七年级数学《有理数:数轴》

合集下载

第一讲《有理数》《数轴》

第一讲《有理数》《数轴》

第一讲《有理数》《数轴》引言有理数是我们常见的一类数,包括整数和分数。

它们在数学中具有重要的地位,因为它们可以覆盖我们日常生活中的绝大部分数量关系。

在本讲中,我们将介绍有理数的定义、性质和表示方法,以及数轴的概念和使用方法。

一、有理数的定义和性质1.1 定义有理数是可以表示为两个整数的比值的数,其中分母不为零。

整数是有理数的特殊情况,可以看作分母为1的有理数。

有理数可以是正数、负数或零。

1.2 性质有理数有以下性质:•有理数的加法、减法和乘法运算仍然得到有理数。

•有理数的除法运算结果可能是有理数,也可能是无理数(不能表示为两个整数的比值)。

二、有理数的表示方法有理数可以用分数、整数或小数形式表示。

2.1 分数表示法分数是有理数最常见的表示形式,它由一个分子和一个分母组成,分子表示被分割的份数,分母表示总共的份数。

分数可以是正数、负数或零。

2.2 整数表示法整数是没有小数部分的有理数。

它可以是正整数、负整数或零。

2.3 小数表示法小数是有理数的一种特殊表示形式。

它可以有有限的数字部分和无限的循环部分,也可以是有限的数字部分。

三、数轴的概念和使用方法3.1 数轴的定义数轴是由一条直线和一个固定原点组成的图形,用来表示数的大小和位置关系。

原点通常表示零,正方向表示正数,负方向表示负数。

3.2 数轴的使用方法数轴可以用来表示有理数的位置和大小关系。

我们可以通过在数轴上画点、画线段等方式来表示有理数的位置。

数轴上两个数之间的距离,即两个数的差的绝对值,表示它们之间的差别大小。

有理数是我们日常生活中非常重要的数,它包括整数和分数。

有理数可以用分数、整数或小数形式表示,可以在数轴上表示它们的位置和大小关系。

了解和掌握有理数的定义、性质和表示方法,以及数轴的概念和使用方法,对我们的数学学习和实际应用都非常有帮助。

参考文献:•《数学教学参考书》•《高中数学学科教学大纲》。

数学:1.2《有理数-数轴》课件(人教新课标七年级上)

数学:1.2《有理数-数轴》课件(人教新课标七年级上)

练习
( A、1)-下21面与两0个.2数是互为B、相反31 数与的-是0.(33c3 )
C、-2.25与2
1 4
D、π与3.14
(2)写出三对非零相反数
练习
下面数轴上的A、B、C/8,点B 表示1,那么离原点较近的点是 ____.
(2)5离原点有___个单位长度,-6离 原点有___个单位长度.
注意:任意一个有理数都可以用数轴上的 点表示.
是数轴的打“√”,不是数轴的打 “×”。
对的打“√”,错的打“×”.
(1)规定正方向、单位长度的直线叫做数轴。 (2)规定单位长度的直线叫做数轴。 (3)规定正方向、原点、单位长度的直线
叫做数轴

如图,数轴上点A,B,C,D分别表示什么数?
-5
-1 0
3.5
A
BC
D
01

在数轴上表示下列各数:
(1)0.5 ,
5
5
2 , 0 , -4 , 2 ,
-0.5 , 1 , 4 ;
(2)200 , -150 , -50 , 100 , -100 .
观察数轴,-4与4有什么相同
与不同之处?它们在数轴上的位置有
什么关系?那么-
5 2

5 2
呢?
-0.5与0.5呢?
4 2.5
4 2.5
-4 -2.5
0 1 2.5 4
如果两个数只有符号不同,那么我 们称其中一个数为另一个数的相反数, 也称这两个数互为相反数
比如 , 4的相反数是-4 , -1/4 的相反数是 1/4 , 4 和 -4 互为相反 数,-1/4 和 1/4 互为相反数
注意:0的相反数是0
4 2.5

新人教版初中数学《数轴》教学课件1

新人教版初中数学《数轴》教学课件1

7.画数轴,并在数轴上表示下列各数: 3,-1.5,0,12,-4.
知识点三:数轴上的点与有理数之间的关系 8.数轴上原点及原点左边的点表示( C) A.正数 B.负数 C.非正数 D.非负数 9.在数轴上,下列说法正确的是( D) A.-3在-4的左边 B.-100在100的右边 C.0.1在0的左边 D.1在-1的右边
17.在数轴上,点A表示的数是-3,与点A距离2个单位长度的点表示的 数为__-__1_或__-__5_.
18.小红在做作业时,不小心将两滴墨水滴在数轴上,如图所示,根据 图中标出的数值,判断墨水盖住的整数有哪几个?
解:墨水盖住的整数为:-12,-11,-10,-9,-8,11,12,13, 14,15,16,17

3.读了本文,我明白了在当今世俗的 喧嚣中 应保持 自己内 心的宁 静,不 为世俗 所扰。 文中的 菜农能 够在喧 闹的菜 市场沉 浸于书 本的美 好中, 沉浸于 内心的 宁静中 。在生 活中, 我不会 因某次 月考的 成功而 骄傲。 而要保 持内心 的宁静 ,继续 努力前 行。

Hale Waihona Puke 4.概括文章的主要内容。通篇阅读, 分出层 次,梳 理情节 ,全盘 把握, 根据题 干要求 找出事 件的中 心内容 ,用自 己的语 言简洁 概括。 如可概 括为“我” 见到菜 农后发 生的几 件事及 对他态 度的变 化,由 此表达 了对菜 农的敬 佩之情 。
19.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A, 再向右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C.
(1)画出数轴并标出A,B,C三点在数轴上的位置; (2)写出A,B,C三点表示的数; (3)根据点C在数轴上的位置,C点可以看作是蚂蚁从原点出发,向哪个方向 爬了几个单位长度得到的?

人教版七年级数学上《有理数、数轴》拓展训练

人教版七年级数学上《有理数、数轴》拓展训练

《有理数、数轴》拓展训练一、选择题1.下列说法:(1)﹣3.56既是负数、分数,也是有理数;(2)正整数和负整数统称为整数;(3)0是非正数;(4)﹣2014既是负数,也是整数,但不是有理数;(5)自然数是整数.其中正确的个数是()A.1个B.2个C.3个D.4个2.如果一对有理数a,b使等式a﹣b=a•b+1成立,那么这对有理数a,b叫做“共生有理数对”,记为(a,b),根据上述定义,下列四对有理数中不是“共生有理数对”的是()A.(3,)B.(2,)C.(5,)D.(﹣2,﹣)3.已知下列各数:﹣3.147,32.8,+3,﹣19,0,8.02,﹣0.12112112…,π中,正有理数有()A.2个B.3个C.4个D.5个4.在﹣(﹣),﹣1,0,﹣42,﹣(﹣1)3,﹣(23﹣8)这几个有理数中,负数的个数是()A.1B.2C.3D.45.如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A、B、C、D对应的数分别为整数a、b、c、d,且d﹣2a=3,试向:数轴上的原点在哪一点上?()A.点A B.点B C.点C D.点D6.如图,A、B、C三点在数轴上所表示的数分别为a、b、c,根据图中各点位置,下列各式正确的是()A.(a﹣1)(b﹣1)>0B.(c﹣1)(b﹣1)>0C.(a+1)(b+1)<0D.(c+1)(b+1)<07.已知有理数a,b,c,d在数轴上对应的点如图所示,每相邻两个点之间的距离是1个单位长度.若3a=4b﹣3,则c﹣2d为()A.﹣3B.﹣4C.﹣5D.﹣68.已知a、b在数轴上的位置如图所示,将a、b、﹣a、﹣b从小到排列正确的一组是()A.﹣a<﹣b<a<b B.﹣b<﹣a<a<b C.﹣b<a<b <﹣a D.a<﹣b<b<﹣a9.点A1,A2,A3,…,A n(n为正整数)都在数轴上,点A1在原点O的左边,且A1O=1;点A2在点A1的右边,且A2A1=2;点A3在点A2的左边,且A3A2=3;点A4在点A3的右边,且A4A3=4;…,依照上述规律,点A2018,A2019所表示的数分别为()A.2018,﹣2019B.1009,﹣1010C.﹣2018,2019D.﹣1009,1010 10.如图,M,N,P,Q,R分别是数轴上五个整数所对应的点,其中有一点是原点,并且MN=NP=PQ=QR=1.数a对应的点在N与P之间,数b对应的点在Q与R之间,若|a|+|b|=3,则原点可能是()A.M或Q B.P或R C.N或R D.P或Q二、填空题11.把下列各数填在相应的大括号内:15,﹣,0.81,﹣3,,﹣3.1,﹣4,171,0,3.14,π,1.负分数集合{…}非负整数集合{…}.12.定义:A={b,c,a},B={c},A∪B={a,b,c},若M={﹣1},N={0,1,﹣1},则M∪N={}.13.我们把分子为1的分数叫做单位分数,如,,…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如=+,=+,=+,…,请你根据对上述式子的观察,把表示为两个单位分数之和应为.14.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D 对应的数分别为整数a、b、c、d,且d﹣2a=4,则数轴的原点对应的字母是.15.数轴上100个点所表示的数分别为a1、a2、a3…、a100,且当i为奇数时,a i+1﹣a i=2,当i为偶数时,a i+1﹣a i=1,①a5﹣a1=;②若a100﹣a11=2m﹣6,则m=.16.已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,经过秒M与点N相距54个单位;(2)若点M、N、P同时都向右运动,经过秒点P到点M,N的距离相等.三、解答题17.把下列各数填在相应的集合内:100,﹣99%,π,0,﹣2008,﹣2,5.2,,6,,﹣0.3,1.020020002…18.已知快递公司坐落在一条东西走向的街道上,某快递员从快递公司取件后在这条街道上送快递,他先向东骑行1千米到达A店,继续向东骑行2千米到达B店,然后向西骑行5千米到达C店,最后回到快递公司.(1)以快递公司为原点,以向东方向为正方向,用1厘米表示1千米,画出数轴,并在数轴上表示出A,B,C三个店的位置.(2)C店离A店有多远?(3)快递员一共骑行了多少千米?19.如图,点A、B、C在数轴上表示的数分别是1、﹣1、﹣2,E是线段BC的中点,点P从点A出发,向左运动,速度是每秒0.3个单位,设运动的时间是t秒.(1)点E表示的数是;(2)在t=3,t=4这两个时间中,使点P更接近原点O的时间是哪一个?(3)若点P分别在t=8,t=n两个不同的位置时,到点E的距离完全一样,求n的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子的值可以体现点M和点N之间距离的远近,这个式子的值越小,两个点的距离越近.20.如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒3个单位长度的速度在数轴上由A向B运动,当点P到达点B后立即返回,仍然以每秒3个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒)(1)求t=1时点P表示的有理数;(2)求点P与点B重合时的t值;(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离;(用含t的代数式表示)(4)当点P表示的有理数与原点的距离是3个单位长度时,直接写出所有满足条件的t值.《有理数、数轴》拓展训练参考答案与试题解析一、选择题1.下列说法:(1)﹣3.56既是负数、分数,也是有理数;(2)正整数和负整数统称为整数;(3)0是非正数;(4)﹣2014既是负数,也是整数,但不是有理数;(5)自然数是整数.其中正确的个数是()A.1个B.2个C.3个D.4个【解答】解:(1)﹣3.56既是负数、分数,也是有理数,正确;(2)正整数和负整数统称为整数,错误,还有0;(3)0是非正数,正确;(4)﹣2014既是负数,也是整数,但不是有理数,错误,﹣2014是有理数;(5)自然数是整数,正确.正确的有3个,故选:C.【点评】本题考查了有理数的分类,解决本题的关键是熟记有理数的分类.2.如果一对有理数a,b使等式a﹣b=a•b+1成立,那么这对有理数a,b叫做“共生有理数对”,记为(a,b),根据上述定义,下列四对有理数中不是“共生有理数对”的是()A.(3,)B.(2,)C.(5,)D.(﹣2,﹣)【分析】利用题中的新定义判断即可.【解答】解:A、由(3,),得到a﹣b=,a•b+1=+1=,不符合题意;B、由(2,),得到a﹣b=,a•b+1=+1=,不符合题意;C、由(5,),得到a﹣b=,a•b+1=+1=,不符合题意;D、由(﹣2,﹣),得到a﹣b=﹣,a•b+1=+1=,符合题意,故选:D.【点评】此题考查了有理数,弄清题中的新定义是解本题的关键.3.已知下列各数:﹣3.147,32.8,+3,﹣19,0,8.02,﹣0.12112112…,π中,正有理数有()A.2个B.3个C.4个D.5个【分析】根据有理数的定义,可得答案.【解答】解:32.8,+3,8.02正有理数,故选:B.【点评】本题考查了有理数,有理数是有限小数或无限不循环小数.4.在﹣(﹣),﹣1,0,﹣42,﹣(﹣1)3,﹣(23﹣8)这几个有理数中,负数的个数是()A.1B.2C.3D.4【分析】先化简,再根据负数的定义,即可解答.【解答】解:﹣(﹣)=,﹣42,=﹣16,﹣(﹣1)3=,﹣(23﹣8)=﹣(8﹣8)=0,在﹣(﹣),﹣1,0,﹣42,﹣(﹣1)3,﹣(23﹣8)这几个有理数中,负数有:﹣1,﹣42,共2个,故选:B.【点评】本题考查了有理数,解决本题的关键是熟记有理数的分类.5.如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A、B、C、D对应的数分别为整数a、b、c、d,且d﹣2a=3,试向:数轴上的原点在哪一点上?()A.点A B.点B C.点C D.点D【分析】由图可知D点与A点相隔三个单位长度,即d﹣a=3;又已知d﹣2a=3,可解得d=3,a=0,即A为原点.【解答】解:∵由图可知D点与A点相隔三个单位长度,且点A、B、C、D对应的数分别为整数a、b、c、d,∴d﹣a=3①,又∵d﹣2a=3②,∴由①②可解得d=,3,a=0,即A为原点.故选:A.【点评】此题主要考查了数轴知识点,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.6.如图,A、B、C三点在数轴上所表示的数分别为a、b、c,根据图中各点位置,下列各式正确的是()A.(a﹣1)(b﹣1)>0B.(c﹣1)(b﹣1)>0C.(a+1)(b+1)<0D.(c+1)(b+1)<0【分析】根据数轴得出c<﹣1<0<a<1<b,求出a﹣1<0,b﹣1>0,c﹣1<0,a+1>0,b+1>0,c+1<0,再根据有理数的运算法则判断即可.【解答】解:∵从数轴可知:c<﹣1<0<a<1<b,∴a﹣1<0,b﹣1>0,c﹣1<0,a+1>0,b+1>0,c+1<0,∴(a﹣1)(b﹣1)<0,(c﹣1)(b﹣1)<0,(a+1)(b+1)>0,(c+1)(b+1)<0,∴只有选项D正确;选项A、B、C都错误,故选:D.【点评】本题考查了数轴和有理数的运算法则,能根据数轴得出c<﹣1<0<a <1<b是解此题的关键.7.已知有理数a,b,c,d在数轴上对应的点如图所示,每相邻两个点之间的距离是1个单位长度.若3a=4b﹣3,则c﹣2d为()A.﹣3B.﹣4C.﹣5D.﹣6【分析】设a表示是数为x,则b、c、d表示的数分别是x+1,x+2,x+3,据此列出关于x的方程,通过解方程可以求得它们所表示的数.【解答】解:设a表示是数为x,则b、c、d表示的数分别是x+1,x+2,x+3.故由3a=4b﹣3,得到3x=4x+4﹣3,解得x=﹣1,所以b、c、d表示的数分别是0,1,2,所以c﹣2d=1﹣2×2=1﹣4=﹣3,即c﹣2d为﹣3.故选:A.【点评】本题考查了数轴.此题借助于一元一次方程求得点A、B、C、D所表示的数.8.已知a、b在数轴上的位置如图所示,将a、b、﹣a、﹣b从小到排列正确的一组是()A.﹣a<﹣b<a<b B.﹣b<﹣a<a<b C.﹣b<a<b <﹣a D.a<﹣b<b<﹣a【分析】将a、b、﹣a、﹣b表示在数轴上,继而可从小到大排列.【解答】解:如图所示:,把a、b、﹣a、﹣b从小到大排列为:a<﹣b<b<﹣a.故选:D.【点评】本题考查了数轴、有理数的大小比较,解答本题的关键是结合数轴求解.9.点A1,A2,A3,…,A n(n为正整数)都在数轴上,点A1在原点O的左边,且A1O=1;点A2在点A1的右边,且A2A1=2;点A3在点A2的左边,且A3A2=3;点A4在点A3的右边,且A4A3=4;…,依照上述规律,点A2018,A2019所表示的数分别为()A.2018,﹣2019B.1009,﹣1010C.﹣2018,2019D.﹣1009,1010【分析】根据题意得出规律:当n为奇数时,An=﹣,当n为偶数时,An =,把n=2018,2019代入求出即可.【解答】解:根据题意得:A1=﹣1,A2=1,A3=﹣2,A4=2,…,当n为奇数时,An=﹣,当n为偶数时,An=,∴A2019=﹣=﹣1010,A2018==1009.故选:B.【点评】此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.10.如图,M,N,P,Q,R分别是数轴上五个整数所对应的点,其中有一点是原点,并且MN=NP=PQ=QR=1.数a对应的点在N与P之间,数b对应的点在Q与R之间,若|a|+|b|=3,则原点可能是()A.M或Q B.P或R C.N或R D.P或Q【分析】先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.【解答】解:∵MN=NP=PQ=QR=1,∴|MN|=|NP|=|PQ|=|QR|=1,∴|MR|=4;①当原点在P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在P点;②当原点在N或R时且|NA|=|BR|时,|a|+|b|=3;③当原点在M点时,|a|+|b|>3,又因为|a|+|b|=3,所以,原点不可能在M点;综上所述,此原点应是在N或R点.故选:C.【点评】此题主要考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.二、填空题11.把下列各数填在相应的大括号内:15,﹣,0.81,﹣3,,﹣3.1,﹣4,171,0,3.14,π,1.负分数集合{﹣,﹣3.1…}非负整数集合{15,0…}.【分析】根据负分数,非负整数的定义即可判断.【解答】解:负分数集合{﹣,﹣3.1…}非负整数集合{15,171,0,…}.故答案为﹣,﹣3.1,15,171,0;【点评】本题考查有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.12.定义:A={b,c,a},B={c},A∪B={a,b,c},若M={﹣1},N={0,1,﹣1},则M∪N={1,0,﹣1}.【分析】根据新定义解答即可得.【解答】解:∵M={﹣1},N={0,1,﹣1},∴M∪N={1,0,﹣1},故答案为:1,0,﹣1.【点评】本题主要考查有理数,根据题意理解新定义是解题的关键.13.我们把分子为1的分数叫做单位分数,如,,…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如=+,=+,=+,…,请你根据对上述式子的观察,把表示为两个单位分数之和应为=+.【分析】根据题意得出所求两个单位分数之和即可.【解答】解:根据题意得:=+,故答案为:=+【点评】此题考查了有理数,弄清题意是解本题的关键.14.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别为整数a、b、c、d,且d﹣2a=4,则数轴的原点对应的字母是B.【分析】由图可知D点与A点相隔三个单位长度,即d﹣a=3;又已知d﹣2a=4,可解得a=﹣1,则b=0,即B为原点.【解答】解:根据题意,知d﹣a=3,即d=a+3,将d=a+3代入d﹣2a=4,得:a+3﹣2a=4,解得:a=﹣1,∴点A表示的数是﹣1,则点B表示原点,故答案为:B.【点评】此题主要考查了数轴知识点,解题的关键根据题意求得a的值.15.数轴上100个点所表示的数分别为a1、a2、a3…、a100,且当i为奇数时,a i+1﹣a i=2,当i为偶数时,a i+1﹣a i=1,①a5﹣a1=6;②若a100﹣a11=2m ﹣6,则m=70.【分析】依题意当i为奇数时,a i+1﹣a i=2,当i为偶数时,a i+1﹣a i=1寻找规律可得a5﹣a1=a5﹣a4+a4﹣a3+a3﹣a2+a2﹣a1=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)=1+2+1+2+1=6a100﹣a11=a100﹣a99+a99﹣a98+…+a12﹣a11=(a100﹣a99)+(a99﹣a98+)…+(a12﹣a11)=2+1+2+1+…+2=2×45+1×44=134从而得到答案.【解答】解:①∵当i为奇数时,a i+1﹣a i=2,当i为偶数时,a i+1﹣a i=1∴a5﹣a1=a5﹣a4+a4﹣a3+a3﹣a2+a2﹣a1=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)=1+2+1+2=6;②∵a100﹣a11=a100﹣a99+a99﹣a98+…+a12﹣a11=(a100﹣a99)+(a99﹣a98+)…+(a12﹣a11)=2+1+2+1+…+2=2×45+1×44=134∴a100﹣a11=134=2m﹣6,∴m=70故答案为:6、70.【点评】本题主要考查了通过找规律解决问题,解题的关键点是找规律.16.已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,经过5秒M与点N相距54个单位;(2)若点M、N、P同时都向右运动,经过或秒点P到点M,N的距离相等.【分析】(1)设经过x秒点M与点N相距54个单位,由点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过t秒点P到点M,N的距离相等,得出(2t+6)﹣t=(6t﹣8)﹣t或(2t+6)﹣t=t﹣(6t﹣8),进而求出即可.【解答】解:(1)设经过x秒点M与点N相距54个单位.依题意可列方程为:2x+6x+14=54,解方程,得x=5.故答案为:5.(2)设经过t秒点P到点M,N的距离相等.(2t+6)﹣t=(6t﹣8)﹣t或(2t+6)﹣t=t﹣(6t﹣8),t+6=5t﹣8或t+6=8﹣5tt=或t=,故答案为:或.【点评】此题主要考查了数轴,根据已知点运动速度得出以及距离之间的关系得出等式是解题关键.三、解答题17.把下列各数填在相应的集合内:100,﹣99%,π,0,﹣2008,﹣2,5.2,,6,,﹣0.3,1.020020002…【分析】根据有理数的分类,可得答案.【解答】解:.【点评】本题考查了有理数,熟记有理数的分类是解题关键.18.已知快递公司坐落在一条东西走向的街道上,某快递员从快递公司取件后在这条街道上送快递,他先向东骑行1千米到达A店,继续向东骑行2千米到达B店,然后向西骑行5千米到达C店,最后回到快递公司.(1)以快递公司为原点,以向东方向为正方向,用1厘米表示1千米,画出数轴,并在数轴上表示出A,B,C三个店的位置.(2)C店离A店有多远?(3)快递员一共骑行了多少千米?【分析】(1)根据题意画出数轴,在数轴上表示出A、B、C三点即可;(2)根据数轴上两点间的距离公式即可得出结论;(3)把各数的绝对值相加即可.【解答】解:(1)如图所示:;(2)C店离A店:1﹣(﹣2)=3千米;(3)快递员一共行了:|1+|+|2|+|﹣5|+|2|=10千米.【点评】本题考查的是数轴,熟知数轴的特点及数轴上两点间的距离公式是解答此题的关键.19.如图,点A、B、C在数轴上表示的数分别是1、﹣1、﹣2,E是线段BC的中点,点P从点A出发,向左运动,速度是每秒0.3个单位,设运动的时间是t秒.(1)点E表示的数是﹣;(2)在t=3,t=4这两个时间中,使点P更接近原点O的时间是哪一个?(3)若点P分别在t=8,t=n两个不同的位置时,到点E的距离完全一样,求n的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子|m﹣n|的值可以体现点M和点N之间距离的远近,这个式子的值越小,两个点的距离越近.【分析】(1)根据实数在数轴上的排列特点和绝对值的意义,先根据E点到原点的距离是确定该数的绝对值是,在根据该点在原点的左侧还是右侧判断其符号.(2)分别求出两个时间点上点P的位置,即可判断;(3)根据t=8时,求出点P到E点的距离,确定t=n时P点的位置,即可求n的值;(4)根据数轴上两点间的距离公式即可.【解答】解:(1)根据实数在数轴上的排列特点和绝对值的意义,E点到远点的距离是,符号是“﹣”,故答案是:﹣.(2)当t=3,t=4时0.3t的值分别是0.9、1.2.根据出发点A的位置,可以确定当t=0.3时,点P的位置位于原点O的右侧距离原点O0.1个单位长度,而当t=0.4时,点P的位置位于原点O的左侧距离原点O0.2个单位长度,故答案是t﹣0.3.(3)当t=8时,0.8t=2.4.,结合图形可以确定此时点P的位置位于点E的左侧距离点E0.1个单位长度.所以,数轴上到点E的距离相同的点应该是﹣1.6.此时点P到点A距离是2.6个单位长度,所以r=2.6÷0.3=8.故答案是8(4)根据数轴上两点间的距离公式点M和N的距离等于|m﹣n|,故答案是|m﹣n|.【点评】本题考查了数轴与两点间的距离的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论20.如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒3个单位长度的速度在数轴上由A向B运动,当点P到达点B后立即返回,仍然以每秒3个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒)(1)求t=1时点P表示的有理数;(2)求点P与点B重合时的t值;(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离;(用含t的代数式表示)(4)当点P表示的有理数与原点的距离是3个单位长度时,直接写出所有满足条件的t值.【分析】(1)根据P点的速度,有理数的加法,可得答案;(2)根据两点间的距离公式,可得AB的长度,根据路程除以速度,可得时间;(3)根据速度乘以时间等于路程,可得答案;(4)根据速度乘以时间等于路程,可得答案.【解答】解:(1)当t=1时3×1=3﹣6+3=﹣3所以点P所表示的有理数是﹣3;(2)当点P与点B重合时,点P所运动的路程为|6﹣(﹣6)|=12所以t=12÷3=4;(3)点P沿数轴由点A到点B再回到点A的运动过程中,点P与点A的距离分为2中情况:当点P到达点B前点P与点A的距离是3t;当点P到达点B再回到点A的运动过程中点P与点A的距离是:24﹣3t;(4)当点P表示的有理数与原点(设原点为O)的距离是3个单位长度时,则有以下四种情况:当点P由点A到点O时:OP=AO﹣3t,即:6﹣3t=3,∴t=1;当点P由点O到点B时:OP=3t﹣AO,即:3t﹣6=3,∴t=3;当点P由点B到点O时:OP=18﹣3t,即:18﹣3t=3,∴t=5;当点P由点O到AO时:OP=3t﹣18,即:3t﹣18=3,∴t=7,即:当点P表示的有理数与原点的距离是3个单位长度时,t值的值为1秒或3秒或5秒或7秒;【点评】本题考查了数轴,利用了速度与时间的关系,分类讨论是解题关键.。

人教版七年级数学上册《数轴》有理数PPT精品课件

人教版七年级数学上册《数轴》有理数PPT精品课件

1.下列说法不正确的是( D ) A. 数轴是一条直线 B. 数轴上所有的点并不都表示有理数 C. 在数轴上表示2和-2的点到原点的距离相等 D. 数轴上一定取向右为正方向
2.在数轴上原点及原点右边的点所表示的数是( C )
A. 正数
B. 负数
C. 非负数 D. 非正数
3.大于–3.5,小于2.5的整数共有( A )个.
典例精析
例3.在数轴上表示下列各数: -2, +2,0,-3.5, +3.5
-3.5
-2
0
+2 +3.5
-6 -5 -4 -3 -2 -1 0 1 2 3 4
想一想:表示-2和+2的点到原点的距离如何? 表示-3.5和+3.5的点到原点的距离如何?
总结:每一组的两个点到原点的距离相等.
新知小结
1.在数轴上可以表示所有的数吗? 2.所有的有理数都可以在数轴上表示出来吗? 3.数轴上表示的数一定是有理数吗? 4.直径是1的圆的周长是( π ), π不是有理数,
π能不能在数轴上表示出来?
结论:任何一个有理数都能用数轴上一个点表示, 但是数轴上的一个点不一定表示一个有理数.
新知小结
一般地,设a是一个正数,则数轴上表示数a的点在原点的( 右 )边,与原点 的距离是( a)个长度单位;表示数-a的点在原点的( 左)边,与原点的距 离是( a )个长度单位。
随堂练习
例1 写出数轴上点A,B,C,D分别表示的数.
.A
.B
.C
.D
-1 012 3 4 5
解:点A表示-3, 点C表示2.5,
点B表示-1, 点D表示5.
典例精析
例2 在数轴上表示下列各数:

人教版初中七年级数学第一单元有理数《数轴》教案

人教版初中七年级数学第一单元有理数《数轴》教案

人教版初中七年级数学第一单元有理数数轴一、教学目标(一)学习目标1.理解数轴的意义和数轴上的点与有理数的对应关系;2.会正确画出数轴,会根据数轴上的点读出所表示的有理数,会用数轴上的点表示给定的有理数;3.掌握从数与形两方面考虑问题的方法,能够用数轴解决现实生活中的实际问题。

(二)学习重点理解数轴上的点与有理数的对应关系(三)学习难点用数轴上的点表示有理数,并用数轴解决现实生活中的实际问题。

二、教学设计(一)课前设计1.预习任务(1)规定了原点、正方向、单位长度的一条直线叫作数轴;(2)所有的有理数都可以用数轴上的点来表示,数轴上的原点表示的数是0;(3)一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数a 的点在原点的左边,与原点的距离是a 个单位长度。

2.预习自测(1)下列表示的数轴,正确的是( )【知识点】数轴-2 0 -1 2 1 -1 -2 0 1 2 3 -3 -1 0 1 2 3-2 0 2 AB C D【解题过程】解:单位长度不统一,故A 错误;-1、-2标反了,故B 错误;没有正方向,故D 错误,所以应选C【思路点拨】根据数轴的三要素即可判断.【答案】 C(2)在数轴上,原点及原点右边的数是( )A .正数B .负数C .整数D .非负数【知识点】数轴【解题过程】解:在数轴上,原点及原点右边表示的数是非负数。

【思路点拨】根据数轴的概念即可求解;【答案】D(3)在数轴上表示-3,0,5,4,21-的点中,在原点左边的点有( ) A .0个 B .1个 C .2个 D .3个【知识点】数轴【解题过程】在数轴上表示-3,0,5,4,21-的点中,在原点左边的点有-3,21- 【思路点拨】根据数轴的概念知,在原点左边的点表示负数即可求解.【答案】C(4)如图,在数轴上,A 、B 、C 、D 、E 各表示什么数?【知识点】数轴【解题过程】解:由图可知:A 表示-1,B 表示1.5,C 表示-1.5,D 表示-3.5,E 表示3.【思路点拨】可先观察该点在原点的左侧或是右侧,判断其正负,再看该点到原点的距离即可判断.【答案】A 表示-1,B 表示1.5,C 表示-1.5,D 表示-3.5,E 表示3.(二)课堂设计1.知识回顾(1)什么叫正数?什么叫负数? -3-4-2-1 2 3A B C D E(2)整数和分数统称什么数?整数包括哪些数?分数包括哪些数?2.问题探究探究一理解数轴的意义★●活动①探究:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.师问:(1)用什么可表示马路?方向呢?(2)可以以什么地方为基准点?为什么?(分组讨论,交流合作,动手操作)师生合作画出对应的图形师问:能否用数简明地表示这些树、电线杆与汽车站牌的相对位置关系呢?生答:问题中,由于“东”与“西”、“左”与“右”都是具有相反意义,所以可以用正、负数来表示它们。

《数轴》七年级数学教案(精选6篇)

《数轴》七年级数学教案(精选6篇)

《数轴》七年级数学教案(精选6篇)《数轴》七年级数学教案1教学目标1.了解数轴的概念和数轴的画法,掌握数轴的三要素;2.会用数轴上的点表示有理数,会利用数轴比较有理数的大小;3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议一、重点、难点分析本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。

难点是正确理解有理数与数轴上点的对应关系。

数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。

另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。

通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础二、知识结构有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的。

重要思想方法,本课知识要点如下表:定义三要素应用数形结合规定了原点、正方向、单位长度的直线叫数轴原点正方向单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

《数轴》七年级数学教案2教学目标:1、正确理解数轴的意义,理解数轴的三要素。

2、掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。

3、理解相反数的意义及求法。

4、对学生渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力。

重点难点:1、正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数。

2、有理数和数轴上的的点的对应关系。

教学方法:合作探究交流学法指导:观察归纳概括教学过程:一、情景引入:(1)你会读温度计吗?完成课本43页最上面的读温度计的问题。

《数轴》说课稿(通用3篇)

《数轴》说课稿(通用3篇)

《数轴》说课稿《数轴》说课稿(通用3篇)在教学工作者开展教学活动前,通常需要用到说课稿来辅助教学,说课稿是进行说课准备的文稿,有着至关重要的作用。

怎样写说课稿才更能起到其作用呢?下面是小编为大家整理的《数轴》说课稿(通用3篇),仅供参考,欢迎大家阅读。

《数轴》说课稿1一、说教材首先谈谈我对教材的理解,《数轴》是人教版初中数学七年级上册第一章的内容,本节课的内容是数轴的概念概念,三要素,和用数轴表示数。

有理数已经在上一节已经进行了讲解,并且之前也有生活中的温度计的常识性经验,对于本节课的知识点有了很好的铺垫作用。

数轴是一个重要概念,后续的直角坐标系也是以数轴为基础的。

它是学生第一次学习正式接触数形结合思想,在整个数学体系中有着不可或缺的作用。

二、说学情接下来谈谈学生的实际情况。

新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。

本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。

所以,学生对本节课的学习是相对比较容易的。

三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能了解数轴的概念,能用数轴上的点准确地表示有理数。

(二)过程与方法通过观察与实际操作,体会有理数与数轴上的点的对应关系,体会数形结合的思想。

(三)情感态度价值观在数与形结合的过程中,体会数学学习的乐趣。

四、说教学重难点我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。

而教学重点的确立与我本节课的内容肯定是密不可分的。

那么根据授课内容可以确定本节课的教学重点是:用数轴上的点表示有理数。

数形结合的思想方法学生首次正式接触,所以本节课的教学难点是:数形结合的思想方法。

五、说教法和学法现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。

七年级数学上册第2章有理数2.2数轴

七年级数学上册第2章有理数2.2数轴
_-_3_,….
第四页,共三十页。
【思考】1.用数轴上的点表示(biǎoshì)有理数时,正有理数在原点的哪一侧,
负有理数呢? 提示:正有理数在原点的右侧,负有理数在原点的左侧.
2.有理数都能用数轴上的点表示吗? 提示:能.所有的有理数都能用数轴上的点表示.
第五页,共三十页。
【总结】1.数轴与有理数的关系
(2)①将各组数分别在数轴上表示出来,如图所示.
②它们的共同特点是数轴上表示的各组数的点到原点的距离都相等.
第十一页,共三十页。
【总结提升】用数轴上的点表示有理数的三个步骤
1.画:画数轴,注意根据数据特点决定单位长度的大小. 2.看:一看数字(shùzì)的符号,正的在原点右边,负的在原点左边;二看 该点离原点几个单位长度. 3.标:在数轴上标记表示该有理数的点.
边的数大. (2)用法则比较:___正数都大于零,___数负都小于零,___数都正大
于_负__数.
第七页,共三十页。
(打“√”或“×”)
(1)画数轴时可以选择向右为正方向,也可以选择向左为正方
向,只要把正方向用箭头表示出来即可.( )
×
(2)所有(suǒyǒu)的小数都可以用数轴上的点来表示.( )
是( ) A.2 B.0 C.-2 D.-1 【解析】选A.根据比较有理数大小的法则“正数都大于零,负数都小于零,
正数都大于负数”,易知2最大.
第二十一页,共三十页。
2.如图,数轴上A,B,C,D四点表示的数分别为a,b,c,d,则它们的大小
(dàxiǎo)关系是( )
A.a>b>c>d
B.c>a>d>b
根据数轴上右边的数总比左边的数大,各数的大小关系按从小
到大的顺序用“<”连接为:-3.5<-2数轴可知A与B,D与E,F与G到原点的距离都分别相等.

初中数学《数轴》说课稿

初中数学《数轴》说课稿

初中数学《数轴》说课稿初中数学《数轴》说课稿1尊敬的各位老师们:你们好!今天我说课的题目是人教版数学七年级上册第一章第2节《数轴》。

下面,我将从背景分析、教学目标设计、、课堂结构和教学媒体设计、教学过程设计及教学评价设计等几个方面对本课的设计进行说明。

一.背景分析1. 教材的地位及作用“数轴”是人教版七年级数学上册第一章第二节“有理数”的重点内容之一,是在引进了负数及分析了有理数的分类后给出的。

数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。

对以后的知识概念及实际问题的解决起着举足轻重的作用。

2. 教学重点、难点的分析教学的重点:1)正确理解数轴的概念;2)正确掌握数轴的画法和用数轴上的点表示有理数。

教学的难点:正确理解有理数与数轴上点的对应关系,体会数形结合的数学思想。

3. 教材的处理1)通过观察温度计及师生互动表示课本第10页中的问题,使学生明白数与形的对应,初步认识数形结合的美妙之处。

2)通过讲解数轴的概念,概括出数轴三要素,指导学生正确地画出数轴。

3)通过练习,使学生准确地掌握数轴的概念,并会用数轴表示有理数,进一步体会数形结合。

4)通过课本第11页的归纳,使学生深化对数轴概念的理解。

二、教学目标设计1. 知识技能1)掌握数轴的概念,并理解其三要素,能正确地画出数轴。

2)会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数。

理解任何有理数在数轴上都有唯一的点与之对应2.数学思考1)通过观察与思考,建立数轴的概念。

2)通过对数轴的学习,初步体会对应的思想、数形结合的思想。

3.解决问题会利用数轴解决有关问题。

4.情感态度通过对数轴的学习,向学生渗透数形结合的数学思想,让学生知道数学________于实践,培养学生对数学的学习兴趣。

人教版初中七年级数学第一单元有理数《1.2.2_数轴》教学设计

人教版初中七年级数学第一单元有理数《1.2.2_数轴》教学设计

人教版初中七年级数学第一单元有理数《1.2.2数轴》教学设计一、教学内容分析数轴是一个重要的概念,后续的平面直角坐标系也是以它为基础的.这是学生第一次学习数形结合的思想.数轴实际就是有理数的形的表示载体,或者说是有理数的另一种表示形式.如果要对有理数有一个深刻的理解,除了从符号的形式理解外,还要从形的角度理解有理数.如何利用数形结合理解有理数是本课时教学的关键问题.学生在本节课上已经完成了第一课时布置的任务:绘制一条路上的几个建筑物的位置关系图,并用文字语言描述建筑物的位置关系.以右图为例,如果想要准确地描述建筑物的位置关系,如体育馆在校史馆的西边25 m处,那么就要说清楚参考标准,以及建筑物相对参考标准的方向及距离,才能准确地表示出建筑物相对的位置关系,这三点缺少一个都无法准确地表示建筑物的位置关系.例如,如果缺少参考标准,那么体育馆可能在校史馆的西边25 m处,也可能在荣光楼的西边25 m处,这个位置是无法确定的;如果缺少方向,那么体育馆有可能在校史馆的西边25 m处,也有可能在校史馆的东边25 m处,位置无法确定;如果缺少距离,那么体育馆可能在校史馆的西边25 m处或是50 m处等等,位置也是无法确定下来的.因此,想要描述物体的位置关系,参考基准、方向和距离是缺一不可的.为了更加简洁地表示出位置关系,我们借用了数轴这一数学工具,用数学语言表示物体的位置关系.参考基准即为数轴上的原点,方向即为数轴上的正方向,距离体现为数轴上的单位长度.例如,如果以校史馆为原点,向东为正方向,单位长度为25 m,如下图,那么体育馆可以表示为-50 m处,用一个数字就简化了表示物体位置关系的方式,同样是一个数,在数轴上就具有了几何的意义:符号表示的是方向,符号后面的数表示的是距离原点的距离,这是我们后面课时要学习的内容.教材中给出的数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…,从原点向左,用类似的方法依次表示-1,-2,-3,…,如下图:根据研究概念的四个维度,我们从特征、由来、与已有知识的联系与区别、应用这几个角度对数轴进行总结:(1)特征:根据定义,数轴首先是一条直线,并且具备三个要素:原点、正方向和单位长度.这几个条件缺一不可,否则无法描述物体的位置关系.但是在选择原点、正方向和单位长度时取法是不唯一的,选择不同的取法,对应的数轴就会不同,表示物体位置的数也就会不同.(2)由来:用数简明地表示物体的位置关系.(3)与已有知识的联系与区别:数轴,拆开来就是数和轴.数轴与数有关,与直线也有关,这条直线具有原点、正方向和单位长度.给定一个数,可以在数轴上找到该数对应的点;给定数轴上的一个点,也可以读出该点对应的数.数的变化在数轴上体现为点动,反之,数轴上的点动体现为点所对应的数的变化.第二课时中有理数的分类,借助数轴能够更直观地分辨出正数、负数和0.要注意的是,有理数与数轴上点的关系:所有的有理数都可以用数轴表示,但不能说数轴上的点仅仅表示有理数.(4)应用:表示位置关系二、学情分析学生通过自主学习初步掌握了数轴及如何利用数轴表示位置关系等内容,并且完成了主干路上几个建筑物的位置关系图,能够描述出这些建筑物的位置关系. 但是为什么用数轴表示物体的位置关系?为什么数轴要有原点、正方向和单位长度?这三个要素是否是必备的?这些问题学生还理解不到位.学生由于第一次接触数形结合的思想,对于数在数轴上的几何意义还不能完全理解.因此,要结合学生完成的实际任务对上述问题进行分析.此外,数轴三要素的取法并不是唯一的,当选取的三要素发生变化时,同一个点所表示的数就会发生变化.下题是北京市2018年中考数学第8题,当平面直角坐标系的原点及单位长度发生变化时对应同一个点坐标的变化,学生作答情况并不好.平面直角坐标系是以数轴为基础进行学习的,因此学生要牢牢掌握数轴的基本知识,特别是落实清楚三要素变化对点所对应的数变化的影响(2018·北京)右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-11,-5)时,表示左安门的点的坐标为(11,-11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,7.5)时,表示左安门的点的坐标为(16.5,-16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④三、教学目标1.明确数轴三要素的作用,会画数轴.2.能读出数轴上的点所表示的有理数.3.能将有理数对应的点表示在数轴上.4.学会运用数形结合的思想解决问题●重点体会数轴三要素的作用,能够依据三要素的变化确定数轴上数的变化●难点理解有理数在数轴上的几何意义,学会运用数形结合思想解决问题四、评价设计学习评价量表五、教学活动设计置关系? 2.根据前两个活动的讨论结果,学生了解到数轴的三个要素是缺一不可的,原点、正方向、单位长度对于描述位置关系都有重要作用.3.在数轴上,我们用一个点表示物体所在的位置,那么该点所对应的数就能够体现出物体的位置.例如,根据上图所示,以校史馆为原点,向东为正方向,25 m为单位长度建立数轴,则体育馆在-50 m所对应的点的位置.-50 m中负号体现的是方向,与正方向相反,为向西;50表示体育馆到原点,即到校史馆的距离为50 m.4.总结:有理数在数轴上的几何意义:一个有理数对应为数轴上的一个点,体现了这个点的位置,符号表示点相对原点的方向,符号后面的数字体现为该点到原点的距离. 个环节对物体位置关系的描述,类比到数轴中来,让学生体会数轴三要素的作用,以及三要素选取不同,对应的点所表示的数不同等知识点.1.根据下图所示的文字语言,选取不同的原点画数轴,并把建筑物用点表示在数轴上.(1)以校史馆为原点(2)以荣光楼为原点六、板书设计七、达标检测与作业1.(A)画一条数轴,将有理数235,332--,,分别表示在数轴上,并依次记作点A,B,C,D.2.(A)把数轴上各点表示的数写出来.3.(B)数轴上点 M表示2,点N表示-3.5,点A表示-1,在点 M和点N中距离点A 较远的点是.4.(B)已知数轴上有A,B两点,A,B之间的距离为3,点A与原点O的距离为3,那么点B表示的数为.5.(B)如果将5个城市的国际标准时间(单位:时)在数轴上表示(如下图所示),那么北京时间2016年8月8日20时应是()A.伦敦时间2016年8月8日11时B.巴黎时间2016年8月8日13时C.纽约时间2016年8月8日5时D.首尔时间2016年8月8日19时6.(B)下图是北京地铁1号线一些站点的分布示意图.在图中,以东为正方向建立数轴.有如下四个结论:①当表示五棵松的点所表示的数为0,表示玉泉路的点所表示的数为-3.5时,表示公主坟的点所表示的数为6;②当表示五棵松的点所表示的数为0,表示玉泉路的点所表示的数为-7时,表示公主坟的点所表示的数为12;③当表示五棵松的点所表示的数为1,表示玉泉路的点所表示的数为-2.5时表示公主坟的点所表示的数为7;④当表示五棵松的点所表示的数为2,表示玉泉路的点所表示的数为-5时,表示公主坟的点所表示的数为14上述结论中正确的是()A.①②③B.②③④C.①④D.①②③④7.(B)小华骑车从家出发,先向东骑行2km到A村,继续向东骑行3km到达B村,接着又向西骑行9km到达C村,最后回到家.试回答下列问题:(1)画一条数轴,以家为原点,以向东方向为正方向,表示出家以及A,B,C 三个村庄的位置;(2)C村离A村有多远?(3)小华一共行驶了多少千米?8.(C)已知有理数-4,2,3543,在数轴上对应的点分别为A,B,C,D将点A向右移动5个单位长度,再向左移动2个单位长度后表示的数为;若点E向右移1个单位长度后恰好落在点C处,则点E表示的数为;B,E两点之间的距离为;若点F与点C关于原点对称,则点F表示的数为;若点G到点D的距离为3,则点G表示的数为.9.(C)如下图所示,一根木棒放在数轴上,木棒的左端与数轴上的点A重合,右端与点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为20;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时则它的左端在数轴上所对应的数为5,用1个单位长度表示1cm,由此可得到木棒长为.(2)受题(1)的启发,请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了?八、教学反思本课时旨在通过实际任务让学生认识数轴在表示物体位置关系时的简洁,让学生理解为什么要引入数轴,以及三要素的重要作用.数形结合思想是本节课重点渗透的思想,通过用数轴上的点表示物体,用点所对应的数表示点的位置,将有理数和数轴上的点对应起来,从而有理数就有了几何意义,其符号和符号后面的数字分别对应的是相对原点的方向和距离.在教学中,由于三要素选取不同,学生绘制的数轴各不相同.学生提前自主学习时对规范性没有要求,因此一开始画出的数轴并不标准,所以在课堂上教师需要规范这一标准.学生通过一系列的练习后可以进一步感知有理数在数轴上的几何意义.在运用数形结合思想解决问题时,有些学生还不能在本节课一下子吸收掌握,因此教师要逐渐渗透数轴还有一个非常大的作用就是让数变得有“序”,可以利用这点比较多个数的大小,这是之后学习的内容.但是在教学中,学生还较难发现这点,需要教师引导指出本节课在实施过程中虽然留给学生思考时间,但是学生交流讨论的时间还是不够,例如,三要素的选取这部分可以让学生通过完成实际任务自己发现这一结论,也可以引导学生自己提出变换原点、正方向、单位长度去表示位置关系这一问题.。

七年级数学《数轴》教案三篇

七年级数学《数轴》教案三篇

七年级数学《数轴》教案三篇规定了原点,正方向和单位长度的直线叫数轴。

其中,原点、正方向和单位长度称为数轴的三要素。

下面就是我给大家带来的七年级数学《数轴》教案三篇,希望能帮助到大家!七年级数学教案1一、教学目标【知识与技能】了解数轴的概念,能用数轴上的点准确地表示有理数。

【过程与方法】通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

【情感、态度与价值观】在数与形结合的过程中,体会数学学习的乐趣。

二、教学重难点【教学重点】数轴的三要素,用数轴上的点表示有理数。

【教学难点】数形结合的思想方法。

三、教学过程(一)引入新课提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

(二)探索新知学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。

我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?学生活动:画图表示后提问。

提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

提问3:你是如何理解数轴三要素的?师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习如图,写出数轴上点A,B,C,D,E表示的数。

(四)小结作业提问:今天有什么收获?引导学生回顾:数轴的三要素,用数轴表示数。

课后作业:课后练习题第二题;思考:到原点距离相等的两个点有什么特点?七年级数学教案2一、教学内容分析1.2有理数1.2.2数轴。

七年级数学 第一章《有理数》专题1 数轴的理解与运用

七年级数学 第一章《有理数》专题1 数轴的理解与运用

第一章《有理数》专题1数轴的理解与运用一.知识要点:1.数轴:数轴是一条具有原点,正方向,单位长度的直线.2.任何有理数都能在数轴上找到一个点与之对应.3.数轴上两点之间的距离:当点A表示的数是a,点B表示的数是b时,AB=|a-b|.4.数轴上平移的规律:假设起点是a,向右平移b个单位,则得到的数是a+b,向左平移b个单位,得到的数是a-b.5.相反数的几何意义:在原点两侧,关于原点对称,即表示互为相反数的两个数到原点的距离相等.6.中点坐标公式:A点表示的数是a,B点表示的数是b,则线段AB的中点C.表示的数是a+b2二.模块训练:一.数轴与有理数1.数轴上,表示数﹣2.2与3.5的两点之间的整数点的个数是().A.5 B.6C.7 D.82.数轴上点A表示数﹣3,将点A沿数轴移动7个单位长度得到点B,则点B表示的数是().A.4 B.﹣4或10 C.﹣10 D.﹣10或43.若数轴上表示数a和﹣3的两点的距离等于5,则a=.4.数轴上点A表示的数是3,点B与点A距离为7,则数轴上点B表示的数为().A.10 B.﹣4 C.﹣4或10 D.4或105.如图所示,在数轴上有六个点,且AB=BC=CD=DE=EF,则点C表示的数是().A.﹣2 B.0C.2 D.46.已知数轴上点A表示的有理数是6,点B是数轴上在点A左侧的一点,A,B两点之间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动5秒,则数轴上点B表示的数是,点P表示的数是.二.数轴与相反数7.如图,表示互为相反数的两个点是().A.A与D B.B与D C.B与C D.A与C8.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是().A.点M B.点N C.点P D.点Q9.数轴上点A表示的数是﹣3,点B与点A的距离为5,则点B表示的数是()A.2B.﹣8C.2或5D.2或﹣810.有理数a,b在数轴上的对应点的位置如图所示,则a,b,﹣a,﹣b的大小关系正确的是().A.﹣b>a>﹣a>b B.﹣b>b>a>﹣aB.a>﹣b>b>﹣a D.a>﹣b>﹣a>b11.一个点从数轴上表示1的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到达的终点所表示的数是.12.若a和b是符号相反的两个数,在数轴上a所对应的点和b所对应的点相距6个单位长度,如果a=-2,则b的值为.12.根据如图所示的数轴,解答下面的问题:(1)点A表示的数是,点B表示的数是.(2)观察数轴,与点A的距离为4的点表示的数是.(3)若将数轴折叠,使得点A与表示数﹣3的点重合,则点B与表示数的点重合;(4)若数轴上M,N两点之间的距离为2018(点M在点N的左侧),且M,N两点经过(3)中的折叠后互相重合,求M,N两点表示的数.。

七年级数学上册第一章 有理数 ——数轴、相反数

七年级数学上册第一章 有理数 ——数轴、相反数

第一章有理数第三课时数轴教学目标1.掌握数轴三要素,能正确画出数轴.2. 能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,知道有理数都可以用数轴上的点表示.教学重点初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.教学难点正确理解有理数与数轴上点的对应关系.教学过程(一)创设情境,导入新课在一条东西方向的马路上,有一个学校,学校东50m和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:定义:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-7/2,0吗?讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度;表示-a的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结整数能在数轴上都找到点吗?分数呢?可见,所有的______都可以用数轴上的点表示______都在原点的左边,______都在原点的右边.(三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.【答案】①错.没有原点②错.没有正方向③正确④错.没有单位长度⑤错.单位长度不统一⑥正确⑦错.正方向标错例2 试一试:把下面各小题的数分别表示在三条数轴上:(1)2,-1,0,3 2/3 ,+3.5(2)―5,0,+5,15,20;例3 如果a是一个正数,则数轴上表示数a的点在原点的什么位置上?•表示-a的点在原点的什么位置上呢?【提示】由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.【答案】所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)A.1个B.2个C.3个D.4个例5 (1)与原点的距离为2.5个单位的点有两个,它们分别表示有理数 2.5 •和 -2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是 +3 .例6 在数轴上表示-2 1/2和1 2/3,并根据数轴指出所有大于-2 1/2而小于1 2/3的整数.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)A.1998或1999 B.1999或2000 C.2000或2001 D.2001或2002【提示】分两种情况分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.备选例题(2004²新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.(四)总结反思,拓展升华1.数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确。

沪科版七年级数学上册第一章有理数 1.2.1 数轴课件 (共28张PPT)

沪科版七年级数学上册第一章有理数 1.2.1 数轴课件 (共28张PPT)

接着又向东走-70米,此时元元的位置在

甲说:元元在玩具店东边20米处;
乙说:元元在玩具店西边40米处。
甲乙两人无法找到统一的答案,谁也说服不了谁,
作为同学的你,能否用一个简明有效的方法帮助
他们解决纷争呢?
CA
解:如图
文 书B

所以元所元示最后的-位30置在0 文3具0 店40 。60 90
归纳:用 示数 的轴 数表 可示大数可时小,,根但据整具体体必情须况保, 持每 一个 致单 。位表
某人从A地向东走10米,然后折回向西 走3米,又折回向东走6米,问此人在A地 哪个方向?距离是多少?
10米
3米 6米 BD C
随堂练习:
1、 填空 (1)与原点的距离为5个单位长度的点有_2___个,这样的点所 表示的数是_+_5_、__-_5. (2) 在数轴上与表示数2的点距离为3个单位长度的12 点所表示的 数是_+_5_和__-1__.
5℃
0℃
-10 ℃
5 0 -10
而下
这降 温
些到 度
数达 计
就某 的
是个 汞
我点 柱
们, 随
所就 着
学会 温
的对 度
有 理 数 。
应 一 个 读 数
的 上 升 或 者
从温度计我们可以得到一些启发—— 用直线上的点来直观地表示有理数。
画一条水平直线, 在直线上取一点表示0,并把这个点叫原点, 选取某一长度作为单位长度, 规定直线上向右的方向为正方向,就得到下面的数轴。
有理数
整数
正整数 零
负整数
分数 正分数
负分数
有理数
正有理数 0
负有理数

2018年秋七年级数学上册 第2章 有理数 2.2 数轴讲义 (新版)华东师大版

2018年秋七年级数学上册 第2章 有理数 2.2 数轴讲义 (新版)华东师大版

A.3 个
B.2 个
C.1 个
D.无数个
9.在数轴上,点 A 表示-3,从点 A 出发沿数轴移动 4 个单位长度到达点
B,则点 B 表示的数是( D )
A.-7
B.1
C.4
D.-7 或 1
10.数轴上与表示-5 的点相距 2 个单位长度的点所表示的数是 -3或-7 .
11.数轴上到原点的距离小于 3 的整数的个数为 x,不大于 3 的整数的个数 为 y,等于 3 的整数的个数为 z,则 x+y+z= 14 .
6.在数轴上有三个点 A、B、C(如图),回答下列问题:
(1)将点 A 向右移动 4 个单位长度后,三个点所表示的数中,最小的数是多 少? (2)将点 C 向左移动 4 个单位长度后,三个点所表示的数中,最大的数是多 少? (3)怎样移动 A、B、C 中的其中两个点,才能使三个点表示的数相同?有几 种移动的方法? 解:(1)最小的数是点 B 所表示的数,为-5; (2)最大的数是点 A 所表示的数-1;
答:都不正确.(1)缺少原点;(2)单位长度不一致;(3)有两处错误:①缺少 正方向;②负数的排序错误,从原点依次向左应是-1,-2.
1.下列各图中,是数轴的是( D )
2.以下关于-23这个数在数轴上的位置的描述,其中正确的是( D )
A.在-3 的左边
B.在 3 的右边
C.在原点和-1 之间
D.在-1 的左边
在数轴上比较大小 在数轴上表示的两个数,右边的数总比左边的数大,即:正数都 大于 零,
负数都 小于 零,正数都 大于 负数.
自我诊断 2.某地连续四天每天的平均气温分别是:1℃、-1℃、0℃、2℃,
则平均气温中最低的是( A )

七年级数学-有理数的意义、数轴、绝对值

七年级数学-有理数的意义、数轴、绝对值

2、0是整数不是分数例1、向北走2000米与向南走1000米,若规定向北走为正,则向北走2000米可记作 , 向南走1000米,原地不动课记作例2、七年级一班第一小组五名同学某次数学测验的平均成绩为85分,一名同学以平均成绩为标准, 超过平均分记正,将五名同学的成绩分别记作—15分,—4分,0分,4分,15分。

这五名同学 的实际成绩分别是多少分?例3、观察下面依次排列的一列数,请接着写出后面的数,你能说出第15个、第101个、第2010个的 数是什么?1)、—1、—2、+3、—4、—5、+6、—7、—8、 、 、 …… 2)、—1、、—3、、—5、61、—7、、 、 、 ……例4、将25,100%,48,81-,3210,-100按上述两种标准分类。

1.按整数和分数分类:2.按正负分类:例5、把下列各数填在相应的集合内: π,,-3,2,-1,-0.58,0,-3.14,,0.618,10 整数集合:{ …} 分数集合:{ …} 非负数集合:{ …} 2、数轴数轴:规定了原点、正方向、单位长度的直线叫做数轴。

21418141-913-B D -3-2-1321ca袋号 ① ② ③ ④ ⑤ 质量-5+3+9-1-62、在有理数-21,+7,-5.3,10%,0,-32中自然数有m 个,分数有n 个,负有理数有p 个,比较 m, n ,p 的大小得( ).A 、m 最小B 、n 最小C 、p 最小D 、m, n, p 三个一样大 3、有理数-3的倒数是( ). A 、-31 B 、31C 、-3D 、3 4、质量检测中抽取标准为100克的袋装牛奶,结果如下(超过标准的质量记为正数)其是最合乎标准 的一袋是( ). A 、② B 、③ C 、④ D 、⑤5、用﹣a 表示的数一定是( )。

A 、负数B 、负整数C 、正数或负数D 、以上结论都不对 6、下列说法中正确的是( ) A 、不带“﹣”的数都是正数B 、不存在既不是正数,也不是负数的数C 、如果a 是正数,那么﹣a 一定是负数D 、0℃表示没有温度7、下列说法正确的是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 温故知新,引入课题
25
25
25
20
20
20
15
15
15
10
10
10
5
5
5
0
0
0
-5
-5
-5
-10
-10
-10
-15
-15
-15
-20
-20
-25
-25
-20 -25
二、 得出定义,揭示内涵
画数轴
(1)画直线,取原点 (2)标正方向 (3)选取单位长度,标数
-5 -4 -3 -2 -1 0 1 2 3 4 5
原点 正方向 单位长度
数轴的三要素
四、例题示范,初步运用
五、 分层练习,形成能力
1、课本59页 练习1、2 2、课本61页 第3题(1) 3、数轴上的点P与表示有理数3的点A距离是2, (1)试确定点P表示的有理数; (2)现将A向右移动2个单位到B点,则点B表 示的有理数是多少?
(3)再由B点向左移动9个单位到C点,则C点 表示的有理数是多少?
教学难点
建立有理数与数轴上的点的对应关系
生动 有趣 高效
观察 思考 讨论
多观察 动脑想 大胆猜 勤钻研
动脑 动手 动口
教学过程


强例分归来自布故出















































一、 温故知新,引入课题
提问:有理数包括哪些数?
讨论:你能找出用刻度表示 这些数的实例吗?
数轴
(第一课时)
教学目标
1. 使学生理解数轴的三要素,会画数轴;
2. 能将已知有理数在数轴上表示出来,能 说出数轴上的已知点所表示的有理数, 理解有理数都可以用数轴上的点表示;
3. 向学生渗透数形结合的数学思想,让学生 知道数学来源于实践,培养学生对数学的 学习兴趣。
教学重点
1.正确理解数轴的概念 2.有理数在数轴上的表示方法
规定了原点、正方向和单位 长度的直线叫做数轴。
三、 强化概念,深入理解
1、下列图形哪些是数轴,哪些不是,为什么?
(A) (B) (C) (D) (E) (F)
-2 -1 0 1 2 -2 -1 1 2
0 -2 -1 0 1 2
-2 -1 0 1 2
-1 -2 0 1 2
三、 强化概念,深入理解
2、请大家在练习本上画一个数轴。
六、归纳小结,强化思想
1、数轴的概念,数轴的三要素 2、用数轴上的点表示有理数的方法 3、所有的有理数都可以用数轴上的点来表示
讨论: 数轴上,会不会有两个点表示同一个有理数? 会不会有一个点表示两个不同的有理数?
仔细观察 注重实质
七、布置作业,引导预习
1、必做题 课本61页 1、2、3(2)、(3)
2、选做题 课本62页 B组 第1题
3、思考题 与温度计类似,数轴上两个不同的点
所表示的两个有理数大小关系如何?
学生的主体作用 自主 探究 合作 数学素养 学习习惯
相关文档
最新文档