有色金属冶金原理50页PPT

合集下载

有色金属冶金技术讲座ppt有色金属冶金技术基础知识讲座36691

有色金属冶金技术讲座ppt有色金属冶金技术基础知识讲座36691

金属
加工处理
(1)化学冶金:
(2)物理冶金:
3.有色冶金的任务:把要提取的金属从成分复杂的矿物集合体中 分离出来,得到粗金属产品(粗炼),再将粗金属进行提纯得到 合格的精炼金属产品(精炼)。
4.冶金过程:应用各种化学方法或物理化学方法使原料中的主要 金属与其他金属或非金属元素化合物分开,以获得纯度较高的金 属。 (1)炼前处理 (2)粗炼 (3)精炼
b.置换法、负电金属
正电金属。如
CuSO4+Fe=Cu+FeSO4
c.水解法、金属盐类
氢氧化物(碱性
盐类)

NaAlO2+2H2O=Al(OH)3 +NaOH
d.化学沉积法、金属化合物
金属难溶盐。如
Ag2SO4+NaCl=2AgCl+Na2SO4
三、几种常用的冶金炉
1.竖炉:用于矿物原料的焙烧、锻烧及熔炼等方面。如炼 Cu、Pb、Sn、 Ni、Sb的鼓风炉、Sb、Hg焙烧炉、炼Mg 工业的竖式氯化炉等。
①还原熔炼、金属氧化物(焙砂、烧结块)→还原气氛 熔炼→粗金属。
SnO2+CO=SnO+CO2 SnO+CO=Sn+CO2
②氧化熔炼、利用某些元素易氧化的特性,除去合金中的 杂质。 2FeS+3O2=2FeO+SO2
③造锍熔炼、如氧化镍矿炼镍锍 FeO+CaS=FeS+CaO
3NiO+3CaS=Ni3S2+3CaO+½S2 3NiO+3FeS=Ni3S2+3FeO+½S2 ④沉淀熔炼(置换熔炼)、如炼锑 Sb2S3+Fe=2Sb+3FeS

《有色金属及其合金 》课件

《有色金属及其合金 》课件

在电子工业中的应用
总结词
电子工业中大量使用有色金属及其合金,如铜、铝、镍等,用于制造集成电路、连接器 和散热器等。
详细描述
在电子工业中,有色金属及其合金发挥着至关重要的作用。例如,铜及铜合金用于制造 集成电路的引线和连接器等,铝及铝合金用于制造电子元件的散热器和印刷电路板等。 这些合金具有良好的导电性、导热性和可加工性,能够满足电子工业对高性能材料的需
组织
合金中各种相的分布和形态。
3
合金相图与组织的关系
合金的组织取决于其成分和热处理条件,而相图 是研究合金组织和性能的重要工具。
合金化对性能的影响
力学性能
合金化可以改变金属的强度、硬度、韧性等力 学性能,以满足不同应用场景的需求。
物理性能
合金化可以改变金属的导电性、导热性、磁性 等物理性能。
化学性能
合金化概念
合金化
将两种或两种以上的金属元素或非金属元素与一种金 属元素结合,形成具有金属特性的合金的过程。
合金化概念的意义
通过合金化可以改变金属的物理、化学和机械性能, 以满足不同领域的需求。
合金化的应用
在汽车、航空航天、能源、电子等领域得到广泛应用 。
合金相图与组织
1 2
相图
表示合金在不同温度和成分下的相组成和相变规 律的图形。
生产流程
原料准备
包括矿石的破碎、磨细、选矿 等工序,以获得高品位精矿。
冶炼
根据矿石类型和所需金属种类 选择合适的冶炼方法,提取金 属。
加工
将提取出的金属进行铸造、轧 制、锻造或焊接等加工,制成 所需形状和性能的金属制品。
质量检测与控制
对金属制品进行质量检测和控 制,确保产品质量符合要求。

冶金原理ppt课件

冶金原理ppt课件
2.2 熔渣的相平衡图
2.2 熔渣的相平衡图
2.2.1 重要的二元熔渣系相平衡图 一、CaO-SiO2二元系 二、Al2O3-SiO2二元系 三、CaO-Al2O3二元系 四、FeO-SiO2二元系 五、CaO-FeO与CaO-Fe2O3二元系
2.2.2 CaO-Al2O3-SiO2三元系相平衡图 2.2.3 CaO-FeO-SiO2三元系相平衡图
转熔线:1条(1475°C) 偏晶线:l条(1700°C) 固相分解线:2条(1250°C,1900°C) 晶型转变线:6条(1470°C,1420°C,
1210°C,870°C,725°C,575°C)
8
2.2.1 重要的二元熔渣系相平衡

体系特点(续)
图222 ④
各种钙硅酸盐的熔化温度都很高
C2S比较稳定,熔化时只部分分解; CS在熔化时则几乎完全分解。
一般而言,可根据化合物组成点处液相线的形状(平滑
程度),近似推断熔融态内化合物的分解程度。
若化合物组成点处的液相线出现尖峭高峰形,则该化 合物非常稳定,甚至在熔融时也不分解;
若化合物组成点处的液相线比较平滑,则该化合物熔 融时会部分分解;
12
三2、.C2a.O1-Al2重O3 二要元的系 二元熔渣系相平衡 图 体系特点
3个一致熔融化合物将体系分解为4个独立的二元系
12CaO·7Al2O3(Cl2A7)或 5CaO·3 Al2O3(C5A3) CaO·Al2O3(CA) CaO·2Al2O3(CA2)
2个不一致熔融化合物
3CaO·Al2O3(C3A) CaO·6Al2O3(CA6)
FeO·SiO2(FS)仅存在于熔体中,不会在熔 度图中出现。

冶金原理精品PPT课件

冶金原理精品PPT课件
冶金原理精品课程
第二节 氯化反应的热力学
一、金属与氯的反应 氯的化学活性很强,所以绝大多数金属很易被氯 气氯化生成金属氯化物。所有金属氯化物的生成自由 能,在一般冶金温度下均为负值,且它们的△G—T 关系多数已经测出,在某些手册,专著中可以方便地 查得。 金属氯化物的—T关系也可用图示表达。为了便 于比较,将它们都换算成与一摩尔氯气反应的标准生 成吉布斯自由能变化。图5-1列出了它们的△G—T关 系。
冶金原理精品课程
所谓氯化冶金就是将矿石(或冶金半成品)与 氯化剂混合,在一定条件下发生化学反应,使金属 转变为氯化物再进一步将金属提取出来的方法。
氯化冶金主要包括氯化过程,氯化物的分离过 程,从纯氯化物中提取金属等三个基本过程。在自 然界中金属主要以氯化物、硫化物、硅酸盐、硫酸 盐等形式存在,因此从原料中制取金属氯化物的氯 化过程,显然是氯化冶金最基本和最重要的过程。
冶金原理精品课程
MeO +Cl2 === MeCl2 +O2 C + O2 === CO2 C +1/2O2 === CO2 由(4)×2 +得 (5)
冶金原理精品课程
Mg+Cl2=MgCl2 -)1/2Ti+Cl2=1/2TiCl4
Mg
1 2 TiCi2
MgCl2
1 Ti 2
D G3q
DGMq gCl2
1 2
DGTqiCl 4
DG q MgCl2 DGq TiCl4
DG3q (3)
冶金原理精品课程
由图5-1可见,MgCl2的生成吉布斯自由能曲线在 下面,显然1/2TiCl4的生成吉布斯自由能曲线在上面,
冶金原理精品课程
金属氧化物与氯气反应的—T关系已有人 测出,列于图5-2,图5-3中。从图中可见: SiO2、TiO2 、Al2O3、Fe2O3、MgO在标准状 态下不能被氯气氯化。而许多金属的氧化物如 PbO、Cu2O、CdO、NiO、ZnO、CoO、BiO 可以被氯气氯化。

有色重金属冶金学ppt课件

有色重金属冶金学ppt课件

铁酸锌也可以被金属铁还原:
ZnO·Fe2O3 + 2Fe = Zn + 4FeO 铁酸锌可以被很好地还原,焙烧形成铁酸锌对火法蒸馏炼锌不 是特别有害。
锌冶金学
.
Zinc Metallurgy
✓7.1.2 其它锌化合物的还原
《有色重金属冶金学》精品课程
➢2、硅酸锌 焙砂中的硅酸锌较氧化锌和铁酸锌难还原,在加入石灰、Fe2O3
Gº= 178020 – 111.67T J
KP aZ Zn P n P C O C2 O O ,P P C C2 O O P K Zn
还原所消耗的CO可由炭的气化反应来补充:
C(s) + CO2(g) = 2CO2(g)
Gº= 170460 – 174.43T J
锌冶金学
K=P 2CO/(aC·PCO2)= P 2CO/PCO2
后可以促使硅酸锌分解,加速锌的还原。
➢3、硫化锌和铝酸锌
但焙砂中的ZnS和铝酸锌在蒸馏过程中不被还原而进入残渣造 成锌的损失。
➢4、硫酸锌
硫酸锌在蒸馏过程中可以分解为ZnO和SO2,ZnO又可以被还原 成锌蒸汽,但SO2也被还原成元素S与锌结合成ZnS造成锌的损失。 此外,硫酸锌也可被C或CO还原成ZnS。因此,焙烧矿中的硫酸盐 中的硫会造成锌损失在蒸馏残渣中。
火法炼锌包括平罐炼锌、竖罐炼锌、电炉炼锌与密闭鼓风炉炼
锌(帝国熔炼法,简称ISP)。
平罐炼锌和竖罐炼锌是间接加热,电炉炼锌为直接加热但不产 生燃烧气体,密闭鼓风炉采用燃料直接加热,能量利用率高,是目
前主要的火法炼锌设备。 ISP适合冶炼铅锌混合矿,采用铅雨冷凝
器从含CO2高而含锌低的炉气中冷凝锌,除得到金属锌外,还产出 金属铅。

《金属的冶炼》课件

《金属的冶炼》课件

环境影响与可持续发展
减少废气和废水排放
01
通过改进工艺和采用清洁能源,降低金属冶炼过程中的废气和
废水排放。
资源循环利用
02
对冶炼过程中的副产品和废弃物进行回收和再利用,提高资源
利用率。
低碳发展
03
推广使用低碳技术,降低金属冶炼过程中的碳排放,促进可持
续发展。
资源枯竭与替代材料
寻找替代资源
针对稀缺金属,积极寻找和开发新的替代资源, 保障产业发展需求。
地下开采
通过挖掘井巷进入地下矿 体,然后进行矿石开采的 方法。
特殊采矿方法
针对一些特殊类型的矿石 或地层,采用特殊的采矿 方法,如海洋采矿等。
矿石的富集与精炼
矿石的富集
通过物理或化学方法将矿石中的 有用成分聚集在一起,提高其品 位。
矿石的精炼
将富集后的矿石进行高温熔炼或 其他化学处理方法,提取出纯金 属。
03
优点
04
对环境影响较小,适用于处理高 品位矿05
金属冶炼的应用与实例
钢铁冶炼
总结词
钢铁冶炼是金属冶炼中最重要的应用之一,涉及高炉、转炉和电炉等多种工艺。
详细描述
钢铁冶炼是将铁矿石还原成生铁,再进一步加工成钢材的过程。高炉炼铁是传统的钢铁冶炼方法,通过焦炭燃烧 产生高温还原铁矿石中的铁元素。转炉炼钢则是在高温下吹入氧气将生铁氧化成钢水,电炉炼钢则是利用电能加 热钢原料进行熔炼。
06
金属冶炼的未来展望与挑战
新技术发展
熔融还原技术
利用铁矿和碳作为原料,通过直接熔融还原炼铁,具有低能耗、 低污染的优点。
生物冶金技术
利用微生物的代谢产物来提取金属,具有环保、低成本的特点,但 提取效率较低。

材料工程基础第八章有色金属冶金优秀课件

材料工程基础第八章有色金属冶金优秀课件
我国铜品位低,大型铜矿少,可供利用的资源严重不足,难以满足铜工 业发展要求。2000年铜精矿进口量达31万吨, 2004年铜矿进口总量为 288万吨,铜(包括阳极铜、精炼铜和铜合金)进口总量为138万吨。
铜的主要矿物
矿物 类别 自然 矿物
硫化 矿物
矿物 名称
自然铜
辉铜矿 铜蓝
黄铜矿 斑铜矿 硫砷铜矿 黝铜矿
2.29
蓝色
CuSO4·5H2O
铜矿物可分为自然铜、硫化矿和氧化矿三种类型。

自然铜在自然界中很少,主要是硫化矿和氧化矿。硫

化矿分布最广,是当今炼铜的主要原料。

三、 铜的生产方法
铜的生产方法: 1)火法冶炼 2)湿法冶炼。 火法炼铜是当今生产铜的主要方法,世界上80 %左右的铜是用火法炼铜方法生产的。
合计
1980 49.3 13.7
9.7 19.3
7.8 100
年份 1990 48.2 16.2
6.6 20.6
8.4 100
2003 26 37 11 15 11 100
二、 炼铜原料
我国的铜矿储量及分布:
目前探明的有储量的矿区915处,排居前5位的省(区)依次为: 江西 :1265.59万吨;占全国铜总量的20% 西藏 :952.49万吨; 占全国铜总量的15.1% 云南 :692.76万吨; 占全国铜总量的11% 甘肃 :402.55万吨; 占全国铜总量的6.4% 安徽 :346.14万吨; 占全国铜总量的5.5%
• (二)冰铜的吹炼
• 目的:将氧化除去冰铜中的铁、硫,以及一部分杂质。 • 主要过程:冰铜→ 白冰铜→粗铜
冰铜熔炼分为两个阶段: 1)造渣期(除铁)
2FeS+3O2=2FeO+2SO2 2FeO+SiO2=2FeO.SiO2 2)造粗铜期(除硫) Cu2S+3/2O2=Cu2O+SO2 Cu2S+2Cu2O=6Cu+SO2

有色金属冶金原理 火法冶金部分

有色金属冶金原理   火法冶金部分

炉渣酸碱度的表示:常用硅酸度和碱度来表示。 硅酸度=酸性氧化物中氧的质量之和/碱性氧化物中氧的 质量之和。 碱度=氧化钙(%质量)/氧化硅(%质量) 例题:
某铅鼓风炉还原炉渣成分为SiO2 36%、 CaO 10%、FeO 40%、 ZnO 8%。 酸性氧化物: SiO2 36 碱性氧化物: CaO 、FeO 、 ZnO 炉渣的硅酸度=
用等熔化温度曲线,可以查已知成分炉 渣的熔化温度。 熔化温度的变化是有规律的。即化合物 熔点最高,并向二元包晶点、共晶点方 向不断降低,再由二元包晶点、共晶点 向三元包晶点、三元共晶点方向降低, 三元共晶点的熔化温度最低。
第四节 熔融炉渣的结构
炉渣的结构与物理化学性能密切相关 目前难于直接测定炉渣的结构,可间接 推测。 存在两种理论:分子理论和离子理论。
第一节 概述
炉渣:熔化后称熔渣,是火法冶金的一 种产物。其组成主要来自矿石、溶剂和 燃料灰分中的造渣成分。主要是氧化物。 炉渣的作用: 主要作用是使矿石和溶剂中的脉石和 燃料中的灰分集中,并在高温下与主要 的冶炼产物金属、锍等分离。
炉渣的作用:
1.
2.
3.
4.
5.
6.
在炉渣中发生金属液滴或锍液滴的沉降分离,沉降 分离的完全程度对金属在炉渣中的机械夹杂损失起 着决定性作用。 对鼓风炉这一类竖炉来说,炉内可能达到的最高温 度决定于炉渣的熔化温度。 在金属和合金的熔炼和精炼时,炉渣与金属熔体的 组分相互进行反应,从而可以通过炉渣对杂质的脱 除和浓度加以控制。 在某些情况下,炉渣不是冶炼厂的废弃物,而是中 间产物。 熔渣是一种介质,在其中进行着许多极为重要的冶 金反应。金属在炉渣中的损失主要决定于这些反应 的完全程度。 在用矿热式电炉冶炼时,炉渣以及电极周围的气膜 起着电阻作用,并可用调节电极插入深度的方法来 调节电炉的功率。

有色金属冶金课件

有色金属冶金课件

某锌矿的湿法冶炼技术改造
总结词
通过将原有的火法冶炼技术改造为湿法冶炼技术,有 效提高了锌的回收率和生产效率,降低了生产成本。
详细描述
该锌矿原有的冶炼技术为火法冶炼,但存在一些问题, 如锌的回收率不高、生产效率低下等。为了解决这些 问题,我们对冶炼技术进行了改造,将其变为湿法冶 炼。具体措施包括:采用新型高效的浸出和萃取设备 和技术、优化湿法冶炼工艺参数、采用新型高效的耐 腐蚀材料等。经过改造后,锌的回收率得到了显著提 高,生产效率也得到了较大提升,同时生产成本得到 了有效降低。
铝冶金化学反应:铝冶金主要涉及的 化学反应包括氧化还原反应、沉淀反 应和电化学反应。其中,氧化还原反 应是铝土矿中的氧化铝与碳反应生成 氧化铝和二氧化碳的过程;沉淀反应 是氧化铝与碳酸钠反应生成氢氧化铝 和碳酸钠的过程;电化学反应则是将 铝离子还原为金属铝的过程。
铝冶金物理过程:铝冶金物理过程包 括矿石破碎、磨细、浮选、熔炼、电 解等步骤。其中,矿石破碎是将大块 矿石破碎成小块,便于后续处理;磨 细是将矿石细磨成粉末,提高反应效 率;浮选是将矿石中的有用成分与杂 质分离;熔炼是将矿石中的氧化铝和 碳在高温下反应生成液态的氧化铝; 电解则是将液态的氧化铝在电流的作 用下还原为金属铝。
有色金属冶金课件
• 有色金属冶金概述 • 铜冶金
• 有色金属冶金的挑战与前景 • 有色金属冶金案例分析
目录
PART 01
有色金属冶金概述
定义与分类
定义
有色金属冶金是指通过一系列物理和 化学过程,从矿石或精矿中提取和纯 化有色金属及其化合物的过程。
分类
根据提取的金属种类,有色金属冶金 可分为轻金属冶金、重金属冶金、稀 土金属冶金等。
THANKS

有色金属冶金原理(第三章)

有色金属冶金原理(第三章)

T1<T2时 T3>T2时
第五节 复杂混合物和溶液中氧化 物的还原
一、复杂化合物中氧化物的还原
NiO+CO=Ni+CO2
ΔG0 = -48325 +1.92T
+ NiO·Cr2O3=NiO+Cr2O3
ΔG0 = 53555-8.37T
NiO·Cr2O3+CO= Ni +CO2+Cr2O3 ΔG0 = 5230 -6.45T
二、H—O系和C—H—O系燃烧反应
1. 氢的燃烧反应: 2H2+ O2=2H2O 与煤气燃烧反应比较 2CO+O2=2CO2 1083K下 CO的还原能力大于H2。 1083K上 H2的还原能力大。
2. 水煤气反应:
CO+H2O=H2+CO2 3. 水蒸气与碳反应:
2H2O+C=2H2+CO2 H2O+C=H2+CO
第四节 氧化物用固体还原剂C还原
▪ 当固体C存在时,反应分两步进行。
1.MeO+CO=Me+CO2 2. C+CO2=2CO ▪ 根据气化反应的特点,应区分温度高低来考虑(1000℃) 一、高温下用C还原MeO 温度高于1000℃时,气相中CO2平衡浓度很低。可忽略不计。
MeO+CO=Me+CO2 + C+CO2=2CO MeO+C=Me+CO
(1)
2. 煤气燃烧反应:2CO+O2=2CO2
(2)
3. 碳的完全燃烧反应:C+O2=CO2
(3)
4. 碳的不完全燃烧反应:2C+O2=2CO (4)

有色金属冶金技术基础知识讲座

有色金属冶金技术基础知识讲座

金属难溶盐。如
Ag2SO4+NaCl=2AgCl+Na2SO4
PPT文档演模板
有色金属冶金技术基础知识讲座
三、几种常用的冶金炉
1.竖炉:用于矿物原料的焙烧、锻烧及熔炼等方面。如炼 Cu、Pb、Sn、 Ni、Sb的鼓风炉、Sb、Hg焙烧炉、炼Mg 工业的竖式氯化炉等。
鼓风炉:单位生产率(床能力);a=
•五、发展趋势
• 1.技术进步步伐不断加快
• 积极汲取相关学科和工程技术的新成就进行充实、 更新和深化,更加深入地研究冶金热力学、金属、熔锍、 熔渣、熔盐结构及物性和冶金动力学、冶金反应工程学。 建立智能化热力学、动力学数据库,应用计算机逐步实 现对冶金全流程进行系统最优设计和自动控制。冶金生 产技术将 •实现生产柔性化、高速化和连续化,达到资源、能源的
PPT文档演模板
有色金属冶金技术基础知识讲座
⑤反应熔炼、MeS+2MeO=3Me+SO2 MeS+MeSO4+2Me+2SO2
⑥熔析熔炼、不经化学作用而将熔体分成几相。 ⑦电解熔炼、利用电的化学效应在高温下将物质分离。如
Mg2++2e=Mg 6.蒸馏、用于处理低沸点金属的原料。 7.精炼、将熔炼或蒸馏得到的粗金属中所含的杂质除去,
变化
金属。如干燥、焙解、熔炼、
蒸馏、真空冶金、电热冶金等。
2.湿法冶金:矿石(精矿) •低温(<100℃) 溶解
溶液
•电解、电 积
金属。 •酸、碱
PPT文档演模板
有色金属冶金技术基础知识讲座
包括浸出、净化、置换沉积(电积)三大过程。近年发 展的生物冶金、原地熔浸等都属于湿法冶金。 3.电冶金:电能 金属。分为: a.电热冶金:电能 热能。(如工业硅的生产) b.电化冶金:含金属盐类的水溶液(熔体)中-→电化学反 应→析出→金属。(如Cu、Zn的电解电积Li、Al等的精 炼)

有色金属冶金教学课件PPT

有色金属冶金教学课件PPT

• 1888年金的产量是当时世界黄金产量的7%左右,
是当时世界的第五大产金国。
黄金的生产方式:
• 从矿石中生产:总产量的2/3
• 从阳极泥中生产:总产量的1/3
黄金的主要产地: 山东, 河南
4 稀有金属(rare
metals):
是一种习惯称呼,是沿用至今的一个历史名词;
或在地壳中丰度小,天然资源少;
贱金属( Base metals)
Metals,
• 主要是相对其它的金属而言,而其它的金属又可称为
• 金属的贵贱之分主要是从价格上来区分, • 贵金属包括了金、银、锇、铱、铂、钌、铑、钯, • 其中金、银是比较熟悉的, • 而锇、铱、铂、钌、铑、钯则相对不熟悉,这6种金属 有时又称为铂族金属(Platinum group metals, PGMS)。
有色金属冶金
Non-ferrous Metallurgy
有色金属及其分类
相关概念:
金属(metals):周期表中具有光亮的金属光
泽,很高的导热、导电性及良好的延展加工性
的化学元素称为金属。
118种元素(102号以后人工合成)中96种金属 元素分类:
有色与黑色金属:ferrous & non-ferrous
2222 13.1
Ta
2996 16.6
W
3410 19.3
Re Os
3180
Ir
2454 22.5
Pt
1769 21.4
Au
1063 19.3
Hg
-38.4 13.6
Tl
303 11.8 5
Pb
327.4 11.4
Bi
271.3 9.8
Po

有色金属冶金课件

有色金属冶金课件

智能化冶金的发展
智能冶金工厂
利用物联网、大数据、 人工智能等技术,构建 智能化的冶金工厂,实 现生产过程的自动化和 智能化。
智能化生产管理
通过智能化技术对生产 过程进行实时监控、分 析和优化,提高生产效 率和产品质量。
智能化设备与装备
研发智能化的冶金设备 和装备,提高设备的自 适应性和可靠性,降低 故障率。
采用高效除尘器、脱硫脱硝技术等手段处理冶金过程中的废气, 减少大气污染物的排放。
废水处理技术
采用物理、化学、生物等多种方法处理冶金废水,降低废水中有害 物质的含量,实现废水循环利用或达标排放。
固体废弃物资源化利用
通过回收、加工、再利用等手段,将冶金固体废弃物转化为有价值 的资源,减少对环境的压力。
可持续发展在有色金属冶金中的应用
有色金属冶金课件
目录 Contents
• 有色金属冶金概述 • 有色金属的提取与精炼 • 有色金属的加工与利用 • 有色金属冶金的环保与可持续发展 • 有色金属冶金的新技术与展望
01
有色金属冶金概述
定义与分类
定义
有色金属冶金是从矿石或精矿中提取 、纯化和加工有色金属的科学和技术 。
分类
根据金属的性质和用途,有色金属冶 金可以分为轻金属冶金、重金属冶金 、稀有金属冶金和贵金属冶金等。
冶金过程的基本原理
矿石的分解
01
通过物理或化学方法将矿石分解,使其中的金属与脉石分离。
金属的提取
02
采用还原、氧化或酸碱溶解等方法,将矿石中的金属从其化合
物中还原或溶解出来。
金属的精炼
03
通过电解、蒸馏、萃取等方法,将粗金属进一步提纯为高纯度
金属。
02

有色冶金PPT课件

有色冶金PPT课件

.
2
Magnesium is the eighth most abundant element and constitutes about 2% of the Earth's crust by weight, and it is the third most plentiful element dissolved in seawater.镁在地壳中的丰度是第八位,是地壳质量的2%,在海水中含量第
民从一个井里取水给牛喝。牛不喝。那水有特殊的味道,苦味。那水有保健 的功能。普遍传播的泻盐如今用于治疗轻微皮肤擦伤。泻盐被确定是硫酸镁。
The first discover as an element was J. Black who found it in 1755. 1755年J. Black第一个发现元素镁。
腊一个城市),古代那里发现大型碳酸镁矿床
In 1618 a farmer at Epsom in England tried to give his cows water from a well. They refused to drink. The water has specific taste - bitter taste. That water was with health features. The popularity of Epsom salts spread which is used today to treat minor skin abrasions. They were identity to be magnesium sulphate - MgSO4.英格兰赛马一个农
It is possible to divide the magnesium production technologies into two main types:可划分为两大类镁生产技术

冶金原理课件(中南)-第一章

冶金原理课件(中南)-第一章
◇ 熔剂在精炼中的作用:
除去镁中的某些杂质
在熔融的镁表面形成一层保护膜,将镁与空气隔绝防止其燃烧。
表 1 2
熔盐体系 铝电解的电解质 镁电解的电解质 (电 解 氯 化 镁 ) 镁电解的电解质 (电 解 光 卤 石 ) 锂电解的电解质 铝电解精炼的电解质 (氟 氯 化 物 体 系 ) 铝电解精炼的电解质 (纯 氟 化 物 体 系 ) 镁熔剂精炼熔剂
3、富集渣
是某些熔炼过程的产物。
作用——使原料中的某些有用成分富集于炉渣 中,以便在后续工序中将它们回收利用。
例如,钛铁矿常先在电炉中经还原熔炼得到所 谓的高钛渣,再从高钛渣进一步提取金属钛。
对于铜、铅、砷等杂质含量很高的锡矿,一般 先进行造渣熔炼,使绝大部分锡(90%)进入 渣中,而只产出少量集中了大部分杂质的金属 锡,然后再冶炼含锡渣提取金属锡。
五、熔渣的其它作用
作为金属液滴或锍的液滴汇集、长大和沉降的介质
冶炼中生成的金属液滴或锍的液滴最初是分散在熔渣中的,这些分 散的微小液滴的汇集、长大和沉降都是在熔渣中进行的。
在竖炉(如鼓风炉)冶炼过程中,炉渣的化学组成直接决定了炉缸 的最高温度。
对于低熔点渣型,燃料消耗量的增加,只能加大炉料的熔化量而不 能进一步提高炉子的最高温度。


熔渣对炉衬的化学侵蚀和机械冲刷
大大缩短了炉子的使用寿命 炉渣带走了大量热量 大大地增加了燃料消耗 渣中含有各种有价金属
降低了金属的直收率
1.3 熔 盐
熔盐——盐的熔融态液体
通常指无机盐的熔融体
常见的熔盐——由碱金属或碱土金属的卤化物、碳酸盐、
硝酸盐以及磷酸盐等组成。
熔盐一般不含水,具有许多不同于水溶液的性质。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档