高二数学上学期期末考试试题理

合集下载

天津市部分区2024_2025学年高二数学上学期期末考试试卷含解析

天津市部分区2024_2025学年高二数学上学期期末考试试卷含解析

天津市部分区2024-2025学年高二上学期期末考试数学试卷一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线﹣y2=1的焦点坐标为()A. (﹣3,0),(3,0)B. (0,﹣3),(0,3)C. (﹣,0),(,0)D. (0,﹣),(0,)【答案】C【解析】【分析】利用双曲线的标准方程干脆计算。

【详解】由双曲线﹣y2=1可得:,则所以双曲线﹣y2=1的焦点坐标为:(﹣,0),(,0)故选:C【点睛】本题主要考查了双曲线的简洁性质,属于基础题。

2.命题“∃x0∈(0,+∞),使得<”的否定是()A. ∃x0∈(0,+∞),使得B. ∃x0∈(0,+∞),使得C. ∀x∈(0,+∞),均有e x>xD. ∀x∈(0,+∞),均有e x≥x【答案】D【解析】【分析】由特称命题的否定干脆写出结果即可推断。

【详解】命题“∃x0∈(0,+∞),使得<”的否定是:“x∈(0,+∞),使得”故选:D【点睛】本题主要考查了特称命题的否定,属于基础题。

3.若复数(为虚数单位),则的共轭复数()A. B. C. D.【答案】B【解析】因为,所以,应选答案B。

4.设R,则“>1”是“>1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【详解】试题分析:由可得成立,反之不成立,所以“”是“”的充分不必要条件考点:充分条件与必要条件5.设公比为﹣2的等比数列{a n}的前n项和为S n,若S5=,则a4等于()A. 8B. 4C. ﹣4D. ﹣8【答案】C【解析】【分析】由S5=求出,再由等比数列通项公式求出即可。

【详解】由S5=得:,又解得:,所以故选:C【点睛】本题主要考查了等比数列的前n项和公式及等比数列通项公式,考查计算实力,属于基础题。

6.已知函数f(x)=lnx﹣,则f(x)()A. 有微小值,无极大值B. 无微小值有极大值C. 既有微小值,又有极大值D. 既无微小值,又无极大值【答案】B【解析】【分析】求出,对的正负分析,即可推断函数的极值状况。

宁夏回族自治区石嘴山市平罗县平罗中学2022高二数学上学期期末考试试题 理(含解析)

宁夏回族自治区石嘴山市平罗县平罗中学2022高二数学上学期期末考试试题 理(含解析)
A.3,8,13B.2,7,12C.3,9,15D.2,6,12
【答案】B
【解析】
【分析】
根据系统抽样原理求出抽样间距,再根据第5组抽出的号码求出第1组抽出的号码,即可得出第2组、第3组抽取的号码.
【详解】根据系统抽样原理知,抽样间距为200÷40=5,
当第5组抽出的号码为22时,即22=4×5+2,
因为 或 ,所以逆命题为假命题,则否命题为假命题.
即2个真命题.
故选B
【点睛】本题考查命题的四种形式的真假判断,属于较易题.
2.命题“若 ,则 ”的否命题为()
A.若 ,则 且 B.若 ,则 或
C.若 ,则 且 D.若 ,则 或
【答案】D
【解析】
【分析】
根据 为原命题条件, 为原命题结论,则否命题:若非 则非 ,即可求得答案.
【答案】B
【解析】
【分析】
解不等式 ,得 或 .当 时, 或 成立,原命题成立.当 或 时, 不成立,逆命题不成立.根据原命题与其逆否命题;逆命题与否命题互为逆否命题,并且互为逆否命题的两个命题真假性相同.则可判断真命题的个数.
【详解】因为 ,所以 或 .
因为 或 ,所以原命题为真命题,则其逆否命题为真命题.
【分析】
首先求得样本中心点,然后利用回归直线过样本中心点即可得最终结果.
【详解】由题意可得:

回归直线 过样本中心点,
则 ,解得 ,
故选A.
【点睛】该题考查的是有关回归直线的问题,涉及到的知识点有回归直线过样本中心点,属于简单题目.
4.某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距抽取样本,将全体会员随机按1~200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第1组至第3组抽出的号码依次是()

贵州省贵阳市高二数学上学期期末试卷 理(含解析)

贵州省贵阳市高二数学上学期期末试卷 理(含解析)

贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.164.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s27.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.28810.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.13.(4分)下列四个结论,其中正确的有.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样考点:分层抽样方法.专题:阅读型.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:因为x2+y2=0,可得x,y=0,再根据充要条件的定义进行判断;解答:解:∵xy=0,或者x=0,或y=0或x=y=0;∵x2+y2=0,可得x=y=0,∵“x2+y2=0”⇒“xy=0”;∴“xy=0”是“x2+y2=0”的必要不充分条件,故选B;点评:此题主要考查充分条件和必要条件的定义,是一道基础题,考查的知识点比较单一.3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.16考点:循环结构.专题:计算题.分析:将二进制数转化为十进制数,可以用每个数位上的数字乘以对应的权重,累加后,即可得到答案.解答:解:将二进制数1100化为十进制数为:1100(2)=1×23+1×2+1=11.故选C.点评:本题考查的知识点是不同进制之间的转换,其中其它进制转为十进制方法均为累加数字×权重,十进制转换为其它进制均采用除K求余法.4.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:计算题.分析:由题设条件,先判断出命题p:∃x∈R,x﹣2>lgx是真命题,命题q:∀x∈R,x2>0是假命题,再判断复合命题的真假.解答:解:当x=10时,10﹣2=8>lg10=1,故命题p:∃x∈R,x﹣2>lgx是真命题;当x=0时,x2=0,故命题q:∀x∈R,x2>0是假命题,∴题pVq是真命题,命题p∧q是假命题,命题pV(¬q)是真命题,命题p∧(¬q)是真命题,故选D.点评:本题考查复合命题真假的判断,是基础题.解题时要认真审题,仔细解答.5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.考点:抛物线的简单性质;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线的标准方程,算出抛物线的焦点F(1,0).由双曲线标准方程,算出它的渐近线方程为y=±x,化成一般式得:,再用点到直线的距离公式即可算出所求距离.解答:解:∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==故选:B点评:本题给出抛物线方程与双曲线方程,求抛物线的焦点到双曲线的渐近线的距离,着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于基础题.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s2考点:茎叶图;众数、中位数、平均数.专题:概率与统计.分析:根据茎叶图中的数据,求出两组的平均数与标准差即可.解答:解:根据茎叶图中的数据,得;1组的平均数是=(53+56+57+58+61+70+72)=61,方差是=[(53﹣61)2+(56﹣61)2+(57﹣61)2+(58﹣61)2+(61﹣61)2+(70﹣61)2+(72﹣61)2]=,标准差是s1=;2组的平均数是=(54+56+58+60+61+72+73)=62,方差是=[(54﹣62)2+(56﹣62)2+(58﹣62)2+(60﹣62)2+(61﹣62)2+(72﹣62)2+(73﹣62)2]=,标准差是s2=;∴<,s1<s2.故选:D.点评:本题考查了利用茎叶图中的数据,求平均数与方差、标准差的应用问题,是基础题目.7.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.考点:椭圆的定义.专题:计算题.分析:根据|F1F2|是|PF1|与|PF2|的等差中项,得到2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,得到点P在以F1,F2为焦点的椭圆上,已知a,c的值,做出b的值,写出椭圆的方程.解答:解:∵F1(﹣1,0)、F2(1,0),∴|F1F2|=2,∵|F1F2|是|PF1|与|PF2|的等差中项,∴2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,∴点P在以F1,F2为焦点的椭圆上,∵2a=4,a=2c=1∴b2=3,∴椭圆的方程是故选C.点评:本题考查椭圆的方程,解题的关键是看清点所满足的条件,本题是用定义法来求得轨迹,还有直接法和相关点法可以应用.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)考点:线性回归方程.专题:计算题;概率与统计.分析:求出x、y的平均值,回归直线方程一定过样本的中心点(,),代入可得答案.解答:解:回归直线方程一定过样本的中心点(,),==,==4,∴样本中心点是(,4),则y与x的线性回归方程y=bx+a必过点(,4),故选:A.点评:本题考查平均值的计算方法,回归直线的性质:回归直线方程一定过样本的中心点(,).9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.288考点:程序框图.专题:图表型;算法和程序框图.分析:根据所给数值执行循环语句,然后判定是否满足判断框中的条件,一旦满足条件就退出循环,输出结果.解答:解:模拟执行程序框图,可得k=1,S=0S=2,k=3不满足条件k≥20,S=8,k=5不满足条件k≥20,S=18,k=7不满足条件k≥20,S=32,k=9不满足条件k≥20,S=50,k=11不满足条件k≥20,S=72,k=13不满足条件k≥20,S=98,k=15不满足条件k≥20,S=128,k=17不满足条件k≥20,S=162,k=19不满足条件k≥20,S=200,k=21满足条件k≥20,退出循环,输出S的值为200.故选:B.点评:本题主要考查了循环结构,是直到型循环,先执行循环,直到满足条件退出循环,属于基础题.10.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6考点:曲线与方程;两点间距离公式的应用.专题:计算题;直线与圆.分析:先分类讨论化简方程,再根据方程对应的曲线,即可得到结论.解答:解:当x>0,y>0时,方程是(x﹣1)2+(y﹣1)2=8;当 x>0,y<0 时,方程是(x﹣1)2+(y+1)2=8;当 x<0,y>0 时,方程是(x+1)2+(y﹣1)2=8;当 x<0,y<0 时,方程是(x+1)2+(y+1)2=8曲线C既是中心对称图形,又是轴对称图形,对称中心为(0,0),对称轴为x,y轴,点P,Q在曲线C上,当且仅当P,Q与圆弧所在圆心共线时取得最大值,|PQ|的最大值是圆心距加两个半径,即6,故选:A.点评:本题考查曲线与方程的概念,体现分类讨论、数形结合的数学思想,属于中档题.二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.考点:双曲线的简单性质.专题:计算题.分析:根据事务性的方程可得a,b,c的数值,进而求出双曲线的离心率.解答:解:因为双曲线的方程为,所以a2=4,a=2,b2=5,所以c2=9,c=3,所以离心率e=.故答案为.点评:本题主要考查双曲线的有关数值之间的关系,以及离心率的公式.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.考点:抛物线的简单性质.专题:计算题.分析:先确定抛物线的标准方程,求出抛物线的焦点坐标,利用两点间的距离公式,即可得到结论.解答:解:∵抛物线y2=ax过点,∴1=∴a=4∴抛物线方程为y2=4x,焦点为(1,0)∴点A到此抛物线的焦点的距离为=故答案为:点评:本题考查抛物线的标准方程,考查抛物线的性质,考查距离公式的运用,属于中档题.13.(4分)下列四个结论,其中正确的有①②③④.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.考点:极差、方差与标准差;频率分布直方图.专题:概率与统计.分析:根据频率分布直方图中平均数、中位数以及样本的平均数与方差的关系,对每一个命题进行分析判断即可.解答:解:对于①,频率分布直方图中,中位数左边和右边的直方图面积相等,都等于,∴①正确;对于②,一组数据中每个数减去同一个非零常数a,这一组数的平均数变为﹣a,方差s2不改变,∴②正确;对于③,一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组样本数据的平均数是3,数据总和为3×20=60,∴③正确;对于④,数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为(2δ)2=4δ2,∴④正确;综上,正确的命题序号是①②③④.故答案为:①②③④.(填对一个给一分).点评:本题考查了频率分布直方图的应用问题,也考查了中位数、平均数与方差的应用问题,是基础题目.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是9.考点:椭圆的简单性质.专题:计算题.分析:根据椭圆的方程求得c,得到|F1F2|,设出|PF1|=t1,|PF2|=t2,利用勾股定理以及椭圆的定义,可求得t1t2的值,即可求出三角形面积.解答:解:∵椭圆的a=5,b=3;∴c=4,设|PF1|=t1,|PF2|=t2,则根据椭圆的定义得t1+t2=10,∵∠F1PF2=90°,根据勾股定理得①t12+t22=82②,由①2﹣②得t1t2=18,∴.故答案为:9.点评:本题主要考查了椭圆的标准方程、椭圆的简单性质.解答的关键是通过勾股定理解三角形,考查计算能力、数形结合思想.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.考点:几何概型.专题:计算题.分析:本题考查的知识点是几何概型的意义,关键是要找出:“两直线所夹锐角”对应图形的面积,及整个图形的面积,然后再结合几何概型的计算公式进行求解.解答:解:设两直线所夹锐角弧度为α,则有:,解得:α=.故答案为:.点评:本题考查的知识点是几何概型的意义,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.考点:分层抽样方法;频率分布直方图.专题:概率与统计.分析:(1)求出对应的频数和频率,即可请完成频率分布直方图;(2)根据分层抽样的定义建立比例关系即可.解答:解:(1)由题意值第1,2组的频数分别为100×0.01×5=5,100×0.07×5=35,故第3,4,5组的频数之和为100﹣5﹣35=60,从而可得其频数分别为30,20,10,其频率依次是0.3,0.2,0.1,其频率分布直方图如图:;(2)由第3,4,5组共60人,用分层抽样抽取6人,故第3,4,5组中抽取的学生人数依次是第3组:,第4组:,第5组:.点评:本题主要考查抽样和统计的知识,比较基础.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.考点:列举法计算基本事件数及事件发生的概率;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先求出取出两球的种数,再根据分类和分步计数原理求出一个白球一个红球的种数,根据概率公式计算即可.(2)分为同是红色,白色,黑色,根据分类和分步计数原理即可求出取得两球颜色相同的种数,根据概率公式计算即可.解答:解:(1)两袋中各取一个球,共有6×6=36种取法,其中一个白球一个红球,分为甲袋区取的为白球乙袋红球,甲袋红球乙袋白球,故有1×3+2×2=7种,故取得一个白球一个红球的概率P=;(2)取得两球颜色相同有1×2+2×3+3×1=11种,故取得两球颜色相同的概率P=.点评:本题考查了类和分步计数原理及其概率的求法,关键是求出满足条件的种数,是基础题.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(1)利用向量的多边形法则即可得出;(2)由AC⊥AB,BD⊥A B,可得==0,利用数量积的运算性质展开可得==++代入即可得出.解答:解:(1)=++;(2)∵AC⊥AB,BD⊥AB,∴==0,∴==++=62+42+82+2×6×8×cos(180°﹣60°)=36+16+64﹣48=68.∴=.点评:本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系、二面角,考查了推理能力与计算能力,属于中档题.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.考点:棱柱、棱锥、棱台的体积;直线与平面所成的角.专题:综合题;空间位置关系与距离;空间角.分析:(1)四棱锥S﹣ABCD的体积=;(2)以点A为原点建立如图所示的空间直角坐标系,求出平面SCD的法向量,利用向量的夹角公式求面SCD与面SAB所成二面角的余弦值.解答:解:(1)∵底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=,∴四棱锥S﹣ABCD的体积==;(2)以点A为原点建立如图所示的空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D(0.5,0,0,),S(0,0,1),则=(1,1,﹣1),=(0.5,0,﹣1).设平面SCD的法向量是=(x,y,z),则令z=1,则x=2,y=﹣1.于是=(2,﹣1,1).设平面SCD与平面SAB所成的二面角为α,∵=(0.5,0,0),∴|cosα|==∴平面SCD与平面SAB所成二面角的余弦值为.点评:本题考查四棱锥S﹣ABCD的体积、平面SCD与平面SAB所成二面角的余弦值,考查学生的计算能力,正确求平面SCD的法向量是关键.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)由椭圆的离心率公式和a,b,c的关系,解方程可得a=5,b=3,即可得到椭圆方程;(2)联立直线方程和椭圆方程,运用韦达定理,求得线段MN的中点P的坐标,再由|AM|=|AN|知点A在线段MN的垂直平分线上,运用直线垂直的条件:斜率之积为﹣1,即可得到k,进而得到直线方程.解答:解:(1)由一个顶点为A(0,3),离心率e=,可得b=3,=,a2﹣b2=c2,解得a=5,c=4,即有椭圆方程为+=1;(2)由|AM|=|AN|知点A在线段MN的垂直平分线上,由,消去y得(9+25k2)x2﹣150kx=0,由k≠0,得方程的△=(﹣150k)2>0,即方程有两个不相等的实数根.设M(x1,y1)、N(x2,y2),线段MN的中点P(x0,y0),则x1+x2=,∴x0==,∴y0=kx0﹣3=﹣,即P(,﹣),∵k≠0,∴直线AP的斜率为k1=﹣=﹣,由AP⊥MN,得﹣=﹣,∴25k2=7,解得:k=±,即有直线l的方程为y=±x﹣3.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率的运用和方程的运用.联立直线方程,运用韦达定理,同时考查直线垂直的条件:斜率之积为﹣1,考查运算能力,属于中档题.。

2020-2021学年河南省平顶山市高二上学期期末考试数学(理科)试卷及答案

2020-2021学年河南省平顶山市高二上学期期末考试数学(理科)试卷及答案

2020-2021学年河南省平顶山市高二上学期期末考试数学(理科)试卷及答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}03M x x =<≤,321xN x x ⎧⎫=≤⎨⎬-⎩⎭,则M N ⋂=()A.(0,1]B.(1,2)C.(0,2]D.(0,1)2.已知{}n a 是公差为2的等差数列,35a =,则1a =()A.10B.7C.6D.13.抛物线22y x =的焦点到准线的距离为()A.18 B.14 C.12 D.14.已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线的倾斜角为30°,且焦距为4,则双曲线的方程为()A.221x y -= B.2212y x -= C.2213x y -= D.2213y x -=5.在正方体1111ABCD A B C D -中,点E 是线段1CC 的中点,则1A E =()A.112AB AD AA ++ B.112AB AD AA +- C.112AB AD AA -+D.112AB AD AA +- 6.设直线l 的方向向量是a ,平面α的法向量是n ,则“l //α”是“a n ⊥ ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知0a >,0b >,2a b +=,则2aa b +()A.有最小值2B.有最大值2C.有最小值3D.有最大值38.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若3a =,5b =,2cos c a A =,则cos A =() A.13 B.24 C.33 D.639.数列{}n a 满足11a =,23a =,且11202()n n n a a a n +-++=≥,则{}n a 的前2020项和为()A.8080B.4040C.-4040D.010.已知双曲线22:143x y C -=的两个焦点分别为1F ,2F ,双曲线C 上一点P 在x 轴上的射影为Q ,且1212PQ F F PF PF ⋅=⋅,则12PF PF +=()A.B. C.10D.2011.在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒,侧棱13AA =,点D ,E 分别是1CC ,1A B 的中点,点E 在平面ABD 上的射影是ABD △的重心G ,则点1A 到平面ABD 的距离为()C.23312.已知抛物线22(0)y px p =>的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点,若4AF =,1BF =,则p =()A.165 B.2C.85D.1二、填空题:本题共4小题,每小题5分,共20分.13.已知变量x ,y 满足约束条件3,3,50,y x x y ≤⎧⎪≤⎨⎪+-≥⎩则23z x y =-的最大值为______.14.已知等比数列{}n a 的前n 项和13n n S λ+=+,则1a λ+=______.15.点P 为椭圆C 上一动点,过点P 作以椭圆短轴为直径的圆的两条切线,切点分别为M ,N ,若60MPN ∠=︒,则椭圆C 的离心率的取值范围是______.16.已知平面四边形ABCD 为凸四边形(四个内角均小于180°),且1AB =,4BC =,5CD =,2DA =,则平面四边形ABCD 面积的最大值为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.设命题:p 方程22137x y a a +=-+表示双曲线;命题:q 不等式10a x -<对01x <≤恒成立.(Ⅰ)若命题p q ∨为真,求实数a 的取值范围;(Ⅱ)若命题p q ∨为真,命题p q ∧为假,求实数a 的取值范围.18.已知等比数列{}n a 的公比不为1,且11a =,32a 是23a 与4a 的等差中项.(Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 满足()()1211n n n n a b a a +=++,求数列{}n b 的前n 项和n T .19.如图所示,在多面体BC ADE -中,ADE △为正三角形,平面ABCD ⊥平面ADE ,且BC //AD ,60BAD ∠=︒,30CDA ∠=︒,2AB BC ==.(Ⅰ)求证:AD CE ⊥;(Ⅱ)求直线CD 与平面BCE 所成角的正弦值.20.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,cossin 2A b a B =.(Ⅰ)求A ;(Ⅱ)若D 在边BC 上,AD 是BAC ∠的角平分线,3AD =,求ABC △面积的最小值.21.某厂家拟进行某产品的促销活动,根据市场情况,该产品的月销量(即月产量)m 万件与月促销费用x 万元(0)x ≥满足102k m x =-+(k 为常数),如果不搞促销活动,则该产品的月销量是2万件.已知生产该产品每月固定投入为8万元,每生产一万件该产品需要再投入5万元,厂家将每件产品的销售价格定为9.66m m+元,设该产品的月利润为y 万元.注:利润=销售收入-生产投入-促销费用.(Ⅰ)将y 表示为x 的函数;(Ⅱ)月促销费用为多少万元时,该产品的月利润最大?22.已知椭圆2222:1(0)x y C a b a b+=>>的左、右两个焦点分别是1F ,2F ,焦距为2,点M 在椭圆上且满足212MF F F ⊥,123MF MF =.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)点O 为坐标原点,直线l 与椭圆C 交于A ,B 两点,且OA OB ⊥,证明2211||||OA OB +为定值,并求出该定值.数学试题(理科)参考答案1-10DDBCB ACDBB11-12AC 13.014.315.,12⎫⎪⎪⎣⎭16.17.解析(Ⅰ)当命题p 为真时,由题意()()370a a -+<,解得73a -<<.当命题q 为真时,由题意可得min1a x ⎫⎛< ⎪⎝⎭,由此可得1a <.若命题p q ∨为真命题,则73a -<<或1a <,即(,3)a ∈-∞.(Ⅱ)命题p q ∨为真,命题p q ∧为假,则p ,q 一真一假.p 真q 假时,73,1,a a -<<⎧⎨≥⎩13a ∴≤<,p 假q 真时,731,a a , a ≤-≥⎧⎨<⎩或7a ∴≤-,综上,(,7][1,3)a ∈-∞-⋃.18.解(Ⅰ)设数列{}n a 的公比为q ,由条件知32443a a a =+,即2311143a q a q a q =+,整理可得2430q q -+=,解得3q =(1q =舍去),所以11133n n n a a --=⋅=.(Ⅱ)()()()()111122*********3131n n n n n n n n n a b a a ---+⋅===-++++++,所以01121111111313131313131n n n T -⎫⎫⎫⎛⎛⎛=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎝⎝⎭⎭⎭011113131231n n =-=-+++.19.解(Ⅰ)如图,过B 作BF AD ⊥于F ,过C 作CG AD ⊥于G ,连接GE .可得BF //CG ,又因为BC //AD ,在Rt ABF △中,因为60BAD ∠=︒,2AB =,所以1AF =,BF =,所以BF CG ==,2FG BC ==,在Rt CDG △中,30CDG ∠=︒,3GD ==.所以AG GD =,因为ADE △为正三角形,所以GE AD ⊥,因为CG EG G ⋂=,所以AD ⊥平面CGE ,所以AD CE ⊥.(Ⅱ)由(Ⅰ)可知GE ,GD ,GC 两两互相垂直,以G 为坐标原点,GE ,GD ,GC所在直线为x ,y ,z 轴建立空间坐标系,如图所示.则(C,(0,B -,(0,3,0)D,()E ,所以(CE = ,(0,2,0)CB =-,(0,3,CD = ,设平面BCE 的法向量为(,,)n x y z = ,所以0,20,y ⎧-=⎪⎨-=⎪⎩取1x =,可得(1,0,3)n = ,所以cos,20||||CD nCD nCD n⋅〈〉===-,所以直线CD与平面BCE所成角的正弦值为20.20.解(Ⅰ)由正弦定理及条件得sin cos sin sin2AB A B=,因为(0,)Bπ∈,sin0B≠,所以cos sin2sin cos222A A AA==,又(0,)Aπ∈,cos02A≠,所以1sin22A=,从而3Aπ=.(Ⅱ)因为ABC△的面积等于ABD△和ACD△的面积之和,得111sin sin sin22222BAC BACbc BAC c AD b AD∠∠∠=⋅+⋅,又因为3BACπ∠=,233AD=,所以32()bc b c=+,所以32()bc b c=+≥,得169bc≥(当且仅当43b c==时等号成立)所以ABC△的面积1343sin249S bc A bc==≥.所以ABC△面积的最小值为439.21.解(Ⅰ)由题意知当0x=时,2m=,则2102k=-,解得16k=,16102mx=-+.利润9.6685 1.6my m m x m xm+=⨯---=+-,又因为16102mx=-+,所以161.611.62y m x xx=+-=--+,[0,)x∈+∞.(Ⅱ)由(Ⅰ)知1613.6(2)2y xx=--++,因为0x≥时,22x+≥,因为16(2)82xx++≥=+,当且仅当2x=时等号成立.所以13.68 5.6y≤-=,故月促销费用为2万元时,该产品的月利润最大,最大为5.6万元.22.解(Ⅰ)依题意1222F F c ==,所以1c =.由123MF MF =,122MF MF a +=,得132MF a =,212MF a =,于是122F F ====,所以a =,所以2221b a c =-=,因此椭圆C 的方程为2212x y +=.(Ⅱ)当直线l 的斜率存在时,设直线:AB y kx m =+,()11,A x y ,()22,B x y ,由2222,x y y kx m⎧+=⎨=+⎩消去y 得()222124220k x kmx m +++-=,由题意,0∆>,则12221224,1222,12km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩因为OA OB ⊥,所以12120x x y y +=,即()()12120x x kx m kx m +++=,整理得()22321m k =+.而22222222211||||||||||||||||||OA OB AB OA OB OA OB OA OB ++==,设h 为原点到直线l 的距离,则OA OB AB h =⋅,所以222111||||OA OB h+=,而h =22221113||||2k OA OB m ++==.当直线l 的斜率不存在时,设()11,A x y ,则有1OA k =±,不妨设1OA k =,则11x y =,代入椭圆方程得2123x =,所以224||||3OA OB ==,所以22113||||2OA OB +=.综上22113||||2OA OB +=.。

(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)

(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)

(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)题号一二三四总分得分一、单选题(本大题共8小题,共40.0分)1.直线y=kx+b经过第二、三、四象限,则斜率k和在y轴上的截距b满足的条件为()A. k>0,b>0B. k<0,b<0C. k>0,b<0D. k<0,b>02.已知F为双曲线C:的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为()A. 11B. 22C. 33D. 443.“a=2”是“l1:ax+4y-1=0与l2:x+ay+3=0平行”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.已知抛物线x2=2py和-y2=1的公切线PQ(P是PQ与抛物线的切点,未必是PQ与双曲线的切点)与抛物线的准线交于Q,F(0,),若|PQ|=|PF|,则抛物线的方程是()A. x2=4yB. x2=2yC. x2=6yD. x2=2y5.已知m,n是两条不重合的直线,α,β是不重合的平面,则下列说法正确的是()A. 若m⊥α,n∥β,α⊥β,则m⊥nB. 若m⊥n,m⊥α,n∥β,则α⊥βC. 若m∥n,m∥α,n∥β,则α∥βD. 若m⊥α,n⊥α,则m∥n6.直线l:y=x与圆x2+y2-2x-6y=0相交于A,B两点,则|AB|=()A. 2B. 4C. 4D. 87.椭圆5x2+ky2=5的一个焦点为(0,2),那么k的值为()A. B. 2 C. D. 18.直线y=-2x-3与曲线的公共点的个数为()A. 1B. 2C. 3D. 4二、多选题(本大题共4小题,共20.0分)9.矩形ABCD中,AB=4,BC=3,将△ABD沿BD折起,使A到A′的位置,A′在平面BCD的射影E恰落在CD上,则()A. 三棱锥A′-BCD的外接球直径为5B. 平面A′BD⊥平面A′BCC. 平面A′BD⊥平面A′CDD. A′D与BC所成角为60°10.设O为坐标原点,F1,F2是双曲线-=1(a>0,b>0)的左、右焦点.在双曲线的右支上存在点P满足∠F1PF2=60°,且线段PF1的中点B在y轴上,则()A. 双曲线的离心率为B. 双曲线的方程可以是-y2=1C. |OP|=aD. △PF1F2的面积为11.在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,∠A1AB=∠A1AD,则有()A. A1M∥B1QB. AA1⊥PQC. A1M∥面D1PQB1D. PQ⊥面A1ACC112.已知抛物线C:y2=4x的焦点为F,准线为l,过点F的直线与抛物线交于两点P(x1,y1),Q(x2,y2),点P在l上的射影为P1,则()A. |PQ|的最小值为4B. 已知曲线C上的两点S,T到点F的距离之和为10,则线段ST的中点横坐标是(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)4C. 设M(0,1),则|PM|+|PP1|≥D. 过M(0,1)与抛物线C有且仅有一个公共点的直线至多有2条三、单空题(本大题共4小题,共20.0分)13.已知A(0,1),B(1,0),C(t,0),点D在直线AC上,若|AD|≤|BD|恒成立,则t的取值范围是______.14.直线2x+y-1=0的倾斜角是______.15.湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下一个直径为12cm,深为2cm的空穴,则该球的半径为______ cm,表面积是______ .16.已知双曲线C:的右焦点为F,O为坐标原点.过F的直线交双曲线右支于A,B两点,连结AO并延长交双曲线C于点P.若|AF|=2|BF|,且∠PFB=60°,则该双曲线的离心率为______ .四、解答题(本大题共6小题,共70.0分)17.已知圆的圆心在直线上,且与轴交于两点,.(I)求圆的方程;(II)过点的直线与圆交于两点,且,求直线的方程.18.已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).(1)证明:不论m为何值时,直线l恒过定点;(2)求直线l被圆C截得的弦长最小时的方程.19.如图,为圆的直径,点.在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且,.(1)设的中点为,求证:平面;(2)求四棱锥的体积.20.在平面直角坐标系中,直线l与抛物线y2=2x相交于A,B两点.求证:“如果直线l过(3,0),那么=3”是真命题.(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)21.如图,四棱锥中,底面是菱形,其对角线的交点为,且.(1)求证:平面;(2)设,,是侧棱上的一点,且∥平面,求三棱锥的体积.22.(本题满分16分)已知椭圆的两焦点分别为 , 是椭圆在第一象限内的一点,并满足,过作倾斜角互补的两条直线分别交椭圆于两点.(1)求点坐标;(2)当直线经过点时,求直线的方程;(3)求证直线的斜率为定值.(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)1.【答案】B【解析】解:要使直线y=kx+b经过第二、三、四象限,则斜率k和在y轴上的截距b 满足的条件,故选:B.由题意利用确定直线的位置的几何要素,得出结论.本题主要考查确定直线的位置的几何要素,属于基础题.2.【答案】D【解析】由双曲线C的方程,知a=3,b=4,c=5,∴点A(5,0)是双曲线C的右焦点,且|PQ|=|QA|+|PA|=4b=16,由双曲线定义,|PF|-|PA|=6,|QF|-|QA|=6.∴|PF|+|QF|=12+|PA|+|QA|=28,因此△PQF的周长为|PF|+|QF|+|PQ|=28+16=44,选D.3.【答案】A【解析】解:若a=2.则两条直线的方程为2x+4y-1=0与x+2y+3=0满足两直线平行,即充分性成立.当a=0时,两直线等价为4y-1=0与x+3=0不满足两直线平行,故a≠0,若“l1:ax+4y-1=0与l2:x+ay+3=0平行”,则,解得a=2或a=-2,即必要性不成立.故“a=2”是“l1:ax+4y-1=0与l2:x+ay+3=0平行”的充分不必要条件,故选:A(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)根据直线平行的等价条件,利用充分条件和必要条件的定义即可得到结论.本题主要考查充分条件和必要条件的判断,根据直线平行的等价条件是解决本题的关键.4.【答案】B【解析】解:如图过P作PE⊥抛物线的准线于E,根据抛物线的定义可知,PE=PF∵|PQ|=|PF|,在Rt△PQE中,sin,∴,即直线PQ的斜率为,故设PQ的方程为:y=x+m(m<0)由消去y得.则△1=8m2-24=0,解得m=-,即PQ:y=由得,△2=8p2-8p=0,得p=.则抛物线的方程是x2=2y.故选:B.如图过P作PE⊥抛物线的准线于E,根据抛物线的定义可知,PE=PF可得直线PQ的斜率为,故设PQ的方程为:y=x+m(m<0)再依据直线PQ与抛物线、双曲线相切求得p.本题考查了抛物线、双曲线的切线,充分利用圆锥曲线的定义及平面几何的知识是关键,属于中档题.5.【答案】D【解析】解:当m⊥α,n∥β,α⊥β时,直线m与n可能异面不垂直,故选项A错误;当m⊥n,m⊥α,n∥β时,比如n平行于α与β的交线,且满足m⊥n,m⊥α,但α与β可能不垂直,故选项B错误;当m∥n,m∥α,n∥β时,比如m与n都平行于α与β的交线,且满足m∥n,m∥α,但α与β不平行,故选项C错误;垂直于同一个平面的两条直线平行,故选项D正确.故选:D.直接利用空间中线、面之间的关系进行分析判断即可.本题考查了空间中线面位置关系的判断,此类问题一般都是从反例的角度进行考虑,属于基础题.6.【答案】C【解析】【分析】本题主要考查直线和圆的位置关系的应用,掌握直线和圆相交的弦长公式是解决本题的关键,属于基础题.根据直线和圆相交的弦长公式进行求解即可.【解答】解:圆的标准方程为(x-1)2+(y-3)2=10,圆心坐标为(1,3),半径R=,则圆心到直线x-y=0的距离d=,则|AB|===4.故选C.7.【答案】D【解析】【分析】本题考查椭圆的简单性质,是基础题.把椭圆化为标准方程后,找出a与b的值,然后根据a2=b2+c2,表示出c,并根据焦点坐标求出c的值,两者相等即可列出关于k的方程,求出方程的解即可得到k的值.【解答】解:把椭圆方程化为标准方程得:x2+=1,因为焦点坐标为(0,2),所以长半轴在y轴上,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)则c==2,解得k=1.故选D.8.【答案】B【解析】解:当x≥0时,曲线的方程为,一条渐近线方程为:y=-x,当x<0时,曲线的方程为,∴曲线的图象为右图,在同一坐标系中作出直线y=-2x-3的图象,可得直线与曲线交点个数为2个.故选:B.分x大于等于0,和x小于0两种情况去绝对值符号,可得当x≥0时,曲线为焦点在y轴上的双曲线,当x<0时,曲线为焦点在y轴上的椭圆,在同一坐标系中作出直线y=-2x-3与曲线的图象,就可找到交点个数.本题主要考查图象法求直线与曲线交点个数,关键是去绝对值符号,化简曲线方程.9.【答案】AB【解析】解:对于A,取BD中点E,连接A′E,CE,则A′E=BE=DE=CE==.∴三棱锥A′-BCD的外接球直径为5,故A正确;对于B,∵DA′⊥BA′,BC⊥CD,A′F⊥平面BCD,∴BC⊥A′F,又A′F∩CD=F,A′F、CD⊂平面A′CD,∴BC⊥平面A′CD,∵A′D⊂平面A′CD,∴DA′⊥BC,∵BC∩BA′=B,∴DA′⊥平面A′BC,∵DA′⊂平面A′BD,∴平面A′BD⊥平面A′BC,故B正确;对于C,BC⊥A′C,∴A′B与A′C不垂直,∴平面A′BD与平面A′CD不垂直,故C错误;对于D,∵DA∥BC,∴∠ADA′是A′D与BC所成角(或所成角的补角),∵A′C==,∴A′F=,DF==,AF==,AA′==3,∴cos∠ADA′==0,∴∠ADA′=90°,∴A′D与BC所成角为90°,故D错误.故选:AB.对于A,取BD中点E,连接A′E,CE,推导出A′E=BE=DE=CE=,从而三棱锥A′-BCD 的外接球直径为5;对于B,推导出DA′⊥BA′,BC⊥CD,A′F⊥平面BCD,BC⊥A′F,BC⊥平面A′CD,DA′⊥BC,DA′⊥平面A′BC,从而平面A′BD⊥平面A′BC;对于C,A′B与A′C不垂直,从而平面A′BD与平面A′CD不垂直;对于D,由DA∥BC,得∠ADA′是A′D与BC所成角(或所成角的补角),推导出A′D与BC所成角为90°.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力等数学核心素养,是中档题.10.【答案】AC【解析】解:如图,F1(-c,0),F2(c,0),∵B为线段PF1的中点,O为F1F2的中点,∴OB∥PF2,∴∠PF2F1=90°,由双曲线定义可得,|PF1|-|PF2|=2a,设|PF1|=2m(m>0),则|PF2|=m,,∴2m-m=2a,即a=,又,∴c=,则e=,故A正确;,则b=,双曲线的渐近线方程为y=,选项B的渐近线方程为y=,故B错误;对于C,∵O为F1F2的中点,∴,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)则,即=,即,①而|PF1|-|PF2|=2a,两边平方并整理得,,②联立①②可得,,,即|PO|=,故C正确;=,故D错误.故选:AC.由已知可得∠PF2F1=90°,设|PF1|=2m(m>0),再由已知结合双曲线定义可得a,b,c 与m的关系,即可求得双曲线的离心率及渐近线方程,从而判断A与B;由O为F1F2的中点,得,两边平方后结合双曲线定义联立求得|PO|判断C;进一步求出△PF1F2的面积判断D.本题考查双曲线的几何性质,考查运算求解能力,是中档题.11.【答案】BCD【解析】解:连接MP,可得MP AD A1D1,可得四边形MPA1D1是平行四边形∴A1M∥D1P,又A1M⊄平面DCC1D1,D1P⊂平面DCC1D1,A1M∥平面DCC1D1,连接DB,由三角形中位线定理可得:PQ DB,DB D1B1,可得四边形PQB1D1为梯形,QB1与PD1不平行,因此A1M与B1Q不平行,又A1M∥D1P,A1M⊄平面D1PQB1,D1P⊂平面D1PQB1,∴A1M∥平面D1PQB1.故A不正确,C正确;连接AC,由题意四边形ABCD是菱形,∴AC⊥BD,∵P,Q分别为棱CD,BC的中点,∴PQ∥BD,∴PQ⊥AC,∵平行六面体的所有棱长都相等,且∠A1AB=∠A1AD,∴直线AA1在平面ABCD内的射影是AC,且BD⊥AC,∴AA1⊥BD,∴AA1⊥PQ,故B正确;∵AA1∩AC=A,∴PQ⊥面A1ACC1,故D正确.故选:BCD.连接MP,推导出四边形MPA1D1是平行四边形,从而A1M∥D1P,连接DB,推导出四边形PQB1D1为梯形,A1M与B1Q不平行,推民出A1M∥平面D1PQB1;连接AC,推导出四边形ABCD是菱形,AC⊥BD,从而PQ⊥AC,由平行六面体的所有棱长都相等,且∠A1AB=∠A1AD,推志出AA1⊥PQ,从而PQ⊥面A1ACC1.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.【答案】ABC【解析】解:对于A,设直线PQ的方程为x=ty+1,联立解方程组,可得y2-4ty-4=0,x1x2==1,|PQ|=x1+x2+p=x1+x2+2+2=4,故A正确;对于B,根据抛物线的定义可得,|SF|+|TF'|=x S+x T+p=10,则x S+x T=8,则线段ST的中点横坐标是=4,故B成立;对于C,M(0,1),|PM|+|PP1|=|MP|+|PF|≥|MF|=,所以C正确;对于D,过M(0,1)相切的直线有2条,与x轴平行且与抛物线相交且有一个交点的直线有一条,所以最多有三条.所以D不正确;故选:ABC.设出直线方程与抛物线联立,利用弦长公式判断A,结合抛物线的定义,判断B;利用抛物线的性质判断C;直线与抛物线的切线情况判断D.考查抛物线的性质,抛物线与直线的位置关系的应用,是中档题.13.【答案】(-∞,0]【解析】解:设D(x,y),由D在AC上,得+y=1,即x+ty-t=0,由|AD|≤|BD|得≤•,化为(x-2)2+(y+1)2≥4,依题意,线段AD与圆(x-2)2+(y+1)2=4至多有一个公共点,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)∴≥2,解得:t≤0,则t的取值范围为(-∞,0],故答案为:(-∞,0].先设出D(x,y),得到AD的方程为:x+ty-t=0,由|AD|≤|BD|得到圆的方程,结合点到直线的距离公式,解不等式即可得到所求范围.本题考查直线与圆的方程,考查点到直线距离公式的运用,考查学生分析解决问题的能力,属于中档题.14.【答案】π-arctan【解析】解:直线2x+y-1=0的斜率为,设直线2x+y-1=0的倾斜角为θ(0≤θ<π),则tan,∴θ=.故答案为:π-arctan.由直线方程求直线的斜率,再由斜率等于倾斜角的正切值求解.本题考查由直线方程求直线的斜率,考查直线的斜率与倾斜角的关系,是基础题.15.【答案】10;400π【解析】解:设球的半径为r,依题意可知36+(r-2)2=r2,解得r=10,∴球的表面积为4πr2=400π故答案为10,400π先设出球的半径,进而根据球的半径,球面上的弦构成的直角三角形,根据勾股定理建立等式,求得r,最后根据球的表面积公式求得球的表面积.本题主要考查了球面上的勾股定理和球的面积公式.属基础题.16.【答案】【解析】【分析】本题考查双曲线的定义以及几何性质的应用,余弦定理的应用,考查转化思想以及计算能力.属于中档题.设双曲线C的左焦点为F',连结AF',BF',设|BF|=t,则|AF|=2t,推出∠F'AB=60°.在△F'AB 中,由余弦定理求解.结合双曲线的定义,求出,.在△F'AF中,由余弦定理推出a,c关系,得到离心率即可.【解答】解:设双曲线C的左焦点为F',连结AF',BF',设|BF|=t,则|AF|=2t,所以|AF'|=2a+2t,|BF'|=2a+t.由对称性可知,四边形AF'PF为平行四边形,故∠F'AB=60°.在△F'AB中,由余弦定理得(2a+t)2=(2a+2t)2+(3t)2-2×(2a+2t)×3t×cos60°,解得.故,.在△F'AF中,由余弦定理得,,解得:.故答案为:.17.【答案】解:(I)因为圆与轴交于两点,,所以圆心在直线上,由,得,即圆心的坐标为.半径,所以圆的方程为;(II)若直线的斜率不存在,则直线的方程为,此时可得,不符合题意;(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)当直线的斜率存在时,设直线的方程为:,即,过点作于点,则D为线段MN中点,∴,∴,即点C到直线l的距离,解得或k=-3;综上,直线的方程为x-3y+3=0或3x+y-11=0.【解析】本题考查圆的标准方程,直线与圆的位置关系,属于中档题.(I)根据题意,即可得解;(II)分类讨论,进行求解即可.18.【答案】(1)证明:将直线化为直线束方程:x+y-4+(2x+y-7)=0.联立方程x+y-4=0与2x+y-7=0,得点(3,1);将点(3,1)代入直线方程,不论m为何值时都满足方程,所以直线l恒过定点(3,1);(2)解:当直线l过圆心与定点(3,1)时,弦长最大,代入圆心坐标得m=.当直线l垂直于圆心与定点(3,1)所在直线时弦长最短,斜率为2,代入方程得m=此时直线l方程为2x-y-5=0,圆心到直线的距离为,所以最短弦长为.【解析】(1)通过直线l转化为直线系,求出直线恒过的定点;(2)说明直线l被圆C截得的弦长最小时,圆心与定点连线与直线l垂直,求出斜率即可求出m的值,再由勾股定理即可得到最短弦长.本题考查直线系方程的应用,考查直线与圆的位置关系,考查平面几何知识的运用,考查计算能力,属于中档题.19.【答案】(1)证明详见解析;(2).【解析】试题分析:(1)要证平面,根据直线与平面平行的判定定理可知只需证与平面内一直线平行即可,设的中点为,则为平行四边形,则,又平面,不在平面内,满足定理所需条件;(2)过点作于,根据面面垂直的性质可知平面,即正的高,然后根据三棱锥的体积公式进行求解即可.试题解析:(1)设的中点为,则又,∴∴为平行四边形∴又平面,平面∴平面(2)过点作于平面平面,∴平面,即正的高∴∴∴.考点:1.空间中的平行关系;2.空间中的垂直关系;3.棱锥的体积计算.20.【答案】证明:设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x2,y2).当直线l的钭率不存在时,直线l的方程为x=3,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)此时,直线l与抛物线相交于点A(3,)、B(3,-).∴=3当直线l的钭率存在时,设直线l的方程为y=k(x-3),其中k≠0,由得ky2-2y-6k=0⇒y1y2=-6,又∵x1=y12,x2=y22,∴x1x2=9,∴=x1x2+y1y2=3,综上所述,命题“如果直线l过点T(3,0),那么=3”是真命题;综上,命题成立.【解析】设出A,B两点的坐标根据向量的点乘运算求证即可得到:“如果直线l过(3,0),那么=3”是真命题.本题考查了真假命题的证明,抛物线的简单性质,向量数量积,是抛物线与平面向量的综合应用,难度中档.21.【答案】(1)证明:∵底面是菱形,∴.又平面.又又平面.(2)连接,∵SB平面,平面,平面平面,SB∥平面APC,∴SB∥OP.又∵是的中点,∴是的中点.由题意知△ABD为正三角形..由(1)知平面,∴.又,∴在Rt△SOD中,.∴到面的距离为.【解析】主要考查了线面垂直的判定和三棱锥的体积.(1)要证明线面垂直,证明SO与平面ABCD中两条相交直线垂直即可,应用已知条件与等腰三角形的三线合一即可得到证明;(2)由SB∥平面APC的性质定理证明得SB∥OP,由(1)得高为PO,利用三棱锥的体积公式即可求出结果.22.【答案】(1)(2)(3),证明略.【解析】解:(1)设P((x,y),由题意可得,解得,∴P.(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)(2)∵,两条直线PA,PB倾斜角互补,∴k PA+k PB=0,解得k PB=1.因此直线PA,PB,的方程分别为,,化为,.联立,解得(舍去),,即A.同理解得B.∴k AB= = ,∴直线AB的方程为,化为.(3)S设A(x 1,y 1),B(x 2,y 2),设直线PA的方程为:,则直线PB 的方程为.联立,解得A.同理B,∴k AB= = .即直线AB的斜率为定值.。

高中数学选择性必修二 北京市昌平区新学道临川学校高二上学期期末考试数学(理)试题(含答案)

高中数学选择性必修二 北京市昌平区新学道临川学校高二上学期期末考试数学(理)试题(含答案)
临川学校2020-2021学年度第一学期期末考试
高二数学理科试卷
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.在等差数列 中,若 , ,则 =()
A. B. C. D.
【答案】C
【解析】
【分析】由等差数列通项公式可求得 ,由 可求得结果.
【详解】设等差数列 的公差为 ,则 , .
【详解】抛物线 ( )的准线为: ,
因为准线经过点 ,可得 ,即 ,
所以抛物线为 ,焦点坐标为 ,
故选:B.
11.椭圆 内有一点 过点 的弦恰好以 为中点,那么这弦所在直线的方程为()
A. B.
C. D.
【答案】B
【解析】
【分析】利用点差法得到直线斜率和中点之间的关系,即可得解.
【详解】设弦的两个端点为 ,
即曲线C右侧部分的点到原点的距离都不超过 ,
再根据对称性可知,曲线C上的所有点到原点的距离都不超过 ,②正确;
对于③,因为在x轴上方,图形面积大于四点(﹣1,0),
(1,0),(1,1),(﹣1,1)围成的矩形面积1×2=2,
在x轴下方,图形面积大于三点(﹣1,0),(1,0),(0,﹣1)围成的等腰直角三角形的面积 ×2×1=1,
故选:C.
2.在等比数列 中, , ,则 与 的等比中项是()
A. B. C. D.
【答案】A
【解析】
【分析】计算出 的值,利用等比中项的定义可求得结果.
【详解】由已知可得 ,由等比中项的性质可得 ,
因此, 与 的等比中项是 .
故选:A.
3.若△ABC中,a=4,A=45°,B=60°,则边b的值为( )

高二上学期期末考试数学试题(解析版)

高二上学期期末考试数学试题(解析版)

2021-2022学年福建省福州闽江学院附属中学高二上学期期末考试数学试题一、单选题1.等差数列{an }中,a 4+a 8=10,a 10=6,则公差d 等于( ) A .B .C .2D .-141212【答案】A【分析】由条件,可得,又可得答案. 486210a a a +==65a =106410a a d =+=【详解】等差数列中,,则{}n a 486210a a a +==65a =,所以,则 1064546a a d d =+=+=41d =14d =故选:A2.已知函数可导,且,( )0()3f x '=000()()limx f x x f x x xΛ→+∆--∆=∆A .-3 B .0C .3D .6【答案】D【分析】利用导数的概念对进行整理,可得结论.000()()limx f x x f x x x∆→+∆--∆∆【详解】000()()limx f x x f x x x ∆→+∆--∆=∆000()()lim x f x x f x x ∆→+∆-∆000()()lim x f x f x x x ∆→--∆+∆.()026f x '==故选:D.【点睛】本题主要考查了导数的概念.属于基础题.3.已知数列{an }的通项公式为an =-2n 2+21n ,则该数列中的数值最大的项是( ) A .第5项 B .第6项C .第4项或第5项D .第5项或第6项【答案】A【分析】根据,结合二次函数的性质即可得出答案.2221441221248n a n n n ⎛⎫=-+=--+ ⎪⎝⎭【详解】解:,2221441221248n a n n n ⎛⎫=-+=--+ ⎪⎝⎭因为,且, *21,564n N ∈<<5655,54a a ==所以数值最大的项为第5项. 故选:A .4.设函数,若为奇函数,则曲线在点(0,0)处的切线()()32212f x x a x ax =+++()f x ()y f x =方程为( ) A . B .C .D .2y x =-y x =-2y x =y x =【答案】A【分析】根据该函数为奇函数,求出a 的值,然后求出得所求切线斜率,最后利用点斜式求0f '()出切线的方程【详解】,函数为奇函数,有,即()()32212f x x a x ax =+++()()f x f x -=-,()()()()()3232212212x a x a x x a x ax ⎡⎤-++-+-=-+++⎣⎦故,即,10a +=1a =-所以,所以,,, ()322f x x x =-()262f x x ='-00f =()02f '=-()所以曲线在点(0,0)处的切线斜率为,切线方程为:. ()y f x =2-2y x =-故选:A.5.如图所示是函数的导函数的图象,则下列判断中正确的是( )()f x ()f x 'A .函数在区间上是减函数 ()f x (3,0)-B .函数在区间上是减函数 ()f x (3,2)-C .函数在区间上是减函数 ()f x (0,2)D .函数在区间上是单调函数 ()f x (3,2)-【答案】A【分析】根据函数的导函数>0时单调递增,时单调递减,依次判断选项即()y f x =()f x '()0f x '<可.【详解】由函数的导函数的图像知,()y f x =()f x 'A :时,,函数单调递减,故A 正确; (30)x ∈-,()0f x '<()f x B :时,或, (32)x ∈-,()0f x '<()0f x '>所以函数先单调递减,再单调递增,故B 错误;()f x C :时,,函数单调递增,故C 错误; (02)x ∈,()0f x '>()f x D :时,或, (32)x ∈-,()0f x '<()0f x '>所以函数先单调递减,再单调递增,不是单调函数,故D 错误. ()f x 故选:A6.设是等差数列的前项和,若,则( ) n S {}n a n 891715a a =1517S S =A .2 B .C .1D .0.51-【答案】C【分析】利用等差数列的求和公式结合等差数列的性质化简求解即可 【详解】解:因为在等差数列中,, {}n a 891715a a =所以, 1151511588117171179915()15()152152117()17()172172a a S a a a a a a S a a a a ++⨯====⋅=++⨯故选:C7.下列结论正确的是( )A .若为等比数列,是的前n 项和,则,,是等比数列 {}n a n S {}n a n S 2n n S S -32n n S S -B .若为等差数列,是的前n 项和,则,,是等差数列{}n a n S {}n a n S 2n n S S -32n n S S -C .若为等差数列,且均是正整数,则“”是“ “的充要{}n a m n p q ,,,m n p q +=+m n p q a a a a +=+条件D .满足的数列为等比数列 1n n a qa +={}n a 【答案】B【分析】根据等差数列前n 项和性质可以判定B 选项正确,利用特例判定其余选项错误. 【详解】若为等比数列,设公比为,是的前n 项和,{}n a 0q q ≠,n S {}n a 设,当时,,,,则,,不是等比数()1na -=2n =0S =0S S -=0S S -=S S S -S S -列,所以A 选项错误;若为等差数列,是的前n 项和,设公差为, {}n a n S {}n a d 则,12n n S a a a +++ =,22212212n n n n n n n S S a a a a a a n d S n d ++-++++++++ ==()=,2232212231222n n n n n n n n n n S S a a a a a a n d S S n d ++++-+++++++-+ ==()=()所以,,是等差数列,所以B 选项正确;n S 2n n S S -32n n S S -为等差数列,考虑,,,所以C 选项错误;{}n a 1n a =1234a a a a +=+1234+≠+考虑常数列,,,满足,数列不是等比数列,所以D 选项错误. {}n a 0n a =0q =1n n a qa +={}n a 故选:B.8.已知是定义在上的偶函数,当时,,且,则不等式()f x R 0x >'2()()0xf x f x x->()20f -=的解集是( ) ()0f x x>A . B . ()()2,00,2-⋃()(),22,-∞-+∞ C . D .()()2,02,-+∞ ()(),20,2-∞- 【答案】C【分析】是定义在上的偶函数,说明奇函数,若时,,可得()f x R ()f x x 0x >'2()()0xf x f x x ->为增函数,若,为增函数,根据,求出不等式的解集; ()f x x 0x <()f x x()()220f f -==【详解】解:∵是定义在上的偶函数,当时,, ()f x R 0x >'2()()0xf x f x x->∴为增函数,为偶函数,为奇函数,()f x x ()f x ()f x x∴在上为增函数, ()f x x(),0∞-∵,()()220f f -==若,,所以; 0x >()202f =2x >若,,在上为增函数,可得, 0x <()202f -=-()f x x (),0∞-20x -<<综上得,不等式的解集是. ()0f x x>()()2,02,-+∞ 故选:C.二、多选题9.(多选)已知数列中,,,下列选项中能使的n 为( ) {}n a 13a =()*111n n a n a +=-∈+N 3n a =A .17 B .16C .8D .7【答案】BD【分析】由递推公式可得数列为周期数列,即得答案. 【详解】由,, 13a =111n n a a +=-+得,,,214a =-343a =-43a =所以数列是周期为3的数列,{}n a 所以,.81714a a ==-7163a a ==故选:BD .10.若为数列的前项和,且,则下列说法正确的是 n S {}n a n 21,(*)n n S a n N =+∈A .B .516a =-563S =-C .数列是等比数列 D .数列是等比数列{}n a {}1n S +【答案】AC【解析】根据题意,先得到,再由,推出数列是等比数列,根据等11a =-1(2)n n n a S S n -=-≥{}n a 比数列的通项公式与求和公式,逐项判断,即可得出结果. 【详解】因为为数列的前项和,且, n S {}n a n 21,(*)n n S a n N =+∈所以,因此,1121S a =+11a =-当时,,即,2n ≥1122n n n n n a S S a a --=-=-12n n a a -=所以数列是以为首项,以为公比的等比数列,故C 正确;{}n a 1-2因此,故A 正确;451216a =-⨯=-又,所以,故B 错误;2121n n n S a =+=-+552131S =-+=-因为,所以数列不是等比数列,故D 错误. 110S +={}1n S +故选:AC.【点睛】本题主要考查由递推公式判断等比数列,以及等比数列基本量的运算,熟记等比数列的概念,以及等比数列的通项公式与求和公式即可,属于常考题型. 11.已知函数,则( ) ()31443f x x x =-+A .在上单调递增 ()f x ()0,∞+B .是的极大值点 2x =-()f x C .有三个零点()f x D .在上最大值是 ()f x []0,34【答案】BCD【分析】对求导,令,可得的值,列表可得函数的单调性与极值,再逐个选项()f x ()0f x '=x ()f x 判断即可.【详解】解:因为 ()31443f x x x =-+所以, 2()4(2)(2)f x x x x '=-=+-令,解得或,()0f x '=2x =-2x =与随的变化情况如下表: ()f x '()f x xx(,2)-∞- 2-(2,2)- 2(2,)+∞()f x ' +0 -0 +()f x极大值极小值因此函数在,上单调递增,在上单调递减,故错误;()f x (,2)-∞-(2,)+∞(2,2)-A 是的极大值点,故正确;2x =-()f x B 因为,,,, (6)440f -=-<28(2)03f -=>()423f =-()652f =由函数的单调性及零点存在性定理可知有三个零点,故正确; ()f x C 当的定义域为时,()f x []0,3在,上单调递减,在,上单调递增,()f x [02](23]又, ,(0)4f =()31f =故选:.BCD 12.“提丢斯数列”是18世纪由德国数学家提丢斯给出的,具体如下:取0,3,6,12,24,48,96,192,…这样一组数,容易发现,这组数从第3项开始,每一项是前一项的2倍,将这组数的每一项加上4,再除以10,就得到“提丢斯数列”:0.4,0.7,1.0,1.6,2.8,5.2,10.0,…,则下列说法中正确的是( ) A .“提丢斯数列”是等比数列B .“提丢斯数列”的第99项为9732410⨯+C .“提丢斯数列”的前31项和为 30321211010⨯+D .“提丢斯数列”中,不超过20的有9项 【答案】BC【分析】根据题意得,由此利用等比数列的性质即可求出结果.20.4,1324,210n n n a n -=⎧⎪=⎨⋅+≥⎪⎩【详解】记“提丢斯数列”为数列,则当时,,当时,{}n a 3n ≥326243241010n n n a --=⋅+⋅+=2n =,符合该式,当时,不符合上式,故,故A 错误;20.7a =1n =10.4a =20.4,1324,210n n n a n -=⎧⎪=⎨⋅+≥⎪⎩,故B 正确;“提丢斯数列”的前31项和为979932410a ⨯+=()3002923232121223051051010⨯++⋅⋅⋅++⨯=+,故C 正确;令,即,得,又,故不超过20的有23242010n -⋅+≤219623n -≤2,3,4,5,6,7,8n =120a <8项,故D 错误. 故选:B C.三、填空题13.在等比数列中,,则_____. {}n a 7125a a =891011a a a a =【答案】25【分析】根据等比数列下标和的性质即可得到结论. 【详解】在等比数列中,, {}n a 7125a a =则, 891011811910712712()()()()25a a a a a a a a a a a a ===故答案为:25【详解】时到直线的距离最短, 22,1,(1,0)21y x P x ==∴='-所以点230x y -+=15.设Sn 是数列{an }的前n 项和,且a 1=-1,an +1=SnSn +1,则Sn =__________. 【答案】-. 1n【详解】试题分析:因为,所以,所以,11n n n a S S ++=111n n n n n a S S S S +++=-=111111n n n n n n S S S S S S +++-=-=即,又,即,所以数列是首项和公差都为的等差数列,所1111n n S S +-=-11a =-11111S a ==-1n S ⎧⎫⎨⎬⎩⎭1-以,所以. 11(1)(1)n n n S =----=-1n S n=-【解析】数列的递推关系式及等差数列的通项公式.【方法点晴】本题主要考查了数列的通项公式、数列的递推关系式的应用、等差数列的通项公式及其性质定知识点的综合应用,解答中得到, ,确定数列是首项和公差1111n n S S +-=-111S =-1n S ⎧⎫⎨⎬⎩⎭都为的等差数列是解答的关键,着重考查了学生灵活变形能力和推理与论证能力,平时应注意方1-法的积累与总结,属于中档试题. 16.设函数f (x )=x 3--2x +5,若对任意的x ∈[-1,2],都有f (x )>a ,则实数a 的取值范围是22x ________.【答案】7(,2-∞【分析】利用导数求得函数在上的值域,即可列出不等式求得结果. []1,2-【详解】,令,得或,2()32f x x x '=--()0f x '=23x =-1x =∴在和上为增函数,在上为减函数, ()y f x =2()3-∞-,(1)+∞,2(1)3-,∴在处有极大值,在处有极小值,()f x 23x =-1x =极小值为17(1)12522f =--+=而,111(1)12522f -=--++= ∴在上的最小值为, ()f x [12]-,72对于任意都有成立,得的范围. 1[]2x ∈-,()f x a >a 72a <故答案为:.7(,)2-∞【点睛】该题考查利用导数求函数在区间上的最值,属于基础题目.四、解答题17.设是公比为正数的等比数列,,. {}n a 12a =214a a =+(1)求的通项公式;{}n a (2)设是首项为1,公差为2的等差数列,求数列的前n 项和. {}n b {}n n a b +n S 【答案】(1)123n n a -⨯=(2) 231n n +﹣【分析】(1)设为等比数列的公比,由已知易得值,则数列的通项可求; q {}n a q {}n a (2)由已知可得的通项,利用分组求和法,求解. {}n b n S 【详解】(1)设为等比数列的公比, q {}n a 则由,得,解得q =3, 12a =214a a =+224q =+∴的通项为;{}n a 123n n a -⨯=(2)由已知可得, ()12121n b n n =+=﹣﹣∴,12321n n n a b n +⨯+﹣=(﹣)1122n n n S a b a b a b =+++ +++()()1212n n a a a b b b =+++ +++ 2(13)(121)132n n n-+-=+-.231n n =+﹣18.已知函数()2ln f x x x =+(1)求的极值;()()3h x f x x =-(2)若函数在定义域内为增函数,求实数的取值范围. ()()g x f x ax =-a【答案】(1)见解析;(2)a ≤【分析】(1)由已知可得,求出其导函数,解得导函数的零点,由导函数的零点对定义域分()h x 段,求得函数的单调区间,进一步求得极值(2)由函数在定义域内为增函数,可得恒成立,分离参数,利()()g x f x ax =-()()‘00g x x ≥>a 用基本不等式求得最值可得答案【详解】(1)由已知可得()()233h x f x x lnx x x =-=+-,()()2‘2310x x h x x x-+=>令,可得或()2‘2310x x h x x-+==12x =1x =则当时,,当时, ()1012x ⎛⎫∈⋃+∞ ⎪⎝⎭,,()‘0h x >112x ⎛⎫∈ ⎪⎝⎭()‘0h x <在,上为增函数,在上为减函数 ()h x ∴102⎛⎫ ⎪⎝⎭,()1+∞,112⎛⎫⎪⎝⎭则 ()()12h x h ==-极小值,()15224h x h ln ⎛⎫==-- ⎪⎝⎭极大值(2)()()2g x f x ax lnx x ax =-=+-, ()‘12g x x a x=+-由题意可知恒成立,()()‘00g x x ≥>即12min a x x ⎛⎫≤+ ⎪⎝⎭时, 0x > 12x x +≥x =故12min x x ⎛⎫+= ⎪⎝⎭则a ≤【点睛】本题主要考查了函数的极值,只需求导后即可求出结果,在解答函数增减性时,结合导数来求解,运用了分离参量的解法,属于中档题19.已知数列的各项均为正数,表示数列的前n 项的和,且. {}n a n S {}n a 22n S n n =+(1)求数列的通项公式;{}n a(2)设,求数列的前n 项和. 12n n n b a a +={}n b n T 【答案】(1),21n a n =+*N n ∈(2)269n n + 【分析】(1)利用公式,分两种情况讨论,即可求解. ()()1112n n n S n a S S n -⎧=⎪=⎨-≥⎪⎩(2)根据已知条件,结合裂项相消法,即可求解.【详解】(1)∵,22n S n n =+∴当时,,1n =113a S ==当时,,2n ≥()()221212121n n n a S S n n n n n -=-=+----=+对时,等号也成立,1n =故,.21n a n =+*N n ∈(2)==, 12n n n b a a +=2(21)(23)n n ++112123n n -++故前n 项和= 11111135572123n T n n =-+-++-++ 11232369n n n -=++20.已知函数. 22()ln 1x f x x x -=-+(1)判断函数的零点个数;()f x (2)设,若,是函数的两个极值点,求实数a 的取值范围. 4()()2()1a g x f x a x +=-+∈+R 1x 2x ()g x 【答案】(1)有且仅有1个零点;(2).(),4-∞-【分析】(1)先判断函数的单调性,再结合,即可知零点个数;()10f =(2)由题意知,是方程在内的两个不同的实数解,也是方程1x 2x ()0g x '=(0,)+∞在内的两个不同的实数解,再根据实根分布知识即可解出.()()2210h x x a x =+++=(0,)+∞【详解】(1)由题知函数的定义域为,()f x ()0,∞+对任意恒成立, ()22212(1)2(1)(1)0(1)(1)x x x f x x x x x +---'=-=≥++()0,x ∈+∞当且仅当时,,所以在上单调递增.1x =()0f x '=()f x ()0,∞+又,所以函数有且仅有1个零点. ()2121ln1011f ⨯-=-=+()f x(2)因为, ()()42ln 11a a g x f x x x x +=-+=-++所以. ()()2221(2)10(1)(1)a x a x g x x x x x x +++'=+=>++由题意知,是方程在内的两个不同的实数解.1x 2x ()0g x '=(0,)+∞令,又,且函数图象的对称轴为, ()()221h x x a x =+++()010h =>()h x 22a x +=-所以只需 220,(2)40,a a -->⎧⎨∆=+->⎩解得,即实数的取值范围为.4a <-a (),4-∞-21.已知数列的前n 项和,,且满足.{}n a n S 11a =12n n S na +=(1)求;n a (2)若,求数列的前n 项和.(1)2n a n n b a =+⋅{}n b n T 【答案】(1)n a n =(2)12n n T n +⋅=【分析】(1)由题意可得,可得,累乘即可得; ()121n n S n a --=11n n a n a n ++=n a n =(2)由,利用错位相减即可求和. 12n n b n =+⋅()【详解】(1)由题意可得.....①,12n n S na +=当时,......②,2n ≥()121n n S n a --=①﹣②得,,可得, ()121n n n a na n a +--=11n n a n a n ++=又,, 2122a S ==2121a a =综上,时,, 1n ≥11n n a n a n ++=当时,=, 2n ≥3241231n n a a a a a a a a -⋅⋅⋅ 2341231n n ⋅⋅⋅⋅- ∴,∴, 1n a n a =n a n =又满足,11a =n a n =综上,.n a n =(2) )12(12n a n n n b n a =+⋅=+⋅()数列的前n 项和,.......① {}n b 1231223242...212n n n T n n ⋅+⋅+⋅++⋅++⋅﹣=(),.........②23122232...212n n n T n n +⋅+⋅++⋅++⋅=()①﹣②可得 ()12112+222...2122n n n n T n n ++-++++-+⋅=-⋅=,∴.12n n T n +⋅=22.已知抛物线的焦点恰好是双曲线的一个焦点,是坐标原点.22(0)y px p =>F 221243x y -=O (1)求抛物线的方程;(2)已知直线与抛物线相交于,两点,:22l y x =-A B ①求;AB ②若,且在抛物线上,求实数的值.OA OB mOD += D m 【答案】(1);(2)①5;②. 24y x =13【解析】(1)求出双曲线的一个焦点是,从而可得,求出即可. (1,0)12p =p (2)联立直线与抛物线方程得,利用韦达定理结合焦半径公式可求出,设2310x x -+=AB ,根据向量的坐标运算即可求解.()00,D x y 【详解】(1)双曲线方程可化为, 221243x y -=2211344x y -=因此,所以双曲线的一个焦点是, 2131,144c c =+==(1,0)于是抛物线的焦点为,则, 22(0)y px p =>(1,0)F 12p =24p =故抛物线的方程为.24y x =(2)①依题意,由可得,设, 2224y x y x=-⎧⎨=⎩2310x x -+=()()1122,,,A x y B x y 由韦达定理知,123x x +=1225AB FA FB x x ∴=+=++=②设,则由,得, ()00,D x y OA OB mOD += ()01213x x x m m=+=()01212y y y m m =+=由于D 在抛物线上,因此,可得. 2412m m=13m =【点睛】方法点睛:本题考查了抛物线的标准方程、焦半径公式,有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式,若不过焦12AB x x p =++点,则必须用一般弦长公式.。

人教版高二(理科)第一学期期末考试数学试题-含答案

人教版高二(理科)第一学期期末考试数学试题-含答案

2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。

高二数学上学期期末考试试题(及答案)

高二数学上学期期末考试试题(及答案)

高二数学上学期期末考试试题(及答案)高二数学上学期期末考试试题及答案第I卷(选择题)1.在三角形ABC中,已知a+b=c-2ab,则C=()。

A。

2π/3 B。

π/3 C。

π D。

3π/4改写:在三角形ABC中,已知a+b=c-2ab,求C的大小。

答案:B2.在三角形ABC中,已知cosAcosB=p,求以下条件p的充要条件。

A。

充要条件B。

充分不必要条件C。

必要不充分条件D。

既非充分也非必要条件改写:在三角形ABC中,已知cosAcosB=p,求p的充要条件。

答案:B3.已知等比数列{an}中,a2a10=6a6,等差数列{bn}中,b4+b6=a6,则数列{bn}的前9项和为()。

A。

9 B。

27 C。

54 D。

72改写:已知等比数列{an}和等差数列{bn}的一些条件,求{bn}的前9项和。

答案:C4.已知数列{an}的前n项和Sn=n+2n,则数列{a1}的前n 项和为()。

A。

n^2/(n-1) B。

n(n+1)/(2n+1) C。

3(2n+3)/(2n+1) D。

3(n+1)/(n-1)改写:已知数列{an}的前n项和Sn=n+2n,求数列{a1}的前n项和。

答案:B5.设 2x-2y-5≤2,3x+y-10≥3,则z=x+y的最小值为()。

A。

10 B。

8 C。

5 D。

2改写:已知不等式2x-2y-5≤2和3x+y-10≥3,求z=x+y的最小值。

答案:C6.对于曲线C:x^2/4+y^2/k^2=1,给出下面四个命题:①曲线C不可能表示椭圆;②“14”的必要不充分条件;④“曲线C表示焦点在x轴上的椭圆”是“1<k<5”的充要条件。

其中真命题的个数为()。

A。

0个 B。

1个 C。

2个 D。

3个改写:对于曲线C:x^2/4+y^2/k^2=1,判断下列命题的真假,并统计真命题的个数。

答案:C7.对于曲线C:x^2+y^2=1与直线y=k(x+3)交于点A,B,则三角形ABM的周长为()。

黑龙江省哈尔滨工业大学附属中学校2021-2022学年高二上学期期末考试数学(理)试题(解析版)

黑龙江省哈尔滨工业大学附属中学校2021-2022学年高二上学期期末考试数学(理)试题(解析版)

哈工大附中2021~2022学年度第一学期期末考试试题高二理科数学一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知复数,则的虚部为( )A. B. C. D. 【答案】C 【解析】【分析】利用复数的除法运算化简,再由共轭复数的定义即可得,进而可得虚部.【详解】,所以,的虚部为,故选:C.2. 已知直线和直线互相平行,则等于( )A. 2 B. C. D. 0【答案】C 【解析】【分析】根据题意可得,即可求出.【详解】显然时,两直线不平行,不符合,则,解得.经检验满足题意故选:C.3. 设是两条不同的直线,是两个不同的平面,且,则下列命题正确的是( )① 若 ,则 ②若,则 ③若,则 ④若,则13i1iz +=-z 122-1-z z ()()()()13i 1i 13i 24i12i 1i 1i 1i 2z +++-+====-+--+12i z =--z 2-10x ay +-=410ax y ++=a 2-2±1141a a -=≠0a =1141a a -=≠2a =±,m n ,αβ,m n αβ⊂⊂//,//m n βα//αβm β⊥αβ⊥//αβ//,//m n βααβ⊥,m n βα⊥⊥A. ①③B. ①④C. ②③D. ②④【答案】C 【解析】【分析】① 面面平行需要满足面内两条相交直线分别平行另外一个平面;②面内的一条直线垂直另外一个平面,则线面垂直;③面面平行,面内的直线平行另外一个平面; ④面面垂直面内的直线垂直于两个平面的交线,则线面垂直.【详解】① 面面平行需要满足面内两条相交直线分别平行另外一个平面, 不在同一平内,有可能平行,所以不正确;②面内的一条直线垂直另外一个平面,则线面垂直,所以命题正确;③面面平行,面内的直线平行另外一个平面,所以命题正确; ④面面垂直面内的直线垂直于两个平面的交线,则线面垂直,没出与交线垂直,所以命题不正确.故选:C.4. 已知双曲线:(的渐近线方程为( )A. B. C. D. 【答案】A【解析】【分析】先根据双曲线的离心率得到,然后由,得,即为所求的渐近线方程,进而可得结果.【详解】∵双曲线的离心率,∴.又由,得,即双曲线()的渐近线方程为,∴双曲线的渐近线方程为.故选:A,m n C 22221x y a b-=0,0a b >>C 2y x =±y =12y x =±y x=±2b a =22220x y a b-=b y x a =±c e a ===2ba=22220x y a b-=b y x a =±22221x y a b-=0,0a b >>b y x a =±2y x =±5. 已知函数,则曲线在点处的切线与坐标轴围成的三角形的面积是( )A.B.C. D. 【答案】B 【解析】【分析】根据导数的几何意义,求出切线方程,求出切线和横截距a 和纵截距b,面积为.【详解】由题意可得,所以,则所求切线方程为.令,得;令,得.故所求三角形的面积为.故选:B6. 若方程表示椭圆,则下面结论正确的是( )A. B. 椭圆的焦距为C. 若椭圆的焦点在轴上,则 D. 若椭圆的焦点在轴上,则【答案】C 【解析】【分析】利用椭圆方程与椭圆位置特征逐项分析、计算即可判断作答.【详解】因方程表示椭圆,则有,,且,即,A 错误;2()e (1)x f x x =++()y f x =(0,(0))f 12231212ab ()()()02e 21xf f x x '=,=++()03f '=32y x =+0x =2y =0y =23x -=1222233⨯⨯=22191x y k k +=--C ()1,9k ∈C C x ()1,5k ∈C x ()5,9k ∈90k ->10k ->91k k -≠-()()1,55,9k ∈焦点在轴上时,,解得,D 错误,C 正确;焦点在轴上时,则,焦点在轴上时,,B错误. 故选:C7. 已知抛物线的焦点为F ,准线为,过点F与抛物线C 交于点M (M 在x 轴的上方),过M 作于点N ,连接交抛物线C于点Q ,则( )A.B.C. 3D. 2【答案】D 【解析】【分析】设出直线,与抛物线联立,可求出点坐标,在利用抛物线的定义可得,再利用抛物线的对称性求出,则可求.【详解】如图:相关交点如图所示,由抛物线,得 ,则,与抛物线联立得,即,解得x 910k k ->->()1,5k ∈x ()291102c k k k =---=-y ()219210c k k k =---=-2:2(0)C y px p =>l l 'MN l ⊥NF ||||=NQ QF MF M 2M pMN NF MF x ∴===+FQ ||||NQ QF 2:2(0)C y px p =>(,0)2pF :)2p MF y x =-22y px =22122030x px p -+=()()6230x p x p --=3,26M A p p x x ==,60MN l MFx ︒⊥∠=, 又则为等边三角形,,由抛物线的对称性可得,故选:D.8. 若点P 是曲线上任意一点,则点P 到直线的最小距离为( )A. 0B.C.D.【答案】D 【解析】【分析】由导数的几何意义求得曲线上与直线平行的切线方程的切线坐标,求出切点到直线的距离即为所求最小距离.【详解】点是曲线上的任意一点,设,令,解得1或(舍去),,∴曲线上与直线平行的切线的切点为,点到直线的最小距离故选:D.二、多选题(本题共4小题,每小题5分,共20分;在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分)9. 函数的导函数的图象如图所示,则下列说法正确的( )60NMF ︒=∴∠MN MF=NMF V 22M pMN NF MF x p ∴===+=60OFA NFO ︒=∠=∠ 6Q A p x x ==24,,6233p p p p QF NQ NF QF ∴=+=∴=-=||2||NQ QF ∴=2ln y x x =-1y x =-121y x =- P 2ln y x x =-()1,,2(0)P x y y x x x∴=->'121y x x'=-=x =12x =-1x ∴=1y x =-()1,1P P 1y x =-min d ()y f x =A. 为函数的单调递增区间B. 为函数的单调递减区间C. 函数在处取得极小值D. 函数在处取得极大值【答案】ABC 【解析】【分析】利用导数和函数的单调性之间的关系,以及函数在某点取得极值的条件,即可求解,得到答案.【详解】由题意,函数的导函数的图象可知:当时,,函数单调递减;当时,,函数单调递增;当时,,函数单调递减;当时,,函数单调递增;所以函数f (x )单调递减区间为:,,递增区间为,,且函数在和取得极小值,在取得极大值.故选:ABC.10. 已知曲线:,则( )A. 时,则的焦点是,B. 当时,则的渐近线方程为C. 当表示双曲线时,则的取值范围为D. 存在,使表示圆()1,3-()y f x =()3,5()y f x =()y f x =5x =()y f x =0x =()y f x =1x <-()0f x '<()f x 13x -<<()0f x '>()f x 35x <<()0f x '<()f x 5x >()0f x '>()f x (),1-∞-(3,5)(1,3)-(5,)+∞()f x 1x =-5x =3x =C 22142x y m m+=-+2m =C (1F (20,F 6m =C 2y x =±C m 2m <-m C【答案】ABD 【解析】【分析】AB 选项,代入的值,分别得出是什么类型的曲线,进而作出判断;C 选项,要想使曲线表示双曲线要满足;D 选项,求出曲线表示圆时m 的值.【详解】当时,曲线:,是焦点在y 轴上的椭圆,且,所以交点坐标为,,A 正确;当时,曲线:,是焦点在在y 轴上的双曲线,则的渐近线为,B 正确;当表示双曲线时,要满足:,解得:或,C 错误;当,即时,,表示圆,D 正确故选:ABD11. 已知圆和圆相交于、两点,下列说法正确的为( )A. 两圆有两条公切线 B. 直线的方程为C. 线段的长为D. 圆上点,圆上点,的最大值为【答案】ABD 【解析】【分析】由给定条件判断圆O 与圆M 的位置关系,再逐项分析、推理、计算即可作答.【详解】圆的圆心,半径,圆的圆心,,,于是得圆O 与圆M 相交,圆O 与圆M 有两条公切线,A 正确;由得:,则直线的方程为,B 正确;圆心O 到直线:的距离,则,C 不正确;m C ()()420m m -+<C 2m =C 22124x y +=2422c =-=(1F(20,F6m =C 22182-=y x C2yx =±C ()()420m m-+<4m>2m <-42m m -=+1m =223x y +=22:4O x y +=22:4240M x y x y +-+=+A B AB 24y x =+AB 65O E M F EF 3+22:4O x y +=(0,0)O 12r =22:(2)(1)1M x y ++-=(2,1)M -21r =||OM ==1212||r r OM r r -<<+222244240x y x y x y ⎧+=⎨++-+=⎩4280x y -+=AB 24y x =+AB 240x y -+=d ==||AB ===,当且仅当点E ,O ,M ,F 四点共线时取“=”,如图,因此,当点E ,F 分别是直线OM 与圆O 交点,与圆M 交点时,,D 正确.故选:ABD12. 已知椭圆:上有一点,、分别为左、右焦点,,的面积为,则下列选项正确的是( )A. 若,则;B. 若,则满足题意的点有四个;C. 椭圆内接矩形周长的最大值为20;D. 若为钝角三角形,则;【答案】BCD 【解析】【分析】由题可得,,结合选项利用面积公式可得可判断ABD ,设椭圆内接矩形的一个顶点为,利用辅助角公式可得周长的范围可判断C.【详解】∵椭圆:,∴,∴,设,则,,若,则,所以不存在,故A错误;12||||||||||||||3EF EO OF EO OM MF r OM r ≤+≤++=++=+E 'F 'max ||3EF =C 221169x y +=P 1F 2F 12F PF θ∠=12PF F △S S 9=90θ=︒3S =P C 12PF F △S ⎛∈ ⎝4,3a b ==c =11(,)P x y 1y C (4cos ,3sin )(02πααα<<C 221169x y +=4,3a b ==c =12128,PF PF F F +==11(,)P x y 12112S F F y =⋅⋅13y ≤S 9=13y =>12PF F △若,则,可得,故满足题意的点有四个,故B正确;设椭圆内接矩形的一个顶点为,则椭圆内接矩形周长为其中,由得,∴椭圆内接矩形周长的范围为,即,故C 正确;由上知不可能为钝角,由对称性不妨设是钝角,先考虑临界情况,当为直角时,易得,此时当为钝角三角形时,,所以,故D 正确.故选:BCD三、填空题(本大题共4小题,每小题5分,共20分)13. 椭圆:的离心率为_____﹒【解析】【分析】根据椭圆的几何性质求解即可﹒【详解】∵椭圆为,∴,∴﹒﹒14. 已知两点和则以为直径的圆的标准方程是__________.3S =11y y ==1x =P C (4cos ,3sin )(0)2πααα<<C 4(4cos 3sin )20sin(),αααϕ+=+43sin ,cos 55ϕϕ==02πα<<(,)2παϕϕϕ+∈+C (20sin(),20sin ]22ππϕ+(12,20]θ12PF F ∠12PF F ∠194y =12112S F F y =⋅⋅=12PF F △194y <S ⎛∈ ⎝C 22132y x +=22132y x +=1a c ===c e a ==()4,9A ()6,3B AB【答案】【解析】【分析】根据的中点是圆心,是半径,即可写出圆的标准方程.【详解】因为和,故可得中点为,又,则所求圆的标准方程是:.故答案为:.15. 已知是抛物线上一点,是抛物线的焦点,若点满足,则的取值范围是______.【答案】【解析】【分析】根据抛物线的解析式,得出焦点坐标,且由题意可知,进而根据向量的坐标运算求出,再根据向量的数量积求得,从而可求出的取值范围.【详解】解:由题可知,抛物线的焦点坐标,且,由于是抛物线上一点,则,,,,且,解得:,所以的取值范围是.故答案为:.()()225610x x -+-=AB 2AB ()4,9A ()6,3B AB ()5,6AB ==()()225610x x -+-=()()225610x x -+-=()00,M x y 24y x =F ()1,0P -0MF MP ⋅< 0x )2⎡-⎣()1,0F ()200040y x x =≥()()00001,,1,MF x y MP x y →→=--=---200410MF MP x x →→⋅=+-<0x 24y x =()1,0F()1,0P -()00,M x y 24y x =()200040y xx =≥()()00001,,1,MF x y MP x y →→∴=--=---()()2222000000011141MF MP x x y x y x x →→∴⋅=---+=+-=+-0MF MP →→⋅< 200410x x ∴+-<00x ≥002x ≤<-0x )2⎡-⎣)2⎡-⎣16. 已知函数,若,且恒成立,则实数a 的取值范围为_________.【答案】【解析】【分析】由题意得到,由,得到,所以,构造函数,利用导数求出的最小值即可.【详解】由题可知当时,函数单调递增,,当时,,设,则必有,所以,所以,所以,设,则,则时,,函数单调递减,当时,,函数单调递增,所以,所以的最小值为.所以恒成立,即,所以.故答案为:【点睛】本题主要考查利用导数解决双变量问题,将一个变量由另一个变量表示,构造新的函数即可求解,注意变量的范围,考查学生分析转化能力,属于中档题.四、解答题(本大题共6小题,共70分,解答应写出文字说明,说明过程或演算步骤)17. 在中,角所对的边分别为.(1)求角;(2)若,的面积为,求.1ln ,1(){11,122x x f x x x +≥=+<12x x ≠()()12122,2f x f x x x a +=+-≥12ln 2a ≤-121x x <<12()()2f x f x +=1212ln x x =-122212ln x x x x +=-+()12ln (1)g x x x x =-+>()g x 1≥x ()f x min ()(1)1f x f ==1x <()1f x <12x x <121x x <<1212121113()1(ln ln 2222)2f x f x x x x x +=+++=++=1212ln x x =-122212ln x x x x +=-+()12ln (1)g x x x x =-+>22()1x g x x x+'-=-=12x <<()0g x '<()g x 2x >()0g x '>()g x min ()(2)g x g ==12ln2232ln2-+=-12x x +32ln2-122x x a +-≥122a x x ≤+-12ln 2a ≤-12ln 2a ≤-ABC V ,,A B C ,,abc cos sin C c B =C 2b =ABC V c【答案】(1)(2)【解析】【分析】(1),进而得在求解即可得答案;(2)由面积公式得,进而根据题意得,,再根据余弦定理求解即可.【小问1详解】,,因为,,即因为,所以.小问2详解】解:因为的面积为,,所以,即,因为,所以,所以,解得.所以.18. 1.已知圆:,其中.(1)如果圆与圆外切,求的值;(2)如果直线与圆相交所得的弦长为的值.【答案】(1)20 (2)8【解析】【分析】(1)两圆外切,则两圆的圆心距等于两圆半径之和,列出方程,进行求解;(2)先用点到直线距离公式,求出圆的圆心到直线的距离,再用垂径定理列出方程,求出的值.【3C π=c =cos sin sin B C C B =tan C =8ab =2b =4a =cos sin C c B =cos sin sin B C C B =()0,,sin 0B B π∈≠sin C C =tan C =()0,C π∈3C π=ABC V 3C π=1sin 2S ab C ===8ab =2b =4a =2222201cos 2162a b c c C ab +--===c =c =C 22(3)(4)36x y m -+-=-m ∈R C 221x y +=m 30x y +-=C m C 30x y +-=m【小问1详解】圆的圆心为,若圆与圆外切,故两圆的圆心距等于两圆半径之和,【小问2详解】圆的圆心到直线的距离为,由垂径定理得:,解得:19. 书籍是精神世界的入口,阅读让精神世界闪光,阅读逐渐成为许多人的一种生活习惯,每年4月23日为世界读书日.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,估计这100位年轻人每天阅读时间的平均数(单位:分钟);(同一组数据用该组数据区间的中点值表示)(2)采用分层抽样的方法从每天阅读时间位于分组,和的年轻人中抽取5人,再从中任选2人进行调查,求其中至少有1人每天阅读时间位于的概率.【答案】(1); (2).【解析】【分析】(1)由频率之和为1求参数a ,再根据直方图求均值.C ()3,4C 221x y +=1=+20m =C 30x y +-=d 222d =-8m =x [)50,60[)60,70[)80,90[)80,9074710(2)由分层抽样的比例可得抽取的5人中,和分别为:1人,2人,2人,再应用列举法求古典概型的概率即可.【小问1详解】根据频率分布直方图得:∴,根据频率分布直方图得:,【小问2详解】由,和的频率之比为:1∶2∶2,故抽取的5人中,和分别为:1人,2人,2人,记的1人为,的2人为,,的2人为,故随机抽取2人共有,,,,,,,,,10种,其中至少有1人每天阅读时间位于的包含7种,故概率.20. 如图,在四棱锥中,底面为菱形,平面,为的中点,为的中点.(1)求证:平面平面;(2)若,求平面与平面夹角的余弦值.【答案】(1)证明见解析[)50,60[)60,70[)80,90()0.0050.0120.045101a +++⨯=0.02a =()550.01650.02750.045850.02950.00510x =⨯+⨯+⨯+⨯+⨯⨯74=[)50,60[)60,70[)80,90[)50,60[)60,70[)80,90[)50,60a [)60,70b c [)80,90A B(),a b (),a c (),a A (),a B (),b c (),b A (),b B (),c A (),c B (),A B [)80,90710P =P ABCD -ABCD PA ⊥,60ABCD ABC ∠= E BC F PC AEF ⊥PAD 2PA AB ==AEF CEF(2)【解析】【分析】(1)通过证明和得平面,再利用面面垂直判定定理求解;(2)建立空间直角坐标系求两个平面的法向量代入二面角公式求解.【小问1详解】因为底面是菱形,,所以△为等边三角形,所以平分,所以,所以,又因为平面,所以,且,所以平面,又平面,所以平面平面;【小问2详解】据题意,建立空间直角坐标系如图所示:因为,所以,设平面一个法向量为,平面一个法向量为,因为,则,即,取,则,,所以,又因为,则,即,取,则,所以,所以AE AD ⊥PA AE ⊥AE ⊥PAD ABCD 60ABC ∠=︒ABC AE BAC ∠()6018060902EAD ︒∠=︒-︒-=︒AE AD ⊥PA ⊥ABCD PA AE ⊥PA AD A ⋂=AE ⊥PAD AE ⊂AEF AEF ⊥PAD 2PA AB ==())())0,0,0,,0,0,2,,A EP C1,12⎫⎪⎪⎭F AEF ()1111,,n x y z = EFC ()2222,,n x y z =)1,,12AE AF ⎫==⎪⎪⎭,01100AE n AF n ⎧⋅=⎪⎨⋅=⎪⎩1111020y z =++=12y =10x =11z =-()10,2,1n =-()10,1,,,12EC EF ⎛⎫== ⎪ ⎪⎝⎭0 2200EC n EF n ⎧⋅=⎪⎨⋅=⎪⎩ 22220102y x y z =⎧⎪⎨++=⎪⎩22x =220,y z ==(2n =u u r121212cos ,n n n n n n ⋅<>===⋅由图形知,二面角为钝角,故二面角夹角的余弦值为21. 已知椭圆的中心是坐标原点,左右焦点分别为,设是椭圆上一点,满足轴,,椭圆(1)求椭圆的标准方程;(2)过椭圆左焦点且不与轴重合的直线与椭圆相交于两点,求内切圆半径的最大值.【答案】(1)(2)【解析】【分析】(1)利用是椭圆上一点,满足轴,.列出方程组,求出,即可得到椭圆方程.(2)由(1)可知,设直线为,,联立直线与椭圆方程,消元列出韦达定理,即可得到,从而得到,再根据,即可得到,再利用基本不等式求出最值即可;【小问1详解】()2222:10x y C a b a b+=>>O 12,F F P C 2PF x ⊥212PF =C C C 1F x l ,A B 2ABF V 2214x y +=12P C 2PF x ⊥21||2PF =a b 28ABF C =V l x my =-()11,A x y ()22,B x y 12y y -2121212ABF S F F y y =⋅-V 2182ABF S R =⨯⨯V R =解:由题意是椭圆上一点,满足轴,所以,解得所以.【小问2详解】解:由(1)可知,,设直线为,消去得,设,,则,所以所以,令内切圆的半径为,则,即,令,则,当且仅当,,即时等号成立,所以当时,取得最大值;22. 已知函数,.(1)当时,求函数在处的切线方程;(2)讨论函数的单调性;(3)当函数有两个极值点,,且.证明:P C 2PF x ⊥21||2PF =222212c a b a c a b⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩21a b c ⎧=⎪=⎨⎪=⎩2214x y +=()1F 222112248ABF C AB AF BF AF BF AF BF a =++=+++==V l x my =-2214x my x y ⎧=-⎪⎨+=⎪⎩x ()22410m y +--=()11,A x y ()22,B x y 12y y +=12214y y m -=+12y y -===2121212ABFS F F y y =⋅-=V R 2182ABF S R =⨯⨯V R =t =12R ==≤=3t t =t =m =m =R 12()21ln 2f x x ax x =-+-a R ∈1a =()f x 1x =()f x ()f x 1x 2x 12x x <()()124213ln 2f x f x -≤+【答案】(1) (2)答案见解析 (3)证明见解析【解析】【分析】(1)根据导数的几何意义进行求解即可;(2)根据一元二次方程根判别式,结合导数的性质进行分类讨论求解即可;(3)根据极值定义,给合(2)的结论,构造新函数,再利用导数的性质, 新函数的单调性进行证明即可.【小问1详解】当时,.∴.,..∴在处的切线方程.小问2详解】的定义域.;①当时,即,,此时在单调递减;②当时,即或,(i )当时,∴在,单调递减,在单调递增.(ii )当时,的的【2230x y +-=1a =()21ln 2f x x x x =-+-()11f x x x'=-+-()'11f =-()111221f =-+=()()11122302y x x y -=--⇒+-=()f x 1x =2230x y +-=()f x ()0,∞+()211x ax f x x a x x-+'=-+-=-240a -≤22a -≤≤()0f x '≤()f x ()0,∞+240a ->2a >2a <-2a >()f x ⎛ ⎝⎫+∞⎪⎪⎭()f x 2a <-∴单调递减;综上所述,当时,在单调递减;当时,在,单调递减,在单调递增.【小问3详解】由(2)知,当时,有两个极值点,,且满足:,由题意知,.∴令.则.在单调递增,在单调递减.∴.即.在()f x ()0,∞+2a ≤()f x ()0,∞+2a >()fx ⎛ ⎝⎫+∞⎪⎪⎭()fx 2a >()f x 1x 2x 12121x x ax x +=⎧⎨⋅=⎩1201x x <<<()()221211122211424ln 2ln 22f x f x x ax x x ax x ⎛⎫⎛⎫-=-+---+- ⎪ ⎪⎝⎭⎝⎭22111222244ln 22ln x ax x x ax x =-+-+-+()()221112122122244ln 22ln x x x x x x x x x x =-++-+-++2222226ln 2x x x =-++()()2226ln 21g x x x x x=-++>()3462g x x x x'=--+=()g x ()+∞()2max 213ln 2g x g==-++=+()()124213ln 2f x f x -≤+。

四川省遂宁市2021-2022学年高二上学期期末考试数学试卷(理科)(解析版)

四川省遂宁市2021-2022学年高二上学期期末考试数学试卷(理科)(解析版)

四川省遂宁市2021-2022学年高二上学期期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知三维数组,,且,则实数k的值为()A.﹣2B.2C.D.﹣92.(5分)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有一个黑球与都是红球B.至少有一个红球与都是红球C.至少有一个红球与至少有1个黑球D.恰有1个红球与恰有2个红球3.(5分)已知直线x+ay﹣2=0和直线ax+y+1=0互相平行,则a等于()A.±1B.﹣1C.1D.04.(5分)设α、β是两个不同的平面,m、n是两条不同的直线,且m⊂α,n⊂β,下列命题正确的是()A.如果m∥β,那么α∥βB.如果α∥β,那么m∥nC.如果m⊥β,那么α⊥βD.如果α⊥β,那么m⊥β5.(5分)过点P(1,1)可以向圆x2+y2+2x﹣4y+k﹣2=0引两条切线,则k的范围是()A.k>2B.0<k<7C.k<7D.2<k<76.(5分)《九章算术》是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学.“更相减损术”便是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如下流程框图,若输入的a,b分别为91,39,则输出的a=()A.3B.7C.13D.217.(5分)在直三棱柱ABC﹣A1B1C1中,已知AB⊥BC,AB=BC=2,,则异面直线AC1与A1B1所成的角为()A.30°B.45°C.60°D.90°8.(5分)甲、乙两人在相同条件下各打靶10次,每次打靶的成绩情况如图所示:下列说法错误的是()A.从平均数和方差相结合看,甲波动比较大,乙相对比较稳定B.从折线统计图上两人射击命中环数走势看,甲更有潜力C.从平均数和命中9环及9环以上的次数相结合看,甲成绩较好D.从平均数和中位数相结合看,乙成绩较好9.(5分)若直线y=kx与圆(x+2)2+(y﹣1)2=1的两个交点关于直线2x﹣y+b=0对称,则k,b的值分别为()A.,b=5B.,b=﹣3C.,b=﹣4D.k=2,b=510.(5分)甲、乙两艘轮船都要在某个泊位停靠6个小时,假定它们在一昼夜的时间中随机到达,若两船有一艘在停泊位时,另一艘船就必须等待,则这两艘轮船停靠泊位时都不需要等待的概率为()A.B.C.D.11.(5分)已知三棱锥S﹣ABC所有顶点都在球O的球面上,且SA⊥平面ABC,若SA=AB=AC=BC=1,则球O的表面积为()A.B.5πC.D.12.(5分)已知f(x)是定义在R上的增函数,函数y=f(x﹣1)的图象关于点(1,0)对称,若不等式f()+f(2﹣k(x+2))≤0的解集为区间〖a,b〗,且b﹣a=2,则k=()A.B.C.2D.﹣2二、填空题:本大题共4小题,每小题5分,共20分。

2022-2023学年四川省内江市高二上学期期末考试数学(理)试题(解析版)

2022-2023学年四川省内江市高二上学期期末考试数学(理)试题(解析版)

2022-2023学年四川省内江市高二上学期期末考试数学(理)试题一、单选题1.某个年级有男生180人,女生160人,用分层抽样的方法从该年级全体学生中抽取一个容量为68的样本,则此样本中女生人数为( ) A .40 B .36 C .34 D .32【答案】D【分析】根据分层抽样的性质计算即可. 【详解】由题意得:样本中女生人数为1606832180160⨯=+.故选:D2.已知向量()3,2,4m =-,()1,3,2n =--,则m n +=( ) A .22 B .8 C .3 D .9【答案】C【分析】由向量的运算结合模长公式计算即可. 【详解】()()()3,2,41,3,22,1,2m n +=-+--=-- ()()2222123m n +=-+-+=故选:C3.如图所示的算法流程图中,第3个输出的数是( )A .2B .32C .1D .52【答案】A【分析】模拟执行程序即得.【详解】模拟执行程序,1,1A N ==,输出1,2N =;满足条件,131+=22A =,输出32,3N =;满足条件,31+=222A =,输出2,4N =;所以第3个输出的数是2. 故选:A.4.一个四棱锥的三视图如图所示,则该几何体的体积为( )A .8B .83C .43D .323【答案】B【分析】把三视图转换为几何体,根据锥体体积公式即可求出几何体的体积. 【详解】根据几何体的三视图可知几何体为四棱锥P ABCD -, 如图所示:PD ⊥平面ABCD ,且底面为正方形,2PD AD == 所以该几何体的体积为:1822233V =⨯⨯⨯=故选:B5.经过两点(4,21)A y +,(2,3)B -的直线的倾斜角为3π4,则y =( ) A .1- B .3-C .0D .2【答案】B【分析】先由直线的倾斜角求得直线的斜率,再运用两点的斜率进行求解.【详解】由于直线AB 的倾斜角为3π4, 则该直线的斜率为3πtan14k ==-, 又因为(4,21)A y +,(2,3)B -, 所以()213142y k ++==--,解得=3y -.故选:B.6.为促进学生对航天科普知识的了解,进一步感受航天精神的深厚内涵,并从中汲取不畏艰难、奋发图强、勇于攀登的精神动力,某校特举办以《发扬航天精神,筑梦星辰大海》为题的航天科普知识讲座.现随机抽取10名学生,让他们在讲座前和讲座后各回答一份航天科普知识问卷,这10名学生在讲座前和讲座后问卷答题的正确率如下图,下列叙述正确的是( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座前问卷答题的正确率的极差小于讲座后正确率的极差 【答案】B【分析】根据题意以及表格,可分别计算中位数、平均数、极差等判断、排除选项是否正确,从而得出答案.【详解】讲座前问卷答题的正确率分别为:60%,60%,65%,65%,70%,75%,80%,85%,90%,95%,中位数为70%75%72.5%70%2+=> ,故A 错误; 讲座后问卷答题的正确率的平均数为0.80.8540.920.951289.5%85%10+⨯+⨯++⨯=> ,故B 正确;由图知讲座前问卷答题的正确率的波动性大于讲座后正确率的波动性,即讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,故C 错误;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前正确率的极差为95%-60%=35%,20%<35%,故D 错误. 故选:B.7.两条平行直线230x y -+=和340ax y -+=间的距离为d ,则a ,d 分别为( )A .6a =,d =B .6a =-,d =C .6a =-,d =D .6a =,d =【答案】D【分析】根据两直线平行的性质可得参数a ,再利用平行线间距离公式可得d . 【详解】由直线230x y -+=与直线340ax y -+=平行, 得()()2310a ⨯---⨯=,解得6a =,所以两直线分别为230x y -+=和6340x y -+=,即6390x y -+=和6340x y -+=,所以两直线间距离d = 故选:D.8.若连续抛掷两次质地均匀的骰子,得到的点数分别为m ,n ,则满足2225+<m n 的概率是( ) A .12B .1336 C .49D .512【答案】B【分析】利用列举法列出所有可能结果,再根据古典概型的概率公式计算可得.【详解】解:设连续投掷两次骰子,得到的点数依次为m 、n ,两次抛掷得到的结果可以用(,)m n 表示,则结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36种.其中满足2225+<m n 有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),共13种,所以满足2225+<m n 的概率1336P =. 故选:B9.已知三条不同的直线l ,m ,n 和两个不同的平面α,β,则下列四个命题中错误的是( ) A .若m ⊥α,n ⊥α,则m //n B .若α⊥β,l ⊂α,则l ⊥β C .若l ⊥α,m α⊂,则l ⊥m D .若l //α,l ⊥β,则α⊥β【答案】B【分析】根据线面垂直的性质定理可知A 正确;根据面面垂直的性质定理可知B 不正确; 根据线面垂直的定义可知C 正确;根据面面垂直的判定可知D 正确.【详解】对A ,根据线面垂直的性质,垂直于同一平面的两条直线互相平行可知A 正确; 对B ,根据面面垂直的性质定理可知,若α⊥β,l ⊂α,且l 垂直于两平面的交线,则l ⊥β,所以B 错误;对C ,根据线面垂直的定义可知,C 正确;对D ,因为l //α,由线面平行的性质可知在平面α内存在直线//m l ,又l ⊥β,所以m β⊥,而m α⊂,所以α⊥β,D 正确. 故选:B .10.数学家欧拉在1765年提出定理:三角形的外心,重心,垂心依次位于同一直线上,这条直线后人称之为三角形的欧拉线.已知ABC ∆的顶点(0,0),(0,2),( 6.0)A B C -,则其欧拉线的一般式方程为( ) A .31x y += B .31x y -= C .30x y += D .30x y -=【答案】C【分析】根据题意得出ABC 为直角三角形,利用给定题意得出欧拉线,最后点斜式求出方程即可. 【详解】显然ABC 为直角三角形,且BC 为斜边, 所以其欧拉线方程为斜边上的中线, 设BC 的中点为D ,由(0,2),( 6.0)B C -, 所以()3,1D -,由101303AD k -==--- 所以AD 的方程为13y x =-,所以欧拉线的一般式方程为30x y +=. 故选:C.11.已知P 是直线l :x +y -7=0上任意一点,过点P 作两条直线与圆C :()2214x y ++=相切,切点分别为A ,B .则|AB |的最小值为( )A .14B .142C .23D .3【答案】A【分析】根据直线与圆相切的几何性质可知,当||PC 取得最小值时,cos ACP ∠最大,||AB 的值最小,当PC l ⊥时,||PC 取得最小值,进而可求此时||14AB =【详解】圆C 是以(1,0)C -为圆心,2为半径的圆,由题可知,当ACP ∠最小时,||AB 的值最小. ||2cos ||||AC ACP PC PC ∠==,当||PC 取得最小值时,cos ACP ∠最大,ACP ∠最小,点C 到直线l 的距离|8|422d -==,故当||42PC =时,cos ACP ∠最大,且最大值为24,此时||||14sin 2||44AB AB ACP AC ∠===,则||14AB =.故选:A12.如图所示,在长方体1111ABCD A B C D -中,111BB B D =,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F ,下列命题错误的是( )A .四棱锥11B BED F -的体积恒为定值 B .存在点E ,使得1B D ⊥平面1BD EC .存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值D .对于棱1CC 上任意一点E ,在棱AD 上均有相应的点G ,使得CG ∥平面1EBD 【答案】D【分析】由111111B BED F E BB D F BB D V V V ---=+结合线面平行的定义,即可判断选项A ,由线面垂直的判定定理即可判断选项B ,由面面平行的性质和对称性,即可判断选项C ,由特殊位置即可判断选项D.【详解】对A ,111111B BED F E BB D F BB D V V V ---=+,又11//CC BB ,1CC ⊄平面11BB D ,1BB ⊂平面11BB D ,所以1//CC 平面11BB D ,同理1//AA 平面11BB D ,所以点E ,F 到平面11BB D 的距离为定值,则四棱锥11B BED F -的体积为定值,故选项A 正确;对于B ,因为111BB B D =,可得对角面11BB D D 为正方形,所以11B D BD ⊥,由DC ⊥平面11BCC B ,BE ⊂平面11BCC B ,所以DC BE ⊥,若1BE B C ⊥,则1B CDC C =,1,B C DC ⊂平面1B DC ,所以BE ⊥平面1B DC ,由1B D ⊂平面1B DC ,所以1B D BE ⊥,又11,,BD BE B BD BE ⋂=⊂平面1BD E ,所以1B D ⊥平面1BD E ,故B 正确;对于C ,由面面平行的性质定理可得,四边形1BED F 为平行四边形,由对称性可得,当四边形为菱形时,周长取得最小值,即存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值,故选项C 正确.对于D ,当E 点在C 处时,对于AD 上任意的点G ,直线CG 与平面1EBD 均相交,故选项D 错误. 故选:D二、填空题13.已知x 、y 满足约束条件202020x y x y -≤⎧⎪-≤⎨⎪+-≥⎩则2z x y =+的最大值是________.【答案】6【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件作出可行域如图:将目标函数2z x y =+转化为2y x z =-+表示为斜率为2-,纵截距为z 的直线, 当直线2y x z =-+过点B 时,z 取得最大值, 显然点()2,2B ,则max 2226z =⨯+=.故答案为:6.14.直线l 与圆22(1)(1)1x y ++-=相交于,A B 两点,且()0,1A .若AB l 的斜率为_________. 【答案】1±【分析】设直线方程,结合弦长求得圆心到直线的距离,利用点到直线的距离公式列出等式,即可求得答案.【详解】根据题意,直线l 与圆 22(1)(1)1x y ++-= 相交于,A B 两点,且()0,1A , 当直线斜率不存在时,直线0x = 即y 轴,显然与圆相切,不符合题意; 故直线斜率存在,设直线l 的方程为1y kx =+ ,即10kx y -+= , 因为圆22(1)(1)1x y ++-=的圆心为(1,1) ,半径为1r = ,又弦长||AB =所以圆心到直线的距离为d ===,=1k =±, 故答案为:1±.15.已知E 是正方体1111ABCD A B C D -的棱1DD 的中点,过A 、C 、E 三点作平面α与平面1111D C B A 相交,交线为l ,则直线l 与1BC 所成角的余弦值为______. 【答案】12【分析】由面面平行的性质与异面直线所成的角的求法求解即可 【详解】因为过,,A C E 三点的平面α与平面1111D C B A 相交于l , 平面α与平面ABCD 相交于AC ,平面1111D C B A 与平面ABCD 平行, 所以//l AC ,又11//A C AC ,故11//AC l所以直线l 与1BC 所成的角就是直线11A C 与1BC 所成的角, 也即是11AC B ∠(或补角) 又易知11A C B △为等边三角形,所以直线l 与1BC 所成角的余弦值为1cos602︒=, 故答案为:1216.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PAB 面积的最大值是_________. 【答案】52【详解】试题分析:易知A (0,0),B (1,3)两直线互相垂直,故222221510222PA PB PA PB AB S PA PB ++==∴=≤=为所求.【解析】基本不等式.三、解答题17.一汽车销售公司对开业4年来某种型号的汽车“五-”优惠金额与销售量之间的关系进行分析研究并做了记录,得到如下资料. 日期第一年 第二年 第三年 第四年优惠金额x (千元) 10 11 13 12 销售量y (辆) 22243127(1)求出y 关于x 的线性回归方程ˆˆˆyb x a =+; (2)若第5年优惠金额8.5千元,估计第5年的销售量y(辆)的值.参考公式:()()()11211ˆˆˆ,()n ei i i i i i pz nzlii i x x y y x y nxybay bx xx xn x ====---===---∑∑∑∑ 【答案】(1)ˆ38.5y x =-;(2)第5年优惠金额为8.5千元时,销售量估计为17辆【分析】(1)先由题中数据求出x y ,,再根据()()()()1122211,ˆˆˆˆn niii ii i nn iii i x x y y x y nxyb ay bx x x x n x ====---===---∑∑∑∑求出ˆb和ˆa ,即可得出回归方程; (2)将8.5x =代入回归方程,即可求出预测值.【详解】(1)由题中数据可得11.5,26x y ==,442111211,534i i i i i x y x ====∑∑∴()414222141211411.526153534411.554ˆi i i i i x y xybx x ==--⨯⨯====-⨯-∑∑,故26311ˆ.58.5ˆay bx =-=-⨯=-,∴38.5ˆy x =- (2)由(1)得,当8.5x =时,ˆ17y=,∴第5年优惠金额为8.5千元时,销售量估计为17辆. 【点睛】本题主要考查线性回归分析,熟记最小二乘法求ˆb和ˆa 即可,属于常考题型. 18.已知圆C 经过(6,1),(3,2)A B -两点,且圆心C 在直线230x y +-=上. (1)求经过点A ,并且在两坐标轴上的截距相等的直线的方程; (2)求圆C 的标准方程;(3)斜率为34-的直线l 过点B 且与圆C 相交于,E F 两点,求||EF .【答案】(1)60x y -=或+7=0x y -; (2)22(5)(1)5x y -++=; (3)2.【分析】(1)根据给定条件,利用直线方程的截距式,分类求解作答. (2)设出圆心坐标,由已知求出圆心及半径作答. (3)求出直线l 的方程,利用弦长公式计算作答.【详解】(1)经过点A ,在两坐标轴上的截距相等的直线,当直线过原点时,直线的方程为60x y -=, 当直线不过原点时,设直线的方程为=x y a +,将点(6,1)A 代入解得=7a ,即直线的方程为+7=0x y -, 所以所求直线的方程为60x y -=或+7=0x y -.(2)因圆心C 在直线230x y +-=上,则设圆心(32,)C b b -, 又圆C 经过(6,1),(3,2)A B -两点,于是得圆C 的半径||||r AC BC ==,1b =-,圆心(5,1)C -,圆C的半径r = 所以圆C 的标准方程为22(5)(1)5x y -++=.(3)依题意,直线l 的方程为32(3)4y x +=--,即3410x y +-=, 圆心(5,1)C -到直线的距离为|1541|25d --==, 所以22||22542EF r d =-=-=.19.直四棱柱1111ABCD A B C D -,底面ABCD 是平行四边形,60ACB ∠=︒,13,1,27,,AB BC AC E F ===分别是棱1,A C AB 的中点.(1)求证:EF 平面1A AD : (2)求三棱锥1F ACA -的体积.【答案】(1)见解析2【分析】(1)取1A D 的中点M ,连结,ME MA ,证明四边形AFEM 为平行四边形,则AM EF ∥,再根据线面平行的判定定理即可得证;(2)利用余弦定理求出AC ,再利用勾股定理求出1AA ,再根据11F ACA A AFC V V --=结合棱锥的体积公式即可得出答案.【详解】(1)证明:取1A D 的中点M ,连结,ME MA ,在1A DC 中,,M E 分别为11,A D AC 的中点, 所以ME DC ∥且12ME DC =, 底面ABCD 是平行四边形,F 是棱AB 的中点,所以AF DC 且12AF DC =, 所以ME AF ∥且ME AF =,所以四边形AFEM 为平行四边形,所以,EF AM EF ⊄∥平面1,A AD AM⊂平面1A AD ,所以EF 平面1A AD ;(2)在ABC 中,60,3,1ACB AB BC ∠===, 由余弦定理有2222cos AB AC BC AC BC ACB ∠=+-⨯⨯,解得2AC =,则1312sin6022ABC S =⨯⨯⨯=, 因为F 为AB 的中点,所以1324ACF ABC S S ==, 由已知直四棱柱1111ABCD A B C D -,可得1190,2,27A AC AC AC ∠===, 可得128426A A =-=,1111132263342F ACA A AFC AFC V V S AA --==⋅=⨯⨯=. 20.某校从参加高一年级期中考试的学生中抽出40名学生,将其数学成绩(均为整数)分成六段[)40,50,[)50,60,,[]90,100后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)根据频率分布直方图估计这次数学考试成绩的平均分;(3)若将分数从高分到低分排列,取前15%的同学评定为“优秀”档次,用样本估计总体的方法,估计本次期中数学考试“优秀”档次的分数线.【答案】(1)答案见解析(2)71(3)86【分析】(1)根据所有频率和为1求第四小组的频率,计算第四小组的对应的矩形的高,补全频率分布直方图;(2)根据在频率分布直方图中,由每个小矩形底边中点的横坐标与小矩形的面积的乘积之和,求出平均分;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,由此即可估计“优秀”档次的分数线.【详解】(1)由频率分布直方图可知,第1,2,3,5,6小组的频率分别为:0.1,0.15,0.15,0.25,0.05,所以第四小组的频率为:10.10.150.150.250.050.3-----=,∴在频率分布直方图中第四小组对应的矩形的高为0.03,补全频率分布直方图对应图形如图所示:(2)由频率分布直方图可得平均分为:0.1450.15550.15650.3750.25850.059571⨯+⨯+⨯+⨯+⨯+⨯=;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,则估计本次期中数学考试“优秀”档次的分数线为:0.158010860.25+⨯=.21.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,2AB =,1AF =,M 是线段EF 的中点.(1)求证:平面ACEF ⊥平面BDF ;(2)求证:DM ⊥平面BEF ;(3)求二面角A DF B --的大小.【答案】(1)见解析(2)见解析(3)60【分析】(1)建立空间直角坐标系,利用0AM BD =,0AM DF =,可得AM ⊥平面BDF ,进而可得面面垂直.(2)由2AB 1AF =,得3==DF DE DM EF ⊥,连BM ,得DM BM ⊥,由此能证明DM ⊥平面BEF .(3)由(1)得,(0AM =,1-,1)是平面BDF 的一个法向量.(1,1,0)DC =--是平面ADF 的一个法向量,cos AM <,1222DC >==⨯即可. 【详解】(1)四边形ACEF 是矩形,FA AC ∴⊥,平面ACEF ABCD ⊥,平面ACEF 平面ABCD AC =,AF ⊂平面ACEFAF ∴⊥平面ABCD .设AC DB O ⋂=,则OM ⊥平面ABCD建立如图的直角坐标系,则各点的坐标分别为:(0O ,0,0),(0A ,1,0),(1B -,0,0),(0C ,1-,0),(1D ,0,0),(0E ,1-,1),(0F ,1,1),(0M ,0,1).(2BD =,0,0),(1DF =-,1,1),(0AM =,1-,1),∴0AM BD =,0110AM DF =-+=, AM BD ∴⊥,AM DF ⊥,BD DF D =,,BD DF ⊂平面BDF ,AM ∴⊥平面BDF ,AM ⊂平面ACEF ,所以平面ACEF ⊥平面BDF(2)由2AB =,1AF =,得3==DF DE ,M 是线段EF 的中点,DM EF ,连接BM ,由于2222,,DM OM OD MB OM OB OB OD =+=+=,得2BM DM ==,又2BD =,222DM BM BD += DM BM ∴⊥,又BM EF M =,,MB EF ⊂平面BEF , DM ∴⊥平面BEF .(3)由(1)得,(0AM =,1-,1)是平面BDF 的一个法向量.又AF ⊥平面ABCD 得AF CD ⊥,又CD DA ⊥ ,故(1,1,0)DC =--是平面ADF 的一个法向量, 故cos AM <,11222DC >==⨯ 二面角A DF B --为锐角,∴二面角A DF B --为60.22.已知圆22:(3)9M x y -+=.设()2,0D ,过点D 作斜率非0的直线1l ,交圆M 于P 、Q 两点.(1)过点D 作与直线1l 垂直的直线2l ,交圆M 于EF 两点,记四边形EPFQ 的面积为S ,求S 的最大值;(2)设()6,0B ,过原点O 的直线OP 与BQ 相交于点N ,试讨论点N 是否在定直线上,若是,求出该直线方程;若不是,说明理由.【答案】(1)17;(2)点N 在定直线6x =-上.【分析】(1)由题意设出直线1l ,2l 方程,利用点到直线的距离公式,弦长公式以及基本不等式即可解决问题;(2)利用圆与直线的方程,写出韦达定理,求出直线OP 与直线BQ 的方程,且交于点N ,联立方程求解点N 即可证明结论.【详解】(1)由圆22:(3)9M x y -+=知,圆心为()3,0M ,半径3r =,因为直线1l 过点()2,0D 且斜率非0,所以设直线1l 方程为:()02y k x -=-,即20kx y k --=,则点M 到直线1l的距离为:1d =所以PQ == 由12l l ⊥,且直线2l 过点D ,所以设直线2l 方程为:()102y x k -=--,即20x ky +-=, 则点M 到直线2l的距离为:2d =所以EF ====故1122S EF PQ =⋅⋅=⋅2=()2217122171k k +=⨯=+,当且仅当2289981k k k +=+⇒=±时取等号,所以四边形EPFQ 的面积S 的最大值为17.(2)点N 在定直线6x =-上.证明:设()()1122,,,P x y Q x y ,直线PQ 过点D ,则设直线PQ 方程为:2x my =+,联立()22239x my x y =+⎧⎪⎨-+=⎪⎩,消去x 整理得: ()221280m y my +--=,12122228,11m y y y y m m -+==++, 所以()1212121244y y m my y y y y y +=-⇒=-+, 由111100OP y y k x x -==-, 所以直线OP 的方程为:11y y x x =, 2222066BQ y y k x x -==--, 所以直线BQ 的方程为:()2266y y x x =--, 因为直线OP 与直线BQ 交于点N , 所以联立()112266y y x x y y x x ⎧=⎪⎪⎨⎪=-⎪-⎩, 所以()12121266N x y x x y y x =-- ()()()12121262226my y my y y my +=+-+-⎡⎤⎣⎦ 12212212161224my y y my y y my y y +=+-+ 12221362my y y y y +=+ ()()122213462y y y y y ⨯-⨯++=+ 12212212112126126622y y y y y y y y y --+--===-++, 所以6N x =-,所以点N 在定直线6x =-上.。

高二上学期期末教学质量检测数学理科试题

高二上学期期末教学质量检测数学理科试题

高二上学期期末教学质量检测数学理科试题注意:1、全卷满分150分,考试时间120分钟.编辑人:丁济亮2、考生务必将自己的姓名、考号、班级、学校等填写在答题卡指定位置;交卷时只交答题卡.一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.将选项代号填涂在答题卡上相应位置. 1.命题“,||1x R x ∃∈<使得”的否定是 ( )A .,||1x R x ∀∈<都有B .,11x R x x ∀∈≤-≥都有或C .,||1x R x ∃∈≥都有D .,||1x R x ∃∈>都有2.设抛物线的顶点在原点,准线方程为2-=x ,则抛物线方程是( )A .x y 82-=,B .x y 42-=C .x y 82=D .x y 42=3.设随机变量X ~N (0,1) ,已知( 1.96)0.025P X <-=,则( 1.96)P X <= ( )A .0.025B .0.050C .0.950D .0.9754.不等式01>-xx 成立的充分不必要条件是( ) A .1>x B .1->xC .1-<x 或10<<xD .01<<-x 或1>x5.某程序框图如右图所示,则程序运行后输出的S 值为( )A .6-B .10-C .15-D .106.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .929B .1029C .1929D .20297.从编号为1~60的60枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用系统抽样方法抽取5枚导弹的编号可能是( ) A .1,3,4,7,9,5, B .10,15,25,35,45 C .5,17,29,41,53D .3,13,23,33,438.已知圆22:4C x y +=,直线:1l x y +=,则圆C的概率为( ) A .14 B .34C .314ππ- D .24ππ+ 9.“中国农谷杯”2012全国航模锦标赛于10月12日在荆门开幕,文艺表演结束后,在7所高水平的高校代表队中,选择5所高校进行航模表演.如果M 、N 为必选的高校,并且在航模表演过程中必须按先M 后N 的次序(M 、N 两高校的次序可以不相邻),则可选择的不同航模表演顺序有( ) A .120种 B .240种 C .480种 D .600种10.过双曲线)0,0(12222>>=-b a by a x 的左焦点1F 作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为A 、B ,若F =1,则双曲线的渐近线方程为( ) A .03=±y xB .03=±y xC .032=±y xD .023=±y x二.填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上) 11.把二进制数110 011)2(化为十进制数为 ▲ ; 12.正二十边形的对角线的条数是 ▲ ;13.NBA 某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如右图所示:则中位数与众数分别为 ▲ 和 ▲ .14.已知F 是抛物线24y x =的焦点, A 、B 是抛物线上两点,若AFB ∆是正三角形,则AFB ∆ 的边长为 ▲ ; 15.下列四个命题:① 命题P :03222≤-+-x x x ;则P ⌝命题是;03222>-+-x x x ;②102)1(kx +(k 为正整数)的展开式中,16x 的系数小于90,则k 的值为1; ③从总体中抽取的样本错误!未找到引用源。

高二数学(理)上学期期末试卷及答案

高二数学(理)上学期期末试卷及答案

上学期期末考试 高二数学(理科)试卷考试时间:120分钟 试题分数:150分卷Ⅰ一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 对于常数m 、n ,“0mn <”是“方程221mx ny +=的曲线是双曲线”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 2. 命题“所有能被2整除的数都是偶数”的否定..是 A .所有不能被2整除的数都是偶数 B .所有能被2整除的数都不是偶数 C .存在一个不能被2整除的数是偶数 D .存在一个能被2整除的数不是偶数3. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为7,则P 到另一焦点距离为 A .2 B .3 C .5 D .74 . 在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()()p q ⌝∨⌝ B .()p q ∨⌝ C .()()p q ⌝∧⌝ D .p q ∨5. 若双曲线22221x y a b-=3A .2± B. 12± C. 2 D.22±6. 曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为2212 D. 12-7. 已知椭圆)0(1222222>>=+b a b y a x 的焦点与双曲线12222=-bx a y 的焦点恰好是一个正方形的四个顶点,则抛物线2bx ay =的焦点坐标为 A. )0,43(B. )0,123(C. )123,0( D.)43,0( 8.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为123,,P P P ,① ② ③若屋顶斜面与水平面所成的角都是α,则A. 123P P P ==B. 123P P P =<C. 123P P P <=D. 123P P P <<9. 马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件10. 设0>a ,c bx ax x f ++=2)(,曲线)(x f y =在点P ()(,00x f x )处切线的倾斜角的取值范围是]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为A. ]1,0[aB. ]21,0[aC. ]2,0[a bD. ]21,0[a b - 11. 已知点O 在二面角AB αβ--的棱上,点P 在α内,且60POB ∠=︒.若对于β内异于O 的任意一点Q ,都有60POQ ∠≥︒,则二面角AB αβ--的大小是A. 30︒B.45︒C. 60︒D.90︒12. 已知双曲线22221(0,0)x y a b a b-=>>的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠F AF ,2tan 12-=∠F AF ,则双曲线方程为 A . 1312522=-y x B .1351222=-y x C .1512322=-y x D .1125322=-y x 卷Ⅱ二、填空题:本大题共4小题,每小题5分,共20分.13. 正方体1111ABCD A B C D -中,M 是1DD 的中点,O 为底面正方形ABCD 的中心,P 为棱11A B 上任意一点,则直线OP 与直线AM 所成的角为 . 14. 函数2()ln '(1)54f x x f x x =-+-,则(1)f =________.15.已知b a,是夹角为60的两单位向量,向量b c a c⊥⊥,,且||1c =,c b a y c b a x -+-=+-=3,2,则><y x,cos = .16. 过抛物线22(0)x py p =>的焦点F 作倾斜角为45的直线,与抛物线分别交于A 、B 两点(A 在y 轴左侧),则AFFB= . 三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)过点(1,1)-作函数3()f x x x =-的切线,求切线方程.18.(本小题满分12分)已知集合{}|(1)(2)0A x ax ax =-+≤,集合{}|24.B x x =-≤≤ 若x B ∈是x A ∈的充分不必要条件,求实数a 的取值范围.19.(本小题满分12分) 如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=,PA ⊥底面ABCD ,且2PA AD AB BC ===,,M N 分别为,PC PB 的中点.(Ⅰ)求证:PB DM ⊥;(Ⅱ)求CD 与平面ADMN 所成的角的正弦值.20. (本小题满分12分)已知三棱柱'''C B A ABC -如图所示,四边形''B BCC 为菱形,o BCC 60'=∠,ABC ∆为等边FE C 'B'AA'CB三角形,面⊥ABC 面''B BCC ,F E 、分别为棱'CC AB 、的中点. (Ⅰ)求证://EF 面''BC A ;(Ⅱ)求二面角B AA C --'的大小.21. (本小题满分12分)已知椭圆22122:1(0)x y C a b a b +=>>的离心率为2,且椭圆上点到左焦点距离的最小值为1.(Ⅰ)求1C 的方程;(Ⅱ)设直线l 同时与椭圆1C 和抛物线22:4C y x =相切,求直线l 的方程.22. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>过点,直线(1y k x =-)(0)k ≠与椭圆C 交于不同的两点M N 、,MN 中点为P ,O 为坐标原点,直线OP 斜率为12k-. (Ⅰ)求椭圆C 的方程;(Ⅱ)椭圆C 的右顶点为A ,当AMN ∆k 的值.xyz参考答案一.选择题CDBAC CDABB DB 二.填空题2π1- 5216- 322-三.解答题17.解:设切点为3(,)m m m -,则切线方程为32(31)()y m m m x m -+=--,┅┅┅┅┅┅2分将点(1,1)-带入,解得0m =或32, ┅┅┅┅┅┅┅ 8分 所以切线方程为y x =-或234270x y --= ┅┅┅┅┅┅┅10分 18.解:(1)0a >时,21[,]A a a =-,若x B ∈是x A ∈的充分不必要条件,所以212,4a a-≥-≤, 104a <≤,检验14a =符合题意;┅┅┅┅┅┅┅4分(2)0a =时,A R =,符合题意;┅┅┅┅┅┅┅8分(3)0a <时,12[,]A a a =-,若x B ∈是x A ∈的充分不必要条件,所以122,4a a-≥≤-,102a -≤<,检验12a =-不符合题意.综上11(,]24a ∈-.┅┅┅┅┅┅┅12分19. 解如图,以A 为坐标原点建立空间直角坐标系A xyz -,设1BC =,则 1(0,0,0),(0,0,2),(2,0,0),(2,1,0),(1,,1),(0,2,0)2A P B C M D .(I ) 因为3(2,0,2)(1,,1)2PB DM ⋅=-⋅-0=,所以.PB DM ⊥(II ) 因为(2,0,2)(0,2,0)PB AD ⋅=-⋅0=,所以PB AD ⊥, 又因为PB DM ⊥,所以PB ⊥平面.ADMN因此,PB DC <>的余角即是CD 与平面ADMN 所成的角. 因为cos ,||||PB DC PB DC PB DC ⋅<>=⋅105=,所以CD 与平面ADMN 所成的角的正弦为510 20. (Ⅰ)证明(方法一)取B A '中点D ,连接DC ED ,,因为D E ,分别为B A AB ',中点,所以'//,'21AA ED AA ED =,┅┅┅┅┅┅┅3分 所以CF ED CF ED //,=,所以四边形EFCD 为平行四边形,所以CD EF //,又因为BC A CD BC A EF ''面,面⊂⊄,所以//EF 面BC A ';┅┅┅┅┅┅┅6分(方法二)取'AA 中点G ,连接FG EG ,, 因为G E ,分别为',AA AB 中点,所以B A EG '//又因为G F ,分别为','AA CC 中点,所以''//C A FG ┅┅┅┅┅┅┅3分且G GF EG EFG GF EFG EG =⊂⊂ ,,面面,'''',''',''''A B A C A BC A B A BC A C A =⊂⊂ 面面所以面//EFG 面''BC A ,又⊂EF 面EFG ,所以//EF 面BC A '┅┅┅┅┅┅6分 (方法三)取BC 中点O ,连接',OC AO ,由题可得BC AO ⊥,又因为面⊥ABC 面''B BCC ,所以⊥AO 面''B BCC ,又因为菱形''B BCC 中oBCC 60'=∠,所以BC O C ⊥'. 可以建立如图所示的空间直角坐标系 ┅┅┅┅┅┅┅7分 不妨设2=BC ,可得)0,0,1(C ,)0,3,0('C)3,0,0(A ,)0,0,1(-B ,)3,3,1('-A ,)0,3,2('-B ,所以)0,23,21(),23,0,21(F E -所以)3,3,0('),0,3,1('),23,23,1(==-=BA BC EF ,┅┅┅┅┅┅┅9分 设面BC A '的一个法向量为),,(c b a n =,则⎩⎨⎧=+=+03303c b b a ,不妨取3=a ,则)1,1,3(),,(-=c b a ,所以0=⋅n,又因为⊄EF 面BC A ',所以//EF 面BC A '.┅┅┅┅┅┅┅12分 (Ⅱ)(方法一)过F 点作'AA 的垂线FM 交'AA 于M ,连接BF BM ,.因为'//','AA CC CC BF ⊥,所以'AA BF ⊥,所以⊥'AA 面MBF , 所以BMF ∠为二面角B AA C --'的平面角. ┅┅┅┅┅┅┅8分因为面⊥ABC 面''B BCC ,所以A 点在面''B BCC 上的射影落在BC 上,所以41cos 'cos 'cos =∠∠=∠ACB BCC ACC , 所以AC MF ACC ==∠415'sin ,不妨设2=BC ,所以215=MF ,同理可得215=BM .┅┅┅┅┅┅┅10分 所以532153415415cos =-+=∠BMF ,所以二面角B AA C --'的大小为53arccos ┅┅┅┅┅┅┅12分(方法二)接(Ⅰ)方法三可得)0,3,1('),3,0,1(-=--=AA AB ,设面B AA '的一个法向量为),,(1111z y x n =,则⎩⎨⎧=+-=--03031111y x z x ,不妨取31=x ,则)1,1,3(),,(111-=z y x .┅┅┅┅┅┅┅8分又)0,3,1('),3,0,1(-=-=AA AC ,设面C AA '的一个法向量为),,(2222z y x n =,则⎩⎨⎧=+-=-03032222y x z x ,不妨取32=x ,则)1,1,3(),,(222=z y x .┅┅┅┅┅┅┅10分 所以53||||,cos 212121=⋅⋅>=<n n n n n n ,因为二面角B AA C --'为锐角,所以二面角B AA C --'的大小为53arccos ┅┅┅┅┅┅┅12分21.解:(Ⅰ)设左右焦点分别为)0,(),0,(21c F c F -,椭圆上点P 满足,2||||2,2||||2121c PF PF c a PF PF ≤-≤-=+所以,||1c a PF c a +≤≤-P 在左顶点时||1PF 取到最小值12-=-c a ,又21=a c ,解得1,1,2===b c a ,所以1C 的方程为 1222=+y x .(或者利用设),(y x P 解出x aca PF +=||1得出||1PF 取到最小值12-=-c a ,对于直接说明P 在左顶点时||1PF 取到最小值的,酌情扣分);┅┅┅┅┅┅┅4分(Ⅱ)由题显然直线l 存在斜率,所以设其方程为m kx y +=,┅┅┅┅┅┅┅5分联立其与1222=+y x ,得到 0224)21(222=-+++m kmx x k ,0=∆,化简得01222=--k m ┅┅┅┅┅┅┅8分联立其与22:4C y x =,得到042=+-m y y k ,0=∆,化简得01=-km ,┅┅┅┅┅┅┅10分 解得2,22==m k 或2,22-=-=m k所以直线l 的方程为222+=x y 或222--=x y ┅┅┅┅┅┅┅12分 22. 解:(Ⅰ)由题可得直线过点(1,0),在椭圆内,所以与椭圆一定相交,交点设为),(),,(2211y x N y x M ,则2121x x y y k --=,OP 斜率为2121x x y y ++,所以2122212221-=--x x y y ,┅┅┅┅┅┅┅3分又1221221=+b y a x ,1222222=+b y a x ,所以02222122221=-+-by y a x x ,所以222b a =,又 11222=+ba ,解得2,422==b a ,所以椭圆C 的方程为12422=+y x ;┅┅┅┅┅┅┅6分 (Ⅱ)(1y k x =-)与椭圆C 联立得:0424)21(2222=-+-+k x k x k ,┅┅┅┅┅┅┅8分AMN ∆面积为31021)32(82||||2||||21222121=++=-=-kk k x x k y y , 解得1±=k .┅┅┅┅┅┅┅12分。

山东省德州市某重点中学2021-2022学年高二上学期期末考试数学理试题 Word版含答案

山东省德州市某重点中学2021-2022学年高二上学期期末考试数学理试题 Word版含答案

高二上学期期末考试数学试题(理)留意事项:1.答卷前,考生务必用钢笔或签字笔将自己的班别、姓名、考号填写在答题纸和答题卡的相应位置处。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

3.非选择题答案必需写在答题纸相应位置处,不按要求作答的答案无效。

4.考生必需保持答题卡的洁净,考试结束后,将答题卡和答题纸一并收回。

第I卷(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分)1. 数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n可以等于()A. (-1)n+12 B. cosnπ2 C. cosn+12π D. cosn+22π2. 设a<b<0,则下列不等式中不成立的是()A. 1a>1b B.1a-b>1a C. |a|>-b D. -a>-b3. 有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为()A.1 B.2sin 10°C.2cos 10°D.cos 20°4. 等差数列{a n}前n项和为S n,若a1=-11,a4+a6=-6,则当S n取最小值时,n等于()A. 6B. 7C. 8D. 95. 一个等比数列的前三项的积为3,最终三项的积为9,且全部项的积为729,则该数列的项数是()A. 13B. 12C. 11D. 106. 双曲线C:x2a2-y2b2=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A. x280-y220=1 B.x220-y280=1 C.x220-y25=1 D.x25-y220=17. 若a>0,b>0,且ln(a+b)=0,则1a+1b的最小值是()A.14 B. 1 C. 4 D. 88. 如图所示,平行六面体ABCD—A1B1C1D1中,M为A1C1与B1D1的交点.若AB→=a,AD→=b,AA1→=c,则下列向量中与BM→相等的向量是 ()A.-12a+12b+c B.12a+12b+cC.-12a-12b+c D.12a-12b+c9. 数列}{na的前n项和为nS,511=a,且对任意正整数m,n,都有nmnmaaa⋅=+,若tSn<恒成立,则实数t的最小值为()A.4B.34C.43D.4110.过双曲线2222100x y(a,b)a b-=>>的左焦点0F(c,)-作圆222x y a+=的切线,切点为E,延长FE交抛物线24y cx=于点P,O为原点,若12OE(OF OP)=+,则双曲线离心率为()A.152+B.333+C.52D.132+第Ⅱ卷(非选择题共100分)二、填空题(本大题共5小题,每小题5分,共25分)11. 若点P到直线y=-3的距离等于它到点(0,3)的距离,则点P的轨迹方程是_________.12.推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin21°+sin22°+sin23°+…+sin288°+sin289°=________________.13. 已知△ABC的面积为32,AC=3,∠ABC=π3,则△ABC的周长等于_________________.14. 若x<m-1或x>m+1是x2-2x-3>0的必要不充分条件,则实数m的取值范围是_______.15. 已知变量x ,y 满足条件⎩⎨⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是_____________________. 三、解答题(本大题共6小题,共75分) 16. (本小题满分12分)设p :关于x 的不等式 a x >1的解集是 {x |x <0} ;q :函数y =ax 2-x +a 的定义域为R . 若 p ∨q 是真命题,p ∧q 是假命题,求实数a 的取值范围.17. (本小题满分12分)已知△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c . (1) 若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值; (2) 若sin C +sin(B -A )=sin 2A ,试推断△ABC 的外形.18.(本小题满分12分)已知数列{a n }的各项均为正数,前n 项和为S n ,且 S n =a n (a n +1)2, n ∈N *.(1) 求证:数列{a n }是等差数列;(2) 设b n =12S n ,T n =b 1+b 2+…+b n ,求T n .19.(本小题满分12分)某市近郊有一块大约500500m m ⨯的接近正方形的荒地,地方政府预备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地外形相同),塑胶运动场地占地面积为S 平方米.(1) 分别用x 表示y 和S 的函数关系式,并给出定义域;(2) 怎样设计能使S 取得最大值,并求出最大值.20. (本小题满分13分)已知四边形ABCD 是菱形,060BAD ∠=,四边形BDEF 是矩形 ,平面BDEF ⊥平面ABCD ,G H 、分别是CE CF 、的中点. (1) 求证 : 平面//AEF 平面BDGH ; (2) 若平面BDGH 与平面ABCD 所成的角为060,求直线CF 与平面BDGH 所成的角的正弦值.21.(本小题满分14分)已知椭圆C 的中心在原点,焦点在x 轴上,离心率为12,短轴长为3. (1) 求椭圆C 的标准方程;(2) 直线x =2与椭圆C 交于P 、Q 两点,A 、B 是椭圆O 上位于直线PQ 两侧的动点,且直线AB的斜率为12。

高二上学期期末考试(理科)数学试卷-附带答案

高二上学期期末考试(理科)数学试卷-附带答案

高二上学期期末考试(理科)数学试卷-附带答案一.选择题(共12小题,满分60分,每小题5分) 1.(5分)不等式2x−1x+2≥3的解集为( ) A .{x |﹣2<x ≤12}B .{x |x >﹣2}C .{x |﹣7≤x <﹣2}D .{x |﹣7≤x ≤﹣2}2.(5分)已知p :∀x ∈R ,(x +1)2<(x +2)2;q :∃x ∈R ,x =1﹣x 2,则( ) A .p 假q 假B .p 假q 真C .p 真q 真D .p 真q 假3.(5分)若实数a ,b 满足ab =1(a ,b >0),则a +2b 的最小值为( ) A .4B .3C .2√2D .24.(5分)已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直,则实数m 的值为( ) A .﹣3B .−13C .13D .15.(5分)已知F 1,F 2是椭圆C :x 24+y 23=1的左、右焦点,点P 在椭圆C 上.当∠F 1PF 2最大时,求S △PF 1F 2=( ) A .12B .√33C .√3D .2√336.(5分)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c 且B =2A ,则c b−a的取值范围是( )A .(0,3)B .(1,2)C .(2,3)D .(1,3)7.(5分)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A .4B .92C .5D .68.(5分)已知直线l :y =kx +m (m <0)过双曲线C :x 2a 2−y 22=1的左焦点F 1(﹣2,0),且与C 的渐近线平行,则l 的倾斜角为( ) A .π4B .π3C .2π3D .3π49.(5分)“a +1>b ﹣2”是a >b ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(5分)已知函数f (x )=ax 2﹣3ax +a 2﹣3(a <0),且不等式f (x )<4对任意x ∈[﹣3,3]恒成立,则实数a 的取值范围为( ) A .(−√7,√7)B .(﹣4,0)C .(−√7,0)D .(−74,0)11.(5分)古代城池中的“瓮城”,又叫“曲池”,是加装在城门前面或里面的又一层门,若敌人攻入瓮城中,可形成“瓮中捉鳖”之势.如下图的“曲池”是上、下底面均为半圆形的柱体.若AA 1⊥面ABCD ,AA 1=3,AB =4,CD =2,E 为弧A 1B 1的中点,则直线CE 与平面DEB 1所成角的正弦值为( )A .√39921B .√27321C .2√4221D .√422112.(5分)关于x 的方程2|x +a |=e x 有三个不同的实数解,则实数a 的取值范围是( ) A .(﹣∞,1] B .[1,+∞) C .(﹣∞,l ﹣ln 2]D .(1﹣ln 2,+∞)二.填空题(共4小题,满分20分,每小题5分)13.(5分)若不等式ax 2+bx ﹣2>0的解集为(﹣4,1),则a +b 等于 .14.(5分)如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圆内一点P ,若OC →=m OA →+2mOB →,AP →=λAB →则λ= .15.(5分)公差不为0的等差数列{a n }的前n 项和为S n ,若a 2,a 5,a 14成等比数列S 5=a 32,则a 10= .16.(5分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与不过坐标原点O 的直线l :y =kx +m 相交于A 、B 两点,线段AB 的中点为M ,若AB 、OM 的斜率之积为−34,则椭圆C 的离心率为 . 三.解答题(共6小题,满分70分)17.(10分)已知x ,y 满足的约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0(1)求z 1=9x ﹣4y 的最大值与最小值; (2)求z 2=x+2y+4x+2的取值范围. 18.(12分)已知函数f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx . (1)求f(π6)的值;(2)在锐角△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若f(A2)=1,a =2,求b +c 的取值范围.19.(12分)已知双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2. (Ⅰ)求双曲线的标准方程;(Ⅱ)若抛物线y 2=2px (p >0)的焦点F 与该双曲线的一个焦点相同,点M 为抛物线上一点,且|MF |=3,求点M 的坐标.20.(12分)如图,在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB ,E ,F ,M 分别是PB ,CD ,PD 的中点. (1)证明:EF ∥平面P AD ;(2)求平面AMF 与平面EMF 的夹角的余弦值.21.(12分)已知A 、B 是椭圆x 24+y 2=1上两点,且OA →⋅OB →=0.(O 为坐标原点)(1)求证:1|OA|2+1|OB|2为定值,并求△AOB 面积的最大值与最小值;(2)过O 作OH ⊥AB 于H ,求点H 的轨迹方程.22.(12分)已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是S n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n +1)在直线x ﹣y +2=0上.求数列{a n }、{b n }的通项公式.参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分) 1.【解答】解:由2x−1x+2≥3得,2x−1x+2−3≥0即x+7x+2≤0解得,﹣7≤x <﹣2. 故选:C .2.【解答】解:对于命题p :∀x ∈R ,(x +1)2<(x +2)2,当x =﹣2时,不等式(x +1)2<(x +2)2不成立所以命题p 为假命题对于命题q :∃x ∈R ,x =1﹣x 2,方程x 2+x ﹣1=0的判别式Δ=1+4=5>0,故方程有解,即∃x ∈R ,x =1﹣x 2,故命题q 为真命题. 所以p 假q 真. 故选:B .3.【解答】解:因为ab =1(a ,b >0),所以a +2b ≥2√2ab =2√2 当且仅当a =2b 且ab =1即b =√22,a =√2时取等号 所以a +2b 的最小值为2√2. 故选:C .4.【解答】解:已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直 故a →⋅b →=m +1+2m =0,故m =−13. 故选:B .5.【解答】解:由椭圆的性质可知当点P 位于椭圆的上下顶点时,∠F 1PF 2最大由椭圆C :x 24+y 23=1,可得|OP |=√3,|F 1F 2|=2c =2√4−3=2所以S △PF 1F 2=12|OP |•|F 1F 2|=12×√3×2=√3. 故选:C .6.【解答】解:由正弦定理可知c b−a=sinC sinB−sinA=sin(B+A)sinB−sinA=sin3A sin2A−sinA=2sin3A 2cos 3A 22cos 3A 2sinA 2=sin3A2sinA 2=sin A 2cosA+2cos 2A 2sinA 2sinA2=2cos A +1∵A +B +C =180°,B =2A∴3A +C =180°,A =60°−C 3<60° ∴0<A <60° ∴12<cos A <1则2<2cos A +1<3. 故c b−a的取值范围是:(2,3).故选:C .7.【解答】解:∵F (1,0),根据题意设y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2) 联立{y =k(x −1)y 2=4x ,可得k 2x 2﹣(2k +4)x +k 2=0∴{x 1+x 2=2k+4k2x 1x 2=1,又|AF |=2|BF |∴1+x 1=2(1+x 2) ∴x 1=1+2x 2,又x 1x 2=1 ∴x 2=12,x 1=2∴|AB |=p +x 1+x 2=2+2+12=92故选:B .8.【解答】解:设l 的倾斜角为α,α∈[0,π). 由题意可得k =−ba ,(﹣2)2=a 2+2,b 2=2,a ,b >0 解得a =√2=b∴k =tan α=﹣1,α∈[0,π). ∴α=3π4 故选:D .9.【解答】解:由a +1>b ﹣2,可得a >b ﹣3由a >b ﹣3不能够推出a >b ,故“a +1>b ﹣2”是“a >b ”的不充分条件 由a >b ,可推出a >b ﹣3成立,故“a +1”>b ﹣2”是a >b ”的必要条件 综上“a +1>b ﹣2”是“a >b ”的必要不充分条件 故选:B .10.【解答】解:由不等式f (x )<4对任意x ∈[﹣3,3]恒成立 即ax 2﹣3ax +a 2﹣7<0对任意x ∈[﹣3,3]恒成立 ∵a <0,对称轴x =32∈[﹣3,3] ∴只需x =32<0即可可得a ×94−32×3a +a 2−7<0. 即(4a +7)(a ﹣4)<0 解得−74<a <4 ∴−74<a <0. 故选:D .11.【解答】解:因为AA 1⊥平面ABCD ,AB ⊂平面ABCD ,则AA 1⊥AB由题意可以点A 为原点,AB 所在直线为y 轴,AA 1所在直线为z 轴,平面ABCD 内垂直于AB 的直线为x 轴建立空间直角坐标系,如图所示则A (0,0,0),B (0,4,0),C (0,3,0),D (0,1,0),A 1(0,0,3) B 1(0,4,3),C 1(0,3,3),D 1(0,1,3) 又因为E 为A 1B 1的中点,则E (2,2,3)则B 1E →=(2,−2,0),B 1D →=(0,﹣3,﹣3),CE →=(2,−1,3) 设平面DEB 1的法向量n →=(x ,y ,z ),则{B 1E →⋅n →=2x −2y =0B 1D →⋅n →=−3y −3z =0令x =1,则y =1,z =﹣1,则n →=(1,1,−1) 设直线CE 与平面DE B 1所成角为θ 则sinθ=|cos <CE →,n →>|=|CE →⋅n →||CE →||n →|=2√14×√3=√4221. 故选:D .12.【解答】解:由已知有方程2|x+a|=e x有三个不同的实数解可转化为y=|x+a|的图象与y=12ex的图象有三个交点设直线y=x+a的图象与y=12e x相切于点(x0,y0)因为y′=12e x所以{ y 0=x 0+a y 0=12e x 012e x=1解得:{x 0=ln2y 0=1a =1−ln2 要使y =|x +a |的图象与y =12e x 的图象有三个交点 则需a >1﹣ln 2即实数a 的取值范围是(1﹣ln 2,+∞) 故选:D .二.填空题(共4小题,满分20分,每小题5分)13.【解答】解:∵不等式ax 2+bx ﹣2>0的解集为(﹣4,1) ∴﹣4和1是ax 2+bx ﹣2=0的两个根 即{−4+1=−ba −4×1=−2a解得{a =12b =32; ∴a +b =12+32=2. 故答案为:2.14.【解答】解:根据条件知,OP →与OC →共线; ∵AP →=λAB →;∴OP →−OA →=λ(OB →−OA →); ∴OP →=(1−λ)OA →+λOB →; 又OC →=m OA →+2mOB →; ∴λ=2(1﹣λ); ∴λ=23. 故答案为:23.15.【解答】解:设数列的公差为d ,(d ≠0) ∵S 5=a 32,得:5a 3=a 32 ∴a 3=0或a 3=5;∵a 2,a 5,a 14成等比数列 ∴a 52=a 2•a 14∴(a 3+2d )2=(a 3﹣d )(a 3+11d )若a 3=0,则可得4d 2=﹣11d 2即d =0不符合题意 若a 3=5,则可得(5+2d )2=(5﹣d )(5+11d ) 解可得d =0(舍)或d =2 ∴a 10=a 3+7d =5+7×2=19 故答案为:19.16.【解答】解:设A (x 1,y 1),B (x 2,y 2).线段AB 的中点M (x 0,y 0). ∵x 12a 2+y 12b 2=1,x 22a 2+y 22b 2=1 相减可得:(x 1+x 2)(x 1−x 2)a 2+(y 1+y 2)(y 1−y 2)b 2=0把x 1+x 2=2x 0,y 1+y 2=2y 0,y 1−y 2x 1−x 2=k 代入可得:2x 0a 2+2y 0k b 2=0又y 0x 0•k =−34,∴1a 2−34b 2=0,解得b 2a 2=34. ∴e =√1−b 2a2=12.故答案为:12.三.解答题(共6小题,满分70分)17.【解答】解:(1)由z 1=9x ﹣4y ,得y =94x −14z 1 作出约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0对应的可行域(阴影部分)平移直线y =94x −14z 1,由平移可知当直线y =94x −14z 1经过点C 时,直线y =94x −14z 1的截距最小,此时z 取得最大值 由{x +y −3=05x +2y −18=0,解得C (4,﹣1). 将C (4,﹣1)的坐标代入z 1=9x ﹣4y ,得z =40 z 1=9x ﹣4y 的最大值为:40. 由{x +y −3=02x −y =0解得B (1,2)将B (1,2)的坐标代入z 1=9x ﹣4y ,得z =1 即目标函数z =9x ﹣4y 的最小值为1. (2)z 2=x+2y+4x+2=1+2•y+1x+2,所求z 2的取值范围. 就是P (﹣2,﹣1)与可行域内的点连线的斜率的2倍加1的范围 K PC =0.由{5x +2y −18=02x −y =0解得A (2,4),K P A =4+12+2=54 ∴z 2的范围是:[1,72].18.【解答】解:(1)f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx =sin(π4+x)cos(π4+x)+√3sinxcosx =12sin(π2+2x)+√32sin2x=12cos2x +√32sin2x=sin(2x +π6) 所以f(π6)=sin(2×π6+π6) =sin π2 =1;(2)f(A2)=sin(A +π6)=1 在锐角三角形中0<A <π2所以π6<A +π6<2π3故A +π6=π2,可得A =π3 因为a =2,由正弦定理bsinB=c sinC=a sinA=√32=4√33所以b +c =4√33(sinB +sinC) =4√33[sinB +sin(2π3−B)] =4√33(sinB +√32cosB +12sinB) =4√33(32sinB +√32cosB) =4sin(B +π6) 又B +C =2π3,及B ,C ∈(0,π2) 所以B ∈(π6,π2) 所以B +π6∈(π3,2π3) 则b +c =4sin(B +π6)∈(2√3,4].19.【解答】解:(Ⅰ)由题意设所求双曲线方程为x 2a 2−y 2b 2=1又双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2 则a =1,c =2 即b 2=c 2﹣a 2=3即双曲线方程为x 2−y 23=1;(Ⅱ)由(Ⅰ)可知F (2,0) 则p =4即抛物线的方程为y 2=8x 设点M 的坐标为(x 0,y 0) 又|MF |=3 则x 0+2=3则x 0=1,y 0=±2√2即点M 的坐标为(1,2√2)或(1,﹣2√2).20.【解答】(1)证明:取P A 的中点N ,连接EN ,DN ,如图所示: 因为E 是PB 的中点,所以EN ∥AB ,且EN =12AB又因为四边形ABCD 为正方形,F 是CD 的中点,所以EN ∥DF ,且EN =DF 所以四边形ENDF 为平行四边形,所以EF ∥DN因为EF ⊄平面P AD ,DN ⊂平面P AD ,所以EF ∥平面P AD ;(2)解:以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 、y 、z 轴 建立空间直角坐标系,如图所示:设AB =2,则E (1,0,1),F (1,2,0),P (0,0,2),D (0,2,0),M (0,1,1); 所以EM →=(−1,1,0) MF →=(1,1,−1),AF →=(1,2,0) 设平面AMF 的法向量为m →=(x ,y ,z ),则由m →⊥AF →,m →⊥MF →可得{x +2y =0x +y −z =0,令y =1,得m →=(−2,1,−1)设平面EMF 的法向量为n →=(a ,b ,c ),则由n →⊥MF →,n →⊥EM →可得{a +b −c =0−a +b =0,令b =1,得n →=(1,1,2)则cos <m →,n →>=m →⋅n →|m →||n →|=√4+1+1×√1+1+4=−12因为两平面的夹角范围是[0,π2]所以平面AMF 与平面EMF 夹角的余弦值为12.21.【解答】证明:(1)设A (r 1cos θ,r 1sin θ),B (r 2cos (90°+θ),r 2sin (90°+θ)),即B (﹣r 2sin θ,r 2cos θ) 则r 12cos 2θ4+r 12sin 2θ=1,r 22sin 2θ4+r 22cos 2θ=1,即1r 12=cos 2θ4+sin 2θ,1r 22=sin 2θ4+cos 2θ故1|OA|2+1|OB|2=1r 12+1r 22=54△AOB 面积为S =12r 1r 2=2√4sin θ+17sin θcos θ+4cos θ∵4sin 4θ+17sin 2θcos 2θ+4cos 2θ=(2sin 2θ+2cos 2θ)+9sin 2θcos 2θ=4+94sin 22θ ∴当sin2θ=0时,S 取得最大值1,当sin2θ=±1时,S 取值最小值45故△AOB 面积的最大值为1,最小值为45;(2)解:∵|OH ||AB |=|OA ||OB | ∴1|OH|2=|AB|2|OA|2|OB|2=r 12+r 22r 12+r 22=1r 12+1r 22=54∴|OH|2=45故点H 的轨迹方程为x 2+y 2=45.22.【解答】解:∵a n 是s n 与2的等差中项,∴2a n =S n +2,即S n =2a n ﹣2. ∴当n =1时,a 1=2a 1﹣2,解得a 1=2.当n ≥2时,a n =S n ﹣S n ﹣1=(2a n ﹣2)﹣(2a n ﹣1﹣2) 化为a n =2a n ﹣1∴数列{a n }是等比数列,首项为2,公比为2,a n =2n . ∵点P (b n ,b n +1)在直线x ﹣y +2=0上. ∴b n ﹣b n +1+2=0,即b n +1﹣b n =2∴数列{b n }是等差数列,首项为1,公差为2.∴b n=1+2(n﹣1)=2n﹣1.。

河南省郑州市2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

河南省郑州市2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

河南省郑州市2018-2019学年上期期末考试高二数学(理)第Ⅰ卷(选择题,共60分)一,选择题:本大题共有12个小题,每小题5分,共60分。

在每小题所给出地四个选项中,只有一项是符合题目要求地。

1.已知命题那么为()A. B.C. D.【结果】B【思路】【思路】依据全称命题地否定是特称命题即可写出结果.【详解】命题则为故选:B【点睛】本题考全称命题地否定形式,属于简单题.2.已知数列是等比数列,若则地值为()A. 4B. 4或-4C. 2D. 2或-2【结果】A【思路】【思路】设数列{a n}地公比为q,由等比数列通项公式可得q4=16,由a3=a1q2,计算可得.【详解】因故选:A【点睛】本题考查等比数列地性质以及通项公式,属于简单题.3.已知是实数,下面命题结论正确地是()A. “”是“”地充分款件B. ”是“”地必要款件C. “ac2>bc2”是“”地充分款件D. ” 是“”地充要款件【思路】【思路】依据不等式地性质,以及充分款件和必要款件地定义分别进行判断即可.【详解】对于,当时,满足,却,所以充分性不成立。

对于,当时,满足,却,所以必要性不成立。

对于,当时,成立,却,所以充分性不成立,当时,满足,却,所以必要性也不成立,故“” 是“”地既不充分也不必要款件,故选:C【点睛】本题主要考查不等式地性质以及充分款件,必要款件地判断,属于基础题.4.已知双曲线地一款渐近线与直线垂直,则双曲线地离心率为()A. B. C. D.【结果】A【思路】【思路】双曲线地渐近线方程为,由渐近线与直线垂直,得地值,从而得到离心率.【详解】由于双曲线地一款渐近线与直线垂直,所以双曲线一款渐近线地斜率为,又双曲线地渐近线方程为,所以,双曲线地离心率.故选:A【点睛】本题主要考查双曲线地渐近线方程和离心率,以及垂直直线斜率地关系.5.若等差数列地前项和为,且,则()A. B. C. D.【结果】C【思路】由得,再由等差数列地性质即可得到结果.【详解】因为为等差数列,所以,解得,故.故选:C【点睛】本题主要考查等差数列地前项和公式,以及等差数列性质(其中m+n= p+q)地应用.6.地内角地对边分别为,,, 则=()A. B. C. D.【结果】D【思路】【思路】先由二倍角公式得到cosB,然后由余弦定理可得b值.【详解】因为,所以由余弦定理,所以故选:D【点睛】本题考查余弦二倍角公式和余弦定理地应用,属于简单题.7.椭圆与曲线地()A. 焦距相等B. 离心率相等C. 焦点相同D. 准线相同【结果】A【思路】【思路】思路两个曲线地方程,分别求出对应地a,b,c即可得结果.【详解】因为椭圆方程为,所以,焦点在x轴上,曲线,因为,所以,曲线方程可写为,,所以曲线为焦点在y轴上地椭圆,,所以焦距相等.【点睛】本题考查椭圆标准方程及椭圆简单地几何性质地应用,属于基础题.8.在平行六面体(底面是平行四边形地四棱柱)ABCD-A1B1C1D1中,AB=AD=AA1=1,,则地长为()A. B. 6 C. D.【结果】C【思路】【思路】依据空间向量可得,两边平方即可得出结果.【详解】∵AB=AD=AA1=1,∠BAD=∠BAA1=∠DAA1=60°,∴===,∵,∴=6,∴|=.故选:C.【点睛】本题考查平行四面形法则,向量数量积运算性质,模地计算公式,考查了推理能力与计算能力.9.已知不等式地解集是,若对于任意,不等式恒成立,则t地取值范围()A. B. C. D.【结果】B【思路】【思路】由不等式地解集是,可得b,c地值,代入不等式f(x)+t≤4后变量分离得t≤2x2﹣4x﹣2,x ∈[﹣1,0],设g (x )=2x 2﹣4x ﹣2,求g(x)在区间[﹣1,0]上地最小值可得结果.【详解】由不等式地解集是可知-1和3是方程地根,,解得b=4,c=6,,不等式化为 ,令g (x )=2x 2﹣4x ﹣2,,由二次函数图像地性质可知g(x)在上单调递减,则g(x )地最小值为g(0)=-2,故选:B【点睛】本题考查一圆二次不等式地解法,考查不等式地恒成立问题,常用方式是变量分离,转为求函数最值问题.10.在中,角所对地边分别为,表示地面积,若,则( )A.B.C.D.【结果】D 【思路】【思路】由正弦定理,两角和地正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理,三角形面积公式可求角C,从而得到B 地值.【详解】由正弦定理及得,因为,所以。

江西省宜丰中学2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

江西省宜丰中学2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

江西省宜丰中学2018-2019学年高二上学期期末考试数学(理)一,选择题(每小题5分,共12小题60分)1.已知命题,下面命题中正确地是( )A. B.C. D.【结果】C【思路】试题思路:命题,使地否定为,使,故选C.考点:特称命题地否定.2.若,且,则实数地值是()A. B. C. D.【结果】D【思路】试题思路:由得,,∴,故.考点:向量垂直地充要款件.3.对于简单随机抽样,每个个体每次被抽到地机会( )A. 相等B. 不相等C. 无法确定D.与抽取地次数相关【结果】A【思路】【思路】依据简单随机抽样地概念,直接选出正确选项.【详解】依据简单随机抽样地概念可知,每个个体每次被抽到地机会相等,故选A.【点睛】本小题主要考查简单随机抽要地概念,属于基础题.4.如图,在三棱柱中,为地中点,若,则下面向量与相等地是( )A. B. C. D.【结果】A【思路】【思路】利用空间向量加法和减法地运算,求得地表达式.【详解】由于是地中点,所以.故选A.【点睛】本小题主要考查空间向量加法和减法地运算,考查化归与转化地数学思想方式,属于基础题.5.如图是2013年某大学自主招生面试环节中,七位评委为某考生打出地分数地茎叶统计图,去掉一个最高分和一个最低分后,所剩数据地平均数和众数依次为()A. B. C. D.【结果】A【思路】【思路】先去掉最高分和最低分,然后计算出平均数和众数.【详解】去掉最高分,去掉最低分,剩余数据为,故众数为,平均数为,故选A.【点睛】本小题主要考查平均数地计算,考查众数地识别,考查阅读理解能力,属于基础题. 6.计算机执行下面地算法步骤后输出地结果是( )A. 4,-2B. 4,1C. 4,3D. 6,0【结果】B【思路】【思路】依据程序运行地顺序,计算出输出地结果.【详解】运行程序,,,,输出,故选B.【点睛】本小题主要考查计算程序输出结果,考查程序语言地识别,属于基础题.7.过点且与抛物线只有一个公共点地直线有()A. 1款B. 2款C. 3款D. 4款【结果】C【思路】【思路】画出图像,依据图像判断符合题意地公共点个数.【详解】画出图像如下图所示,由图可知,这两款直线与抛物线只有一个公共点,另外过点还可以作出一款与抛物线相切地直线,故符合题意地直线有款,故选C.【点睛】本小题主要考查直线和抛物线地位置关系,考查直线和抛物线交点个数问题,属于基础题.8.一个均匀地正方体玩具地各面上分别标以数(俗称骰子),将该玩具向上抛掷一次,设事件A表示向上地一面出现奇数(指向上地一面地数是奇数),事件B表示向上地一面地数不超过3,事件C表示向上地一面地数不少于4,则()A. A与B是互斥事件 B. A与B是对立事件C. B与C是对立事件D. A与C是对立事件【结果】C【思路】【思路】分别求得事件所包含地基本事件,由此判断正确选项.【详解】依题意可知,,.故不是互斥事件,不是对立事件,是对立事件,不是对立事件.故选C.【点睛】本小题主要考查互斥事件和对立事件地概念,属于基础题.9.有下面调查方式:①学校为了解高一学生地数学学习情况,从每班抽2人进行座谈。

2022-2023学年四川省凉山州宁南中学高二年级上册学期期末考试数学(理)试题【含答案】

2022-2023学年四川省凉山州宁南中学高二年级上册学期期末考试数学(理)试题【含答案】

2022-2023学年四川省凉山州宁南中学高二上学期期末考试数学(理)试题一、单选题1.某单位职工老年人有30人,中年人有50人,青年人有20人,为了了解职工的建康状况,用分层抽样的方法从中抽取10人进行体检,则应抽查的老年人的人数为 A .3 B .5 C .2 D .1【答案】A【分析】先由题意确定抽样比,进而可求出结果. 【详解】由题意该单位共有职工305020100++=人, 用分层抽样的方法从中抽取10人进行体检,抽样比为10110010=, 所以应抽查的老年人的人数为130310⨯=. 故选A【点睛】本题主要考查分层抽样,会由题意求抽样比即可,属于基础题型. 2.已知,a b R ,则“220a b +=”是“0ab =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】根据充分条件和必要条件的定义进行判断即可. 【详解】若220a b +=,则0a b ,则0ab =成立. 而当0a =且1b =时,满足0ab =,但220a b +=不成立; ∴“220a b +=”是“0ab =”的充分不必要条件.故选:A .3.下列说法中错误的是( )A .对于命题p :存在0x ∈R ,使得20010x x ++<,则p ⌝:任意R x ∈,均有210x x ++≥B .两个变量线性相关性越强,则相关系数r 就越接近1C .在线性回归方程20.5y x =-中,当变量x 每增加一个单位时,y 平均减少0.5个单位D .某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的方差不变 【答案】D【分析】A 选项,存在量词命题的否定是全称量词命题,把存在改为任意,把结论否定; B 选项,相关系数r 就越接近1,则两个变量线性相关性越强; C 选项,根据线性回归方程的解析式中x 的系数得到结论; D 选项,计算出添加新数据4后的方程,作出判断.【详解】存在0x ∈R ,使得20010x x ++<,的否定是:任意R x ∈,均有210x x ++≥,A 正确;两个变量线性相关性越强,则相关系数r 就越接近1,B 正确;在线性回归方程20.5y x =-中x 的系数为0.5-,当变量x 每增加一个单位时,y 平均减少0.5个单位,C 正确;某7个数1234567,,,,,,x x x x x x x 的平均数为4,方差为2,则()72142714i i x =-=⨯=∑,现加入一个新数据4,则平均数不变,仍为4,此时这8个数的方差变为()21444784+-=,故D 错误. 故选:D4.如图的程序框图的算法思路源于欧几里得在公元前300年左右提出的“辗转相除法”.执行该程序框图,若输入1813,333m n ==,则输出m 的值为( )A .4B .37C .148D .333【答案】B【分析】利用辗转相除法求1813和333的最大公约数.【详解】题中程序框图为辗转相除法求1813和333的最大公约数.因为181********=⨯+,333148237=⨯+,1483740=⨯+, 所以1813和333的最大公约数为37. 故选:B.5.圆x 2+y 2-2x -3=0与圆x 2+y 2-4x +2y +3=0的位置关系是( ) A .相离 B .内含 C .相切 D .相交【答案】D【分析】求出圆心和半径,再根据两个圆的圆心距与半径之差和半径和的关系,可得两个圆相交. 【详解】由于圆x 2+y 2﹣2x ﹣3=0的圆心为(1,0),半径等于2,而圆x 2+y 2﹣4x +2y +3=0即(x ﹣2)2+(y +1)2=2,表示以(2,﹣1的圆.22 故两个圆相交, 故选D .【点睛】本题主要考查圆的标准方程,两个圆的位置关系的判定方法,属于中档题. 6.已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .3【答案】B【分析】有题意可知()1,2M ±,由焦点(1,0)F 则可求出点M 到焦点F 的距离. 【详解】M 到x 轴的距离是2,可得()1,2M ±,焦点(1,0)F 则点M 到焦点的距离为2. 故选:B.7.已知1F ,2F 为双曲线2214xy -=的两个焦点,点P 在双曲线上且满足1290F PF ∠=︒,那么点P 到x 轴的距离为( )A B C D 【答案】D【解析】设12||,||()PF x PF y x y ==>,由双曲线的性质可得x y -的值,再由1290F PF ∠=︒,根据勾股定理可得22xy +的值,进而求得xy ,最后利用等面积法,即可求解【详解】设12||,||()PF x PF y x y ==>,1F ,2F 为双曲线的两个焦点,设焦距为2c ,c ∴=P 在双曲线上,4x y ∴-=,1290F PF ∠=︒,2220x y ∴+=,2222()4xy x y x y ∴=+--=,2xy ∴=,12F PF ∴的面积为112xy =,利用等面积法,设12F PF △的高为h ,则h 为点P 到x 轴的距离,则12512h c h ⋅⋅==,55h ∴=故选:D【点睛】本题考查双曲线的性质,难度不大.8.椭圆221925x y +=上的点A 到一个焦点F 的距离为2,B 是AF 的中点,则点B 到椭圆中心O 的距离为. A .2 B .4 C .6 D .8【答案】B【分析】由三角形的中位线的性质得12OB AF =',再由椭圆的定义得108AF AF =-=',由此可求得答案.【详解】∵椭圆方程为221925x y +=,∴225a =,得5a =, ∵AFF '中,B 、O 分别为AF 和FF '的中点,∴12OB AF =',∵点A 在椭圆上,得210AF AF a +==', ∴108AF AF =-=', 由此得118422OB AF =⨯'==,故选:B .9.已知直线y=x+m 和圆x2+y2=1交于A 、B 两点,O 为坐标原点,若3AO AB 2⋅=,则实数m=( )A .1±B .C .D .12±【答案】C【分析】联立221y x mx y =+⎧⎨+=⎩,得2x 2+2mx +m 2﹣1=0,由此利用根的判别式、韦达定理、向量的数量积能求出m .【详解】联立221y x mx y =+⎧⎨+=⎩ ,得2x 2+2mx+m 2-1=0, ∵直线y=x+m 和圆x 2+y 2=1交于A 、B 两点,O 为坐标原点,∴△=4m 2+8m 2-8=12m 2-8>0,解得m 或m <设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-m ,21212m x x -= , y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,AO =(-x 1,-y 1),AB =(x 2-x 1,y 2-y 1), ∵21123,2AO AB AO AB x x x ⋅=∴⋅=-+y 12-y 1y 2=1221122m m ----+m 2-m 2=2-m 2=32,解得m= 故选C .【点睛】本题考查根的判别式、韦达定理、向量的数量积的应用,考查了运算能力,是中档题. 10.已知0a >,0b >,直线1l :(1)10a x y -+-=,2l :210x by ++=,且12l l ⊥,则21a b+的最小值为( ) A .2 B .4 C .8 D .9【答案】C【分析】由12l l ⊥,可求得21a b +=,再由()2121424b aa b a b a b a b⎛⎫+=++=++ ⎪⎝⎭,利用基本不等式求出最小值即可.【详解】因为12l l ⊥,所以()11120a b -⨯+⨯=,即21a b +=,因为0a >,0b >,所以()2121422248b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当4b a a b =,即11,24a b ==时等号成立,所以21a b+的最小值为8.故选:C.【点睛】本题考查垂直直线的性质,考查利用基本不等式求最值,考查学生的计算求解能力,属于中档题.11.已知O 为坐标原点,1F ,2F 是双曲线C :22221x y a b -=(0a >,0b >)的左、右焦点,双曲线C 上一点P 满足12PF PF ⊥,且2122PF PF a ⋅=,则双曲线C 的离心率为AB .2CD 【答案】D【详解】设P 为双曲线右支上一点,1PF =m ,2 PF =n ,|F 1F 2|=2c , 由双曲线的定义可得m −n =2a , 点P 满足12PF PF ⊥,可得m 2+n 2=4c 2, 即有(m −n )2+2mn =4c 2, 又mn =2a 2, 可得4a 2+4a 2=4c 2,即有c ,则离心率e 故选D .12.已知圆224410M x y x y +---=:,直线:34110l x y P ++=,为l 上的动点,过点P 作圆M 的切线PA PB ,,切点为A B ,,当四边形PAMB 面积最小时,直线AB 的方程为( ) A .3450x y +-= B .3450x y --= C .3450x y ++= D .3450x y -+=【答案】A【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据 46PAM PM AB S PA ⋅==△可知,当直线MP l ⊥时,PM AB ⋅最小,求出以 MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】解:圆的方程可化为()()22229x y -+-=,点M 到直线l 的距离为52d ==>,所以直线 l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14462PAM PM AB S PA AM PA ⋅==⨯⨯⨯=△,而 PA =当直线MP l ⊥时,min 5MP =, min 4PA =,此时PM AB ⋅最小.∴()4:223MP y x -=-,即 4233y x =-,由423334110y x x y ⎧=-⎪⎨⎪++=⎩,解得12x y =-⎧⎨=-⎩.所以以MP 为直径的圆的方程为()()()()21220x x y y -+++-=, 即2260x x y -+-=,两圆的方程相减可得:3450x y +-=,即为直线AB 的方程. 故选:A .【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.二、填空题13.某校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的的频率分布直方图,根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数为:_____.【答案】140【分析】求出这200名学生中每周的自习时间不少于22.5小时的频率,即可求得答案. 【详解】由频率分布直方图得:这200名学生中每周的自习时间不少于22.5小时的频率为: (0.020.10) 2.50.71+⨯-=,这200名学生中每周的自习时间不少于22.5小时的人数为:2000.7140⨯=, 故答案为:140.14.从800名同学中,用系统抽样的方法抽取一个20人的样本,将这800名同学按1800进行随机编号,若第一组抽取的号码为3,则第五组抽取的号码为__________. 【答案】163【分析】根据系统抽样的知识求得正确答案. 【详解】组距为8004020=,所以第五组抽取的号码是()35140163+-⨯=. 故答案为:16315.抛物线2:12C y x =-的焦点为F ,P 为抛物线C 上一动点,定点(5,2)A -,则PA PF +的最小值为___________. 【答案】8【分析】根据抛物线的定义,将||PF 转化为P 到准线的距离,再结合图形可求出结果. 【详解】由212y x =-,得(3,0)F -,准线方程为:3x =,过P 作准线3x =的垂线,垂足为M ,则PA PF +||||PA PM =+||3(5)8AM ≥=--=, 当且仅当,,A P M 三点共线时,等号成立. 故答案为:816.数学中有许多美丽的曲线,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.如曲线22:C x y x y +=+,(如图所示),给出下列三个结论①曲线C 关于直线y x =对称;②曲线C 2;③曲线C 围成的图形的面积是2π+. 其中,正确结论的序号是_________. 【答案】①③【分析】根据点的对称性可判断①,由曲线方程知曲线关于原点,x ,y 轴对称,当0x ≥,0y ≥时,可得220x y x y +--=,可得22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以可得曲线为11,22C ⎛⎫ ⎪⎝⎭为圆心,22r为半径的半圆,由此可作出曲线C 的图象,从而通过运算可判断命题②③的真假.【详解】设点(),A x y 在曲线C 上,则22x y x y +=+,(),A x y 关于直线y x =对称的点(),A y x ',将(),A y x '代入曲线C 中得22y x y x +=+,因此(),A y x '在曲线C 上,故①正确,曲线22:||||C x y x y +=+可知曲线C 关于原点,x ,y 轴对称,当0x ≥,0y ≥时,可得220x y x y +--=,可得22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以可得曲线为11,22C ⎛⎫ ⎪⎝⎭为圆心,22r为半径的半圆,曲线上任意点到原点的距离的最大值为OC r +=C,故命题②错误;根据对称性可知曲线C 围成的图形的面积为4的正方形的面积,即214π2π2⨯⨯⨯=+⎝⎭,故命题③正确; 故答案为:①③三、解答题17.已知直线:(1)20()l a x y a a R ++--=∈.(1)若直线l 在两坐标轴上的截距相等,求直线l 的方程; (2)当()0,0O 点到直线l 距离最大时,求直线l 的方程. 【答案】(1)0x y -+=或20x y +-=(2)20x y +-=【解析】(1)先求出直线l 在两坐标轴上的截距,根据题意,列出方程,解方程即可;(2)根据直线的点斜式方程可以确定直线恒过的定点,然后根据直线l 与AO 垂直时,()0,0O 点到直线l 距离最大,最后求出a 的值,进而求出直线的方程. 【详解】(1)直线:(1)20l a x y a ++--=,取0x =,2y a =+ 取0y =,21a x a +=+即221a a a ++=+,解得2a =-或0a =, 故直线方程为0x y -+=或20x y +-=(2):(1)20l a x y a ++--=变换得到(1)20a x x y -++-=, 故过定点()1,1A当直线l 与AO 垂直时,距离最大. 1OA k =,故1k =-,解得0a =,故所求直线方程为20x y +-=【点睛】本题考查了直线的截距的定义,考查了直线过定点的判断,考查了已知点到直线的距离的最大值求参数问题,考查了数学运算能力. 18.已知命题[]:0,2p x ∈; 命题:23q m x m <≤+. (1)若p 是q 的充分条件,求m 的取值范围;(2)当1m =时,已知p q ∧是假命题,p q ∨是真命题,求x 的取值范围. 【答案】(1)102m -≤<;(2)[](]0,12,5⋃.【分析】(1)解不等式组0232m m <⎧⎨+≥⎩即得解;(2)由题得p 、q 一真一假,分两种情况讨论得解.【详解】(1)解:由题意知p 是q 的充分条件,即p 集合包含于q 集合,有[](]010,2,2302322m m m m m <⎧⊆+⇒⇒-≤<⎨+≥⎩; (2)解:当1m =时,有(]:1,5q x ∈, 由题意知,p 、q 一真一假,当p 真q 假时,020115x x x x ≤≤⎧⇒≤≤⎨≤>⎩或, 当p 假q 真时,022515x x x x ⎧⇒<≤⎨<≤⎩或, 综上,x 的取值范围为[](]0,12,5⋃19.已知某绿豆新品种发芽的适宜温度在6℃~22℃之间,一农学实验室研究人员为研究温度x (℃)与绿豆新品种发芽数y (颗)之间的关系,每组选取了成熟种子50颗,分别在对应的8℃~14℃的温度环境下进行实验,得到如下散点图:(1)由折线统计图看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明; (2)建立y 关于x 的回归方程,并预测在19℃的温度下,种子发芽的颗数. 参考数据:24y =,()()7170i i i x xy y =--=∑,()721176i i y y=-=∑778.77.参考公式:相关系数()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑y bx a =+中斜率和截距的最小二乘估计公式分别为()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-.【答案】(1)答案见解析; (2)44.【分析】(1)直接套公式求出系数r ,即可判断;(2)套公式求出回归方程,把19x =代入,即可求解.【详解】(1)由题意可知:()1891011121314117x =++++++=. ()()()()()()()()27222222218119111011111112111311141128ii x x =-=-+-+-+-+-+-+-=∑.又()721176i i y y=-=∑,所以相关系数()()()()122110.99717628niii nni i i i x x y y r x xy y===--==≈⨯--∑∑∑.因为相关系数0.998r ≈,所以y 与x 的线性相关性较高,可以利用线性回归模型拟合y 与x 的关系.(2)由(1)知11x =,24y =,()27128i i x x=-=∑,()()7170i i i x x y y =--=∑.所以()()()121702.528niii ni i x x y y b x x==--===-∑∑, 所以24 2.511 3.5a y bx =-=-⨯=-. 所以y 与x 的回归直线为 2.5 3.5y x =-.当19x =时, 2.519 3.544y =⨯-=.即在19℃的温度下,种子发芽的颗数为44.20.圆心在()300x y x -=>上的圆C 与x 轴相切,且被直线0x y -=截得的弦长为 (1)求圆C 的方程;(2)求过点()2,3P --且与该圆相切的直线方程. 【答案】(1)()()22139x y -+-= (2)2x =-和3460x y --=【分析】(1)设圆心()(),30C a a a >,求出圆心到直线的距离d ,由勾股定理计算弦长求得参数,得圆标准方程;(2)分类讨论,斜率不存在的直线直接验证,斜率存在的直线设出直线方程(用点斜式),由圆心到切线距离等于半径求得参数值,得直线方程.【详解】(1)设圆心()(),30C a a a >,则3ra =C 到直线0x y -=的距离为d ==22227r d d =+=+⎝⎭22927a a =+∴21a =∴1a =∴圆C 的方程为()()22139x y -+-=(2)①当切线l 斜率不存在时,l :2x =-满足题意 ②设l :()32y k x +=+,即230kx y k -+-= 圆心到直线l 的距离为3d '=,∴34k =综上得过P 与圆C 相切的直线方程为2x =-和3460x y --=21.已知抛物线C 的顶点是坐标原点O ,而焦点是双曲线2241x y -=的右顶点. (1)求抛物线C 的方程;(2)若直线:2l y x =-与抛物线相交于A 、B 两点,则直线OA 与OB 的斜率之积是否为定值,若是,求出定值;若不是,说明理由. 【答案】(1)22y x = (2)是定值,1-【分析】(1)将双曲线的方程化为标准形式,求得右顶点坐标,根据抛物线的焦点与双曲线的右顶点重合得到抛物线的方程;(2)联立直线与抛物线方程,结合韦达定理求得弦长及两点连线的斜率公式即可求解.【详解】(1)双曲线2241x y -=化为标准形式:22114x y -=,211,42a a ==,右顶点A 1,02⎛⎫ ⎪⎝⎭,设抛物线的方程为22y px =,焦点坐标为,02p F ⎛⎫⎪⎝⎭,由于抛物线的焦点是双曲线的右顶点,所以1p =, 所以抛物线C 的方程22y x =;(2)联立222y xy x ⎧=⎨=-⎩,整理得2240y y --=,设()()1122,,,A x y B x y ,则12124,2,y y y y =-+=, ()()()121212121121224122242442OA OB y y y y y y k k x x y y y y y y -∴⋅=⋅==+++++++==--⨯, 综上,抛物线C 的方程22y x =,OA ,OB 斜率的乘积为-1.22.已知椭圆22221(0)x y a b a b +=>>的左、右两个焦点1F ,2F,离心率e =2.(1)求椭圆的方程;(2)如图,点A 为椭圆上一动点(非长轴端点),2AF 的延长线与椭圆交于B 点,AO 的延长线与椭圆交于C 点,求ABC 面积的最大值.【答案】(1)椭圆的标准方程为2212x y += (2)ABC ∆2【详解】试题分析:(1) 由题意得1b =,再由22222c e a b c a a ===+=1c = ⇒标准方程为2212x y +=;(2)①当AB 的斜率不存在时,不妨取222,1,,1,A B C ⎛⎛⎛- ⎝⎭⎝⎭⎝⎭12222ABC S ∆=⨯ ②当AB 的斜率存在时,设AB 的方程为()1y k x =-,联立方程组()22112y k x x y ⎧=-⎪⎨+=⎪⎩ ⇒ ()222222121222422214220,2121k k k x k x k x x x x k k -+-+-=+=⋅=++ ⇒ 2212221k AB k +=+又直线0kx y k --=的距离2211k k d k k -=++⇒点C 到直线AB 的距离为2221k d k =+ ⇒ ()22222211111222222222141421ABCk k S AB d ABC k k k ∆⎛⎫+=⋅=⋅=-∆ ⎪++⎝⎭+面2试题解析:(1) 由题意得22b =,解得1b =, ∵2222c e a b c a ===+,∴2a =1c =, 故椭圆的标准方程为2212x y +=(2)①当直线AB 的斜率不存在时,不妨取 222,1,,1,A B C ⎛⎛⎛- ⎝⎭⎝⎭⎝⎭, 故12222ABC S ∆=⨯②当直线AB 的斜率存在时,设直线AB 的方程为 ()1y k x =-, 联立方程组()22112y k x x y ⎧=-⎪⎨+=⎪⎩,化简得()2222214220k x k x k +-+-=,设()()221122121222422,,,,,2121k k A x y B x y x x x x k k -+=⋅=++AB==点O 到直线0kx y k --=的距离d ==因为O 是线段AC 的中点,所以点C 到直线AB 的距离为2d∴2211122221ABCk S AB d k ∆⎛⎫+=⋅=⋅ ⎪+⎝⎭==综上,ABC ∆【点睛】本题主要考查椭圆的标准方程及其性质、点到直线的距离、弦长公式和三角形面积公式等知识,涉及函数与方程思想、数形结合思想分类与整合、转化与化归等思想,并考查运算求解能力和逻辑推理能力,属于较难题型. 第一小题由题意由方程思想建立方程组求得标准方程为22x y 12+=;(2)利用分类与整合思想分当AB 的斜率不存在与存在两种情况求解,在斜率存在时,由舍而不求法求得2121224k x x ,x x 2k 1+=⋅=⇒+ AB =,再求得点C到直线AB 的距离为2d⇒2ΔABC211k 1S AB 2d ABC 222k 1⎛⎫+=⋅=⋅= ⎪+⎝⎭面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定远育才学校2017-2018学年第一学期期末考试
高二数学(理)试题
考生注意:
1.本卷分第I卷和第II卷,满分150分,考试时间120分钟。

答题前,先将自己的姓名、准考证号填写在试题卷和答题卷上。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卷上对应题目的答案标题涂黑。

3.非选择题的作答:用签字笔直接答在答题卷上对应的答题区内。

第I卷(选择题60分)
一、选择题
1. 设,则“”是“”的()
A. 充分非必要条件
B. 必要非充分条件
C. 充要条件
D. 既不充分条件也不必要条件
2. 点P(﹣1,2)到直线8x﹣6y+15=0的距离为()
A. 2
B.
C. 1
D.
3.若实数满足的取值范围为()
A. B. C. D.
4.若双曲线的离心率为,则其渐近线方程为()
A. B.
C. D.
5.已知圆,圆,圆与圆的位置关系为()
A.外切
B.内切
C.相交
D.相离
6.已知圆,从点发出的光线,经轴反射后恰好经过圆心,
则入射光线的斜率为()
A. B. C. D.
7. 已知抛物线的焦点到准线距离为,则()
A. B. C. D.
8.已知双曲线C:的焦点到渐近线的距离为3,则双曲线C的短轴长为()
A. B. C. D.
9. 已知函数,若,则的值等于()
A. B. C. D.
10.设椭圆的左、右焦点分别为,上顶点为.若
=2,则该椭圆的方程为()
A. B. C. D.
11. 已知命题“函数在区间上是增函数”;命题“存在
,使成立”,若为真命题,则的取值范围为()
A. B. C. D.
12. 已知两点,,点是椭圆上任意一点,则点到直线的距离最大值为()
A. B. C. D.
第II卷(非选择题)
二、填空题
13.已知是过抛物线焦点的直线与抛物线的交点,是坐标原点,且
满足,则的值为__________.
14.已知函数中,为参数,已知曲线在处的切线方程为,则__________.
15.过点且垂直于直线的直线方程是_____________.
16.已知圆的圆心位于直线上,且圆过两点,,则圆的标准方程为__________.
三、解答题
17.定圆,动圆过点且与圆相切,记圆心的轨迹为. (1)求轨迹的方程;
(2)设点在上运动, 与关于原点对称,且,当的面积最小时, 求直线的方程.
18.已知椭圆的中心在坐标原点,左、右焦点分别在轴上,离心率为,在其上有一动点,到点距离的最小值是1.过作一个平行四边形,顶点都在椭圆上,如图所示.
(Ⅰ)求椭圆的方程;
(Ⅱ)判断能否为菱形,并说明理由.
(Ⅲ)当的面积取到最大值时,判断的形状,并求出其最大值.
19.已知点,点是直线上的动点,过作直线,,线段的垂直平分线与交于点.
(1)求点的轨迹的方程;
(2)若点是直线上两个不同的点,且的内切圆方程为,直线的斜率为,求的取值范围.
20.已知函数在处的切线方程为.
(1)求实数的值;
(2)设,若,且对任意的恒成立,求的最大值.
21.已知椭圆:的左右焦点分别是,直线
与椭圆交于两点,当时,恰为椭圆的上顶点,此时的面积为6.
(1)求椭圆的方程;
(2)设椭圆的左顶点为,直线与直线分别相交于点,问当变化时,以线段为直径的圆被轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由.
22. 如图为双曲线的两焦点,以为直径的圆与双曲线交于
是圆与轴的交点,连接与交于,且是的中点,
(1)当时,求双曲线的方程;
(2)试证:对任意的正实数,双曲线的离心率为常数.
参考答案
1.A
2.B
3.B
4.D
5.C
6.C
7.D
8.B
9.C 10.A 11.B 12.A
13.
14.1
15.
16.
17.
(1)在圆内,
所以圆内切于圆.点的轨迹为椭圆,
且轨迹的方程为.
(2)①当为长轴(或短轴)时,此时.
②当直线的斜率存在且不为时,设直线方程为,
联立方程得.
将上式中的替换为,得
.
,
当且仅当,
即时等号成立,此时面积最小值是.
面积最小值是,此时直线的方程为或.
18.
(Ⅰ)依题,令椭圆的方程为,
所以离心率,即.
令点的坐标为,所以,焦点,即
,(没有此步,不扣分)因为,所以当时,,
由题,结合上述可知,所以,
于是椭圆的方程为.
(Ⅱ)由(Ⅰ)知,如图,直线不能平行于轴,所以令直线的方程为,
联立方程,,
得,
所以,.
若是菱形,则,即,于是有,
又,
所以有,
得到,可见没有实数根,故不能是菱形.
(Ⅲ)由题,而,又
即,
由(Ⅱ)知.
所以,,因为函数,在时,,
即得最大值为6,此时,也就是时,
这时直线轴,可以判断是矩形.
19.
(1)据题设分析知,点的轨迹是以点为焦点,直线为准线的抛物线,所以曲线的方程为.
(2)设,点,点,
直线的方程为,
化简,得,
又因为内切圆的方程为.
所以圆心到直线的距离为1,即,
所以,由题意,得,所以.
同理,有,
所以是关于的方程的两根,
所以因为
所以.
因为,
所以.
直线的斜率,则,
所以.
因为函数在上单调递增,所以当时,,所以,所以,
所以.所以的取值范围是.
20.
(1),
所以且,解得,
(2)由(1)与题意知对任意的恒成立,设,则,
令,则,
所以函数为上的增函数.
因为,
所以函数在上有唯一零点,即有成立,
所以
故当时,,即;当时,,即所以函数在上单调递减,在上单调递增
所以
所以,因为,所以,又因
所以最大值为
21.
(1)当时,直线的倾斜角为,所以:
解得:,所以椭圆方程是:;
(2)当时,直线:,此时,,,又点坐标是,据此可得,,故以为直径的圆过右焦点,被轴截得的弦长为6.由此猜测当变化时,以为直径的圆恒过焦点,被轴截得的弦长为定值6.
证明如下:设点点的坐标分别是,则直线的方程是:
,所以点的坐标是,同理,点的坐标是,
由方程组得到:,
所以:,从而:
=0,
所以:以为直径的圆一定过右焦点,被轴截得的弦长为定值6.
22.
(1)由1有
设:
(2)

为常数。

相关文档
最新文档