高二数列复习题1
数列综合训练题1
数列综合训练题班级 姓名1、已知{}n a ,{}n b 都是等比数列,那么( )A .{}{}n n n n b a b a ∙+,都一定是等比数列。
B .{}n n b a +一定是等比数列,但{}n n b a ∙不一定是等比数列C .{}n n b a +不一定是等比数列,但{}n n b a ∙一定是等比数列D .{}n n b a +,{}n n b a ∙都不一定是等比数列2、数列0,0,0,…,0,…( )A .是等差数列但不是等比数列B .是等比数列但不是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列3、某种细菌在培养过程中,每20min 分裂一次(一个分裂成两个),经过3h , 1个这种细菌可以繁殖成( )A .511个B .512个C .1 023个D .1 024个 4、等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项的和为( )A .130B .170C .210D .2605、在2001年到2004年期间,甲每年5月1日到银行存入a 元的一年定期储蓄,若年利率q 保持不变,且每年到期的本息均自动转为新一年定期,到2005年5月1日,甲将所有存款的本息全部取回,则取回的金额是( )A .5)1(q a +B .4)1(q a +C .[]q q q a )1()1(5+-+D .[]q q q a )1()1(4+-+ 6、等比数列{}n a 中,48,1253==a a ,那么=7a7、已知数列{}n a 满足条件:*+∈+==N n a a a a n n n (22,111),它的第四项是 。
8、数列{}n a 中,3,511+==+n n a a a ,那么这个数列的通项公式是9、等差数列{}n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 。
10、等差数列{}n a 中,=≠∈==+q p q p a q p N q p p a q a 则且),,,(,,11、已知数列{}n a 的前n 项和为1,(1)()4n n n S S a n N *=-∈ (1)求;,21a a(2)求证数列{}n a 是等比数列12、等差数列{}n a 中,前n 项和为n S(1)若n S S a 则,,1311131==为何值时,S n 最大(2)若01>a 且0,01312<>S S ,则n 为何值时,n S 最大。
(完整版)高二数学数列专题练习题(含答案),推荐文档
高中数学《数列》专题练习1.与的关系:,已知求,应分时;n S n a 11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩n S n a 1=n 1a =1S 时,=两步,最后考虑是否满足后面的.2≥n n a 1--n n S S 1a n a 2.等差等比数列等差数列等比数列定义()1n n a a d--=2n ≥*1()n na q n N a +=∈通项,dn a a n )1(1-+=(),()n m a a n m d n m =+->mn m n n n q a a q a a --==,11中项如果成等差数列,那么叫做与,,a A b A a 的等差中项.。
b 2a b A +=等差中项的设法:da a d a +-,,如果成等比数列,那么叫做与的等,,a G b G a b 比中项.abG =2等比中项的设法:,,aq a aq前项n 和,)(21n n a a nS +=d n n na S n 2)1(1-+=时;时1=q 1,na S n =1≠q qqa a q q a S n n n --=--=11)1(,11*(,,,,)m n p q a a a a m n p q N m n p q +=+∈+=+若,则2m p q =+qp ma a a +=2若,则q p n m +=+qp nm a a a a =2*2,,(,,,)m p q m p q a a a p q n m N =+=⋅∈若则有性质、、为等差数列n S 2n n S S -32n n S S -、、为等比数列n S 2n n S S -32n n S S -函数看数列12221()()22n n a dn a d An B d d s n a n An Bn=+-=+=+-=+111(1)11nn n n n n a a q Aq q a as q A Aq q q q===-=-≠--判定方法(1)定义法:证明为常数;)(*1N n a a n n ∈-+(2)等差中项:证明,*11(2N n a a a n n n ∈+=+-)2≥n (1)定义法:证明为一个常数)(*1N n a a n n ∈+(2)等比中项:证明21n n a a -=*1(,2)n a n N n +⋅∈≥(3)通项公式:均是不为0常数)(,nn a cq c q =3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法(型);n n n c a a =+1(4)利用公式;(5)构造法(型);(6)倒数法等11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩b ka a n n +=+14.数列求和(1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。
高二数列书本练习题及答案
高二数列书本练习题及答案数列是高中数学中的一个重要概念,它在数学的各个分支中都有应用。
由于数列的性质和特点较为复杂,掌握数列的相关知识对于高二学生来说非常重要。
为了帮助同学们更好地理解和掌握数列的概念和运算方法,本文整理了一些高二数列书本练习题,并提供了相应的答案供参考。
1. 题目:已知数列 {an} 的通项公式为 an = 3n + 2,计算 a1 + a2 + ... + a20 的值。
解答:根据数列的通项公式 an = 3n + 2,可得到数列的前 20 项如下:a1 = 3(1) + 2 = 5a2 = 3(2) + 2 = 8...a20 = 3(20) + 2 = 62将所有的数列项相加可得:a1 + a2 + ... + a20 = 5 + 8 + ... + 62由于这是一个等差数列,可以利用等差数列求和公式来计算:等差数列前 n 项和 Sn = (a1 + an) * n / 2代入具体的数值,计算得:Sn = (5 + 62) * 20 / 2 = 67 * 10 = 670所以 a1 + a2 + ... + a20 的值为 670。
2. 题目:已知数列 {bn} 为等差数列,且 b1 = 7,b4 = 19,求公差 d 及第 n 项。
解答:根据等差数列的性质,可得:b4 - b1 = (b1 + 3d) - b1 = 3d = 19 - 7 = 12解方程 3d = 12,可得:d = 4由已知条件 b1 = 7,可以求出第 n 项的通项公式为:bn = b1 + (n - 1)d代入具体的数值,得到第 n 项为:bn = 7 + (n - 1) * 4 = 7 + 4n - 4 = 4n + 3所以公差 d = 4,第 n 项为 4n + 3。
3. 题目:已知数列 {cn} 为等比数列,且 c1 = 2,c5 = 32,求公比 q 及第 n 项。
解答:根据等比数列的性质,可得:c5 / c1 = q^4 = 32 / 2 = 16解方程 q^4 = 16,可得:q = 2由已知条件 c1 = 2,可以求出第 n 项的通项公式为:cn = c1 * q^(n-1)代入具体的数值,得到第 n 项为:cn = 2 * 2^(n-1)所以公比 q = 2,第 n 项为 2^(n-1)。
高考数学第二轮复习数列典型例题1
1 已知数列{}n a 的前n 项和n S 满足:(1)1n n a S a a =--(a 为常数,且0,1a a ≠≠).(Ⅰ)求{}n a 的通项公式; (Ⅱ)设21=+n n nS b a ,若数列{}n b 为等比数列,求a 的值;(Ⅲ)在满足条件(Ⅱ)的情形下,设11111n nn c a a +=++-,数列{}n c 的前n 项和为T n求证:123n T n >-.解:(Ⅰ)11(1),1-=- a S a a ∴1,=a a当2n ≥时,11,11n n n n n a a a S S a a a a --=-=---1n n a a a -=,即{}n a 是等比数列. ∴1n nn a a aa -=⋅=;(Ⅱ)由(Ⅰ)知,2(1)(31)211(1)nnn n naa a a a ab aa a ⋅----=+=-,若{}n b 为等比数列,则有2213,b b b =而21232323223,,,a a a b b b aa+++===故22232322()3a a a aa+++=⋅,解得13a =,再将13a =代入得3n n b =成立, 所以13a =.(III )证明:由(Ⅱ)知1()3nn a =,所以11111331131311()1()33nn n nn nn c +++=+=++-+-111311311111131313131nn nn nn ++++--+=+=-+++-+-1112()3131+=--+-nn , 由111111,313313nnn n ++<>+-得111111,313133nn nn ++-<-+-所以1113112()2()313133+++=-->---n nn nn c , 从而122231111111[2()][2()][2()]333333n n nn T c c c +=+++>--+--+--22311111112[()()()]333333nn n +=--+-++-11112()2333n n n +=-->-.即123n T n >-.2 数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列。
专题:数列试题1[学生版]
专题 数列第1讲 数列的基本概念1.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( )A .-165B .-33C .-30D .-212.已知数列{a n }的前n 项和S n 满足S n =n 2+2n -1,则( ) A .a n =2n +1(n ∈N *) B .a n =2n -1(n ∈N *)C .a n =⎩⎪⎨⎪⎧ 2,(n =1),2n +1,(n ≥2,n ∈N *) D .a n =⎩⎪⎨⎪⎧2,(n =1),2n -1,(n ≥2,n ∈N *) 3.在数列{a n }中,已知a 1=1,且当n ≥2时,a 1a 2…a n =n 2,则a 3+a 5等于( ) A.73 B.6116 C.3115 D.1144.(2010年安徽)设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .645.(2011年江西)已知数列(a n )的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10=( )A .1B .9C .10D .556.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 009=________,a 2014=________.7.我们可以利用数列{a n }的递推公式a n =2,n n n a n ⎧⎪⎨⎪⎩,为奇数时,为偶数时,(n ∈N *)求出这个数列各项的值,使得这个数列中的每一项都是奇数.则a 24+a 25=________;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第________项.8.(2011年浙江)若数列⎩⎨⎧⎭⎬⎫n (n +4)(23)n 中的最大项是第k 项,则k =__________.9.(2011年广东广州)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1),求{a n }的通项公式.第2讲等差数列1.(2011年重庆)在等差数列{a n}中,a2=2,a3=4,则a10=()A.12 B.14 C.16 D.182.(2011届广东汕头)在等差数列{a n}中,a2+a12=32,则2a3+a15的值是()A.24 B.48 C.96 D.无法确定3.(2011年广东湛江测试)等差数列{a n}前17项和S17=51,则a5-a7+a9-a11+a13=()A.3 B.6 C.17 D.514.已知S n为等差数列{a n}的前n项和,若a1+a7+a13是一确定的常数,下列各式:①a21;②a7;③S13;④S14;⑤S8-S5.其结果为确定常数的是()A.②③⑤ B.①②⑤ C.②③④ D.③④⑤5.(2010年福建)设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n 取最小值时,n等于()A.6 B.7 C.8 D.96.(2011年全国)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k=()A.8 B.7 C.6 D.57.等差数列{a n},{b n}的前n项和分别为S n,T n.若S nT n=7n+14n+27(n∈N*),则a7b7=________.8.(2011年辽宁)S n为等差数列{a n}的前n项和,S2=S6,a4=1,则a5=______.9.(2011年福建)已知等差数列{a n}中,a1=1,a3=-3.(1)求数列{a n}的通项公式;(2)若数列{a n}的前k项和S k=-35,求k的值.10.已知S n为等差数列{a n}的前n项和,S n=12n-n2.求数列的通项公式。
高二数列单元测试题及答案
高二数列单元测试题及答案一、选择题(每题3分,共15分)1. 已知数列{an}是等差数列,且a3=5,a5=9,则a7的值为:A. 13B. 11B. 9D. 72. 等比数列{bn}的首项b1=2,公比q=3,求该数列的第5项b5:A. 486B. 243C. 81D. 1623. 已知数列{cn}的前n项和S(n)=n^2,求第5项c5:A. 14B. 15C. 16D. 174. 若数列{dn}满足d1=1,且对于任意的n≥2,有dn=2dn-1+1,该数列为:A. 等差数列B. 等比数列C. 非等差也非等比数列D. 几何数列5. 对于数列{en},若e1=2,且en+1=en+n,求e5的值:A. 12B. 14C. 16D. 18二、填空题(每题4分,共20分)6. 已知数列{fn}是等差数列,且f1=3,f3=9,求公差d。
__________7. 已知数列{gn}是等比数列,且g1=8,g3=64,求公比q。
__________8. 若数列{hn}的前n项和S(n)=n^2+n,求第3项h3。
__________9. 已知数列{in}满足i1=1,且对于任意的n≥2,有in=in-1+n,求i3的值。
__________10. 若数列{jn}的前n项和S(n)=n^3,求第2项j2。
__________三、解答题(每题10分,共30分)11. 已知数列{kn}是等差数列,首项k1=1,公差d=2,求数列的前10项和S(10)。
12. 已知数列{ln}是等比数列,首项l1=1,公比q=4,求数列的前5项和S(5)。
13. 已知数列{mn}的前n项和S(n)=2n^2-n,求数列的第n项mn。
四、综合题(每题25分,共25分)14. 某工厂生产的产品数量按照等差数列增长,若第1年生产100件,每年增长50件。
求第5年的产量,并求前5年的总产量。
答案:一、选择题1. A2. C3. B4. A5. B二、填空题6. d=27. q=48. h3=109. i3=510. j2=9三、解答题11. S(10)=10×1+(10×9)/2×2=11012. S(5)=1+4+16+64+256=34113. mn=2n^2-n-1四、综合题14. 第5年产量为100+4×50=250件,前5年总产量为100+150+200+250+300=1000件。
(必考题)高中数学选修二第一单元《数列》测试题(含答案解析)(1)
一、选择题1.对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:仿此,若3m 的“分裂数”中有一个是2017,则m 的值为( )3331373152,39,4,5171119⎧⎧⎪⎧⎪⎪⎨⎨⎨⎩⎪⎪⎩⎪⎩A .44B .45C .46D .472.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 3.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-4.数列{}n a 的通项公式为12n n a +=,其前n 项和为n T ,若不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,则实数λ的取值范围为( )A .3λB .4λC .23λ D .34λ5.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=(n N +∈,d 为常数),称{}n a 为“等差比数列”。
已知在“等差比数列”{}n a 中,1231,3a a a ===则20152013a a =( ) A .2420151⨯- B .2420141⨯- C .2420131⨯-D .242013⨯6.数列{}n a 是等差数列,51260a a =>,数列{}n b 满足123n n n n b a a a +++=,*n N ∈,设n S 为{}n b 的前n 项和,则当n S 取得最大值时,n 的值等于( )A .9B .10C .11D .127.数列{}n a 是等比数列,若21a =,518a =,则12231n n a a a a a a ++++的取值范围是( ) A .8,3⎛⎫-∞ ⎪⎝⎭B .2,23⎛⎤ ⎥⎝⎦C .81,3⎡⎫⎪⎢⎣⎭D .82,3⎡⎫⎪⎢⎣⎭8.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n ﹣1,则a 12+a 22+a 32+…+a n 2等于( )A .n 2(31)-B .()n1912- C .n 91- D .()n1314- 9.已知正项数列{a n }的前n 项和为S n ,a 1>1,且6S n =a n 2+3a n +2.若对于任意实数a ∈[﹣2,2].不等式()2*1211+<+-∈+n a t at n N n 恒成立,则实数t 的取值范围为( ) A .(﹣∞,﹣2]∪[2,+∞) B .(﹣∞,﹣2]∪[1,+∞) C .(﹣∞,﹣1]∪[2,+∞) D .[﹣2,2]10.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 11.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞12.已知数列{}n a 满足:11a =,()*12nn n a a n N a +=∈+.若()*+11()1n n b n n N a λ⎛⎫=-+∈ ⎪⎝⎭,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围为( ) A .2λ>B .3λ>C .2λ<D .3λ<二、填空题13.数列{}n a 的前n 项和是11,1,0,31n n n n n S a a S a a +=≠=+,若2020k a =,则k =______.14.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解,当(),,p q p q p N q N **⨯≤∈∈是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如(12)431f =-=,则数列(){}3nf 的前2020项和为______.15.已知{}{},n n a b 均为等差数列,其前n 项和分别为,n n S T ,且233n n S n T n -=+,则55a b =________.16.如图所示,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点,,,E F G H ,作第2个正方形EFGH ,然后再取正方形EFGH 各边的中点,,,I J K L ,作第3个正方形IJKL ,依此方法一直继续下去.如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于___2cm ?17.设n S 是数列{}n a 的前n 项和,若点(),n n S a 在直线21y x =+上,则5a =__________. 18.设公差不为零的等差数列{}n a 的前n 项和为n S ,12a =.若存在常数λ,使得2n n a a λ=()*N n ∈恒成立,则910nn S ⎛⎫ ⎪⎝⎭取最大值时,n =________. 19.下表给出一个“直角三角形数阵”:满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为(,)i j a (i ,j ∈N *),则(20,20)a =_____. 20.若数列{}n a 满足11a =,且()*1111n nn a a N +∈-=,则 ①数列{}na e是等比数列;②满足不等式:1112n n a a +++≥ ③若函数()f x 在R 上单调递减,则数列(){}n f a 是单调递减数列; ④存在数列{}n a 中的连续三项,能组成三角形的三条边; ⑤满足等式:122311n n n a a a a a a n +++⋅⋅⋅+=+. 正确的序号是________三、解答题21.直线:2l x =与x 轴交于点M ,过动点P 作直线l 的垂线交l 于点N ,若OM 、OP 、PN 成等比数列,其中O 为坐标原点.(1)求动点P 的轨迹方程. (2)求OP PN -的最大值.22.数列{}n a 满足()1121nn n a a n ++-=-,n *∈N 且1a a =(a 为常数).(1)(i )当n 为偶数时,求4n n a a +-的值; (ii )求{}n a 的通顶公式;(2)设n S 是数列{}n a 的前n 项和,求证:48411114n S S S ++⋅⋅⋅+< 23.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(1)求数列{}n a ,{}n b 的通项公式; (2)记n c =*n N ∈,证明:12n c c c +++<.24.已知数列{}n a 是等差数列,数列{}n b 是等比数列,且满足112a b ==,35730a a a ++=,2316b b a =.(1)求数列{}n a 与和{}n b 的通项公式;(2)设数列{}n a ,{}n b 的前n 项和分别为n S ,n T .①是否存在正整数k ,使得132k k k T T b +=++成立?若存在,求出k 的值,若不存在,请说明理由;②解关于n 的不等式n n S b ≥.25.已知数列{a n }的前n 项和S n =3n +1-t ,求证:数列{a n }是等比数列的充要条件为t =3. 26.已知n S 是数列{}n a 的前n 项和,131n n S S +=+,11a =. (1)证明:数列{}n a 是等比数列,并求n a 的通项公式; (2)若()11n n n b na -=-⋅,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,再由2017是从3开始的第1008个奇数,可得选项. 【详解】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,212017n += ,得1008n =, 所以2017是从3开始的第1008个奇数,当45m =时,从32到345,用去从3开始的连续奇数共474410342⨯=个, 当44m =时,从32到344,用去从3开始的连续奇数共46439892⨯=个, 所以45m =, 故选:B . 【点睛】方法点睛:对于新定义的数列问题,关键在于找出相应的规律,再运用等差数列和等比数列的通项公式和求和公式,得以解决.2.D解析:D 【分析】由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}2n a 也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;当2n ≥时,()()111222nn n n n n a S S a a ---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =, 所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-. 故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法; (5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.3.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n n a a a ++=-,可得其周期性,进而得出结论. 【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-, 21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯,4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.4.A解析:A 【分析】将不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,转化为271n n n λ-++对任意*n N ∈恒成立,由2min71n n n λ⎛⎫-+ ⎪+⎝⎭求解.【详解】 依题意得,()24122412n n nT +-==--,∴不等式()2log 4(1)73n n T n n λ+-++可化为22log 2(1)73n n n n λ+-++,即27(1)n n n λ-++.又*n N ∈,∴271n n n λ-++对任意*n N ∈恒成立.只需满足2min71n n n λ⎛⎫-+ ⎪+⎝⎭即可.设1n t +=,则*t N ∈,2t ,∴27931n n t n tλ-+=+-+.∵993233t t t t+-⋅-=,当且仅当3t =,即2n =时等号成立, ∴2min731n n n ⎛⎫-+= ⎪+⎝⎭.∴3λ,故选:A. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 5.C解析:C 【分析】 利用定义,可得1n n a a +⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列,从而121n na n a +=-,利用201520152014201320142013a a a a a a =⋅,可得结论. 【详解】121a a ==,33a =,32212a a a a ∴-=, 1n n a a +⎧⎫∴⎨⎬⎩⎭是以1为首项,2为公差的等差数列, 121n na n a +∴=-, ()()20152015201420132014201322014122013140274025a a a a a a ∴=⋅=⨯-⨯-=⨯ 22(40261)(40261)40261420131=+-=-=⨯-.故选:C. 【点睛】数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.6.D解析:D 【分析】由51260a a =>,得到首项和公差的关系以及公差的范围,然后求得通项公式,判断,n n a b 的正负,再利用通项与前n 项和关系求解.【详解】设数列{}n a 的公差为d , 因为51260a a =>,所以()1104116a a d d +=>+,即1625a d =-, 因为512a a >, 所以0d <,所以167(1)5n a n d n d a ⎛⎫=+-=-⎪⎝⎭, 当113n ≤≤时,0n a >,当14n ≥时,0n a <, 所以12101314...0...b b b b b >>>>>>>, 又因为()111213141215131405db b a a a a a a +=+=>, 所以1210S S >,故n S 中12S 最大 , 故选:D 【点睛】本题主要考查等差数列的通项公式以及数列前n 项和的最值问题,还考查逻辑推理的能力,属于中档题.7.D解析:D 【分析】由题意计算出{}n a 的公比q ,由等比数列的性质可得{}1n n a a +也为等比数列,由等比数列前n 项和计算即可得结果. 【详解】因为数列{}n a 是等比数列,21a =,518a =,所以35218a q a ==,即12q =,所以12a =,由等比数列的性质知{}1n n a a +是以2为首项,以14为公比的等比数列. 所以12122311214881813343142n n n n a a a a a a a a +⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭≤==-< ⎪⎝⎭=+++-, 故选:D. 【点睛】本题主要考查了等比数列的性质以及等比数列前n 项和的计算,属于中档题.8.B解析:B 【分析】由a 1+a 2+a 3+…+a n =3n ﹣1,可求得a n ,从而可知2n a ,利用等比数列的求和公式即可求得答案. 【详解】∵a 1+a 2+a 3+…+a n =3n ﹣1,①,∴a 1+a 2+a 3+…+a n +1=3n +1﹣1,② ②﹣①得:a n +1=3n +1﹣3n =2×3n ,∴a n =2×3n ﹣1()2n ≥. 当n =1时,a 1=31﹣1=2,符合上式,∴a n =2×3n ﹣1. ∴221211249,4,9n n nna a a a -+=⨯∴==,∴{}2n a 是以4为首项,9为公比的等比数列, ∴a 12+a 22+a 32+…+a n 2=()()419191921n n⨯-=--. 故选B . 【点睛】本题考查数列通项公式的确定及等比数列的判断与求和公式的综合应用,属于中档题.9.A解析:A 【分析】根据a n 与S n 的关系,由6S n =a n 2+3a n +2,得6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减整理得a n ﹣a n﹣1=3,由等差数列的定义求得a n 的通项公式,然后将不等式()2*1211+<+-∈+n a t at n N n 恒成立,转化为2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立求解. 【详解】由6S n =a n 2+3a n +2,当n =1时,6a 1=a 12+3a 1+2.解得a 1=2, 当n ≥2时,6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减得6a n =a n 2+3a n ﹣(a n ﹣12+3a n ﹣1), 整理得(a n +a n ﹣1)(a n ﹣a n ﹣1﹣3)=0,由a n >0,所以a n +a n ﹣1>0,所以a n ﹣a n ﹣1=3, 所以数列{a n }是以2为首项,3为公差的等差数列, 所以a n +1=2+3(n +1﹣1)=3n +2,所以11n a n ++=321++n n =3﹣11n +<3,因此原不等式转化为2t 2+at ﹣1≥3,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 即为:2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 则f (2)≥0且f (﹣2)≥0,即有222020t t t t ⎧+-⎨--⎩,解得t ≥2或t ≤﹣2,则实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞) 故选:A . 【点睛】本题主要考查数列与不等式的,a n 与S n 的关系,等差数列的定义,方程的根的分布问题,还考查了转化化归思想和运算求解的能力,属于中档题.10.B解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】 解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.11.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<,()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A. 【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.12.C解析:C 【分析】 数列{a n }满足()*12nn n a a n N a +=∈+,两边取倒数可得1121n na a +=+,从而得到11=2n n a +,于是b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n ,由于数列{b n }是单调递增数列,可得b n +1>b n ,解出即可. 【详解】∵数列{a n }满足:a 1=1,()*12nn n a a n N a +=∈+, ∴1121n n a a +=+,化为111121n n a a +⎛⎫+=+ ⎪⎝⎭, ∴数列11n a ⎧⎫+⎨⎬⎩⎭是首项为11a +1=2,公比为2的等比数列,∴11=2n na +, ∴b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n ,∵数列{b n }是单调递增数列,∴b n +1>b n ,∴n ≥2时,(n ﹣λ)•2n >(n ﹣1﹣λ)•2n ﹣1,化为λ<n +1, ∵数列{n +1}为单调递增数列,∴λ<3.当n =1时,b 2=(1﹣λ)×2>﹣λ=b 1,解得λ<2. 综上可得:实数λ的取值范围为λ<2. 故选:C . 【点睛】本题考查由数列的递推关系式求数列的通项公式、考查由数列的单调性求解参数问题,考查等比数列的通项公式,考查推理能力与计算能力,属于中档题.二、填空题13.1347【分析】当时则两式相减得到得到代入数据计算得到答案【详解】解:当时当时由则两式相减得到因为故数列的奇数项为以为首项3为公差的等差数列;偶数项为以为首项3为公差的等差数列;所以当为奇数时成立;解析:1347 【分析】当2n ≥时131n n n S a a +=+则1131n n n S a a --=+,两式相减得到113n n a a +--=,得到31,2231,2n n n a n n ⎧-⎪⎪=⎨⎪-⎪⎩为奇数为偶数,代入数据计算得到答案.【详解】解:当1n =时,2112312S a a a =+∴=当2n ≥时,由131n n n S a a +=+则1131n n n S a a --=+,两式相减得到()113n n n n a a a a +-=- 因为0n a ≠113n n a a +-∴-=,故数列的奇数项为以1为首项,3为公差的等差数列;偶数项为以2为首项,3为公差的等差数列;所以31,2231,2n n n a n n ⎧-⎪⎪=⎨⎪-⎪⎩为奇数为偶数 当k 为奇数时,202013473122k a k k ==-=∴,成立; 当k 为偶数时,404220203312k a k k ∴==-=,不成立; 故答案为:1347 【点睛】本题考查了数列的通项公式,灵活运用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩是解题的关键.14.【分析】先通过归纳得再利用等比数列求和得解【详解】由题意得归纳得则故答案为:【点睛】关键点睛:解答本题的关键在通过特殊值归纳出归纳出这个结论之后后面利用等比数列求和就迎刃而解了 解析:101031-【分析】 先通过归纳得()()2111233323,3330k kk k k k k f f ---=-=⨯=-=,再利用等比数列求和得解.【详解】由题意得()()232(3)312,3330,333236f f f =-==-==-=⨯=,()4223330f =-=,归纳得()()2111233323,3330k kk k kkkf f ---=-=⨯=-=,则()()()()()()232020352019(3)333(3)333f f f f f f f f ++++=++++012100923232323=⨯+⨯+⨯++⨯()10101210091010132333323113-=⨯++++=⨯=--.故答案为:101031- 【点睛】关键点睛:解答本题的关键在通过特殊值归纳出()()2111233323,3330k k k k k k k f f ---=-=⨯=-=,归纳出这个结论之后,后面利用等比数列求和就迎刃而解了.15.【分析】根据等差数列的前n 项和公式有结合已知条件令即可得进而求【详解】∵均为等差数列令公差分别为则有∴令则有∴故答案为:【点睛】思路点睛:利用等差数列的前n 项和公式结合等差数列通项公式的特点合理假设解析:54【分析】根据等差数列的前n 项和公式有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,结合已知条件,令122,1d d ==即可得11,a b ,进而求55a b .【详解】∵{}{},n n a b 均为等差数列,令公差分别为12,d d ,则有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+, ∴11121222323n n S nd a d n T nd b d n +--==+-+,令122,1d d ==,则有111,22a b =-=, ∴5115124544a a db b d +==+, 故答案为:54【点睛】思路点睛:利用等差数列的前n 项和公式,结合等差数列通项公式的特点合理假设即可得到数列的基本量11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,则有11121222n n S nd a d T nd b d +-=+-.结合已知233n n S n T n -=+,假设122,1d d ==,即可求11,a b . 16.50【分析】根据题意正方形边长成等比数列正方形的面积等于边长的平方可得代入求出的通项公式然后根据等比数列的前n 项和的公式得到的和即可求解【详解】记第1个正方形的面积为第2个正方形的面积为第n 个正方形解析:50 【分析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得2n n S a =,代入求出n S 的通项公式,然后根据等比数列的前n 项和的公式得到123n s S S S +++⋯+的和即可求解. 【详解】记第1个正方形的面积为1S ,第2个正方形的面积为2S ,⋯,第n 个正方形的面积为n S ,设第n 个正方形的边长为n a ,则第nn , 所以第n +1个正方形的边长为12n n a a +=,12n n a a +∴=, 即数列{n a }是首项为15a =,公比为2的等比数列,15n n a -∴=⋅, 数列{n S }是首项为125S =,公比为12的等比数列, 123125(1)1250(1)1212nn nS S S S -+++⋯+==⋅-∴-,所以如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于50, 故答案为:5017.【分析】由得两式相减得时然后利用等比数列的定义求解【详解】由题意知当时两式相减得即当时所以数列是首项为公比为的等比数列则故答案为:-1【点睛】本题主要考查数列的递推关系还考查了运算求解能力属于中档题解析:1-【分析】由21n n a S =+,得1121n n a S --=+,两式相减得1n n a a -=-,1n =时,11a =-,然后利用等比数列的定义求解. 【详解】由题意知21n n a S =+, 当2n ≥时,1121n n a S --=+, 两式相减,得12n n n a a a --=, 即1n n a a -=-, 当1n =时,11a =-,所以数列{}n a 是首项为1-,公比为1-的等比数列, 则()()45111a =-⨯-=-. 故答案为:-1 【点睛】本题主要考查数列的递推关系,还考查了运算求解能力,属于中档题.18.或19【分析】利用等差数列的通项公式求出再利用等差数列的前项和公式求出记利用作商法判断出数列的单调性即可求解【详解】设等差数列的公差为由题意当时当时所以解得或(舍去)所以记所以当时此时当时时此时所以解析:18或19 【分析】利用等差数列的通项公式求出λ、d ,再利用等差数列的前n 项和公式求出n S ,记910nn n T S ⎛⎫= ⎪⎝⎭,利用作商法判断出数列的单调性即可求解.【详解】设等差数列{}n a 的公差为d ,由题意, 当1n =时,21a a λ=, 当2n =时,42a a λ=,所以()22232d d d λλ+=⎧⎨+=+⎩,解得22d λ=⎧⎨=⎩ 或10d λ=⎧⎨=⎩(舍去),所以()2112n n n dS na n n -=+=+, 记()2991010nnn n n T S n =⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+,所以()()()12129119210110910n n nnn n T T n n n ++⎛⎫⎡⎤+++ ⎪⎣⎦⎛⎫⎝⎭==+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭, 当118n ≤≤,n *∈N 时,1921110n n T T n +⎛⎫=+≥ ⎪⎝⎭,此时1n n T T +≥, 当10n >时,n *∈N 时,1921110n n T T n +⎛⎫=+< ⎪⎝⎭,此时1n n T T +<, 所以910nn S ⎛⎫ ⎪⎝⎭取最大值时,18n =或19 故答案为:18或19 【点睛】本题考查了差数列的通项公式、等差数列的前n 项和公式、数列的单调性求数列中的最大项,属于中档题.19.【分析】先计算第一列形成的数列再计算第20行形成的数列得到答案【详解】设第一列形成的数列为则是首项为公差为的等差数列故设第20行形成的数列为是首项为公比为的等比数列故即故答案为:【点睛】本题考查了等 解析:1952 【分析】先计算第一列形成的数列205b =,再计算第20行形成的数列201952c =,得到答案. 【详解】设第一列形成的数列为n b ,则{}n b 是首项为14,公差为14的等差数列,故4n n b =,205b =.设第20行形成的数列为n c ,{}n c 是首项为5,公比为12的等比数列,故201952c =. 即(20,20)201952a c ==. 故答案为:1952. 【点睛】本题考查了等差数列和等比数列的综合应用,意在考查学生对于数列公式方法的灵活运用.20.②④⑤【分析】利用所给递推公式求出的通项公式由证明数列不是等比数列根据的单调性求出范围证明②正确根据复合函数的增减性判断规则说明③错误举出例子证明④正确利用裂项相消法求和证明⑤正确【详解】且数列是以解析:②④⑤ 【分析】利用所给递推公式求出{}n a 的通项公式,由3212b b b b ≠证明数列{}n a e 不是等比数列,根据1111(1)1n n a n a n +++=+++的单调性求出范围证明②正确,根据复合函数的增减性判断规则说明③错误,举出例子证明④正确,利用裂项相消法求和证明⑤正确. 【详解】()*1111n n a a n N +-=∈且111a ,∴数列1{}n a 是以1为首项,1为公差的等差数列,则()*1nn n N a =∈, ()*1n a n N n∴=∈. ①设1n n na b e e ==,则1132123,,b e b e b e ===,因为11326212,b b e e b b --==,所以3212b b b b ≠,因此数列{}na e 不是等比数列;②1111(1)1n n a n a n +++=+++,因为1(1)1y n n =+++在[1,)+∞上单调递增,所以115(1)2122n n ++≥+=+,②正确; ③因为若数列{}n a 是单调递减的数列,所以若函数()f x 在R 上单调递减,则数列(){}nf a 是单调递增数列;④234111,,234a a a ===即可构成三角形的三边,所以④正确; ⑤因为1111(1)1n n n n a n a n +==-++,所以1223111112111231n n n a a a a a a n n n +++⋅⋅⋅+=--=++-+++,⑤正确. 故答案为:②④⑤ 【点睛】本题考查由递推公式求数列的通项公式,用定义证明等比数列,复合函数的单调性,裂项相消法求和,属于中档题.三、解答题21.(1)22(1)5x y ++=;(2)4-. 【分析】(1)本题首先可设(,)P x y ,然后根据OM 、OP 、PN 成等比数列得出2222x y x +=⋅-,最后分为2x >、2x <两种情况进行讨论,即可得出结果;(2)本题首先可根据动点P的轨迹方程得出1x ⎡⎤∈⎣⎦,然后将OP PN -转2x +,最后令()2f x x =+,根据导函数性质即可求出最值.【详解】(1)设(,)P x y ,则(2,)N y ,(2,0)M , 因为OM 、OP 、PN 成等比数列,所以2OP P O N M =⋅,即2222x y x +=⋅-,2x ≠, 当2x >时,2224x y x +=-,即22(1)3x y -+=-(舍去);当2x <时,2242x y x +=-,即22(1)5x y ++=,故动点P 的轨迹方程为22(1)5x y ++=.(2)因为动点P 的轨迹方程为22(1)5x y ++=,所以1x ⎡⎤∈⎣⎦,则(2)2OP PN x x -=-=+,令()2f x x =+,则()1f x '=因为当1x ⎡⎤∈⎣⎦时()0f x '>,所以)max ()121134f x f===+=,故OP PN -的最大值为4. 【点睛】关键点点睛:本题考查动点的轨迹方程的求法以及利用导函数求最值,考查等比中项的性质的应用,利用导函数求最值时,可先通过导函数求出函数单调性,然后根据函数单调性求出最值,考查计算能力,体现了综合性,是中档题.22.(1)(i )8;(ii )()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩;(2)证明见解析. 【分析】(1)(i )推导出当n 为正偶数时,24n n a a n ++=,可得出+4248n n a a n ++=+,两式作差可得出结论成立;(ii )推导出当n 为正奇数时,4n n a a +=,求出2a 、3a 、4a ,对任意的k *∈N ,分43n k =-,42n k =-,41n k =-,4n k =四种情况讨论,结合等差数列的通项公式以及周期数列的定义可求得数列{}n a 的通项公式;(2)计算出4342414n n n n a a a a ---+++,可求得2482n S n n =+,利用放缩法得出4111142121n S n n ⎛⎫<- ⎪-+⎝⎭,结合裂项相消法可证得所证不等式成立. 【详解】(1)(i )当n 为正偶数时,121n n a a n ++=-,2121n n a a n ++-=+, 两式相加得24n n a a n ++=,① 可得+4248n n a a n ++=+,② ②-①得48n n a a +-=;(ii )当n 为正奇数时,121n n a a n +-=-,2121n n a a n +++=+, 两式作差得22n n a a ++=,所以,422n n a a +++=, 上述两个等式作差得4n n a a +=, 又211a a -=,则2111a a a =+=+,323a a +=,则3232a a a =-=-, 435a a -=,则4357a a a =+=-.对任意的k *∈N ,当43n k =-,则1n a a a ==; 当42n k =-时,()()()422811818722723n k a a a k a k a k a n a n -==+-=++-=+-=++-=+-;当41n k =-时,32n a a a ==-;当4n k =时,()()44817818121n k a a a k a k k a n a ==+-=-+-=--=--.综上所述,()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩; (2)()434241424232241166n n n n a a a a a n a a n a n ---+++=+-+-+-+⨯--=-,()2410166822n n n S n n +-∴==+,()()2241111114212124241n S n n n n n ⎛⎫∴=<=- ⎪-++-⎝⎭, 所以,48411111111111111433521214214n S S S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+<-+-++-=-< ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 【点睛】方法点睛:证明数列不等式常用放缩法,常用的放缩公式如下: (1)()()21111211n n n n n n<=-≥--; (2)()()()211111211211n n n n n n ⎛⎫<=-≥ ⎪-+-+⎝⎭; (3)()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-; (4()22n =<=≥. 23.(1)22n a n =-,(1)n b n n =+;(2)证明见解析.【分析】(1)根据等差数列的通项公式求出公差d 可得n a ,根据等差数列的求和公式可得n S ,根据n n S b +,1n n S b ++,2n n S b ++成等比数列可得(1)n b n n =+;(2)将n c 放大后再裂项,利用裂项求和方法求解可证不等式成立.【详解】(1)设等差数列{}n a 的公差为d ,由题意得31413124333a a d a a d S a d =+=⎧⎨=+==+⎩,解得102a d =⎧⎨=⎩, 从而22n a n =-,2(1)(1)2n n n S n n -==-. 因为n n S b +,1n n S b ++,2n n S b ++成等比数列所以()()()212n n n n n n S b S b S b +++=++,从而()211222n n n n n n n n S S b S S b S S +++++=++, 所以2221221(1)(1)(1)(2)2(1)(1)2(1)(1)(2)2(1)2n n n nn n n S S Sn n n n n n n n b n nS S S n n nn n n ++++-+--+++====++--+++-+. (2)证明:因为n c ===<=, 所以122(10211)2n c c c n n n +++<-+-++--=【点睛】关键点点睛:将n c 放大后再裂项,利用裂项求和方法求解是解题关键.24.(1)2n a n =,2n n b =;(2)①存在,5k =;②{}1,2,3,4.【分析】(1)由等差数列以及等比数列的性质以及通项公式得出答案;(2)①11k k k b T T ++-=结合数列{}n b 的通项公式得出k 的值;②由()1n S n n =+将不等式化为()210n n n -+≤,令()()21nf n n n =-+并得出其单调性,再由单调性确定解集. 【详解】(1)因为等差数列{}n a 中,3575330a a a a ++==,所以510a =. 设等差数列{}n a 的公差是d ,所以51251a a d -==- 所以()112n a a n d n =+-=.设等比数列{}n b 的公比是q ,因为2316b b a =所以2331432b q q ==,所以2q ,所以112n n n b b q -==. (2)①若存在正整数k ,使得132k k k T T b +=++成立,则132k k b b +=+ 所以12232k k +=+,即232k =,解得5k =.存在正整数5k =满足条件.②()()112n n n a a S n n +==+ 所以()12n n n +≥,即()210n n n -+≤令()()21nf n n n =-+, 因为()()()()()()11121221221n n n f n f n n n n n n +-⎡⎤+-=-++-++=-+⎣⎦ 所以当4n ≥时,(){}f n 单调递增.又()()210f f -<,()()320f f -<,()()430f f -=所以()()()()()1234f f f f f n >>=<<<因为()10f =,()44f =-,()52f =,所以1n =,2,3,4时,()0f n ≤,5n ≥时,()0f n >,所以不等式n n S b ≥,的解集为{}1,2,3,4.【点睛】解决本题的关键是构造新函数,通过作出确定函数的单调性,从而求得()0f n ≤的解集. 25.证明见解析.【分析】由定义法分别结合n a 和n S 的关系分别证明充分性和必要性成立即可.【详解】当n =1时,S 1=32-t =9-t ,当n ≥2时,由S n =3n +1-t 得S n -1=3n -t ,两式相减得a n =3n +1-3n =2·3n (n ≥2), (1)充分性已知t =3,此时S 1=32-t =9-3=6,令n =1,得a 1=2·31=6=S 1,所以a n =2·3n (n ∈N *) 所以13n na a +=,所以数列{a n }是等比数列. (2)必要性因为数列{a n }是等比数列,所以a 1=2·31=6, 又因为S 1=9-t ,所以9-t =6,所以t =3,综上所述:数列{a n }是等比数列的充要条件为t =3.【点睛】关键点睛:本题考查等比数列的判断和证明,解题的关键是利用n a 和n S 的关系得出()232n n a n =⋅≥,再根据充分必要的定义证明.26.(1)证明见解析,13-=n n a ;(2)()11316164n n n T ⎛⎫=-+⋅- ⎪⎝⎭. 【分析】(1)首先根据131n n S S +=+,131n n S S -=+两式相减得()132n n a a n +=≥,即可得到n a 的通项公式.(2)首先求出()13n n b n -=⋅-,再利用错位相减法求前n 项和n T 即可. 【详解】(1)证明:由131n n S S +=+,当2n ≥时,131n n S S -=+,两式相减得()132n n a a n +=≥,当1n =时,2131S S =+即12131a a a +=+,∴23a =,∴213a a =,∴1n ≥时都有13n n a a +=,∴数列{}n a 是首项为1,公比为3的等比数列,∴13-=n n a .(2)解:()()1113n n n n b na n --=-⋅=⋅-, ∴()()()()()122112333133n n n T n n --=+⋅-+⋅-+⋅⋅⋅+-⋅-+⋅-, ()()()()()12131323133n n n T n n --=⋅-+⋅-+⋅⋅⋅+-⋅-+⋅-, ∴()()()()111413333n n n T n -=+-+-+⋅⋅⋅+--⋅-,∴()()()131********nn n n T n n --⎛⎫=-⋅-=-+⋅- ⎪+⎝⎭∴()11316164n n n T ⎛⎫=-+⋅- ⎪⎝⎭. 【点睛】方法点睛:本题主要考查数列的求和,常见的数列求和方法如下:公式法:直接利用等差、等比数列的求和公式计算即可;分组求和法:把需要求和的数列分成熟悉的数列,再求和即可;裂项求和法:通过把数列的通项公式拆成两项之差,再求和即可;错位相减法:当数列的通项公式由一个等差数列和一个等比数列的乘积构成时,可使用此方法求和.。
1.高二数列复习(学生)
第二章 数列7、数列:按照一定顺序排列着的一列数. 8、数列的项:数列中的每一个数. 9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列.11、递增数列:从第2项起,每一项都不小于它的前一项的数列. 12、递减数列:从第2项起,每一项都不大于它的前一项的数列. 13、常数列:各项相等的数列.14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 15、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.16、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.18、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项. 19、若等差数列{}n a 的首项是1a ,公差是d ,则()11naa n d =+-.20、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a n d-=+;⑤n m a a d n m -=-.21、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =+.22、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+. 23、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21nn n S n a a +=+,且S S nd -=偶奇,1n n S aS a +=奇偶.②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶). 24、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.25、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.26、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=. 27、通项公式的变形:①n mnm a a q-=;②()11n n a a q--=;③11n na qa -=;④n m n ma q a -=. 28、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =⋅.29、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q qq =⎧⎪=-⎨-=≠⎪--⎩.30、等比数列的前n 项和的性质:①若项数为()*2n n ∈N ,则S q S =偶奇.②n n mn m S S q S +=+⋅.③n S ,2n n S S -,32n n S S -成等比数列.数列求和的常用方法1.公式法直接利用等差数列、等比数列的前n 项和公式求和 (1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d ;(2)等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的. 3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的. 4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 5.分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减. 6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.一种思路一般数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和. 两个提醒在利用裂项相消法求和时应注意:(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或有时前面剩下两项,后面也剩下两项. 三个公式(1)1n (n +1)=1n -1n +1; (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;数学5(必修)第二章:数列 (1)一、选择题1.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于( ) A .11 B .12 C .13 D .142.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( ) A .66B .99C .144D .2973.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( ) A .81 B .120 C .168 D .192 4.12+与12-,两数的等比中项是( ) A .1 B .1- C .1± D .215.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第( )项 A .2 B .4 C .6 D .86.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( )A .513B .512C .510D .8225二、填空题1.等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________。
高二数列练习题及解析
高二数列练习题及解析一、选择题1. 已知数列{an}的通项公式为an = 3n + 2,求该数列的前5项的和。
A. 20B. 22C. 24D. 26解析:将n从1到5代入通项公式an = 3n + 2,得到前5项分别为5,8,11,14,17。
将这五个数相加,得到答案为C. 24。
2. 数列{bn}的通项公式为bn = 2n^2 - n,求该数列的第10项。
A. 174B. 178C. 182D. 186解析:将n代入通项公式bn = 2n^2 - n,计算得到第10项为180。
答案为C. 182。
3. 如果等差数列{cn}的首项为3,公差为4,求该数列的第15项。
A. 56B. 57C. 58D. 59解析:根据等差数列的性质,第n项可以表示为cn = 3 + (n-1)4。
将n=15代入计算得到第15项为59。
答案为D. 59。
4. 已知等比数列{dn}的首项为2,公比为3,求该数列的前5项的和。
A. 242B. 245C. 248D. 251解析:根据等比数列的性质,前n项和可以表示为Sn = a(1 - r^n) / (1 - r),其中a为首项,r为公比。
将a=2,r=3,n=5代入计算得到前5项和为242。
答案为A. 242。
二、填空题1. 若数列{en}满足通项公式en = 2^n + n,则第3项为________。
解析:将n=3代入通项公式en = 2^n + n,得到第3项为11。
2. 若数列{fn}满足通项公式fn = n^2 - n,则前4项的和为________。
解析:将n从1到4代入通项公式fn = n^2 - n,得到前4项分别为0,2,6,12。
将这四个数相加,得到答案为20。
三、解答题1. 数列{gn}的首项为1,公差为2。
设Sn为该数列的前n项和。
当Sn = 45时,求n的值。
解析:根据等差数列前n项和的公式Sn = (2a + (n-1)d)n / 2,其中a 为首项,d为公差。
人教版高二数列练习题及答案
人教版高二数列练习题及答案以下是人教版高二数列练习题的内容及答案:第一题:已知数列{an}的公差为d,且a1=3,a4=10。
求证:an=3n+1.解答:由已知可知,a1 = 3,a2 = a1 + d,a3 = a1 + 2d,a4 = a1 + 3d。
将已知值代入,得:3 = 3 + d,10 = 3 + 3d,解方程组,可得d=2,将d代入an=3n+1,可得an = 3n + 1。
第二题:已知数列{an}的前三项为1,4,9,且an+1 = 2an - 1,求a10的值。
解答:根据已知,an+1 = 2an - 1,代入前三项,得:a2 = 2a1 - 1 = 2 - 1 = 1,a3 = 2a2 - 1 = 2 - 1 = 1,a4 = 2a3 - 1 = 2 - 1 = 1,可以看出,此数列为常数数列,即an = 1。
因此,a10 = 1。
第三题:已知等差数列{an}的公差为2,a5 + a7 = 22,求a1和an 表达式。
解答:由已知可得,a5 + a7 = 22。
将an = a1 + (n-1)d代入,得:a1 + 4d + a1 + 6d = 22,2a1 + 10d = 22,由等差数列求和公式Sn = n(a1 + an)/2,可知n=5时,Sn=a5=5(a1+an)/2。
代入a5的值,得:5(a1 + a1 + 4d)/2 = 22,10a1 + 20d = 44,整理得5a1 + 10d = 22,联立方程组,可解得a1=1,d=2。
综上,a1 = 1,an = a1 + (n-1)d = 1 + 2(n-1) = 2n - 1。
第四题:已知等差数列{an}的前两项为3,7,且a1 + a7 = 63,求an表达式。
解答:由已知可得a1 + a7 = 63。
将an = a1 + (n-1)d代入,得:a1 + a1 + 6d = 63,2a1 + 6d = 63,由等差数列求和公式Sn = n(a1 + an)/2,可知n=7时,Sn=a7=7(a1+an)/2。
新高二数列测试题及答案
新高二数列测试题及答案一、选择题(每题4分,共20分)1. 下列数列中,不是等差数列的是()。
A. 1, 3, 5, 7, 9B. 2, 4, 6, 8, 10C. 1, 2, 3, 4, 5D. 1, 3, 6, 10, 15答案:D2. 等比数列{a_n}中,若a_1=2,公比q=3,则a_3等于()。
A. 6B. 18C. 54D. 162答案:B3. 已知数列{a_n}的前n项和S_n满足S_n=n^2+1,则a_3等于()。
A. 4B. 7C. 10D. 13答案:B4. 已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,则a_4等于()。
A. 9B. 11C. 15D. 17答案:C5. 等差数列{a_n}中,若a_5=10,a_8=17,则a_1+a_9等于()。
A. 13B. 27C. 34D. 41答案:B二、填空题(每题5分,共20分)6. 等差数列{a_n}中,若a_3+a_7=16,则a_5=()。
答案:87. 等比数列{a_n}中,若a_1=3,公比q=2,则a_4=()。
答案:248. 已知数列{a_n}满足a_1=2,a_{n+1}=a_n+n,则a_4=()。
答案:109. 已知数列{a_n}满足a_1=1,a_{n+1}=a_n+n(n+1),则a_3=()。
答案:10三、解答题(每题15分,共40分)10. 已知等差数列{a_n}的前n项和为S_n,且S_5=50,S_10=200,求a_6。
解:由题意可知,S_5=5a_1+10d=50,S_10=10a_1+45d=200。
解得a_1=2,d=4。
因此,a_6=a_1+5d=2+5×4=22。
答案:2211. 已知等比数列{a_n}的前n项和为S_n,且S_3=7,S_6=28,求a_4+a_5+a_6。
解:由题意可知,S_3=a_1(1-q^3)/(1-q)=7,S_6=a_1(1-q^6)/(1-q)=28。
高二选修二数学数列练习题
高二选修二数学数列练习题【高二选修二数学数列练习题】1. 数列的定义和基本性质在数学中,数列是由一系列按照一定规律排列的数组成的序列。
数列常用于实际问题的建模和解决。
数列具有以下基本性质:1.1 数列的定义数列即是由一系列数字按照一定顺序排列形成的序列。
通常表示为an,其中n表示第n个数,an表示第n个数的数值。
1.2 数列的有限和无限性数列可以是有限的,也可以是无限的。
有限数列包含有一定个数的数字,而无限数列则没有尽头,它可以一直延伸下去。
1.3 数列的公式表示数列可以通过公式来表示,该公式可以描述数列中每一项与它前面的项之间的关系。
公式通常包含一个或多个参数,可以通过给定参数的值来确定数列中每一项的值。
2. 等差数列和等比数列数列中最常见的两种特殊类型是等差数列和等比数列。
2.1 等差数列等差数列是指数列中的相邻两项之间的差值都相等的数列。
即对于数列an,若an+1 - an = d(常数),则该数列是等差数列。
等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
2.2 等比数列等比数列是指数列中的相邻两项之间的比值都相等的数列。
即对于数列an,若an+1 / an = r(常数),则该数列是等比数列。
等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比。
3. 数列的应用数列在实际问题中有着广泛的应用,它们可以用于建模和解决各种类型的问题。
3.1 财务规划数列可以用于财务规划中,比如计算每个月的储蓄金额、投资回报率或者贷款还款计划等。
3.2 物理学和工程学数列可以用于物理学和工程学领域中,特别是在描述运动、振动和波动等方面。
例如,匀速直线运动的位置可以用等差数列表示。
3.3 自然科学数列也可以应用于自然科学领域,如生物学、化学和天文学等。
例如,在遗传学中,基因的排列可以看作是一个数列。
4. 高二选修二数学数列练习题4.1 判断数列类型下面给出的数列,请判断其类型为等差数列、等比数列还是其他类型的数列,并给出相应的公差或公比。
高二数列基础练习题
高二数列基础练习题数列是我们数学学习中的重要概念之一,它在解决实际问题和推导数学定理中起到了重要的作用。
为了加深对数列的理解和掌握,以下是一些高二数列基础练习题,帮助学生们巩固知识,提升解题能力。
一、选择题1. 若数列An的通项公式为An = 2^n + 1,则数列A的前5项分别是:A) 2, 5, 9, 15, 23B) 3, 6, 10, 16, 24C) 2, 4, 8, 16, 32D) 3, 7, 15, 31, 632. 已知数列Bn的前5项分别为1, 3, 6, 10, 15,数列Bn的通项公式为:A) Bn = nB) Bn = n(n+1)/2C) Bn = n^2D) Bn = 2^n3. 若数列Cn的前三项为3, -1, -5,且Cn是一个等差数列,数列Cn 的公差为:A) -2B) -4C) -6D) -84. 数列Dn的前n项和为Sn = n^2 + n,若Dn的公差为2,Dn的首项为:A) 0B) 1C) 2D) 3二、填空题1. 若Sn表示数列An的前n项和,且Sn = 2n^2 + n - 3,则数列An 的通项公式为__________。
2. 数列En的通项公式为En = 2^n - 1,若E1 + E2 + E3 + ... + En = 4092,则n的值为__________。
3. 已知Sn表示等差数列Fn的前n项和,若S10 = 1000,Fn的公差为2,则F15的值为__________。
三、解答题1. 求证:对于等差数列An = a + (n-1)d,其前n项和Sn的公式为Sn = (2a + (n-1)d)n/2。
2. 数列Gn的通项公式为Gn = 3^n,求Sn表示数列Gn的前n项和的公式,并利用该公式计算S10的值。
四、应用题1. 一个等差数列的第6个数是9,最后一个数是-11,且数列共有n 项,求n的值。
2. 一个等差数列的第8个数是13,最后一个数是31,且数列共有n 项,若Sn表示该数列的前n项和,求S12的值。
数列高二练习题
数列高二练习题
数列在数学中扮演着重要的角色,是高中数学中不可或缺的一部分。
在高二阶段,数列的研究更加深入,要求学生能够准确地计算数列的
通项公式、前n项和以及判断数列的性质等等。
下面是一些高二数列
的练习题,帮助大家巩固数列的相关知识。
1. 已知等差数列的第一项为a,公差为d。
若数列的前n项和为Sn,求证Sn = (a + (n-1)d)n/2。
2. 若数列的通项公式为an = 3n - 1,求这个数列的前10项和。
3. 已知数列的前n项和为Sn = n^2 + 2n,求该数列的通项公式。
4. 若数列的通项公式为an = 2^n - 1,求证这个数列是一个等比数列。
5. 设数列{an}的通项公式为an = 2^(n-1),求证这个数列是一个递推
数列。
6. 已知等差数列的首项为3,公差为2,求证数列的第n项为an =
2n + 1。
7. 若等差数列的前3项分别为2、5、8,求这个数列的通项公式。
8. 若等差数列的前n项和为Sn = 3n^2 + 2n,求该数列的通项公式。
9. 设等比数列的通项公式为an = 3^n,求证这个数列的首项为3。
10. 已知等比数列的首项为2,公比为1/2,求这个数列的通项公式。
以上是一些典型的高二数列练习题,通过解答这些题目,可以加深
对数列相关知识的理解和掌握。
希望大家能够认真思考,灵活运用所
学知识,提高解题能力。
对于不会解答的题目,可以请教老师或同学,一起探讨解题思路,相互促进。
只有通过不断练习和思考,才能真正
掌握数列知识,提高数学水平。
加油!。
数列练习题高二
数列练习题高二一、填空题1. 已知数列${a_n}$的公差$d=-3$,且$a_4=7$,求$a_9$。
解:首先使用数列通项公式$a_n=a_1+(n-1)d$,可得:$a_9 = a_1 + (9-1)(-3)$,又已知$a_4 = 7$,代入可得:$7 = a_1 + (4-1)(-3)$,解得$a_1 = 16$,带入计算可得:$a_9 = 16 + (9-1)(-3) = 16 - 24 = -8$。
所以,$a_9 = -8$。
2. 已知数列${b_n}$的前两项$b_1=2$,$b_2=6$,后续项满足$b_{n+2}=b_{n+1}-b_n$,求$b_5$。
解:根据题目已知条件,我们可以列出数列前五项如下:$b_1 = 2$$b_2 = 6$$b_3 = b_2 - b_1 = 6 - 2 = 4$$b_4 = b_3 - b_2 = 4 - 6 = -2$$b_5 = b_4 - b_3 = -2 - 4 = -6$所以,$b_5 = -6$。
二、选择题1. 下列哪个数列是等差数列?A. 2, 4, 8, 16, ...B. 3, 6, 12, 24, ...C. 1, 3, 9, 27, ...D. 2, 5, 10, 17, ...解:等差数列是指数列中的任意两个相邻项之差都是常数。
根据选项中的数列进行判断:A. 不是等差数列,因为后一项除以前一项的值不是固定的。
B. 是等差数列,差值为6-3=3。
C. 不是等差数列,因为后一项除以前一项的值不是固定的。
D. 不是等差数列,因为数列中出现了不同的差值。
所以,选项B是等差数列。
2. 如果数列${a_n}$的公差为d,则数列${2a_n-3}$的公差是多少?A. dB. 2dC. 3dD. 4d解:根据公差的定义,对于等差数列${a_n}$,任意两个相邻项的差都是常数d。
现在考虑数列${2a_n-3}$,假设前一项为$2a_n-3$,后一项为$2a_{n+1}-3$,它们的差为:$(2a_{n+1}-3) - (2a_n-3) = 2(a_{n+1}-a_n)$可以看出,差值仍然是常数,且为2d。
高二理科数学数列专题训练
高二理科数学数列专题训练1.已知数列{}n a 满足13=2a ,()11=22n n a n a --≥,n S 是数列{}n b 的前n 项和,且有1=12n n S n b n-+. (1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭为等差数列;(2)求数列{}n b 的通项公式; (3)设nn na cb =,记数列{}nc 的前n 项和n T ,求证:1n T <.2.已知数列{}n a 为等差数列,n S 为其前n 项和,且222n n S a n =+(n *∈N ).()1求n a ,n S ;()2若k a ,22k a -,21k a +(k *∈N )是等比数列{}n b 的前三项,设112233n n n a b a b a b a b T =+++⋅⋅⋅+,求n T .3.设数列{a n }的各项都是正数,记S n 为数列{a n }的前n 项和,且对任意n ∈N*,都有23333231nn S a a a a =++++ . (Ⅰ) 求数列{a n }的通项公式;(Ⅱ) 若n a n n n b 2)1(31⋅-+=-λ(λ为常数且0λ≠,n ∈N *),问是否存在整数λ,使得对任意 n ∈N*,都有b n +1>b n .4.已知数列{}n a 的各项均为正数,其前n 项和为n S ,且满足11,a =()121n n S n a +=-,n ∈N *.(1)求2a ,3a 的值; (2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有1211174n S S S +++<.5.数列{n a }的前n 项n S ,1a =3且n S =12123++-n a (∈n N *) (1)求n a (2)))((12121++=+n n n n a a a b ,数列{n b }的前n 项和是n T ,求证n T <281.6.对于任意的n N *∈,数列{}n a 满足122121212121n n a na a n ---+++=++++. (1)求数列{}n a 的通项公式; (2)求证:对于2n ≥(n N *∈)有12311111122n n a a a +++++<-.7.已知各项均为正数的等比数列{a n },其公比q >1,且满足a 2a 4=64,a 3+2是a 2,a 4的等差中项.(1)求3a ;(2)求数列{a n }的通项公式;(3)设1221log ,2++=-=n n n n a B a A ,试比较A n 与B n 的大小,并证明你的结论.8.已知n S 为数列{}n a 的前n 项和,3(1)n n S na n n =--(*n N ∈),且211a =.(1)求1a 的值; (2)求数列{}n a 的前n 项和n S ; (3)设数列{}n b 满足n b =123n b b b +++<.9.数列{n a }满足111,22n na a a +==-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列基础知识点
1.概念与公式:
①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;
2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2
)
1(2)(11d n n na a a n S n n -+=+=
②等比数列:1.定义若数列q a a a n
n n =+1
}{满足
(常数)
,则}{n a 称等比数列; 2通项公式:;11k n k n n q a q a a --==3°.
前n 项和公式:),1(1)
1(111≠--=--=q q
q a q q a a S n n n 当q=1时.1na S n =
2.简单性质:
①首尾项性质:设数列,,,,,:}{321n n a a a a a
1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:
1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2
b
a A +=
2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅
3°.若}{n a 是公差为d 的等差数列,232,,n n n n n S S S S S --组成公差为n 2d 的等差数列; 4°. 若}{n a 是公差为q 的等比数列,232,,n n n n n S S S S S --组成公差为q n 的等比数列. 注意:①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;
②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ; ③公比q ≠1的等比数列的前n 项公式可以写成“S n =A (1-q n )的形式; 5°在等差数列{}n a 中,当项数为偶数2n 时,
)(1a a n n n n s ++=;nd s s =-奇偶;
a a n
n s s 1
+=
奇偶. 项数为奇数21n +时, 1
21
(21)n n n a
s
++=+;
1
n a
s s +=-奇偶 ;
1n n s s =+偶奇。
3.巧设“公差、公比”是解决问题的一种重要方法,
①三数成等差数列,可设三数为“a-m,a,a+m
②三数成等比数列,可设三数为
q
a
,a,aq ” ③四数成等差数列,可设四数为“3,,,3a m a m a m a m --++” ④四数成等比数列,可设四数为“23,,,a aq aq aq ”
例1:有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数
4.若等差数列{}n a 、{}n b 的前n 和分别为n S 、n T ,则
21
21
n n n n a S b T --=.如设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若3
41
3-+=
n n T S n n ,那么=n n b a ___________(答:6287n n --)
高二数学数列 复习题1
选择题 1、如果一个数列既是等差数列,又是等比数列,则此数列( ) (A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在
2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则
y
c
x a +的值为( )
(A )
2
1
(B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2
x ,
2b ,2y 三个数( )
(A )成等差数列不成等比数列 (B )成等比数列不成等差数列
(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列
5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为( )
(A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=2 6、已知))((4)(2z y y x x z --=-,则 ( )
(A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )z y x 1,1,1成AP (D )z
y x 1
,1,1成GP
7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有( ) ①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③
可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列
(A )4 (B )3 (C )2 (D )1
8、数列1
⋯,161
7,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212
112
+--+n n n
9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则13
513
5
b b a
a ++的值为 ( ) (A )
97 (B )78 (C )2019 (D )8
7 10、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( )
(A )56 (B )58 (C )62 (D )60
11、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前
n
项和为
( )
(A )2)133(+n n (B )53+n
(C )23103-+n n (D )2
31031-++n n
12下列命题中是真命题的是 ( ) A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )
B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列
C .数列{}n a 是等比数列的充要条件1-=n n ab a
D .如果一个数列{}n a 的前n 项和c ab S n n +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a
二、填空题
13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q = 14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18
6217
51a a a a a a ++++=
15、已知数列{}n a 满足n n a S 4
1
1+
=,则n a = 16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 一、 解答题
17、已知数列{}n a 是公差d 不为零的等差数列,数列{}
n b a 是公比为q 的等比数列,
46,10,1321===b b b ,求公比q 及n b 。
18、已知等差数列{}n a 的公差与等比数列{}n b 的公比相等,且都等于
d )1,0(≠>d d ,11b a = ,333b a =,555b a =,求n n b a ,。
19、数列{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式;
(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T
20、已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列{}n a 的通项公式; (II )若数列{}n b 满足121114.4...4(1)()n n b b b b n a n N ---*=+∈,证明:{}n b 是等差数列;
21.(2010全国) 已知数列{}n a 中,1111,n n
a a c a +==-
. (Ⅰ)设51
,22
n n c b a =
=
-,求数列{}n b 的通项公式; (Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围 .。