点与圆的位置关系学案
数学(文)一轮教学案:第九章第2讲 圆的方程及点、线、圆的位置关系 Word版含解析
第2讲 圆的方程及点、线、圆的位置关系考纲展示 命题探究1 圆的方程(1)圆的标准方程与一般方程(2)A (x 1,y 1),B (x 2,y 2),以AB 为直径的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.2 点与圆的位置关系圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0).(1)(x 0-a )2+(y 0-b )2=r 2⇔点M 在圆上;(2)(x 0-a )2+(y 0-b )2>r 2⇔点M 在圆外;(3)(x 0-a )2+(y 0-b )2<r 2⇔点M 在圆内.注意点 圆的标准方程与一般方程的关系圆的标准方程展开整理即可得到圆的一般方程,而圆的一般方程通过配方亦可转化为圆的标准方程,二者只是形式的不同,没有本质区别.1.思维辨析(1)方程(x +a )2+(y +b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的一个圆.( )(2)方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆心为⎝ ⎛⎭⎪⎫-a 2,-a ,半径为12 -3a 2-4a +4的圆.( )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( )(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( )(5)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( )答案 (1)× (2)× (3)√ (4)√ (5)√2.圆心在曲线y =14x 2(x <0)上,并且与直线y =-1及y 轴都相切的圆的方程是( )A .(x +2)2+(y -2)2=2B .(x -1)2+(y -2)2=4C .(x -2)2+(y -1)2=4D .(x +2)2+(y -1)2=4答案 D解析 设圆心的坐标为⎝⎛⎭⎪⎫x ,14x 2,据题意得14x 2+1=-x ,解得x =-2,此时圆心的坐标为(-2,1),圆的半径为2,故所求圆的方程是(x +2)2+(y -1)2=4.3.直线y =x -1上的点到圆x 2+y 2+4x -2y +4=0的最近距离为( )A .2 2B.2-1 C .22-1D .1答案 C解析 圆心(-2,1)到已知直线的距离为d =22,圆的半径为r =1,故所求距离d min =22-1.[考法综述] 求圆的方程是考查圆的方程中的一个基本点,一般涉及圆的性质,直线与圆的位置关系等.主要依据圆的标准方程、一般方程、直线与圆的几何性质,运用代数方法和几何方法解决问题.命题法1 求圆的方程典例1 (1)若圆心在x 轴上、半径为5的圆O ′位于y 轴左侧,且与直线x +2y =0相切,则圆O ′的方程是( )A .(x -5)2+y 2=5或(x +5)2+y 2=5B .(x +5)2+y 2=5C .(x -5)2+y 2=5D .(x +5)2+y 2=5(2)求经过A (5,2),B (3,2),圆心在直线2x -y -3=0上的圆的方程.[解析] (1)设圆心坐标为(a,0)(a <0),因为圆与直线x +2y =0相切,所以5=|a +2×0|5,解得a =-5,因此圆的方程为(x +5)2+y 2=5.(2)解法一:从数的角度,若选用一般式:设圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心⎝ ⎛⎭⎪⎫-D 2,-E 2. ∴⎩⎨⎧ 52+22+5D +2E +F =0,32+22+3D +2E +F =0,2×⎝ ⎛⎭⎪⎫-D 2-⎝ ⎛⎭⎪⎫-E 2-3=0.解之,得⎩⎪⎨⎪⎧ D =-8,E =-10,F =31.∴圆的一般方程为x 2+y 2-8x -10y +31=0.解法二:从形的角度,AB 为圆的弦,由平面几何知识知,圆心P 应在AB 中垂线x =4上,则由⎩⎪⎨⎪⎧2x -y -3=0,x =4,得圆心P (4,5). ∴半径r =|P A |=10.∴圆的标准方程为(x -4)2+(y -5)2=10.[答案] (1)D (2)见解析【解题法】 用待定系数法求圆的方程的一般步骤(1)选用圆的方程两种形式中的一种,若知圆上三个点的坐标,通常选用一般方程;若给出圆心的特殊位置或圆心与两坐标轴间的关系,通常选用标准方程.(2)根据所给条件,列出关于D ,E ,F 或a ,b ,r 的方程组.(3)解方程组,求出D ,E ,F 或a ,b ,r 的值,并把它们代入所设的方程中,得到所求圆的方程.命题法2 与圆有关的最值问题典例2 已知实数x ,y 满足方程x 2+y 2-4x +1=0,求: (1)y x 的最大值和最小值;(2)y-x的最大值和最小值;(3)x2+y2的最大值和最小值.[解]原方程变形为(x-2)2+y2=3,表示以(2,0)为圆心,半径r =3的圆.(1)设yx=k,即y=kx,由题知,直线y=kx与圆恒有公共点,则圆心到直线的距离小于等于半径 3.∴|2k-0|k2+1≤ 3.∴k2≤3,即-3≤k≤3,∴yx的最大值为3,最小值为- 3.(2)设y-x=b,则当直线y-x=b与圆相切时,b取最值,由|2-0+b|2=3,得b=-2±6,∴y-x的最大值为6-2,最小值为-2- 6.(3)令d=x2+y2表示原点与点(x,y)的距离,∵原点与圆心(2,0)的距离为2,∴d max=2+3,d min=2- 3.∴x2+y2的最大值为(2+3)2=7+43,最小值为(2-3)2=7-4 3.【解题法】与圆上点(x,y)有关的最值问题的常见类型及解法(1)形如t=y-bx-a形式的最值问题,可转化为动直线斜率的最值问题,即转化为过点(a,b)和点(x,y)的直线的斜率的最值.(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题.(3)形如t=(x-a)2+(y-b)2形式的最值问题,可转化为动点到定点的距离平方的最值问题.命题法3与圆有关的轨迹问题典例3已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.[解] (1)设AP 的中点为M (x 0,y 0),由中点坐标公式可知,P 点坐标为(2x 0-2,2y 0).因为P 点在圆x 2+y 2=4上,所以(2x 0-2)2+(2y 0)2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ′,y ′).在Rt △PBQ 中,|PN |=|BN |. 设O 为坐标原点,连接ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x ′2+y ′2+(x ′-1)2+(y ′-1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.1.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( )A .2 6B .8C .4 6D .10 答案 C解析 设过A ,B ,C 三点的圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧ D +3E +F +10=04D +2E +F +20=0D -7E +F +50=0,解得D =-2,E =4,F =-20,所求圆的方程为x 2+y 2-2x +4y -20=0,令x =0,得y 2+4y -20=0,设M (0,y 1),N (0,y 2),则y 1+y 2=-4,y 1y 2=-20,所以|MN |=|y 1-y 2|=(y 1+y 2)2-4y 1y 2=4 6.故选C.2.如图,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.(1)圆C 的标准方程为________________;(2)过点A 任作一条直线与圆O :x 2+y 2=1相交于M ,N 两点,下列三个结论:①|NA ||NB |=|MA ||MB |;②|NB ||NA |-|MA ||MB |=2;③|NB ||NA |+|MA ||MB |=2 2.其中正确结论的序号是________.(写出所有正确结论的序号) 答案 (1)(x -1)2+(y -2)2=2 (2)①②③解析 (1)依题意,设C (1,r )(r 为圆C 的半径),因为|AB |=2,所以r =12+12=2,所以圆心C (1,2),故圆C 的标准方程为(x -1)2+(y -2)2=2.(2)由⎩⎪⎨⎪⎧ x =0(x -1)2+(y -2)2=2,解得⎩⎪⎨⎪⎧ x =0y =2-1或 ⎩⎪⎨⎪⎧x =0y =2+1,因为B 在A 的上方,所以A (0,2-1),B (0,2+1).不妨令直线MN 的方程为x =0(或y =2-1),M (0,-1),N (0,1),所以|MA |=2,|MB |=2+2,|NA |=2-2,|NB |= 2.所以|NA ||NB |=2-22=2-1,|MA ||MB |=22+2=2-1,所以|NA ||NB |=|MA ||MB |,所以|NB ||NA |-|MA ||MB |=22-2-(2-1)=2+1-(2-1)=2,|NB ||NA |+|MA ||MB |=22-2+(2-1)=2+1+2-1=22,正确结论的序号是①②③.3.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.答案 [-1,1]解析 解法一:当x 0=0时,M (0,1),由圆的几何性质得在圆上存在点N (-1,0)或N (1,0),使∠OMN =45°.当x 0≠0时,过M 作圆的两条切线,切点为A 、B .若在圆上存在N ,使得∠OMN =45°,应有∠OMB ≥∠OMN =45°,∴∠AMB ≥90°,∴-1≤x 0<0或0<x 0≤1.综上,-1≤x 0≤1.解法二:过O 作OP ⊥MN ,P 为垂足,OP =OM ·sin45°≤1,∴OM ≤1sin45°,∴OM 2≤2,∴x 20+1≤2,∴x 20≤1,∴-1≤x 0≤1.4.若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.答案 x 2+(y -1)2=1解析 因为(1,0)关于y =x 的对称点为(0,1),所以圆C 是以(0,1)为圆心,以1为半径的圆,其方程为x 2+(y -1)2=1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎪⎨⎪⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.注意点 切线长的计算涉及到切线长的计算时,一般放在由切线长、半径及该点与圆心的连线构成的直角三角形中求解.1.思维辨析(1)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( )(2)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( )(3)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( )答案 (1)√ (2)× (3)√2.对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( )A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心答案 C解析 ∵x 2+y 2=2的圆心(0,0)到直线y =kx +1的距离d =|0-0+1|1+k 2=11+k 2≤1, 又∵r =2,∴0<d <r .显然圆心(0,0)不在直线y =kx +1上,故选C.3.圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在直线被圆C 3:(x -1)2+(y -1)2=254所截得的弦长为________.答案 23解析 圆C 1的方程减圆C 2的方程,即得公共弦所在的直线l 的方程为x +y -1=0,圆C 3的圆心为(1,1),其到l 的距离d =12,由条件知,r 2-d 2=234,∴弦长为23. [考法综述] 直线与圆的位置关系主要通过数形结合思想考查直线和圆的几何性质.命题法 直线与圆的位置关系及应用典例 (1)直线ax -y +2a =0与圆x 2+y 2=9的位置关系是( )A .相离B .相切C .相交D .不确定 (2)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞) [解析] (1)直线ax -y +2a =0⇒a (x +2)-y =0,即直线恒过点(-2,0),因为点(-2,0)在圆内,所以直线与圆相交.(2)因为直线x -y +1=0与圆(x -a )2+y 2=2有公共点,所以圆心到直线的距离d =|a -0+1|2≤r =2,可得|a +1|≤2,即a ∈[-3,1]. [答案] (1)C (2)C【解题法】 1.有关弦长问题的两种方法(1)几何法:直线被圆截得的半弦长l 2,弦心距d 和圆的半径r 构成直角三角形,即r 2=⎝ ⎛⎭⎪⎫l 22+d 2. (2)代数法:联立直线方程和圆的方程,消元转化为关于x 的一元二次方程,由根与系数的关系即可求得弦长|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2或|AB |=1+1k 2|y 1-y 2|=1+1k 2(y 1+y 2)2-4y 1y 2.2.过一点求圆的切线的方法(1)过圆上一点(x 0,y 0)的圆的切线方程的求法 先求切点与圆心连线的斜率k ,由垂直关系知切线斜率为-1k ,由点斜式方程可求切线方程.若切线斜率不存在,则由图形写出切线方程x =x 0.(2)过圆外一点(x 0,y 0)的圆的切线方程的求法当斜率存在时,设为k ,切线方程为y -y 0=k (x -x 0),即kx -y +y 0-kx 0=0.由圆心到直线的距离等于半径,即可得出切线方程.当斜率不存在时要加以验证.1.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34答案 D解析 圆(x +3)2+(y -2)2=1的圆心为C (-3,2),半径r =1.如图,作出点A (-2,-3)关于y 轴的对称点B (2,-3).由题意可知,反射光线的反向延长线一定经过点B .设反射光线的斜率为k ,则反射光线所在直线的方程为y -(-3)=k (x -2),即kx -y -2k -3=0.由反射光线与圆相切可得|k (-3)-2-2k -3|1+k 2=1,即|5k +5|=1+k 2,整理得12k 2+25k +12=0,即(3k +4)(4k +3)=0,解得k =-43或k =-34.故选D.2.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4) 答案 D解析 当直线l 的斜率不存在时,这样的直线l 恰有2条,即x =5±r ,所以0<r <5;所以当直线l 的斜率存在时,这样的直线l 有2条即可.设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧ x 1+x 2=2x 0y 1+y 2=2y 0. 又⎩⎪⎨⎪⎧y 21=4x 1y 22=4x 2,两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),k AB =y 1-y 2x 1-x 2=4y 1+y 2=2y 0.设圆心为C (5,0),则k CM =y 0x 0-5.因为直线l 与圆相切,所以2y 0·y 0x 0-5=-1,解得x 0=3,于是y 20=r 2-4,r >2,又y 20<4x 0,即r 2-4<12,所以0<r <4,又0<r <5,r >2,所以2<r <4,选D.3.已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( ) A .2B .4 2C .6D .210 答案 C解析 由题意得圆C 的标准方程为(x -2)2+(y -1)2=4,所以圆C 的圆心为(2,1),半径为2.因为直线l 为圆C 的对称轴,所以圆心在直线l 上,则2+a -1=0,解得a =-1,所以|AB |2=|AC |2-|BC |2=(-4-2)2+(-1-1)2-4=36,所以|AB |=6,故选C.4.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( )A.4π5B.3π4 C .(6-25)πD.5π4 答案 A解析 解法一:由题意得以AB 为直径的圆C 过原点O ,圆心C 为AB 的中点,设D 为切点,要使圆C 的面积最小,只需圆的半径最短,也只需OC +CD 最小,其最小值为OE (过原点O 作直线2x +y -4=0的垂线,垂足为E )的长度.由点到直线的距离公式得OE =45. ∴圆C 面积的最小值为π×⎝ ⎛⎭⎪⎫252=45π.故选A. 解法二:由题意可知圆C 的圆心(设其为M )为线段AB 的中点,且圆C 过原点(0,0),∵圆C 与直线2x +y -4=0相切,∴圆C 的圆心M 到原点(0,0)的距离等于M 点到直线2x +y -4=0的距离.由抛物线的定义可知,圆C 的圆心M 的轨迹是以(0,0)为焦点,2x +y -4=0为准线的抛物线.如图所示.要使圆C 面积最小,则需找出圆C 半径的最小值.由抛物线和准线的关系可知抛物线的顶点到准线的距离最短,即为(0,0)到直线2x +y -4=0的距离的一半. 因此,圆C 半径的最小值为r min =45×12=255.故圆C 面积的最小值为πr 2min =π×⎝ ⎛⎭⎪⎫2552=4π5. 5.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.答案 (x -1)2+y 2=2解析 因为直线mx -y -2m -1=0(m ∈R )恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r =2,故所求圆的标准方程为(x -1)2+y 2=2.6.直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________.答案 2解析 由题意,得圆心(0,0)到两条直线的距离相等,且每段弧的长度都是圆周的14,即|a |2=|b |2,|a |2=cos45°=22,所以a 2=b 2=1,故a 2+b 2=2.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 答案 2555解析 圆(x -2)2+(y +1)2=4的圆心为C (2,-1),半径r =2,圆心C 到直线x +2y -3=0的距离为d =|2+2×(-1)-3|12+22=35,所求弦长l =2r 2-d 2=24-95=2555.8.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.答案 4±15解析 由△ABC 为等边三角形可得,C 到AB 的距离为3,即(1,a )到直线ax +y -2=0的距离d =|a +a -2|1+a2=3,即a 2-8a +1=0,可求得a =4±15.9.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.解 (1)圆C 1的标准方程为(x -3)2+y 2=4,圆心C 1(3,0).(2)由垂径定理知,C 1M ⊥AB ,故点M 在以OC 1为直径的圆上,即⎝ ⎛⎭⎪⎫x -322+y 2=94. 故线段AB 的中点M 的轨迹C 的方程是⎝ ⎛⎭⎪⎫x -322+y 2=94在圆C 1:(x -3)2+y 2=4内部的部分,即⎝ ⎛⎭⎪⎫x -322+y 2=94⎝ ⎛⎭⎪⎫53<x ≤3. (3)联立⎩⎪⎨⎪⎧ x =53,⎝ ⎛⎭⎪⎫x -322+y 2=94,解得⎩⎨⎧x =53,y =±253.不妨设其交点为P 1⎝ ⎛⎭⎪⎫53,253, P 2⎝ ⎛⎭⎪⎫53,-253, 设直线L :y =k (x -4)所过定点为P (4,0),则kPP 1=-257,kPP 2=257.当直线L 与圆C 相切时,⎪⎪⎪⎪⎪⎪32k -4k k 2+1=32,解得k =±34. 故当k ∈⎩⎨⎧⎭⎬⎫-34,34∪⎣⎢⎡⎦⎥⎤-257,257时,直线L 与曲线C 只有一个交点.圆与圆的位置关系设两个圆的半径分别为R,r,R>r,圆心距为d,则两圆的位置关系可用下表来表示:注意点判别式与两圆的位置关系在利用判别式Δ判断两圆的位置关系时,Δ>0是两圆相交的充要条件,而Δ=0是两圆外切(内切)的必要不充分条件,Δ<0是两圆外离(内含)的必要不充分条件.1.思维辨析(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()(2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.()(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.()(4)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y =r2.()答案(1)×(2)×(3)×(4)√2.圆C1:x2+y2=1与圆C2:x2+(y-3)2=1的内公切线有且仅有()A.1条B.2条C.3条D.4条答案 B解析圆心距为3,半径之和为2,故两圆外离,内公切线条数为2.3.若圆O:x2+y2=4与圆C:x2+y2+4x-4y+4=0关于直线l 对称,则直线l的方程是()A.x+y=0 B.x-y=0C.x-y+2=0 D.x+y+2=0答案 C解析圆x2+y2+4x-4y+4=0,即(x+2)2+(y-2)2=4,圆心C的坐标为(-2,2).直线l 过OC 的中点(-1,1),且垂直于直线OC ,易知k OC =-1,故直线l 的斜率为1,直线l 的方程为y -1=x +1,即x -y +2=0.故选C.[考法综述] 根据两个圆的方程判断两圆的位置关系,利用圆的几何性质解决相关问题.命题法 圆与圆的位置关系典例 (1)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是______.[解析] (1)两圆心之间的距离为d =(-2-2)2+(0-1)2=17,两圆的半径分别为r 1=2,r 2=3.则r 2-r 1=1<d <r 1+r 2=5,故两圆相交.(2)圆C 方程可化为(x -4)2+y 2=1,圆心坐标为(4,0),半径为1.由题意知,直线y =kx -2上至少存在一点(x ,kx -2),以该点为圆心,1为半径的圆与圆C 有公共点,所以(x -4)2+(kx -2)2≤2,整理得(k 2+1)x 2-(8+4k )x +16≤0,此不等式有解的条件是Δ=(8+4k )2-64(k 2+1)≥0,解得0≤k ≤43,故k 的最大值为43.[答案] (1)B (2)43【解题法】 两圆位置关系的相关问题(1)圆与圆的位置关系有5种:外离、外切、相交、内切、内含.在高考中涉及两圆位置关系时,常见有两种命题方式:①已知两圆方程判断两圆的位置关系,一般采用几何法求解. ②圆与圆位置关系的应用,即通过圆与圆的位置关系,研究公共弦及公切线等问题.(2)两圆相交公共弦问题①求相交圆公共弦问题设圆C1:x2+y2+D1x+E1y+F1=0,圆C2:x2+y2+D2x+E2y+F2=0,如果先求交点坐标,再用两点式求直线方程,显然太繁琐,为了避免求交点,可以采用“设而不求”的技巧.设两圆任一交点坐标是(x0,y0),则有:x20+y20+D1x0+E1y0+F1=0,①x20+y20+D2x0+E2y0+F2=0.②①-②得(D1-D2)x0+(E1-E2)y0+(F1-F2)=0.显然,两交点坐标均满足此方程.因此,方程(D1-D2)x+(E1-E2)y+(F1-F2)=0就是两圆的公共弦方程.②求两圆公共弦长的步骤第一步,先求两圆公共弦所在的直线方程;第二步,利用圆心到直线的距离、半径和弦长的一半,这三个量构成的直角三角形计算,即可求出两圆公共弦长.(3)两圆位置关系与公切线条数,12M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.52-4 B.17-1C.6-2 2 D.17答案 A解析圆C1,C2如图所示.设P是x轴上任意一点,则|PM|的最小值为|PC1|-1,同理可得|PN|的最小值为|PC2|-3,则|PM|+|PN|的最小值为|PC1|+|PC2|-4.作C1关于x轴的对称点C1′(2,-3),连接C1′C2,与x轴交于点P,连接PC 1,根据三角形两边之和大于第三边可知|PC 1|+|PC 2|的最小值为|C 1′C 2|,则|PM |+|PN |的最小值为52-4.选A.2.已知两圆⊙C 1:x 2+y 2+D 1x +E 1y -3=0和⊙C 2:x 2+y 2+D 2x +E 2y -3=0都经过点A (2,-1),则同时经过点(D 1,E 1)和点(D 2,E 2)的直线方程为( )A .2x -y +2=0B .x -y -2=0C .x -y +2=0D .2x +y -2=0 答案 A解析 由已知得⎩⎪⎨⎪⎧ 5+2D 1-E 1-3=05+2D 2-E 2-3=0即⎩⎪⎨⎪⎧2D 1-E 1+2=02D 2-E 2+2=0,∴点(D 1,E 1)和点(D 2,E 2)都在直线2x -y +2=0上,故同时经过(D 1,E 1)和(D 2,E 2)的直线方程为2x -y +2=0.3.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =________.答案 1解析 两圆方程作差易知弦所在的直线方程为y =1a ,如图,由已知得|AC |=3,|OA |=2,∴|OC |=1a =1,∴a =1.创新考向与圆有关的创新交汇问题是近几年高考命题的一个热点,此类问题多以其他相关知识为依托,考查圆的方程以及直线与圆的位置关系,考查分类讨论思想;或以圆为依托考查基本不等式求最值等.常见的有与集合问题相交汇、与线性规划相交汇、与不等式相交汇、与向量相交汇等.创新例题设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+3]B .(-∞,1-3]∪[1+3,+∞)C .[2-22,2+22]D .(-∞,2-22]∪[2+22,+∞)答案 D解析 由圆的方程得圆心为(1,1),半径为r =1,∵直线与圆相切,∴圆心到直线的距离为d =|m +n |(m +1)2+(n +1)2=1. 整理得m +n +1=mn ≤⎝ ⎛⎭⎪⎫m +n 22 设m +n =x ,则有x +1≤x 24解得,x ≥2+22或x ≤2-2 2.则m +n 的取值范围是(-∞,2-22]∪[2+22,+∞),故选D.创新练习1.M ={(x ,y )|y =2a 2-x 2,a >0},N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},则M ∩N ≠∅时,a 的最大值与最小值分别为________、________.答案 2+22 22-2 解析 由已知可得集合M 表示圆x 2+y 2=2a 2的上半部分,而集合N 表示圆心(1,3)半径为a 的圆,若M ∩N ≠∅,则圆N 与半圆M 有公共点,设两圆的圆心距为d ,且d =2.则(2-1)a ≤d ≤(2+1)a ,解得a ≥22-2或a ≤22+2.2.如果点P 在平面区域⎩⎪⎨⎪⎧ 2x -y +2≥0x -2y +1≤0x +y -2≤0上,点Q 在曲线x 2+(y+2)2=1上,那么|PQ |的最小值为________.答案 5-1解析根据条件画出可行域如图.设z=|PQ|表示圆上的点到可行域的距离.当点P在A处时,求出|PQ|=5,即|PQ|min=5-1.创新指导1.准确转化:解决此类创新问题时,一定要读懂题目的本质含义,紧扣题目所给条件,结合题目要求进行恰当转化,将问题转化为熟知的问题解决.2.方法选取:对于此类问题要特别注意圆的定义及其性质的应用,要根据条件,合理选择代数方法或几何方法,对于涉及参数的问题,要注意参数的变化对问题的影响,以便确定是否需要分类讨论.已知圆C:(x-1)2+(y+2)2=4,则过点P(-1,1)的圆的切线方程为________.[错解][错因分析]没有对k进行分类讨论,从而遗漏了k不存在的情况.[正解](1)当直线的斜率不存在时,方程为x=-1.此时圆心C(1,-2)到直线x=-1的距离d=|-1-1|=2.故该直线为圆的切线.(2)当直线的斜率存在时,设为k,则其方程为y-1=k(x+1),即kx-y+k+1=0.由已知圆心到直线的距离等于圆的半径,即|k×1-(-2)+k+1|k2+(-1)2=2,整理得|2k+3|k2+1=2,解得k=-512,故此时切线方程为-512x-y+712=0,即5x+12y-7=0,综上,圆的切线有两条:x =-1或5x +12y -7=0.[答案] x =-1或5x +12y -7=0[心得体会] ………………………………………………………………………………………………时间:50分钟基础组1.[2016·衡水二中仿真]已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程是( )A .(x +1)2+y 2=2B .(x +1)2+y 2=8C .(x -1)2+y 2=2D .(x -1)2+y 2=8答案 A解析 根据题意,直线x -y +1=0与x 轴的交点为⎩⎪⎨⎪⎧y =0,x -y +1=0,得(-1,0).因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离,即r =d =|-1+0+3|12+12=2,则圆的方程为(x +1)2+y 2=2.故选A.2.[2016·枣强中学期中]已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长比为1∶2,则圆C 的方程为( )A.⎝⎛⎭⎪⎫x ±332+y 2=43 B.⎝ ⎛⎭⎪⎫x ±332+y 2=13 C .x 2+⎝ ⎛⎭⎪⎫y ±332=43 D .x 2+⎝ ⎛⎭⎪⎫y ±332=13 答案 C解析 由已知圆心在y 轴上,且被x 轴所分劣孤所对圆心角为23π,设圆心为(0,a ),半径为r ,则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33,故圆C 的方程为x 2+⎝⎛⎭⎪⎫y ±332=43.3.[2016·衡水二中热身]圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线x 2-y 23=1的渐近线截得的弦长为3,则圆C 的方程为( )A .x 2+(y -1)2=1B .x 2+()y -32=3C .x 2+⎝⎛⎭⎪⎫y -322=34D .x 2+(y -2)2=4答案 A解析 依题意得,题中的双曲线的一条渐近线的斜率为3,倾斜角为60°,结合图形可知,所求的圆C 的圆心坐标是(0,1)、半径是1,因此其方程是x 2+(y -1)2=1,选A.4.[2016·武邑中学期末]将直线2x -y +λ=0沿x 轴向左平移1个单位长度,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( )A .-3或7B .-2或8C .0或10D .1或11答案 A解析 由题意可知,将直线2x -y +λ=0沿x 轴向左平移1个单位长度后,所得直线l 的方程为2(x +1)-y +λ=0.由已知条件知圆的圆心为O (-1,2),半径为 5.解法一:直线l 与圆相切,则圆心到直线l 的距离等于圆的半径,即|2×(-1+1)-2+λ|5=5,解得λ=-3或λ=7.解法二:设直线l 与圆相切的切点为C (x ,y ),由直线与圆相切,可知CO ⊥l ,所以y -2x +1×2=-1.又C (x ,y )在圆上,满足方程x 2+y 2+2x -4y =0,解得切点坐标为(1,1)或(-3,3).又C (x ,y )在直线2(x +1)-y +λ=0上,则λ=-3或λ=7.5. [2016·衡水二中一轮检测]已知在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l 经过点(1,0)且与直线x -y +1=0垂直,若直线l 与圆C 交A ,B 两点,则△OAB 的面积为( )A .1 B. 2 C .2 D .2 2答案 A解析 圆C 的标准方程为x 2+(y +1)2=4,圆心为(0,-1),半径为2,直线l 的斜率为-1,方程为x +y -1=0.圆心到直线l 的距离d =|0-1-1|2=2,弦长|AB |=2r 2-d 2=24-2=22,又坐标原点O 到AB 的距离为22,∴△OAB 的面积为12×22×22=1,故选A.6.[2016·衡水二中猜题]已知实数x ,y 满足x 2+y 2-4x +6y +12=0,则|2x -y -2|的最小值是( )A .5- 5B .4- 5 C.5-1 D .5 5答案 A解析 将x 2+y 2-4x +6y +12=0化为(x -2)2+(y +3)2=1,|2x -y -2|=5×|2x -y -2|5,几何意义表示圆(x -2)2+(y +3)2=1上的点到直线2x -y -2=0的距离的5倍,要使其值最小,只使|2x -y -2|5最小,由直线和圆的位置关系可知⎝ ⎛⎭⎪⎫|2x -y -2|5min =|2×2+3-2|5-1=5-1,∴|2x -y -2|的最小值为5×(5-1)=5-5,选A. 7.[2016·衡水二中猜题]已知直线ax +by +c -1=0(bc >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( )A .9B .8C .4D .2(注:此题条件还经常论述为“圆x 2+y 2-2y -5=0关于直线ax +by +c -1=0对称”.)答案 A解析 依题意得,圆心坐标是(0,1),于是有b +c =1,4b +1c =⎝ ⎛⎭⎪⎫4b +1c (b +c )=5+4c b +bc ≥5+24c b ×bc =9,当且仅当⎩⎨⎧b +c =1(bc >0)4c b =bc,即b =2c =23时取等号,因此4b +1c 的最小值是9,选A.8. [2016·衡水二中一轮检测]已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA →+OB →|≥33|AB →|,那么k 的取值范围是( )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22)答案 C解析 如右图,当|OA →+OB →|=33|AB →|时,O ,A ,B 三点为等腰三角形的三个顶点,其中OA =OB ,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,此时k =2;当k >2时,|OA →+OB →|>33|AB →|,又直线与圆x 2+y 2=4有两个不同的交点,故2<k <22,综上,k 的取值范围为[2,22).9.[2016·冀州中学周测]已知点N (3,4),圆C :(x -2)2+(y -3)2=1,M 是圆C 上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为________.答案 52-1解析 作点N 关于x 轴的对称点N ′(3,-4),则(|PC |+|PN |)min=|CN ′|=52,所以(|PM |+|PN |)min =52-1.10.[2016·冀州中学热身]已知圆C 过定点A (0,a )(a >0),且被x 轴截得的弦MN 的长为2a ,若∠MAN =45°,则圆C 的方程为________.答案 (x +2a )2+(y -a )2=2a 2或(x -2a )2+(y -a )2=2a 2 解析 设圆C 的圆心坐标为(x ,y ),依题意,圆C 的半径r =x 2+(y -a )2,又圆C 被x 轴截得的弦MN 的长为2a ,所以|y |2+a 2=r 2,即y 2+a 2=x 2+(y -a )2,化简得x 2=2ay .因为∠MAN =45°,所以∠MCN =90°.从而y =a ,x =±2a ,圆的半径r =x 2+(y -a )2=2a ,所以圆C 的方程为(x +2a )2+(y -a )2=2a 2或(x -2a )2+(y -a )2=2a 2.11.[2016·枣强中学周测]设圆C :(x -k )2+(y -2k +1)2=1,则圆C 的圆心轨迹方程为________,若k =0,则直线l :3x +y -1=0截圆C 所得的弦长为________.答案 2x -y -1=0 2155解析 由圆的方程(x -k )2+(y -2k +1)2=1得圆心坐标C (k,2k -1),令⎩⎪⎨⎪⎧x =k ,y =2k -1,消去k ,得2x -y -1=0,即圆C 的圆心轨迹方程为2x -y -1=0;当k =0时,圆的方程为x 2+(y +1)2=1,圆心到直线l :3x +y -1=0的距离d =|-1-1|10=105,则直线l :3x +y -1=0截圆C 所得的弦长为21-25=2155.12.[2016·冀州中学预测]已知圆O 的方程为x 2+y 2=2,圆M 的方程为(x -1)2+(y -3)2=1,过圆M 上任一点P 作圆O 的切线P A ,若直线P A 与圆M 的另一个交点为Q ,则当弦PQ 的长度最大时,直线P A 的斜率是________.答案 1或-7解析 由圆的性质易知,当切线过圆M 的圆心(1,3)时,|PQ |取最大值,这个最大值即为圆M 的直径,设此直线方程为y -3=k (x -1),即kx -y -k +3=0(k 显然存在).由|k -3|k 2+1=2得k =1或-7.能力组13.[2016·衡水二中月考]圆C :(x -1)2+y 2=25,过点P (2,-1)作圆的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( )A .1013B .921C .1023D .911答案 C解析 因为圆的方程为(x -1)2+y 2=25,所以圆心坐标为C (1,0),半径r =5,因为P (2,-1)是该圆内一点,所以经过P 点的直径是圆的最长弦,且最短的弦是与该直径垂直的弦.因为|PC |=2,所以与PC 垂直的弦长为225-2=223.因此所求四边形的面积S =12×10×223=1023.14.[2016·枣强中学模拟]在圆x 2+y 2=5x 内,过点⎝ ⎛⎭⎪⎫52,32有n 条弦的长度成等差数列,最小弦长为数列的首项a 1,最大弦长为a n ,若公差为d ∈⎣⎢⎡⎦⎥⎤16,13,那么n 的取值集合为( )A .{4,5,6,7}B .{4,5,6}C .{3,4,5,6}D .{3,4,5,6,7}答案 A解析 圆的标准方程为⎝⎛⎭⎪⎫x -522+y 2=254,∴圆心为⎝⎛⎭⎪⎫52,0,半径r=52,则最大的弦为直径,即a n =5,当圆心到弦的距离为32,即点⎝ ⎛⎭⎪⎫52,32为垂足时,弦长最小为4,即a 1=4,由a n =a 1+(n -1)d 得d =a n -a 1n -1=5-4n -1=1n -1,∵16≤d ≤13,∴16≤1n -1≤13,即3≤n -1≤6,∴4≤n ≤7,即n =4,5,6,7,选A.15.[2016·衡水二中期末]已知点M (3,1),直线ax -y +4=0及圆(x -1)2+(y -2)2=4.(1)求过点M 的圆的切线方程;(2)若直线ax -y +4=0与圆相切,求a 的值;(3)若直线ax -y +4=0与圆相交于A ,B 两点,且弦AB 的长为23,求a 的值.解 (1)由题意知圆心的坐标为(1,2),半径r =2, 当过点M 的直线的斜率不存在时,方程为x =3.由圆心(1,2)到直线x =3的距离d =3-1=2=r 知,此时,直线与圆相切.当过点M 的直线的斜率存在时,设方程为y -1=k (x -3),即kx -y +1-3k =0.由题意知|k -2+1-3k |k 2+(-1)2=2,解得k =34. ∴方程为y -1=34(x -3),即3x -4y -5=0. 故过点M 的圆的切线方程为x =3或3x -4y -5=0. (2)由题意有|a -2+4|a 2+(-1)2=2,解得a =0或a =43. (3)∵圆心到直线ax -y +4=0的距离为|a +2|a 2+1,∴⎝ ⎛⎭⎪⎪⎫|a +2|a 2+12+⎝⎛⎭⎪⎫2322=4,解得a =-34. 16. [2016·武邑中学猜题]在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上.(1)求圆C 的方程;(2)若圆C 与直线x -y +a =0交于A ,B 两点,且OA ⊥OB ,求a的值.解(1)曲线y=x2-6x+1与坐标轴的交点为(0,1),(3±22,0),故可设圆的圆心坐标为(3,t),则有32+(t-1)2=(22)2+t2,解得t =1,则圆的半径为32+(t-1)2=3.所以圆的方程为(x-3)2+(y-1)2=9.(2)设A(x1,y1),B(x2,y2),其坐标满足方程组消去y得到方程2x2+(2a-8)x+a2-2a+1=0,由已知可得判别式Δ=56-16a-4a2>0.由根与系数的关系可得x1+x2=4-a,x1x2=a2-2a+12.①由OA⊥OB可得x1x2+y1y2=0.又y1=x1+a,y2=x2+a.所以y1y2=x1x2+a(x1+x2)+a2,即2x1x2+a(x1+x2)+a2=0.②由①②可得a=-1,满足Δ>0,故a=-1.。
《圆的有关性质》教案(第一课时)
《圆的有关性质》教学设计岑松中学王开成课题:p78圆的有关性质——24.1.1圆知识与技能:结合生活实际,通过观察、操作等活动认识圆,理解圆心、半径、直径的意义,掌握圆的特征,理解同一个圆里(或等圆)半径与直径的关系。
理解圆的定义,掌握点与圆的位置关系,培养学生用数形结合思想方法分析解决问题的能力.过程与方法:通过观察、操作、想象等活动,培养学生自主探究的意识,进一步发展学生的空间观念。
情感与价值观:结合具体的情境,体验数学与生活密切联系,能用圆的知识来解释生活中的简单现象。
教学重点:在探索中发现圆的特征;圆的定义的理解。
教学难点:理解同一个圆里(或等圆)半径与直径的关系,能利用圆的特征解决生活实际问题。
教学关键:理解两点:①在圆上的点,都满足到定点(圆心)的距离等于定长(半径);②满足到定点(圆心)的距离等于定长(半径)的点,在以定点为圆心,定长为半径的圆上。
教学过程:活动一、知识回顾、复习旧知:1、角平分线及中垂线的定义(用集合的观点解释)2、在一张透明纸上画半径分别1cm,2cm,3.5cm的圆,同桌的两个同学将所画的圆的大小分别进行比较(分别对应重合)。
并回答:这些圆为什么能够分别重合?并体会圆是怎样形成的?活动二、新知探究、讲授新课:1、让学生拿出准备好的木条照课本演示圆的形成,用圆规再次演示圆的形成。
分析归纳圆定义:在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,其中固定的端点叫做圆心,线段叫做半径。
注意:“在平面内”不能忽略,以点o为圆心的圆,记作:“⊙o”,读作:圆o2、进一步观察,体会圆的形成,结合园的定义,分析得出:①圆上各点到定点(圆心)的距离等于定长(半径)②到定点的距离等于定长的点都在以定点为圆心,定长为半径的圆上。
由此得出圆的定义:圆是到定点的距离等于定长的点的集合。
例如,到平面上一点o距离为1.5cm的点的集合是以o为圆心,半径为1.5cm的一个圆。
2021年高中数学第二章2.2.1圆的标准方程学案北师大版必修2
§2圆与圆的方程2.1圆的标准方程知识点一确定圆的条件[填一填]一个圆的圆心位置和半径一旦给定,这个圆就确定了,如图所示.[答一答]1.确定圆的标准方程需要具备的条件是什么?提示:由标准方程(x-a)2+(y-b)2=r2 知确定圆的标准方程需要确定三个参数a、b、r.其中圆心(a,b)是圆的定位条件,半径r是圆的定量条件.知识点二圆的标准方程[填一填](1)圆的定义:到定点的距离等于定长的点的集合叫作圆,定点叫作圆的圆心,定长称为圆的半径.(2)圆的标准方程:圆心为C(a,b),半径为r的圆的标准方程是(x-a)2+(y-b)2=r2.(3)当圆心是坐标原点时,有a=b=0,那么圆的方程为x2+y2=r2[答一答]2.若圆的标准方程为(x+m)2+(y+n)2=a2(a≠0),此圆的半径一定是a吗?圆心坐标是(m,n)吗?提示:圆的半径不一定是a,当a>0 时,半径是a;当a<0 时,半径是-a.圆心坐标不是(m,n),应是(-m,-n),因为(x+m)2+(y+n)2=a2 化为标准结构是[x-(-m)]2+[y-(-n)]2=|a|2.3.圆的标准方程有哪些优点?确定圆的标准方程有几个基本要素?提示:圆的标准方程的优点在于明确地指出了圆心和半径.在圆的标准方程中有两个基本要素:圆心坐标和半径,只要a,b,r三个量确定了,且r>0,则圆的标准方程就确定了,这就是说要确定圆的标准方程,必须具备三个独立的条件,注意确定a,b,r,可以根据条件利用待定系数法来解决.知识点三点与圆的位置关系[填一填]设点P到圆心的距离为d,半径为r,则点在圆内⇔d<r;点在圆上⇔d=r;点在圆外⇔d>r.[答一答]4.判断点和圆的位置关系的依据是什么?提示:判断点与圆的位置关系的依据是圆心到该点的距离和圆的半径的大小关系.1.对于圆的标准方程,我们要从其结构形式上准确地记忆.2.由圆的标准方程,可直接得到圆的圆心坐标和半径大小;反过来说,给出了圆的圆心和半径,即可直接写出圆的标准方程,这一点体现了圆的标准方程的直观性.3.确定圆的标准方程需要三个独立的条件,一般运用待定系数法求a,b,r.类型一根据方程确定圆心和半径【例1】分别写出下列方程所表示圆的圆心坐标和半径.(1)(x-2)2+(y-2)2=8;(2)(x+4)2+y2=4;(3)(x+m)2+(y-n)2=p2.【思路探究】利用圆的标准方程的几何特征解答.【解】(1)原方程可化为(x-2)2+(y-2)2=(2 2)2,∴圆心坐标为(2,2),半径r=2 2.(2)原方程可化为[x-(-4)]2+(y-0)2=22,∴圆心坐标为(-4,0),半径r=2.(3)原方程可化为[x-(-m)]2+(y-n)2=p2,∴圆心坐标为(-m,n),半径r=|p|.规律方法由圆的标准方程可直接得出圆心坐标和半径,但要注意圆的标准方程(x-a)2+(y-b)2=r2 中,a,b前的运算符号均为减号.给定圆:(x-2)2+(y+8)2=(-3)2,下列说法中正确的是(C)A.圆心坐标是(2,-8),半径长为-3B.圆心坐标是(-2,8),半径长为3C.圆心坐标是(2,-8),半径长为3D.圆心坐标是(-2,8),半径长为-3解析:对照圆的标准方程(x-a)2+(y-b)2=r2(r>0),知圆心坐标是(2,-8),半径长不可能是负数,故为3.类型二判断点与圆的位置关系【例2】已知两点P(3,8),Q(5,4),试分别判断点M(6,3),N(3,5)在以线段PQ为直径的圆上,圆内,还是圆外?【解】线段PQ的中点为C(4,6),|PQ|=5-32+4-82=2 5,∴圆的半径r=5,以线段PQ为直径的圆的标准方程为(x-4)2+(y-6)2=5.由于(6-4)2+(3-6)2=13>5,∴点M在圆外.由于(3-4)2+(5-6)2=2<5,∴点N在圆内.规律方法点与圆的位置关系及判断方法:(1)点M与圆心C的距离与半径r比较:|CM|=r⇔点M在圆上;|CM|>r⇔点M在圆外;|CM|<r⇔点M在圆内.(2)利用圆的标准方程来确定:圆的标准方程(x-a)2+(y-b)2=r2,点M(m,n).(m-a)2+(n-b)2=r2⇔点M在圆上;(m-a)2+(n-b)2>r2⇔点M在圆外;(m-a)2+(n-b)2<r2⇔点M在圆内.设圆C:(x-2)2+(y+3)2=25,试判断下列各点是在圆内、圆外、还是圆上?(1)M(-1,-7);(2)N(-3,1);(3)P( 2,2).解:(1)∵(-1-2)2+(-7+3)2=25,∴点M在圆C上.(2)∵(-3-2)2+(1+3)2=41>25,∴点N在圆C外.(3)∵( 2-2)2+( 2+3)2=17+2 2<25,∴点P在圆C内.类型三求圆的标准方程【例3】求经过两点A(-1,4),B(3,2)且圆心在y轴上的圆的标准方程.【思路探究】用待定系数法,求出圆心(a,b)、半径r.也可用几何法.【解】解法一:∵圆心在y轴上,∴a=0.设圆的标准方程是x2+(y-b)2=r2.∵该圆经过A、B两点,∴Error!∴Error!所以圆的标准方程是x2+(y-1)2=10.2-4 1解法二:线段AB的中点为(1,3),k AB==-,3--1 2∴弦AB的垂直平分线方程为y-3=2(x-1),即y=2x+1.由Error!得(0,1)为所求圆的圆心.由两点间距离公式得圆半径r为0+12+1-42=10,∴所求圆的标准方程为x2+(y-1)2=10.规律方法求圆的标准方程就是要求圆心坐标和圆的半径,解法一是先设出圆的标准方程,而后用待定系数法求出圆心坐标和圆半径,解法二抓住圆的性质及题目的特点,求出线段AB的垂直平分线方程并与y轴的方程联立组成方程组,先得出了圆心的坐标,而后求出圆的半径.已知一个圆经过两个点A(2,-3)和B(-2,-5),且圆心在直线l:x-2y-3=0 上,求此圆的标准方程.解:解法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.由已知条件得Error!即Error!∴Error!∴所求圆的标准方程为(x+1)2+(y+2)2=10.1解法二:由A(2,-3),B(-2,-5)得AB的中点为(0,-4),k AB=,∴AB的垂直平2分线的方程为y+4=-2x,即2x+y+4=0,解方程组Error!得Error!∴圆心为(-1,-2),半径r=2+12+-3+22=10.故所求圆的标准方程为(x+1)2+(y+2)2=10.解法三:设点C是圆心,∵点C在直线l上,∴设点C(2b+3,b).又∵|CA|=|CB|,∴2b+3-22+b+32=2b+3+22+b+52,解得b=-2,∴圆心为C(-1,-2),半径r=10,故所求圆的标准方程为(x+1)2+(y+2)2=10.——规范解答系列——数形结合解决与圆有关的最值问题【例4】设点P(x,y)是圆x2+(y+4)2=4 上任意一点,求x-12+y-12的最大值.【精解详析】因为点P(x,y)是圆x2+(y+4)2=4 上的任意一点,因此x-12+y-12表示点(1,1)与该圆上点的距离,如图所示.易知点(1,1)在圆x2 +(y+4)2 =4 外,结合右图易得x-12+y-12的最大值为1-02+1+42+2=26+2.【解后反思】用数形结合的思想方法也能求出x-12+y-12的最小值为26-2.求圆外一定点A与圆C上动点P连线距离的最值方法:设|AC|=d,圆C半径为r,则|AP|max=d+r,|AP|min=d-r;求圆内一定点A与圆C上动点P连线距离的最值方法:设|AC|=d,圆C半径为r,则|AP|max=d+r,|AP|min=r-d.已知点P(x,y)在圆(x-2)2+(y+3)2=36 上,求x2+y2+2x-4y+5的取值范围.解:x2+y2+2x-4y+5=[x--1]2+y-22,其最值可视为圆上一点P(x,y)到定点A(-1,2)的距离的最值,又(-1-2)2+(2+3)2<36,所以点A在圆内,问题可转化为圆心C(2,-3)到定点A(-1,2)的距离与半径6 的和或差.又圆心到定点(-1,2)的距离为34,所以x2+y2+2x-4y+5的最大值为34+6,最小值为6-34.所以x2+y2+2x-4y+5的取值范围是[6-34,6+34].一、选择题1.点A(-2,3)与圆(x+3)2+(y-1)2=9 的位置关系是(B)A.在圆外B.在圆内C.在圆上D.不确定解析:圆心坐标为C(-3,1),半径r=3,|AC|=5<r,所以点A在圆内.二、填空题2.过A(2,-3),B(-2,-5)两点且面积最小的圆的标准方程为x2+(y+4)2=5.解析:过A,B两点且面积最小的圆就是以线段AB为直径的圆.∴圆心坐标为(0,-4),1半径r=|AB|= 5.2∴圆的标准方程为x2+(y+4)2=5.3.若点M(5 a+1,a)在圆(x-1)2+y2=26 的外部,则实数a的取值范围是(1,+∞).解析:由题意得(5 a+1-1)2+( a)2>26,即a>1.三、解答题4.已知圆的圆心M是直线2x+y-1=0 与直线x-2y+2=0 的交点,且圆过点P(-5,6).求圆的标准方程,并判断点A(2,2),B(1,8),C(6,5)是在圆上,在圆内,还是在圆外?解:解方程组Error!得Error!∴圆心M的坐标为(0,1).半径r=|MP|=52+1-62=5 2.∴圆的标准方程为x2+(y-1)2=50.∵|AM|=2-02+2-12=5<r,∴点A在圆内.∵|BM|=1-02+8-12=50=r,∴点B在圆上.∵|CM|=6-02+5-12=52>r,∴点C在圆外.∴圆的标准方程为x2+(y-1)2=50.点A在圆内,点B在圆上,点C在圆外.。
第24章 圆复习学案
1 2《第24章 圆》复习学案一.知识整理【圆的有关概念与性质】1.圆的概念 ①线段OA 绕端点O 旋转一周,另一个端点A 随之旋转一周,所组成的图形叫圆. ②到定点的距离等于定长的点的集合.2.等弧 在同圆或等圆中,能够互相重合的弧叫等弧.3.垂径定理及推论:如果一条直线满足①过圆心②垂直于弦③平分弦④平分弦所对的优弧⑤平分弦所对的劣弧.中的任意两条,必满足其他三条(当以①③为题设时,弦不能是直径).两条平行弦所夹的弧相等.应用垂径定理计算:如图,r =d +h ,r 2=d 2+2()2a .4. 圆心角、圆周角、弧、弦、弦心距的关系:在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦、两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.5.圆周角定理及推论:圆周角等于它所对弧度数的一半;90°的圆周角所对的弦是直径,直径所对的圆周角是直角;圆内接四边形对角互补,一个外角等于它的内对角;如果一个三角形一边上中线等于这边的一半,那么这个三角形是直角三角形.【与圆有关的位置关系】1.点和圆的位置关系有三种: 设圆的半径为r ,点到圆心的距离为d ,则点在圆外⇔d >r .点在圆上⇔d =r .点在圆内⇔d <r . 2.直线和圆的位置关系有三种:相交、相切、相离.设圆的半径为r ,圆心到直线的距离为d ,则直线与圆相交⇔d <r ,直线与圆相切⇔d =r ,直线与圆相离⇔d >r .3. 切线的性质:如果一条直线满足“①过圆心②过切点③垂直于切线”中的任意两条,必满足第三条. 4d=r5.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角..6. 弦切角定理:弦切角等于它所夹弧所对的圆周角.如果两个弦切角所夹弧相等,那么这两个弦切角相等.7.三角形的外心:不在同一直线上的三个点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.三角形的外心到三个顶点的距离相等.8. 三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内心到三边的距离相等.9.三角形内切圆半径为r ,周长为C ,则S △=12Cr ;直角三角形内切圆的半径r =12(a +b -c )=aba b c ++.10.已知直线与圆相切,往往要连接圆心与切点,得垂直.要证明直线与圆相切,当切点明确时,连接圆心与切点,证垂直;当切点不明确时,过圆心作直线的垂线段,证d=r . 【与圆有关的计算】圆的周长:C =2πr ; 弧长2360180n n r l r ππ=⋅= 圆的面积:S =πr 2 ; 扇形面积:2360n s r π=⋅或12s lr = 正多边形的有关概念及计算1.正多边形的有关概念:一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距.2.正多边形的计算:①对角线条数:12n (n -3);②内角度数:(2)180n n -⋅︒;③中心角=外角:360n3.正三角形边长为a ,则其面积为23a .二.经典习题一1. 半径为1的圆中,长度为1的弦所对的圆周角度数为: .2. ⊙O 半径为5,弦AB =8,CD =6,且AB ∥CD ,则AB 、CD 间的距离是 .3. 过⊙O 内一点P ,的最长弦是10,最短的弦是6,那么OP 的长为____________.4.如图,CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1,AB =10,求CD 的长.O EDBA5. 如图,⊙O 直径AB 和弦CD 相交于点E ,AE =2,EB =6,∠DEB =30°,求弦CD 长.6. 如图所示,AB 是OD 的弦,半径OC 、OD 分别交AB 于点E 、F ,且AE =BF ,请你找出线段OE 与OF 的数量关系,并给予证明.A BC DEF O7. AB 是⊙O 的直径,AC 、AD 是⊙O 的两弦,已知AB =16,AC =8,AD =82DAC 的度数.OC8.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,P 是直径MN 上一动点,求P A +PB 的最小值.9.如图,正△DBC 内接于⊙O ,点A 为DC 上一点,⑴求证:AB =AD +AC ;⑵DE ⊥AB 于E ,求AB AC BE +、AB ACAE-的值OEDCBA10.如图,AB 是⊙O 的直径,C 是BD 的中点,CE ⊥AB 于 E ,BD 交CE 于点F .⑴求证:CF ﹦BF ﹦GF ;⑵若CD =9,AC ﹦12,求⊙O 的半径与CE 的长.⑶若D 为AC 中点,且AB =63CF . ⑷若AD =4,⊙O 半径为5,求BC .OGF EDCBA经典习题二1.边长为3、4、5的三角形的内切圆的半径长为: . △ABC 周长为10,内切圆半径为2,则△ABC 的面积为 .2. △ABC 中,∠A =70°,若O 为△ABC 的外心,则∠BOC = ,若O 为△ABC 的内心,则∠BOC = ,若O 为△ABC 的垂心,则∠BOC = .3.如图,⊙O 与△ABC 三边分别截于DE 、FG 、HM ,且DE =FG =HM ,若∠A =70°,求∠BOC .O h dar ABCDE FGH M O44.O于A,求证:∠P AB=∠C.P5.如图,△ABC中,∠C=90°,点O在BC边上,半圆O过点C,切AB于D,交BC于E,BE=1,BD=2,求AD.延长线上的点,CD切⊙O于D点,CE平分∠DCA,交AD于E点,求∠DEC的大小.BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.⑴证明CF是⊙O的切线;⑵设⊙O的半径为1,且AC=CE,求MO.A8. 如图,AB为⊙O的直径,D为BC中点,DE⊥AC于E,DE=6cm,CE=2cm,⑴求证:DE是⊙O的切线;⑵求AC、AB的长.A9.如图,AB过⊙O的圆心,BC切⊙O于D,AC⊥BC于C,交⊙O于E.⑴求证:AD平分BAC∠;⑵若AE=2,DC=AC=3,BC=4,求BD.B10.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.⑴求证:AB=AC;⑵求证:DE为⊙O的切线;⑶若⊙O的半径为5,∠BAC=60°,求DE的长.⑷若DEAB=5,求AE的长.C经典习题三1.已知圆锥底面半径为2,母线长为5,则圆锥的侧面积是.2.正三角形的内切圆半径为1,那么这个正三角形的边长为.3.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为.4.如图,半径为4的⊙O中有弦AB,以AB为折痕对折,劣弧恰好经过圆心O,则弦AB的长度是多少?5.如图,若等边△ABC的边长为6cm长,内切圆O分别切三边于D、E、F,则阴影部分的面积是多少?B6.如图,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角线坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴正半轴上的A′处,则图中阴影部分面积7.如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC8.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,求该圆锥的高h的长.9.已知圆锥的底面半径为r=20cm,高h cm,现在有一只蚂蚁从底边上一点A出发.在侧面上爬行一周又回到A点,求蚂蚁爬行的最短距离.10.如图,AB是⊙O直径,P为弦AC延长线上一点,AC=CP,直线PB交⊙O于点D,(1)求证:CP=CD;(2)若⊙O直径是2,∠A=30°,求图中阴影部分面积.3。
高中数学学案 圆的标准方程
4.1 圆的方程4.1.1 圆的标准方程学习目标核心素养1.会用定义推导圆的标准方程;掌握圆的标准方程的特点.(重点) 2.会根据已知条件求圆的标准方程.(重点、难点)3.能准确判断点与圆的位置关系.(易错点) 通过对圆的标准方程的学习,提升直观想象、逻辑推理、数学运算的数学素养.1.圆的标准方程(1)圆的定义:平面内到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径.(2)确定圆的基本要素是圆心和半径,如图所示.(3)圆的标准方程:圆心为A(a,b),半径长为r的圆的标准方程是(x-a)2+(y-b)2=r2.当a=b=0时,方程为x2+y2=r2,表示以圆点O为圆心、半径为r的圆.思考:平面内确定圆的要素是什么?[提示]圆心坐标和半径.2. 点与圆的位置关系设点P到圆心的距离为d,半径为r.d与r的大小点与圆的位置d<r 点P在圆内d=r 点P在圆上d>r 点P在圆外1.圆(x-2)2+(y+3)2=2的圆心和半径分别是( )A.(-2,3),1 B.(2,-3),3C.(-2,3), 2 D.(2,-3), 2D [由圆的标准方程可得圆心为(2,-3),半径为 2.] 2.以原点为圆心,2为半径的圆的标准方程是( ) A .x 2+y 2=2B .x 2+y 2=4 C .(x -2)2+(y -2)2=8D .x 2+y 2= 2B [以原点为圆心,2为半径的圆,其标准方程为x 2+y 2=4.] 3.点P(m,5)与圆x 2+y 2=24的位置关系是( ) A .在圆外 B .在圆内 C .在圆上D .不确定A [∵m 2+25>24,∴点P 在圆外.]4.点(1,1)在圆(x +2)2+y 2=m 上,则圆的方程是________.(x +2)2+y 2=10 [因为点(1,1)在圆(x +2)2+y 2=m 上,故(1+2)2+12=m,∴m =10.即圆的方程为(x +2)2+y 2=10.]求圆的标准方程【例1】 求过点A(1,-1),B(-1,1)且圆心在直线x +y -2=0上的圆的方程.思路探究:法一:利用待定系数法,设出圆的方程,根据条件建立关于参数方程组求解;法二:利用圆心在直线上,设出圆心坐标,根据条件建立方程组求圆心坐标和半径,从而求圆的方程;法三:借助圆的几何性质,确定圆心坐标和半径,从而求方程.[解] 法一:设所求圆的标准方程为 (x -a)2+(y -b)2=r 2,由已知条件知⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解此方程组,得⎩⎪⎨⎪⎧a =1,b =1,r 2=4.故所求圆的标准方程为(x -1)2+(y -1)2=4. 法二:设点C 为圆心,∵点C 在直线x +y -2=0上, ∴可设点C 的坐标为(a,2-a). 又∵该圆经过A,B 两点, ∴|CA|=|CB|.∴(a -1)2+(2-a +1)2=(a +1)2+(2-a -1)2, 解得a =1.∴圆心坐标为C(1,1),半径长r =|CA|=2. 故所求圆的标准方程为(x -1)2+(y -1)2=4. 法三:由已知可得线段AB 的中点坐标为(0,0), k AB =1-(-1)-1-1=-1,所以弦AB 的垂直平分线的斜率为k =1,所以AB 的垂直平分线的方程为y -0=1·(x-0), 即y =x.则圆心是直线y =x 与x +y -2=0的交点,由⎩⎪⎨⎪⎧y =x ,x +y -2=0,得⎩⎪⎨⎪⎧x =1,y =1, 即圆心为(1,1),圆的半径为(1-1)2+[1-(-1)]2=2, 故所求圆的标准方程为(x -1)2+(y -1)2=4.确定圆的方程的方法:确定圆的标准方程就是设法确定圆心C(a,b)及半径r,其求解的方法:一是待定系数法,如法一,建立关于a,b,r 的方程组,进而求得圆的方程;二是借助圆的几何性质直接求得圆心坐标和半径,如法二、法三.一般地,在解决有关圆的问题时,有时利用圆的几何性质作转化较为简捷.1.求下列圆的标准方程: (1)圆心是(4,0),且过点(2,2);(2)圆心在y 轴上,半径为5,且过点(3,-4);(3)过点P(2,-1)和直线x -y =1相切,并且圆心在直线y =-2x 上. [解] (1)r 2=(2-4)2+(2-0)2=8, ∴圆的标准方程为(x -4)2+y 2=8.(2)设圆心为C(0,b),则(3-0)2+(-4-b)2=52, ∴b =0或b =-8,∴圆心为(0,0)或(0,-8),又r =5, ∴圆的标准方程为x 2+y 2=25或x 2+(y +8)2=25. (3)∵圆心在y =-2x 上,设圆心为(a,-2a), 设圆心到直线x -y -1=0的距离为r. ∴r =|a +2a -1|2,① 又圆过点P(2,-1),∴r 2=(2-a)2+(-1+2a)2,②由①②得⎩⎨⎧a =1,r =2或⎩⎨⎧a =9,r =132,∴圆的标准方程为(x -1)2+(y +2)2=2或(x -9)2+(y +18)2=338.点与圆的位置关系【例2】 已知圆心为点C(-3,-4),且经过原点,求该圆的标准方程,并判断点P 1(-1,0),P 2(1,-1),P 3(3,-4)和圆的位置关系.[解] 因为圆心是C(-3,-4),且经过原点, 所以圆的半径r =(-3-0)2+(-4-0)2=5, 所以圆的标准方程是(x +3)2+(y +4)2=25.因为|P 1C|=(-1+3)2+(0+4)2=4+16=25<5, 所以P 1(-1,0)在圆内;因为|P 2C|=(1+3)2+(-1+4)2=5, 所以P 2(1,-1)在圆上;因为|P 3C|=(3+3)2+(-4+4)2=6>5, 所以P 3(3,-4)在圆外.1.判断点与圆的位置关系的方法(1)只需计算该点与圆的圆心距离,与半径作比较即可;(2)把点的坐标代入圆的标准方程,判断式子两边的符号,并作出判断. 2.灵活运用若已知点与圆的位置关系,也可利用以上两种方法列出不等式或方程,求解参数范围.2.已知点A(1,2)不在圆C :(x -a)2+(y +a)2=2a 2的内部,求实数a 的取值范围. [解] 由题意,点A 在圆C 上或圆C 的外部, ∴(1-a)2+(2+a)2≥2a 2, ∴2a +5≥0,∴a ≥-52.∵a≠0,∴a 的取值范围为⎣⎢⎡⎭⎪⎫-52, 0∪(0,+∞).与圆有关的最值问题[探究问题]1.怎样求圆外一点到圆的最大距离和最小距离?[提示] 可采用几何法,先求出该点到圆心的距离,再加上或减去圆的半径,即可得距离的最大值和最小值.2.若点P(x, y)是圆C :(x -2)2+(y +2)2=1上的任一点,如何求点P 到直线x -y =0的距离的最大值和最小值?[提示] 可先求出圆心(2,-2)到直线x -y =0的距离,再将该距离加上或减去圆的半径1,即可得距离的最大值和最小值.【例3】 已知x 和y 满足(x +1)2+y 2=14,试求x 2+y 2的最值.思路探究:首先观察x 、y 满足的条件,其次观察所求式子的几何意义,求出其最值.[解] 由题意知x 2+y 2表示圆上的点到坐标原点距离的平方,显然当圆上的点与坐标原点的距离取最大值和最小值时,其平方也相应取得最大值和最小值.原点O(0,0)到圆心C(-1,0)的距离d =1,故圆上的点到坐标原点的最大距离为1+12=32,最小距离为1-12=12.因此x 2+y 2的最大值和最小值分别为94和14.1.本例条件不变,试求yx的取值范围.[解] 设k =y x ,变形为k =y -0x -0,此式表示圆上一点(x, y)与点(0, 0)连线的斜率,由k =y x ,可得y =kx,此直线与圆有公共点,圆心到直线的距离d≤r ,即|-k|k 2+1≤12,解得-33≤k≤33.即y x 的取值范围是⎣⎢⎡⎦⎥⎤-33,33. 2.本例条件不变,试求x +y 的最值.[解] 令y +x =b 并将其变形为y =-x +b,问题转化为斜率为-1的直线在经过圆上的点时在y 轴上的截距的最值.当直线和圆相切时在y 轴上的截距取得最大值和最小值,此时有|-1-b|2=12,解得b =±22-1,即最大值为22-1,最小值为-22-1.与圆有关的最值问题的常见类型及解法:(1)形如u =y -bx -a 形式的最值问题,可转化为过点(x, y)和(a, b)的动直线斜率的最值问题.(2)形如l =ax +by 形式的最值问题,可转化为动直线y =-a b x +lb截距的最值问题.(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点(x, y)到定点(a, b)的距离的平方的最值问题.1.确定圆的方程主要方法是待定系数法,即列出关于a,b,r的方程组求a,b,r或直接求出圆心(a,b)和半径r.另依据题意适时运用圆的几何性质解题可以化繁为简,提高解题效率.2.讨论点与圆的位置关系可以从代数特征(点的坐标是否满足圆的方程)或几何特征(点到圆心的距离与半径的关系)去考虑,其中利用几何特征较为直观、简捷.3.与圆有关的最值问题,常借助于所求式的几何意义,利用数形结合的思想解题,渗透着直观形象的数学素养.1.圆心为(0,4),且过点(3,0)的圆的方程为( )A.x2+(y-4)2=25 B.x2+(y+4)2=25C.(x-4)2+y2=25 D.(x+4)2+y2=25A[由题意,圆的半径r=(0-3)2+(4-0)2=5,则圆的方程为x2+(y-4)2=25.]2.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( ) A.6 B.4 C.3 D.2B[由题意,知 |PQ|的最小值即为圆心到直线x=-3的距离减去半径长,即|PQ|的最小值为6-2=4,故选B.]3.经过原点,圆心在x轴的负半轴上,半径为2的圆的方程是________.(x+2)2+y2=4 [由题意知,圆心是(-2,0),半径是2,所以圆的方程是(x+2)2+y2=4.]4.点(5a+1,a)在圆(x-1)2+y2=26的内部,则a的取值范围是________.[0,1)[由于点在圆的内部,所以(5a+1-1)2+(a)2<26,即26a<26,又a≥0,解得0≤a<1.] 5.△ABC的三个顶点的坐标分别为A(1,0),B(3,0),C(3,4),求△ABC的外接圆方程.[解]易知△ABC是直角三角形,∠B=90°,所以圆心是斜边AC的中点(2,2),半径是斜边长的一半,即r=5,所以外接圆的方程为(x-2)2+(y-2)2=5.。
人教版高中数学必修二 4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用 学案+课时训练
人教版高中数学必修二第4章圆与方程4.2 直线、圆的位置关系4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用学案【学习目标】1.掌握圆与圆的位置关系及判定方法.(重点、易错点)2.能利用直线与圆的位置关系解决简单的实际问题.(难点)【要点梳理夯实基础】知识点1圆与圆位置关系的判定阅读教材P129至P130“练习”以上部分,完成下列问题.1.几何法:若两圆的半径分别为r1、r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2|0≤d<|r1-r2| ⎭⎬⎫圆C1方程圆C2方程――→消元一元二次方程⎩⎨⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含[思考辨析学练结合]两圆x2+y2=9和x2+y2-8x+6y+9=0的位置关系是()A.外离B.相交C.内切D.外切[解析]两圆x2+y2=9和x2+y2-8x+6y+9=0的圆心分别为(0,0)和(4,-3),半径分别为3和4.所以两圆的圆心距d=42+(-3)2=5.又4-3<5<3+4,故两圆相交.[答案] B知识点2 直线与圆的方程的应用阅读教材P130“练习”以下至P132“练习”以上部分,完成下列问题.用坐标方法解决平面几何问题的“三步曲”[思考辨析学练结合]一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过()A.1.4米B.3.5米C.3.6米D.2米[解析]建立如图所示的平面直角坐标系.如图,设蓬顶距地面高度为h,则A(0.8,h-3.6).半圆所在圆的方程为:x2+(y+3.6)2=3.62,把A(0.8,h-3.6)代入得0.82+h2=3.62,∴h=40.77≈3.5(米).[答案] B【合作探究析疑解难】考点1 圆与圆位置关系的判定[典例1] 当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交、相切、相离?[分析]求圆C1的半径r1→求圆C2的半径r2→求|C1C2|→利用|C1C2|与|r1-r2|和r1+r2的关系求k[解答]将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C1(-2,3),半径r1=1;圆C2的圆心为C2(1,7),半径r2=50-k(k<50).从而|C1C2|=(-2-1)2+(3-7)2=5.当1+50-k=5,k=34时,两圆外切.当|50-k-1|=5,50-k=6,k=14时,两圆内切.当|r2-r1|<|C1C2|<r2+r1,即14<k<34时,两圆相交.当1+50-k<5或|50-k-1|>5,即0≤k<14或34<k<50时,两圆相离.1.判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:(1)化成圆的标准方程,写出圆心和半径;(2)计算两圆圆心的距离d;(3)通过d,r1+r2,|r1-r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.2.应用几何法判定两圆的位置关系或求字母参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系.1.已知圆C1:x2+y2-2ax-2y+a2-15=0,圆C2:x2+y2-4ax-2y+4a2=0(a>0).试求a为何值时,两圆C1,C2的位置关系为:(1)相切;(2)相交;(3)外离;(4)内含.[解]圆C1,C2的方程,经配方后可得C1:(x-a)2+(y-1)2=16,C2:(x-2a)2+(y-1)2=1,∴圆心C 1(a,1),C 2(2a,1),半径r 1=4,r 2=1.∴|C 1C 2|=(a -2a )2+(1-1)2=a .(1)当|C 1C 2|=r 1+r 2=5,即a =5时,两圆外切;当|C 1C 2|=r 1-r 2=3,即a =3时,两圆内切.(2)当3<|C 1C 2|<5,即3<a <5时,两圆相交.(3)当|C 1C 2|>5,即a >5时,两圆外离.(4)当|C 1C 2|<3,即a <3时,两圆内含.考点2 两圆相交有关问题[典例2] 求圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在直线被圆C 3:(x -1)2+(y -1)2=254所截得的弦长. [分析] 联立圆C 1、C 2的方程――→作差得公共弦所在的直线―→圆心C 3到公共弦的距离d ―→圆的半径r ―→弦长=2r 2-d 2[解答] 设两圆的交点坐标分别为A (x 1,y 1),B (x 2,y 2),则A ,B 的坐标是方程组⎩⎨⎧x 2+y 2=1,x 2+y 2-2x -2y +1=0的解, 两式相减得x +y -1=0.因为A ,B 两点的坐标满足 x +y -1=0,所以AB 所在直线方程为x +y -1=0,即C 1,C 2的公共弦所在直线方程为x +y -1=0,圆C 3的圆心为(1,1),其到直线AB 的距离d =12,由条件知r 2-d 2=254-12=234,所以直线AB 被圆C 3截得弦长为2×232=23.1.圆系方程一般地过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x2.求两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0的公共弦所在直线的方程及公共弦长.[解] 联立两圆的方程得方程组⎩⎨⎧ x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0,两式相减得x -2y +4=0,此为两圆公共弦所在直线的方程.法一:设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎨⎧ x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎨⎧ x =-4,y =0或⎩⎨⎧x =0,y =2.所以|AB |=(-4-0)2+(0-2)2=25,即公共弦长为2 5.法二:由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心坐标为(1,-5),半径长r =52,圆心到直线x -2y +4=0的距离为d =|1-2×(-5)+4|1+(-2)2=3 5. 设公共弦长为2l ,由勾股定理得r 2=d 2+l 2,即50=(35)2+l 2,解得l =5,故公共弦长2l =2 5.考点3 直线与圆的方程的应用探究1 设村庄外围所在曲线的方程可用(x -2)2+(y +3)2=4表示,村外一小路方程可用x-y+2=0表示,你能求出从村庄外围到小路的最短距离吗?[分析]从村庄外围到小路的最短距离为圆心(2,-3)到直线x-y+2=0的距离减去圆的半径2,即|2+3+2|12+(-1)2-2=722-2.探究2已知台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,请建立适当的坐标系,用坐标法求B城市处于危险区内的时间.[分析]如图,以A为原点,以AB所在直线为x轴建立平面直角坐标系.射线AC为∠xAy的平分线,则台风中心在射线AC上移动.则点B到AC的距离为202千米,则射线AC被以B为圆心,以30千米为半径的圆截得的弦长为2302-(202)2=20(千米).所以B城市处于危险区内的时间为t=2020=1(小时).[典例3] 为了适应市场需要,某地准备建一个圆形生猪储备基地(如图4-2-1),它的附近有一条公路,从基地中心O处向东走1 km是储备基地的边界上的点A,接着向东再走7 km到达公路上的点B;从基地中心O向正北走8 km 到达公路的另一点C.现准备在储备基地的边界上选一点D,修建一条由D通往公路BC的专用线DE,求DE的最短距离.图4-2-1[分析]建立适当坐标系,求出圆O的方程和直线BC的方程,再利用直线与圆的位置关系求解.[解答]以O为坐标原点,过OB,OC的直线分别为x轴和y轴,建立平面直角坐标系,则圆O的方程为x2+y2=1,因为点B(8,0),C(0,8),所以直线BC的方程为x8+y8=1,即x+y=8.当点D选在与直线BC平行的直线(距BC较近的一条)与圆的切点处时,DE为最短距离.此时DE长的最小值为|0+0-8|2-1=(42-1) km.[方法总结]解决关于直线与圆方程实际应用问题的步骤[跟踪练习]3.一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km处,受影响的范围是半径为30 km的圆形区域,已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?[解] 以台风中心为坐标原点,以东西方向为x轴建立直角坐标系(如图),其中取10 km为单位长度,则受台风影响的圆形区域所对应的圆的方程为x2+y2=9,港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l的方程为x7+y4=1,即4x+7y-28=0.圆心(0,0)到航线4x+7y-28=0的距离d=|-28|42+72=2865,而半径r=3,∴d>r,∴直线与圆外离,所以轮船不会受到台风的影响.【学习检测巩固提高】1.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是()A.(x-3)2+(y-5)2=25 B.(x-5)2+(y+1)2=25C.(x-1)2+(y-4)2=25 D.(x-3)2+(y+2)2=25[解析]设⊙C2上任一点P(x,y),它关于(2,1)的对称点(4-x,2-y)在⊙C1上,∴(x-5)2+(y+1)2=25.[答案] B2.一辆卡车宽1.6 m,要经过一个半圆形隧道(半径为3.6 m),则这辆卡车的平顶车篷篷顶距地面高度不得超过()A.1.4 m B.3.5 m C.3.6 m D.2.0 m [解析]圆半径OA=3.6,卡车宽1.6,所以AB=0.8,所以弦心距OB= 3.62-0.82≈3.5(m).[答案] B3.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是__相交__.[解析]圆x2+y2+6x-7=0的圆心为O1(-3,0),半径r1=4,圆x2+y2+6y-27=0的圆心为O 2(0,-3),半径为r 2=6,∴|O 1O 2|=(-3-0)2+(0+3)2=32,∴r 2-r 1<|O 1O 2|<r 1+r 2,故两圆相交.4.已知实数x 、y 满足x 2+y 2=1,则y +2x +1的取值范围为__ [34,+∞) __. [解析] 如右图所示,设P (x ,y )是圆x 2+y 2=1上的点,则y +2x +1表示过P (x ,y )和Q (-1,-2)两点的直线PQ 的斜率,过点Q 作圆的两条切线QA ,QB ,由图可知QB ⊥x 轴,k QB 不存在,且k QP ≥k QA .设切线QA 的斜率为k ,则它的方程为y +2=k (x +1),由圆心到QA 的距离为1,得|k -2|k 2+1=1,解得k =34.所以y +2x +1的取值范围是[34,+∞). 5.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.[解析] 解法一:联立两圆方程⎩⎨⎧ x 2+y 2-12x -2y -13=0x 2+y 2+12x +16y -25=0, 相减得公共弦所在直线方程为4x +3y -2=0.再由⎩⎨⎧4x +3y -2=0x 2+y 2-12x -2y -13=0, 联立得两圆交点坐标(-1,2)、(5,-6).∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径为12(5+1)2+(-6-2)2=5. ∴圆C 的方程为(x -2)2+(y +2)2=25.解法二:由解法一可知公共弦所在直线方程为4x +3y -2=0.设所求圆的方程为x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ为参数).可求得圆心C (-12λ-122(1+λ),-16λ-22(1+λ)). ∵圆心C 在公共弦所在直线上,∴4·-(12λ-12)2(1+λ)+3·-(16λ-2)2(1+λ)-2=0, 解得λ=12.∴圆C 的方程为x 2+y 2-4x +4y -17=0.人教版高中数学必修二第4章 圆与方程4.2 直线、圆的位置关系4.2.2圆与圆的位置关系课时检测一、选择题1.圆x 2+y 2-2x -5=0和圆x 2+y 2+2x -4y -4=0的交点为A 、B ,则线段AB 的垂直平分线方程为( )A .x +y -1=0B .2x -y +1=0C .x -2y +1=0D .x -y +1=0[解析] 解法一:线段AB 的中垂线即两圆的连心线所在直线l ,由圆心C 1(1,0),C 2(-1,2),得l 方程为x +y -1=0.解法二:直线AB 的方程为:4x -4y +1=0,因此线段AB 的垂直平分线斜率为-1,过圆心(1,0),方程为y =-(x -1),故选A .[答案] A2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系为( )A .外离B .相交C .外切D .内切[解析] 圆O 1的圆心坐标为(1,0),半径长r 1=1;圆O 2的圆心坐标为(0,2), 半径长r 2=2;1=r 2-r 1<|O 1O 2|=5<r 1+r 2=3,即两圆相交.[答案] B3.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a 、b应满足的关系式是()A.a2-2a-2b-3=0 B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0 D.3a2+2b2+2a+2b+1=0[解析]利用公共弦始终经过圆(x+1)2+(y+1)2=4的圆心即可求得.两圆的公共弦所在直线方程为:(2a+2)x+(2b+2)y-a2-1=0,它过圆心(-1,-1),代入得a2+2a+2b+5=0.[答案] B4.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相外切,则动圆圆心的轨迹方程是()A.(x-5)2+(y+7)2=25 B.(x-5)2+(y+7)2=9C.(x-5)2+(y+7)2=15 D.(x+5)2+(y-7)2=25[解析]设动圆圆心为P(x,y),则(x-5)2+(y+7)2=4+1,∴(x-5)2+(y+7)2=25.[答案] A5.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r =()A.5B.4C.3D.2 2 [解析]设一个交点P(x0,y0),则x20+y20=16,(x0-4)2+(y0+3)2=r2,∴r2=41-8x0+6y0,∵两切线互相垂直,∴y0x0·y0+3x0-4=-1,∴3y0-4x0=-16.∴r2=41+2(3y0-4x0)=9,∴r=3.[答案] C6.半径长为6的圆与y轴相切,且与圆(x-3)2+y2=1内切,则此圆的方程为()A.(x-6)2+(y-4)2=6 B.(x-6)2+(y±4)2=6C.(x-6)2+(y-4)2=36 D.(x-6)2+(y±4)2=36[解析]半径长为6的圆与x轴相切,设圆心坐标为(a,b),则a=6,再由b2+32=5可以解得b=±4,故所求圆的方程为(x-6)2+(y±4)2=36.7.已知M 是圆C :(x -1)2+y 2=1上的点,N 是圆C ′:(x -4)2+(y -4)2=82上的点,则|MN |的最小值为( )A .4B .42-1C .22-2D .2[解析] ∵|CC ′|=5<R -r =7,∴圆C 内含于圆C ′,则|MN |的最小值为R -|CC ′|-r =2.[答案] D8.过圆x 2+y 2=4外一点M (4,-1)引圆的两条切线,则经过两切点的直线方程为( )A .4x -y -4=0B .4x +y -4=0C .4x +y +4=0D .4x -y +4=0[解析] 以线段OM 为直径的圆的方程为x 2+y 2-4x +y =0,经过两切点的直线就是两圆的公共弦所在的直线,将两圆的方程相减得4x -y -4=0,这就是经过两切点的直线方程.[答案] A9.已知两圆相交于两点A (1,3),B (m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值是( )A .-1B .2C .3D .0 [解析] 两点A ,B 关于直线x -y +c =0对称,k AB =-4m -1=-1. ∴m =5,线段AB 的中点(3,1)在直线x -y +c =0上,∴c =-2,∴m +c =3.[答案] C10.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 由题知圆M :x 2+(y -a )2=a 2,圆心(0,a )到直线x +y =0的距离d =a 2,所以2a 2-a 22=22,解得a =2.圆M 、圆N 的圆心距|MN |=2,两圆半径之差为1、半径之和为3,故两圆相交.二、填空题11.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=.[解析]两个圆的方程作差,可以得到公共弦的直线方程为y=1a,圆心(0,0)到直线y=1a的距离d=|1a|,于是由(232)2+|1a|2=22,解得a=1.[答案] 112.圆C1:(x-m)2+(y+2)2=9与圆C2:(x+1)2+(y-m)2=4外切,则m的值为________.[解析]C1(m,-2),r1=3,C2(-1,m),r2=2,由题意得|C1C2|=5,即(m+1)2+(m+2)2=25,解得m=2或m=-5.[答案]2或-513.若点A(a,b)在圆x2+y2=4上,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是.[解析]∵点A(a,b)在圆x2+y2=4上,∴a2+b2=4.又圆x2+(y-b)2=1的圆心C1(0,b),半径r1=1,圆(x-a)2+y2=1的圆心C2(a,0),半径r2=1,则d=|C1C2|=a2+b2=4=2,∴d=r1+r2.∴两圆外切.[答案]外切14.与直线x+y-2=0和圆x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是.[解析]已知圆的标准方程为(x-6)2+(y-6)2=18,则过圆心(6,6)且与直线x+y -2=0垂直的方程为x-y=0.方程x-y=0分别与直线x+y-2=0和已知圆联立得交点坐标分别为(1,1)和(3,3)或(-3,-3).由题意知所求圆在已知直线和已知圆之间,故所求圆的圆心为(2,2),半径为2,即圆的标准方程为(x-2)2+(y-2)2=2.[答案](x-2)2+(y-2)2=215.判断下列两圆的位置关系.(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0;(3)C1:x2+y2-4x-6y+9=0,C2:x2+y2+12x+6y-19=0;(4)C1:x2+y2+2x-2y-2=0,C2:x2+y2-4x-6y-3=0. [解析](1)∵C1:(x-1)2+y2=4,C2:(x-2)2+(y+1)2=2.∴圆C1的圆心坐标为(1,0),半径r1=2,圆C2的圆心坐标为(2,-1),半径r2=2,d=|C1C2|=(2-1)2+(-1)2= 2.∵r1+r2=2+2,r1-r2=2-2,∴r1-r2<d<r1+r2,两圆相交.(2)∵C1:x2+(y-1)2=1,C2:(x-3)2+y2=9,∴圆C1的圆心坐标为(0,1),r1=1,圆C2的圆心坐标为(3,0),r2=3,d=|C1C2|=3+1=2.∵r2-r1=2,∴d=r2-r1,两圆内切.(3)∵C1:(x-2)2+(y-3)2=4,C2:(x+6)2+(y+3)2=64.∴圆C1的圆心坐标为(2,3),半径r1=2,圆C2的圆心坐标为(-6,-3),半径r2=8,∴|C1C2|=(2+6)2+(3+3)2=10=r1+r2,∴两圆外切.(4)C1:(x+1)2+(y-1)2=4,C2:(x-2)2+(y-3)2=16,∴圆C1的圆心坐标为(-1,1),半径r1=2,圆C2的圆心坐标为(2,3),半径r2=4,∴|C1C2|=(2+1)2+(3-1)2=13.∵|r1-r2|<|C1C2|<r1+r2,∴两圆相交.16.求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点且圆心在直线x -y -4=0上的圆的方程.[解] 法一:解方程组⎩⎨⎧x 2+y 2+6x -4=0,x 2+y 2+6y -28=0, 得两圆的交点A (-1,3),B (-6,-2).设所求圆的圆心为(a ,b ),因为圆心在直线x -y -4=0上,故b =a -4. 则有(a +1)2+(a -4-3)2 =(a +6)2+(a -4+2)2,解得a =12,故圆心为⎝ ⎛⎭⎪⎫12,-72, 半径为⎝ ⎛⎭⎪⎫12+12+⎝ ⎛⎭⎪⎫-72-32=892. 故圆的方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +722=892,即x 2+y 2-x +7y -32=0. 法二:∵圆x 2+y 2+6y -28=0的圆心(0,-3)不在直线x -y -4=0上,故可设所求圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0(λ≠-1),其圆心为⎝ ⎛⎭⎪⎫-31+λ,-3λ1+λ,代入x -y -4=0,求得λ=-7. 故所求圆的方程为x 2+y 2-x +7y -32=0.17.已知圆M :x 2+y 2-2mx -2ny +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0交于A 、B 两点,且这两点平分圆N 的圆周,求圆心M 的轨迹方程.[解析] 两圆方程相减,得公共弦AB 所在的直线方程为2(m +1)x +2(n +1)y -m 2-1=0,由于A 、B 两点平分圆N 的圆周,所以A 、B 为圆N 直径的两个端点,即直线AB 过圆N 的圆心N ,而N (-1,-1),所以-2(m +1)-2(n +1)-m 2-1=0,即m 2+2m +2n +5=0,即(m +1)2=-2(n +2)(n ≤-2),由于圆M 的圆心M (m ,n ),从而可知圆心M 的轨迹方程为(x +1)2=-2(y +2)(y ≤-2).18.已知圆O :x 2+y 2=1和定点A (2,1),由圆O 外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,|PQ |=|P A |成立,如图.(1)求a,b间的关系;(2)求|PQ|的最小值.[解析](1)连接OQ,OP,则△OQP为直角三角形,又|PQ|=|P A|,所以|OP|2=|OQ|2+|PQ|2=1+|P A|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.(2)由(1)知,P在直线l:2x+y-3=0上,所以|PQ|min=|P A|min,为A到直线l的距离,所以|PQ|min=|2×2+1-3|22+12=255.人教版高中数学必修二第4章圆与方程4.2 直线、圆的位置关系4.2.3直线与圆的方程的应用课时检测一、选择题1.已知实数x、y满足x2+y2-2x+4y-20=0,则x2+y2的最小值是() A.30-105B.5-5C.5D.25[解析]x2+y2为圆上一点到原点的距离.圆心到原点的距离d=5,半径为5,所以最小值为(5-5)2=30-10 5.[答案] A2.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A、B,则线段AB 的垂直平分线方程为()A.x+y-1=0 B.2x-y+1=0 C.x-2y+1=0 D.x-y+1=0[解析]所求直线即两圆圆心(1,0)、(-1,2)连线所在直线,故由y-02-0=x-1-1-1,得x+y-1=0.[答案] A3.方程y=-4-x2对应的曲线是()[解析]由方程y=-4-x2得x2+y2=4(y≤0),它表示的图形是圆x2+y2=4在x轴上和以下的部分.[答案] A4.y=|x|的图象和圆x2+y2=4所围成的较小的面积是()A.π4B.3π4C.3π2D.π[解析]数形结合,所求面积是圆x2+y2=4面积的1 4.[答案] D5.方程1-x2=x+k有惟一解,则实数k的范围是()A.k=-2B.k∈(-2,2)C.k∈[-1,1)D.k=2或-1≤k<1[解析]由题意知,直线y=x+k与半圆x2+y2=1(y≥0只有一个交点.结合图形易得-1≤k<1或k= 2.[答案] D6.点P是直线2x+y+10=0上的动点,直线P A、PB分别与圆x2+y2=4相切于A、B两点,则四边形P AOB(O为坐标原点)的面积的最小值等于()A .24B .16C .8D .4[解析] ∵四边形P AOB 的面积S =2×12|P A |×|OA |=2OP 2-OA 2=2OP 2-4,∴当直线OP 垂直直线2x +y +10=0时,其面积S 最小.[答案] C7.已知圆C 的方程是x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值为( )A .9B .14C .14-65D .14+6 5[解析] 圆C 的标准方程为(x +2)2+(y -1)2=9,圆心为C (-2,1),半径为3.|OC |=5,圆上一点(x ,y )到原点的距离的最大值为3+5,x 2+y 2表示圆上的一点(x ,y )到原点的距离的平方,最大值为(3+5)2=14+6 5.[答案] D8.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0与圆C :x 2+y 2+2x =b 2-1(b >0)的位置关系是“平行相交”,则实数b 的取值范围为( )A .(2,322)B .(0,322)C .(0,2)D .(2,322)∪(322,+∞)[解析] 圆C 的标准方程为(x +1)2+y 2=b 2.由两直线平行,可得a (a +1)-6=0,解得a =2或a =-3.当a =2时,直线l 1与l 2重合,舍去;当a =-3时,l 1:x -y -2=0,l 2:x -y +3=0.由l 1与圆C 相切,得b =|-1-2|2=322,由l 2与圆C 相切,得b =|-1+3|2= 2.当l 1、l 2与圆C 都外离时,b < 2.所以,当l 1、l 2与圆C “平行相交”时,b 满足⎩⎨⎧ b ≥2b ≠2,b ≠322,故实数b 的取值范围是(2,322)∪(322,+∞).[答案] D9.已知圆的方程为x2+y2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.106B.206C.306D.40 6 [解析]圆心坐标是(3,4),半径是5,圆心到点(3,5)的距离为1,根据题意最短弦BD和最长弦(即圆的直径)AC垂直,故最短弦的长为252-12=46,所以四边形ABCD的面积为12×AC×BD=12×10×46=20 6.[答案] B10.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为()A.4π5B.3π4C.(6-25)πD.5π4[解析]原点O到直线2x+y-4=0的距离为d,则d=45,点C到直线2x+y-4=0的距离是圆的半径r,由题知C是AB的中点,又以斜边为直径的圆过直角顶点,则在直角△AOB中,圆C过原点O,即|OC|=r,所以2r≥d,所以r最小为25,面积最小为4π5,故选A.[答案] A二、填空题11.已知两圆x2+y2=10和(x-1)2+(y-3)2=20相交于A、B两点,则直线AB 的方程是________.[解析] 过两圆交点的直线就是两圆公共弦所在直线,因此该直线方程为:x2+y2-10-[(x-1)2+(y-3)2-20]=0,即x+3y=0.[答案]x+3y=012.已知M={(x,y)|y=9-x2,y≠0},N={(x,y)|y=x+b},若M∩N≠∅,则实数b的取值范围是.[解析] 数形结合法,注意y =9-x 2,y ≠0等价于x 2+y 2=9(y >0),它表示的图形是圆x 2+y 2=9在x 轴之上的部分(如图所示).结合图形不难求得,当-3<b ≤32时,直线y =x +b 与半圆x 2+y 2=9(y >0)有公共点.[答案] (-3,32]13.某公司有A 、B 两个景点,位于一条小路(直道)的同侧,分别距小路 2 km 和2 2 km ,且A 、B 景点间相距2 km ,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于 .[解析] 所选观景点应使对两景点的视角最大.由平面几何知识,该点应是过A 、B 两点的圆与小路所在的直线相切时的切点,以小路所在直线为x 轴,过B 点与x 轴垂直的直线为y 轴上建立直角坐标系.由题意,得A (2,2)、B (0,22),设圆的方程为(x -a )2+(y -b )2=b 2.由A 、B 在圆上,得⎩⎨⎧ a =0b =2,或⎩⎨⎧a =42b =52,由实际意义知⎩⎨⎧ a =0b =2.∴圆的方程为x 2+(y -2)2=2,切点为(0,0),∴观景点应设在B 景点在小路的投影处.[答案] B 景点在小路的投影处14.设集合A ={(x ,y )|(x -4)2+y 2=1},B ={(x ,y )|(x -t )2+(y -at +2)2=1},若存在实数t ,使得A ∩B ≠∅,则实数a 的取值范围是 .[解析] 首先集合A 、B 实际上是圆上的点的集合,即A 、B 表示两个圆,A ∩B ≠∅说明这两个圆相交或相切(有公共点),由于两圆半径都是1,因此两圆圆心距不大于半径之和2,即(t -4)2+(at -2)2≤2,整理成关于t 的不等式:(a 2+1)t 2-4(a +2)t +16≤0,据题意此不等式有实解,因此其判别式不小于零,即Δ=16(a +2)2-4(a 2+1)×16≥0,解得0≤a ≤43. [答案] [0,43]三、解答题15.为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.[解析] 以O 为坐标原点,过OB 、OC 的直线分别为x 轴和y 轴,建立平面直角坐标系,则圆O 的方程为x 2+y 2=1,因为点B (8,0)、C (0,8),所以直线BC 的方程为x 8+y 8=1,即x +y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆相切所成切点处时,DE 为最短距离,此时DE 的最小值为|0+0-8|2-1=(42-1)km. 16.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP 是6 m ,在建造时,每隔3 m 需用一个支柱支撑,求支柱A 2P 2的长.(精确到0.01 m)[解析] 如图,以线段AB 所在的直线为x 轴,线段AB 的中点O 为坐标原点建立平面直角坐标系,那么点A 、B 、P 的坐标分别为(-18,0)、(18,0)、(0,6).设圆拱所在的圆的方程是x 2+y 2+Dx +Ey +F =0.因为A 、B 、P 在此圆上,故有⎩⎨⎧ 182-18D +F =0182+18D +F =062+6E +F =0,解得⎩⎨⎧ D =0E =48F =-324.故圆拱所在的圆的方程是x 2+y 2+48y -324=0.将点P 2的横坐标x =6代入上式,解得y =-24+12 6.答:支柱A 2P 2的长约为126-24 m.17.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发,径直驶向位于海监船正北30 km的B处岛屿,速度为28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)[解析]如图,以O为原点,东西方向为x轴建立直角坐标系,则A(40,0),B(0,30),圆O方程x2+y2=252.直线AB方程:x40+y30=1,即3x+4y-120=0.设O到AB距离为d,则d=|-120|5=24<25,所以外籍轮船能被海监船监测到.设监测时间为t,则t=2252-24228=12(h)答:外籍轮船能被海监船监测到,时间是0.5 h.18.已知隧道的截面是半径为4.0 m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m、高为3 m的货车能不能驶入这个隧道?假设货车的最大宽度为a m,那么要正常驶入该隧道,货车的限高为多少?[解析]以某一截面半圆的圆心为坐标原点,半圆的直径AB所在的直线为x轴,建立如图所示的平面直角坐标系,那么半圆的方程为:x2+y2=16(y≥0).将x=2.7代入,得y=16-2.72=8.71<3,所以,在离中心线2.7 m处,隧道的高度低于货车的高度,因此,货车不能驶入这个隧道.将x=a代入x2+y2=16(y≥0)得y=16-a2.所以,货车要正常驶入这个隧道,最大高度(即限高)为16-a2m.。
2020高考理科数学一轮复习学案:9.3 圆的方程
9.3 圆的方程1.圆的定义在平面内,到____________的距离等于____________的点的____________叫圆.确定一个圆最基本的要素是____________和____________. 2.圆的标准方程与一般方程 (1)圆的标准方程:方程(x -a )2+(y -b )2=r 2(r >0)叫做以点____________为圆心,____________为半径长的圆的标准方程.(2)圆的一般方程:方程x 2+y 2+Dx +Ey +F =0(____________)叫做圆的一般方程.注:将上述一般方程配方得⎝⎛⎭⎫x +D 22+⎝⎛⎭⎫y +E 22=D 2+E 2-4F4,此为该一般方程对应的标准方程,表示的是以____________为圆心,____________为半径长的圆.3.点与圆的位置关系点与圆的位置关系有三种,设圆的标准方程(x -a )2+(y -b )2=r 2(r >0),点M (x 0,y 0),则(1)点M 在圆上:_________________________. (2)点M 在圆外:_________________________. (3)点M 在圆内:_________________________. 4.确定圆的方程的方法和步骤确定圆的方程的主要方法是待定系数法,大致步骤为(1)根据题意,选择标准方程或一般方程. (2)根据条件列出关于a ,b ,r 或D ,E ,F 的方程组.(3)解出a ,b ,r 或D ,E ,F ,代入标准方程或一般方程.自查自纠:1.定点 定长 集合 圆心 半径长 2.(1)(a ,b ) r(2)D 2+E 2-4F >0 ⎝⎛⎭⎫-D 2,-E 2 12D 2+E 2-4F 3.(1)(x 0-a )2+(y 0-b )2=r 2(2)(x 0-a )2+(y 0-b )2>r 2 (3)(x 0-a )2+(y 0-b )2<r 2圆心为(1,1)且过原点的圆的方程是 ( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2解:因为圆心为(1,1)且过原点,所以该圆的半径r =12+12=2,则该圆的方程为(x -1)2+ (y -1)2=2,故选D .(2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34 C . 3 D .2解:由已知可得圆的标准方程为(x -1)2+(y -4)2=4,故该圆的圆心为(1,4),由点到直线的距离公式得d =|a +4-1|a 2+1=1,解得a =-43.故选A .已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是 ( )A .95B .1C .45D .135解:圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线3x +4y -2=0的距离,根据点到直线的距离公式得d =|-3-4-2|5=95 ,故点N到点M 的距离的最小值为d -1=45.故选C .(2016·浙江)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是____________,半径是____________.解:由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1. 当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25,表示以(-2,-4)为圆心,半径为5的圆.故填(-2,-4);5.(2016·天津)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为____________.解:设圆心的坐标为(a ,0)(a >0),根据题意得|2a |5=455,解得a =2(a =-2舍去),所以圆心为(2,0),则圆的半径r =(2-0)2+(0-5)2=3,所以圆的方程为(x -2)2+y 2=9.故填(x-2)2+y2=9.类型一 求圆的方程(1)过点A (4,1)的圆C 与直线x -y - 1=0相切于点B (2,1),则圆C 的方程为____________. 解法一:由已知k AB =0,所以AB 的中垂线方程为x =3.① 过B 点且垂直于直线x -y -1=0的直线方程为y -1=-(x -2),即x +y -3=0,② 联立①②,解得⎩⎪⎨⎪⎧x =3,y =0,所以圆心坐标为(3,0),半径r =(4-3)2+(1-0)2=2,所以圆C 的方程为(x -3)2+y 2=2.解法二:设圆的方程为(x -a )2+(y -b )2=r 2(r >0),因为点A (4,1),B (2,1)在圆上,故⎩⎪⎨⎪⎧(4-a )2+(1-b )2=r 2,(2-a )2+(1-b )2=r 2, 又因为b -1a -2=-1,解得a =3,b =0,r =2,故所求圆的方程为(x -3)2+y 2=2. 故填(x -3)2+y 2=2.(2)经过P (-2,4),Q (3,-1)两点,并且在x 轴上截得的弦长等于6的圆的方程为____________.解:设圆的方程为x 2+y 2+Dx +Ey +F =0, 将P ,Q 两点的坐标分别代入得⎩⎪⎨⎪⎧2D -4E -F =20,①3D -E +F =-10.② 又令y =0,得x 2+Dx +F =0.③设x 1,x 2是方程③的两根,则x 1+x 2=-D , x 1x 2=F .由|x 1-x 2|=6有D 2-4F =36,④由①②④解得⎩⎪⎨⎪⎧D =-2,E =-4,F =-8,或⎩⎪⎨⎪⎧D =-6,E =-8,F =0.故所求圆的方程为x 2+y 2-2x -4y -8=0,或x 2+y 2-6x -8y =0.故填x 2+y 2-2x -4y -8=0,或x 2+y 2-6x -8y =0.点 拨:求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:①几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:圆心在过切点且垂直于切线的直线上;圆心在任一弦的中垂线上;两圆内切或外切时,切点与两圆圆心三点共线.②代数法,即设出圆的方程,用待定系数法求解.(1)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |= ( )A .2 6B .8C .4 6D .10 解:因为k AB =-13,k BC =3,所以k AB ·k BC =-1,即AB ⊥BC ,所以AC 为圆的直径.所以圆心为(1,-2),半径r =|AC |2=102=5,圆的标准方程为(x -1)2+(y +2)2=25.令x =0,得y =±26-2,所以|MN |=46.故选C .(2)(2017·武汉模拟)以抛物线y 2=4x 的焦点为圆心,与该抛物线的准线相切的圆的标准方程为____________.解:抛物线y 2=4x 的焦点为(1,0),准线为 x =-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x -1)2+y 2=4.故填(x -1)2+y 2=4.类型二 三角形的内切圆与外接圆已知三角形的三边所在直线方程分别为x +2y =5,2x -y =5,2x +y =5,则三角形的内切圆方程为_______________________.解:设内切圆圆心为I (a ,b ),半径长为r . 由点到直线的距离知r =||2a -b -55=||2a +b -55=||a +2b -55,又因为三角形的内心总在这三角形的内部, 所以根据线性规划的知识得r =2a -b -5-5=2a +b -55=a +2b -5-5.由2a -b -5=a +2b -5,得a =3b ,① 由2a -b -5=-(2a +b -5),得a =52.将a =52代入①式,得b =56.所以r =5+56-55=56. 故所求圆的方程为⎝⎛⎭⎫x -522+⎝⎛⎭⎫y -562=536. 故填⎝⎛⎭⎫x -522+⎝⎛⎭⎫y -562=536.点 拨:设出圆的圆心坐标后,利用三角形内切圆的性质和点到直线的距离公式得到关于圆心坐标的方程组,解此方程组得圆心坐标后再求圆的半径长.求解过程中需要注意:内切圆的圆心总在三角形的内部,因此需要应用线性规划的有关知识判断绝对值中代数式的符号,否则会求出多解(其他的解是三个旁切圆的圆心).已知三点A (1,0)、B (0,3)、C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A .53B .213C .253D .43解:设圆的一般方程为x 2+y 2+Dx +Ey +F =0,所以⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,所以⎩⎪⎨⎪⎧D =-2,E =-433,F =1.所以△ABC 外接圆的圆心为 ⎝⎛⎭⎫1,233,故△ABC 外接圆的圆心到原点的距离为1+⎝⎛⎭⎫2332=213. 另解:线段BC 的中垂线为x =1,故设半径为r ,有r =1+(3-r )2,解得r =233,即圆心⎝⎛⎭⎫1,233.故选B .类型三 与圆有关的综合问题(1)(2016·聊城模拟)已知x ,y 满足 x 2+y 2=1,则y -2x -1的最小值为______________.解:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是如图所示的直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1),即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故所求最小值为34.故填34.(2)(2016·嘉兴高三期末)已知实数x ,y 满足方程x 2+y 2-2x +4y =0,则x -2y 的最大值是____________,最小值是____________.解:原方程可化为(x -1)2+(y +2)2=5,表示以(1,-2)为圆心,5为半径的圆.设x -2y =b ,即x -2y -b =0,作出圆(x -1)2+(y +2)2=5与一组平行线x -2y -b =0,如图所示,当直线x -2y -b =0与圆相切时,纵截距-12b取得最大值或最小值,此时圆心到直线的距离d =|1-2×(-2)-b |1+4=5,解得b =10或b =0,所以x -2y 的最大值为10,最小值为0.故填10;0.(3)(2016·滁州模拟)已知实数x ,y 满足方程x 2+y 2-2x +4y -20=0,则x 2+y 2的最大值是____________,最小值是____________.解:原方程可化为(x -1)2+(y +2)2=25,表示以(1,-2)为圆心,5为半径的圆.又实数x ,y 满足方程x 2+y 2-2x +4y -20=0,即点(x ,y )在圆(x -1)2+(y +2)2=25上,x 2+y 2表示点(x ,y )与原点的距离的平方,由圆的性质可知,在原点和圆心的连线与圆的两个交点处,x 2+y 2分别取得最大值和最小值.又圆心到原点的距离d =(1-0)2+(-2-0)2=5,所以x 2+y 2的最大值是(5+5)2=30+105,x 2+y 2的最小值是(5-5)2=30-105.故填30+105;30-105.点 拨: 与圆有关的最值问题的常见解法:①形如μ=y -bx -a 形式的最值问题,可转化为动直线斜率的最值问题.②形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.③形如(x -a)2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题. (1)(2018·兰州模拟)设P (x ,y )是圆 (x -2)2+y 2=1上的任意点,则(x -5)2+(y +4)2的最大值为 ( ) A .6 B .25 C .26 D .36 解:因为圆(x -2)2+y 2=1的半径为1,圆心坐标为(2,0),该圆心到点(5,-4)的距离为(2-5)2+(0+4)2=5,所以圆(x -2)2+y 2=1上的点到(5,-4)距离的最大值为5+1=6,即(x -5)2+(y +4)2的最大值为36.故选D . (2)(2018·银川模拟)已知P 是直线l :3x -4y +11=0上的动点,P A ,PB 是圆x 2+y 2-2x - 2y +1=0的两条切线,A ,B 为切点,C 是圆心,那么四边形P ACB 面积的最小值是 ( )A . 2B .2 2C . 3D .2 3 解:圆的标准方程为(x -1)2+(y -1)2=1,圆心为C (1,1),半径r =1,根据对称性可知,四边形P ACB 的面积为2S △APC =2×12r |P A |=|P A |=|PC |2-r 2,要使四边形P ACB 的面积最小,则只需|PC |最小,最小时为圆心到直线l :3x -4y +11=0的距离d =|3-4+11|32+42=105=2.所以四边形P ACB 面积的最小值为|PC |2min -1=4-1=3.故选C .类型四 与圆有关的轨迹问题已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ).因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ).在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.点拨: 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:①直接法,直接根据题目提供的条件列出方程;②定义法,根据圆、直线等定义列方程;③几何法,利用圆的几何性质列方程;④代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.(2016·济南模拟)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解:设圆上任一点坐标为(x 0,y 0),则x 20+y 20=4,连线的中点坐标为(x ,y ),则⎩⎪⎨⎪⎧2x =x 0+4,2y =y 0-2,即⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 20+y 20=4得(x -2)2+(y +1)2=1.故选A .1.注意应用圆的几何性质解题圆的图形优美,定理、性质丰富,在学此节时,重温圆的几何性质很有必要,因为使用几何性质,能简化代数运算的过程,拓展解题思路. 2.圆的方程的确定由圆的标准方程和圆的一般方程,可以看出方程中都含有三个参数,因此必须具备三个独立的条件,才能确定一个圆,求圆的方程时,若能根据已知条件找出圆心和半径,则可用直接法写出圆的标准方程,否则可用待定系数法.3.求圆的方程的方法 (1)几何法:即通过研究圆的性质,以及点和圆、直线和圆、圆和圆的位置关系,求得圆的基本量(圆心坐标和半径长),进而求得圆的方程.确定圆心的位置的方法一般有:①圆心在过切点且与切线垂直的直线上; ②圆心在圆的任意弦的垂直平分线上;③圆心在圆的任意两条不平行的弦的中垂线的交点上;④两圆相切时,切点与两圆圆心共线.确定圆的半径的主要方法是构造直角三角形(即以弦长的一半,弦心距,半径组成的三角形),并解此直角三角形.(2)代数法:即设出圆的方程,用“待定系数法”求解.1.(2017·漳州模拟)圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为 ( ) A .(x -2)2+(y -1)2=1 B .(x +1)2+(y -2)2=1 C .(x +2)2+(y -1)2=1 D .(x -1)2+(y +2)2=1 解:已知圆的圆心C (1,2)关于直线y =x 对称的点为C ′(2,1),所以圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为(x -2)2+(y -1)2=1.故选A . 2.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是 ( ) A .(-∞,-2)∪⎝⎛⎭⎫23,+∞ B .⎝⎛⎭⎫-23,0 C .(-2,0] D .⎝⎛⎭⎫-2,23 解:D 2+E 2-4F =-3a 2-4a +4>0,所以 3a 2+4a -4<0⇒-2<a <23.故选D .3.过点P (0,1)与圆x 2+y 2-2x -3=0相交的所有直线中,被圆截得的弦最长时的直线方程是( )A .x =0B .y =1C .x +y -1=0D .x -y +1=0解:依题意得所求直线是经过点P (0,1)及圆心(1,0)的直线,因此所求直线方程是x +y =1,即x +y -1=0,故选C .4.(2018·太原模拟)两条直线y =x +2a ,y =2x +a 的交点P 在圆(x -1)2+(y -1)2=4的内部,则实数a 的取值范围是 ( )A .(-15,1)B .(-∞,-15)∪(1,+∞)C .[-15,1)D .(-∞,-15]∪[1,+∞)解:联立⎩⎪⎨⎪⎧y =x +2a ,y =2x +a ,解得P (a ,3a ),所以 (a-1)2+(3a -1)2<4,所以-15<a <1.故选A .5.(2018·湘潭一模)已知点A (0,-6),B (0,6),若对圆(x -a )2+(y -3)2=4上任意一点P ,都有∠APB 为锐角,则实数a 的取值范围是 ( )A .(-55,55)B .(-55,55)C .(-∞,-55)∪(55,+∞)D .(-∞,-55)∪(55,+∞) 解:若对圆(x -a )2+(y -3)2=4上任意一点P ,都有∠APB 为锐角,则圆(x -a )2+(y -3)2=4与圆x 2+y 2=36外离,即圆心距大于两圆的半径之和,a 2+32>6+2,解得a 2>55,a >55或a < -55.故选D . 6.(2016·安徽模拟)若圆x 2+y 2-2x +6y + 5a =0关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是 ( ) A .(-∞,4) B .(-∞,0)C .(-4,+∞)D .(4,+∞) 解:将圆的方程变形为(x -1)2+(y +3)2=10-5a ,可知,圆心为(1,-3),且10-5a >0,即a <2.因为圆关于直线y =x +2b 对称,所以圆心在直线y =x+2b 上,即-3=1+2b ,解得b =-2,所以a -b <4.故选A .7.已知点P (2,1)在圆C :x 2+y 2+ax -2y + b =0上,点P 关于直线x +y -1=0的对称点也在圆C 上,则圆C 的圆心坐标为______________. 解:因为点P 关于直线x +y -1=0的对称点也在圆上,所以该直线过圆心,即圆心(-a2,1)满足方程x +y -1=0,因此-a2+1-1=0,解得a =0,所以圆心坐标为(0,1).故填(0,1).8.已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是______________.解:过点M 的最短弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,1),因为k CM =1-02-1=1,所以最短弦所在直线的方程为y -0=-(x -1),即x +y -1=0.故填x +y -1=0.9.已知直线l :y =x +m ,m ∈R ,若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程.解:方法一:依题意,点P 的坐标为(0,m ),因为MP ⊥l ,所以0-m2-0×1=-1.解得m =2,即点P 的坐标为(0,2), 圆的半径r =|MP |=(2-0)2+(0-2)2=22,故所求圆的方程为(x -2)2+y 2=8.方法二:设所求圆的半径为r ,则圆的方程为(x -2)2+y 2=r 2,依题意,所求圆与直线l :y =x +m 相切于点P (0,m ),则⎩⎪⎨⎪⎧4+m 2=r 2,|2-0+m |2=r ,解得⎩⎨⎧m =2,r =22.所以所求圆的方程为(x -2)2+y 2=8. 10.已知M (x ,y )为圆C :x 2+y 2-4x -14y +45=0上任意一点.(1)求2x +y 的最大值;(2)求(x +2)2+(y -3)2的最小值;(3)求y -3x +2的最大值和最小值.解:(1)由圆C :x 2+y 2-4x -14y +45=0,可得(x -2)2+(y -7)2=8,则圆心C 的坐标为(2,7),半径r =22.设2x +y =b ,即2x +y -b =0,作出圆(x -2)2+(y -7)2=8与一组平行线2x +y -b =0,当直线2x +y -b =0与圆相切时,纵截距b 取得最大值或最小值,此时圆心到直线的距离d =|2×2+7-b |4+1=22,解得b =11+210或b =11-210, 所以2x +y 的最大值为11+210.(2)(x +2)2+(y -3)2表示点M (x ,y )与点Q (-2,3)的距离的平方,又|QC |=(2+2)2+(7-3)2=42. 所以|MQ |min =42-22=22,即(x +2)2+(y -3)2的最小值为8.(3)可知y -3x +2表示直线MQ 的斜率,设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0.由直线MQ 与圆C 有交点, 得|2k -7+2k +3|1+k 2≤22,可得2-3≤k ≤2+3,所以y -3x +2的最大值为2+3,最小值为2-3.11.已知定点M (-3,4),设动点N 在圆x 2+y 2=4上运动,点O 是坐标原点,以OM 、ON 为两边作平行四边形MONP ,求点P 的轨迹.解:因为四边形MONP 为平行四边形,所以OP →=OM →+ON →,设点P (x ,y ),点N (x 0,y 0),则ON →=OP →-OM →=(x ,y )-(-3,4)=(x +3,y -4)=(x 0,y 0).所以⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4,代入x 20+y 20=4得(x +3)2+(y-4)2=4.又当OM 与ON 共线时,O 、M 、N 、P 构不成平行四边形,此时联立⎩⎪⎨⎪⎧y =-43x ,(x +3)2+(y -4)2=4,得259x 2+503x +21=0. 解得x 1=-95,x 2=-215.则点(-95,125)和(-215,285)不满足题意.故动点P 的轨迹是圆(x +3)2+(y -4)2=4且除去点(-95,125)和(-215,285).(2016·龙岩二模)已知点P 到两个定点M (-1,0),N (1,0)的距离之比为2. (1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 与曲线C 交于不同的两点A ,B ,设点A 关于x 轴的对称点为Q (A ,Q 两点不重合),证明:点B ,N ,Q 在同一直线上.解:(1)设P (x ,y ),因为点P 到两个定点M (-1,0),N (1,0)的距离之比为2,所以(x +1)2+y 2=2·(x -1)2+y 2, 整理得x 2+y 2-6x +1=0,所以动点P 的轨迹C 的方程是x 2+y 2-6x +1=0.(2)证明:由题意,直线l 的斜率存在,设为k (k ≠0),直线l 的方程为y =k (x +1),代入x 2+y 2-6x +1=0,化简得(1+k 2)x 2+(2k 2-6)x +k 2+1=0, 由Δ>0,可得-1<k <1.设A (x 1,y 1),B (x 2,y 2),则Q (x 1,-y 1),且 x 1x 2=1,所以k BN -k QN =y 2x 2-1--y 1x 1-1=2k (x 1x 2-1)(x 1-1)(x 2-1)=0,所以点B ,N ,Q 在同一条直线上.。
高中数学新北师大版精品学案《圆的标准方程》
圆的标准方程【课标解读】栏目功能:按课程标准和考试要求,分课标要求和学习目标两方面去写,通过本栏目,使教师的教学更具有针对性,学生的学习更具有目的性。
编写要求:课标要求和学习目标左右栏排版单独成块,课标要求主要围绕三维目标进行展开,学习目标是从学生应该掌握的角度进行写作。
【学习策略】栏目功能:说明学习本节内容时应注意的问题和应采用的策略,以便学生更好的理解和掌握本章内容。
编写要求:注意要用条目式呈现,层次性条理性要强。
1.在本节的学习中,要注意圆的标准方程222)()(r b y a x =-+-,通过两点间的距离公式理解和记忆,且通过圆的标准方程可以直接得到圆心和半径、通过圆心和半径可以直接得到圆的标准方程。
2.在掌握了标准方程之后,要能从“是”、“否”两个方面来判断点与方程的关系, 3.要注意数形结合思想及方程思想的运用。
4.求标准方程常用待定系数法,根据题目的条件列出关于A 、B .r 的方程或方程组。
【学习过程】一、情景创设栏目功能:激起学生的学习本节知识、探究问题、发现问题的兴趣和斗志,同时也能更好地体现新课标理念。
编写说明:1.在报刊、网络或相关信息上精选或精编一段新颖的、可读性强的、趣味性强的与本节相关的生产、生活、社会、科技等美文、小故事、图片等,作为本节知识的导入,引导学生去探索、发现问题,激发学生的学习兴趣。
2.如果与本节相关的材料确实不好找,也可以从知识回顾的角度或自己精编一个与本节有关的问题去写。
3.注意篇幅不易过长。
同学们,你们做过摩天轮吗?登高而望远,不亦乐乎。
世界上最巨大的摩天轮是座落于泰晤士河畔的英航伦敦眼,距地总高达135公尺。
然而,由于伦敦眼属于观景摩天轮结构,有些人认为其在排行上应该与重力式摩天轮分开来计算。
因此目前世界最大的重力式摩天轮应位于日本福冈的天空之梦福冈,是直径112公尺,离地总高12021的摩天轮。
对于这些摩天轮,我们如何通过建立平面直角坐标系,利用方程的知识来研究呢? 二、合作探究栏目功能:通过对本节重要知识点和典型解题方法的探究,进一步强化学生对知识和方法的探索感悟和认知过程,使学生对问题的认识是一个层层递进、不断攀升、不断升华的过程,从而遵循由特殊到一般的认识问题和解决问题的基本思路、基本方法编写要求:1.对于基本概念、公式、定理、方法的讲解。
探究四点共圆的条件教学设计
数学活动——探究四点共圆的条件一内容和内容解析1.内容:探究四点共圆的条件2.内容解析:四点共圆的条件是在学生学习了经过一个点的圆、经过不在同一直线上的三个点的圆、三角形与圆的关系、圆内接四边形后,对经过任意三点都不在同一直线上的四点共圆的条件的探究。
在四点共圆的条件的探究过程中,首先学生在已学的圆相关知识基础上,对四点共圆的条件进行合理猜想:圆内接四边形对角互补,相应的,对角互补的四边形的四个顶点共圆;再利用计算机工具,对特殊的四边形(平行四边形、矩形、等腰梯形)、一组对角同时等于九十度的四边形、任意对角互补的四边形以及任意四边形等,在几何画板上进行测量检验,用实验的方法验证猜想的正确性;然后对正方形、矩形、一组对角同时等于九十度的四边形、任意对角互补的四边形四个顶点共圆进行理论推理验证,最终得出结论。
学生全程感受并经历了发现并提出问题——猜想——实验验证——理论推理验证——得出结论的活动过程,在“做”的过程和“思考”的过程中,积累数学活动的经验;在验证的过程中体现了特殊到一般的思想,同时,在研究中,类比将四边形转化成三角形来研究,从三点共圆入手探究四点共圆的条件,体现了转化的思想。
基于以上分析,确定本节课的教学重点是:四点共圆的条件的探究。
二目标和目标分析1.目标(1)理解过某个四边形的四个顶点能作一个圆的条件。
(2)通过四点共圆的条件的探究和猜想的证明,体会由特殊到一般、转化的数学思想,积累数学活动的经验。
2.目标解析达成目标(1)的标志是:知道对角互补的四边形的四个顶点共圆的结论,会应用反证法证明这一结论,能应用对角互补的四边形四个顶点共圆判断给定的四边形的四个顶点是否可以做一个圆。
达成目标(2)的标志是:通过猜想,实验验证、理论推理验证得出结论,体会数学活动的完整过程,在过程中积累经验;通过几何画板画图,测量,比较,分析平行四边形、矩形、菱形、等腰梯形、直角梯形、一组对角等于九十度的四边形、一般的对角互补的四边形的四个顶点能否共圆,得到:对角互补的四边形四个顶点共圆的更一般的结论。
《圆(1)》教学案
圆 (1) 教学案学习目标:1、理解圆的有关概念;2、理解点与圆的位置关系以及如何确定点与圆的3种位置关系;3、经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系. 学习重点:1、理解圆的有关概念;2、理解点与圆的位置关系以及如何确定点与圆的3种位置关系. 学习难点:对集合概念的理解 学习过程: 一、情境创设1、日常生活中,我们见到的汽车、摩托车、自行车等交通工具的车轮是什么形状的2、为什么要做成这种形状3、若改成其他形状(如正方形、三角形),会发生怎样的情况4、操作: ①固定点O②将线段OP 绕点O 旋转一周③观察点P 运动所形成的图形的形状。
二、探索活动 活动一 1、圆的定义(1)圆是怎么形成的 (2)如何画圆(3)圆的表示方法:以O 为圆心的圆,记作“______”,读作“________” 2、在平面内,点与圆的位置关系(1)在平面内,点与圆有哪几种位置关系_________、_________、__________. (2)画一个圆,分别在圆内、圆上、圆外各取一个点,并比较圆内、圆上、OP··圆外的点到圆心之间的距离与半径的大小,你能发现什么圆上各点______________________________也就是说,_________________________________________________;圆内各点__________________________________________;也就是说,_________________________________________________;圆外各点__________________________________________。
也就是说,_________________________________________________;(3)归纳、总结得出结论。
中考数学圆的基本性质专题复习学案设计
中考数学圆的基本性质专题复习一、知识点讲解1.圆的概念圆是平面上到一个定点的距离等于定长的点的集合.定点就是圆心,定长就是半径的长,通常也称为半径.以定点O 为圆心的圆称为圆O ,记作O Θ. 2.点和圆的位置关系设圆的半径为R ,点P 到圆心的距离为d ,则(1)点P 在圆外⇔R d >; (2)点P 在圆上⇔;(3)点P 在圆内⇔R d <≤0. 3.圆的确定不在同一条直线上的三点确定一个圆.经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆.外接圆的圆心叫三 角形的外心,这个三角形叫这个圆的内接三角形.三角形的外心就是三角形三边垂直平分线的交点.4.圆心角、弧、弦、弦心距之间的关系定理及其推论(“知一推三”,强调特殊情况不成立) 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距 也相等;推论:在同圆或等圆中,如果两个圆心角、两条劣弧(或优弧)、两条弦、两条弦的弦心 距得到的四组量中有一组量相等,那么它们所对应的其余三组量也分别相等. 5.垂径定理及其推论(“知二推二”, 强调特殊情况不成立)如果圆的一条直径垂直于圆的一条弦,那么这条直径平分这条弦,并平分弦所对的两条弧.二、知识点相关练习例1.在平面上,经过给定的两点的圆有____个,这些圆的圆心一定在连结这两点的线段的_______上.例2.平面上有一个点到⊙O 的圆周上的最小距离为6cm ,最大距离为8cm ,则⊙O 的半径为_______.例3.在矩形ABCD 中,AB =8,AD =6,以点A 为圆心,若B ,C ,D 三点中至少有一点在圆内,且至少有一点在圆外,则圆A 的半径R 的取值范围为 __________.例4.下列说法:①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④长度相等的两条弧是等弧,其中正确的命题有( )个.A. 1B. 2C. 3D. 4例5.已知,如图,在⊙O 中,AB OE ⊥于E ,CD OF ⊥于F ,OE=OF . 求证:弧AC=弧BD .例6.如图,OB ,OC 的⊙O 上一点,且∠B=200,∠C=300,求∠A 的度数.OBCA例7.下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中是真命题的是( ). A. ①②③ B. ②③ C. ①③ D. ①②③例8.已知⊙O 的半径是5cm ,点P 满足PO=3cm ,则过P 的最大弦长为_________ 最小弦长为_________例9.已知⊙O 的半径是5㎝,圆心到弦AB 的距离是3㎝,则弦AB= ㎝.例10.等腰ABC ∆内接于半径为10cm 的圆内,其底边BC 的长为16cm ,则ABC S ∆( )A .322cmB .1282cmC .322cm 或802cmD .322cm 或1282cm例11.⊙O 的半径为13 cm ,弦AB ∥CD ,AB=24cm ,CD=10cm ,求AB 和CD 的距离.专项练习1.下列四边形:①平行四边形,②菱形;③矩形;④正方形.其中四个顶点一定能在同一个圆上的有( ).A .①②③④B .②③④C .②③D .③④2.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ). A .第①块 B .第②块 C .第③块 D .第④块3.下列命题中,正确的是( ) A. 平分一条直径的弦必垂直于这条直径 B. 平分一条弧的直线垂直于这条弧所对的弦 C. 弦的垂线必经过这条弦所在圆的圆心D. 在一个圆内平分一条弧和弧所对弦的直线必经过这个圆的圆心4.已知ABC ∆,090C ∠=,AC=3,BC=4,以点C 为圆心作圆C ,半径为r . (1) 当r 取什么值时,点A 、B 在圆C 外;(2) 当r 在什么范围时,点A 在圆C 内,点B 在圆C 外.5.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧,其中正确的命题有( )个.A. 4B. 3C. 2D. 16.下列命题中的假命题是( )A. 在等圆中,如果弦相等,那么它们所对的优弧也相等B.在等圆中,如果弧相等,那么它所对的弦的弦心距也相等 C .在等圆中,如果弦心距相等,那么它们所对的弦也相等 D .相等的圆心角所对的两条弦相等7.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于CD 两点,若AB =12cm, CD =8cm, 则AC 的长为( )A. 1cmB. 1.5cmC. 2cmD. 2.5cm8.下列命题中,正确的是( ).A .平分一条弧的直径垂直平分这条弧所对的弦;B .平分弦的直径垂直于弦,并且平分弦所对的弧;C .AB ,CD 是⊙O 的弦,若»»AB CD ,则AB ∥CD ; D .圆是轴对称图形,对称轴是圆的每一条直径.9.在△ABC 中,∠C =90°,AC =2,BC =4,CD 是高,CM 是中线,以C 为圆心,以5长为半径画圆,那么A 、B 、C 、D 、M 五个点中,在圆外的点是 __________;在圆上的点是 __________;在圆内的点是 __________.10.如图,一圆拱桥跨度为AB =8米,拱高CD =2米,则圆拱半径为 __________ 米.11.在ABC ∆中,090C ∠=,AC=4,BC=3,以点B 为圆心,以3.5为半径作圆,那么:(1)点C 在圆B____;(2)点A 在圆B____;(3)当半径=_____时,点A 在圆B 上. 12.AB 是圆O 的直径,2=AB ,弦3=AC ,若D 为圆上一点,且1=AD , 则=∠DAC 度.13. 已知等腰三角形的底边长为6,它内接于半径为5的o e 中,那么这个三角形的腰长 为 .14. P 是⊙O 外一点,过点P 的两条直线分别交⊙O 于A 、B 和C 、D ,又E 、F 分别是AB 弧、CD 弧的中点,联结EF ,交AB 、CD 于点M 、N ,请判断△PMN 的形状,并证明你的结论.P15.△ABC 内接于⊙O,AB=AC.已知⊙O的半径为7,且圆心O到BC的距离为3.求腰AB的长.16.⊙O的半径为13 cm,弦AB∥CD,AB=24cm,CD=10cm,求AB和CD的距离.17.在△ABC中,∠ACB=90°,CD⊥AB,D是垂足,∠A=30°,AC=3cm,以C为圆心,3cm为半径作圆C.(1)指出A、B、D与⊙C的位置关系;(2)如果要使⊙C经过点D,那么这个圆的半径应为多长?(3)设⊙C的半径为R,要使点B在⊙C内,点A在⊙C外,求出⊙C的半径R的取值范围.18.机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B、C都在圆O上.(1)求弦BC的长;(2)求圆O的半径长.(本题参考数据:sin 67.4° = 1213,cos 67.4° =513,tan 67.4° =125)BD。
高中数学圆与点位置教案
高中数学圆与点位置教案
教学目标:
1. 了解圆的基本概念和性质;
2. 掌握圆上点的位置关系;
3. 能够运用所学知识解决相关问题。
教学重点:
1. 圆的定义和性质;
2. 圆上点的位置关系。
教学难点:
1. 圆与点的具体位置关系;
2. 解决实际问题。
教具准备:
1. 黑板、彩色粉笔;
2. 教材课本;
3. 尺规、圆规、直尺。
教学过程:
一、导入(5分钟)
引入圆的定义和性质,引导学生思考圆的特点及其在几何学中的应用。
二、讲解(15分钟)
1. 讲解圆的定义和性质,包括圆心、半径、直径等;
2. 讲解圆内外的点与圆的位置关系,例如圆心、直径上的点等;
3. 通过图例展示圆与点的各种位置关系。
三、练习(20分钟)
1. 让学生独立完成练习册中有关圆与点位置的练习;
2. 带领学生讨论解答过程,引导学生学会分析问题、解题思路。
四、拓展(10分钟)
1. 提出一些拓展问题,激发学生的思维能力;
2. 结合实际生活中的例子,引导学生应用所学知识解决问题。
五、总结(5分钟)
总结本节课的学习内容,强调圆与点的位置关系对于几何学的重要性。
六、作业布置(5分钟)
布置作业,包括整理本节课的学习内容和完成书上相关习题。
教学反思:
通过本节课教学,学生能够掌握圆与点的位置关系,提高对圆的理解和应用能力。
在未来教学中,可以引导学生多进行实际练习和应用,加深对几何学的理解和认识。
2022-2022学年七年级数学下册 第13章 平面图形的认识 13.3 圆学案(新版)青岛版
O AO BCA课题: 13.3 圆(1)学习目标:1.经历从现实世界中抽象出圆的过程,发展学生的数学建模意识。
2 .能从圆的生成和集合两个方面去认识圆的概念,经历探索点与圆的位置关系的过程。
3.理解弦、圆弧、半圆、扇形等概念。
学习过程:认真阅读课本“观察与思考”的内容,完成下列问题: 1、 除了圆桌面、车轮、轴承等,你还能举出圆的几个实例吗?2、你能说明用圆规画圆的道理吗?除了可以用圆规画圆之外,你还有其他画圆的方法吗?用你知道的方法画圆,体会圆是怎样画出来的.3、 如图1,在平面内,线段OA 绕固定端点O 旋转一周,另一个端点所描出的封闭曲线叫做___;点O 叫做____;连接圆心与圆上一点的线段叫做____;以点O 为圆心的圆记作___;读作____;线段OA 是圆O 的一条____;一个圆有_____条半径;同一个的半径都____. 认真阅读课本“实验与探究”的内容,完成下列问题:1、 画一个半径为5厘米的圆O ,在圆O 上任意取两点A ,,B ,连接OA ,OB. (1) OA 与OB 的长分别是多少?(2) 如果OC =5厘米,你能说出点C 的位置吗?(3) 如果M ,N 是平面内的两点,且OM =7厘米,ON =3厘米,你能分别说出点M ,N 与圆的位置关系吗?(4) 观察图2,平面内的点与圆有几种位置关系?2、在平面内,点与圆的位置关系的三种:点在____,点在____,点在____. 点A 在圆外,点B 在圆上,点C 在圆内.平面内:点在圆外⇔这个点到圆心的距离大于半径;点在圆外⇔这个点到圆心的距离大于半径; 点在圆外⇔这个点到圆心的距离大于半径;圆O 中,到圆心O 的距离等于半径的点都在圆O 上;圆O 上的所有点到圆心O 的距离都等于半径;因此:圆是平面内到定点的距离等于定长的点的集合.O BCAO ACE 同样:圆的内部是平面内到定点的距离__于定长的点的集合.圆的外部是平面内到定点的距离__于定长的点的集合.3、如图3,在圆O 中任取两点,用线段连接它们,所得到的线段叫做__, 点A ,B ,C 都是圆O 上的点,线段AB ,AC ,BC 都是O 的弦,BC 是经过圆心的弦,经过圆心的弦叫做_____; 直径和半径有什么关系?______________4、 如图4,圆上任意两点间的部分叫做____,简称____;用“ ”表示,以CD 为端点的弧记作CD ,读作“弧CD ”圆的一条直径把圆分成两条 弧,每一条弧叫做____;大于半圆的弧叫做____;小于半圆的弧叫做____.优弧用三个字母表示.如BD 表示上面的劣弧,BAD 表示下面的优弧(图中加粗部分). 一条弧和经过这条弧的端点的半径所组成的图形叫做_____. 例如扇形OBEC 是由劣BC 和半径OB ,OC 所组成的图形; 扇形OBAD 是由优BAD 和半径OB ,OD 所组成的图形. 小结:课堂练习:A 组练习1、已知⊙O 的半径为8厘米,A 为平面内一点.当OA 符合下列条件时,分别指出点A 与⊙O 的位置关系;(1)OA =7.9厘米; (2)A =8厘米; (3)OA =8.01厘米.O BA CD2、(1)圆的一条弦的弧有几条?怎样区分它们?(2)如图,图中有几条弧?哪些是优弧?哪些是劣弧?B组:1、在ABC中,AB=3厘米,BC=4厘米,CA=5厘米.(1)以点A为圆心,以3厘米长为半径画圆,确定点B,C与⊙A的位置关系;(2)以点A为圆心,以4厘米长为半径画圆,确定点B,C与⊙A的位置关系;(3)以点B为圆心,以4厘米长为半径画圆,确定点A,C与⊙B的位置关系.2、早在2000多年前的战国时期,《墨经》一书中就给出了圆的描述性定义:“圆,一中同长也”,这就是说,圆是平面内到定点的距离等于定长的点的集合,其中,定点是____,定长是____.3、AB两点的距离为4厘米.用图形表示具有下列性质的点的集合,并指出它们是怎样的图形:(1)到点A的距离等于3厘米的点的集合;(2)到点B的距离等于3厘米的点的集合;(3)到点A,B的距离都等于3厘米的点的集合;(4)到点A,B的距离都不大于3厘米的点的集合.C组:1.圆的内部是 _______________集合,圆的外部是 ___ 的集合,圆是 _________ 的集合。
圆的标准方程(1)
法。并加 以巩固训 练,反馈 矫正。
[方法总结] [变式训练]
AOB 的顶点坐标分别是 A 4,0 , B 0,3 ,C 0,0 ,求 D AOB 外接 (1) 已知 D
( ) ( ) ( )
圆的方程。
(2)圆心在直线 x–2y–3 = 0 上,且过 A(2,–3),B(–2,–5),求圆的方程.
四、 【总结分享】 1、 2、
例 2 : (课 本 例 1)求 圆 心 在 C(2,-3), 半 径 是 5 的 圆 的 标 准 方 程 , 并 判 断 点 M(5,-7), N ( 5,1) 是否在圆上。 解:
y M
在理解圆 标准方程 的 基 础 上,由实 例探究得 到判断点 与圆的位 置关系的 方法 10min
问题 5:在直角坐标系中,已知点 M(x0,y0)和圆
教 师 启 发,学生 自 己 比 较、归纳
【课后作业】 [基础训练] 1.圆(x+2)2+(y-3)2=2 的圆心坐标和半径长分别为( A.(-2,3), 2 B.(-2,3),2 C.(2,-3),1 2.圆心为点(3,4)且过点(0,0)的圆的方程( )
) D.(2,-3), 2
A.x2+y2=25 C.(x-3)2+(y-4)2=25,
4.以 A(1,3)和 B(3,5)为直径两端点的圆的标准方程为________________. [能力提升] 2 2 2 1.圆(x a) + y = a 的圆心坐标和半径分别是___________. 2.已知圆心在 P(-2,3)并且与 y 轴相切,则该圆的方程是( ) 2 2 2 2 (A)(x-2) +(y+3) =4 (B)(x +2) +(y-3) =4
人教版高中数学2.4.1圆的标准方程教学案
2.4.1圆的标准方程
一、学习目标:1会用定义推导圆的标准方程,并掌握圆的标准方程的特征.
2.能根据所给条件求圆的标准方程.
3.掌握点与圆的位置关系并能解决相关问题.
学习重点:圆的标准方程,点与圆的位置关系
学习难点:圆的标准方程,点与圆的位置关系
二、导学指导与检测
【A 层】
1、求圆心在直线032=--y x 上,且过点)52()32(---,,,B A 的圆的标准方程.
【B 层】
2、若点(1,1)在圆4)()22=++-a y a x C :(的内部,求a 的取值范围.
【C 层】
3、已知AOB ∆的顶点坐标分别是)0,0()3,0()0,4(O B A ,,,求AOB ∆外接圆的方程.
闯关题:设定点)4,3(-M ,动点N 在圆422=+y x 上运动,以ON OM ,为邻边作平行四边形MONP ,求点P 的轨迹.。
(复习指导)9.3 圆的方程含解析
9.3 圆的方程必备知识预案自诊知识梳理1.圆的定义及方程圆心:-D2,-E 2注意:当D 2+E 2-4F=0时,方程x 2+y 2+Dx+Ey+F=0表示一个点(-D2,-E2);当D 2+E 2-4F<0时,方程x 2+y 2+Dx+Ey+F=0没有意义,不表示任何图形.2.点与圆的位置关系圆的标准方程(x-a )2+(y-b )2=r 2(r>0),点M (x 0,y 0), (1)(x 0-a )2+(y 0-b )2 r 2⇔点M 在圆上; (2)(x 0-a )2+(y 0-b )2 r 2⇔点M 在圆外; (3)(x 0-a )2+(y 0-b )2 r 2⇔点M 在圆内.以A (x 1,y 1),B (x 2,y 2)为直径的两端点的圆的方程是(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0(公式推导:设圆上任一点P (x ,y ),则有k PA ·k PB =-1,由斜率公式代入整理即可).考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)已知圆的方程为x 2+y 2-2y=0,过点A (1,2)作该圆的切线只有一条. ( ) (2)方程(x+a )2+(y+b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的一个圆.( )(3)方程x 2+y 2+ax+2ay+2a 2+a-1=0表示圆心为-a2,-a ,半径为12√-3a 2-4a +4的圆.( )(4)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0. ( )(5)若点M (x 0,y 0)在圆x 2+y 2+Dx+Ey+F=0外,则x 02+y 02+Dx 0+Ey 0+F>0. ( ) 2.已知圆C 经过点A (1,5),且圆心为C (-2,1),则圆C 的方程为( )A.(x-2)2+(y+1)2=5B.(x+2)2+(y-1)2=5C.(x-2)2+(y+1)2=25D.(x+2)2+(y-1)2=253.(2020山东聊城模拟)圆x2+y2-6x-2y+3=0的圆心到直线x+ay-1=0的距离为1,则a=()A.-43B.-34C.√3D.24.(2020山东青岛实验高中测试)方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是()A.a<-2B.-23<a<0C.-2<a<0D.-2<a<235.已知点A(2,0),B(0,4),O为坐标原点,则△ABO外接圆的方程是.关键能力学案突破考点求圆的方程【例1】(1)(2020山东青岛实验高中测试)圆心为(2,-1)的圆,在直线x-y-1=0上截得的弦长为2√2,那么这个圆的方程为()A.(x-2)2+(y+1)2=4B.(x-2)2+(y+1)2=2C.(x+2)2+(y-1)2=4D.(x+2)2+(y-1)2=2(2)已知圆C的圆心在直线x+y=0上,圆C与直线x-y=0相切,且被直线x-y-3=0截得的弦长为√6,则圆C的方程为.?解题心得求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且与切线垂直的直线上;②圆心在任一弦的垂直平分线上;③两圆内切或外切时,切点与两圆圆心共线;(2)代数法,即设出圆的方程,用待定系数法求解.对点训练1(1)在平面直角坐标系xOy中,过A(4,4),B(4,0),C(0,4)三点的圆被x轴截得的弦长为()A.4B.4√2C.2D.2√2(2)一个圆与y轴相切,圆心在直线x-3y=0上,且在直线y=x上截得的弦长为2√7,则该圆的方程为.考点与圆有关的轨迹问题【例2】点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是()A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=44)2+(y-2)2=4 D.(x+2)2+(y-1)2=1?解题心得1.求与圆有关的轨迹问题时,根据题设条件的不同,常采用以下方法:(1)直接法,直接根据题目提供的条件列出方程;(2)定义法,根据圆、直线等定义列方程;(3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.2.求与圆有关的轨迹问题时,题目的设问有两种常见形式,作答也应不同.若求轨迹方程,则把方程求出化简即可;若求轨迹,则必须根据轨迹方程,指出轨迹是什么曲线.对点训练2古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A,B距离之比是常数λ(λ>0,λ≠1)的点M的轨迹是圆.若两定点A,B的距离为3,动点M满足|MA|=2|MB|,则点M的轨迹围成区域的面积为()A.πB.2πC.3πD.4π考点与圆有关的最值问题(多考向探究)考向1借助目标函数的几何意义求最值【例3】已知点M(m,n)为圆C:x2+y2-4x-14y+45=0上任意一点.(1)求m+2n的最大值;(2)求n-3m+2的最大值和最小值.解题心得借助几何性质求与圆有关的最值问题,常根据代数式的几何意义,借助数形结合思想求解.(1)形如u=y -bx -a 形式的最值问题,可转化为动直线斜率的最值问题.(2)形如t=ax+by 形式的最值问题,可转化为动直线截距的最值问题.(3)形如m=(x-a )2+(y-b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题. 对点训练3已知实数x ,y 满足(x-2)2+(y-1)2=1,则z=y+1x的最大值与最小值分别为和 .考向2 借助圆的几何性质求最值【例4】已知点A (0,2),点P 在直线x+y+2=0上运动,点Q 在圆C :x 2+y 2-4x-2y=0上运动,则|PA|+|PQ|的最小值是 .?解题心得形如|PA|+|PQ|形式的与圆有关的折线段问题(其中P ,Q 均为动点),要立足两点: (1)减少动点的个数;(2)“曲化直”,即将折线段转化为同一直线上的两线段之和,一般要通过对称性解决.对点训练4(2020山东济宁模拟)已知两点A (0,-3),B (4,0),若点P 是圆C :x 2+y 2-2y=0上的动点,则△ABP 的面积的最小值为 .考向3 建立函数关系求最值【例5】(2020江苏,14)在平面直角坐标系xOy 中,已知P (√32,0),A ,B 是圆C :x 2+(y -12)2=36上的两个动点,满足PA=PB ,则△PAB 面积的最大值是 .解题心得利用函数关系求最值时,先根据已知条件列出相关的函数关系式,再根据函数知识或基本不等式求最值.对点训练5(2020宁夏银川模拟)设点P (x ,y )是圆(x-3)2+y 2=4上的动点,定点A (0,2),B (0,-2),则|PA⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ |的最大值为 .求半径常有以下方法:(1)若已知直线与圆相切,则圆心到切点(或切线)的距离等于半径;(2)若已知弦长、弦心距,则可利用弦长的一半、弦心距、半径三者满足勾股定理的关系求得.1.求圆的方程需要三个独立条件,因此不论选用哪种形式的圆的方程都要列出三个独立的关系式.2.解答与圆有关的最值问题一般要结合代数式的几何意义进行,注意数形结合,充分运用圆的性质.3.解决与圆有关的轨迹问题,一定要看清要求,是求轨迹方程还是求轨迹.9.3 圆的方程必备知识·预案自诊知识梳理1.定点 定长 (a ,b ) r √D 2+E 2-4F22.(1)= (2)> (3)<考点自诊1.(1)× (2)× (3)× (4)√ (5)√2.D 因为圆C 经过A (1,5),且圆心为C (-2,1),所以圆C 的半径为r=√(-2-1)2+(1-5)2=5,则圆C 的方程为(x+2)2+(y-1)2=25.故选D .3.B 由题意,圆x 2+y 2-6x-2y+3=0,即(x-3)2+(y-1)2=7.圆心(3,1)到直线x+ay-1=0的距离d=√1+a2=1,所以a=-34. 4.D 方程x 2+y 2+ax+2ay+2a 2+a-1=0表示圆,所以a 2+4a 2-4(2a 2+a-1)>0,所以3a 2+4a-4<0,所以(a+2)(3a-2)<0,即-2<a<23.5.(x-1)2+(y-2)2=5 方法1 由题知OA ⊥OB ,故△ABO 外接圆的圆心为AB 的中点(1,2),半径为12|AB|=√5,所以△ABO 外接圆的标准方程为(x-1)2+(y-2)2=5.方法2 设圆的方程为x 2+y 2+Dx+Ey+F=0,因为过A (2,0),B (0,4),O (0,0)三点,所以{4+2D +F =0,16+4E +F =0,F =0,解得D=-2,E=-4,F=0,则△ABO 外接圆的方程是x 2+y 2-2x-4y=0,即△ABO 外接圆的标准方程为(x-1)2+(y-2)2=5.关键能力·学案突破例1(1)A (2)(x-1)2+(y+1)2=2(1)因为圆心(2,-1)到直线x-y-1=0的距离d=√2=√2,弦长为2√2,所以圆的半径r=√(√2)2+(2√22)2=2,则圆的方程为(x-2)2+(y+1)2=4.(2)由圆C 的圆心在直线x+y=0上,可设圆心坐标为(a ,-a ),又圆C 与直线x-y=0相切,所以圆的半径r=√2|a|.因为圆心到直线x-y-3=0的距离d=√2,圆C 被直线x-y-3=0截得的弦长为√6,所以d 2+(√62)2=r2,即(2a -3)22+32=2a 2,解得a=1,所以圆C 的方程为(x-1)2+(y+1)2=2.对点训练1(1)A (2)x 2+y 2-6x-2y+1=0或x 2+y 2+6x+2y+1=0 (1)根据题意,设过A ,B ,C 三点的圆为圆M ,其方程为x 2+y 2+Dx+Ey+F=0,又由A (4,4),B (4,0),C (0,4),则有{32+4D +4E +F =0,16+4D +F =0,16+4E +F =0,解得D=-4,E=-4,F=0,即圆M 的方程为x 2+y 2-4x-4y=0,令y=0可得x 2-4x=0,解得x 1=0,x 2=4,即圆与x 轴的交点的坐标为(0,0),(4,0),则圆被x 轴截得的弦长为4.故选A.(2)方法1 ∵所求圆的圆心在直线x-3y=0上, ∴设所求圆的圆心为(3a ,a ),又所求圆与y 轴相切,∴半径r=3|a|,又所求圆在直线y=x 上截得的弦长为2√7,圆心(3a ,a )到直线y=x 的距离d=√2,∴d 2+(√7)2=r 2,即2a 2+7=9a 2,∴a=±1.故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9,即x 2+y 2-6x-2y+1=0或x 2+y 2+6x+2y+1=0.方法2 设所求圆的方程为(x-a )2+(y-b )2=r 2,则圆心(a ,b )到直线y=x的距离为|a -b |√2,∴r 2=(a -b )22+7,即2r 2=(a-b )2+14. ① ∵所求圆与y 轴相切,∴r 2=a 2,② ∵所求圆的圆心在直线x-3y=0上, ∴a-3b=0,③联立①②③,解得{a =3,b =1,r 2=9或{a =-3,b =-1,r 2=9.故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9,即x 2+y 2-6x-2y+1=0或x 2+y 2+6x+2y+1=0.方法3 设所求圆的方程为x 2+y 2+Dx+Ey+F=0,则圆心坐标为-D 2,-E 2,半径r=12√D 2+E 2-4F .在圆的方程中,令x=0,得y 2+Ey+F=0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F. ①圆心-D 2,-E 2到直线y=x 的距离d=|-D 2+E2|√2,由已知得d 2+(√7)2=r 2, 即(D-E )2+56=2(D 2+E 2-4F ).② 又圆心-D 2,-E2在直线x-3y=0上,∴D-3E=0. ③联立①②③,解得{D =-6,E =-2,F =1或{D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x-2y+1=0或x 2+y 2+6x+2y+1=0.例2A 设圆上任一点为Q (x 0,y 0),PQ 中点为M (x ,y ),根据中点坐标公式,得{x 0=2x -4,y 0=2y +2,因为Q (x 0,y 0)在圆x 2+y 2=4上,所以x 02+y 02=4,即(2x-4)2+(2y+2)2=4,化为(x-2)2+(y+1)2=1,故选A .对点训练2D 以A 为原点,直线AB 为x 轴建立平面直角坐标系,则B (3,0).设M (x ,y ),依题意有√x 2+y 2√(x -3)+y 2=2,化简整理得x 2+y 2-8x+12=0,即(x-4)2+y 2=4,则圆的面积为4π.故选D.例3解(1)(方法1)依题意,圆心C (2,7),半径r=2√2.设m+2n=t ,则点M (m ,n )为直线x+2y=t 与圆C 的公共点,所以圆心C 到该直线的距离d=√12+22≤2√2,解得16-2√10≤t ≤16+2√10.所以m+2n 的最大值为16+2√10.(方法2)由x 2+y 2-4x-14y+45=0,得(x-2)2+(y-7)2=8. 因为点M (m ,n )为圆C 上任意一点,所以可设{m -2=2√2cosθ,n -7=2√2sinθ,(θ为参数)即{m =2+2√2cosθ,n =7+2√2sinθ,(θ为参数)所以m+2n=2+2√2cos θ+2(7+2√2sin θ)=16+2√2cos θ+4√2sin θ =16+2√10sin(θ+φ),其中tan φ=12. 因为-1≤sin(θ+φ)≤1,所以m+2n 的最大值为16+2√10. (2)设点Q (-2,3).则直线MQ 的斜率k=n -3m+2. 设直线MQ 的方程为y-3=k (x+2), 即kx-y+2k+3=0.由直线MQ 与圆C 有公共点, 得√k +1≤2√2,解得2-√3≤k ≤2+√3,即2-√3≤n -3m+2≤2+√3.所以n -3m+2的最大值为2+√3,最小值为2-√3. 对点训练34+√73 4-√73由题意,得y+1x表示过点A (0,-1)和圆(x-2)2+(y-1)2=1上的动点P (x ,y )的直线的斜率.当且仅当直线与圆相切时,直线的斜率分别取得最大值与最小值.设切线方程为y=kx-1,即kx-y-1=0,则√k 2+1=1,解得k=4±√73.所以z max =4+√73,z min =4-√73. 例42√5 依题意,圆心C (2,1),半径r=√5.设点A (0,2)关于直线x+y+2=0的对称点为A'(m ,n ),则{m+02+n+22+2=0,n -2m -0=1,解得{m =-4,n =-2,故A'(-4,-2).连接A'C 交直线x+y+2=0于点P ,交圆C 于点Q (图略),此时|PA|+|PQ|取得最小值.由对称性可知此时|PA|+|PQ|=|PA'|+|PQ|=|A'Q|=|A'C|-r=2√5. 对点训练4112依题意,圆心C (0,1),半径r=1.如图,过圆心C 向直线AB 作垂线交圆C 于点P ,连接BP ,AP ,此时△ABP 的面积最小.因为直线AB 的方程为x4+y-3=1,即3x-4y-12=0,所以圆心C 到直线AB 的距离d=165.又|AB|=√32+42=5,所以△ABP 的面积的最小值为12×5×(165-1)=112. 例510√5 本题考查圆与直线的位置关系.如图,由已知,得C (0,12),CP=1,AB ⊥CP.设过点P 的直径为EF ,AB 与EF 相交于点D ,设CD=d. (1)当点D 与P 在圆心C 的异侧时, S △PAB =12×2√36-d 2×(1+d ) =√(36-d 2)(1+d )2(0≤d<6).设f (d )=(36-d 2)(1+d )2,则f'(d )=-2d (d+1)2+2(36-d 2)(d+1)=-2(d+1)(d-4)(2d+9). 所以f (d )在区间[0,4)上单调递增,在区间(4,6)上单调递减, 所以当d=4时,f (d )取得最大值f (4)=500,此时,S △PAB =10√5.(2)当点D 与P 在圆心C 的同侧时,①当点D 在点C ,P 之间时,△PAB 的高为1-d ; ②当点D 在CP 的延长线上时,△PAB 的高为d-1. 根据圆的对称性,当AB 与(1)中相等时,相应的高都小于(1)中AB 对应的高,所以相应△PAB 的面积也小. 综上,△PAB 面积的最大值是10√5.对点训练510 由题意,知PA ⃗⃗⃗⃗⃗ =(-x ,2-y ),PB ⃗⃗⃗⃗⃗ =(-x ,-2-y ),所以PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ =(-2x ,-2y ),所以|PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ |=2√x 2+y 2.因为点P (x ,y )是圆(x-3)2+y 2=4上的点,所以(x-3)2+y 2=4,1≤x ≤5,所以y 2=-(x-3)2+4,所以|PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ |=2√x 2-(x -3)2+4=2√6x -5.因为1≤x ≤5,所以当x=5时,|PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ |的值最大,最大值为2√6×5-5=10.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点与圆的位置关系学案
学习目标:
1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,
则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r及其运用.
2.理解不在同一直线上的三个点确定一个圆并掌握它的运用.
3.了解三角形的外接圆和三角形外心的概念.
重(难)点预见
1.重点难点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用.
一、自学新知
自学提示:自学教材第43页———第45页内容,尝试自主解决以下问题:
1、思考:平面上的一个圆把平面上的点分成哪几部分?各部分的点与圆有什么共同特征?
2、已知圆的半径r等于5厘米,点到圆心的距离为d,
(1)当d=2厘米时,有d r,点在圆
(2)当d=7厘米时,有d r,点在圆
(3)当d=5厘米时,有d r,点在圆
结论:设⊙O的半径为r,点P到圆的距离为d,则有:点P在圆外⇔点P在圆上⇔点P在圆内⇔
2、探究、实践、交流:
(1)、平面上有一点A,经过已知A点的圆有个,圆心为
(2)、平面上有两点A、B,经过已知点A、B的圆有个,它们的圆心分布的特点是
(3)、平面上有三点A、B、C,经过A、B、C三点的圆分为两类:一种是三点在一条直线上,这时的圆有个,圆心为;三点不在一条直线上,这时经三点作圆。
上述结论用于三角形,可得:经过三角形的三个顶点作圆。
3有关概念:
①经过三角形的三个顶点可以做一个圆,并且只能画一个圆,这个圆叫做.
②外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的.
③三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形的离相等。
4、想一想
一个三角形的外接圆有几个?一个圆的内接三角形有几个?
四、课堂训练
1、已知矩形ABCD的边AB=3厘米,AD=4厘米
(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?
(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?
(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?
2、判断下列说法是否正确
(1)任意的一个三角形一定有一个外接圆( ).
(2)任意一个圆有且只有一个内接三角形( )
(3)经过三点一定可以确定一个圆( )
(4)三角形的外心到三角形各顶点的距离相等( )
3. ⊙O的半径cm
=,则点P()
=,在直线l上有一点P且cm
PM6
OM8
=,圆心到直线l的距离cm
r10
(A)在⊙O内(B)在⊙O上(C)在⊙O外(D)可能在⊙O内也可能在⊙O外
4.半径是7的圆,其圆心在坐标原点,则下列各点在圆外的是()
A.(3,4) B.(4,4) C.(4,5) D.(4,6)
5若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是()
A.点A在圆外 B.点A在圆上 C.点A在圆
内 D.不能确定
6 (2007·湖州)如图,在Rt△ABC中∠ACB=90°,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是()
A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O
外 D.无法确定
7已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是()
A.在⊙O内 B.在⊙O上 C.在⊙O
外 D.不能确定
82005·扬州)下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为()
A.1 B.2 C.3 D.4
9下列说法正确的是()
A.三个点确定一个圆 B.弦长相等,则弦所对的弦心距也相等
C.平分弦的直径垂直此弦 D.垂直于弦的直径平分此弦,并且平分此弦所对的弧
10如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交CB 于D,连接AC
①请写出两个不同类型的正确结论.
②若CB=16,ED=4,求⊙O的半径.。