2019-2020学年广东省深圳市南山区七年级下学期期中数学试卷 (解析版)
【精选】广东省深圳市南山区七年级下册期中数学试卷及答案
2019-2020学年广东省深圳市南山区七年级(下)期中数学试卷一.选择题(每题3分,共36分)1.下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=﹣a6C.(ab)3=ab3D.a8÷a2=a42.21300000用科学记数法表示是()A.21.3×106B.2.13×105C.2.13×107D.21.3×1053.下面是一名学生所做的4道练习题:①﹣22=4②a3+a3=a6③4m﹣4=④(xy2)3=x3y6,他做对的个数()A.1 B.2 C.3 D.44.若a2﹣b2=,a﹣b=,则a+b的值为()A.﹣ B.C.D.25.计算(﹣0.25)2013×42013的结果是()A.﹣1 B.1 C.0.25 D.440266.若x2+mx+4是一个完全平方公式,则m的值为()A.2 B.2或﹣2 C.4 D.4或﹣47.如图,点E在BC的延长线上,则下列条件中,能判定AD∥BC的是()A.∠3=∠4 B.∠B=∠DCE C.∠1=∠2 D.∠D+∠DAB=180°8.如图AB、CD交于点O,OE⊥AB于O,则下列不正确的是()A.∠AOC与∠BOD是对顶角B.∠BOD和∠DOE互为余角C.∠AOC和∠DOE互为余角D.∠AOE和∠BOC是对顶角9.两根木棒分别为5cm和7cm,要选择第三根,将它们钉成一个三角形,如果第三根木棒长为偶数,则方法有()A.3种B.4种C.5种D.6种10.要测量河岸相对两点A、B的距离,已知AB垂直于河岸BF,先在BF上取两点C、D,使CD=CB,再过点D作BF的垂线段DE,使点A、C、E在一条直线上,如图,测出BD=10,ED=5,则AB的长是()A.2.5 B.10 C.5 D.以上都不对11.若a m=8,a n=2,则a m﹣2n的值等于()A.1 B.2 C.4 D.1612.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF、CE,且∠FBD=35°,∠BDF=75°,下列说法:①△BDF≌CDE;②ABD和△ACD面积相等;③BF∥CE;④∠DEC=70°,其中正确的有()A.1个B.2个C.3个D.4个二.填空题(每题3分,共12分)13.一个角的度数是40°,那么它的余角的补角的度数是.14.如果等腰三角形两边长是6cm和3cm,那么它的周长是cm.15.已知m﹣n=2,mn=﹣1,则(1+2m)(1﹣2n)的值为.16.如图,在直角△ABC中,∠C=90°,AC=12cm,BC=5cm,AB=13cm,则点C到边AB距离等于cm.三.解答题(共52分)17.计算题(1)x2y×(﹣2xy2)(2)(﹣1)2014﹣(3﹣π)0+(﹣)﹣2(3)2011×2013﹣20122(4)(4a3b﹣6a3b2﹣10ab2)÷(2ab)18.先化简,再求值[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x);其中x=2,y=.19.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:;(3)你认为(2)中所写的等式一定成立吗?说明理由.20.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D,试说明:AC∥DF,将过程补充完整.解:∵∠1=∠2(已知)∠1=∠3()∴∠2=∠3(等量代换)∴EC∥DB()∴∠C=∠ABD()又∵∠C=∠D(已知)∴∠D=∠ABD()∴AC∥DF()21.如图,已知∠AOB,以O为圆心,以任意长为半径画弧,分别交OA、OB于D、E两点,再分别以D、E为圆心,大于DE长为半径画弧,两条弧交于点C,作射线OC,则OC是∠AOB的角平分线吗?说明理由.22.已知:如图,BC∥EF,AD=BE,BC=EF,试证明AC=DF.23.平面内的两条直线有相交和平行两种位置关系(1)已知AB平行于CD,如a图,当点P在AB、CD外部时,∠BPD+∠D=∠B即∠BPD=∠B﹣∠D,为什么?请说明理由.如b图,将点P移动到AB、CD内部,以上结论是否仍然成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.2019-2020学年广东省深圳市南山区七年级(下)期中数学试卷参考答案与试题解析一.选择题(每题3分,共36分)1.下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=﹣a6C.(ab)3=ab3D.a8÷a2=a4【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为a3•a2=a5,故A错误;B、(﹣a2)3=﹣a6,故B正确;C、应为(ab)3=a3b3,故C错误;D、应为a8÷a2=a6,故D错误.故选:B.2.21300000用科学记数法表示是()A.21.3×106B.2.13×105C.2.13×107D.21.3×105【考点】科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:21300000=2.13×107.故选:C.3.下面是一名学生所做的4道练习题:①﹣22=4②a3+a3=a6③4m﹣4=④(xy2)3=x3y6,他做对的个数()A.1 B.2 C.3 D.4【考点】幂的乘方与积的乘方;合并同类项;负整数指数幂.【分析】根据有理数的乘方,合并同类项法则,负整数指数次幂等于正整数指数幂的倒数,积的乘方的性质对各小题分析判断即可得解.【解答】解:①﹣22=﹣4,故本小题错误;②a3+a3=2a3,故本小题错误;③4m﹣4=,故本小题错误;④(xy2)3=x3y6,故本小题正确;综上所述,做对的个数是1.故选A.4.若a2﹣b2=,a﹣b=,则a+b的值为()A.﹣B. C. D.2【考点】平方差公式.【分析】已知第一个等式利用平方差公式化简,将第二个等式代入计算即可求出a+b的值.【解答】解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=,故选B5.计算(﹣0.25)2013×42013的结果是()A.﹣1 B.1 C.0.25 D.44026【考点】幂的乘方与积的乘方.【分析】由(﹣0.25)2013×42013=(﹣0.25×4)2013,根据幂的乘方与积的乘方的运算法则求解即可.【解答】解:原式=(﹣0.25×4)2013=(﹣1)2013=﹣1.故选A.6.若x2+mx+4是一个完全平方公式,则m的值为()A.2 B.2或﹣2 C.4 D.4或﹣4【考点】完全平方式.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍.【解答】解:∵x2+mx+4是一个完全平方公式,∴x2+mx+4=(x±2)2,∴m=±4,故选:D.7.如图,点E在BC的延长线上,则下列条件中,能判定AD∥BC的是()A.∠3=∠4 B.∠B=∠DCE C.∠1=∠2 D.∠D+∠DAB=180°【考点】平行线的判定.【分析】根据内错角相等,两直线平行解答.【解答】解:∵∠3=∠4,∴AD∥BC.故选:A.8.如图AB、CD交于点O,OE⊥AB于O,则下列不正确的是()A.∠AOC与∠BOD是对顶角B.∠BOD和∠DOE互为余角C.∠AOC和∠DOE互为余角D.∠AOE和∠BOC是对顶角【考点】对顶角、邻补角;余角和补角.【分析】根据垂直的定义以及对顶角相等和互为余角的定义对各选项分析判断即可得解.【解答】解:A、∠AOC与∠BOD是对顶角正确,故本选项错误;B、∵OE⊥AB,∴∠BOE=90°,∴∠BOD和∠DOE互为余角正确,故本选项错误;C、∵∠AOC=∠BOD(对顶角相等),∠BOD和∠DOE互为余角,∴∠AOC和∠DOE互为余角正确,故本选项错误;D、应为∠AOD和∠BOC是对顶角,故本选项正确.故选D.9.两根木棒分别为5cm和7cm,要选择第三根,将它们钉成一个三角形,如果第三根木棒长为偶数,则方法有()A.3种B.4种C.5种D.6种【考点】三角形三边关系.【分析】根据三角形的三边关系可求得第三边的取值范围,再求得其中的偶数的个数即可求得答案.【解答】解:设第三根木棒的长度为xcm,由三角形三边关系可得7﹣5<x<7+5,即2<x<12,又x为偶数,∴x的值为4,6,8,10,共四种,故选B.10.要测量河岸相对两点A、B的距离,已知AB垂直于河岸BF,先在BF上取两点C、D,使CD=CB,再过点D作BF的垂线段DE,使点A、C、E在一条直线上,如图,测出BD=10,ED=5,则AB的长是()A.2.5 B.10 C.5 D.以上都不对【考点】全等三角形的应用.【分析】由AB、ED均垂直于BD,即可得出∠ABC=∠EDC=90°,结合CD=CB、∠ACB=∠ECD即可证出△ABC≌△EDC(ASA),由此即可得出AB=ED=5,此题得解.【解答】解:∵AB⊥BD,ED⊥AB,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED=5.故选C.11.若a m=8,a n=2,则a m﹣2n的值等于()A.1 B.2 C.4 D.16【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】先将a m﹣2n变形为a m÷(a n)2,再带入求解即可.【解答】解:原式=a m÷(a n)2=8÷4=2.故选B.12.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF、CE,且∠FBD=35°,∠BDF=75°,下列说法:①△BDF≌CDE;②ABD和△ACD面积相等;③BF∥CE;④∠DEC=70°,其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;三角形的面积.【分析】根据三角形中线的定义可得BD=CD,得出△ABD的面积=△ACD的面积,然后利用“边角边”证明△BDF和△CDE全等,由全等三角形的性质得出∠F=∠CED,∠DEC=∠F,再根据内错角相等,两直线平行可得BF∥CE,最后根据三角形内角和定理求出∠F,得出④正确,即可得出结论.【解答】解:∵AD是△ABC的中线,∴BD=CD,∴△ABD的面积=△ACD的面积,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故①②正确∴∠F=∠CED,∠DEC=∠F,∴BF∥CE,故③正确,∵∠FBD=35°,∠BDF=75°,∴∠F=180°﹣35°﹣75°=70°,∴∠DEC=70°,故④正确;综上所述,正确的是①②③④4个.故答案为:D.二.填空题(每题3分,共12分)13.一个角的度数是40°,那么它的余角的补角的度数是130°.【考点】余角和补角.【分析】根据互余两角之和为90°,互补两角之和为180°即可求解.【解答】解:∵一个角的度数是40°,∴它的余角=90°﹣40°=50°,则它的余角的补角=180°﹣50°=130°.故答案为:130°.14.如果等腰三角形两边长是6cm和3cm,那么它的周长是15 cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故填15.15.已知m﹣n=2,mn=﹣1,则(1+2m)(1﹣2n)的值为9 .【考点】单项式乘多项式.【分析】直接利用多项式乘以多项式运算法则进而将原式变形,将已知代入求出答案.【解答】解:∵m﹣n=2,mn=﹣1,∴(1+2m)(1﹣2n)=1﹣2n+2m﹣4mn=1+2(m﹣n)﹣4mn=1+4+4=9.故答案为:9.16.如图,在直角△ABC中,∠C=90°,AC=12cm,BC=5cm,AB=13cm,则点C到边AB距离等于cm.【考点】点到直线的距离;三角形的面积.【分析】过C作CH⊥AB,根据三角形的面积可得×12×5=×13×CH,再解出CH长即可.【解答】解:过C作CH⊥AB,∵AC=12cm,BC=5cm,AB=13cm,∴×12×5=×13×CH,解得:CH=,故答案为:.三.解答题(共52分)17.计算题(1)x2y×(﹣2xy2)(2)(﹣1)2014﹣(3﹣π)0+(﹣)﹣2(3)2011×2013﹣20122(4)(4a3b﹣6a3b2﹣10ab2)÷(2ab)【考点】整式的除法;单项式乘单项式;平方差公式;零指数幂;负整数指数幂.【分析】(1)原式利用单项式乘以单项式法则计算即可得到结果;(2)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果;(3)原式变形后,利用平方差公式计算即可得到结果;(4)原式利用多项式除以单项式法则计算即可得到结果.【解答】解:(1)原式=﹣x3y3;(2)原式=1﹣1+9=9;(3)原式=×﹣20122=20122﹣1﹣20122=﹣1;(4)原式=2a2﹣3a2b﹣5b.18.先化简,再求值[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x);其中x=2,y=.【考点】整式的混合运算—化简求值.【分析】先根据平方差公式和完全平方公式化简整式,再把x,y的值代入计算即可.【解答】解:原式=(x2+4xy+4y2﹣3x2+xy+3xy+y2﹣5y2)÷2x=(﹣2x2+8xy)÷2x=﹣2x+4y,当x=2,y=时,原式=﹣2×2+4×=﹣4+2=2.19.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:④4×6﹣52=﹣1 ;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:(2n﹣1)(2n+1)﹣(2n)2=﹣1 ;(3)你认为(2)中所写的等式一定成立吗?说明理由.【考点】规律型:数字的变化类.【分析】(1)直接写出算式;(2)按每个数的规律分别找出并组合即可;(3)把(2)中的式子左边按多项式乘以多项式法则进行化简,发现等式成立.【解答】解:(1)④4×6﹣52=﹣1,故答案为:④4×6﹣52=﹣1,(2观察算式发现:左边:第一个数依次为1、3、5,是连续奇数,表示为2n﹣1,第2个数为:3、4、5,也是连续奇数,表示为2n+1,第三个数依次为:12、22、32,因此表示为n2,右边都为﹣1所以(2n﹣1)(2n+1)﹣(2n)2=﹣1故答案为:(2n﹣1)(2n+1)﹣(2n)2=﹣1;(3)左边=(2n﹣1)(2n+1)﹣(2n)2=4n2﹣1﹣4n2=﹣1所以(2)中所写的等式一定成立.20.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D,试说明:AC∥DF,将过程补充完整.解:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴EC∥DB(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴AC∥DF(内错角相等,两直线平行)【考点】平行线的判定与性质.【分析】由条件可先证明EC∥DB,可得到∠D=∠ABD,再结合条件两直线平行的判定可证明AC∥DF,依次填空即可.【解答】解:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴EC∥DB(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴AC∥DF(内错角相等,两直线平行)故答案为:对顶角相等;同位角相等,两条直线平行;两条直线平行,同位角相等;等量代换;内错角相等,两条直线平行.21.如图,已知∠AOB,以O为圆心,以任意长为半径画弧,分别交OA、OB于D、E两点,再分别以D、E为圆心,大于DE长为半径画弧,两条弧交于点C,作射线OC,则OC是∠AOB的角平分线吗?说明理由.【考点】作图—基本作图.【分析】连接CE、CD,证明△OEC≌△ODC,即可得出结论.【解答】解:连接CE、CD,由作图得:OE=OD,EC=DC,∵OC=OC,∴△OEC≌△ODC(SSS),∴∠AOC=∠BOC,∴OC是∠AOB的角平分线.22.已知:如图,BC∥EF,AD=BE,BC=EF,试证明AC=DF.【考点】全等三角形的判定与性质;平行线的性质.【分析】根据两直线平行,同位角相等可得∠ABC=∠E,再求出AB=DE,然后利用“边角边”证明△ABC 和△DEF全等,根据全等三角形对应边相等证明即可.【解答】证明:∵BC∥EF,∴∠ABC=∠E,∵AD=BE,∴AB=DE,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AC=DF.23.平面内的两条直线有相交和平行两种位置关系(1)已知AB平行于CD,如a图,当点P在AB、CD外部时,∠BPD+∠D=∠B即∠BPD=∠B﹣∠D,为什么?请说明理由.如b图,将点P移动到AB、CD内部,以上结论是否仍然成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.【考点】平行线的性质;旋转的性质.【分析】(1)①利用平行线的性质和三角形的外角即可;②利用平行线的特点作出平行线,再利用平行线的性质即可;(2)利用三角形的外角等于与它不相邻的两内角的和即可;(3)利用三角形的外角的性质把角转化到四边形CDHM中,用四边形的内角和即可.【解答】解:(1)①∵AB∥CD,∴∠B=∠COP,∵∠COP=∠BPD+∠D,∴∠B=∠BPD+∠D,即:∠BPD=∠B﹣∠D,②不成立,结论:∠BPD=∠B+∠D,理由:如图b,过点P作PG∥AB,∴∠B=∠BPG,∵PG∥AB,CD∥AB,∴PG∥CD,∴∠DPG=∠D,∴∠BPD=∠BPG+∠DPG=∠B+∠D;(2)结论:∠DPQ=∠B+∠BQD+∠D,理由:如图c,连接QP并延长,∵∠BP∠G是△BPQ的外角,∴∠BPG=∠B+∠BQP,同理:∠DPG=∠D+∠DQP,∴∠BPD=∠BPG+∠DPG=∠B+∠BQP+∠DQP+∠D=∠B+∠BQD+∠D;(3)如图d,∵∠DHM是△BFH的外角,∴∠DHM=∠B+∠F,同理:∠CMH=∠A+∠E,∴∠A+∠B+∠C+∠D+∠E+∠F=∠DHM+∠CMH+∠C+∠D=360°.。
2019-2020学年江苏省南京市栖霞区、雨花区、江宁区七年级(上)期中数学试卷(解析版)
2019-2020学年江苏省南京市栖霞区、雨花区、江宁区七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)如下表,检测4个排球,其中超过标准的克数记为正数,不足的克数记为负数.最接近标准的是( )A .甲B .乙C .丙D .丁2.(2分)计算186()2-÷-的结果是( )A .4-B .5C .13D .203.(2分)下列计算正确的是( ) A .22321a a -= B .22423m m m += C .2222ab a b a b -+=D .22234m m m -=-4.(2分)在 3.14-、0、|2|--、π、0.3030030003⋯、227中,无理数有( ) A .1 个B .2 个C .3 个D .4 个5.(2分)下列说法中,正确的是( ) A .任意两个有理数的和必是有理数 B .任意有理数的绝对值必是正有理数 C .任意两个无理数的和必是无理数 D .任意有理数的平方必定大于或等于它本身6.(2分)下列说法:①a -一定是非正数;②||a --一定是负数;③相反数等于它本身的数是0;④绝对值大于它本身的数是负数.其中所有正确的序号为( ) A .①②B .②③C .①③D .③④7.(2分)若||1a …,则21a -是( ) A .正数B .负数C .非正数D .非负数8.(2分)如果0a b +>,且0b <,那么a 、b 、a -、b -的大小关系为( ) A .a b a b <-<-<B .b a a b -<<-<C .a b b a <<-<-D .a b b a -<<-<二、填空题(每小题2分,共20分)9.(2分)3-的相反数是 ;3-的倒数是 .10.(2分)单项式22ab -的系数是 ,次数是 .11.(2分)比较大小:3- 2.5-(填“>”、“ <”或“=” ). 12.(2分)某市未来一周的天气预报如下表,未来一周中一天温差最大为 C ︒.星期 星期一 星期二 星期三 星期四 星期五 星期六 星期日 气温/C ︒0~62~7-1~6-2~5-4~3-5~3-2~913.(2分)拒绝“餐桌浪费”,意义重大,据统计全国每年浪费的粮食总量约为50000000000千克,50000000000千克用科学记数法表示为 .14.(2分)“除以一个不为0的数,等于乘这个数的倒数”用字母可以表示为 . 15.(2分)若62m x y -与16n x y +的和为0,那么n m +的值为 . 16.(2分)如果5x y -=,2m n +=,则()()y m x n +--的值是 .17.(2分)已知数轴上有A 、B 两点,点A 表示的数是1-,A 、B 两点之间的距离为3,则满足条件的点B 所表示的数是 .18.(2分)如图所示的运算程序中,若第1次输入的x 的值为3-,则第100次输出的结果为 .三、解答题(本大题共8小题,共64分) 19.(16分)计算:(1)42-+= ;42--= ;42-⨯= ;42-÷= . (2)3(4)8(2)⨯--÷-; (3)1511()()361224-+÷-(4)422(13)12(4)---⨯÷-. 20.(9分)计算: (1)3257x y x y -++-; (2)222(5)(23)x x x x ---+.21.(6分)先化简,再求值:2222232(23)3(23)ab a b ab a b ab --+-,其中2a =-,12b =. 22.(6分)某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元); 星期一 星期二 星期三 星期四 星期五 星期六星期日 本周合计 27-70-2001383-m120n(1)若星期六的盈亏数m 为300,则本周合计盈亏数n = . (2)请用含本周合计盈亏数n 的代数式表示星期六的盈亏数m .23.(6分)如图,正方形的边长为x ,用代数式表示图中阴影部分的面积,并计算当4x =时,阴影部分的面积.(π取3.14)24.(5分)为鼓励居民节约用水,某市对居民用水收费实行“阶梯水价”,按每年用水量统计,不超过200立方米的部分按每立方米3元收费;超过200立方米不超过300立方米的部分按每立方米5元收费;超过300立方米的部分按每立方米6元收费. (1)设每年用水量为x 立方米,请用含x 的代数式表示全年应缴水费;(2)小明家预计2019年全年用水量为320立方米,那么按“阶梯水价”收费,他家全年应缴水费多少元?25.(6分)如图,数轴上的A 、B 两点所表示的数分别为a 、b ,0a b +<,0ab <, (1)原点O 的位置在 ;A .点A 的右边B .点B 的左边C .点A 与点B 之间,且靠近点AD .点A与点B 之间,且靠近点B (2)若2a b -=,①利用数轴比较大小:a 1,b 1-;(填“>”、“ <”或“=” ) ②化简:|1||1|a b -++.26.(10分)已知a b >,a 与b 两个数在数轴上对应的点分别为点A 、点B ,求A 、B 两点之间的距离. 【探索】小明利用绝对值的概念,结合数轴,进行探索:因为a b >,则有以下情况: 情况一、若0a >,0b …,如图,A 、B 两点之间的距离:||||AB a b a b =-=-;⋯⋯(1)补全小明的探索 【应用】(2)若点C 对应的数c ,数轴上点C 到A 、B 两点的距离相等,求c .(用含a 、b 的代数式表示)(3)若点D 对应的数d ,数轴上点D 到A 的距离是点D 到B 的距离的(0)n n >倍,请探索n 的取值范围与点D 个数的关系,并直接写出a 、b 、d 、n 的关系.2019-2020学年江苏省南京市栖霞区、雨花区、江宁区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)如下表,检测4个排球,其中超过标准的克数记为正数,不足的克数记为负数.最接近标准的是( )A .甲B .乙C .丙D .丁【分析】由已知和要求,只要求出超过标准的克数和低于标准的克数的绝对值,绝对值小的则是最接近标准的球.【解答】解:通过求4个排球的绝对值得: | 1.5| 1.5-=,|0.5|0.5-=,|0.6|0.6-=, 0.5-的绝对值最小.所以乙球是最接近标准的球. 故选:B .【点评】此题考查学生对正负数及绝对值的意义掌握,解答此题首先要求出四个球标准的克数和低于标准的克数的绝对值进行比较. 2.(2分)计算186()2-÷-的结果是( )A .4-B .5C .13D .20【分析】直接利用有理数的混合运算法则计算得出答案. 【解答】解:原式812=+ 20=.故选:D .【点评】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键. 3.(2分)下列计算正确的是( ) A .22321a a -=B .22423m m m +=C .2222ab a b a b -+=D .22234m m m -=-【分析】根据合并同类项的法则即可求出答案. 【解答】解:22232a a a -=,故选项A 不合题意; 22223m m m +=,故选项B 不合题意;2ab -与22a b 不是同类项,所以不能合并,故选项C 不合题意; 22234m m m -=-,正确,故选项D 符合题意.故选:D .【点评】本题考查合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.4.(2分)在 3.14-、0、|2|--、π、0.3030030003⋯、227中,无理数有( ) A .1 个B .2 个C .3 个D .4 个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【解答】解: 3.14-是有限小数,属于有理数;0是整数,属于有理数;|2|2--=-,是整数,属于有理数;227是分数,属于有理数. ∴无理数有π、0.3030030003⋯共2个.故选:B .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数. 5.(2分)下列说法中,正确的是( ) A .任意两个有理数的和必是有理数 B .任意有理数的绝对值必是正有理数 C .任意两个无理数的和必是无理数 D .任意有理数的平方必定大于或等于它本身【分析】直接利用有理数的性质以及无理数的性质分别分析得出答案. 【解答】解:A 、任意两个有理数的和必是有理数,正确;B 、任意有理数的绝对值必是正有理数,错误,利用0的绝对值等于0;C 、任意两个无理数的和必是无理数,错误,利用0=;D 、任意有理数的平方必定大于或等于它本身,错误,例如2(0.1)0.010.1=<.故选:A .【点评】此题主要考查了实数运算,正确掌握相关性质是解题关键.6.(2分)下列说法:①a -一定是非正数;②||a --一定是负数;③相反数等于它本身的数是0;④绝对值大于它本身的数是负数.其中所有正确的序号为( ) A .①②B .②③C .①③D .③④【分析】根据绝对值的性质,有理数的分类对各小题分析判断即可得解. 【解答】解:①a -不一定是非正数;故不符合题意; ②||a --一定是0或负数;故不符合题意; ③相反数等于它本身的数是0;故符合题意; ④绝对值大于它本身的数是负数.故符合题意; 故选:D .【点评】本题考查了正数和负数,以及绝对值的性质,解题时应熟练掌握有理数的分类,此题难度不大,易于掌握.7.(2分)若||1a …,则21a -是( ) A .正数B .负数C .非正数D .非负数【分析】根据绝对值的意义解答即可. 【解答】解:因为||1a …, 所以11a -剟, 所以210a -…, 即21a -是非正数. 故选:C .【点评】此题考查绝对值的意义,非负数的性质,以及有理数的分类,解题的关键是掌握绝对值的意义.8.(2分)如果0a b +>,且0b <,那么a 、b 、a -、b -的大小关系为( ) A .a b a b <-<-<B .b a a b -<<-<C .a b b a <<-<-D .a b b a -<<-<【分析】根据有理数的加法法则得出0a >,||||a b >,再比较即可. 【解答】解:0a b +>Q ,0b <,0a ∴>,||||a b >,a b b a ∴-<<-<,故选:D .【点评】本题考查了有理数的大小比较和有理数的加法,能根据有理数的加法法则得出0a >和||||a b >是解此题的关键.二、填空题(每小题2分,共20分)9.(2分)3-的相反数是 3 ;3-的倒数是 . 【分析】根据倒数以及相反数的定义即可求解.【解答】解:3-的相反数是3;3-的倒数是13-.故答案是:3,13-.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.(2分)单项式22ab -的系数是 4- ,次数是 .【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式22ab -的系数是224-=-,次数是2. 故答案为:4-,2.【点评】考查了单项式的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.11.(2分)比较大小:3- < 2.5-(填“>”、“ <”或“=” ). 【分析】根据两个负数比较大小,其绝对值大的反而小比较即可. 【解答】解:|3|3-=,| 2.5| 2.5-=, 3 2.5>Q , 3 2.5∴-<-,故答案为:<.【点评】本题考查了有理数的大小,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.12.(2分)某市未来一周的天气预报如下表,未来一周中一天温差最大为 9C ︒.【分析】先求出每天的温差,再比较即可.【解答】解:606-=,7(2)9--=,6(1)7--=,5(2)7--=,3(4)7--=,3(5)8--=,927-=,所以未来一周中一天温差最大为9C ︒, 故答案为:9.【点评】本题考查了有理数的大小比较和有理数的减法,能求出每天的温差是解此题的关键. 13.(2分)拒绝“餐桌浪费”,意义重大,据统计全国每年浪费的粮食总量约为50000000000千克,50000000000千克用科学记数法表示为 10510⨯千克 .【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:将50 000 000 000千克用科学记数法表示为:10510⨯千克. 故答案为:10510⨯千克.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.(2分)“除以一个不为0的数,等于乘这个数的倒数”用字母可以表示为 1(0)a b a b b÷=⨯≠ .【分析】根据题意直接用字母表示出来即可. 【解答】解:根据题意得: 1(0)a b a b b÷=⨯≠;故答案为:1(0)a b a b b÷=⨯≠.【点评】此题考查了列代数式,解题的关键是读懂题意,用字母表示出来. 15.(2分)若62m x y -与16n x y +的和为0,那么n m +的值为 8 . 【分析】根据合并同类项的法则即可求出答案. 【解答】解:62m x y -Q 与16n x y +的和为0,16n ∴+=,26m =,解得3m =,5n =, 538n m ∴+=+=.故答案为:8.【点评】本题考查合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.16.(2分)如果5x y -=,2m n +=,则()()y m x n +--的值是 3- . 【分析】直接去括号进而把已知代入求出答案. 【解答】解:5x y -=Q ,2m n +=, ()()y m x n ∴+-- ()y x m n =-++ 52=-+3=-.故答案为:3-.【点评】此题主要考查了整式的加减运算,正确将原式变形是解题关键.17.(2分)已知数轴上有A 、B 两点,点A 表示的数是1-,A 、B 两点之间的距离为3,则满足条件的点B 所表示的数是 2或4- . 【分析】根据数轴上两个点之间的距离即可求解.【解答】解:因为点A 表示的数是1-,A 、B 两点之间的距离为3, 所以点B 表示的数是2或4-.【点评】本题考查了数轴,解决本题的关键是距离点A 三个单位长度的点有两个. 18.(2分)如图所示的运算程序中,若第1次输入的x 的值为3-,则第100次输出的结果为 3 .【分析】由图示知,当输入的数大于5时,输出12x ;当输入的数小于4时,输出3x +,按此规律计算即可.【解答】解:把3x =-代入程序中,得330-+=,把0x =代入程序中,得033+=,把3x =代入程序中,得336+=,把6x =代入程序中,得1632⨯=, 把3x =代入程序中,得336+=,把6x =代入程序中,得1632⨯=, ⋯我们发现,从第3次开始,结果以6,3循环,(1002)249-÷=,则第100次输出的结果为3.故答案为:3.【点评】本题考查了代数式求值,根据图示程序正确代入求值是解题的关键.三、解答题(本大题共8小题,共64分)19.(16分)计算:(1)42-+= 2- ;42--= ;42-⨯= ;42-÷= .(2)3(4)8(2)⨯--÷-;(3)1511()()361224-+÷- (4)422(13)12(4)---⨯÷-.【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用有理数的混合运算法则计算得出答案;(3)直接利用乘法分配律计算得出答案;(4)直接利用有理数的混合运算法则计算得出答案.【解答】解:(1)422-+=-;426--=-;428-⨯=-;422-÷=-;故答案为:2-;6-;8-;2-;(2)原式124=-+8=-;(3)原式151(24)(24)(24)3612=⨯--⨯-+⨯- 8202=-+-10=;(4)原式162416=-+÷292=-. 【点评】此题主要考查了有理数的混合运算,正确掌握相关计算法则是解题关键.20.(9分)计算:(1)3257x y x y -++-;(2)222(5)(23)x x x x ---+.【分析】(1)直接合并同类项进而计算得出答案;(2)直接去括号进而合并同类项得出答案.【解答】解:(1)3257x y x y -++-(35)(27)x y =-++-25x y =-;(2)222(5)(23)x x x x ---+2221023x x x x =--+-283x x =--.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.21.(6分)先化简,再求值:2222232(23)3(23)ab a b ab a b ab --+-,其中2a =-,12b =. 【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【解答】解:原式222222346692ab a b ab a b ab a b =-++-=,将2a =-,12b =代入得:原式12442=⨯⨯=. 【点评】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.22.(6分)某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元);(1)若星期六的盈亏数m 为300,则本周合计盈亏数n = 658 .(2)请用含本周合计盈亏数n 的代数式表示星期六的盈亏数m .【分析】(1)根据题意列出代数式,把300m =代入解答即可;(2)根据题意列出代数式解答即可.【解答】解:(1)把300m =代入2770200138312027702001383300120658n m =--++-++=--++-++=;故答案为:658;(2)根据题意可得:20013812032770m n =---+++,即358m n =-【点评】此题考查列代数式,关键是根据题意列出代数式解答即可.23.(6分)如图,正方形的边长为x ,用代数式表示图中阴影部分的面积,并计算当4x =时,阴影部分的面积.(π取3.14)【分析】图中阴影部分的面积=正方形的面积-半圆面积2⨯.【解答】解:阴影部分的面积224x x π=-当4x =时,2224 3.144 3.444x x π-=-⨯=.【点评】要能从图中找到阴影部分的面积是有哪些规则图形的差或者和组成的,分别找到其面积进行和差运算.此题中的关系主要是图中阴影部分的面积=正方形的面积-半圆面积2⨯.24.(5分)为鼓励居民节约用水,某市对居民用水收费实行“阶梯水价”,按每年用水量统计,不超过200立方米的部分按每立方米3元收费;超过200立方米不超过300立方米的部分按每立方米5元收费;超过300立方米的部分按每立方米6元收费.(1)设每年用水量为x 立方米,请用含x 的代数式表示全年应缴水费;(2)小明家预计2019年全年用水量为320立方米,那么按“阶梯水价”收费,他家全年应缴水费多少元?【分析】(1)分别利用:①当0200x <… 时,②当200300x <… 时,③当300x > 时,分别得出关系式即可;(2)直接把320x =代入函数关系式求出答案.【解答】解:(1)①当0200x <… 时,用水量3x =②当200300x <… 时,用水量6005(200)5400x x =+-=-③当300x > 时,用水量6005006(300)6700x x =++-=-;(2)由题意可得:670063207001220x -=⨯-= (元).【点评】此题主要考查了列代数式,正确分类讨论是解题关键.25.(6分)如图,数轴上的A 、B 两点所表示的数分别为a 、b ,0a b +<,0ab <,(1)原点O 的位置在 C ;A .点A 的右边B .点B 的左边C .点A 与点B 之间,且靠近点AD .点A 与点B 之间,且靠近点B(2)若2a b -=,①利用数轴比较大小:a 1,b 1-;(填“>”、“ <”或“=” )②化简:|1||1|a b -++.【分析】(1)由0ab <,0a b +<,可知a ,b 异号,故原点O 的位置在点A 与点B 之间;(2)①由2a b -=结合(1)的结论,可知1a <,1b >-;②根据绝对值的定义化简即可.【解答】解:(1)0ab <Q ,0a b +<,∴原点O 的位置在点A 与点B 之间,且靠近点A .故答案为:C(2)①2a b -=Q ,原点O 的位置在点A 与点B 之间,且靠近点A ,1a ∴<,1b <-,故答案为:<、<;②1a <Q ,1b <-,10a ∴-<,10b +<,|1||1|11a b a b a b ∴-++=-+--=--.【点评】本题主要考查数轴和绝对值,熟练掌握绝对值的定义是解题的关键.26.(10分)已知a b >,a 与b 两个数在数轴上对应的点分别为点A 、点B ,求A 、B 两点之间的距离.【探索】小明利用绝对值的概念,结合数轴,进行探索:因为a b >,则有以下情况:情况一、若0a >,0b …,如图,A 、B 两点之间的距离:||||AB a b a b =-=-;⋯⋯(1)补全小明的探索【应用】(2)若点C 对应的数c ,数轴上点C 到A 、B 两点的距离相等,求c .(用含a 、b 的代数式表示)(3)若点D 对应的数d ,数轴上点D 到A 的距离是点D 到B 的距离的(0)n n >倍,请探索n 的取值范围与点D 个数的关系,并直接写出a 、b 、d 、n 的关系.【分析】(1)分三种情况讨论求解;(2)根据两点间的距离公式即可求解;(3)根据两点间的距离公式即可求解.【解答】解:(1)情况二:若0a …,0b < 时,A 、B 两点之间的距离:||AB a b a b =+=-; 情况三:若0a <,0b < 时,A 、B 两点之间的距离:||||AB b a a b =-=-;(2)Q 点C 对应的数c ,点C 到A 、B 两点的距离相等,a c cb ∴-=-,2c a b ∴=+,即1()2c a b =+; (3)Q 点D 对应的数d ,数轴上点D 到A 的距离是点D 到B 的距离的(0)n n >倍, ()a d n d b ∴-=-,(1)a nb d n ∴+=+.【点评】本题考查了数轴,绝对值,数轴上两点间的距离的表示,准确列出等式是解题的关键.。
广东省深圳市福田区红岭中学石厦分校2019-2020学年第二学期七年级期中考试数学试卷 (解析版)
2019-2020学年广东省深圳市福田区红岭中学石厦分校七年级第二学期期中数学试卷一、选择题1.下列各式计算正确的是()A.2a3﹣a3=2B.a3•a2=a6C.a6÷a3=a3D.(a3)2=a9 2.若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为()A.m=5,n=6B.m=1,n=﹣6C.m=1,n=6D.m=5,n=﹣6 3.下列各式中能用平方差公式计算的是()A.(3x﹣5y)(﹣3x﹣5y)B.(1﹣5m)(5m﹣1)C.(﹣x+2y)(x﹣2y)D.(﹣a﹣b)(b+a)4.最薄的金箔的厚度为0.000000091m,将0.000000091用科学记数法表示为()A.9.1×108B.9.1×109C.9.1×10﹣8D.9.1×10﹣95.如果x2+8x+m2是一个完全平方式,那么m的值是()A.4B.﹣4C.±4D.±86.长方形的周长为24cm,其中一边为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2B.y=12﹣x2C.y=(12﹣x)•x D.y=2(12﹣x)7.如图,下列条件中不能判定AB∥CD的是()A.∠1+∠4=180°B.∠2=∠6C.∠5+∠6=180°D.∠3=∠58.如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°9.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°10.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1B.2C.3D.411.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm3,则R=()A.4cm B.5cm C.6cm D.7cm12.某星期天小李步行去图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.二、填空题(每小题3分,共12分)13.已知变量x、y满足下面的关系x…﹣2﹣1012…y…﹣6﹣3036…则x、y之间用关系式表示为y=.14.若2m=3,4n=8,则23m﹣2n+3的值是.15.若(7x﹣a)2=49x2﹣bx+9,则|a+b|=.16.如图,AB∥ED,∠CAB=135°,∠ACD=75°,则∠CDE=度.三、解答题(共7题,共52分)17.(16分)计算(1)﹣23+×(2005+3)0﹣(﹣)﹣2(2)(﹣2x2y)2•3xy÷(﹣6x2y)(3)(2x+3y)(3y﹣2x)+(x﹣3y)(x+3y)(4)(2x+y+1)(1﹣2x﹣y)18.先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣1,y=3.19.已知|5﹣xy|+(x+y﹣7)2=0,求x2+y2﹣xy的值.20.在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(),∴AB∥CD()∴∠B=∠DCE()又∵∠B=∠D(),∴∠DCE=∠D()∴AD∥BE()∴∠E=∠DFE()21.如图,图象L1反映了某公司产品的销售收入与销售量之间的关系,图象L2反映了某公司产品的销售成本与销售量之间的关系,则:(1)当销售量为2吨时,销售收入为多少元?销售成本呢?此时公司是赢利还是亏损?(2)当销售量等于多少时该公司收入等于销售成本?(3)当销售量在什么范围内时,该公司亏损?(4)要使公司赢利,你对公司有何建议?22.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB 与CD有怎样的位置关系?23.如图,长方形ABCD,AB=CD=4,BC=AD=8,∠A=∠B=∠C=∠D=90°,E 为CD边的中点,P为长方形ABCD边上的动点,动点P从A出发,沿着A→B→C→E 运动到E点停止,设点P经过的路程为x,△APE的面积为y.(1)当x=5时,在图1中画出草图,并求出对应y的值;(2)利用备用图画出草图,写出y与x之间的关系式.参考答案一、选择题(每小题3分,共36分)1.下列各式计算正确的是()A.2a3﹣a3=2B.a3•a2=a6C.a6÷a3=a3D.(a3)2=a9【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.解:A、2a3﹣a3=a3,故本选项错误;B、a3•a2=a3+2=a5,故本选项错误;C、a6÷a3=a6﹣3=a3,故本选项正确;D、(a3)2=a3×2=a6,故本选项错误.故选:C.2.若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为()A.m=5,n=6B.m=1,n=﹣6C.m=1,n=6D.m=5,n=﹣6【分析】先根据多项式乘以多项式的法则计算(y+3)(y﹣2),再根据多项式相等的条件即可求出m、n的值.解:∵(y+3)(y﹣2)=y2﹣2y+3y﹣6=y2+y﹣6,∵(y+3)(y﹣2)=y2+my+n,∴y2+my+n=y2+y﹣6,∴m=1,n=﹣6.故选:B.3.下列各式中能用平方差公式计算的是()A.(3x﹣5y)(﹣3x﹣5y)B.(1﹣5m)(5m﹣1)C.(﹣x+2y)(x﹣2y)D.(﹣a﹣b)(b+a)【分析】由能由平方差公式运算的多项式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,即可求得答案.注意排除法在解选择题中的应用.解:A、(3x﹣5y)(﹣3x﹣5y)=﹣(3x﹣5y)(3x+5y)存在相同的项与互为相反数的项,故能用平方差公式计算.故本选项正确;B、(1﹣5m)(5m﹣1)=﹣(1﹣5m)(1﹣5m)两项都是相同,故不能用平方差公式计算.故本选项错误;C、(﹣x+2y)(x﹣2y)=﹣(x﹣2y)(x﹣2y)两项都是相同,故不能用平方差公式计算.故本选项错误;D、(﹣a﹣b)(b+a)=﹣(a+b)(b+a)两项都是相同,故不能用平方差公式计算.故本选项错误;故选:A.4.最薄的金箔的厚度为0.000000091m,将0.000000091用科学记数法表示为()A.9.1×108B.9.1×109C.9.1×10﹣8D.9.1×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000 0000 91=9.1×10﹣8,故选:C.5.如果x2+8x+m2是一个完全平方式,那么m的值是()A.4B.﹣4C.±4D.±8【分析】利用完全平方公式的结构特征判断即可求出m的值.解:∵x2+8x+m2是一个完全平方式,∴m2=16,解得:m=±4.故选:C.6.长方形的周长为24cm,其中一边为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2B.y=12﹣x2C.y=(12﹣x)•x D.y=2(12﹣x)【分析】先得到长方形的另一边长,那么面积=一边长×另一边长.解:∵长方形的周长为24cm,其中一边为x(其中x>0),∴长方形的另一边长为12﹣x,∴y=(12﹣x)•x.故选:C.7.如图,下列条件中不能判定AB∥CD的是()A.∠1+∠4=180°B.∠2=∠6C.∠5+∠6=180°D.∠3=∠5【分析】选项A中可得出∠1=∠5,从而判定AB∥CD;选项B中可得出∠4=∠6,从而判定AB∥CD;选项C中可得出∠4=∠6,从而判定AB∥CD;选项D中对顶角相等,不能判定AB∥CD.解:A、∵∠1+∠4=180°,∠5+∠4=180°,∴∠1=∠5,∴AB∥CD,不符合题意;B、∵∠2=∠4,∠2=∠6,∴∠4=∠6,∴AB∥CD,不符合题意C、∵∠5+∠4=180°,∠5+∠6=180°,∴∠4=∠6,∴AB∥CD,不符合题意D、对顶角相等,不能判定AB∥CD,符合题意.故选:D.8.如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°【分析】先根据平行线的性质先求出∠BFE,再根据外角性质求出∠B+∠C.解:∵AB∥DE,∠E=65°,∴∠BFE=∠E=65°.∵∠BFE是△CBF的一个外角,∴∠B+∠C=∠BFE=∠E=65°.故选:D.9.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°【分析】根据平行线的性质分别判断得出即可.解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同位角,故选:B.10.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1B.2C.3D.4【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.11.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm3,则R=()A.4cm B.5cm C.6cm D.7cm【分析】表示出增加后的半径算出体积后相减即可得到相应增加的体积,据此列出方程并解答.解:依题意得:8π(R+2)2﹣8πR2=192,解得r=5.故选:B.12.某星期天小李步行去图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.【分析】依题意可得小李步行速度匀速前进,然后中途因为遇到一个红灯停下来耽误了几分钟,然后加快速度但还是保持匀速前进,可把图象分为3个阶段.解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.二、填空题(每小题3分,共12分)13.已知变量x、y满足下面的关系x…﹣2﹣1012…y…﹣6﹣3036…则x、y之间用关系式表示为y=3x.【分析】观察这几组数据,找到其中的规律,然后再答案中找出符合要求的关系式.解:观察图表可知,每对x,y的对应值,y是x的3倍,故y与x之间的函数关系式:y=3x.故答案为:3x.14.若2m=3,4n=8,则23m﹣2n+3的值是27.【分析】根据同底数幂的除法,幂的乘方的性质的逆运用先表示成已知条件的形式,然后代入数据计算即可.解:∵2m=3,4n=8,∴23m﹣2n+3=(2m)3÷(2n)2×23,=(2m)3÷4n×23,=33÷8×8,=27.故答案为:27.15.若(7x﹣a)2=49x2﹣bx+9,则|a+b|=45.【分析】先将原式化为49x2﹣14ax+a2=49x2﹣bx+9,再根据各未知数的系数对应相等列出关于a、b的方程组,求出a、b的值代入即可.解:∵(7x﹣a)2=49x2﹣bx+9,∴49x2﹣14ax+a2=49x2﹣bx+9,∴﹣14a=﹣b,a2=9,解得a=3,b=42或a=﹣3,b=﹣42.当a=3,b=42时,|a+b|=|3+42|=45;当a=﹣3,b=﹣42时,|a+b|=|﹣3﹣42|=45.故答案为45.16.如图,AB∥ED,∠CAB=135°,∠ACD=75°,则∠CDE=30度.【分析】过C作CF∥AB,根据平行线性质得出∠ACF+∠CAB=180°,∠CDE=∠FCD,求出∠ACF,求出∠DCF即可.解:过C作CF∥AB,∵DE∥AB,∴AB∥CF∥DE,∴∠ACF+∠CAB=180°,∠CDE=∠FCD,∵∠CAB=135°,∴∠ACF=45°,∵∠ACD=75°,∴∠FCD=30°,∴∠EDC=30°,故答案为:30.三、解答题(共7题,共52分)17.(16分)计算(1)﹣23+×(2005+3)0﹣(﹣)﹣2(2)(﹣2x2y)2•3xy÷(﹣6x2y)(3)(2x+3y)(3y﹣2x)+(x﹣3y)(x+3y)(4)(2x+y+1)(1﹣2x﹣y)【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)原式先利用积的乘方与幂的乘方运算法则计算,再计算单项式乘除单项式法则计算即可求出值;(3)原式利用平方差公式计算,去括号合并即可得到结果;(4)原式利用平方差公式,以及完全平方公式计算即可求出值.解:(1)原式=﹣8+×1﹣9=﹣8+﹣9=﹣16;(2)原式=4x4y2•3xy÷(﹣6x2y)=12x5y3÷(﹣6x2y)=﹣2x3y2;(3)原式=9y2﹣4x2+x2﹣9y2=﹣3x2;(4)原式=1﹣(2x+y)2=1﹣(4x2+4xy+y2)=1﹣4x2﹣4xy﹣y2.18.先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣1,y=3.【分析】原式括号中利用完全平方公式,平方差公式计算,合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.解:原式=(4x2+4xy+y2+y2﹣4x2﹣6y)÷2y=(4xy+2y2﹣6y)÷2y=2x+y﹣3,当x=﹣1,y=3时,原式=﹣2+3﹣3=﹣2.19.已知|5﹣xy|+(x+y﹣7)2=0,求x2+y2﹣xy的值.【分析】根据非负数的性质列出方程得出x、y的关系式,代入所求代数式计算即可.解:根据题意,得∴5﹣xy=0,x+y﹣7=0,∴xy=5,x+y=7,∴x2+y2﹣xy=(x+y)2﹣3xy=49﹣15=34,即x2+y2﹣xy的值是34.20.在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行)∴∠B=∠DCE(两直线平行,同位角相等)又∵∠B=∠D(已知),∴∠DCE=∠D(等量代换)∴AD∥BE(内错角相等,两直线平行)∴∠E=∠DFE(两直线平行,内错角相等)【分析】根据平行线的判定和平行线的性质填空.【解答】证明:∵∠B+∠BCD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行)∴∠B=∠DCE(两直线平行,同位角相等)又∵∠B=∠D(已知),∴∠DCE=∠D(等量代换)∴AD∥BE(内错角相等,两直线平行)∴∠E=∠DFE(两直线平行,内错角相等).21.如图,图象L1反映了某公司产品的销售收入与销售量之间的关系,图象L2反映了某公司产品的销售成本与销售量之间的关系,则:(1)当销售量为2吨时,销售收入为多少元?销售成本呢?此时公司是赢利还是亏损?(2)当销售量等于多少时该公司收入等于销售成本?(3)当销售量在什么范围内时,该公司亏损?(4)要使公司赢利,你对公司有何建议?【分析】横轴代表销售量,纵轴代表收入,销售收入应看L1,销售成本应看L2.(1)当x=2时,所对应L1的纵坐标为2000,所对应L2的纵坐标为3000,所以亏损.(2)销售收入等于销售成本应该看两个函数图象的交点所对应的x的值;(3)该店亏本.应该是销售收入小于销售成本,即L1低于L2高度.(4)降低成本.解:(1)当销售量为2吨时,销售收入为2000元,销售成本为3000元,2000<3000,所以亏损.(2)当销售量为4吨时,该公司收入等于销售成本.(3)当销售量小于4吨时,该公司亏损.(4)要使公司赢利,就得降低成本或加大销售量.22.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB 与CD有怎样的位置关系?【分析】(1)先根据CD∥EF得出∠2=∠BCD,再由∠1=∠2得出∠1=∠BCD,进而可得出结论;(2)根据DG∥BC,∠3=85°得出∠BCG的度数,再由∠DCE:∠DCG=9:10得出∠DCE的度数,由DG是∠ADC的平分线可得出∠ADC的度数,由此得出结论.解:(1)DG∥BC.理由:∵CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC;(2)CD⊥AB.理由:∵由(1)知DG∥BC,∠3=85°,∴∠BCG=180°﹣85°=95°.∵∠DCE:∠DCG=9:10,∴∠DCE=95°×=45°.∵DG是∠ADC的平分线,∴∠ADC=2∠CDG=90°,∴CD⊥AB.23.如图,长方形ABCD,AB=CD=4,BC=AD=8,∠A=∠B=∠C=∠D=90°,E为CD边的中点,P为长方形ABCD边上的动点,动点P从A出发,沿着A→B→C→E 运动到E点停止,设点P经过的路程为x,△APE的面积为y.(1)当x=5时,在图1中画出草图,并求出对应y的值;(2)利用备用图画出草图,写出y与x之间的关系式.【分析】(1)画出当x=5时,相应图形,根据图形中各个图形的面积之间的关系求解即可;(2)分三种情况进行解答,即①0<x≤4时,即点P在AB上,②4<x≤12时,即点P 在BC上,③12<x≤14时,即点P在AB上,分别画出相应的图形,根据面积之间的关系,得出y与x之间的关系.解:(1)当x=5时,如图1,则BP=1,∴S△APE=S梯形ABCE﹣S△ABP﹣S△PCE,=(2+4)×8﹣×4×1﹣(8﹣1)×2=24﹣2﹣7=15;答:当x=5时,相应y的值为15(2)分三种情况进行解答,①点P在AB上,即0<x≤4时,如图2,此时AP=x,∴y=S△APE=x×8=4x,②点P在BC上,即4<x≤12时,如图3,此时,BP=x﹣4,PC=12﹣x,∴y=S△APE=S梯形ABCE﹣S△ABP﹣S△PCE,=(2+4)×8﹣×4×(x﹣4)﹣(12﹣x)×2=﹣x+20;③点P在AB上,即12<x≤14时,如图4,此时PE=14﹣x,∴y=S△APE=(14﹣x)×8=﹣4x+56,综上所述,y与x之间的关系式为,y=.。
2020-2021学年七年级下学期期中数学试卷及答案解析 (31)
2020-2021学年七年级下学期期中数学试卷一、选择题(每小题3分,共30分)1.计算(2x)2的结果是()A.2x2B.4x2C.4x D.2x解:(2x)2=22×x2=4x2.故选:B.2.下列语句中正确的是()A.相等的角是对顶角B.有公共顶点且相等的角是对顶角C.有公共顶点的两个角是对顶角D.角的两边互为反向延长线的两个角是对顶角解:A、相等的角不一定是对顶角,是假命题;B、有公共顶点且相等的角不一定是对顶角,错误;C、有公共顶点的两个角不一定是对顶角,错误;D、角的两边互为反向延长线的两个角是对顶角,正确;故选:D.3.下列运算正确的是()A.a2•a3=a6B.(ab)2=a2b2C.(a2)3=a5D.a2+a2=a4解:A、a2•a3=a2+3=a5,故本选项错误;B、(ab)2=a2b2,故本选项正确;C、(a2)3=a2×3=a6,故本选项错误;D、a2+a2=2a2,故本选项错误.故选:B.4.如果一个角的余角是30°,那么这个角的补角的度数是()A.30°B.60°C.90°D.120°解:由题意,得:180°﹣(90°﹣30°)=180°﹣60°=120°.故这个角的补角的度数是120°.故选:D.5.若物体运动的路程s(米)与时间t(秒)的关系式为s=3t2+2t+1,则当t=4秒时,该物体所经过的路程为()A.28米B.48米C.57米D.88米解:把t=4代入s=3t2+2t+1,得s=3×42+2×4+1=57(米).故选:C.6.在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中说法正确的是()A.①②⑤B.①②④C.①③⑤D.①④⑤解:①x是自变量,y是因变量;正确;②x的数值可以任意选择;正确;③y是变量,它的值与x无关;而y随x的变化而变化;错误;④用关系式表示的不能用图象表示;错误;⑤y与x的关系还可以用列表法和图象法表示,正确;故选:A.7.若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为()A.a=5,b=6B.a=1,b=﹣6C.a=1,b=6D.a=5,b=﹣6解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∴a=1,b=﹣6.故选:B.8.如图,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE 为()A.35°B.40°C.105°D.145°解:∵CD∥AB,∠B=40°,∠A=105°,∴∠DCE=∠B=40°,∠ACD=∠A=105°,∴∠ACE=∠ACD+∠DCE=145°.故选:D.9.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系()A.B.C.D.解:依题意,0~20min散步,离家路程从0增加到900m,20~30min看报,离家路程不变,30~45min返回家,离家从900m路程减少为0m.故选:D.10.设a=x﹣2017,b=x﹣2019,c=x﹣2018,若a2+b2=34,则c2的值是()A.16B.12C.8D.4解:∵a=x﹣2017,b=x﹣2019,a2+b2=34,∴(x﹣2017)2+(x﹣2019)2=34,∴(x﹣2018+1)2+(x﹣2018﹣1)2=34,∴(x﹣2018)2+2(x﹣2018)+1+(x﹣2018)2﹣2(x﹣2018)+1=34,∴2(x﹣2018)2=32,∴(x﹣2018)2=16,又c=x﹣2018,∴c2=16.故选:A.二、填空题(每小题4分,6小题共24分)11.(4分)如果a x•a3=a5,那么x=2.解:由题意,得x+3=5,解得x=2,故答案为:2.12.(4分)在关系式y=3x﹣1中,当x由1变化到5时,y由2变化到14.解:当x=1时,代入关系式y=3x﹣1中,得y=3﹣1=2;当x=5时,代入关系式y=3x﹣1中,得y=15﹣1=14.故答案为:2,14.13.(4分)如图,直线l1∥l2,被直线l所截,如果∠1=60°,那么∠2的度数为120°.解:∵直线l1∥l2,被直线l所截,∠1=60°,∴∠2=180°﹣60°=120°.故答案为:120°.14.(4分)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行80米.解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),所以小明回家的速度是每分钟步行800÷10=80(米).故答案为:80.15.(4分)已知:如图,OC⊥AB,OD⊥OE,则与∠AOD互余的角是∠COD,∠BOE.解:∵OC⊥AB,OD⊥OE,∴∠DOE=∠COB=∠AOC=90°,∴∠AOD+∠COD=∠AOD+∠BOE=90°,∴与∠AOD互余的角是∠COD,∠BOE.故答案为:∠COD,∠BOE.16.(4分)设4x2+mx+121是一个完全平方式,则m=±44.解:∵4x2+mx+121是一个完全平方式,∴mx=±2×11•2x,∴m=±44.故答案为:±44.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:(﹣2x3y2)3÷(2x2y)解:原式=﹣8x9y6÷2x2y=﹣4x7y5.18.(6分)先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=1 4.解:(a+2)(a﹣2)+a(4﹣a)=a2﹣4+4a﹣a2=4a﹣4,当a=14时,原式=4×14−4=1−4=−3.19.(6分)如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,求∠3的度数.解:∵a∥b,∠1=40°,∴∠4=∠1=40°,∴∠3=∠2+∠4=70°+40°=110°.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)若一个角的补角是这个角的余角的3倍,求这个角的度数.解:设这个角是x,则这个角的补角为180°﹣x,余角为90°﹣x,所以3(90°﹣x)=180°﹣x,整理,可得2x=90°,解得:x=45°,即这个角的度数为45°.21.(7分)已知y=﹣x2+(a﹣1)x+2a﹣3,当x=﹣1时,y=0,(1)求a的值;(2)当x=1时,求y的值.解:(1)由y=﹣x2+(a﹣1)x+2a﹣3,当x=﹣1时,y=0,得﹣1﹣(a﹣1)+2a﹣3=0,解得a=3;(2)函数解析式为y=﹣x2+2x+3,当x=1时,y=﹣1+2+3=4.22.(7分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.解:阴影部分的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63(平方米).五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=105°,求∠ACB的度数.解:(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=105°.24.(9分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?解:(1)设函数的解析式是y=kx,把x=40,y=64代入得:40k=64,解得k=1.6.则函数的解析式是y=1.6x.(2)∵价前西瓜售价每千克1.6元.降价0.4元后西瓜售价每千克1.2元.降价后销售的西瓜为(76﹣64)÷1.2=10(千克)∴小明从批发市场共购进50千克西瓜.(3)76﹣50×0.8=76﹣40=36(元).即小明这次卖瓜赚了36元钱.25.(9分)小学四年级我们已经知道三角形三个内角和是180°,对于如图1中,AC,BD 交于O点,形成的两个三角形中的角存在以下关系:①∠DOC=∠AOB②∠D+∠C=∠A+∠B.试探究下面问题:已知∠BAD的平分线AE与∠BCD的平分线CE交于点E,(1)如图2,若AB∥CD,∠D=30°,∠B=40°,则∠E=35°;(2)如图3,若AB不平行CD,∠D=30°,∠B=50°,则∠E=40°;(3)在总结前两问的基础上,借助图3,探究∠E与∠D、∠B之间是否存在某种等量关系?若存在,请说明理由;若不存在,请举例说明.解:(1)∠E=12(∠D+∠B)=35°;(2)∠E=12(∠D+∠B)=40°;(3)∠D+∠B=2∠E.简单说明:∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=12∠BCD,∠EAD=∠EAB=12∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E.故答案为:35°;40°.。
2019-2020学年广东省深圳中学初中部七年级(下)期中数学试卷
2019-2020学年广东省深圳中学初中部七年级(下)期中数学试卷一、选择题(每题3分,共36分)1.(3分)以下是各种交通标志指示牌,其中不是轴对称图形的是()A.B.C.D.2.(3分)以下列各组线段为边,能组成三角形的是()A.2cm,2cm,5cm B.3cm,4cm,7cmC.4cm,6cm,8cm D.5cm,6cm,12cm3.(3分)下列事件是必然事件的是()A.阴天一定会下雨B.打开电视机,任选一个频道,屏幕上正在播放新闻联播C.购买一张体育彩票,中奖D.任意画一个三角形,其内角和是180°4.(3分)如图,一个质地均匀的骰子,每个面上分别刻有1、2、3、4、5、6点,任意掷出骰子后,掷出的点数大于5的概率是()A.B.C.D.5.(3分)下列说法正确的是()A.如果两个角相等,那么这两个角是对顶角B.内错角相等C.过直线外一点有且只有一条直线与已知直线平行D.一个角的补角一定是钝角6.(3分)下列运算正确的是()A.(x+y)2=x2+y2B.(3x2)3=6x6C.2x3÷x2=2x D.(﹣x﹣y)(﹣x+y)=﹣x2﹣y27.(3分)如图,矩形的长、宽分别为a、b,周长为10,面积为6,则a2b+ab2的值为()A.60B.30C.15D.168.(3分)洗衣机在洗涤衣服时,每浆洗一遍都经历注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,如图中哪一个能大致刻画洗衣机内的水量y(单位:升)与浆洗一遍的时间x(单位:分)之间的关系()A.B.C.D.9.(3分)如图,已知∠1=∠2,AC=AD,增加下列条件:其中不能使△ABC≌△AED的条件()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.(3分)如图,直线a、b被直线c所截,下列条件中,不能判断直线a、b平行的是()A.∠1=∠4B.∠2=∠3C.∠1+∠4=180°D.∠1+∠3=180°11.(3分)一个蓄水池有15m3的水,以每分钟0.5m3的速度向池中注水,蓄水池中的水量Q(m3)与注水时间t (分)间的函数表达式为()A.Q=0.5t B.Q=15t C.Q=15+0.5t D.Q=15﹣0.5t12.(3分)如图,在等腰直角三角形ABD中,AD=BD,点F是AD上的一个动点,过点A作AC⊥BF,交BF的延长线于点E,交BD的延长线于点C,则下列说法错误的是()A.CD=DF B.AC=BFC.AD=BE D.∠CAD+∠ABF=45°二、填空题(每题3分,共12分)13.(3分)计算:a5÷a3=.14.(3分)如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD=.15.(3分)一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则蝴蝶停止在白色方格中的概率是.16.(3分)如图,在等腰△ABC中,AB=AC,BC=8,∠BAC=120°,作AD⊥BC于点D,AD=AB,点E为边AC上的中点,点P为BC上一动点,则P A+PE的最小值为.三、解答题(共52分)17.(9分)计算:(1)20200﹣1;(2)23×()﹣1;(3)19992﹣2000×1998(简便运算).18.(6分)化简求值:(2a+b)2﹣2(a﹣2b)(a+2b),其中a=,b=﹣2.19.(6分)小明家距离学校8千米,今天早晨,小明骑车上学途中,自行车出现故障,恰好路边有便民服务点,几分钟后车修好了,他增加速度骑车到校.我们根据小明的这段经历画了一幅图象(如图),该图描绘了小明行的路程s与他所用的时间t之间的关系.请根据图象,解答下列问题:(1)小明行了多少千米时,自行车出现故障?修车用了几分钟?(2)小明共用了多少时间到学校的?(3)小明修车前、后的行驶速度各是多少?(4)如果自行车未出现故障,小明一直用修车前的速度行驶,那么他比实际情况早到或晚到多少分钟(精确到0.1)?20.(8分)一只不透明的箱子里共有8个球,其中2个白球,1个红球,5个黄球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)再往箱子中放入黄球多少个,可以使摸到白球的概率达到0.2?21.(7分)已知:如图,点A、E、F、C在同一条直线上,AD∥CB,∠1=∠2,AE=CF.求证:△ADF≌△CBE.22.(7分)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.23.(9分)在等边三角形ABC中,AB=6,点D是BC边上的一点,点P是AB边上的一点,连接PD,以PD为边作等边三角形PDE,连接BE.(1)如图1,当点P与点A重合时,①找出图中的一对全等三角形,并证明;②BE+BD=;(2)如图2,若AP=1,请计算BE+BD的值.2019-2020学年广东省深圳中学初中部七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选:C.2.【解答】解:根据三角形的三边关系,知A、2+2<5,不能组成三角形;B、3+4=7,不能够组成三角形;C、2<8<10,能组成三角形;D、5+6<12,不能组成三角形.故选:C.3.【解答】解:A、阴天不一定会下雨,是不确定事件;B、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;C、购买一张体育彩票,中奖是不确定事件;D、任意画一个三角形,其内角和是180°是必然事件;故选:D.4.【解答】解:根据题意分析可得:掷一枚质地均匀的正方体骰子,掷出的点数大于5有只有“6”这1种情况,故掷出的点数大于5的概率是,故选:A.5.【解答】解:A、如果两个角相等,那么这两个角不一定是对顶角,还要看这两个角的位置关系,不正确;B、两直线平行,内错角相等,不正确;C、过直线外一点有且只有一条直线与已知直线平行,正确;D、一个角的补角可能是直角,也可能是锐角或钝角,不正确;故选:C.6.【解答】解:A、(x+y)2=x2+2xy+y2,故A选项错误;B、(3x2)3=27x6,故B选项错误;C、2x3÷x2=2x,故C选项正确;D、(﹣x﹣y)(﹣x+y)=x2﹣y2,故D选项错误.故选:C.7.【解答】解:∵边长分别为a、b的长方形的周长为10,面积6,∴2(a+b)=10,ab=6,则a+b=5,故ab2+a2b=ab(b+a)=6×5=30.故选:B.8.【解答】解:注水阶段,洗衣机内的水量从0开始逐渐增多,清洗阶段,洗衣机内的水量不变且保持一段时间,排水阶段,洗衣机内的水量开始减少,直至排空为0,故只有D选项图象符合题意.故选:D.9.【解答】解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,∴∠CAB=∠DAE,A、添加AB=AE可利用SAS定理判定△ABC≌△AED,故此选项符合题意;B、添加CB=DE不能判定△ABC≌△AED,故此选项符合题意;C、添加∠C=∠D可利用ASA定理判定△ABC≌△AED,故此选项符合题意;D、添加∠B=∠E可利用AAS定理判定△ABC≌△AED,故此选项符合题意;故选:B.10.【解答】解:A、∠1=∠4可以判定a,b平行,故本选项错误;B、∠2=∠3,可以判定a,b平行,故本选项错误;C、∠1+∠4=180°,不能判断直线a、b平行,故本选项正确;D、∠1+∠3=180°,可以判定a,b平行,故本选项错误.故选:C.11.【解答】解:∵一个蓄水池有15m3的水,以每分钟0.5m3的速度向池中注水,∴蓄水池中的水量Q(m3)与注水时间t(分)间的函数表达式是:Q=15+0.5t,故选:C.12.【解答】解:∵AC⊥BF,∴∠BEC=∠ADC=90°,∴∠C+∠DAC=90°,∠C+∠DBF=90°,∴∠DAC=∠DBF,又∵BD=AD,∠BDF=∠ADC=90°,∴△BDF≌△ADC(ASA),∴CD=DF,AC=BF,∠CAD=∠CBF,故选项A,B不合题意,∵∠DBF+∠ABF=45°,∴∠CAD+∠ABF=45°,故选项D不合题意,故选:C.二、填空题(每题3分,共12分)13.【解答】解:a5÷a3=a5﹣3=a2.故填a2.14.【解答】解:反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=80°,∴∠CMD=180°﹣∠BMD=100°;又∵∠CDE=∠CMD+∠C,∴∠BCD=∠CDE﹣∠CMD=140°﹣100°=40°.故答案是:40°15.【解答】解:∵正方形被等分成16份,其中白色方格占10份,∴蝴蝶停止在白色方格中的概率==.16.【解答】解:∵AB=AC,BC=8,AD⊥BC,∴BD=CD=4,∵AD=AB,∴∠B=30°,∴∠BAD=∠CAD=60°,延长AD至A',使AD=A'D,连接A'E,交BC于P,此时P A+PE的值最小,就是A'E的长,∵AD=AB,AA′=2AD,∴AA'=AB=AC,∠CAA'=60°,∴△AA'C是等边三角形,∵E是AC的中点,∴A'E⊥AC,∴A'E=CD=4,即P A+PE的最小值是4,故答案为:4.三、解答题(共52分)17.【解答】解:(1)原式=1﹣1=0;(2)原式=8×2=16;(3)原式=19992﹣(1999+1)(1999﹣1)=19992﹣19992+1=1.18.【解答】解:原式=4a2+4ab+b2﹣2(a2﹣4b2)=4a2+4ab+b2﹣2a2+8b2=2a2+4ab+9b2,当a=,b=﹣2时,原式=2×+4××(﹣2)+9×(﹣2)2=﹣4+36=.19.【解答】解:(1)由图可知,小明行了3千米时,自行车出现故障,修车用了15﹣10=5(分钟);(2)小明共用了30分钟到学校;(3)修车前速度:3÷10=0.3千米/分,修车后速度:5÷15=千米/分;(4)8÷=(分种),30﹣=≈3.3(分钟),答:他比实际情况早到3.3分钟.20.【解答】解:(1)P(白球)=;答:随机摸出一个白球的概率是.(2)设再往箱子中放入黄球x个,根据题意,得(8+x)×0.2=2,答:放入2个黄球.21.【解答】证明:∵AD∥CB,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ADF和△CBE中,∴△ADF≌△CBE(ASA).22.【解答】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.23.【解答】解:(1)①△ACD≌△ABE,理由如下:∵△ABC,△ADE是等边三角形,∴AB=AC,AE=AD,∠EAD=∠BAC=60°,∴∠BAE=∠CAD,∴△BAE≌△CAD(SAS),②∵△BAE≌△CAD,∴BE=CD,∴BE+BD=CD+BD=BC=6,故答案为:6;(2)如图2,过点P作PQ∥AC,交BC于点Q,∵△ABC是等边三角形,∴AB=BC=AC=6,∠A=∠C=∠ABC=60°,∵PQ∥AC,∴∠BPQ=∠A=60°,∠C=∠BQP=60°=∠ABC,∴△BPQ是等边三角形,∴BP=BQ=PQ,∠BPQ=∠EPD=60°,∴∠BPE=∠QPD,又∵BP=PQ,PE=PD,∴△BPE≌△QPD(SAS),∴BE=DQ,∴BE+BD=DQ+BD=BQ=BP=AB﹣AP=6﹣1=5.。
2020-2021学年七年级下学期期中数学试卷及答案解析 (36)
2020-2021学年七年级下学期期中数学试卷一、选择题(本题共有12小題,每小题3分,共36分,每小题有四个选项,其中有一个是正确的)1.−67的绝对值是( )A .67B .−76C .−67D .76 解:−67的绝对值是67.故选:A .2.港珠澳大桥的桥隧全长55000米,是世界最长的跨海大桥,数字55000用科学记数法表示为( )A .5.5×104B .0.55×104C .5.5×103D .55×103解:将55000用科学记数法表示应为:5.5×104.故选:A .3.图是由几个正方体组成的立体图形,则这个立体图形从左看到的平面图形是( )A .B .C .D .解:从左面看易得第一层左上角有1个正方形,第二层最有2个正方形.故选:A .4.某商品的进价为200元,标价为300元,打x 折销售时后仍获利5%,则x 为( )A .7B .6C .5D .4解:设商品是按标价的x 折销售的,根据题意列方程得:(300×x 10−200)÷200=5%,解得:x =7.则此商品是按标价的7折销售的.故选:A .5.如图,将一块含30°的三角板叠放在直尺上.若∠1=40°,则∠2=( )A .45°B .50°C .60°D .70°解:如图,∵直尺的两边互相平行,∴∠3=∠1=40°,∴∠4=∠3=40°,∴∠2=∠4+30°=40°+30°=70°.故选:D .6.下列运算正确的是( )A .3x 3﹣5x 3=﹣2xB .6x 3÷2x ﹣2=3xC .(13x 3)2=19x 6D .﹣3(2x ﹣4)=﹣6x ﹣12解:A 、3x 3﹣5x 3=﹣2x 3,原式计算错误,故本选项错误;B 、6x 3÷2x ﹣2=3x 5,原式计算错误,故本选项错误; C 、(13x 3)2=19x 6,原式计算正确,故本选项正确; D 、﹣3(2x ﹣4)=﹣6x +12,原式计算错误,故本选项错误;故选:C .7.下列说法正确的是( )A .单项式32nx 2y 的系数是32B .同一平面内,过一点有且只有一条直线与已知直线平行C .内错角相等,两直线平行D .若AB =BC ,则点B 是线段AC 的中点解:A 、单项式32nx 2y 的系数是32n ,故A 错误;B、同一平面内,过直线外一点有且只有一条直线与已知直线平行,故B错误;C、内错角相等,两直线平行,故C正确;D、A、B、C在同一条直线上,若AB=BC,则点B是线段AC的中点,故D错误;故选:C.8.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.9.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.AAS C.ASA D.SSS解:由作法得OD=OC=OC′=OD′,CD=C′D′,则可根据“SSS”可判定△OCD≌△OC′D′,所以∠A′O′B′=∠AOB.故选:D.10.从A地向B地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若通话t分钟(t≥3),则需付电话费y(元)与t(分钟)之间的函数关系式是()A.y=t﹣0.5B.y=t﹣0.6C.y=3.4t﹣7.8D.y=3.4t﹣8解:根据题意得:y=2.4+(t﹣3)=t﹣0.6(t≥3).故选:B.11.观察下列关于a的单项式,探究其规律:a,3a2,5a3,7a4,9a5,….按照上述规律,第2019个单项式是()A.2019a2019B.4039a2019C.4038a2019 D.4037a2019解:根据分析的规律,得第2019个单项式是4037x2019.故选:D.12.如图,两个正方形边长分别为a、b,如果a+b=9,ab=12,则阴影部分的面积为()A.25B.22.5C.13D.6.5解:当a+b=7,ab=12时,由题意得:S阴影=12a2−12b(a﹣b)=12a2−12ab+12b2=12[(a+b)2﹣2ab]−12ab=12(81﹣24)﹣6=22.5故选:B.二、填空题.(本题共有2小题,每小题3分,共6分)13.若﹣5x a+5y3+8x3y b=3x3y3,则ab的值是﹣6.解:∵﹣5x a+5y3+8x3y b=3x3y3,∴a+5=3,b=3,解得:a=﹣2,故ab=﹣6.故答案为:﹣6.14.在同一平面内已知∠AOB=80°,∠BOC=20°,OM、ON分别是∠AOB和∠BOC的平分线,则∠MON的度数是30°或50°.解:∠BOC在∠AOB内部时,∵∠AOB=80°,其角平分线为OM,∴∠MOB=40°,∵∠BOC=20°,其角平分线为ON,∴∠BON=10°,∴∠MON=∠MOB﹣∠BON=40°﹣10°=30°;∠BOC在∠AOB外部时,∵∠AOB=80°,其角平分线为OM,∴∠MOB=40°,∵∠BOC=20°,其角平分线为ON,∴∠BON=10°,∴∠MON=∠MOB+∠BON=40°+10°=50°,故答案为:30°或50°.三、解答题(本题6分)15.(6分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×1602000=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).一、填空题[每题3分,共2题,共6分)16.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为10.解:∵(a﹣4)(a﹣2)=3,∴[(a﹣4)﹣(a﹣2)]2=(a﹣4)2﹣2(a﹣4)(a﹣2)+(a﹣2)2=(a﹣4)2+(a﹣2)2﹣2×3=4,∴(a﹣4)2+(a﹣2)2=10.故答案为:10.17.如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高,点E 从点B出发,在直线BC上以2cm的速度移动,过点E作BC的垂线交直线CD于点F,当点E运动2或5s时,CF=AB.解:①如图,当点E在射线BC上移动时,若E移动5s,则BE=2×5=10(cm),∴CE=BE﹣BC=10﹣3=7cm.∴CE=AC,在△CFE与△ABC中,{∠ECF=∠ACE=AC∠CEF=∠ACB,∴△CEF ≌△ABC (ASA ),∴CF =AB ,②当点E 在射线CB 上移动时,若E 移动2s ,则BE ′=2×2=4(cm ),∴CE ′=BE ′+BC =4+3=7(cm ),∴CE ′=AC ,在△CF ′E ′与△ABC 中,{∠E′CF =∠A CE′=AC ∠CEF′=∠ACD =90°,∴△CF ′E ′≌△ABC (ASA ),∴CF ′=AB ,综上所述,当点E 在射线CB 上移动5s 或2s 时,CF ′=AB ;故答案为:2或5.二、解答题18.(8分)(1)计算:(12)−1−(3.14﹣π)0+|﹣3|﹣0.253×43(2)解方程;x 6−30−x 4=5解:(1)原式=2﹣1+3﹣(0.25×4)3=4﹣1=3;(2)去分母得:2x ﹣3(30﹣x )=60,则2x ﹣90+3x =60,整理得:5x =150,解得:x =30.19.(6分)化简求值:[(2x +y )2﹣(2x +y )(x ﹣y )﹣2x 2]÷(﹣2y ),其中x =﹣2,y =12.解:原式=(4x2+4xy+y2﹣2x2+2xy﹣xy+y2﹣2x2)÷(﹣2y)=(5xy+2y2)÷(﹣2y)=−5 2x﹣y,当x=﹣2,y=12时,原式=5−12=412.20.(6分)如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,那么EC与DF平行吗?为什么?请完成下面的解题过程解:∵BD平分∠ABC,CE平分∠ACB(已知)∴∠DBC=12∠ABC,∠ECB=12∠ACB∵∠ABC=∠ACB(已知)∴∠DBC=∠ECB.∠F=∠DBF(已知)∴∠F=∠ECB∴EF∥AD(同位角相等,两直线平行).解:∵BD平分∠ABC,CE平分∠ACB(已知)∴∠DBC=12∠ABC,∠ECB=12∠ACB,∵∠ABC=∠ACB(已知)∴∠DBC=∠ECB.∵∠DBF=∠F,(已知)∴∠F=∠ECB,∴EF∥AD(同位角相等,两直线平行).21.(8分)小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,l1描述小凡的运动过程;(2)小凡谁先出发,先出发了10分钟;(3)小光先到达图书馆,先到了10分钟;(4)当t=34分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=18千米/分钟,小光所走的路程为3千米时,用的时间为:3÷18=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:520+(60−50)60=10(千米/小时),小光的速度为:550−1060=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.22.(8分)如图,在△ABC中,D是BC的中点,过D点的直线EG交AB于点E,交AB 的平行线CG于点G,DF⊥EG,交AC于点F.(1)求证:BE=CG;(2)判断BE+CF与EF的大小关系,并证明你的结论.解:(1)∵D是BC的中点,∴BD=CD,∵AB∥CG,∴∠B=∠DCG,又∵∠BDE=∠CDG,∴△BDE≌△CDG,∴BE=CG;(2)BE+CF>EF.理由:如图,连接FG,∵△BDE≌△CDG,∴DE=DG,又∵FD⊥EG,∴FD垂直平分EG,∴EF=GF,又∵△CFG中,CG+CF>GF,∴BE+CF>EF.23.(10分)(1)如图1中,∠ABC=90°,AB=BC,点B在直线上L上,过A、C两点作直线L的连线段垂足分别为点D、点E,求证:△ADB≌△BEC;(2)如图2,△ABC中,∠ACB=90°,AC=6,BC=8,点P从A点出发沿A﹣C﹣B 路径向终点运动,终点为B点,点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A 点,点P与Q分别以1和3的迳动速度同时开始运动,两点都要到相应的终点才能停止运动,在某时刻,分别过P和Q作PF⊥l于B,QF垂直l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.(1)证明:∵△ABC是等腰直角三角形,∴AB=AC.∠ABC=90°,∵AD⊥l,CE⊥l,∴∠ADB=∠BEC=∠ABC=90°,∴∠DAB+∠DBA=90°,∠DBA+∠CBE=90°,∴∠DAB=∠CBE,∴△ADB≌△BEC,(2)解:设运动时间为t秒时,△PEC≌△QFC,∵△PEC≌△QFC,∴斜边CP=CQ,有四种情况:①P在AC上,Q在BC上,如图2所示:CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,如图3所示:∴CP=6﹣t=3t﹣8,∴t=3.5;③P在BC上,Q在AC时,此时不存在;如图4所示:理由是:8÷3×1<6,Q到AC上时,P应也在AC上;④当Q到A点(和A重合),P在BC上时,如图5所示:∵CQ=CP,CQ=AC=6,CP=t﹣6,∴t﹣6=6∴t=12∵t<14∴t=12符合题意即点P运动1或3.5或12秒时,△PEC与△QFC全等.。
【精品】广东省深圳市南山区七年级下册期中数学试卷及答案
2019-2020学年广东省深圳市南山区七年级(下)期中数学试卷一.选择题(每题3分,共36分)1.下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=﹣a6C.(ab)3=ab3D.a8÷a2=a42.21300000用科学记数法表示是()A.21.3×106B.2.13×105C.2.13×107D.21.3×1053.下面是一名学生所做的4道练习题:①﹣22=4②a3+a3=a6③4m﹣4=④(xy2)3=x3y6,他做对的个数()A.1 B.2 C.3 D.44.若a2﹣b2=,a﹣b=,则a+b的值为()A.﹣ B.C.D.25.计算(﹣0.25)2013×42013的结果是()A.﹣1 B.1 C.0.25 D.440266.若x2+mx+4是一个完全平方公式,则m的值为()A.2 B.2或﹣2 C.4 D.4或﹣47.如图,点E在BC的延长线上,则下列条件中,能判定AD∥BC的是()A.∠3=∠4 B.∠B=∠DCE C.∠1=∠2 D.∠D+∠DAB=180°8.如图AB、CD交于点O,OE⊥AB于O,则下列不正确的是()A.∠AOC与∠BOD是对顶角B.∠BOD和∠DOE互为余角C.∠AOC和∠DOE互为余角D.∠AOE和∠BOC是对顶角9.两根木棒分别为5cm和7cm,要选择第三根,将它们钉成一个三角形,如果第三根木棒长为偶数,则方法有()A.3种B.4种C.5种D.6种10.要测量河岸相对两点A、B的距离,已知AB垂直于河岸BF,先在BF上取两点C、D,使CD=CB,再过点D作BF的垂线段DE,使点A、C、E在一条直线上,如图,测出BD=10,ED=5,则AB的长是()A.2.5 B.10 C.5 D.以上都不对11.若a m=8,a n=2,则a m﹣2n的值等于()A.1 B.2 C.4 D.1612.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF、CE,且∠FBD=35°,∠BDF=75°,下列说法:①△BDF≌CDE;②ABD和△ACD面积相等;③BF∥CE;④∠DEC=70°,其中正确的有()A.1个B.2个C.3个D.4个二.填空题(每题3分,共12分)13.一个角的度数是40°,那么它的余角的补角的度数是.14.如果等腰三角形两边长是6cm和3cm,那么它的周长是cm.15.已知m﹣n=2,mn=﹣1,则(1+2m)(1﹣2n)的值为.16.如图,在直角△ABC中,∠C=90°,AC=12cm,BC=5cm,AB=13cm,则点C到边AB距离等于cm.三.解答题(共52分)17.计算题(1)x2y×(﹣2xy2)(2)(﹣1)2014﹣(3﹣π)0+(﹣)﹣2(3)2011×2013﹣20122(4)(4a3b﹣6a3b2﹣10ab2)÷(2ab)18.先化简,再求值[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x);其中x=2,y=.19.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:;(3)你认为(2)中所写的等式一定成立吗?说明理由.20.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D,试说明:AC∥DF,将过程补充完整.解:∵∠1=∠2(已知)∠1=∠3()∴∠2=∠3(等量代换)∴EC∥DB()∴∠C=∠ABD()又∵∠C=∠D(已知)∴∠D=∠ABD()∴AC∥DF()21.如图,已知∠AOB,以O为圆心,以任意长为半径画弧,分别交OA、OB于D、E两点,再分别以D、E为圆心,大于DE长为半径画弧,两条弧交于点C,作射线OC,则OC是∠AOB的角平分线吗?说明理由.22.已知:如图,BC∥EF,AD=BE,BC=EF,试证明AC=DF.23.平面内的两条直线有相交和平行两种位置关系(1)已知AB平行于CD,如a图,当点P在AB、CD外部时,∠BPD+∠D=∠B即∠BPD=∠B﹣∠D,为什么?请说明理由.如b图,将点P移动到AB、CD内部,以上结论是否仍然成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.2019-2020学年广东省深圳市南山区七年级(下)期中数学试卷参考答案与试题解析一.选择题(每题3分,共36分)1.下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=﹣a6C.(ab)3=ab3D.a8÷a2=a4【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为a3•a2=a5,故A错误;B、(﹣a2)3=﹣a6,故B正确;C、应为(ab)3=a3b3,故C错误;D、应为a8÷a2=a6,故D错误.故选:B.2.21300000用科学记数法表示是()A.21.3×106B.2.13×105C.2.13×107D.21.3×105【考点】科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:21300000=2.13×107.故选:C.3.下面是一名学生所做的4道练习题:①﹣22=4②a3+a3=a6③4m﹣4=④(xy2)3=x3y6,他做对的个数()A.1 B.2 C.3 D.4【考点】幂的乘方与积的乘方;合并同类项;负整数指数幂.【分析】根据有理数的乘方,合并同类项法则,负整数指数次幂等于正整数指数幂的倒数,积的乘方的性质对各小题分析判断即可得解.【解答】解:①﹣22=﹣4,故本小题错误;②a3+a3=2a3,故本小题错误;③4m﹣4=,故本小题错误;④(xy2)3=x3y6,故本小题正确;综上所述,做对的个数是1.故选A.4.若a2﹣b2=,a﹣b=,则a+b的值为()A.﹣B. C. D.2【考点】平方差公式.【分析】已知第一个等式利用平方差公式化简,将第二个等式代入计算即可求出a+b的值.【解答】解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=,故选B5.计算(﹣0.25)2013×42013的结果是()A.﹣1 B.1 C.0.25 D.44026【考点】幂的乘方与积的乘方.【分析】由(﹣0.25)2013×42013=(﹣0.25×4)2013,根据幂的乘方与积的乘方的运算法则求解即可.【解答】解:原式=(﹣0.25×4)2013=(﹣1)2013=﹣1.故选A.6.若x2+mx+4是一个完全平方公式,则m的值为()A.2 B.2或﹣2 C.4 D.4或﹣4【考点】完全平方式.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍.【解答】解:∵x2+mx+4是一个完全平方公式,∴x2+mx+4=(x±2)2,∴m=±4,故选:D.7.如图,点E在BC的延长线上,则下列条件中,能判定AD∥BC的是()A.∠3=∠4 B.∠B=∠DCE C.∠1=∠2 D.∠D+∠DAB=180°【考点】平行线的判定.【分析】根据内错角相等,两直线平行解答.【解答】解:∵∠3=∠4,∴AD∥BC.故选:A.8.如图AB、CD交于点O,OE⊥AB于O,则下列不正确的是()A.∠AOC与∠BOD是对顶角B.∠BOD和∠DOE互为余角C.∠AOC和∠DOE互为余角D.∠AOE和∠BOC是对顶角【考点】对顶角、邻补角;余角和补角.【分析】根据垂直的定义以及对顶角相等和互为余角的定义对各选项分析判断即可得解.【解答】解:A、∠AOC与∠BOD是对顶角正确,故本选项错误;B、∵OE⊥AB,∴∠BOE=90°,∴∠BOD和∠DOE互为余角正确,故本选项错误;C、∵∠AOC=∠BOD(对顶角相等),∠BOD和∠DOE互为余角,∴∠AOC和∠DOE互为余角正确,故本选项错误;D、应为∠AOD和∠BOC是对顶角,故本选项正确.故选D.9.两根木棒分别为5cm和7cm,要选择第三根,将它们钉成一个三角形,如果第三根木棒长为偶数,则方法有()A.3种B.4种C.5种D.6种【考点】三角形三边关系.【分析】根据三角形的三边关系可求得第三边的取值范围,再求得其中的偶数的个数即可求得答案.【解答】解:设第三根木棒的长度为xcm,由三角形三边关系可得7﹣5<x<7+5,即2<x<12,又x为偶数,∴x的值为4,6,8,10,共四种,故选B.10.要测量河岸相对两点A、B的距离,已知AB垂直于河岸BF,先在BF上取两点C、D,使CD=CB,再过点D作BF的垂线段DE,使点A、C、E在一条直线上,如图,测出BD=10,ED=5,则AB的长是()A.2.5 B.10 C.5 D.以上都不对【考点】全等三角形的应用.【分析】由AB、ED均垂直于BD,即可得出∠ABC=∠EDC=90°,结合CD=CB、∠ACB=∠ECD即可证出△ABC≌△EDC(ASA),由此即可得出AB=ED=5,此题得解.【解答】解:∵AB⊥BD,ED⊥AB,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED=5.故选C.11.若a m=8,a n=2,则a m﹣2n的值等于()A.1 B.2 C.4 D.16【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】先将a m﹣2n变形为a m÷(a n)2,再带入求解即可.【解答】解:原式=a m÷(a n)2=8÷4=2.故选B.12.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF、CE,且∠FBD=35°,∠BDF=75°,下列说法:①△BDF≌CDE;②ABD和△ACD面积相等;③BF∥CE;④∠DEC=70°,其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;三角形的面积.【分析】根据三角形中线的定义可得BD=CD,得出△ABD的面积=△ACD的面积,然后利用“边角边”证明△BDF和△CDE全等,由全等三角形的性质得出∠F=∠CED,∠DEC=∠F,再根据内错角相等,两直线平行可得BF∥CE,最后根据三角形内角和定理求出∠F,得出④正确,即可得出结论.【解答】解:∵AD是△ABC的中线,∴BD=CD,∴△ABD的面积=△ACD的面积,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故①②正确∴∠F=∠CED,∠DEC=∠F,∴BF∥CE,故③正确,∵∠FBD=35°,∠BDF=75°,∴∠F=180°﹣35°﹣75°=70°,∴∠DEC=70°,故④正确;综上所述,正确的是①②③④4个.故答案为:D.二.填空题(每题3分,共12分)13.一个角的度数是40°,那么它的余角的补角的度数是130°.【考点】余角和补角.【分析】根据互余两角之和为90°,互补两角之和为180°即可求解.【解答】解:∵一个角的度数是40°,∴它的余角=90°﹣40°=50°,则它的余角的补角=180°﹣50°=130°.故答案为:130°.14.如果等腰三角形两边长是6cm和3cm,那么它的周长是15 cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故填15.15.已知m﹣n=2,mn=﹣1,则(1+2m)(1﹣2n)的值为9 .【考点】单项式乘多项式.【分析】直接利用多项式乘以多项式运算法则进而将原式变形,将已知代入求出答案.【解答】解:∵m﹣n=2,mn=﹣1,∴(1+2m)(1﹣2n)=1﹣2n+2m﹣4mn=1+2(m﹣n)﹣4mn=1+4+4=9.故答案为:9.16.如图,在直角△ABC中,∠C=90°,AC=12cm,BC=5cm,AB=13cm,则点C到边AB距离等于cm.【考点】点到直线的距离;三角形的面积.【分析】过C作CH⊥AB,根据三角形的面积可得×12×5=×13×CH,再解出CH长即可.【解答】解:过C作CH⊥AB,∵AC=12cm,BC=5cm,AB=13cm,∴×12×5=×13×CH,解得:CH=,故答案为:.三.解答题(共52分)17.计算题(1)x2y×(﹣2xy2)(2)(﹣1)2014﹣(3﹣π)0+(﹣)﹣2(3)2011×2013﹣20122(4)(4a3b﹣6a3b2﹣10ab2)÷(2ab)【考点】整式的除法;单项式乘单项式;平方差公式;零指数幂;负整数指数幂.【分析】(1)原式利用单项式乘以单项式法则计算即可得到结果;(2)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果;(3)原式变形后,利用平方差公式计算即可得到结果;(4)原式利用多项式除以单项式法则计算即可得到结果.【解答】解:(1)原式=﹣x3y3;(2)原式=1﹣1+9=9;(3)原式=×﹣20122=20122﹣1﹣20122=﹣1;(4)原式=2a2﹣3a2b﹣5b.18.先化简,再求值[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x);其中x=2,y=.【考点】整式的混合运算—化简求值.【分析】先根据平方差公式和完全平方公式化简整式,再把x,y的值代入计算即可.【解答】解:原式=(x2+4xy+4y2﹣3x2+xy+3xy+y2﹣5y2)÷2x=(﹣2x2+8xy)÷2x=﹣2x+4y,当x=2,y=时,原式=﹣2×2+4×=﹣4+2=2.19.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:④4×6﹣52=﹣1 ;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:(2n﹣1)(2n+1)﹣(2n)2=﹣1 ;(3)你认为(2)中所写的等式一定成立吗?说明理由.【考点】规律型:数字的变化类.【分析】(1)直接写出算式;(2)按每个数的规律分别找出并组合即可;(3)把(2)中的式子左边按多项式乘以多项式法则进行化简,发现等式成立.【解答】解:(1)④4×6﹣52=﹣1,故答案为:④4×6﹣52=﹣1,(2观察算式发现:左边:第一个数依次为1、3、5,是连续奇数,表示为2n﹣1,第2个数为:3、4、5,也是连续奇数,表示为2n+1,第三个数依次为:12、22、32,因此表示为n2,右边都为﹣1所以(2n﹣1)(2n+1)﹣(2n)2=﹣1故答案为:(2n﹣1)(2n+1)﹣(2n)2=﹣1;(3)左边=(2n﹣1)(2n+1)﹣(2n)2=4n2﹣1﹣4n2=﹣1所以(2)中所写的等式一定成立.20.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D,试说明:AC∥DF,将过程补充完整.解:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴EC∥DB(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴AC∥DF(内错角相等,两直线平行)【考点】平行线的判定与性质.【分析】由条件可先证明EC∥DB,可得到∠D=∠ABD,再结合条件两直线平行的判定可证明AC∥DF,依次填空即可.【解答】解:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴EC∥DB(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴AC∥DF(内错角相等,两直线平行)故答案为:对顶角相等;同位角相等,两条直线平行;两条直线平行,同位角相等;等量代换;内错角相等,两条直线平行.21.如图,已知∠AOB,以O为圆心,以任意长为半径画弧,分别交OA、OB于D、E两点,再分别以D、E为圆心,大于DE长为半径画弧,两条弧交于点C,作射线OC,则OC是∠AOB的角平分线吗?说明理由.【考点】作图—基本作图.【分析】连接CE、CD,证明△OEC≌△ODC,即可得出结论.【解答】解:连接CE、CD,由作图得:OE=OD,EC=DC,∵OC=OC,∴△OEC≌△ODC(SSS),∴∠AOC=∠BOC,∴OC是∠AOB的角平分线.22.已知:如图,BC∥EF,AD=BE,BC=EF,试证明AC=DF.【考点】全等三角形的判定与性质;平行线的性质.【分析】根据两直线平行,同位角相等可得∠ABC=∠E,再求出AB=DE,然后利用“边角边”证明△ABC 和△DEF全等,根据全等三角形对应边相等证明即可.【解答】证明:∵BC∥EF,∴∠ABC=∠E,∵AD=BE,∴AB=DE,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AC=DF.23.平面内的两条直线有相交和平行两种位置关系(1)已知AB平行于CD,如a图,当点P在AB、CD外部时,∠BPD+∠D=∠B即∠BPD=∠B﹣∠D,为什么?请说明理由.如b图,将点P移动到AB、CD内部,以上结论是否仍然成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.【考点】平行线的性质;旋转的性质.【分析】(1)①利用平行线的性质和三角形的外角即可;②利用平行线的特点作出平行线,再利用平行线的性质即可;(2)利用三角形的外角等于与它不相邻的两内角的和即可;(3)利用三角形的外角的性质把角转化到四边形CDHM中,用四边形的内角和即可.【解答】解:(1)①∵AB∥CD,∴∠B=∠COP,∵∠COP=∠BPD+∠D,∴∠B=∠BPD+∠D,即:∠BPD=∠B﹣∠D,②不成立,结论:∠BPD=∠B+∠D,理由:如图b,过点P作PG∥AB,∴∠B=∠BPG,∵PG∥AB,CD∥AB,∴PG∥CD,∴∠DPG=∠D,∴∠BPD=∠BPG+∠DPG=∠B+∠D;(2)结论:∠DPQ=∠B+∠BQD+∠D,理由:如图c,连接QP并延长,∵∠BP∠G是△BPQ的外角,∴∠BPG=∠B+∠BQP,同理:∠DPG=∠D+∠DQP,∴∠BPD=∠BPG+∠DPG=∠B+∠BQP+∠DQP+∠D=∠B+∠BQD+∠D;(3)如图d,∵∠DHM是△BFH的外角,∴∠DHM=∠B+∠F,同理:∠CMH=∠A+∠E,∴∠A+∠B+∠C+∠D+∠E+∠F=∠DHM+∠CMH+∠C+∠D=360°.。
深圳市南山区2019-2020学年七年级上期末数学试卷及解析
2019-2020学年广东省深圳市南山区七年级(上)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)下列调查中,最适合采用普查方式进行的是()A.对深圳市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对央视“新闻60分”栏目收视率的调查D.对某中学教师的身体健康状况的调查2.(3分)在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是()A.用两颗钉子固定一根木条B.把弯路改直可以缩短路程C.用两根木桩拉一直线把树栽成一排D.沿桌子的一边看,可将桌子排整齐3.(3分)2017年11月19日上午8:00,“2017华润•深圳南山半程马拉松赛”在华润深圳湾体育中心(“春茧”)前正式开跑,共有约16000名选手参加了比赛.16000用科学记数法可表示为()A.0.16×104B.0.16×105C.1.6×104D.1.6×105 4.(3分)下列计算正确的是()A.3x2y﹣2x2y=x2y B.5y﹣3y=2C.3a+2b=5ab D.7a+a=7a25.(3分)如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm6.(3分)下列结论中,正确的是()A.单项式3xy27的系数是3,次数是2B.单项式m的次数是1,没有系数C.单项式﹣xy2z的系数是﹣1,次数是4D.多项式2x2+xy+3是三次三项式7.(3分)若x2+3x﹣5的值为7,则3x2+9x﹣2的值为()A.44B.34C.24D.148.(3分)有理数a在数轴上的位置如图所示,下列各数中,可能在0到1之间的是()A.|a|﹣1B.|a|C.﹣a D.a+19.(3分)如图是小刚一天中的作息时间分配的扇形统计图,如果小刚希望把自己每天的阅读时间调整为2小时,那么他的阅读时间需增加()A.105分钟B.60分钟C.48分钟D.15分钟10.(3分)如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()A.4B.6C.12D.811.(3分)某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.250元B.200元C.150元D.100元12.(3分)如图所示,∠BAC=90°,AD⊥BC,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥AD+BD>AB.A.2个B.3个C.4个D.5个二、填空题:(本题共有4题,每小题3分,共12分.把答案填在答题卡上)13.(3分)如图所示,截去正方体一角变成一个新的多面体,这个多面体有个面.14.(3分)a的相反数是−32,则a的倒数是.15.(3分)x,y表示两个数,规定新运算“※”及“△”如下:x※y=6x+5y,x△y=3xy,那么(﹣2※3)△(﹣4)=.16.(3分)如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n个图案有1499个黑棋子,则n=.三、解答题(本大题有7题,其中17题9分,18题8分,19题7分,20题7分,21题7分,22题7分,23题7分,共52分,把答案填在答题卷上)17.(9分)计算:(1)(﹣4)×3+(﹣18)÷(﹣2)(2)−22+(23−34)×12(3)先化简,再求值:x2﹣(5x2﹣4y)+3(x2﹣y),其中x=﹣1,y=2.18.(8分)解答下列方程的问题(1)已知x=3是关于x的方程:4x﹣a=3+ax的解,那么a的值是多少?(2)解方程:5x−76+1=3x−14.19.(7分)如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.(1)图中有个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图、左视图;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加个小正方体.20.(7分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名学生?(2)将图1补充完整;(3)求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.21.(7分)我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=54°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠CBE的度数.22.(7分)阅读理解:高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常烦琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程. 解:设s=1+2+3+…+100,①则s=100+99+98+…+1,②①+②,得2s=101+101+101+ (101)(两式左右两端分别相加,左端等于2S ,右端等于100个101的和)所以2s=100×101,s=12×100×101=5050③ 所以1+2+3+…+100=5050.后来人们将小高斯的这种解答方法概括为“倒序相加法”.请解答下面的问题:(1)请你运用高斯的“倒序相加法”计算:1+2+3+ (200)(2)请你认真观察上面解答过程中的③式及你运算过程中出现类似的③式,猜想:1+2+3+…+n= .(3)计算:101+102+103+ (2018)23.(7分)以下是两张不同类型火车的车票(“D ××××次”表示动车,“G ××××次”表示高铁):(1)根据车票中的信息填空:该列动车和高铁是 向而行(填“相”或“同”).(2)已知该弄动车和高铁的平均速度分别为200km/h 、300km/h ,两列火车的长度不计.①经过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到lh ,求A 、B 两地之间的距离.②在①中测算的数据基础上,已知A 、B 两地途中依次设有5个站点P 1、P 2、P 3、P 4、P 5,且AP 1=P 1P 2=P 2P 3=P 3P 4=P 4P 5=P 5B ,动车每个站点都停靠,高铁只停靠P 2、P 4两个站点,两列火车在每个停靠站点都停留5min .求该列高铁追上动车的时刻.2019-2020学年广东省深圳市南山区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)下列调查中,最适合采用普查方式进行的是()A.对深圳市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对央视“新闻60分”栏目收视率的调查D.对某中学教师的身体健康状况的调查【考点】全面调查与抽样调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进而得出答案.【解答】解:A、对深圳市居民日平均用水量的调查,适合抽样调查,故此选项错误;B、对一批LED节能灯使用寿命的调查,适合抽样调查,故此选项错误;C、对央视“新闻60分”栏目收视率的调查,适合抽样调查,故此选项错误;D、对某中学教师的身体健康状况的调查,适合全面调查,故此选项正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.(3分)在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是()A.用两颗钉子固定一根木条B.把弯路改直可以缩短路程C.用两根木桩拉一直线把树栽成一排D.沿桌子的一边看,可将桌子排整齐【考点】线段的性质:两点之间线段最短【分析】根据实际、线段的性质判断即可.【解答】解:A、用两颗钉子固定一根木条体现基本事实“两点确定一条直线”;B、把弯路改直可以缩短路程体现基本事实“两点之间,线段最短”;C、用两根木桩拉一直线把树栽成一排体现基本事实“两点确定一条直线”;D、沿桌子的一边看,可将桌子排整齐体现基本事实“线段的延长线”;故选:B.【点评】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.3.(3分)2017年11月19日上午8:00,“2017华润•深圳南山半程马拉松赛”在华润深圳湾体育中心(“春茧”)前正式开跑,共有约16000名选手参加了比赛.16000用科学记数法可表示为()A.0.16×104B.0.16×105C.1.6×104D.1.6×105【考点】科学记数法—表示较大的数【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:16000用科学记数法可表示为1.6×104,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列计算正确的是()A.3x2y﹣2x2y=x2y B.5y﹣3y=2C.3a+2b=5ab D.7a+a=7a2【考点】合并同类项【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.【解答】解:A、3x2y﹣2x2y=x2y,故原题计算正确;B、5y﹣3y=2y,故原题计算错误;C、3a和2b不是同类项,不能合并,故原题计算错误;D、7a+a=8a,故原题计算错误;故选:A.【点评】此题主要考查了合并同类项,关键是掌握合并同类项的法则.5.(3分)如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm【考点】两点间的距离【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10cm,M是AB中点,∴BM=12AB=5cm,又∵NB=2cm,∴MN=BM﹣BN=5﹣2=3cm.故选:C.【点评】本题考查了线段的长短比较,根据点M是AB中点先求出BM的长度是解本题的关键.6.(3分)下列结论中,正确的是()A.单项式3xy27的系数是3,次数是2B.单项式m的次数是1,没有系数C.单项式﹣xy2z的系数是﹣1,次数是4D.多项式2x2+xy+3是三次三项式【考点】单项式;多项式【分析】根据单项式的次数与系数定义分别判断得出即可.【解答】解:A、单项式3xy27的系数是37,次数是3,故此选项错误;B、单项式m的次数是1,系数是1,故此选项错误;C、单项式﹣xy2z的系数是﹣1,次数是4,故此选项正确;D、多项式2x2+xy+3是三次二项式,故此选项错误.故选:C.【点评】此题主要考查了单项式的次数与系数的定义,熟练掌握相关的定义是解题关键.7.(3分)若x2+3x﹣5的值为7,则3x2+9x﹣2的值为()A.44B.34C.24D.14【考点】代数式求值【分析】先由x2+3x﹣5=7得x2+3x=12,再整体代入到原式=3(x2+3x)﹣2,计算可得.【解答】解:∵x2+3x﹣5=7,∴x2+3x=12,则原式=3(x2+3x)﹣2=3×12﹣2=36﹣2=34,故选:B.【点评】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.8.(3分)有理数a在数轴上的位置如图所示,下列各数中,可能在0到1之间的是()A.|a|﹣1B.|a|C.﹣a D.a+1【考点】数轴;绝对值;有理数大小比较【分析】根据数轴得出﹣2<a<﹣1,再逐个判断即可.【解答】解:A、∵从数轴可知:﹣2<a<﹣1,∴|a|﹣1大约0<|a|﹣1<1,故本选项符合题意;B、∵从数轴可知:﹣2<a<﹣1,∴|a|>1,故本选项不符合题意;C、∵从数轴可知:﹣2<a<﹣1,∴﹣a>1,故本选项不符合题意;D、∵从数轴可知:﹣2<a<﹣1,∴a+<0,故本选项不符合题意;故选:A.【点评】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出﹣2<a<﹣1是解此题的关键.9.(3分)如图是小刚一天中的作息时间分配的扇形统计图,如果小刚希望把自己每天的阅读时间调整为2小时,那么他的阅读时间需增加()A.105分钟B.60分钟C.48分钟D.15分钟【考点】扇形统计图【分析】扇形统计图中扇形的圆心角与百分比成正比,从图中可以求出原用于阅读的时间,则他的阅读需增加时间可求.【解答】解:原用于阅读的时间为24×(360﹣135﹣120﹣30﹣60)÷360=1(小时),∴把自己每天的阅读时间调整为2时,那么他的阅读时间需增加1小时.故选:B.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.10.(3分)如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()A.4B.6C.12D.8【考点】几何体的展开图【分析】根据观察、计算,可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【解答】解:长方体的高是1,宽是3﹣1=2,长是6﹣2=4,长方体的容积是4×2×1=8,故选:D.【点评】本题考查了几何体的展开图,展开图折叠成几何体,得出长方体的长、宽、高是解题关键.11.(3分)某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.250元B.200元C.150元D.100元【考点】一元一次方程的应用【分析】设这件商品的原价为x元,则他购买这件商品花了0.8x元,根据原价﹣现价=差额,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这件商品的原价为x元,则他购买这件商品花了0.8x元,根据题意得:x﹣0.8x=50,解得:x=250,∴0.8x=0.8×250=200.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.(3分)如图所示,∠BAC=90°,AD⊥BC,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥AD+BD>AB.A.2个B.3个C.4个D.5个【考点】点到直线的距离【分析】根据点到直线的距离,垂直的定义,三角形三边的关系,可得答案.【解答】解:由∠BAC=90°,AD⊥BC,得AB⊥AC,故①正确;AD与AC不垂直,故②错误;点C到AB的垂线段是线段AC的长,故③错误;点A到BC的距离是线段AD的长度,故④正确;线段AB的长度是点B到AC的距离,故⑤正确;AD+BD>AB,故⑥正确;故选:C.【点评】本题考查了点到直线的距离,利用点到直线的距离,垂直的定义,三角形三边的关系是解题关键.二、填空题:(本题共有4题,每小题3分,共12分.把答案填在答题卡上)13.(3分)如图所示,截去正方体一角变成一个新的多面体,这个多面体有7个面.【考点】截一个几何体【分析】截去正方体一角变成一个多面体,这个多面体多了一个面、棱不变,少了一个顶点.【解答】解:仔细观察图形,正确地数出多面体的面数是7.故答案为:7.【点评】本题考查了正方体的截面.关键是明确正方体的面数,顶点数,棱的条数,形数结合,求出截去一个角后得到的几何体的面数,顶点数,棱的条数.14.(3分)a的相反数是−32,则a的倒数是23.【考点】相反数;倒数【分析】直接利用相反数的定义得出a 的值,再利用倒数的定义得出答案.【解答】解:∵a 的相反数是−32,∴a=32, 则a 的倒数是:23. 故答案为:23. 【点评】此题主要考查了倒数与相反数,正确把握相关定义是解题关键.15.(3分)x ,y 表示两个数,规定新运算“※”及“△”如下:x ※y=6x +5y ,x △y=3xy ,那么(﹣2※3)△(﹣4)= ﹣36 .【考点】有理数的混合运算【分析】根据x ※y=6x +5y ,x △y=3xy ,可以计算出题目中所求式子的值.【解答】解:∵x ※y=6x +5y ,x △y=3xy ,∴(﹣2※3)△(﹣4)=[6×(﹣2)+5×3]△(﹣4)=3△(﹣4)=3×3×(﹣4)=﹣36,故答案为:﹣36.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.(3分)如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有1499个黑棋子,则n= 300 .【考点】规律型:图形的变化类【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【解答】解:观察图1有5×1﹣1=4个黑棋子;图2有5×2﹣1=9个黑棋子;图3有5×3﹣1=14个黑棋子;图4有5×4﹣1=19个黑棋子;…图n有5n﹣1个黑棋子,当5n﹣1=1499,解得:n=300,故答案:300【点评】本题考查了图形的变化类问题,解题的关键是能够仔细观察并发现图形的变化规律,难度不大.三、解答题(本大题有7题,其中17题9分,18题8分,19题7分,20题7分,21题7分,22题7分,23题7分,共52分,把答案填在答题卷上)17.(9分)计算:(1)(﹣4)×3+(﹣18)÷(﹣2)(2)−22+(23−34)×12(3)先化简,再求值:x2﹣(5x2﹣4y)+3(x2﹣y),其中x=﹣1,y=2.【考点】有理数的混合运算;整式的加减—化简求值【分析】(1)先计算乘除法,再计算加减即可得;(2)先计算乘方、利用乘法分配律去掉括号,再计算乘法,最后计算加减可得;(3)先根据整式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.【解答】解:(1)(﹣4)×3+(﹣18)÷(﹣2)=﹣12+9=﹣3;(2)原式=−4+23×12−34×12=﹣4+8﹣9=﹣5;(3)原式=x2﹣5x2+4y+3x2﹣3y=x2﹣5x2+3x2+4y﹣3y=﹣x2+y,当x=﹣1,y=2时,原式=﹣(﹣1)2+2=﹣1+2=1.【点评】本题主要考查有理数的混合运算和整式的化简求值,解题的关键是熟练掌握有理数和整式的混合运算顺序和运算法则.18.(8分)解答下列方程的问题(1)已知x=3是关于x的方程:4x﹣a=3+ax的解,那么a的值是多少?(2)解方程:5x−76+1=3x−14.【考点】解一元一次方程【分析】(1)直接把x的值代入,进而求出答案;(2)首先去分母进而去括号,再移项合并同类项得出答案.【解答】解:(1)∵x=3是的方程:4x﹣a=3+ax的解,∴12﹣a=3+3a,∴﹣a﹣3a=3﹣12,∴﹣4a=﹣9,∴a=9 4;(2)去分母得:2(5x﹣7)+12=3(3x﹣1)10x﹣14+12=9x﹣3,10x﹣9x=﹣3+14﹣12,解得:x=﹣1.【点评】此题主要考查了一元一次方程的解法,正确掌握解题方法是解题关键.19.(7分)如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.(1)图中有10个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图、左视图;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加4个小正方体.【考点】作图﹣三视图【分析】(1)最前面1排1个小正方体,中间1排有3个正方体,最后面一排共6个小正方体,再计算总和即可.(2)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有3列,每列小正方形数目分别为3,2,1;据此可画出图形.(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加第一排的右边2列的2个,第2排的右边第3列的2个,然后可得答案.【解答】解:(1)正方体的个数:1+3+6=10,(2)如图所示:;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加第一排的右边2列的2个,第2排的右边第3列的2个,2+2=4.答:最多还能在图1中添加4个小正方体.故答案为:10;4.【点评】此题主要考查了三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.20.(7分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名学生?(2)将图1补充完整;(3)求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.【考点】用样本估计总体;扇形统计图;条形统计图【分析】(1)根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;(2)根据(1)中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;(4)根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.【解答】解:(1)130÷65%=200,答:此次抽样调查中,共调查了200名学生;(2)反对的人数为:200﹣130﹣50=20,补全的条形统计图如右图所示;(3)扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:20 200×360°=36°;(4)1500×50200=375,答:该校1500名学生中有375名学生持“无所谓”意见.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(7分)我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=54°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠CBE的度数.【考点】角平分线的定义;角的计算【分析】(1)由折叠的性质可得∠A′BC=∠ABC=54°,由平角的定义可得∠A′BD=180°﹣∠ABC ﹣∠A′BC ,可得结果;(2)由(1)的结论可得∠DBD′=72°,由折叠的性质可得∠2=12∠DBD′=12×72°=36°,由角平分线的性质可得∠1=54°,再相加即可求解.【解答】解:(1)∵∠ABC=54°,∴∠A′BC=∠ABC=54°,∴∠A′BD=180°﹣∠ABC ﹣∠A′BC=180°﹣54°﹣54°=72°;(2)由(1)的结论可得∠DBD′=72°,∴∠2=12∠DBD′=12×72°=36°,∠ABD′=108°, ∴∠1=12∠ABD′=12×108°=54°, ∴∠CBE=∠1+∠2=90°.【点评】本题主要考查了角平分线的定义,根据角平分线的定义得出角的度数是解答此题的关键.22.(7分)阅读理解:高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常烦琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程. 解:设s=1+2+3+…+100,①则s=100+99+98+…+1,②①+②,得2s=101+101+101+ (101)(两式左右两端分别相加,左端等于2S ,右端等于100个101的和)所以2s=100×101,s=12×100×101=5050③ 所以1+2+3+…+100=5050.后来人们将小高斯的这种解答方法概括为“倒序相加法”.请解答下面的问题:(1)请你运用高斯的“倒序相加法”计算:1+2+3+ (200)(2)请你认真观察上面解答过程中的③式及你运算过程中出现类似的③式,猜想:1+2+3+…+n= 12n (n +1) . (3)计算:101+102+103+ (2018)【考点】有理数的混合运算;规律型:数字的变化类【分析】(1)原式利用高斯的“倒序相加法”计算即可求出值;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,利用高斯的“倒序相加法”计算即可求出值.【解答】解:设s=1+2+3+…+100①,则s=100+99+98+…+1②,①+②,得2s=101+101+101+…+101,(两式左右两端分别相加,左端等于2s ,右端等于100个101的和)所以2s=100×101,s=12×100×101=5050③, 所以1+2+3+…+100=5050,后来人们将小高斯的这种解答方法概括为“倒序相加法”.请解答下面的问题:(1)1+2+3+…+200,s=1+2+3+…+200①,则s=200+199+198+…+1②,①+②,得2s=201+201+201+ (201)所以2s=200×201,s=12×200×201=20100, 所以1+2+3+…+200=20100;(2)猜想:1+2+3+…+n=12n (n +1); 故答案为:12n (n +1); (3)s=101+102+103+…+2018①,则s=2018+2017+2016+…+1②,①+②,得2s=2119+2119+2119+ (2119)所以2s=(2018﹣100)×2119,s=12×1918×2119=2032121, 所以101+102+103+…+2018=2032121.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(7分)以下是两张不同类型火车的车票(“D××××次”表示动车,“G××××次”表示高铁):(1)根据车票中的信息填空:该列动车和高铁是同向而行(填“相”或“同”).(2)已知该弄动车和高铁的平均速度分别为200km/h、300km/h,两列火车的长度不计.①经过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到lh,求A、B两地之间的距离.②在①中测算的数据基础上,已知A、B两地途中依次设有5个站点P1、P2、P3、P4、P5,且AP1=P1P2=P2P3=P3P4=P4P5=P5B,动车每个站点都停靠,高铁只停靠P2、P4两个站点,两列火车在每个停靠站点都停留5min.求该列高铁追上动车的时刻.【考点】一元一次方程的应用【分析】(1)根据两车的出发地及目的地,即可得出两车方向相同;(2)①设A、B两地之间的距离为xkm,根据时间=路程÷速度结合高铁比动车少用2小时,即可得出关于x的一元一次方程,解之即可得出结论;②根据AP1=P1P2=P2P3=P3P4=P4P5=P5B可求出每个相邻站点距离,利用时间=路程÷速度可求出两车经过每个相邻站点的时间,结合两车出发的时间及停靠站点休息的时间可得出高铁在P2站、P3站之间追上动车,设高铁经过t小时之后追上动车,根据路程=时间×速度,即可得出关于t的一元一次方程,解之即可得出t值,再加上出发时间即可求出结论.【解答】解:(1)∵动车和高铁均从A地到B地,∴两车方向相同.故答案为:同.(2)①设A、B两地之间的距离为xkm,根据题意得:x 200﹣x 300=2, 解得:x=1200.答:A 、B 两地之间的距离是1200km .②每个相邻站点距离为1200÷6=200km ,动车到每一站所花时间为200÷200×60=60(分钟),高铁到每一站所花时间为200÷300×60=40(分钟).∵60÷(60﹣40)=3,∴高铁在P 2站、P 3站之间追上动车.设高铁经过t 小时之后追上动车,根据题意得:(t ﹣560)×300=(t +1﹣560×2)×200, 解得:t=2312, ∴7:00+2312=8:55. 答:该列高铁在8:55追上动车.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据车票上起始站找出结论;(2)①找准等量关系,正确列出一元一次方程;②通过分析两车的行驶过程,找出高铁追上动车的大致位置.数学期末考注意事项期末考试眼瞅着就要到了,同学们正紧张地进行复习,其实,考试也有考试的学问和技巧。
【精选】深圳市宝安区七年级下册期中考试数学试卷(有答案)
2019-2020学年广东省深圳市宝安区七年级(下)期中数学试卷一、选择题(每小题3分,共36分)1.(3分)下列计算正确的是()A.a3•a2=a6B.a3﹣a2=a C.(﹣a3)2=a6D.a6÷a2=a32.(3分)下列各式中不能用平方差公式计算的是()A.(2x+y)(2x﹣y)B.(x﹣y)(y﹣x)C.(﹣x+y)(﹣x﹣y)D.(x+y)(﹣x+y)3.(3分)PM2.5是指大气中直径小于或等于2.5um(微米)的颗粒物,也称为可入肺颗粒物.2.5微米=0.000 002 5米,用科学记数法可表示为()米.A.2.5×106B.2.5×10﹣6C.2.5×107D.2.5×10﹣74.(3分)要使(x2+ax+1)(x﹣2)的结果中不含x2项,则a为()A.﹣2 B.0 C.1 D.25.(3分)如图,已知:∠3=∠4,那么下列结论中,正确的是()A.∠C=∠D B.AD∥BC C.∠1=∠2 D.AB∥CD6.(3分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm7.(3分)如图,若AB∥DE,则∠B,∠C,∠D三者之间的关系是()A.∠B+∠C+∠D=180°B.∠B+∠C﹣∠D=180°C.∠B+∠D﹣∠C=180°D.∠C+∠D﹣∠B=180°8.(3分)下列叙述正确的是()①三角形的中线、角平分线都是射线②三角形的三条高线所在的直线交于一点③三角形的中线就是经过一边中点的线段④三角形的三条角平分线交于一点⑤三角形的中线将三角形分成面积相等的两个小三角形.A.②④⑤B.①②④C.②④D.④9.(3分)如图,在△ABC和△DEF中,已知∠B=∠DEF,AB=ED,加上该条件后仍无法证明△ABC≌△DEF的是()A.AC=DF B.BE=CF C.AC∥DF D.∠A=∠D10.(3分)在△ABC中,AC边上的高画得正确的是()A.B.C.D.11.(3分)已知x=255,y=344,z=433,则x,y,z的大小关系为()A.x<z<y B.x<y<z C.y<z<x D.z<y<x12.(3分)让我们按以下步骤计算第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a2;第三步:算出a2的各位数字之和得n3,计算n32+1得a3;依此类推,则a2015=()A.26 B.65 C.122 D.无法计算二、填空题(每小题3分,共12分)13.(3分)如果x2﹣px+25是一个完全平方式,那么p=.14.(3分)如果一个角的补角是120°,那么这个角的余角是.15.(3分)小军用100元去买单价为4元的笔记本,他买完笔记本之后剩余的钱y(元)与买这种笔记本数量x(本)之间的关系式为.16.(3分)如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4+∠5等于.三、解答题(共52分)17.(16分)计算(1)a5•(﹣2a)3+a6•(﹣3a)2(2)(4a2﹣6ab+2a)÷2a(3)(a+b+c)(a﹣b+c)(4)20142﹣2013×2015(用整式乘法公式进行计算)18.(6分)先化简,再求值:[(2a﹣b)2﹣(2a+b)(2a﹣b)]÷2b,其中a=﹣,b=1.19.(4分)妈妈在用洗衣机洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示,根据图象解答下列问题:(1)洗衣机的进水时间是分钟;(2)清洗时洗衣机中的水量是升;(3)洗衣机的清洗时间为分钟;(4)已知洗衣机的排水速度为每分钟19升,如果排水时间为2分钟,则排水结束时洗衣机中剩下的水量为升.20.(6分)完成下列推理过程已知:∠C+∠CBD=180°,∠ABD=85°,∠2=60°,求∠A的度数解:∵∠C+∠CBD=180°(已知)∴DB∥CE()∴∠1=()∵∠2=∠3()∴∠1=∠2=60°()又∵∠ABD=85°(已知)∴∠A=180°﹣∠ABD﹣∠1=(三角形三内角和为180°)21.(5分)如图,在△ABC中,CD是AB边上高,BE为角平分线,若∠BFC=113°,求∠BCF的度数.22.(6分)已知a+b=4,ab=2,求下列各式的值:(1)(a﹣b)2(2)a2+b2.23.(9分)如图1,点P、Q分别是等边△ABC边AB、BC上的点,其中AP=BQ.连接CP、AQ相交于点M,(1)求证:△ABQ≌△CAP;(2)求∠CMQ的度数;(3)如图2,若点P、Q在等边△ABC边AB、BC的延长线上,仍有AP=BQ,直线AQ、CP交点为M,则∠QMC的度数为多少?2019-2020学年广东省深圳市宝安区新华中学七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.【解答】解:A、a3•a2=a5,故此选项错误;B、a3﹣a2,无法计算,故此选项错误;C、(﹣a3)2=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.2.【解答】解:原式=﹣(x﹣y)(x﹣y)=﹣(x﹣y)2,故选:B.3.【解答】解:0.000 002 5米,用科学记数法可表示为2.5×10﹣6米,故选:B.4.【解答】解:原式=x3+(a﹣2)x2+(1﹣2a)x﹣2,由结果中不含x2项,得到a﹣2=0,解得:a=2,故选:D.5.【解答】解:∵∠3=∠4,∴AD∥BC,故选:B.6.【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选:C.7.【解答】解:如图,过点C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠2=∠B,∠1=180°﹣∠D,∵∠C=∠1+∠2,∴∠C=180°﹣∠D+∠B,∴∠C+∠D=180°+∠B.故选:D.8.【解答】解:①三角形的角平分线和中线都是线段.故错误;②三角形的三条高线所在的直线交于一点,故正确;③三角形一边的中点与此边所对顶点的连线叫做三角形的中线,过三角形一边的中点的线段不一定是三角形的中线,故错误;④三角形的三条角平分线交于一点,故正确;⑤三角形的中线是三角形一顶点和对边中点的连线,根据等底同高的两个三角形面积相等,故正确;综上所述,正确的结论是②④⑤.故选:A.9.【解答】解:∠B=∠DEF,AB=ED,A、添加AC=DF不能证明△ABC≌△DEF,故此选项符合题意;B、添加BE=CF,得到BC=EF,可利用SAS证明△ABC≌△DEF,故此选项不符合题意;C、添加AC∥DF,可得∠ACB=∠F,即∠A=∠D,可利用ASA证明△ABC≌△DEF,故此选项不符合题意;D、添加∠A=∠D可利用ASA证明△ABC≌△DEF,故此选项不符合题意;故选:A.10.【解答】解:△ABC中,AC边上的高是自点B向AC所在直线作垂线,顶点B和垂足间的线段即为AC边上的高,符合高的定义的只有C选项,故选:C.11.【解答】解:x=255=(25)11=3211,y=344=(34)11=8111,z=433=(43)11=6411,则x<z<y.故选:A.12.【解答】解:由题意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=122,a4=(1+2+2)2+1=26,…∴2015÷3=671…2,∴a2015=65,故选:B.二、填空题(每小题3分,共12分)13.【解答】解:∵(x±5)2=x2±10x+25,而x2﹣px+25是一个完全平方式,∴p=±10.故答案为±10.14.【解答】解:这个角为180°﹣120°=60°,这个角的余角为90°﹣60°=30°.故答案为:30°.15.【解答】解:依题意得,剩余的钱y(元)与买这种笔记本的本数x之间的关系为:y=100﹣4x.故答案为:y=100﹣4x.16.【解答】解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在△ABD和△AEH中,,∴△ABD≌△AEH(SAS),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案为:225°.三、解答题(共52分)17.【解答】解:(1)原式=a5•(﹣8a3)+a6•9a2=﹣8a8+9a8=a8(2)原式=2a﹣3b+1(3)原式=(a+c+b)(a+c﹣b)=(a+c)2﹣b2=a2+2ac+c2﹣b2(4)原式=20142﹣(2014﹣1)(2014+1)=20142﹣20142+1=118.【解答】解:[(2a﹣b)2﹣(2a+b)(2a﹣b)]÷2b=[4a2﹣4ab+b2﹣4a2+b2]÷2b=[﹣4ab+2b2]÷2b=﹣2a+b,当a=﹣,b=1时,原式=1+1=2.19.【解答】解:(1)由图可知洗衣机的进水时间是4分钟.(2)清洗时洗衣机中的水量是40升.(3)洗衣机的清洗时间=15﹣4=11分钟.(4)∵排水的时间是2分钟,排水速度为每分钟19升∴排水结束时洗衣机中剩下的水量是40﹣2×19=2(升).故答案分别为4,40,11,2.20.【解答】解:∵∠C+∠CBD=180°(已知)∴DB∥CE(同旁内角互补、两直线平行)∴∠1=∠3(两直线平行、同位角相等)∵∠2=∠3(对顶角相等)∴∠1=∠2=60°(等量代换)又∵∠ABD=85°(已知)∴∠A=180°﹣∠ABD﹣∠1=35°(三角形三内角和为180°),故答案为:同旁内角互补、两直线平行;∠3;两直线平行、同位角相等;对顶角相等;等量代换;35°.21.【解答】解:∵CD是AB边上高,∴∠BDF=90°,∠ABE=∠BFC﹣∠BDF=113°﹣90°=23°,∵BE为角平分线,∴∠CBF=∠ABE=23°,∴∠BCF=180°﹣∠BFC﹣∠CBF=44°.22.【解答】解:当a+b=4,ab=2时,(1)原式=a2﹣2ab+b2=a2+2ab+b2﹣4ab=(a+b)2﹣4ab=16﹣4×2=8(2)原式=a2+b2+2ab﹣2ab=(a+b)2﹣2ab=16﹣4=1223.【解答】解:(1)∵△ABC是等边三角形,∴AB=AC,∠B=∠PAC=60°,在△ABQ与△CAP中,,∴△ABQ≌△CAP;(2)∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠BAQ+∠CAM=60°,∴∠QMC=60°;(3)∠QMC的度数为120°,理由:∵△ABC是等边三角形,∴AB=AC,∠B=∠PAC=60°,在△ABQ与△CAP中,,∴△ABQ≌△CAP,∴∠APC=∠AQB,∠BAQ=∠ACP,∵∠BAC=∠ACB=60°,∴∠BCP=∠CAQ,∵∠CMQ=∠APC+∠BAQ=∠B﹣∠PCB=∠BAC+∠CAQ=120°.。
广东省深圳市龙岗区深圳龙岗区龙岭初级中学2019-2020学年七(下)期中数学试题(解析版)
17.计算:
(1)
(2)
(3)
【答案】(1)0;(2) ;(3)
【解析】
【分析】
(1)根据乘方的意义、零指数幂的性质和负指数幂的性质计算即可;
(2)根据单项式除以单项式法则和单项式乘单项式法则计算即可;
(3)根据多项式除以单项式法则计算即可.
【详解】解:(1)
=
=0
(2)
=
=
=
(3)
=
=
【点睛】此题考查的是整式的运算和实数的运算,掌握乘方的意义、零指数幂的性质、负指数幂的性质、单项式除以单项式法则、单项式乘单项式法则和多项式除以单项式法则是解决此题的关键.
【答案】B
【解析】
【分析】
用大正方形的面积减去两个空白三角形的面积即可得出答案.
【详解】解:
将 , 代入得
原式=
故选B.
【点睛】本题考查的是完全平方公式的应用,难度适中,熟练掌握完全平方公式及其变式是解决此题的关键.
二、填空题
13.已知一个角是40°,那么这个角的补角是______度.
【答案】140
【点睛】此题考查平行线的判定,角平分线,解题的关键是找出相等的同位角∠F=∠ECB,找出相等(或互补)的角是关键.
20.如图,已知AB∥CD,∠ABE=110°,∠DCE=36°,求∠BEC的大小.
【答案】∠BEC=106°
【解析】
【分析】
过点E作EF∥AB,根据两直线平行,同旁内角互补证出∠FEB+∠ABE=180°,即可求出∠FEB,然后根据两直线平行,内错角相等求出∠FEC,即可解答.
∴∠DBC= ∠ABC,∠ECB= ∠ACB(角平分线的定义).
又∵∠ABC=∠ACB(已知),
2019-2020学年广东省深圳市七年级下学期期末数学试卷解析版
2019-2020学年广东省深圳市七年级下学期期末数学试卷解析版一、选择题(本题有12小题,每小题3分,共36分。
每小题给出4个答案,其中只有一个是正确的。
请把正确答案的字母代号填涂在答题卡上)1.下面有4个汽车标志图案,其中是轴对称图形的有()A.1个B.2个C.3个D.4个解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故是轴对称图形的有3个.故选:C.2.MERS属于冠状病毒,病毒粒子成球形,直径约为140纳米(1米=1000000000纳米),用科学记数法表示为()A.1.4×1011米B.140×109米C.1.4×10﹣11米D.1.4×10﹣7米解:140纳米=1.4×10﹣7米,故选:D.3.下列条件中,能判定两个直角三角形全等的是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等解:两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除A、C;而B构成了AAA,不能判定全等;D构成了SAS,可以判定两个直角三角形全等.故选:D.4.下列运算正确的是()A.a6÷a2=a3B.a3•a3•a3=3a3C.(a3)4=a12D.(a+2b)2=a2+4b2解:A、a6÷a2=a4,故A错误;B、a3•a3•a3=a9,故B错误;C、(a3)4=a12,故C正确;D、(a+2b)2=a2+4b2+4ab,故D错误.故选:C.5.下列计算正确的是()A.(3x﹣y)(3x+y)=9x2﹣y2B.(x﹣9)(x+9)x2﹣9C.(x﹣y)(﹣x+y)=x2﹣y2D.(x−12)2=x2−14解:A、原式=9x2﹣y2,符合题意;B、原式=x2﹣81,不符合题意;C、原式=﹣x2+2xy﹣y2,不符合题意;D、原式=x2﹣x+14,不符合题意,故选:A.6.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A.﹣1B.1C.﹣3D.5解:∵m+n=2,mn=﹣2,∴(1﹣m)(1﹣n)=1﹣n﹣m+mn=1﹣(n+m)+mn=1﹣2﹣2=﹣3;故选:C.7.下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个B.2个C.3个D.4个解:(1)能够完全重合的两个图形全等,正确;(2)两边和一角对应相等的两个三角形全等,必须是SAS才可以得出全等,错误;(3)根据“ASA”或“AAS”定理,有两角和一边对应相等的两个三角形,可判断全等;(4)全等三角形对应边相等,正确.所以有3个判断正确.故选:C.。
2020-2021学年广东省深圳市罗湖区七年级(下)期中数学试卷(学生版+解析版)
2020-2021学年广东省深圳市罗湖区七年级(下)期中数学试卷一、选择题。
(每小题3分,共36分)1.(3分)下列运算正确的是()A.a2+a3=a5B.a6÷a2=a4C.(2ab)3=6a3b3D.a2•a3=a62.(3分)2019新型冠状病毒(2019﹣nCoV),科学家借助电子显微镜发现该病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示正确的是()A.1.25×107B.1.25×10﹣7C.1.25×108D.1.25×10﹣8 3.(3分)下列图中,∠1与∠2是同位角的是()A.B.C.D.4.(3分)下列各式中能用平方差公式运算的是()A.(﹣a+b)(﹣a﹣b)B.(a﹣b)(b﹣a)C.(2a﹣3b)(3a+2b)D.(a﹣b+c)(b﹣a﹣c)5.(3分)如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β一定相等的图形个数共有()A.1个B.2个C.3个D.4个6.(3分)将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°7.(3分)如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,这样做的理由是()A.两点之间,线段最短B.垂线段最短C.过一点可以作无数条直线D.两点确定一条直线8.(3分)如图,在四边形ABCD中,要得到AB∥CD,只需要添加一个条件,这个条件可以是()A.∠1=∠3B.∠2=∠4C.∠B=∠D D.∠1+∠2+∠B=180°9.(3分)已知x+y﹣3=0,则2x×2y的值为()A.64B.8C.6D.1210.(3分)下列计算正确的是()A.(a+b)2=a2+b2B.(a﹣b)2=a2﹣2ab﹣b2C.(a+2b)(a﹣2b)=a2﹣2b2D.(﹣a﹣b)2=a2+2ab+b211.(3分)如图,矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间函数关系的图象是()A.B.C.D.12.(3分)如图,将一块长方形纸条折成如图的形状,若已知∠1=α,则∠2的度数为()A.90°﹣αB.90°+αC.90°−α2D.90°+α2二、填空题。
2019-2020学年深圳市南山区七年级下学期期中数学试卷(含答案解析)
2019-2020学年深圳市南山区七年级下学期期中数学试卷一、选择题(本大题共12小题,共36.0分)1.下列运算正确的是()A. (a2)3=a5B. a2⋅a3=a5C. a2+a3=a5D. a6÷a2=a32.阳泉市郊区教科局提出开展“三有课堂”,某中学在一节体现“三有课堂”公开展示课上,李老师展示一幅图,条件是:C为直线AB上一点,∠DCE为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各个小组经过讨论后得到以下结论:①∠ACF与∠BCH互余②∠FCG与∠HCG互补③∠ECF与∠GCH互补④∠ACD−∠BCE=90°,聪明的你认为哪些组的结论是正确的,正确的有()个.A. 1B. 2C. 3D. 43.目前,随着制造技术的不断发展,手机芯片制造即将进入7nm(纳米)制程时代.已知1nm=0.000000001m,则7nm用科学记数法表示为()A. 70×10−10mB. 7×10−9mC. 0.7×10−8mD. 0.07×10−7m4.如图,已知AB//CD,直线MN分别交AB、CD于点M、N,NG平分∠MND,若∠1=70°,则∠2的度数为()A. 10°B. 15°C. 20°D. 35°5.如图所示,某同学的家在P处,他想尽快赶到附近公路边搭顺风车,他选择P→C路线,用几何知识解释其道理正确的是()A. 两点确定一条直线B. 垂线段最短C. 两点之间线段最短D. 经过一点有无数条直线6.数字0.0000036用科学记数法表示为()A. 3.6×10−5B. 3.6×10−6C. 36×10−6D. 0.36×10−57.不等式−2x≥8的解集在数轴上表示正确的是()A. B.C. D.8.若a>b,则下列不等式一定成立的是()A. a+1>b+1B. a2<b2C. −2a>−2bD. a+c<b+c9.下列命题:①同旁内角互补,两直线平行:②全等三角形的周长相等;③直角都相等;④相等的角是对项角.它们的逆命题是真命题的个数是()A. 1个B. 2个C. 3个D. 4个10.如图,梯形ABCD中,AD//BC,E、F两点分别在AB、AD上,CE与BF相交于G点.若∠EBG=25°,∠GCB=20°,∠AEG=95°,则∠A的度数为何?()A. 95B. 100C. 105D. 11011.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若矩形的面积为16√3,AE=B′D,∠EFB=60°,则线段DE的长是()A. 4√3B. 5C. 6D. 6√312.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第13个图案需要的黑色五角星的个数是()A. 18B. 19C. 21D. 22二、填空题(本大题共6小题,共18.0分)13. 若代数式4a 2+2ka +9是完全平方式,则k 的值为______ .14. 两直线平行,一组同位角的角平分线的位置关系是______ .15. 计算(2ab)3÷(4a 2b)(14ab)=______.16. 如图:(1)阴影部分的周长是: ;(2)阴影部分的面积是: .17. 如图所示,甲、乙两车在某时间段内速度随时间变化的图象.下列结论:①甲的速度始终保持不变;②乙车第12秒时的速度为32米/秒;③乙车前4秒行驶的总路程为48米.其中正确的是______.(填序号)18. 如图,将一个长方形的纸条按如图所示方法折叠一次,则∠1=______°.三、解答题(本大题共6小题,共66.0分)19. 计算:(1)(x +2y)2−(x +y)(x −y)(2)(2a −1a +2+a −4)÷a 2−6a +9a +220.计算(1)(2x2y)2⋅(−7xy2)÷(14x4y3).)−2−(3.14−π)0.(2)(−1)2010+(13(3)(x−3y)(3y+x)−(x−3y)2.(4)2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1(简便运算).21.如图,已知点D为△ABC的边AB上一点,请在边AC上确定一点E,使得S△BCD=S△BCE(要求:尺规作图、保留作图痕迹、不写作法).22.某年,埃博拉病毒在非洲肆虐,某制药厂研制出一种提高免疫力的药品,为赶制这批紧销药品投放市场,立即组织100名工人进行生产,已知生产这种药品有两道工序:一是由原材料生产半产品,二是由半产品生产出药品.由于半产品不易保存,剩余半成品当天必须卖给附近大厂,每名工人每天可生产半成品30千克或由半成品生产药品4千克(两项选一项),每2千克半成品只能生产1千克药品.若药品出厂价为30元/千克,半成品价格为3元/千克.(1)设厂长每天安排x名工人生产半成品,销售药品收入y1元,请用x的代数式表示销售药品收入y1;设当天剩余半成品全部卖出收入为y2元,请用x的代数式表示y2,并求出这个问题中x 的取值范围.(2)为了使每天收益最大,请你帮厂长策划:每天安排多少名工人生产半产品?并求出这个最大收益.23.在乘法公式的学习中,我们采用了构造几何图形的方法研究问题,借助直观、形象的几何模型,加深对乘法公式的认识和理解,从中感悟数形结合的思想方法,感悟几何与代数内在的统一性,根据课堂学习的经验,解决下列问题:(1)如图①边长为(x+3)的正方形纸片,剪去一个边长为x的正方形之后,剩余部分可拼剪成一个长方形(不重叠无缝隙),则这个长方形的面积为______(用含x的式子表示).(2)如果你有5张边长为a的正方形纸,4张长、宽分别为a、b(a>b)的长方形纸片,3张边长为b正方形纸片.现从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(不重叠无缝隙),则拼成的正方形的边长最长可以为______A.a+b;B.a+2b;C.a+3b;D.2a+b.(3)1个大正方形和4个大小完全相同的小正方形按图②③两种方式摆放,求图③中,大正方形中未被4个小正方形覆盖部分的面积.(用含m、n的代数式表示)24.互余的两个角的度数之比为3:7,则这两个角的度数分别是多少?【答案与解析】1.答案:B解析:解:A、应为(a2)3=a2×3=a6,故本选项错误;B、a2⋅a3=a5,正确;C、a2与a3不是同类项的不能合并,故本选项错误;D、应为a6÷a2=a6−2=a4,故本选项错误.故选:B.根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.本题考查幂的乘方的性质,合并同类项,同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键.2.答案:C解析:解:∵CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,∴∠ACF=∠FCD=12∠ACD,∠DCH=∠HCB=12∠DCB,∠BCG=∠FCD=12∠ACD,∵∠AOB=180°,∠DCE=90°,∴∠FCH=90°,∠HCG=45°,∠FCG=135°∴∠ACF+∠BCH=90°,∠FCG+∠HCG=180°,故①②正确,∵∠ECF=∠DCE+∠FCD=90°+∠FCD,∠FCD+∠DCH=90°,∴∠ECF+∠DCH=180°,∵∠HCG≠∠DCH,∴∠ECF与∠GCH不互补,故③错误,∵∠ACD−∠BCE=180°−∠DOB−∠BCE=90°,故④正确.故选:C.根据角平分线的意义,互为余角、互为补角的意义逐个进行判断,最后得出答案做出选择.本题考查余角和补角,角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.解析:解:∵1nm=0.000000001m,∴7nm=7×10−9m.故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.答案:D解析:解:∵AB//CD,∠1=70°,∴∠MND=∠1=70°,∵NG平分∠MND,∠MND=35°,∴∠3=12∵AB//CD,∴∠2=∠3=35°.故选:D.先利用两直线平行,同位角相等求出∠MND,再根据角平分线定义和两直线平行,内错角相等即可求出∠2的度数.本题主要考查平行线的性质和角平分线的定义,熟练掌握几何概念是解题的关键.5.答案:B解析:解:某同学的家在P处,他想尽快赶到附近公路边搭顺风车,他选择P→C路线,是因为垂直线段最短,故选:B.根据垂线段的性质解答即可.此题主要考查了垂线段的性质,要熟练掌握,解答此题的关键是要明确:两垂直线段最短.解析:解:0.0000036=3.6×10−6,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.答案:C解析:本题主要考查解一元一次不等式,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.根据不等式的性质两边都除以−2即可得.解:两边都除以−2,得:x≤−4,故选C.8.答案:A解析:解:A、a>b,由不等式的性质1可知:a+1>b+1,故A正确;B、a>b,由不等式的性质2可知:a2>b2,故B错误;C、a>b,由不等式的性质3可知:−2a<−2b,故C错误;D、a>b,由不等式的性质1可知:a+c>b+c,故D错误.故选:A.A、由不等式的性质1可判断A;B、由不等式的性质2可判断B;C、由不等式的性质3可判断C;D、由不等式的性质1可判断D.本题主要考查的是不等式的性质,掌握不等式的基本性质是解题的关键.解析:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理,也考查了逆命题,属于基础题.先写出四个命题的逆命题,然后分别根据平行线的性质、全等三角形的判定、直角的定义和对顶角的定义进行判断.解:同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,此逆命题为真命题;全等三角形的周长相等的逆命题为周长相等的两三角形全等,此逆命题为假命题;直角都相等的逆命题为相等的角为直角,此逆命题为假命题;相等的角是对项角的逆命题为对顶角相等,此逆命题为真命题.故选B.10.答案:C解析:解:∵∠AEG=∠ABC+∠GCB,∴∠ABC=∠AEG−∠GCB=95°−20°=75°,∵AD//BC,∴∠A+∠ABC=180°,∴∠A=180°−75°=105°;故选:C.先由三角形的外角性质求出∠ABC=75°,再由梯形的性质得出∠A+∠ABC=180°,即可求出∠A的度数.本题考查了梯形的性质、平行线的性质、三角形的外角性质;熟练掌握梯形的性质,由三角形的外角性质求出∠ABC的度数是解决问题的关键.11.答案:C解析:此题考查了矩形的性质、折叠的性质、勾股定理以及等边三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.根据题意易证得△EFB′是等边三角形,继而可得△A′B′E中,B′E=2A′E,A′B′=√3A′E=√3AE,结合矩形面积以及AE=B′D,可求出AE,AD的长,继而求得答案.解:在矩形ABCD中,∵AD//BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°,∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°−60°=30°,∴B′E=2A′E,A′B′=√3A′E=√3AE,∵矩形的面积为16√3,AE=B′D,则AD=4AE,AB=√3AE,则AD·AB=4√3AE2=16√3,∴AE=2,AD=8,∵AD=AE+DE=8,AE=2,∴DE=6,故选C.12.答案:C解析:解析:试题分析:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律,再把13代入即可求出答案.当n为奇数时:通过观察发现每一个图形的每一行有n+12,故共有3(n+12)个,当n为偶数时,中间一行有n2+1个,故共有3n2+1个,则当n=13时,共有3×(13+12)=21;故选C.考点:1.规律型:2.图形的变化类.13.答案:±6解析:解:∵4a2+2ka+9=(2a)2+2ka+32,∴2ka=±2×2a×3,解得k=±6.故答案为:±6.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.14.答案:相互平行解析:解:一组同位角的角平分线的位置关系是相互平行.根据平行线的性质,两直线平行同位角相等,那么每个同位角的角平分线平分的角也相等,且也形成一组关于两个角平分线的同位角.即一组同位角的角平分线的位置关系是相互平行.本题考查平行线的性质以及角平分线的性质和平行线的判定定理.15.答案:12a2b3解析:解:原式=8a3b3÷(4a2b)×14ab=2ab2×14 ab=12a2b3,故答案为:12a2b3.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.16.答案:(1)4x+6y;(2)3.5xy。
2020-2021学年广东省深圳市龙华区七年级(下)期末数学试卷(学生版+解析版)
2020-2021学年广东省深圳市龙华区七年级(下)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)计算a2•a3的正确结果是()A.a5B.a6C.a8D.a92.(3分)下列四个图形是有关垃圾分类的标志,其中标志图形(不含文字)是轴对称图形的是()A.B.C.D.3.(3分)新型冠状病毒主要依靠飞沫和直接接触传播,飞沫的直径一般是在0.000003米左右.将数据0.000003米用科学记数法表示为()A.3×10﹣5米B.3×10﹣6米C.30×10﹣7米D.0.3×10﹣6米4.(3分)用一块含30°角的透明直角三角板画已知△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.5.(3分)如图,点E在BC的延长线上,下列条件中,能判定AB∥CD的是()A.∠DAC=∠BCA B.∠D=∠DCEC.∠B=∠DCE D.∠BAD+∠B=180°6.(3分)在一个不透明的口袋中有三个相同的小球,将每个小球分别标号为1,2,3,从这个口袋中摸出一个小球,则下列事件不是随机事件的是()A.摸到的小球的标号为1B.摸到的小球的标号大于1C.摸到的小球的标号小于1D.摸到的小球的标号为偶数7.(3分)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.88.(3分)下列说法正确的是()A.垂直于同一条直线的两条直线互相平行B.如果△ABC的三个内角满足∠A:∠B:∠C=1:2:3,则这个三角形是锐角三角形C.有两角与一边相等的两个等腰三角形全等D.角平分线上的点到这个角的两边的距离相等9.(3分)赛车在平坦的环形跑道上比赛,经过弯道时通常需要减速.如图表示了一辆赛车跑第二圈时它的速度随行驶的路程的变化情况.以下是4种环形跑道,其中能最恰当反映图中速度随行驶的路程的变化情况的是()A.B.C.D.10.(3分)如图,已知△ABC中,AB=AC,将△ABC绕点A沿逆时针方向旋转n°(0<n<∠BAC)得到△ADE,AD交BC于点F,DE交BC、AC于点G、H,则以下结论:①△ABF≌△AEH;②连接AG、FH,则AG⊥FH;③当AD⊥BC时,DF的长度最大;④当点H是DE的中点时,四边形AFGH的面积等于AF×GH.其中正确的个数有()A.4个B.3个C.2个D.1个二、填空题(每小题3分,共15分.请把答案填在答题卷相应的表格里.)11.(3分)已知3m=5,3n=2,则3m+n的值等于.12.(3分)如图是一个可以自由转动的转盘,转动转盘,转盘停止后,指针落在红色区域的概率是.13.(3分)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D,连接AD、CD.若∠B=65°,则∠BCD的大小是°.14.(3分)已知m﹣n﹣2=0,则4m÷22n=.15.(3分)如图,已知△ABC与△ADE均是等腰直角三角形,∠BAC=∠DAE=90°,AB =AC=5,AD=AE=4,点D在BC上,连接CE.则△CDE的面积是.三、解答题(本题共7小题,共55分)16.(8分)计算:(1)﹣12021﹣(2020﹣π)0+(−12)﹣3;(2)(﹣3xy2)2•(﹣6x2y)÷(9x4y5).17.(10分)(1)计算:(xy+2)(xy﹣2)﹣x(xy2﹣4);(2)先化简,再求值:[(2x﹣y)2﹣4(x﹣y)(x+y)]÷(−12y),其中x=2,y=−3.18.(6分)填空:把下面的推理过程补充完整,并在括号内注明理由.如图,已知BC分别交AB、DE于点B、C,且∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.证明:因为∠ABC+∠ECB=180°(已知),所以AB∥DE().所以∠ABC=∠BCD().因为∠P=∠Q(已知),所以PB∥CQ().所以∠PBC=()(两直线平行,内错角相等).因为∠1=∠ABC﹣(),∠2=∠BCD﹣(),所以∠1=∠2(等量代换).19.(7分)如图1为计算机“扫雷”游戏的画面,在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.(1)小明如果踩在图1中9×9个小方格的任意一个小方格,则踩中地雷的概率是;(2)如图2,小明游戏时先踩中一个小方格,显示数字2,它表示与这个方格相邻的8个小方格(图黑框所围区域,设为A区域)中埋藏着2个地雷.①若小明第二步选择踩在A区域内的小方格,则踩中地雷的概率是;②小明与小亮约定:若第二步选择踩在A区域内的小方格,不踩雷则小明胜;若选择踩在A区域外的小方格,不踩雷则小亮胜,试问这个约定对谁有利,请通过计算说明.20.(7分)疫情期间,全民检测,人人有责.安安小区某时段进行核酸检测,居民有序排队入场,医务人员开始检测后,现场排队等待检测人数y(人)与时间x(分钟)之间的关系式为y=10x+a,用表格表示为:时间x/分钟0123456…等待检测人数y/人405060708090100…医务人员已检测的总人数(人)与时间(分钟)之间的关系如图所示:(1)图中表示的自变量是,因变量是;(2)图中点A表示的含义是;(3)在医务人员开始检测4分钟时,现场排队等待检测的人数有人;(4)关系式y=10x+a中,a的值为;(5)医务人员开始检测分钟后,现场排队等待检测人数与医务人员已检测的总人数相同;(6)如果该小区共有居民1000人,那么医务人员全部检测完该小区居民共需分钟.21.(8分)阅读下面的材料,然后解答后面的问题:在数学中,“算两次”是一种常用的方法.其思想是,对一个具体的量用方法甲来计算,得到的答案是A,而用方法乙计算则得到的答案是B,那么等式A=B成立.例如,我们运用“算两次”的方法计算图1中最大的正方形的面积,可以得到等式(a+b)2=a2+2ab+b2.理解:(1)运用“算两次”的方法计算图2中最大的正方形的面积,可以得到的等式是;应用:(2)七(1)班某数学学习小组用8个直角边长为a、b的全等直角三角形拼成如图3所示的中间内含正方形A1B1C1D1与A2B2C2D2的正方形ABCD,运用“算两次”的方法计算正方形A2B2C2D2的面积,可以得到的等式是;拓展:如图4,已知Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,点D是AB 上一动点.求CD的最小值.22.(9分)已知△ABC.(1)如图1,按如下要求用尺规作图:①作出△ABC的中线CD;②延长CD至E,使DE=CD,连接AE;(不要求写出作法,但要保留作图痕迹.)(2)在(1)中,直线AE与直线BC的位置关系是;(3)如图2,若∠ACB=90°,CD是中线.试探究CD与AB之间的数量关系,并说明理由;(4)如图3,若∠ACB=45°,AC=BC,CD是△ABC的中线,过点B作BE⊥AC于E,交CD于点F,连接DE.若CF=3,则DE的长是.2020-2021学年广东省深圳市龙华区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)计算a2•a3的正确结果是()A.a5B.a6C.a8D.a9【解答】解:a2•a3=a2+3=a5,故选:A.2.(3分)下列四个图形是有关垃圾分类的标志,其中标志图形(不含文字)是轴对称图形的是()A.B.C.D.【解答】解:A.不是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项符合题意;C.不是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项不合题意;故选:B.3.(3分)新型冠状病毒主要依靠飞沫和直接接触传播,飞沫的直径一般是在0.000003米左右.将数据0.000003米用科学记数法表示为()A.3×10﹣5米B.3×10﹣6米C.30×10﹣7米D.0.3×10﹣6米【解答】解:0.000003米=3×10﹣6米.故选:B.4.(3分)用一块含30°角的透明直角三角板画已知△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.【解答】解:A,B,C都不是△ABC的边BC上的高.故选:D.5.(3分)如图,点E在BC的延长线上,下列条件中,能判定AB∥CD的是()A.∠DAC=∠BCA B.∠D=∠DCEC.∠B=∠DCE D.∠BAD+∠B=180°【解答】解:A、当∠DAC=∠BCA时,可得:AD∥BC,不合题意;B、当∠D=∠DCE时,可得:AD∥BC,不合题意;C、当∠B=∠DCE时,可得:AB∥CD,符合题意;D、当∠BAD+∠B=180°时,可得:AD∥BC,不合题意;故选:C.6.(3分)在一个不透明的口袋中有三个相同的小球,将每个小球分别标号为1,2,3,从这个口袋中摸出一个小球,则下列事件不是随机事件的是()A.摸到的小球的标号为1B.摸到的小球的标号大于1C.摸到的小球的标号小于1D.摸到的小球的标号为偶数【解答】解:A.摸到的小球的标号为1,有可能发生,是随机事件,不符合题意;B.摸到的小球的标号大于1,有可能发生,是随机事件,不符合题意;C.摸到的小球的标号小于1,是不可能事件,符合题意;D.摸到的小球的标号为偶数,是随机事件,不符合题意;故选:C.7.(3分)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.8【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.8.(3分)下列说法正确的是()A.垂直于同一条直线的两条直线互相平行B.如果△ABC的三个内角满足∠A:∠B:∠C=1:2:3,则这个三角形是锐角三角形C.有两角与一边相等的两个等腰三角形全等D.角平分线上的点到这个角的两边的距离相等【解答】解:A、在同一平面上,垂直于同一条直线的两条直线互相平行,说法错误,不符合题意;B、如果△ABC的三个内角满足∠A:∠B:∠C=1:2:3,则这个三角形是直角三角形,说法错误,不符合题意;C、有两角与一边相等的两个等腰三角形不一定全等,说法错误,不符合题意;D、角平分线上的点到这个角的两边的距离相等,说法正确,符合题意;故选:D.9.(3分)赛车在平坦的环形跑道上比赛,经过弯道时通常需要减速.如图表示了一辆赛车跑第二圈时它的速度随行驶的路程的变化情况.以下是4种环形跑道,其中能最恰当反映图中速度随行驶的路程的变化情况的是()A.B.C .D .【解答】解:根据图象横轴表示行驶的距离,纵轴表示行驶的速度的变化,赛车跑第二圈时一共三个减速,也就是三个弯道,且路程的一半左右减速最大,即弯道最大, 所以只有选项B 符合题意. 故选:B .10.(3分)如图,已知△ABC 中,AB =AC ,将△ABC 绕点A 沿逆时针方向旋转n °(0<n <∠BAC )得到△ADE ,AD 交BC 于点F ,DE 交BC 、AC 于点G 、H ,则以下结论: ①△ABF ≌△AEH ;②连接AG 、FH ,则AG ⊥FH ; ③当AD ⊥BC 时,DF 的长度最大;④当点H 是DE 的中点时,四边形AFGH 的面积等于AF ×GH . 其中正确的个数有( )A .4个B .3个C .2个D .1个【解答】解:①在△ABF 和△AEH 中, {∠BAF =∠HAEAB =AE∠B =∠E,∴△ABF ≌△AEH (SAS ),故①正确; ②∵△ABF ≌△AEH , ∴∠AFB =∠AHE ,AF =AH ,∴∠DFG=∠CHG,∵AD=AC,∴DF=CH,∴△DFG≌△CHG,∴FG=GH,∴AF垂直平分FH,故②正确;③由DF=AD﹣AF,∵AD是定长,∴AF最小时,DF最长,即AD⊥BC时,DF最大.故③正确;④当点H是DE的中点时,有AH⊥DE,∵AF=AH,FG=GH,且AG是公共边,∴△AFG≌△AHG(SSS)∴S四边形AFGH=2S△AGH=2×12×GH×AH=GH×AH,故④正确.故选:A.二、填空题(每小题3分,共15分.请把答案填在答题卷相应的表格里.)11.(3分)已知3m=5,3n=2,则3m+n的值等于10.【解答】解:∵3m=5,3n=2,∴3m×3n=10,∴3m+n=10.故答案为:10.12.(3分)如图是一个可以自由转动的转盘,转动转盘,转盘停止后,指针落在红色区域的概率是38.【解答】解:自由转动转盘共有8种等可能结果,转盘停止后,指针落在红色区域的有3种,所以转盘停止后,指针落在红色区域的概率是38,故答案为:38.13.(3分)如图,以△ABC 的顶点A 为圆心,以BC 长为半径作弧;再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ,连接AD 、CD .若∠B =65°,则∠BCD 的大小是 65° °.【解答】解:由题意可知:AB =CD .BC =AD . 在△ABC 与△CDA 中. {AB =CD BC =AD AC =CA. ∴△ABC ≌△CDA (SSS ).∴∠D =∠B =65°,(全等三角形的对应角相等). 14.(3分)已知m ﹣n ﹣2=0,则4m ÷22n = 16 . 【解答】解:因为m ﹣n ﹣2=0, 所以m ﹣n =2,所以4m ÷22n =22m ÷22n =22m ﹣2n=22(m ﹣n )=22×2=16.故答案为:16.15.(3分)如图,已知△ABC 与△ADE 均是等腰直角三角形,∠BAC =∠DAE =90°,AB =AC =5,AD =AE =4,点D 在BC 上,连接CE .则△CDE 的面积是92.【解答】解:∵∠BAC =∠DAE =90°,AB =AC =5,AD =AE =4, ∴∠B =∠ACB =45°,BC =√2AB =5√2,DE =√2AD =4√2, ∵∠BAC =∠DAE =90°,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC , 即∠BAD =∠CAE , 在△BAD 与△CAE 中, {AB =AC∠BAD =∠CAE AD =AE, ∴△BAD ≌△CAE (SAS ), ∴∠B =∠ACE =45°, ∴∠DCE =90°,CE =BD , ∴CE 2+CD 2=DE 2,∴BD 2+(5√2−BD )2=(4√2)2, ∴BD =5√2−√142或5√2+√142, ∴CD =5√2+√142或5√2−√142, ∴△CDE 的面积=12×5√2+√142×5√2−√142=92, 故答案为:92.三、解答题(本题共7小题,共55分) 16.(8分)计算:(1)﹣12021﹣(2020﹣π)0+(−12)﹣3;(2)(﹣3xy2)2•(﹣6x2y)÷(9x4y5).【解答】(1)解:原式=﹣1﹣1+(﹣2)3=﹣1﹣1﹣8=﹣10.(2)解:原式=9x2y4•(﹣6x2y)÷(9x4y5)=﹣54x4y5÷(9x4y5)=﹣6.17.(10分)(1)计算:(xy+2)(xy﹣2)﹣x(xy2﹣4);(2)先化简,再求值:[(2x﹣y)2﹣4(x﹣y)(x+y)]÷(−12y),其中x=2,y=−3.【解答】解:(1)原式=(x2y2﹣4)﹣(x2y2﹣4x)=x2y2﹣4﹣x2y2+4x=4x﹣4;(2)原式=(4x2﹣4xy+y2﹣4x2+4y2)÷(−12y)=(﹣4xy+5y2)÷(−12y)=8x﹣10y,当x=2,y=﹣3时,原式=8×2﹣10×(﹣3)=46.18.(6分)填空:把下面的推理过程补充完整,并在括号内注明理由.如图,已知BC分别交AB、DE于点B、C,且∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.证明:因为∠ABC+∠ECB=180°(已知),所以AB∥DE(同旁内角互补,两直线平行).所以∠ABC=∠BCD(两直线平行,内错角相等).因为∠P=∠Q(已知),所以PB∥CQ(内错角相等,两直线平行).所以∠PBC=(∠BCQ)(两直线平行,内错角相等).因为∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),所以∠1=∠2(等量代换).【解答】解:证明:因为∠ABC+∠ECB=180°(已知),所以AB∥DE(同旁内角互补,两直线平行).所以∠ABC=∠BCD(两直线平行,内错角相等).因为∠P=∠Q(已知),所以PB∥CQ(内错角相等,两直线平行).所以∠PBC=(∠BCQ)(两直线平行,内错角相等).因为∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),所以∠1=∠2(等量代换).19.(7分)如图1为计算机“扫雷”游戏的画面,在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.(1)小明如果踩在图1中9×9个小方格的任意一个小方格,则踩中地雷的概率是1081;(2)如图2,小明游戏时先踩中一个小方格,显示数字2,它表示与这个方格相邻的8个小方格(图黑框所围区域,设为A区域)中埋藏着2个地雷.①若小明第二步选择踩在A区域内的小方格,则踩中地雷的概率是14;②小明与小亮约定:若第二步选择踩在A区域内的小方格,不踩雷则小明胜;若选择踩在A区域外的小方格,不踩雷则小亮胜,试问这个约定对谁有利,请通过计算说明.【解答】解:(1)∵在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.∴小明如果踩在图1中9×9个小方格的任意一个小方格,则踩中地雷的概率是1081;故答案为:1081;(2)①由题意,可得若小明第二步选择踩在A 区域内的小方格,则踩中地雷的概率是28=14;故答案为:14;②约定对于小亮有利.理由如下: 由题意,可得P (小明获胜)=68=34, P (小亮获胜)=72−881−9=6472=89, 因为34<89,P (小明获胜)<P (小亮获胜), 所以约定对于小亮有利.20.(7分)疫情期间,全民检测,人人有责.安安小区某时段进行核酸检测,居民有序排队入场,医务人员开始检测后,现场排队等待检测人数y (人)与时间x (分钟)之间的关系式为y =10x +a ,用表格表示为:时间x /分钟 0 1 2 3 4 5 6 … 等待检测人数y /人405060708090100…医务人员已检测的总人数(人)与时间(分钟)之间的关系如图所示:(1)图中表示的自变量是时间,因变量是总人数;(2)图中点A表示的含义是检测5分钟后,已检测的总人数为80人;(3)在医务人员开始检测4分钟时,现场排队等待检测的人数有80人;(4)关系式y=10x+a中,a的值为40;(5)医务人员开始检测6分钟后,现场排队等待检测人数与医务人员已检测的总人数相同;(6)如果该小区共有居民1000人,那么医务人员全部检测完该小区居民共需51分钟.【解答】解:由图象,结合题意可知:(1)自变量是检测时间,因变量是已检测的总人数;故答案为:时间;总人数;(2)图中点A表示的含义是:检测5分钟后,已检测的总人数为80人;(3)在医务人员开始检测4分钟时,现场排队等待检测的人数有80;故答案为:80;(4)根据表格可知,60=10×2+a,解得a=40.故答案为:40;(5)医务人员开始检测6分钟后,现场排队等待检测人数与医务人员已检测的总人数相同;故答案为:6;(6)由题意,得20x﹣20=1000,解得x=51,即医务人员全部检测完该小区居民共需51分钟.故答案为:51.21.(8分)阅读下面的材料,然后解答后面的问题:在数学中,“算两次”是一种常用的方法.其思想是,对一个具体的量用方法甲来计算,得到的答案是A,而用方法乙计算则得到的答案是B,那么等式A=B成立.例如,我们运用“算两次”的方法计算图1中最大的正方形的面积,可以得到等式(a+b)2=a2+2ab+b2.理解:(1)运用“算两次”的方法计算图2中最大的正方形的面积,可以得到的等式是(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;应用:(2)七(1)班某数学学习小组用8个直角边长为a、b的全等直角三角形拼成如图3所示的中间内含正方形A1B1C1D1与A2B2C2D2的正方形ABCD,运用“算两次”的方法计算正方形A2B2C2D2的面积,可以得到的等式是(a﹣b)2=(a+b)2﹣4ab;拓展:如图4,已知Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,点D是AB 上一动点.求CD的最小值.【解答】解:(1)从整体上看为边长为(a+b+c)的正方形,所以面积为(a+b+c)2,从各个部分的面积和为a2+b2+c2+2ab+2bc+2ac,所以(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)正方形A2B2C2D2的边长(a﹣b),因此面积为(a﹣b)2,也可以看做边长为(a+b)的正方形ABCD面积减去四个长为a,宽为b的长方形的面积,即(a+b)2﹣4ab,因此有:(a﹣b)2=(a+b)2﹣4ab;由“直线外一点到直线上所有点的连线中,垂线段最短”可得,当CD⊥AB时,CD最短,由三角形的面积可得,12AC •BC =12AB •CD ,即6×8=10CD , ∴CD =4.8,答:CD 的最小值为4.8. 22.(9分)已知△ABC .(1)如图1,按如下要求用尺规作图: ①作出△ABC 的中线CD ;②延长CD 至E ,使DE =CD ,连接AE ;(不要求写出作法,但要保留作图痕迹.) (2)在(1)中,直线AE 与直线BC 的位置关系是 AE ∥BC ;(3)如图2,若∠ACB =90°,CD 是中线.试探究CD 与AB 之间的数量关系,并说明理由;(4)如图3,若∠ACB =45°,AC =BC ,CD 是△ABC 的中线,过点B 作BE ⊥AC 于E ,交CD 于点F ,连接DE .若CF =3,则DE 的长是32.【解答】解:(1)①如图1所示,线段CD 即为所求. ②如图1中,线段DE ,AE 即为所求.(2)结论:AE ∥BC .理由:在△CDB 和△EDA 中,{DC =DE ∠CDB =∠EDA DB =DA,∴△CDB ≌△EDA (SAS ),∴∠B =∠DAE ,∴AE ∥BC .故答案为:AE ∥BC .(3)AB 与CD 的数量关系是:AB =2CD ,理由如下: 如图3﹣2,延长CD 至E ,使DE =DC ,连接BE ,∵CD 是中线,∴AD =BD ,在△ADC 和△BDE 中,{AD =BD ∠ADC =∠BDE DC =DE,∴△ADC ≌△BDE (SAS ),∴∠E =∠ACD ,AC =BE ,∴AC ∥BE ,∴∠ACB +∠EBC =180°,∵∠ACB =90°,∴∠EBC =90°,在△ACB 和△EBC 中,{AC =BE ∠ACB =∠EBC CB =BC,∴△ACB ≌△EBC (SAS ),∴AB =CE ,∵CE =2CD ,∴AB =2CD .(4)如图3中,∵BE ⊥AC ,∠ACB =45°,∴∠CEB =∠BEA =90°,∠ECB =∠EBC =45°, ∴EC =EB ,∵AC =AB ,CD 是中线,∴CD ⊥AB ,∵∠CEF =∠BDF =90°,∠CFE =∠BFD , ∴∠ECF =∠ABE ,在△CEF 和△BEA 中,{∠ECF =∠EBACE =BE ∠CEF =∠BEA,∴△CEF ≌△BEA (ASA ),∴CF =AB =3,∵AD =BD ,∠AEB =90°,∴DE =12AB =32.故答案为:32.。
2019-2020学年深圳中学初中部七年级下学期期中数学试卷(含答案解析)
2019-2020学年深圳中学初中部七年级下学期期中数学试卷一、选择题(本大题共12小题,共36.0分)1.2018年7月1日起,广州市全面推行生活垃圾分类.下列垃圾分类标志分别是可回收物、厨余垃圾、有害垃圾和其他垃圾,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.2.在等腰三角形ABC中,它的两边长分别为8cm和3cm,则它的周长为()A. 19cmB. 19cm或14cmC. 11cmD. 10cm3.如图,在△ABC中,CD是AB边上的高,BE是AC边上的高,点F是两条高线的交点.若∠A=70°,∠FBC=15°,则∠FCB的度数为()A. 45°B. 55°C. 65°D. 75°4.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片既不是轴对称图形也不是中心对称图形的概率A. 1/2B. 1/4C. 3/4D. 15.下列说法中:①同位角相等;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③过直线外一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a//b,b//c,则a//c.正确的有()A. ①②③B. ②③⑤C. ②④⑤D. ③④⑤6.下列各式计算正确的是()A. 2ab+3ab=5abB. (−a2b3)2=a4b5C. √2×√3=√5D. (a+1)2=a2+17. 如图,矩形ABCD 的对角线相交于O ,过点O 作OE ⊥BD ,交AD点E ,连接BE ,若∠ABE =20°,则∠AOE 的大小是( )A. 10°B. 15°C. 20°D. 30°8. 某村办工厂,今年前五个月生产某种产品的总量C(件)与时间t(月)的函数图象如图所示,则该厂对这种产品来说A. 1月至3月每月生产量逐月增加,4、5两月生产量逐月减小B. 1月至3月每月生产量逐月增加,4、5两月生产量与3月持平C. 1月至3月每月生产量逐月增加,4、5两月均停止生产D. 1月至3月每月生产量不变,4、5两月均停止生产9. 使两个直角角形全等的条件是)A. 一个锐角对应相等B. 两个锐角对应相等C. 一条边对应相等D. 两条边对应相等10. 如图,△ADE 绕点D 的顺时针旋转,旋转的角是∠ADE ,得到△CDB ,那么下列说法错误的是( )A. DE 平分∠ADBB. AD =DCC. AE//BDD. AE =BC11. 某学校要召学生代表大会,规定各班每10人推选1名代表,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x]([x]表示不大于x 的最大整数)可以表示为( )A. y =[x 10]B. y =[x+310]C. y =[x+410]D. y =[x+510] 12. 如图,正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,将直角三角板的直角顶点放在点O 处,两直角边分别与OD ,OC重叠,当三角板绕点O 顺时针旋转α角(0°<α<90°)时,两直角边与正方形的边BC,CD交于E、F两点,则四边形OECF的周长()A. 先变小再变大B. 先变大再变小C. 始终不变D. 无法确定二、填空题(本大题共4小题,共12.0分)13.若2x=2,4y=4,则2x−2y的值为______.14.如图在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN//BC交AB于M,交AC于N,若AB+AC=7cm,则△AMN的周长为______cm.15.某校对初三(2)班40名学生体育考试中“立定跳远”项目的得分情况进行了统计,结果如表所示:根据表中数据,若随机抽取该班一名学生,则该学生“立定跳远”得分恰好是10分的概率是______.16.如图,在Rt△ABC中,∠BAC=90°,AD是斜边BC边上的中线,G是△ABC的重心,如果BC=8,那么线段AG的长为______.三、解答题(本大题共7小题,共52.0分)17.(1)计算:tan60°+|√3−2|+(12)−1−(π+2)0(2)2−xx2−9−1x−3=2x+318.(1)已知x+y=15,x2+y2=113,求x2−3xy+y2的值;(2)先化简,再求值:(2x−1)2−(3x+1)(3x−1)+5x(x−1),x=−1.919.小明同学骑自行车去郊外春游,骑行1个小时后,自行车出现损坏,维修好后继续骑行,如图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的图象.(1)根据图象回答:小明到达离家最远的地方用了几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)求小明出发多长时间距家12千米?20.五一期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图],如果规定当圆盘停下来吋指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?21.在△ABN中,∠B=90°,点M是AB上的动点(不与A,B两点重合),点C是BN延长线上的动点(不与点N重合),且AM=BC,CN=BM,连接CM与AN交于点P.(1)在图1中依题意补全图形;(2)小伟通过观察、实验,提出猜想:在点M,N运动的过程中,始终有∠APM=45°.小伟把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的一种思路:要想解决这个问题,首先应想办法移动部分等线段构造全等三角形,证明线段相等,再构造平行四边形,证明线段相等,进而证明等腰直角三角形,出现45°的角,再通过平行四边形对边平行的性质,证明∠APM=45°.他们的一种作法是:过点M在AB下方作MD⊥AB于点M,并且使MD=CN.通过证明△AMD≅△CBM,得到AD=CM,再连接DN,证明四边形CMDN是平行四边形,得到DN=CM,进而证明△ADN是等腰直角三角形,得到∠DNA=45°.又由四边形CMDN是平行四边形,推得∠APM=45°.使问题得以解决.请你参考上面同学的思路,用另一种方法证明∠APM=45°.22.如图,△ABC中,AB=BC=AC=6cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)当M、N运动______秒时,点N追上点M?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形△AMN?如存在,请求出此时M、N运动的时间.(4)点M、N运动______秒后,可得到直角三角形△AMN?23.已知:等边三角形ABC(1)如图1,P为等边△ABC内一点,且△PAE为等边三角形,则BP______EC(填“>”,“<”或“=”);(2)如图2,P为等边△ABC外一点,且∠BPC=120°.试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;(3)如图3,P为等边△ABC内一点,且∠APD=120°.求证:PA+PD+PC>BD.【答案与解析】1.答案:B解析:解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.答案:A解析:解:当腰长为8cm时,三边长为:8,8,3,能构成三角形,故周长为:8+8+3=19cm.当腰长为3cm时,三边长为:3,3,8,3+3<8,不能构成三角形.故三角形的周长为19cm.故选:A.等腰三角形的两腰相等,应讨论当8为腰或3为腰两种情况求解.本题考查等腰三角形的性质,等腰三角形的两腰相等,以及辆较小边的和大于较大边时才能构成三角形.3.答案:B解析:解:∵CD是AB边上的高,BE是AC边上的高,∴∠ADC=∠BEC=90°,∵∠A=70°,∠FBC=15°,∴∠ACD=90°−70°=20°,∠BCE=90°−15°=75°,∴∠BCF=∠BCE−∠ACD=75°−20°=55°,故选:B.根据∠BCF=∠BCE−∠ACD,只要求出∠BCE,∠ACD即可.本题考查三角形内角和定理,三角形的高等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.答案:B解析:∵四个图形中既不是轴对称图形也不是中心对称图形的只有三角形一个,∴抽出的卡片是轴对称图形的概率为。
2019-2020学年广东省深圳中学竞赛班七年级(下)期中数学试卷(含答案解析)
2019-2020学年广东省深圳中学竞赛班七年级(下)期中数学试卷一、选择题(本大题共10小题,共20.0分)1.已知等腰三角形两边a,b,满足4a2−4ab+2b2−8b+16=0,则此等腰三角形的周长为()A. 8B. 10C. 12D. 8或102.线段CD是由线段AB平移得到的,点A(−2,3)的对应点为C(3,6),则点B(−4,−1)的对应点D的坐标为()A. (2,9)B. (5,3)C. (1,2)D. (−9,−4)3.数学课上,同学们在练习本上画钝角△ABC的高BE时,有一部分学生画出下列四种图形,其中正确的个数为()A. 1个B. 2个C. 3个D. 4个4.如图,在△ABC中,AC=5,线段AB的垂直平分线交AC于点D,△BCD的周长是9,则BC的长为()A. 3B. 4C. 5D. 65.下列各数中比−√3大的数是()A. −3B. −2C. −√πD. −1√36.如图,点O是▱ABCD的对称中心,EF是过点O的任意一条直线,它将平行四边形分成两部分,四边形ABFE和四边形EFCD的面积分别记为S1,S2,那么S1,S2之间的关系为()A. S1>S2B. S1<S2C. S1=S2D. 无法确定7. 若关于x 、y 的二元一次方程组{x −y =2m +1x +3y =3的解满足x +y >0,则m 的取值范围为( ) A. m >−2 B. m >2 C. m >3 D. m <−28. 等腰三角形一腰上的高与另一腰的夹角60°则这个等腰三角形的顶角为A. 30°或150°B. 150°C. 30°D. 120°9. 下列说法: ①如果两个三角形全等,则它们必是关于某条直线成轴对称的图形;②等腰三角形的高、中线、角平分线互相重合;③若三角形一个外角的平分线平行于三角形的一边,则这个三角形为等腰三角形;④等腰三角形顶角的外角是底角的二倍;⑤等腰三角形两腰上的中线长相等. 其中正确的共有( )A. 5个B. 4个C. 3个D. 2个10. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,若△ABC 的面积为S △ABC =36cm 2,则梯形EDBC 的面积S EDBC 为( )A. 9B. 18C. 27D. 30二、填空题(本大题共10小题,共30.0分)11. 若式子√x x有意义,则x ______. 12. 如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1∶2,∠OCD =90°, CO =CD.若B(1,0),则点C 的坐标为______________.13. ______的绝对值等于它的相反数.14. 如图,在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF//BC 交AC于M ,若CM =3,则CE 2+CF 2= .15.已知平行四边形ABCD的顶点B和点D关于直线AC成轴对称,则平行四边形ABCD一定是______形.16.如果实数、是方程组的解,那么代数式的值为.17.等腰三角形一腰上的中线将三角形周长分成21cm和12cm,则三角形的腰长为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年七年级第二学期期中数学试卷一、选择题(共12小题).1.下列计算正确的是()A.(﹣x3)2=x5B.(﹣x)2÷x=xC.x5•x2=x10D.(﹣2x2y)3=﹣6x6y32.下列图形中的两个角互为补角的是()A.①和②B.①和③C.①和④D.②和④3.生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子直径约为0.0000002cm,这个数量用科学记数法可表示为()A.0.2×10﹣6cm B.2×10﹣6cm C.0.2×10﹣7cm D.2×10﹣7cm4.如图,直线AB与CD相交于点O,OE为∠DOB的角平分线,若∠AOC=54°,则∠DOE的度数为()A.25°B.26°C.27°D.28°5.如图,点P是直线a外一点,过点P作PA⊥a于点A,在直线a上取一点B,连结PB,使PB=PA,C在线段AB上,连结PC.若PA=4,则线段PC的长不可能是()A.3.8B.4.9C.5.6D.5.96.纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为45000纳米,那么科学记数法表示这种花粉的直径为()A.4.5×10﹣6米B.4.5×10﹣5米C.45×1013米D.4.5×1013米7.不等式2x﹣4<0的解集是()A.x<2B.x>2C.x≤2D.x≥28.如果a<b,那么下列不等式成立的是()A.a﹣b>0B.a﹣3>b﹣3C.2a>2b D.﹣3a>﹣3b 9.下列语句中,假命题的是()A.对顶角相等B.若直线a、b、c满足b∥a,c∥a,那么b∥cC.两直线平行,同旁内角互补D.互补的角是邻补角10.AF是∠BAC的平分线,DF∥AC,若∠BAC=70°,则∠1的度数为()A.175°B.35°C.55°D.70°11.如图,把一张长方形纸片ABCD沿EF折叠后,点A落在CD边上的点A'处,点B落在点B'处,若∠1=115°,则图中∠2的度数为()A.40°B.45°C.50°D.60°12.如图1,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE,CE,如图2:在射线AD上取点F连接BF,CF,如图3,依此规律,第n个图形中全等三角形的对数是()A.n B.2n﹣1C.D.3(n+1)二、填空题:(每题3分,共18分)13.若x2﹣kx+1是完全平方式,则k=.14.如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是.15.现定义运算“△”,对于任意有理数a,b,都有a△b=a2﹣ab+b,例如:3△5=32﹣3×5+5=﹣1,由此算出(x﹣1)△(2+x)=.16.初2021级某班班树现在高60厘米,以后每个月长高2厘米,x月后这棵树的高度为h 厘米,则h与x的函数关系式为.17.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为小时.18.如图,若直线l1∥l2,∠α=∠β,∠1=30°,则∠2的度数为.三、解答题(共46分)19.(16分)计算下列各题:(1);(2)2018×2020﹣20192;(3)(x+2)(x﹣2)﹣(x﹣2)2;(4)(a﹣b)2(a+b)2.20.先化简,再求值:[4(x﹣y)2﹣2(x﹣2y)(y+2x)]÷(﹣2y),其中x=2,y=﹣1.21.如图,已知点D为△ABC的边AB上一点,请在边AC上确定一点E,使得S△BCD=S(要求:尺规作图、保留作图痕迹、不写作法).△BCE22.星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店.买到彩笔后继续往家走如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小颖家与学校的距离是米;(2)AB表示的实际意义是;(3)小颖本次从学校回家的整个过程中,走的路程是多少米?(4)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?23.在学习“乘法公式”时,育红中学七(1)班数学兴趣小组在活动课上进行了这样的操作:作两条互相垂直的线段AB和CD.把大正方形分成四部分(如图1所示).观察发现(1)请用两种不同的方法表示图形的面积,得到一个等量关系:.类比操作(2)请你作一个图形验证:(x+y)(2x+y)=2x2+3xy+y2.延伸运用(3)若AB+CD=14,图中阴影部分的面积和为13,求xy的值.24.已知,如图,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.(1)如图1,若∠MOC=28°,求∠BON的度数.(2)若∠MOC=m°,则∠BON的度数为.(3)由(1)和(2),我们发现∠MOC和∠BON之间有什么样的数量关系?(4)若将三角形MON绕点O旋转到如图2所示的位置,试问∠MOC和∠BON之间的数量关系是否发生变化?请说明理由.参考答案一、选择题(共12小题)1.下列计算正确的是()A.(﹣x3)2=x5B.(﹣x)2÷x=xC.x5•x2=x10D.(﹣2x2y)3=﹣6x6y3【分析】分别进行同底数幂的乘除法则及幂的乘方法则,进行各选项的判断,即可得出答案.解:A、,计算错误,故本选项错误;B、(﹣x)2÷x=x,计算正确,故本选项正确;C、x5•x2=x7,计算错误,故本选项错误;D、(﹣2x2y)3=﹣8x6y3,计算错误,故本选项错误;故选:B.2.下列图形中的两个角互为补角的是()A.①和②B.①和③C.①和④D.②和④【分析】根据互补两角之和为180°求解即可.解:∵①④两个角相加为180°,∴①④互为补角.故选:C.3.生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子直径约为0.0000002cm,这个数量用科学记数法可表示为()A.0.2×10﹣6cm B.2×10﹣6cm C.0.2×10﹣7cm D.2×10﹣7cm【分析】小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000 000 2=2×10﹣7cm.故选:D.4.如图,直线AB与CD相交于点O,OE为∠DOB的角平分线,若∠AOC=54°,则∠DOE的度数为()A.25°B.26°C.27°D.28°【分析】根据对顶角相等和角平分线的性质计算即可.解:∵∠AOC=54°,∴∠BOD=54°,∵OE为∠DOB的角平分线,∴∠DOE=×54°=27°,故选:C.5.如图,点P是直线a外一点,过点P作PA⊥a于点A,在直线a上取一点B,连结PB,使PB=PA,C在线段AB上,连结PC.若PA=4,则线段PC的长不可能是()A.3.8B.4.9C.5.6D.5.9【分析】直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.解:∵过点P作PA⊥a于点A,在直线a上取一点B,连结PB,使PB=PA,C在线段AB上,连结PC.若PA=4,∴PB=6,∴4≤AP≤6,故AP不可能是3.8,故选:A.6.纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为45000纳米,那么科学记数法表示这种花粉的直径为()A.4.5×10﹣6米B.4.5×10﹣5米C.45×1013米D.4.5×1013米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:45000纳米=45000×10﹣9米=4.5×10﹣5米.故选:B.7.不等式2x﹣4<0的解集是()A.x<2B.x>2C.x≤2D.x≥2【分析】先移项,然后把x的相似化为1即可.解:2x<4,所以x<2.故选:A.8.如果a<b,那么下列不等式成立的是()A.a﹣b>0B.a﹣3>b﹣3C.2a>2b D.﹣3a>﹣3b 【分析】根据不等式的性质逐个判断即可.解:A、∵a<b,∴按照不等式的性质1,两边同时减去b,可得a﹣b<0,故选项A不符合题意;B、∵a<b,∴按照不等式的性质1,两边同时减去3可得a﹣3<b﹣3,故选项B不符合题意;C、∵a<b,∴按照不等式的性质2,两边同时乘以2可得2a<2b,故选项C不符合题意;D、∵a<b,∴按照不等式的性质3,两边同时乘以﹣3可得﹣3a>﹣3b,故选项D符合题意;故选:D.9.下列语句中,假命题的是()A.对顶角相等B.若直线a、b、c满足b∥a,c∥a,那么b∥cC.两直线平行,同旁内角互补D.互补的角是邻补角【分析】真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.一个命题都可以写成这样的格式:如果+条件,那么+结论.条件和结果相矛盾的命题是假命题.解:(D)两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.故互补的角,不一定是有一条公共边,它们的另一条边互为反向延长线,故D是假命题;故选:D.10.AF是∠BAC的平分线,DF∥AC,若∠BAC=70°,则∠1的度数为()A.175°B.35°C.55°D.70°【分析】根据角平分线的性质得出∠FAC度数,再利用平行线的性质可得答案.解:∵∠BAC=70°,AF平分∠BAC,∴∠FAC=∠BAC=35°,∵DF∥AC,∴∠1=∠FAC=35°,故选:B.11.如图,把一张长方形纸片ABCD沿EF折叠后,点A落在CD边上的点A'处,点B落在点B'处,若∠1=115°,则图中∠2的度数为()A.40°B.45°C.50°D.60°【分析】由邻补角概念和翻折变换性质得出∠EFB′=∠1=115°,∠EFC=65°,据此知∠CFB′=50°,结合∠B=∠B′=90°知∠2=90°﹣∠CFB′,从而得出答案.解:∵∠1=115°,∴∠EFB′=∠1=115°,∠EFC=65°,∴∠CFB′=50°,又∵∠B=∠B′=90°,∴∠2=90°﹣∠CFB′=40°,故选:A.12.如图1,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE,CE,如图2:在射线AD上取点F连接BF,CF,如图3,依此规律,第n个图形中全等三角形的对数是()A.n B.2n﹣1C.D.3(n+1)【分析】根据条件可得图1中△ABD≌△ACD有1对三角形全等;图2中可证出△ABD ≌△ACD,△BDE≌△CDE,△ABE≌△ACE有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第n个图形中全等三角形的对数.解:∵△ABD和△ACD关于直线AD对称,∴∠BAD=∠CAD.在△ABD与△ACD中,∴△ABD≌△ACD(SAS).∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE(SAS),∴BE=EC,∵△ABD≌△ACD.∴BD=CD,在△BDE和△CDE中,∴△BDE≌△CDE(SSS),∴图2中有1+2=3对三角形全等;同理:图3中有1+2+3=6对三角形全等;由此发现:第n个图形中全等三角形的对数是.故选:C.二、填空题:(每题3分,共18分)13.若x2﹣kx+1是完全平方式,则k=2或﹣2.【分析】将原式化为x2﹣kx+12,再根据完全平方公式解答.解:原式可化为知x2﹣kx+12,可见当k=2或k=﹣2时,原式可化为(x+1)2或(x﹣1)2,故答案为2或﹣2.14.如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是65°.【分析】利用三角形的内角和定理求出∠1,再利用平行线的性质求出∠EFD即可.解:如图,∵BE⊥EF,∴∠E=90°,∵∠B=25°,∴∠1=65°,∵AB∥CD,∴∠EFD=∠1=65°.故答案为:65°.15.现定义运算“△”,对于任意有理数a,b,都有a△b=a2﹣ab+b,例如:3△5=32﹣3×5+5=﹣1,由此算出(x﹣1)△(2+x)=﹣2x+5.【分析】原式利用题中的新定义化简,计算即可得到结果.解:根据题中的新定义得:(x﹣1)△(2+x)=(x﹣1)2﹣(x﹣1)(2+x)+2+x=x2﹣2x+1﹣x2﹣x+2+2+x=﹣2x+5,故答案为:﹣2x+516.初2021级某班班树现在高60厘米,以后每个月长高2厘米,x月后这棵树的高度为h 厘米,则h与x的函数关系式为h=60+2x.【分析】根据树高=现在的高度+x个月长的高度即可得出关系式.解:依题意有:h=60+2x,故答案为:h=60+2x.17.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为小时.【分析】根据图象可得沙漏漏沙的速度,从而得出从开始计时到沙子漏光所需的时间.解:沙漏漏沙的速度为:15﹣6=9(克/小时),∴从开始计时到沙子漏光所需的时间为:15÷9=(小时).故答案为:18.如图,若直线l1∥l2,∠α=∠β,∠1=30°,则∠2的度数为150°.【分析】延长AB交l2于E,根据平行线的判定可得AB∥CD,根据平行线的性质先求得∠3的度数,再根据平行线的性质求得∠2的度数.解:延长AB交l2于E,∵∠α=∠β,∴AB∥CD,∵l1∥l2,∴∠3=∠1=30°,∴∠2=180°﹣∠3=150°.故答案为:150°.三、解答题(共46分)19.(16分)计算下列各题:(1);(2)2018×2020﹣20192;(3)(x+2)(x﹣2)﹣(x﹣2)2;(4)(a﹣b)2(a+b)2.【分析】(1)分别根据有理数的乘方的定义,负整数指数幂的定义以及任何非0数的0次幂等于1计算即可;(2)根据平方差公式计算即可;(3)根据平方差公式以及完全平方公式计算即可;(4)根据积的乘方运算法则以及平方差公式计算即可.解:(1)原式=﹣1+4﹣1=2;(2)原式=(2019﹣1)×(2019+1)﹣20192=20192﹣1﹣20192=﹣1;(3)原式=x2﹣4﹣(x2﹣4x+1)=x2﹣4﹣x2+4x﹣1=4x﹣5;(4)原式=[(a﹣b)(a+b)]2=(a2﹣b2)2.20.先化简,再求值:[4(x﹣y)2﹣2(x﹣2y)(y+2x)]÷(﹣2y),其中x=2,y=﹣1.【分析】根据完全平方公式、多项式乘多项式和多项式除以单项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.解:[4(x﹣y)2﹣2(x﹣2y)(y+2x)]÷(﹣2y)=(4x2﹣8xy+4y2+6xy﹣4x2+4y2)÷(﹣2y)=(﹣2xy+8y2)÷(﹣2y)=x﹣4y,当x=2,y=﹣1时,原式=2﹣4×(﹣1)=2+4=6.21.如图,已知点D为△ABC的边AB上一点,请在边AC上确定一点E,使得S△BCD=S(要求:尺规作图、保留作图痕迹、不写作法).△BCE【分析】过点D作DE∥BC交AC于E,点E即为所求.解:如图,点E即为所求.22.星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店.买到彩笔后继续往家走如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小颖家与学校的距离是2600米;(2)AB表示的实际意义是小颖在文具用品店买彩笔所花时间;(3)小颖本次从学校回家的整个过程中,走的路程是多少米?(4)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?【分析】(1)根据函数图象,小颖家与学校的距离是2600米;(2)AB表示的实际意义是小颖在文具用品店买彩笔所花时间;(3)小颖本次从学校回家的整个过程中,走的路程是2600+2×(1800﹣1400);(4)根据速度=路程÷时间,即可解答.解:(1)小颖家与学校的距离是2600米;故答案为:2600;(2)AB表示的实际意义是小颖在文具用品店买彩笔所花时间;故答案为:小颖在文具用品店买彩笔所花时间;(3)2600+2×(1800﹣1400)=3400(米),答:小颖本次从学校回家的整个过程中,走的路程是3400米;(4)1800÷(50﹣30)=90(米/分),买到彩笔后,小颖从文具用品店回到家步行的速度是90米/分.23.在学习“乘法公式”时,育红中学七(1)班数学兴趣小组在活动课上进行了这样的操作:作两条互相垂直的线段AB和CD.把大正方形分成四部分(如图1所示).观察发现(1)请用两种不同的方法表示图形的面积,得到一个等量关系:(x+y)2=x2+2xy+y2.类比操作(2)请你作一个图形验证:(x+y)(2x+y)=2x2+3xy+y2.延伸运用(3)若AB+CD=14,图中阴影部分的面积和为13,求xy的值.【分析】(1)依据正方形的面积计算公式即可得到结论;(2)画出长为2x+y,宽为x+y的长方形,即可验证:(x+y)(2x+y)=2x2+3xy+y2;(3)根据AB+CD=14得x+y,由阴影部分的面积和为13得x2+y2,再利用(1)中的关系进行解答.解:(1)由图知,大正方形的边长为x+y,则大正方形的面积为(x+y)2,∵大正方形的面积为各部分面积和:x2+2xy+y2,∴(x+y)2=x2+2xy+y2,故答案为(x+y)2=x2+2xy+y2;(2)如图所示,(3)∵AB+CD=14,∴x+y=7,∵阴影部分的面积和为13,∴x2+y2=13,∵(x+y)2=x2+2xy+y2,∴72=13+2xy,∴xy=18.24.已知,如图,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.(1)如图1,若∠MOC=28°,求∠BON的度数.(2)若∠MOC=m°,则∠BON的度数为2m°.(3)由(1)和(2),我们发现∠MOC和∠BON之间有什么样的数量关系?(4)若将三角形MON绕点O旋转到如图2所示的位置,试问∠MOC和∠BON之间的数量关系是否发生变化?请说明理由.【分析】(1)根据角平分线和互为余角的意义,可求出∠NOC、∠AOC,再根据互为补角求出∠BON即可;(2)由(1)的计算过程,将∠MOC=m°进行计算即可得出答案;(3)根据(1)(2)的解题过程得出∠BON=2∠MOC;(4)根据角平分线和互为余角的意义可得∠AOC=∠NOC=90°﹣∠MOC,再根据互为补角的意义得到∠BON=180°﹣2∠NOC=180°﹣2(90°﹣∠MOC)=2∠MOC.解:(1)如图1,∵∠MOC=28°,∠MON=90°,∴∠NOC=90°﹣28°=62°,又∵OC平分∠AON,∴∠AOC=∠NOC=62°,∴∠BON=180°﹣2∠NOC=180°﹣62°×2=56°,(2)如图1,∵∠MOC=m°,∠MON=90°,∴∠NOC=90°﹣m°=(90﹣m)°,又∵OC平分∠AON,∴∠AOC=∠NOC=(90﹣m)°,∴∠BON=180°﹣2∠NOC=180°﹣(90﹣m)°×2=2m°,故答案为:2m°;(3)由(1)和(2)可得:∠BON=2∠MOC;(4)∠MOC和∠BON之间的数量关系不发生变化,如图2,∵OC平分∠AON,∴∠AOC=∠NOC,∵∠MON=90°,∴∠AOC=∠NOC=90°﹣∠MOC,∴∠BON=180°﹣2∠NOC=180°﹣2(90°﹣∠MOC)=2∠MOC,即:∴∠BON=2∠MOC.。