上,则k的值是.解析:∵点P(1,-4)在反比例函数y=的图象上,∴-4=,解得k=-4.答案:-4.17.(3分)已知关于x的一元二次方程x2+(2k+1)x+k2-2=0的两根为x1和x2,且(x1-2)(x1-x2)=0,则k的值是 .解析:∵(x1-2)(x1-x2)=0,∴x1-2=0或x1-x2=0.①如果x1-2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2-2=0,得4+2(2k+1)+k2-2=0,整理,得k2+4k+4=0,解得k=-2;②如果x1-x2=0,那么(x1-x2)2=(x1+x2)2-4x1x2=[-(2k+1)]2-4(k2-2)=4k+9=0,解得k=-.又∵△=(2k+1)2-4(k2-2)≥0.解得:k≥-.所以k的值为-2或-.答案:-2或-.18.(3分)观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则81+82+83+84+…+82014的和的个位数字是.解析:2014÷4=503…2,循环了503次,还有两个个位数字为8,4,所以81+82+83+84+…+82014的和的个位数字是503×0+8+4=12,答案:2.三、解答题19.(6分)计算:+(-1)2014-2sin45°+|-|.解析:原式第一项利用平方根定义化简,第二项利用乘方的意义计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.答案:原式=2+1-2×+=3.20.(6分)解不等式:4x-3>x+6,并把解集在数轴上表示出来.解析:根据不等式的性质解答.答案:移项,得4x-x>6+3,合并同类项,得3x>9,系数化为1,得x>3.在数轴上表示为.21.(8分)在▱ABCD中,对角线AC、BD交于点O,过点O作直线EF分别交线段AD、BC于点E、F.(1)根据题意,画出图形,并标上正确的字母;(2)求证:DE=BF.解析:(1)根据题意直接画图即可;(2)由四边形ABCD是平行四边形,可得AD∥BC,OB=OD,继而可利用ASA,判定△DOE≌△BOF,继而证得DE=BF.答案:(1)如图所示:(2)∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴∠EDO=∠OBF,在△DOE和△BOF中,,∴DOE≌△BOF(ASA),∴DE=BF.22.(8分)初中学生带手机上学,给学生带来了方便,同时也带来了一些负面影响.针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如图的统计图:(1)这次调查的家长总人数为人,表示“无所谓”的家长人数为人;(2)随机抽查一个接受调查的家长,恰好抽到“很赞同”的家长的概率是;(3)求扇形统计图中表示“不赞同”的扇形的圆心角度数.解析:(1)用“赞同”的家长数除以对应的百分比就是调查的家长总人数,用调查的家长总人数乘“无所谓”的家长百分比就是“无所谓”的家长人数.(2)用总人数减去“赞同”“不赞同”“无所谓”的家长人数就是)“很赞同”的家长人数,“很赞同”的家长人数除以总数就是概率.(3)“不赞同”的扇形的圆心角度数=)“不赞同”的扇形的百分比乘360°.答案:(1)这次调查的家长总人数为:50÷25%=200(人)表示“无所谓”的家长人数为:200×20%=40(人)故答案为:200,40.(2)“很赞同”的家长人数为:200-90-50-40=20(人)抽到“很赞同”的家长的概率是20÷200=,故答案为:.(3)“不赞同”的扇形的圆心角度数为:×360°=162°.23.(8分)中国“蛟龙”号深潜器目前最大深潜极限为7062.68米.某天该深潜器在海面下1800米的A点处作业(如图),测得正前方海底沉船C的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B点,此时测得海底沉船C的俯角为60°.(1)沉船C是否在“蛟龙”号深潜极限范围内?并说明理由;(2)由于海流原因,“蛟龙”号需在B点处马上上浮,若平均垂直上浮速度为2000米/时,求“蛟龙”号上浮回到海面的时间.(参考数据:≈1.414,≈1.732)解析:(1)过点C作CD垂直AB延长线于点D,设CD为x米,在Rt△ACD和Rt△BCD中,分别表示出AD和BD的长度,然后根据AB=2000米,求出x的值,求出点C距离海面的距离,判断是否在极限范围内;(2)根据时间=路程÷速度,求出时间即可.答案:(1)过点C作CD垂直AB延长线于点D,设CD=x米,在Rt△ACD中,∵∠DAC=45°,∴AD=x,在Rt△BCD中,∵∠CBD=60°,∴BD=x,∴AB=AD-BD=x-x=2000,解得:x≈4732,∴船C距离海平面为4732+1800=6532米<7062.68米,∴沉船C在“蛟龙”号深潜极限范围内;(2)t=1800÷2000=0.9(小时).答:“蛟龙”号从B处上浮回到海面的时间为0.9小时.24.(8分)电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?解析:(1)设该品牌电动自行车销售量的月均增长率为x.等量关系为:1月份的销售量×(1+增长率)2=3月份的销售量,把相关数值代入求解即可.(2)根据(1)求出增长率后,再计算出二月份的销量,即可得到答案.答案:(1)设该品牌电动自行车销售量的月均增长率为x,根据题意列方程:150(1+x)2=216,解得x1=-220%(不合题意,舍去),x2=20%.答:求该品牌电动自行车销售量的月均增长率20%.(2)二月份的销量是:150×(1+20%)=180(辆).所以该经销商1至3月共盈利:(2800-2300)×(150+180+216)=500×546=273000(元).25.(10分)如图,△ABC为⊙O的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O 的直径,过C作CG⊥AD交AD于E,交AB于F,交⊙O于G.(1)判断直线PA与⊙O的位置关系,并说明理由;(2)求证:AG2=AF·AB;(3)若⊙O的直径为10,AC=2,AB=4,求△AFG的面积.解析:(1)首先连接CD,由AD为⊙O的直径,可得∠ACD=90°,然后由圆周角定理,证得∠B=∠D,由已知∠PAC=∠B,可证得DA⊥PA,继而可证得PA与⊙O相切.(2)首先连接BG,易证得△AFG∽△AGB,然后由相似三角形的对应边成比例,证得结论;(3)首先连接BD,由AG2=AF·AB,可求得AF的长,易证得△AEF∽△ABD,即可求得AE的长,继而可求得EF与EG的长,则可求得答案.答案:(1)PA与⊙O相切.理由:连接CD,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∵∠B=∠D,∠PAC=∠B,∴∠PAC=∠D,∴∠PAC+∠CAD=90°,即DA⊥PA,∵点A在圆上,∴PA与⊙O相切.(2)证明:如图2,连接BG,∵AD为⊙O的直径,CG⊥AD,∴=,∴∠AGF=∠ABG,∵∠GAF=∠BAG,∴△AGF∽△ABG,∴AG:AB=AF:AG,∴AG2=AF·AB;(3)如图3,连接BD,∵AD是直径,∴∠ABD=90°,∵AG2=AF·AB,AG=AC=2,AB=4,∴AF==,∵CG⊥AD,∴∠AEF=∠ABD=90°,∵∠EAF=∠BAD,∴△AEF∽△ABD,∴,即,解得:AE=2,∴EF==1,∵EG==4,∴FG=EG-EF=4-1=3,∴S△AFG=FG·AE=×3×2=3.26.(12分)如图,已知抛物线y=ax2+bx+4与x轴交于A(-2,0)、B两点,与y轴交于C点,其对称轴为直线x=1.(1)直接写出抛物线的解析式:;(2)把线段AC沿x轴向右平移,设平移后A、C的对应点分别为A′、C′,当C′落在抛物线上时,求A′、C′的坐标;(3)除(2)中的点A′、C′外,在x轴和抛物线上是否还分别存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形?若存在,求出E、F的坐标;若不存在,请说明理由.解析:(1)先求得B点的坐标,然后根据待定系数法交点抛物线的解析式;(2)根据平移性质及抛物线的对称性,求出A′、C′的坐标;(3)以A、C、E、F为顶点的四边形为平行四边形,可能存在3种满足条件的情形,需要分类讨论,避免漏解.答案:(1)∵A(-2,0),对称轴为直线x=1.∴B(4,0),把A(-2,0),B(4,0)代入抛物线的表达式为:,解得:,∴抛物线的解析式为:y=-x2+x+4;(2)由抛物线y=-x2+x+4可知C(0,4),∵抛物线的对称轴为直线x=1,根据对称性,∴C′(2,4),∴A′(0,0).(3)存在.设F(x,-x2+x+4).以A、C、E、F为顶点的四边形为平行四边形,①若AC为平行四边形的边,如答图1-1所示,则EF∥AC且EF=AC.过点F1作F1D⊥x轴于点D,则易证Rt△AOC≌Rt△E1DF1,∴DE1=2,DF1=4.∴-x2+x+4=-4,解得:x1=1+,x2=1-.∴F1(1+,-4),F2(1-,-4);∴E1(3+,0),E2(3-,0).②若AC为平行四边形的对角线,如答图1-2所示.∵点E3在x轴上,∴CF3∥x轴,∴点C为点A关于x=1的对称点,∴F3(2,4),CF3=2.∴AE3=2,∴E3(-4,0).综上所述,存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形;点E、F的坐标为:E1(3+,0),F1(1+,-4);E2(3-,0),F2(1-,-4);E3(-4,0),F3(2,4).。

广西北海市2014年中考语文试卷及答案【word版】

广西北海市2014年中考语文试卷及答案【word版】

广西北海市2014年中考语文试卷及答案(考试时间:150分钟满分:120分)第I卷(选择题,共24分)一、积累与运用(每小题2分,共12分)1.下列加点字注音有误的一项是()A.引吭.(háng)憧.憬(chōng)花团锦簇.(cù)B.执着.(zháo)和煦.(xù)唾.手可得(chuí)C.惬.意(qiè)斑斓.(lán)言简意赅.(gāi)D.谛.听(dì)分.外(fèn)彬.彬有礼(bīn)2.下列词语中没有错别字的一项是()A.嘹亮姹紫嫣红斩露头角B.震奋旗开得胜相提并论C.裨益脍炙人口名副其实D.陶冶坦荡如底克勤克俭3.下列加点成语运用不恰当的一项是()A.气势磅礴的音乐喷泉、别具匠心....的“海之贝”主场馆。

构成了大气、和谐、独特的北海园博园景观。

B.“人间四月芳菲尽,山寺桃花始盛开”,每到四月,庐山上的桃花金碧辉煌....,吸引了许多前来观光的游客。

C.拿到高中录取通知书的那一刻,他如释重负....地松了一口气,脸上终于露出了久违二灿烂的笑容。

D.今年初,北海沙蟹汁在中央电视台“舌尖上的中国”播出后,成了北海市民茶余饭后津津..乐道..的话题。

4.下列句子没有语病的一项是()A.我区通过实施“雨露计划”,大力开展扶贫培训活动,群众脱贫致富的意识和能力得到显著提高。

B.中国民生银行考察团到北海考察,有人认为,北海发展的优势在于有没有良好的生态环境。

C.今年,当壮族“三月三”民歌节与清明节不期而遇形成的广西独有的小长假到来,让广西人倍感快乐。

D.截至4月8日,广西高铁累计发生旅客大约280万人次左右,有效地缓解了广西交通的压力。

5.依次填入下列文段画线处的句子,最恰当的一项是()如果没有普罗米修斯走在最前面“盗火种”,?如果没有哥白尼走在最前面为科学“布道”,?如果没有鲁迅走在最前面“呐喊”,?如果没有邓稼先走在最前面升起“蘑菇云”,?走在最前面的人士痛苦的,但也是幸福的,因为他们的魂魄,都凝结为时代最美丽的花朵,给世人带来信心和勇气。

广西北海市2014年中考数学真题试题(含答案)

广西北海市2014年中考数学真题试题(含答案)

2014年北海市中等学校招生暨初中毕业统一考试试卷(考试时间:120分钟,满分120分)准考证号:姓名:座位号:注意事项:1.试卷分为试题卷和答题卡两部分,要求在答题卡上作答,在本试题卷上作答........无效...2.答题前,请认真阅读答题卡上的注意事项............3.考试结束后,将本试题卷和答题卡........一并交回.一、选择题(本大题共12小题,每小题3分,满分36分;在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡...上对应题目的答案号涂黑).-+-的结果是1.计算(2)(3)A.-5 B.-1 C.1 D.52.从上往下看如图所示的几何体,得到的图形是A. B. C. D.3.甲、乙、丙、丁四人参加射击训练,每人各射击20次,他们射击成绩的平均数是9.1环,各自的方差见如下表格:由上可知射击成绩最稳定的是A.甲 B.乙 C.丙 D.丁4.已知两圆的半径分别为1cm和4cm,圆心距为5cm,那么这两个圆的位置关系是A.内切 B.相交 C.外切 D.外离M-在5.在平面直角坐标系中,点(2,1)A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,在△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为A.8 B.9 C.10 D.11BCA7.下列几何图形中,一定是轴对称图形的有等腰梯形平行四边形角圆弧A .1个B .2个C .3个D .4个 8.下列命题中,不正确的是A .n 边形的内角和等于(2)180n -⋅︒B .两组对边分别相等的四边形是矩形C .垂直于弦的直径平分弦所对的两条弧D .直角三角形斜边上的中线等于斜边的一半9.已知一个扇形的半径为12,圆心角为150°,则此扇形的弧长是A .5πB .6πC .8πD .10π10.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时,设原来火车的平均速度为x 千米/时,则下列方程正确的是A .2102101.8 1.5x x += B .2102101.8 1.5x x -=C .2102101.5 1.8x x +=D .2102101.5 1.8x x-=11.如图,△ABC 中,∠CAB =65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于A .30°B .40°C .50°D .60°DB12.函数21y ax =+与(0)ay a x=≠在同一平面直角坐标系中的图象可能是A .B .C .D . 二、填空题(本大题共6小题,每小题3分,满分18分,请将答案填在答题卡...上) 13.已知∠A =43°,则∠A 的补角等于 度. 14.因式分解:222x y xy -= .15.若一元二次方程260x x m -+=有两个相等的实数根,则m 的值为 . 16.某校男子足球队的年龄分布如下面的条形统计图所示,则这些足球队员的年龄的中位数是 岁.17.下列式子按一定规律排列:357,,,,,2468a a a a则第2014个式子是 .18.如图,反比例函数(0)ky x x=>的图象交Rt△AOB 的斜边OA 于点D ,交直角边AB 于点C ,点B 在x 轴上.若△OAC 的面积为5,:1:2AD OD =,则k 的值为 .x三、解答题(本大题共8小题,满分66分.请在答题卡上答题,解答应写出必要的文字说明、演算步骤或推理过程)19.(本题满分6分)计算101()21)3---+20.(本题满分6分)解方程组33411x y x y +=⎧⎨-=⎩21.(本题满分8分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同.现有两辆汽车经过这个十字路口,(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果; (2)求这两辆汽车都向左转的概率. 22.(本题满分8分)已知△ABC 中,∠A =25°,∠B =40°. (1)求作:,使得⊙O 经过A 、C 两点,且圆心O 落在AB 边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)求证:BC 是(1)中所作⊙O 的切线.AB23.(本题满分8分)下图是某超市地下停车场入口的设计图,请根据图中数据计算CE 的长度.(保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)24.(本题满分他计划用4万元的资金一次性购进这两种品牌手表共100块.设该经销商购进A 品牌手表x 块,这两种品牌手表全部销售完后获得的利润为y 元. (1)试写出y 与x 之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案? (3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元? 25.(本题满分10分)如图(1),E 是正方形ABCD 的边BC 上的一个点(E 与B 、C 两点不重合),过点E 作射线EP ⊥AE ,在射线EP 上截取线段EF ,使得EF =AE ,过点F 作FG ⊥BC 交BC 的延长线于点G . (1)求证:FG =BE ; (2)连接CF ,如图(2),求证:CF 平分∠DCG ; (3)当34BE BC ,求sin∠CFE 的值.(1) (2)26.(本题满分12分)如图(1),抛物线214y x x c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(2,0)-.(1)求此抛物线的解析式;(2)①若点D 是第一象限内抛物线上的一个动点,过点D 作DE ⊥x 轴于E ,连接CD ,以OE 为直径作⊙M ,如图(2),试求当CD 与⊙M 相切时D 点的坐标;②点F 是x 轴上的动点,在抛物线上是否存在一点G ,使以A 、C 、G 、F 四点为顶点的四边形是平行四边形?若存在,求存点G 的坐标;若不存在,请说明理由.xx2014年广西北海市初中毕业升学数学试题答案一、选择题1. A ;2.C ;3.A ;4. C ;5.B ;6.C ;7.D ;8.B ;9.D ;10.D ;11.C ;12. B 。

广西北海市中考数学真题试题(含答案)

广西北海市中考数学真题试题(含答案)

2014年北海市中等学校招生暨初中毕业统一考试试卷(考试时间:120分钟,满分120分)准考证号:姓名:座位号:注意事项:1.试卷分为试题卷和答题卡两部分,要求在答题卡上作答,在本试题卷上作答........无效...2.答题前,请认真阅读答题卡上的注意事项............3.考试结束后,将本试题卷和答题卡........一并交回.一、选择题(本大题共12小题,每小题3分,满分36分;在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡...上对应题目的答案号涂黑).-+-的结果是1.计算(2)(3)A.-5 B.-1 C.1 D.52.从上往下看如图所示的几何体,得到的图形是A. B. C. D.3.甲、乙、丙、丁四人参加射击训练,每人各射击20次,他们射击成绩的平均数是9.1环,各自的方差见如下表格:由上可知射击成绩最稳定的是A.甲 B.乙 C.丙 D.丁4.已知两圆的半径分别为1cm和4cm,圆心距为5cm,那么这两个圆的位置关系是A.内切 B.相交 C.外切 D.外离M-在5.在平面直角坐标系中,点(2,1)A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,在△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为A.8 B.9 C.10 D.11BCA7.下列几何图形中,一定是轴对称图形的有等腰梯形平行四边形角圆弧A .1个B .2个C .3个D .4个 8.下列命题中,不正确的是A .n 边形的内角和等于(2)180n -⋅︒B .两组对边分别相等的四边形是矩形C .垂直于弦的直径平分弦所对的两条弧D .直角三角形斜边上的中线等于斜边的一半9.已知一个扇形的半径为12,圆心角为150°,则此扇形的弧长是A .5πB .6πC .8πD .10π10.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时,设原来火车的平均速度为x 千米/时,则下列方程正确的是A .2102101.8 1.5x x += B .2102101.8 1.5x x -=C .2102101.5 1.8x x +=D .2102101.5 1.8x x-=11.如图,△ABC 中,∠CAB =65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于A .30°B .40°C .50°D .60°DB12.函数21y ax =+与(0)ay a x=≠在同一平面直角坐标系中的图象可能是A .B .C .D . 二、填空题(本大题共6小题,每小题3分,满分18分,请将答案填在答题卡...上) 13.已知∠A =43°,则∠A 的补角等于 度. 14.因式分解:222x y xy -= .15.若一元二次方程260x x m -+=有两个相等的实数根,则m 的值为 . 16.某校男子足球队的年龄分布如下面的条形统计图所示,则这些足球队员的年龄的中位数17.下列式子按一定规律排列:357,,,,,2468a a a a 则第2014个式子是 .18.如图,反比例函数(0)ky x x=>的图象交Rt△AOB 的斜边OA 于点D ,交直角边AB 于点C ,点B 在x 轴上.若△OAC 的面积为5,:1:2AD OD =,则k 的值为 .x三、解答题(本大题共8小题,满分66分.请在答题卡上答题,解答应写出必要的文字说明、演算步骤或推理过程)19.(本题满分6分)计算101()21)3---+20.(本题满分6分)解方程组33411x y x y +=⎧⎨-=⎩21.(本题满分8分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同.现有两辆汽车经过这个十字路口,(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果; (2)求这两辆汽车都向左转的概率. 22.(本题满分8分)已知△ABC 中,∠A =25°,∠B =40°. (1)求作:,使得⊙O 经过A 、C 两点,且圆心O 落在AB 边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)求证:BC 是(1)中所作⊙O 的切线.AB23.(本题满分8分)下图是某超市地下停车场入口的设计图,请根据图中数据计算CE 的长度.(保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)24.(本题满分他计划用4万元的资金一次性购进这两种品牌手表共100块.设该经销商购进A 品牌手表x 块,这两种品牌手表全部销售完后获得的利润为y 元. (1)试写出y 与x 之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案? (3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元? 25.(本题满分10分)如图(1),E 是正方形ABCD 的边BC 上的一个点(E 与B 、C 两点不重合),过点E 作射线EP ⊥AE ,在射线EP 上截取线段EF ,使得EF =AE ,过点F 作FG ⊥BC 交BC 的延长线于点G . (1)求证:FG =BE ; (2)连接CF ,如图(2),求证:CF 平分∠DCG ; (3)当34BE BC ,求sin∠CFE 的值.(1) (2)26.(本题满分12分)如图(1),抛物线214y x x c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(2,0)-.(1)求此抛物线的解析式;(2)①若点D 是第一象限内抛物线上的一个动点,过点D 作DE ⊥x 轴于E ,连接CD ,以OE 为直径作⊙M ,如图(2),试求当CD 与⊙M 相切时D 点的坐标;②点F 是x 轴上的动点,在抛物线上是否存在一点G ,使以A 、C 、G 、F 四点为顶点的四边形是平行四边形?若存在,求存点G 的坐标;若不存在,请说明理由.xx2014年广西北海市初中毕业升学数学试题答案一、选择题1. A ;2.C ;3.A ;4. C ;5.B ;6.C ;7.D ;8.B ;9.D ;10.D ;11.C ;12. B 。

2014年6月广西学业水平考试数学试题(word版有答案)

2014年6月广西学业水平考试数学试题(word版有答案)

2014年数学学业水平考试试题一、选择题(3×20=60)1. 已知集合A={1,2},B={3},则A ∪B=A 。

{1,2,3}B 。

{1,2}C 。

{3}D 。

ø2. 已知i 是虚数单位,复数121234z i z i =+=+,,那么12z z +=A 。

55i +B 。

46i +C . 10iD 。

10 3。

一个圆柱如右图放置,则它的俯视图是D 。

4。

使角的顶点与直角顶点坐标系的原点重合,始边与x 轴的非负半轴重合,则120是A . 第一象限角B 。

第二象限角C . 第三象限角D . 5. 运行如右程序框图,则输出的结果是 A . 7 B . 6 C . 5 D . 46. 等差数列1,4,7,…的第4项是A . 8B 。

9C 。

10D 。

117。

函数y=cosx ,x ∈R 的最小正周期是A . 4πB 。

2πC 。

πD 。

2π 8。

某中学共有1000名学生,其中高一年级400人,该校为了了解本校学生近视情况及其形成原因,用分层抽样的方法从该校学生中抽出一个容量为100的样本进行调查,则应从高一年级抽取的人数为A 。

10B 。

12C 。

20D 。

40 9。

命题“若x>2,则x>1”的逆命题是A 。

若x 〉1,则x 〉2B . 若x≤2,则x≤1C 。

若x≤1,则x≤2D 。

若x 〈2,则x 〈110. 已知直线12213l y x l ax =-=+:,,若1l ∥2l ,则实数a = A . -3 B 。

-2 C .2 D 。

3 11。

函数()f x =A .{x |x<1}B 。

{x|x≤1}C 。

{x|x>1}D .{x |x≥1}12. 22cos 301-的值是A 。

12- B 。

12C 。

D . 13.已知向量(26)(3)a b a b λ=-=⊥,,,,且,则实数λ的值为A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年北海市中等学校招生暨初中毕业统一考试试卷数学(考试时间:120分钟,满分120分)准考证号:姓名:座位号:注意事项:1.试卷分为试题卷和答题卡两部分,要求在答题卡上作答,在本试题卷上作答........无效...2.答题前,请认真阅读答题卡上的注意事项............3.考试结束后,将本试题卷和答题卡........一并交回.一、选择题(本大题共12小题,每小题3分,满分36分;在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡...上对应题目的答案号涂黑).-+-的结果是1.计算(2)(3)A.-5 B.-1 C.1 D.52.从上往下看如图所示的几何体,得到的图形是A.B.C.D.3.甲、乙、丙、丁四人参加射击训练,每人各射击20次,他们射击成绩的平均数是9.1环,各自的方差见如下表格:由上可知射击成绩最稳定的是A.甲B.乙C.丙D.丁4.已知两圆的半径分别为1cm和4cm,圆心距为5cm,那么这两个圆的位置关系是A.内切B.相交C.外切D.外离M-在5.在平面直角坐标系中,点(2,1)A.第一象限B.第二象限C.第三象限D.第四象限6.如图,在△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为A.8 B.9 C.10 D.11BCA7.下列几何图形中,一定是轴对称图形的有等腰梯形平行四边形角圆弧A .1个B .2个C .3个D .4个 8.下列命题中,不正确的是A .n 边形的内角和等于(2)180n -⋅︒B .两组对边分别相等的四边形是矩形C .垂直于弦的直径平分弦所对的两条弧D .直角三角形斜边上的中线等于斜边的一半9.已知一个扇形的半径为12,圆心角为150°,则此扇形的弧长是A .5πB .6πC .8πD .10π10.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时,设原来火车的平均速度为x 千米/时,则下列方程正确的是A .2102101.8 1.5x x += B .2102101.8 1.5x x -= C .2102101.5 1.8x x += D .2102101.5 1.8x x-= 11.如图,△ABC 中,∠CAB =65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于A .30°B .40°C .50°D .60°DB12.函数21y ax =+与(0)ay a x=≠在同一平面直角坐标系中的图象可能是A .B .C .D . 二、填空题(本大题共6小题,每小题3分,满分18分,请将答案填在答题卡...上) 13.已知∠A =43°,则∠A 的补角等于 度. 14.因式分解:222x y xy -= .15.若一元二次方程260x x m -+=有两个相等的实数根,则m 的值为 .16.某校男子足球队的年龄分布如下面的条形统计图所示,则这些足球队员的年龄的中位数是岁.17.下列式子按一定规律排列:357,,,,,2468a a a a 则第2014个式子是 . 18.如图,反比例函数(0)ky x x=>的图象交Rt △AOB 的斜边OA 于点D ,交直角边AB 于点C ,点B 在x 轴上.若△OAC 的面积为5,:1:2AD OD =,则k 的值为 .x三、解答题(本大题共8小题,满分66分.请在答题卡上答题,解答应写出必要的文字说明、演算步骤或推理过程)19.(本题满分6分)计算101()21)3---+20.(本题满分6分)解方程组33 411 x yx y+=⎧⎨-=⎩21.(本题满分8分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同.现有两辆汽车经过这个十字路口,(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果;(2)求这两辆汽车都向左转的概率.22.(本题满分8分)已知△ABC中,∠A=25°,∠B=40°.(1)求作:,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)求证:BC是(1)中所作⊙O的切线.A B23.(本题满分8分)下图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)24.(本题满分他计划用4万元的资金一次性购进这两种品牌手表共100块.设该经销商购进A 品牌手表x 块,这两种品牌手表全部销售完后获得的利润为y 元. (1)试写出y 与x 之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案? (3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元? 25.(本题满分10分)如图(1),E 是正方形ABCD 的边BC 上的一个点(E 与B 、C 两点不重合),过点E 作射线EP ⊥AE ,在射线EP 上截取线段EF ,使得EF =AE ,过点F 作FG ⊥BC 交BC 的延长线于点G . (1)求证:FG =BE ; (2)连接CF ,如图(2),求证:CF 平分∠DCG ; (3)当34BE BC ,求sin∠CFE 的值.(1) (2)26.(本题满分12分)如图(1),抛物线214y x x c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(2,0)-.(1)求此抛物线的解析式;(2)①若点D 是第一象限内抛物线上的一个动点,过点D 作DE ⊥x 轴于E ,连接CD ,以OE 为直径作⊙M ,如图(2),试求当CD 与⊙M 相切时D 点的坐标;②点F 是x 轴上的动点,在抛物线上是否存在一点G ,使以A 、C 、G 、F 四点为顶点的四边形是平行四边形?若存在,求存点G 的坐标;若不存在,请说明理由.xx2014年广西北海市初中毕业升学数学试题答案一、选择题1. A ;2.C ;3.A ;4. C ;5.B ;6.C ;7.D ;8.B ;9.D ;10.D ;11.C ;12. B 。

二、填空题13、137°;14、)2(y x xy -;15、9;16、10;17、40284027a ;18、8三、解答题19. 解:原式=3-4+2-1=020. 解:①+②得7x=14, ∴x=2,把x=2代入①得6+y=3, ∴y= -3∴原方程组的解是:⎩⎨⎧-==32y x两辆右转(右转,直行(2)由上表知:两辆汽车都向左转的概率是:9。

22. 解:(1)作图如右图1: (2)如图2,连OC ,∵OA=OC ,∠A=25° ∴∠AOC=50°,又∵∠C=40, ∴∠AOC+∠C=90° ∴∠OCB=90° ∴OC ⊥BC∴BC 是⊙O 的切线。

23. 解:由已知有:∠BAE=22°,∠ABC=90°,∠CED=∠AEC=90° ∴∠BCE=158°,∴∠DCE=22°,又∵tan ∠BAE=ABBD,∴BD=A B ²tan ∠BAE,又∵cos ∠BAE=CDCE, ∴CE= CD ²cos ∠BAE = (BD -BC) ²cos ∠BAE=( AB ²tan ∠BAE -BC) ²cos ∠BAE =(10×0.4040-0.5) ×0.9272≈3.28(m) 24.解:(1)y = 140x+6000,(x ≤50)(2)令y ≥12600,则140x+6000≥12600,∴x ≥47.1,又∵x ≤50 ∴经销商有以下三种进货方案:② (3)∵140>0,∴y 随x 的增大而增大,∴x=50时y 取得最大值, 又∵140×50+6000=13000∴选择方案③进货时,经销商可获利最大,最大利润是13000元。

25. 解:(1)证明:∵EP ⊥AE ,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°,∴∠GEF=∠BA E ,又∵FG ⊥BC ,∴∠ABE=∠EGF=90°,在△ABE 与△EGF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠EF AE GEF BAE EGFABE ,∴△ABE ≌△EGF ,∴FG=BE(2)由(1)知:BC=AB=EG ,∴BC -EC=EG -EC ,∴BE=CG ,又∵FG=BE ,∴FG=CG ,又∵∠CGF=90°,∴∠FCG=45°=21∠DCG ,∴CF 平分∠DCG 。

(3)如图,作CH ⊥EF 于H ,则△EHC ∽△EGF,∴GF HC =EFEC∵BC BE =43,令BE=3a ,则EC=3a ,EG=4a ,FG=CG=3a , ∴EF=5a ,CF=32a ,∴a HC 3=aa 5,HC=53a ,∴sin ∠CFE=CF HC =10226. 解:(1)由已知有:-410)2()2(2=+-+-c ,∴c=3,抛物线的解析式是:3412++-=x x y (2)①令D (x ,y ),(x >0,y >0), 则E (x ,0),M (2x,0),由(1)知C (0,3),连接MC 、MD ∵DE 、CD 与⊙O 相切,∴∠CMD=90°,∴△COM ∽△MED ,∴MECO =ED OM ,∴23x =y x2,又∵3412++-=x x y ,∴x=)51(23±,又∵x >0,∴x=)51(23+,∴)53(83+=y ,D 点的坐标是:()51(23+,)53(83+)。

②假设存在满足条件的点G (a ,b ).若构成的四边形是□ACGF ,(下图1)则G 与C 关于直线x=2对称,∴G 点的坐标是:(4,3); 若构成的四边形是□ACFG ,(下图2)则由平行四边形的性质有b=-3, 又∵-41332-=++a a ,∴a=2±27,此时G 点的坐标是:(2±27,-3)图1 图2。

相关文档
最新文档