七年级数学精选试题①
(必考题)初中数学七年级下期末经典题(提高培优)(1)
一、选择题1.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm2.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55a b >D .-3a >-3b3.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( )A .B .C .D .4116( ) A .±12B .±14C .14D .125.下面不等式一定成立的是( ) A .2a a < B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b >6.下列方程中,是二元一次方程的是( ) A .x ﹣y 2=1B .2x ﹣y =1C .11y x+= D .xy ﹣1=07.16的平方根为( ) A .±4 B .±2 C .+4 D .28.已知关于x 的不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤9.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°10.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180° ②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1B .2C .3D .411.下列说法正确的是( ) A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线. 12.已知m=4+3,则以下对m 的估算正确的( ) A .2<m <3B .3<m <4C .4<m <5D .5<m <613.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4 D .()8,414.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .15.已知a ,b 为两个连续整数,且191<b,则这两个整数是( )A .1和2B .2和3C .3和4D .4和5二、填空题16.一棵树高h (m )与生长时间n (年)之间有一定关系,请你根据下表中数据,写出h (m )与n (年)之间的关系式:_____. n/年 2 4 6 8 … h/m2.63.23.84.4…17.已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N (下面是推理过程,请你填空).解:∵∠BAE+∠AED=180°(已知)∴ AB ∥ ( ) ∴∠BAE= ( 两直线平行,内错角相等 ) 又∵∠1=∠2∴∠BAE ﹣∠1= ﹣∠2即∠MAE= ∴ ∥NE ( ) ∴∠M=∠N ( ) 18.如果点p(3,2)m m +-在x 轴上,那么点P 的坐标为(____,____).19.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.20.如果方程组23759x y x y +=⎧⎨-=⎩,的解是方程716x my +=的一个解,则m 的值为____________.21.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还到余1尺,问木长多少尺?”设绳长x 尺,木长y 尺.可列方程组为__________. 22.已知方程1(2)(3)5m n m xn y --+-=是二元一次方程,则mn =_________;23.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______.24.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =_____. 25.如图,将△ABC 沿BC 方向平移1个单位得到△DEF ,若△ABC 的周长等于8,则四边形ABFD 的周长等于_______.三、解答题26.解不等式组523(1)13222x x x x +>-⎧⎪⎨≤-⎪⎩,并求出它的所有整数解的和. 27.如图,12180∠+∠=︒,B DEF ∠=∠,55BAC ∠=︒,求DEC ∠的度数.28.一个正数x 的两个平方根是2a -3与5-a ,求x 的值.29.如图1,在平面直角坐标系中,A (a ,0)是x 轴正半轴上一点,C 是第四象限内一点,CB ⊥y 轴交y 轴负半轴于B (0,b ),且|a ﹣3|+(b +4)2=0,S 四边形AOBC =16.(1)求点C 的坐标.(2)如图2,设D 为线段OB 上一动点,当AD ⊥AC 时,∠ODA 的角平分线与∠CAE 的角平分线的反向延长线交于点P ,求∠APD 的度数;(点E 在x 轴的正半轴). (3)如图3,当点D 在线段OB 上运动时,作DM ⊥AD 交BC 于M 点,∠BMD 、∠DAO 的平分线交于N 点,则点D 在运动过程中,∠N 的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.30.已知:方程组713x y ax y a+=--⎧⎨-=+⎩的解x为非正数,y为负数.(1)求a的取值范围;(2)化简|a-3|+|a+2|;(3)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.D3.A4.A5.D6.B7.A8.A9.D10.C11.D12.B13.C14.D15.C二、填空题16.h=03n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式可先设出通式然后将已知的条件代入式子中求出未知数的值进而求出函数的解析式【详解】设该函数的解析式为h=kn+b将n=2h=217.见解析【解析】【分析】由已知易得AB∥CD则∠BAE=∠AEC又∠1=∠2所以∠MAE=∠A EN则AM∥EN故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线18.0【解析】【分析】根据x轴上的点的纵坐标为0可得m-2=0即可求得m=2由此求得点P的坐标【详解】∵点在x轴上∴m-2=0即m=2∴P(50)故答案为:50【点睛】本题考查了x轴上的点的坐标的特点熟19.100【解析】【分析】根据对顶角相等求出∠AOC再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA平分∠COE∴∠AOE=∠AOC=40°∴∠CO E=820.2【解析】分析:求出方程组的解得到x与y的值代入方程计算即可求出m的值详解:①+②×3得:17x=34即x=2把x=2代入①得:y=1把x=2y=1代入方程7x+my=16得:14+m=16解得:m21.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程22.-2【解析】【分析】二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程列出方程组求出mn的值然后代入代数式进行计算即可得解【详解】∵方程是二元一次方程∴且m-2≠0n=1∴m=-223.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m-2=±6∴m=8或m=-4故答案为8或-424.40或80【解析】当这两个角是对顶角时(2x-10)=(110-x)解之得x=40;当这两个角是邻补角时(2x-10)+(110-x)=180解之得x=80;∴x的值是40或80点睛:本题考查了两条25.10【解析】【分析】根据平移的性质可得AD=CF=1AC=DF然后根据四边形的周长的定义列式计算即可得解【详解】∵△ABC沿BC方向平移2个单位得到△DEF∴AD=CF=1AC=DF∴四边形ABFD三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.2.D解析:D【解析】A.∵a>b,∴a-7>b-7,∴选项A正确;B.∵a>b,∴6+a>b+6,∴选项B正确;C.∵a >b ,∴55a b >,∴选项C 正确; D.∵a >b ,∴-3a <-3b ,∴选项D 错误. 故选D.3.A解析:A 【解析】 【分析】先求出不等式组的解集,再在数轴上表示出来即可. 【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1, 解不等式②得:x≥-1, ∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A . 【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.4.A解析:A 【解析】 【分析】根据平方根的性质:一个正数的平方根有两个,它们互为相反数计算即可. 【详解】 11614,14的平方根是12± , 11612±, 故选A. 【点睛】本题考查平方根的性质,一个正数的平方根有两个,它们互为相反数,0的平方根还是0,熟练掌握相关知识是解题关键.5.D解析:D 【解析】 【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】A. 当0a ≤时,2aa ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误;C. 若a b >,当0c d =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确; 故选D . 【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.6.B解析:B 【解析】 【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得. 【详解】解:A .x-y 2=1不是二元一次方程; B .2x-y=1是二元一次方程;C .1x+y =1不是二元一次方程; D .xy-1=0不是二元一次方程; 故选B . 【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.7.A解析:A 【解析】 【分析】根据平方根的概念即可求出答案. 【详解】∵(±4)2=16,∴16的平方根是±4. 故选A .【点睛】本题考查了平方根的概念,属于基础题型.8.A解析:A 【解析】 【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可. 【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1, 解不等式②得:x<a ,∵不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解, ∴不等式的整数解为:-1、0、1, ∴1<a≤2, 故选:A 【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.D解析:D 【解析】 【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确. 【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立, ∵1∠与4∠是邻补角, ∴∠1+∠4=180°,故D 正确. 故选D . 【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.10.C解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.11.D解析:D【解析】解:A.应为两点之间线段最短,故本选项错误;B.应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C.应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D.在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D.12.B解析:B【解析】【分析】【详解】∵12,∴3<m<4,故选B.【点睛】的取值范围是解题关键.13.C解析:C【解析】根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标.【详解】解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.14.D解析:D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.15.C解析:C【解析】试题解析:∵4195,∴319<4,∴这两个连续整数是3和4,故选C .16.h =03n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式可先设出通式然后将已知的条件代入式子中求出未知数的值进而求出函数的解析式【详解】设该函数的解析式为h =kn+b 将n =2h =2解析:h =0.3n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式,可先设出通式,然后将已知的条件代入式子中求出未知数的值,进而求出函数的解析式.【详解】设该函数的解析式为h =kn+b ,将n =2,h =2.6以及n =4,h =3.2代入后可得2 2.64 3.2k b k b +=⎧⎨+=⎩, 解得0.32k b =⎧⎨=⎩, ∴h =0.3n+2,验证:将n =6,h =3.8代入所求的函数式中,符合解析式;将n =8,h =4.4代入所求的函数式中,符合解析式;因此h (m )与n (年)之间的关系式为h =0.3n+2.故答案为:h =0.3n+2.【点睛】本题主要考查用待定系数法求一次函数关系式的方法.用来表示函数关系的等式叫做函数解析式,也称为函数关系式.17.见解析【解析】【分析】由已知易得AB∥CD 则∠BAE=∠AEC 又∠1=∠2所以∠MAE=∠AEN 则AM∥EN 故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线解析:见解析【解析】【分析】由已知易得AB ∥CD ,则∠BAE=∠AEC ,又∠1=∠2,所以∠MAE=∠AEN ,则AM ∥EN ,故∠M=∠N .【详解】∵∠BAE +∠AED =180°(已知) ∴AB ∥CD (同旁内角互补,两直线平行)∠BAE =∠AEC (两直线平行,内错角相等)又∵∠1=∠2,∴∠BAE −∠1=∠AEC −∠2,即∠MAE =∠NEA ,∴AM ∥EN ,(内错角相等,两直线平行)∴∠M =∠N (两直线平行,内错角相等)【点睛】考查平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键. 18.0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0即可求得m=2由此求得点P 的坐标【详解】∵点在x 轴上∴m-2=0即m=2∴P (50)故答案为:50【点睛】本题考查了x 轴上的点的坐标的特点熟解析:0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0,即可求得m=2,由此求得点P 的坐标.【详解】∵点p(3,2)m m +-在x 轴上, ∴m-2=0,即m=2, ∴P (5,0).故答案为:5,0.【点睛】本题考查了x 轴上的点的坐标的特点,熟知x 轴上的点的纵坐标为0是解决问题的关键. 19.100【解析】【分析】根据对顶角相等求出∠AOC 再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA 平分∠COE ∴∠AOE=∠AOC=40°∴∠COE=8解析:100【解析】【分析】根据对顶角相等求出∠AOC ,再根据角平分线和邻补角的定义解答.【详解】解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA 平分∠COE ,∴∠AOE=∠AOC=40°,∴∠COE=80°.∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.20.2【解析】分析:求出方程组的解得到x与y的值代入方程计算即可求出m 的值详解:①+②×3得:17x=34即x=2把x=2代入①得:y=1把x=2y=1代入方程7x+my=16得:14+m=16解得:m解析:2【解析】分析:求出方程组的解得到x与y的值,代入方程计算即可求出m的值.详解:23759x yx y+=⎧⎨-=⎩①②,①+②×3得:17x=34,即x=2,把x=2代入①得:y=1,把x=2,y=1代入方程7x+my=16得:14+m=16,解得:m=2,故答案为:2.点睛:此题考查了解二元一次方程组和二元一次方程解的概念,解出二元一次方程组的解代入另一个方程是解决此题的关键.21.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程解析:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩【解析】【分析】本题的等量关系是:绳长-木长=4.5;木长-12绳长=1,据此可列方程组求解.【详解】设绳长x尺,长木为y尺,依题意得4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩,故答案为:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩.【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程.22.-2【解析】【分析】二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程列出方程组求出mn 的值然后代入代数式进行计算即可得解【详解】∵方程是二元一次方程∴且m-2≠0n=1∴m=-2解析:-2【解析】【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,列出方程组求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】 ∵方程1(2)(3)5m n m x n y --+-=是二元一次方程, ∴11m -=且m-2≠0,n=1,∴m=-2,n=1,∴mn =-2.故答案为:-2.【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.23.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m -2=±6∴m=8或m=-4故答案为8或-4 解析:8或﹣4【解析】解:∵x 2+(m -2)x +9是一个完全平方式,∴x 2+(m -2)x +9=(x ±3)2. 而(x ±3)2=x 2±6x +9,∴m -2=±6,∴m =8或m =-4.故答案为8或-4. 24.40或80【解析】当这两个角是对顶角时(2x-10)=(110-x)解之得x=40;当这两个角是邻补角时(2x-10)+(110-x)=180解之得x=80;∴x 的值是40或80点睛:本题考查了两条解析:40或80【解析】当这两个角是对顶角时,(2x -10) =(110-x ),解之得x =40;当这两个角是邻补角时,(2x -10) +(110-x ) =180,解之得x =80;∴x 的值是40或80.点睛:本题考查了两条直线相交所成的四个角之间的关系及分类讨论的数学思想,两条直线相交所成的四个角或者是对顶角的关系,或者是邻补角的关系,明确这两种关系是解答本题的关键.25.10【解析】【分析】根据平移的性质可得AD=CF=1AC=DF 然后根据四边形的周长的定义列式计算即可得解【详解】∵△ABC 沿BC 方向平移2个单位得到△DEF∴AD=CF=1AC=DF∴四边形ABFD解析:10【解析】【分析】根据平移的性质可得AD=CF=1,AC=DF ,然后根据四边形的周长的定义列式计算即可得解.【详解】∵△ABC 沿BC 方向平移2个单位得到△DEF ,∴AD=CF=1,AC=DF ,∴四边形ABFD 的周长=AB+(BC+CF )+DF+AD=AB+BC+AC+AD+CF ,∵△ABC 的周长=8,∴AB+BC+AC=8,∴四边形ABFD 的周长=8+1+1=10.故答案为10.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.三、解答题26.512x -<,-2 【解析】【分析】先求出两个不等式的解集,再求其公共解,然后求出整数解的和即可.【详解】 解:523(1)13222x x x x +>-⎧⎪⎨-⎪⎩①② 解不等式①得52x >-, 解不等式②得1x ≤,∴512x -<,x 为整数,可取-2,-1,0,1.则所有整数解的和为21012--++=-.【点睛】 此题考查一元一次不等式组解集,解题关键在于掌握简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 27.55︒【解析】【分析】只要证明AB ∥DE ,利用平行线的性质即可解决问题.【详解】解:∵1180CDF ∠+∠=︒,12180∠+∠=︒,∴2CDF ∠=∠,∴//EF BC ,∴DEF CDE ∠=∠,∵B DEF ∠=∠,∴B CDE ∠=∠,∴//DE AB ,∴55DEC BAC ∠=∠=︒.【点睛】此题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.28.x=49【解析】试题分析:根据一个正数的平方根有两个,它们是互为相反数可得: 2a -3+5-a =0,可求出a =2-,即可求出这个正数的两个平方根是-7和7,根据平方根的意义可求出x .试题解析: 因为一个正数x 的两个平方根是2a -3与5-a ,所以2a -3+5-a =0,解得a =2-,所以2a -3=7-,所以49x =.29.(1) C (5,﹣4);(2)90°;(3)见解析.【解析】分析:(1)利用非负数的和为零,各项分别为零,求出a ,b 即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系简单计算证明即可.详解:(1)∵(a ﹣3)2+|b+4|=0,∴a ﹣3=0,b+4=0,∴a=3,b=﹣4,∴A (3,0),B (0,﹣4),∴OA=3,OB=4,∵S 四边形AOBC =16.∴0.5(OA+BC )×OB=16, ∴0.5(3+BC )×4=16, ∴BC=5,∵C 是第四象限一点,CB ⊥y 轴,∴C (5,﹣4);(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=0.5∠CAE,∵∠CAE=∠OAG,∴∠CAF=0.5∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO,∵DP是∠ODA的角平分线,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=0.5∠DAO=0.5∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=0.5(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=0.5∠BMD,∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)] =180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°点睛:此题是四边形综合题,主要考查了非负数的性质,四边形面积的计算方法,角平分线的意义,解本题的关键是用整体的思想解决问题,也是本题的难点.30.(1)-2<a≤3.(2)5;(3)a=-1.【解析】【分析】(1)求出不等式组的解集即可得出关于a的不等式组,求出不等式组的解集即可;(2)根据a的范围去掉绝对值符号,即可得出答案;(3)求出a<-12,根据a的范围即可得出答案.【详解】解:(1)713x y ax y a+=-⎧⎨-=+⎩①②∵①+②得:2x=-6+2a,x=-3+a,①-②得:2y=-8-4a,y=-4-2a,∵方程组713x y ax y a+=-⎧⎨-=+⎩的解x为非正数,y为负数,∴-3+a≤0且-4-2a<0,解得:-2<a≤3;(2)∵-2<a≤3,∴|a-3|+|a+2|=3-a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∵不等式的解为x<1∴2a+1<0,∴a<-12,∵-2<a≤3,∴a的值是-1,∴当a为-1时,不等式2ax+x>2a+1的解为x<1.【点睛】本题考查了解方程组和解不等式组的应用,主要考查学生的理解能力和计算能力,题目比较好.。
北师大版七年级数学上册10月月考测试题(01)
北师大版七年级数学上册10月月考测试题(01)一、选择题(共16小题)1.下列各组中互为相反数的是()A.﹣2与B.|﹣2|和﹣(﹣2)C.﹣2.5与|﹣2|D.与2.上海合作组织青岛峰会期间,为推进:“一带一路”的建设,中国决定上海合作组织银行联合体框架内,设立300.6亿元人民币等值专项贷款,将300.6亿元用科学记数法表示为()A.3.006×108B.3.006×109C.3.006×1010D.3.006×1011 3.下列说法错误的是()A.π是单项式B.单项式﹣n的系数是﹣1C.单项式的次数是7D.是二次二项式4.若x=4是方程ax﹣3=4x+1的解,则a的值为()A.5B.3C.﹣3D.15.下列各式中,运算正确的是()A.2﹣3x=﹣(3x﹣2)B.3a+b=3abC.﹣2(x﹣4)=﹣2x+4D.23x+4=27x6.下列图形中,是正方体表面展开图的是()A.B.C.D.7.若单项式a m﹣2b2与的和仍是单项式,则m n的值是()A.3B.16C.8D.98.下列等式变形:①如果ax=ay,那么x=y;②如果x=y,那么;③如果x=y,那么ax=ay;④如果,那么x=y.其中正确的是()A.①④B.③④C.①②D.②③9.已知线段AB=14 cm,点C是直线AB上一点,BC=2 cm,若M是AC的中点,N是BC 的中点,则线段MN的长度是()A.7cm B.9cm C.7cm或5cm D.6cm或8cm 10.有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.11.下列结论:①互补且相等的两个角都是45°;②同角的余角相等;③若∠1+∠2+∠3=180°,则∠1,∠2,∠3互为补角;④锐角的补角是钝角;⑤锐角的补角比其余角大80°.其中正确的个数为()A.2个B.3个C.4个D.5个12.某商品的进价是500元,标价是750元,商店要求以利润率为20%的售价打折出售,售货员可以打几折出售此商品()A.5B.6C.7D.813.如图,是一个正方体的平面展开图,且相对两个面表示的整式的和都相等,如果,,C=a3﹣1,,则E所代表的整式是()A.B.﹣a3+1C.D.14.一项工程甲单独做要36天完成,乙单独做要48天完成,甲先单独做3天,然后两人合作x天完成这项工程,则可列方程()A.B.C.D.15.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁16.将第1个图中的正方形剪开得到第2个图,第2个图中共有4个正方形;将第2个图中一个正方形剪开得到第3个图,第3个图中共有7个正方形;将第3个图中一个小正方形剪开得到第4个图,第4个图中共有10个正方形;….如此下去,则第2022个图中共有正方形的个数为()A.2022B.2021C.6064D.6067二、填空题(共3小题,共9分)17.已知|a|=5,|b|=3,且|a﹣b|=b﹣a,则2a+b=.18.下列语句:①绝对值等于它本身的数有无数个;②相反数等于它本身的数有两个;③立方等于它本身的数有3个;④近似数2.35万近似到万位;其中正确的语句有(填序号).19.已知多项式,(ab≠0),该多项式的第12项为,用字母a、b和n表示多项式第n项.(n为正整数)三、解答题(共7题,总计66分)20.计算:(1);(2).21.解方程:(1)3x﹣4(x+1)=6﹣2(2x﹣5);(2).22.已知A=3a2b﹣2ab2+abc,小明错将“2A﹣B”看成“2A+B”,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求正确的结果的表达式;(3)小强说(2)中的结果的大小与c的取值无关,对吗?若求(2)中代数式的值.23.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5,+2.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?24.如图,O为直线AB上的一点,∠AOC=44°,OD平分∠AOC,∠DOE=90°.(1)求∠BOD的度数;(2)OE是∠BOC的平分线吗?为什么?25.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?26.已知线段AB=15cm,点C在线段AB上,且AC:CB=3:2.(1)求线段AC,CB的长;(2)点P是线段AB上的动点且不与点A,B,C重合,线段AP的中点为M,设AP=mcm①请用含有m的代数式表示线段PC,MC的长;②若三个点M,P,C中恰有一点是其它两点所连线段的中点,则称M,P,C三点为“共谐点”,请直接写出使得M,P,C三点为“共谐点”的m的值.。
2020-2021学年苏科版七年级数学上册期末专题复习:第5章《平面图形的认识(一)》试题精选(1)
第5章《平面图形的认识(一)》试题精选(1)一.选择题(共2小题)1.(2019秋•江都区期末)将一张正方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B ′、D ′,若∠B ′AD ′=16°,则∠EAF 的度数为( )A .40°B .45°C .56°D .37°2.(2019秋•扬州期末)下列生活实例中,数学原理解释错误的一项是( )A .从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B .两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C .把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D .从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短二.填空题(共9小题)3.(2019秋•南京期末)已知线段AB ,点C 、点D 在直线AB 上,并且CD =8,AC :CB =1:2,BD :AB =2:3,则AB = .4.(2019秋•高邮市期末)一个角的余角比这个角补角的15大10°,则这个角的大小为 .5.(2019秋•崇川区期末)已知射线OA ,从O 点再引射线OB ,OC ,使∠AOB =67°31′,∠BOC =48°39′,则∠AOC 的度数为6.(2019秋•高新区期末)已知线段AB =5cm ,点C 在直线AB 上,且BC =3cm ,则线段AC = cm .7.(2019秋•淮安区期末)如图,直线AB ,CD 相交于点O ,若∠AOC +∠BOD =100°,则∠AOD 等于 度.8.(2019秋•句容市期末)如图,∠AOB =90°,∠AOC =2∠BOC ,则∠BOC = °.9.(2019秋•句容市期末)如图,在∠AOB 的内部有3条射线OC 、OD 、OE ,若∠AOC =60°,∠BOE =1n∠BOC ,∠BOD =1n ∠AOB ,则∠DOE = °.(用含n 的代数式表示)10.(2019秋•泰兴市期末)如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.11.(2019秋•建湖县期末)如图,直线AB和直线CD相交于点O,∠BOE=90°,有下列结论:①∠AOC 与∠COE互为余角;①∠AOC=∠BOD;①∠AOC=∠COE;①∠COE与∠DOE互为补角;①∠AOC与∠DOE互为补角;①∠BOD与∠COE互为余角.其中错误的有.(填序号)三.解答题(共26小题)12.(2019秋•东海县期末)如图,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,∠BOE=13∠EOC.(1)若OE⊥AC,垂足为O点,则∠BOE的度数为°,∠BOD的度数为°;在图中,与∠AOB相等的角有;(2)若∠AOD=32°,求∠EOC的度数.13.(2019秋•工业园区期末)如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求∠BOE的度数;(3)试判断OF是否平分∠AOC,并说明理由;请说明理由.14.(2019秋•镇江期末)如图1,点C为线段AB延长线上的一点,点D是AC的中点,且点D不与点B 重合,AB=8,设BC=x.(1)①若x=6,如图2,则BD=;①用含x的代数式表示CD,BD的长,直接写出答案;CD=,BD=;(2)若点E为线段CD上一点,且DE=4,你能说明点E是线段BC的中点吗?15.(2019秋•高邮市期末)如图,已知∠AOB=150°,将一个直角三角形纸片(∠D=90°)的一个顶点放在点O处,现将三角形纸片绕点O任意转动,OM平分斜边OC与OA的夹角,ON平分∠BOD.(1)将三角形纸片绕点O转动(三角形纸片始终保持在∠AOB的内部),若∠COD=30°,则∠MON =;(2)将三角形纸片绕点O转动(三角形纸片始终保持在∠AOB的内部),若射线OD恰好平分∠MON,若∠MON=8∠COD,求∠COD的度数;(3)将三角形纸片绕点O从OC与OA重合位置顺时针转动到OD与OA重合的位置,猜想在转动过程中∠COD和∠MON的数量关系?并说明理由.16.(2019秋•沭阳县期末)(1)如图①,OC是∠AOE内的一条射线,OB是∠AOC的平分线,OD是∠COE 的平分线,∠AOE=120°,求∠BOD的度数;(2)如图①,点A、O、E在一条直线上,OB是∠AOC的平分线,OD是∠COE的平分线,请说明OB ⊥OD.17.(2019秋•鼓楼区期末)如图,点O在直线AB上,OC、OD是两条射线,OC⊥OD,射线OE平分∠BOC.(1)若∠DOE=150°,求∠AOC的度数.(2)若∠DOE=α,则∠AOC=.(请用含α的代数式表示)18.(2019秋•秦淮区期末)【探索新知】如图1,点C在线段AB上,图中共有3条线段:AB、AC、和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.(1)一条线段的中点这条线段的“二倍点”;(填“是”或“不是”)【深入研究】如图2,点A表示数﹣10,点B表示数20,若点M从点B,以每秒3cm的速度向点A运动,当点M到达点A时停止运动,设运动的时间为t秒.(2)点M在运动过程中表示的数为(用含t的代数式表示);(3)求t为何值时,点M是线段AB的“二倍点”;(4)同时点N从点A的位置开始,以每秒2cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.19.(2019秋•太仓市期末)如图,直线AB,CD,EF相交于点O,OG⊥CD.(1)已知∠AOC=38°12',求∠BOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.20.(2019秋•兴化市期末)如图,直线AB,CD相交于点O,OF⊥CD,OE平分∠BOC.(1)若∠BOE=60°,求∠AOF的度数;(2)若∠BOD:∠BOE=4:3,求∠AOF的度数.21.(2019秋•赣榆区期末)如图,已知线段AB,延长AB到C,点D是线段AB的中点,点E是线段BC 的中点.(1)若BD=5,BC=4,求线段EC、AC的长;(2)试说明:AC=2DE.22.如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠BOC=80°,∠AOC=40°,求∠DOE的度数;(2)若∠BOC=α,∠AOC=50°,求∠DOE的度数;(3)若∠BOC=α,∠AOC=β,试猜想∠DOE与α、β的数量关系并说明理由.23.(2019秋•扬州期末)如图,直线AB与CD相交于点E,射线EG在∠AEC内(如图1).(1)若∠BEC的补角是它的余角的3倍,则∠BEC=度;(2)在(1)的条件下,若∠CEG比∠AEG小25度,求∠AEG的大小;(3)若射线EF平分∠AED,∠FEG=100°(如图2),则∠AEG﹣∠CEG=度.24.(2019秋•南京期末)已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b,|a﹣17|+(b﹣5.5)2=0,求线段AB、CE的长;(2)如图1,在(1)的条件下,求线段DE的长;(3)如图2,若AB=20,AD=2BE,求线段CE的长.25.(2019秋•崇川区期末)如图,已知直线AB、CD、EF相交于点O,OG⊥CD,∠BOD=36°.(1)求∠AOG的度数;(2)若OG是∠AOF的平分线,那么OC是∠AOE的平分线吗?说明你的理由.26.(2019秋•东台市期末)如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为°;(2)如图①,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图①所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图①所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是.27.(2019秋•淮安区期末)如图:已知直线AB、CD相交于点O,∠COE=90°(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数.28.(2019秋•清江浦区期末)如图,C为线段AB上一点,D在线段AC上,且AD=23AC,E为BC的中点.(1)若AC=6,BE=1,求线段AB、DE的长;(2)试说明:AB+BD=4DE.29.(2019秋•张家港市期末)如图,线段AB的中点为M,C点将线段MB分成MC:CB=1:3的两段,若AC=10,求AB的长.30.(2019秋•高新区期末)如图,O为直线AB上一点,∠AOC=48°,OD平分∠AOC,∠DOE=90°.(1)图中有个小于平角的角;(2)求出∠BOD的度数;(3)试判断OE是否平分∠BOC,并说明理由.31.(2019秋•江都区期末)如图,直线AB与CD相交于点O,∠AOC=48°,∠DOE:∠BOE=5:3,OF平分∠AOE.(1)求∠BOE的度数;(2)求∠DOF的度数.32.(2019秋•建湖县期末)如图,直线AB和CD相交于点O,OE把∠AOC分成两部分,且∠AOE:∠EOC=2:3,(1)如图1,若∠BOD=75°,求∠BOE;(2)如图2,若OF平分∠BOE,∠BOF=∠AOC+12°,求∠EOF.33.(2019秋•常熟市期末)已知,OM平分∠AOC,ON平分∠BOC.(1)如图1,若OA⊥OB,∠BOC=60°,求∠MON的度数;(2)如图2,若∠AOB=80°,∠MON:∠AOC=2:7,求∠AON的度数.34.(2019秋•南京期末)已知:∠AOD=160°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD内旋转时,∠MON=度.(2)OC也是∠AOD内的射线,如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当∠BOC 绕点O在∠AOD内旋转时,求∠MON的大小.(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕O点以每秒2°的速度逆时针旋转t 秒,如图3,若∠AOM:∠DON=2:3,求t的值.35.(2019秋•沛县期末)已知∠AOC和∠BOC是互为邻补角,∠BOC=50°,将一个三角板的直角顶点放在点O处(注:∠DOE=90°,∠DEO=30°).(1)如图1,使三角板的短直角边OD与射线OB重合,则∠COE=.(2)如图2,将三角板DOE绕点O逆时针方向旋转,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.(3)如图3,将三角板DOE绕点O逆时针转动到使∠COD=14∠AOE时,求∠BOD的度数.(4)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,OE恰好与直线OC重合,求t的值.36.(2019秋•清江浦区期末)如图,点O是直线AB上的一点,将一直角三角板如图摆放,过点O作射线OE平分∠BOC.(1)如图1,如果∠AOC=40°,依题意补全图形,写出求∠DOE度数的思路(不必写出完整的推理过程);(2)当直角三角板绕点O顺时针旋转一定的角度得到图2,使得直角边OC在直线AB的上方,若∠AOC =α,其他条件不变,请你直接用含α的代数式表示∠DOE的度数;(3)当直角三角板绕点O继续顺时针旋转一周,回到图1的位置,在旋转过程中你发现∠AOC与∠DOE (0°≤∠AOC≤180°,0°≤∠DOE≤180°)之间有怎样的数量关系?请直接写出你的发现.37.(2019秋•句容市期末)已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.第5章《平面图形的认识(一)》试题精选(1)参考答案与试题解析一.选择题(共2小题)1.【答案】D【解答】解:设∠EAD′=α,∠F AB′=β,根据折叠可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=16°,∴∠DAF=16°+β,∠BAE=16°+α,∵四边形ABCD是正方形,∴∠DAB=90°,∴16°+β+β+16°+16°+α+α=90°,∴α+β=21°,∴∠EAF=∠B′AD′+∠D′AE+∠F AB′=16°+α+β=16°+21°=37°.则∠EAF的度数为37°.故选:D.2.【答案】A【解答】解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选:A.二.填空题(共9小题)3.【答案】见试题解答内容【解答】解:分三种情况进行讨论:①当C在线段AB上时,点D在线段AB的延长线上,∵AC:CB=1:2,∴BC=23 AB,∵BD:AB=2:3,∴BD=23nn,∴CD=BC+BD=43nn=8,∴AB=6;①当点C在线段AB的反向延长线时,∵BD:AB=2:3,∴AB=3AD,∵AC:CB=1:2,∴AC=AB,∴CD=AC+AD=4AD=8,∴AD=2,∴AB=6;①当点C在线段AB的反向延长线,点D在线段AB的延长线时,∵AC:CB=1:2,BD:AB=2:3,∴AB=38nn=3,故AB=6或3.故答案为:6或34.【答案】见试题解答内容【解答】解:设这个角为∠α,则90°﹣∠α=15(180°﹣∠α)+10°,解得:∠α=55°,故答案为:55°.5.【答案】见试题解答内容【解答】解:如右图所示,①OC在OA、OB之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB﹣∠BOC,=67°31′﹣48°39′,=66°91′﹣48°39′,=18°52′;①OB在OA、OC之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB+∠BOC=67°31′+48°39′=115°70′=116°10′;故答案是18°52′或116°10′.6.【答案】见试题解答内容【解答】解:当点C在线段AB上时,则AC+BC=AB,所以AC=5cm﹣3cm=2cm;当点C在线段AB的延长线上时,则AC﹣BC=AB,所以AC=5cm+3cm=8cm.故答案为8或2.7.【答案】见试题解答内容【解答】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD,又∵∠AOC+∠BOD=100°,∴∠AOC=50°.∵∠AOC+∠AOD=180°,∴∠AOD=180°﹣∠AOC=180°﹣50°=130°.故答案为:130.8.【答案】见试题解答内容【解答】解:∵∠AOB=90°,∠AOC=2∠BOC,∴∠AOC+∠BOC=90°,即2∠BOC+∠BOC=90°,∴∠BOC=30°故答案为:30°.9.【答案】见试题解答内容【解答】解:设∠BOE =x °,∵∠BOE =1n ∠BOC ,∴∠BOC =nx ,∴∠AOB =∠AOC +∠BOC =60°+nx ,∵∠BOD =1n ∠AOB =1n (60°+nx )=60°n +x ,∴∠DOE =∠BOD ﹣∠BOE =60°n +x ﹣x =60°n ,故答案为:60n .10.【答案】见试题解答内容【解答】解:如图:∵OE 平分∠AOC ,∴∠AOE =∠COE ,设∠DOE =x ,∵∠COD =40°,∴∠AOE =∠COE =x +40°,∴∠BOC =∠AOB ﹣∠AOC =150°﹣2(x +40°)=70°﹣2x ,∴2∠BOE ﹣∠BOD =2(70°﹣2x +40°+x )﹣(70°﹣2x +40°)=140°﹣4x +80°+2x ﹣70°+2x ﹣40°=110°,故答案为:110.11.【答案】见试题解答内容【解答】解:∵∠BOE =90°,∴∠AOE =180°﹣∠BOE =180°﹣90°=90°=∠AOC +∠COE ,因此①不符合题意;由对顶角相等可得①不符合题意;∵∠AOE =90°=∠AOC +∠COE ,但∠AOC 与∠COE 不一定相等,因此①符合题意;∠COE +∠DOE =180°,因此①不符合题意;∠EOC +∠DOE =180°,但∠AOC 与∠COE 不一定相等,因此①符合题意;∠BOD =∠AOC ,且∠COE +∠AOC =90°,因此①不符合题意;故答案为:①①三.解答题(共26小题)12.【答案】见试题解答内容【解答】解:(1)∵OE ⊥AC ,∴∠AOE =∠COE =90°,∵∠BOE =13∠EOC ,∴∠BOE =13×90°=30°;∴∠AOB =90°﹣30°=60°,∵OD 平分∠AOB ,∴∠BOD =12nAOB =30°; ∴∠DOE =∠BOD +∠BOE =60°,∴∠AOB =∠DOE ;故答案为:30,30,∠EOD ;(2)∵OD 平分∠AOB ,∴∠AOB =2∠AOD .∵∠AOD=32°,∴∠AOB=64°.∴∠COB=180°﹣∠AOB=116°.∵∠BOE=13∠EOC,∴∠EOC=34∠COB=34×116°=87°.13.【答案】见试题解答内容【解答】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE ∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.14.【答案】见试题解答内容【解答】解:①∵BC=6,AB=8,∴AC=AB+BC=14,∵点D是AC的中点,∴AD=DC=12AC=7,∴BD=AB﹣AD=8﹣7=1;故答案为1;①用含x的代数式表示:CD=12(8+x)=4+12x,BD=|8﹣(4+12x)|=|4−12x|,故答案为:4+12x,|4−12x|;(2)能说明点E是线段BC的中点.理由如下:如图所示:∵AB=8,设BC=x,∴AC=AB+BC=8+x,DE=4,∵点D是AC的中点,∴AD=DC=12AC=4+12x,∴CE=DC﹣DE=4+12x﹣4=12x,BE=DE﹣DB=4﹣(AB﹣AD)=4﹣(4−12 x)=1 2x.∴CE=BE.所以点E是线段BC的中点.15.【答案】见试题解答内容【解答】解:(1)∵∠AOB=150°,∠COD=30°,∴∠AOC+∠BOD=∠AOB﹣∠COD=150°﹣30°=120°,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=12∠AOC,∠BON=12nBOD,∴∠AOM+∠BON=12(∠AOC+∠BOD)=60°,∴∠MON=∠AOB﹣(∠AOM+∠BON)=90°,故答案为:90°;(2)∵∠MON=8∠COD,∴设∠COD=α,则∠MON=8α,∵OD平分∠MON,∴∠DOM=∠DON=4α,∴∠COM=3α,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOC=2∠COM=6α,∠BOD=2∠DON=8α,∵∠AOB=∠AOC+∠COD+∠BOD=6α+α+8α=150°,∴α=10°,∴∠COD=10°;(3)∠COD+150°=2∠MON或2∠COD=210°﹣∠MON,理由:①三角形纸片在∠AOB的内部,如图1,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=12∠AOC,∠BON=12nnnn,∵∠AOM+∠BON=150°﹣∠MON,∠COD=150°﹣2(∠AOM+∠BON),∴∠COD=150°﹣2(150°﹣∠MON),∴∠COD+150°=2∠MON;①如图2,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=12∠AOC,∠DON=12nnnn,∵∠AOM+∠DON=150°+∠BOD﹣∠MON,∴∠AOM﹣∠DON=150°﹣∠MON,∵∠COD=∠BOC+∠BOD=150°﹣∠AOC+∠BOD=150°﹣2(∠AOM﹣∠DON),∴∠COD=150°﹣2(150°﹣∠MON),∴∠COD+150°=2∠MON;①三角形纸片在∠AOB的外部,如图3,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=∠COM=12∠AOC,∠BON=∠DON=12nnnn,∵∠AOM+∠BON=360°﹣150°﹣∠MON,∠COD=∠AOM+∠BON﹣∠MON=360°﹣150°﹣2(∠MOC+∠DON)=210°﹣2(∠MON+∠COD)∴3∠COD=210°﹣2∠MON,综上所述,∠COD+150°=2∠MON或2∠COD=210°﹣2∠MON.16.【答案】见试题解答内容【解答】解:(1)∵OB是∠AOC的平分线∴∠nnn=12nnnn同理,∠nnn=12nnnn∴∠BOD=∠BOC+∠DOC=12∠AOC+12∠EOC=12(∠AOC+∠EOC)=12∠AOE,∵∠AOE=120°∴∠nnn=12×120°=60°(2)由(1)可知∠nnn=12nnnn∵∠AOE=180°∴∠nnn=12×180°=90°∴OB⊥OD.17.【答案】见试题解答内容【解答】解:(1)∵OC⊥OD,∠DOE=150°,∴∠COE=∠DOE﹣∠COD=150°﹣90°=60°,∵射线OE平分∠BOC.∴∠COE=∠BOE=60°,∴∠AOC=180°﹣∠COE﹣∠BOE=180°﹣60°﹣60°=60°,(2))∵OC⊥OD,∠DOE=α,∴∠COE=∠DOE﹣∠COD=α﹣90°,∵射线OE平分∠BOC.∴∠COE=∠BOE=α﹣90°,∴∠AOC=180°﹣∠COE﹣∠BOE=180°﹣(α﹣90°)﹣(α﹣90°)=360°﹣2α,故答案为:360°﹣2α.18.【答案】见试题解答内容【解答】解:(1)因为线段的中点把该线段分成相等的两部分,该线段等于2倍的中点一侧的线段长.所以一条线段的中点是这条线段的“二倍点”故答案为:是(2)点M 在运动过程中表示的数为20﹣3t ,故答案为:20﹣3t ;(3)当AM =2BM 时,30﹣3t =2×3t ,解得:t =103;当AB =2AM 时,30=2×(30﹣3t ),解得:t =5;当BM =2AM 时,3t =2×(30﹣3t ),解得:t =203;答:t 为103或5或203时,点M 是线段AB 的“二倍点”; (4)当AN =2MN 时,2t =2[2t ﹣(30﹣3t )],解得:t =152;当AM =2NM 时,30﹣3t =2[2t ﹣(30﹣3t )],解得:t =9013;当MN =2AM 时,2t ﹣(30﹣3t )=2(30﹣3t ),解得:t =9011; 当AN =2MN 时,2t =2[2t ﹣(30﹣3t )],解得:t =152;答:t 为152或9013或9011或152时,点M 是线段AN 的“二倍点”.19.【答案】见试题解答内容【解答】解:(1)∵OG ⊥CD .∴∠GOC =∠GOD =90°,∵∠AOC =∠BOD =38°12′,∴∠BOG =90°﹣38°12′=51°48′,(2)OG 是∠EOB 的平分线,理由:∵OC 是∠AOE 的平分线,∴∠AOC =∠COE =∠DOF =∠BOD ,∵∠COE +∠EOG =∠BOG +∠BOD =90°,∴∠EOG =∠BOG ,即:OG 平分∠BOE .20.【答案】见试题解答内容【解答】解:(1)∵OE平分∠BOC,∠BOE=60°,∴∠BOC=2∠BOE=120°,∴∠AOC=180°﹣120°=60°,又∵OF⊥CD,∴∠COF=90°,∴∠AOF=90°﹣∠AOC=90°﹣60°=30°;(2)∵OE平分∠BOC,∴∠BOE=∠COE,∵∠BOD:∠BOE=4:3,∴∠BOD:∠BOE:∠EOC=4:3:3,∴∠BOD=180°×44+3+3=72°=∠AOC,又∵OF⊥CD,∴∠COF=90°,∴∠AOF=90°﹣∠AOC=90°﹣72°=18°.21.【答案】见试题解答内容【解答】解:(1)∵D是线段AB的中点,BD=5,∴AB=2BD=10,∵E是线段BC的中点,BC=4,∴EC=12BC=2,∴AC=AB+BC=10+4=14;(2)∵D是线段AB的中点,∴AB=2BD,∵E是线段BC的中点,∴BC=2BE,∴AC=AB+BC=2BD+2BE=2DE.22.【答案】见试题解答内容【解答】解:(1)∵OD、OE分别平分∠AOB、∠AOC,∠AOC=40°,∴∠AOE=∠EOC=12∠AOC=20°,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:80°=40°+2∠COD,∴∠COD=20°,∴∠DOE=∠COD+∠COE=20°+20°=40°;(2)∵OD、OE分别平分∠AOB、∠AOC.∴∠AOE=∠EOC=12∠AOC=25°,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:α=50°+2∠COD,∴∠COD=n−50 2,∴∠DOE=∠COD+∠COE=n−502+25°=n2;(3)∠nnn=n2,与β无关∵OD、OE分别平分∠AOB、∠AOC.∴∠AOE=∠EOC=12∠AOC=n2,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:α=β+2∠COD,∴∠COD=n−n 2,∴∠DOE=∠COD+∠COE=n−n2+n2=n2;23.【答案】见试题解答内容【解答】解:(1)设∠BEC的度数为x,则180﹣x=3(90﹣x),x=45°,∴∠BEC=45°,故答案为:45;(2)∵∠BEC=45°,∴∠AEC=135°,设∠AEG=x°,则∠CEG=x﹣25,由∠AEC=135°,得x+(x﹣25)=135,解得x=80°,∴∠AEG=80°;(3)∵射线EF平分∠AED,∴∠AEF=∠DEF,∵∠FEG=100°,∴∠AEG+∠AEF=100°,∵∠CEG=180°﹣100°﹣∠DEF=80°﹣∠DEF,∴∠AEG﹣∠CEG=100°﹣∠AEF﹣(80°﹣∠DEF)=20°,故答案为:20.24.【答案】见试题解答内容【解答】解:(1)∵|a﹣17|+(b﹣5.5)2=0,∴|a﹣17|=0,(b﹣5.5)2=0,解得:a=17,b=5.5,∵AB=a,CE=b,∴AB=17,CE=5.5(2)如图1所示:∵点C为线段AB的中点,∴AC=12nn=12×17=172,又∵AE=AC+CE,∴AE=172+112=14,∵点D为线段AE的中点,∴DE=12AE=12×14=7;(3)如图2所示:∵C为线段AB上的点,AB=20,∴AC=BC=12nn=12×20=10,又∵点D为线段AE的中点,AD=2BE,∴AE=4BE,DE=12nn,又∵AB=AE+BE,∴4BE+BE=20,∴BE=4,AE=16,又∵CE=BC﹣BE,∴CE=10﹣4=6.25.【答案】见试题解答内容【解答】解:(1)∵AB、CD相交于点O,∴∠AOC=∠BOD=36°,∵OG⊥CD,∴∠COG=90°,即∠AOC+∠AOG=90°,∴∠AOG=90°﹣∠AOC=90°﹣36o=54o;(2)OC是∠AOE的平分线.理由∵OG是∠AOF的角平分线,∴∠AOG=∠GOF,∵OG⊥CD,∴∠COG=∠DOG=90°,∴∠COA=∠DOF,又∵∠DOF=∠COE,∴∠AOC=∠COE,∴OC平分∠AOE.26.【答案】见试题解答内容【解答】解:当射线OC在∠AOB的内部时,∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=12∠AOC,∠EOC=12∠BOC,∴∠DOE=∠DOC+∠EOC=12(∠AOC+∠BOC)=12∠AOB,(1)若∠AOB=80°,则∠DOE的度数为40°.故答案为:40;(2)∠DOE=∠DOC+∠EOC=12∠AOC+12∠BOC=∠BOE+∠DOA.(3)当射线OC在∠AOB的外部时(1)中的结论不成立.理由是:∵OD、OE分别是∠AOC、∠BOC的角平分线∴∠COD=12∠AOC,∠EOC=12∠BOC,∠DOE=∠COD﹣∠EOC=12∠AOC−12∠BOC=∠AOD﹣∠BOE.(4)∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=∠AOD,∠EOC=∠BOE,∴∠DOE=∠DOC+∠EOC=∠BOE+∠DOA.故∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.故答案为:∠DOE=∠BOE+∠DOA.27.【答案】见试题解答内容【解答】解:(1)∠BOE=180°﹣∠AOC﹣∠COE=180°﹣36°﹣90°=54°;(2)∵∠BOD:∠BOC=1:5,∠BOD+∠BOC=180°,∴∠BOD=30°,∵∠BOD=∠AOC,∴∠AOC=30°,∴∠AOE=∠COE+∠AOC=90°+30°=120°.28.【答案】见试题解答内容【解答】解:(1)∵E为BC的中点,BE=1,∴BC=2BE=2,CE=BE=1,∵AC=6,∴AB=AC+BC=6+2=8,∵AD=23AC,AC=6,∴AD=4,∴DC=6﹣4=2,∴DE=DC+CE=2+1=3;(2)∵AB=AC+BC,BD=BC+CD,∴AB+BD=AC+BC+BC+CD,∵AD=23AC,E为BC的中点,∴AC=3CD,BC=2CE,∴AB+BD=3CD+2CE+2CE+CD=4CD+4CE=4(CD+CE)=4DE.29.【答案】见试题解答内容【解答】解:设MC=x,∵MC:CB=1:3∴BC=3x,MB=4x.∵M为AB的中点.∴AM=MB=4x.∴AC=AM+MC=4x+x=10,即x=2.所以AB=2AM=8x=16.故AB的长为16.30.【答案】见试题解答内容【解答】解:(1)小于平角的角有:∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB共有9个.故答案是:9;(2)∵OD平分∠AOC,∴∠AOD=∠COD=12∠AOC=12×48°=24°,∴∠BOD=180°﹣∠AOD=180°﹣24°=156°;(3)∵∠COE=∠DOE﹣∠COD=90°﹣24°=66°,∠BOE=180°﹣∠AOD﹣∠DOE=180°﹣24°﹣90°=66°,∴∠COE=∠BOE,∴OE平分∠BOC.31.【答案】见试题解答内容【解答】解:(1)∵∠DOE:∠BOE=5:3,∴∠BOE=38∠BOD=38∠AOC=38×48°=18°,∠DOE=58∠BOD=58∠AOC=58×48°=30°,(2)∠AOE=180°﹣∠BOE=180°﹣18°=162°,∵OF平分∠AOE.∴∠AOF=∠EOF=12∠AOE=81°,∴∠DOF=∠EOF﹣∠DOE=81°﹣30°=51°.32.【答案】见试题解答内容【解答】解:(1)∵∠AOC=∠BOD=75°,∠AOE:∠EOC=2:3,∴∠BOC=180°﹣∠BOD=180°﹣75°=105°,∠COE=35∠AOC=35×75°=45°,∴∠BOE=∠BOC+∠COE=105°+45°=150°;(2)∵OF平分∠BOE,∴∠EOF=∠BOF,∵∠BOF=∠AOC+12°=∠EOF,∴∠FOC+∠COE=∠AOE+∠COE+12°,即:∴∠FOC=∠AOE+12°,设∠AOE=x°,则∠FOC=(x+12)°,∠COE=32 x°,∵∠AOE+∠EOF+∠BOF=180°∴x+(x+12+32x)×2=180,解得,x=26,∴∠EOF=∠COE+∠COF=32x°+x°+12°=77°33.【答案】见试题解答内容【解答】解:(1)∵OA⊥OB,∴∠AOB=90°,∵∠AOC=∠AOB+∠BOC,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,∴∠COM=12∠AOC=75°,∵ON平分∠BOC,∴∠CON=12∠BOC=12×60°=30°,∴∠MON=∠COM﹣∠CON=75°﹣30°=45°;(2)∵∠COM=12∠AOC,∠CON=12∠BOC,∴∠MON=12(∠AOC﹣∠BOC)=12∠AOB=40°,∵∠MON:∠AOC=2:7,∴∠AOC=140°,∵OM平分∠AOC,∴∠AOM=12∠AOC=70°,∴∠AON=∠AOM+∠MON=70°+40°=110°34.【答案】见试题解答内容【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12(∠AOB+∠BOD)=12∠AOD=80°,故答案为:80;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOB+∠BOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=1 2×180°﹣20°=70°;(3)∵∠AOM=12(10°+2t+20°),∠DON=12(160°﹣10°﹣2t),又∵∠AOM:∠DON=2:3,∴3(30°+2t)=2(150°﹣2t),得t=21.答:t为21秒.35.【答案】见试题解答内容【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠BOC=50°,∴∠COE=40°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=12∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=4x°,∵∠DOE=90°,∠BOC=50°,∴5x=40,∴x=8,即∠COD=8°∴∠BOD=58°.(4)如图,分两种情况:在一周之内,当OE与射线OC的反向延长线重合时,三角板绕点O旋转了140°,5t=140,t=28;当OE与射线OC重合时,三角板绕点O旋转了320°,5t=320,t=64.所以当t=28秒或64秒时,OE与直线OC重合.综上所述,t的值为28或64.故答案为:40°.36.【答案】见试题解答内容【解答】解:(1)如图1,补全图形;解题思路如下:①由∠AOC+∠BOC=180°,∠AOC=40°,得∠BOC=140°;①由OE平分∠BOC,得∠COE=70°;①由直角三角板,得∠COD=90°;①由∠COD=90°,∠COE=70°,得∠DOE=20°.(2)①由∠AOC+∠BOC=180°,∠AOC=α,得∠BOC=180°﹣α;①由OE平分∠BOC,得∠COE=90°−12α;①由直角三角板,得∠COD=90°;①由∠COD=90°,∠COE=90°−12α,得∠DOE=n 2.(3)∠DOE=12∠AOC(0°≤∠AOC≤180°),∠DOE=180°−12∠AOC(0°≤∠DOE≤180°).37.【答案】见试题解答内容【解答】解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°﹣∠AOC﹣∠COE=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=180°×11+5=30°,∴∠AOC=30°,∴∠AOE=30°+90°=120°;(3)如图1,∠EOF=120°﹣90°=30°,或如图2,∠EOF=360°﹣120°﹣90°=150°.故∠EOF的度数是30°或150°.。
人教版七年级数学知识点试题精选-关于单项式
七年级上册关于单项式一.选择题(共20小题)1.单项式﹣32xy的次数是()A.﹣3次B.2次 C.4次 D.9次2.单项式﹣25ab3的系数、次数分别为()A.﹣2,8 B.﹣2,9 C.﹣25,4 D.﹣25,33.单项式23abc2的次数是()A.7 B.5 C.4 D.24.已知单项式3x a﹣1y的次数是3,则a的值为()A.2 B.3 C.4 D.55.代数式﹣的系数是()A.﹣ B.C.﹣D.6.下列说法正确的是()A.不是单项式B.是单项式C.x的系数是0 D.是整式7.整式﹣3.5x3y2,﹣1,,﹣32xy2z,﹣x2﹣y,﹣a2b﹣1中单项式的个数有()A.2个 B.3个 C.4个 D.5个8.在下列代数式①﹣a;②;③0;④;⑤﹣2π;⑥x2+y;⑦;⑧中,单项式共有()个.A.4 B.5 C.6 D.79.如果﹣c是六次单项式,则n的值是()A.1 B.2 C.3 D.410.在代数式9ab,3xy,a+1,3ax2y2,1﹣y,,x2+xy+y2中,单项式共有()A.3个 B.4个 C.5个 D.6个11.单项式是六次单项式,则a的值为()A.3 B.15 C.﹣3 D.﹣1512.下列语句中错误的是()A.数字0也是单项式B.单项式a的系数与次数都是1C.的系数是D.是二次单项式13.下列代数式中,①﹣8a3;②xy;③p﹣1;④0;⑤﹣是单项式的有()A.1个 B.2个 C.3个 D.4个14.在式子a+b,3xy,,n,﹣8,,中,单项式的个数是()A.4 B.5 C.6 D.715.单项式,的系数和次数分别是()A.,三次B.,四次C.,四次D.,三次16.如果﹣ax2y b(a,b为常数)是四次单项式,那么b的值是()A.1 B.2 C.3 D.417.若(1﹣a)xy n﹣1是关于x、y的一个单项式,系数为2,次数为4,则|n﹣2a2|的值为()A.1 B.2 C.3 D.418.观察下列单项式的排列规律:3x,﹣7x2,11x3,﹣15x4,19x5,…,照这样排列第10个单项式应是()A.39x10B.﹣39x10C.﹣43x10D.43x1019.下列各式:﹣,﹣25,,π,,中单项式的个数有()A.1个 B.2个 C.3个 D.4个20.代数式、﹣3xy4、4ab、3x2﹣4、n、0、中单项式的个数有()A.4个 B.5个 C.6个 D.3个二.填空题(共20小题)21.﹣a2b2与y3没有系数..22.单项式的系数是,次数是.23.单项式5.2×105a3bc4的次数是,单项式﹣πa2b的系数是.24.πr225.代数式﹣的系数是,次数是.26.的次数是.27.单项式﹣的系数是,次数是.28.的系数是.29.把代数式2a2b2c和a3b2的共同点写在横线上.30.单项式﹣3m2n的系数为.31.单项式﹣的系数是,次数是.32.单项式﹣πa2b3c的系数为,次数为.33.单项式的系数是,次数是.34.整式﹣xy2是次(填“单”或“多”)项式.35.若﹣axy b﹣1是关于x,y的单项式且系数为2次数是3,则a=,b=.36.观察下列单项式:a,2a2,4a3,8a4…根据你发现的规律,写出第n个式子是.37.观察下面的一列单项式:2x,﹣4x2,8x3,﹣16x4…根据规律,第6个单项式为.38.单项式﹣3×102x2y2z的系数、次数分别是.39.代数式﹣5ab2的次数是.40.在式子:1,﹣ab,,,﹣a2bc,x2﹣2x+3,中,单项式有个.三.解答题(共10小题)41.观察下列单项式:﹣x,3x2,﹣5x3,7x4,…,﹣37x19,39x20,…写出第n个单项式.为了解决这个问题,特提供下面的解题思路:(1)这组单项式的系数的符号、绝对值规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么(只能填写一个代数式)?(4)请你根据猜想,请写出第2013个、第2014个单项式.42.单项式﹣x a•y b+1是关于x、y的五次单项式,且a、b是不相等的正整数,求a和b的值.43.观察下列各式:﹣a,a2,﹣a3,a4,﹣a5,a6,…(1)写出第2014个和2015个单项式;(2)写出第n个单项式.44.填表:将x﹣+8x2﹣﹣x2yz3中5个单项式填入下表45.判断下列各代数式哪些是单项式,若是单项式,请指出其系数和次数.(1);(2)abc;(3)2a2;(4)﹣5ab2;(5)y;(6);(7)﹣5;(8)﹣.46.用单项式表示下列各量,并说出它的系数和次数:(1)原产量n吨,增产25%之后的产量;(2)x的平方与y的积的3;(3)底面积为S cm2,高为h cm的圆锥的体积.47.如果﹣axy m是关于x,y的单项式,且系数是﹣6,次数是5,求m,a的值.48.观察下列单项式:x2,﹣3x4,5x6,﹣7x8,…回答下列问题(1)这组单项式的系数的符号规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是(只能填写一个式子)什么?(4)请你根据猜想,请写出第2014,2015个单项式.49.要对一组对象进行分类,关键是要选定一个分类标准,不同的分类标准有不同的结果.如对下面给出的七个单项式:2x3z,xyz,3y3,﹣5y2x,﹣z2x2,x2yz,z3进行分类,若按单项式的次数分类:二次单项式有3y2;三次单项式有:xyz,﹣5y2x,z3;四次单项式有2x3z,﹣z2x2,x2yz.请你用两种不同的分类方法对上面的七个单项式进行分类.50.观察下列单项式:﹣2x,22x2,﹣23x3,24x4…﹣25x5,26x6,…请观察它们的构成规律,用你发现的规律①写出第2015个单项式,并②写出第n个单项式.七年级上册关于单项式参考答案与试题解析一.选择题(共20小题)1.单项式﹣32xy的次数是()A.﹣3次B.2次 C.4次 D.9次【分析】一个单项式中所有字母的指数的和叫做单项式的次数,因此算x、y的指数和即可.【解答】解:单项式﹣32xy的次数是1+1=2,故选:B.【点评】此题主要考查了单项式,关键是掌握单项式的次数计算方法.2.单项式﹣25ab3的系数、次数分别为()A.﹣2,8 B.﹣2,9 C.﹣25,4 D.﹣25,3【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.【解答】解:单项式﹣25ab3的系数是﹣25,它的次数是1+3=4,即单项式﹣25ab3的系数、次数分别是﹣25,4;故选C.【点评】本题考查了单项式.在判别单项式的系数时,要注意包括数字前面的符号,而形如a或﹣a这样的式子的系数是1或﹣1,不能误以为没有系数.3.单项式23abc2的次数是()A.7 B.5 C.4 D.2【分析】把单项式23abc2的每一个字母的指数相加即可.【解答】解:单项式23abc2的次数是:1+1+2=4.故选C.【点评】此题考查了单项式的次数,掌握单项式的次数的定义即单项式中,所有字母的指数和叫做这个单项式的次数是解题的关键.4.已知单项式3x a﹣1y的次数是3,则a的值为()A.2 B.3 C.4 D.5【分析】根据单项式中所有字母的指数和是单项式的次数得出即可.【解答】解:由题意知a﹣l+1=3,解得a=3.故选B.【点评】此题主要考查了单项式的次数,根据单项式的次数定义得出是解题关键.5.代数式﹣的系数是()A.﹣ B.C.﹣D.【分析】根据单项式系数的定义即可得出答案.【解答】解:代数式﹣的系数是﹣.故选C.【点评】本题考查了单项式的知识,属于基础题,注意掌握单项式系数的定义.6.下列说法正确的是()A.不是单项式B.是单项式C.x的系数是0 D.是整式【分析】根据单项式、多项式的定义结合选项求解.【解答】解:A、是单项式,故本选项错误;B、不是单项式,故本选项错误;C、x的系数是1,故本选项错误;D、是整式,故本选项正确.故选D,【点评】本题考查了单项式和多项式的知识,解答本题的关键是掌握单项式和多项式的定义.7.整式﹣3.5x3y2,﹣1,,﹣32xy2z,﹣x2﹣y,﹣a2b﹣1中单项式的个数有()A.2个 B.3个 C.4个 D.5个【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,【解答】解:根据单项式的定义可知,单项式有:﹣3.5x3y2,﹣1,﹣32xy2z,共3个,故选B.【点评】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,这是判断是否是单项式的关键.8.在下列代数式①﹣a;②;③0;④;⑤﹣2π;⑥x2+y;⑦;⑧中,单项式共有()个.A.4 B.5 C.6 D.7【分析】单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.【解答】解:、x2+y、不是积的形式,所以它们不是单项式.①﹣a;③0;⑤﹣2π;⑦;⑧都符合单项式的定义,属于单项式.故选:B.【点评】本题考查了单项式的定义.此题属于基础题,熟记定义即可解答.9.如果﹣c是六次单项式,则n的值是()A.1 B.2 C.3 D.4【分析】根据次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.【解答】解:∵﹣c是六次单项式,∴2+2n﹣1+1=6,解得n=2.故选B.【点评】确定单项式的次数时,根据单项式次数的定义来判断.10.在代数式9ab,3xy,a+1,3ax2y2,1﹣y,,x2+xy+y2中,单项式共有()A.3个 B.4个 C.5个 D.6个【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.【解答】解:根据单项式的定义可以做出选择,9ab,3xy,3ax2y2是单项式.故选A.【点评】本题考查单项式的定义,较为简单,要准确掌握定义.11.单项式是六次单项式,则a的值为()A.3 B.15 C.﹣3 D.﹣15【分析】根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.【解答】解:∵单项式是六次单项式,∴1﹣a+3+1=6,解得,a=﹣3.故选C.【点评】确定单项式的次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的次数的关键.12.下列语句中错误的是()A.数字0也是单项式B.单项式a的系数与次数都是1C.的系数是D.是二次单项式【分析】根据单项式的系数和次数的定义进行判断.【解答】解:A、数字0也是单项式,正确;B、单项式a的系数与次数都是1,正确;C、的系数是,正确;D、是四次单项式,故错误.故选D.【点评】单项式的系数是数字因数,次数是所有字母指数的和.13.下列代数式中,①﹣8a3;②xy;③p﹣1;④0;⑤﹣是单项式的有()A.1个 B.2个 C.3个 D.4个【分析】利用单项式的定义求解即可.【解答】解:①﹣8a3;是单项式,②xy;是单项式,③p﹣1;是多项式④0;是单项式,⑤﹣是多项式,所以单项式有3个.故答案为:C.【点评】本题主要考查了单项式,解题的关键是熟记单项式的定义.14.在式子a+b,3xy,,n,﹣8,,中,单项式的个数是()A.4 B.5 C.6 D.7【分析】利用单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,进而判断即可.【解答】解:在式子a+b,3xy,,n,﹣8,,中,3xy,n,﹣8,是单项式,故单项式的个数是4个.故选:A.【点评】此题主要考查了单项式的定义,正确把握定义是解题关键.15.单项式,的系数和次数分别是()A.,三次B.,四次C.,四次D.,三次【分析】根据单项式的次数、系数的定义解答.【解答】解:单项式πR3的系数和次数分别是π、3.故选:A.【点评】本题考查了单项式.需要注意:单项式中的数字因数叫做这个单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数.16.如果﹣ax2y b(a,b为常数)是四次单项式,那么b的值是()A.1 B.2 C.3 D.4【分析】直接利用单项式的次数定义得出答案即可.【解答】解:∵﹣ax2y b(a,b为常数)是四次单项式,∴b=2,故选:B.【点评】此题主要考查了单项式的次数,正确掌握单项式次数的确定方法是解题关键.17.若(1﹣a)xy n﹣1是关于x、y的一个单项式,系数为2,次数为4,则|n﹣2a2|的值为()A.1 B.2 C.3 D.4【分析】由于已知(1﹣a)xy n﹣1是关于x、y的一个单项式且系数为2,次数为4,根据单项式次数和系数的定义,1﹣a=2,1+n﹣1=4,求得a,n,代入代数式即可得到结果.【解答】解:∵若(1﹣a)xy n﹣1是关于x、y的一个单项式,系数为2,次数为4,∴1﹣a=2,1+n﹣1=4,∴a=﹣1,n=4,∴|n﹣2a2|=2.故选B.【点评】本题主要考查单项式的系数和次数,由定义得出关于m、n的值是解题的关键.18.观察下列单项式的排列规律:3x,﹣7x2,11x3,﹣15x4,19x5,…,照这样排列第10个单项式应是()A.39x10B.﹣39x10C.﹣43x10D.43x10【分析】第奇数个单项式系数的符号为正,第偶数个单项式的符号为负,那么第n个单项式可用(﹣1)n+1表示,第一个单项式的系数的绝对值为3,第2个单项式的系数的绝对值为7,那么第n个单项式的系数可用(4n﹣1)表示;第一个单项式除系数外可表示为x,第2个单项式除系数外可表示为x2,第n个单项式除系数外可表示为x n.【解答】解:第n个单项式的符号可用(﹣1)n+1表示;第n个单项式的系数可用(4n﹣1)表示;第n个单项式除系数外可表示为x n.∴第n个单项式表示为(﹣1)n+1(4n﹣1)x n,∴第10个单项式是(﹣1)10+1(4×10﹣1)x10=﹣39x10.故选B.【点评】本题考查了单项式.也考查了数字的变化规律;分别得到符号,系数等的规律是解决本题的关键;得到各个单项式的符号规律是解决本题的易错点.19.下列各式:﹣,﹣25,,π,,中单项式的个数有()A.1个 B.2个 C.3个 D.4个【分析】根据单项式的定义对各个选项判定即可.【解答】解:在这几个代数式中,单项式有:﹣,﹣25,π,共3个.故选:C.【点评】本题考查了单项式的知识,解答本题的关键是掌握单项式的概念:数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.20.代数式、﹣3xy4、4ab、3x2﹣4、n、0、中单项式的个数有()A.4个 B.5个 C.6个 D.3个【分析】根据单项式的概念即可判断.【解答】解:单项式为:﹣3xy4、4ab、n、0、,故选(B)【点评】本题考查单项式,属于基础题型.二.填空题(共20小题)21.﹣a2b2与y3没有系数.×.【分析】根据单项式系数的定义,即可作出判断.【解答】解:﹣a2b2的系数为﹣1;y3的系数为1;故﹣a2b2与y3没有系数,说法错误;故答案为:×.【点评】本题考查了单项式的知识,在判别单项式的系数时,要注意包括数字前面的符号,而形如a或﹣a这样的式子的系数是1或﹣1,不能误以为没有系数.22.单项式的系数是﹣,次数是5.【分析】单项式的次数是所含所有字母指数的和,系数就前面的数字,由此即可求解.【解答】解:单项式的,次数是3+2=5.故答案为:﹣,5.【点评】此题主要考查了单项式的系数和次数的定义,解题的关键是熟练掌握相关的定义即可求解.23.单项式5.2×105a3bc4的次数是8,单项式﹣πa2b的系数是﹣π.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知:单项式5.2×105a3bc4的次数是8,单项式﹣πa2b的系数是﹣π.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.24.πr2【分析】根据单项式的概念即可求出答案.【解答】解:故答案为:系数为:0.2﹣﹣24;次数为:1 6 2 4【点评】本题考查单项式的概念,属于基础题型.25.代数式﹣的系数是﹣,次数是3.【分析】直接利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:﹣的系数是﹣,次数是:3.故答案为:﹣,3.【点评】此题主要考查了单项式有关定义,正确把握定义是解题关键.26.的次数是3.【分析】根据单项式的次数的定义(单项式的次数是单项式中所有字母的指数的和)解答.【解答】解:的次数是3.【点评】单项式中,所有字母的指数和叫做这个单项式的次数.27.单项式﹣的系数是﹣,次数是6.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,系数是﹣,次数=2+1+3=6.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.28.的系数是.【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.【解答】解:根据单项式系数的定义,单项式的系数为﹣.故答案为﹣.【点评】本题考查单项式的系数,属于基础题,注意单项式中数字因数叫做单项式的系数.29.把代数式2a2b2c和a3b2的共同点写在横线上(1)都是单项式;(2)都含有字母;(3)次数相同.【分析】根据代数式的分类,则两个代数式都是单项式,再根据单项式的特点,则发现两个单项式都含有字母,且次数均为5.【解答】解:答案为:(1)都是单项式;(2)都含有字母;(3)次数相同.【点评】此题考查了代数式的分类:初中所学的代数式主要有整式和分式,其中整式包括单项式和多项式;考查了单项式的概念,即数或字母的积叫单项式,其中所有字母的指数的和叫单项式的次数,数字因数叫单项式的系数.30.单项式﹣3m2n的系数为﹣3.【分析】直接利用单项式的系数的概念得出答案.【解答】解:单项式﹣3m2n的系数为:﹣3.故答案为:﹣3.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.31.单项式﹣的系数是﹣,次数是10.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣的系数是﹣,次数是:10.故答案为:﹣,10.【点评】此题主要考查了单项式的次数与系数的定义,正确把握相关定义是解题关键.32.单项式﹣πa2b3c的系数为﹣,次数为6.【分析】单项式的系数是数字部分,单项式的次数是字母指数的和,可得答案.【解答】解:单项式﹣πa2b3c的系数为﹣π,次数为6,故答案为:﹣π,6.【点评】本题考查了单项式,单项式的系数是数字因数,单项式的次数是字母指数和.33.单项式的系数是,次数是4.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知:单项式的系数是,次数是4.故答案为:﹣,4.【点评】本题考查了单项式.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.34.整式﹣xy2是三次单(填“单”或“多”)项式.【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式可得答案.【解答】解:整式﹣xy2是三次单项式,故答案为:三;单.【点评】此题主要考查了单项式,关键是掌握单项式的相关定义.35.若﹣axy b﹣1是关于x,y的单项式且系数为2次数是3,则a=﹣2,b=3.【分析】根据单项式的系数、次数的定义可知:﹣a=2,1+b﹣1=3,解得a、b 的值即可.【解答】解:∵﹣axy b﹣1是关于x,y的单项式且系数为2次数是3,∴﹣a=2,1+b﹣1=3.解得:a=﹣2,b=3.故答案为:﹣2;3.【点评】本题主要考查的是单项式的概念,掌握单项式的系数和次数的定义是解题的关键.36.观察下列单项式:a,2a2,4a3,8a4…根据你发现的规律,写出第n个式子是2n﹣1a n.【分析】首先根据第1个、第2个、第3个、第4个单项式的系数分别是1=20、2=21、4=22、8=23,可得第n个单项式的系数是2n﹣1;然后根据第1个、第2个、第3个、第4个单项式的次数分别是1、2、3、4,可得第n个单项式的次数是n,据此判断出第n个式子是多少即可.【解答】解:∵1=20、2=21、4=22、8=23,∴第n个单项式的系数是2n﹣1;∵第1个、第2个、第3个、第4个单项式的次数分别是1、2、3、4,∴第n个单项式的次数是n,∴第n个式子是2n﹣1a n.故答案为:2n﹣1a n.【点评】此题主要考查了单项式问题,要熟练掌握,解答此题的关键是分别判断出第n个单项式的系数和次数各是多少.37.观察下面的一列单项式:2x,﹣4x2,8x3,﹣16x4…根据规律,第6个单项式为﹣64x6.【分析】根据观察,可发现规律:第n项的系数是(﹣1)n+12n,字母及指数是x n,可得答案.【解答】解:第6个单项式为﹣64x6,故答案为:﹣64x6.【点评】本题考查了单项式,观察发现规律是解题关键.38.单项式﹣3×102x2y2z的系数、次数分别是﹣3×102;5.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式﹣3×102x2y2z的系数是﹣3×102、次数分别是5.故答案为:﹣3×102;5.【点评】此题考查了单项式系数、次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.39.代数式﹣5ab2的次数是3.【分析】根据单项式次数的概念求解.【解答】解:单项式﹣5ab2的次数为3.故答案为:3.【点评】本题考查了单项式的知识,一个单项式中所有字母的指数的和叫做单项式的次数.40.在式子:1,﹣ab,,,﹣a2bc,x2﹣2x+3,中,单项式有4个.【分析】根据单项式及多项式的定义进行解答即可.【解答】解:在式子:1,﹣ab,,,﹣a2bc,x2﹣2x+3,中,单项式有1,﹣ab,,﹣a2bc,共4个,故答案为:4.【点评】本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.三.解答题(共10小题)41.观察下列单项式:﹣x,3x2,﹣5x3,7x4,…,﹣37x19,39x20,…写出第n个单项式.为了解决这个问题,特提供下面的解题思路:(1)这组单项式的系数的符号、绝对值规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么(只能填写一个代数式)?(4)请你根据猜想,请写出第2013个、第2014个单项式.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【解答】解:(1)根据各项系数的符号以及系数的值得出:这组单项式的系数的符号规律是(﹣1)n,系数的绝对值规律是2n﹣1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是:(﹣1)n(2n﹣1)x n.(4)第2013个单项式是﹣4025x2013,第2014个单项式是4027x2014.【点评】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.42.单项式﹣x a•y b+1是关于x、y的五次单项式,且a、b是不相等的正整数,求a和b的值.【分析】先根据五次单项式的定义列出关于a、b的方程,求出a、b满足的条件即可.【解答】解:∵单项式﹣x a•y b+1是关于x、y的五次单项式,∴a+b+1=5,∴a+b=4,∵a、b是不相等的正整数,∴a=1,b=3;a=3,b=1.【点评】本题考查了单项式的知识,解题的关键是了解单项式的次数是所有字母指数的和.43.观察下列各式:﹣a,a2,﹣a3,a4,﹣a5,a6,…(1)写出第2014个和2015个单项式;(2)写出第n个单项式.【分析】(1)由单项式的排列规律即可求出第2014个和2015个单项式;(2)由单项式的排列规律即可求出第n个单项式.【解答】解:(1)由﹣a,a2,﹣a3,a4,﹣a5,a6,…可得第n项的表达式为(﹣1)n,所以第2014个单项式为,第2015个单项式为﹣.(2)由单项式的特点可得第n个单项式为(﹣1)n.【点评】本题主要考查了单项式,解题的关键是求出单项式的排列规律.44.填表:将x﹣+8x2﹣﹣x2yz3中5个单项式填入下表﹣﹣﹣﹣﹣﹣【分析】根据单项式系数和次数的概念求解.【解答】解:x次数是1,系数是1,﹣次数是1,系数是﹣,8x2次数是2,系数是8,﹣次数是3,系数是﹣,﹣x2yz3次数是6,系数是﹣,故答案为:1,1,1,﹣,2,8,3,﹣,6,﹣.【点评】本题考查了单项式和多项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.45.判断下列各代数式哪些是单项式,若是单项式,请指出其系数和次数.(1);(2)abc;(3)2a2;(4)﹣5ab2;(5)y;(6);(7)﹣5;(8)﹣.【分析】根据单项式是数与字母的乘积,单独一个数或一个字母也是单项式,数字因数是单项式的系数,字母指数和是单项式的次数,可得答案.【解答】解:(1)是多项式;(2)abc是单项式,系数是1,次数是3;(3)2a2是单项式,系数是2,次数是2;(4)﹣5ab2是单项式,系数是﹣5,次数是3;(5)y是单项式,系数是1,次数是1;(6)是分式;(7)﹣5是单项式,系数是﹣5,次数是0;(8)﹣是单项式,系数是﹣,次数是2.【点评】本题考查了单项式,单项式是数与字母的乘积,单独一个数或一个字母也是单项式,数字因数是单项式的系数,字母指数和是单项式的次数,注意分母中含有字母的式子是分式.46.用单项式表示下列各量,并说出它的系数和次数:(1)原产量n吨,增产25%之后的产量;(2)x的平方与y的积的3;(3)底面积为S cm2,高为h cm的圆锥的体积.【分析】根据单项式和单项式系数和次数的概念求解.【解答】解:(1)(1+25%)n,系数为1.25,次数为1;(2)x2y,系数为,次数为3;(3)Sh,系数为,次数为2.【点评】本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.47.如果﹣axy m是关于x,y的单项式,且系数是﹣6,次数是5,求m,a的值.【分析】根据单项式中数字因数叫做单项式的系数,字母指数和是单项式的次数,可得答案.【解答】解:由﹣axy m是关于x,y的单项式,且系数是﹣6,次数是5,得,解得.【点评】本题考查了单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.48.观察下列单项式:x2,﹣3x4,5x6,﹣7x8,…回答下列问题(1)这组单项式的系数的符号规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是(只能填写一个式子)什么?(4)请你根据猜想,请写出第2014,2015个单项式.【分析】(1)(2)要看各单项式的系数和次数与该项的序号之间的变化规律.(3)(4)本题中,偶数项符号为负,数字变化规律是2n﹣1,字母变化规律是x2n.【解答】解:(1)这组单项式的系数的符号规律是偶数项符号为负;(2)这组单项式的次数的规律是x2n;(3)根据上面的归纳,猜想出第n个单项式是n是偶数时,﹣nx2n;(4)第2014个单项式是﹣2014x4028,2015个单项式是2015x4030【点评】此题考查单项式问题,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.49.要对一组对象进行分类,关键是要选定一个分类标准,不同的分类标准有不同的结果.如对下面给出的七个单项式:2x3z,xyz,3y3,﹣5y2x,﹣z2x2,x2yz,z3进行分类,若按单项式的次数分类:二次单项式有3y2;三次单项式有:xyz,﹣5y2x,z3;四次单项式有2x3z,﹣z2x2,x2yz.请你用两种不同的分类方法对上面的七个单项式进行分类.。
七年级数学上册第一章有理数有理数的混合运算习题精选试题
有理数
本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
一、选择题
1.假设,,那么有( ) .
A. B. C. D.
2.,当时,,当时,的值是( ) .A. B.44C.28 D.17
3.假如,那么的值是( ) .
A.0B.4C.-4D.2
4.代数式取最小值时,值为( ) .
A. B. C. D.无法确定
5.六个整数的积,互不相等,那么
( ) .
A.0 B.4C.6D.8
6.计算所得结果为( ) .
A.2B. C. D.
二、填空题
1.有理数混合运算的顺序是__________________________.
2.为有理数,那么 _________0, _________0, _______0.〔填“>〞、“<〞或者“≥〞=〕
3.平方得16的有理数是_________,_________的立方等于-8.
4. __________.
5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为__________.
三、判断题
1.假设为任意有理数,那么 .( )
2..( )
3..( )
4..()
5..( )
四、解答题
1.计算以下各题:
〔1〕;
〔2〕;
〔3〕;
〔4〕;
〔5〕;
〔6〕;
〔7〕;
〔8〕.
2.假设有理数、、满足等式,试求的值.3.当,时,求代数式的值.
本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
精选七年级上册9月份月考数学试题(部分带答案)共3份
﹣3,﹣1.5,﹣1,2.5,4.
【答案】数轴表示见解析,4>2.5>-1>-1.5>-3
【解析】
【分析】
先在数轴上表示各个数,再比较即可.
【详解】解:如图所示:
4>2.5>-1>-1.5>-3.
【点睛】本题考查了有理数 大小比较,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.
【详解】
故选:B.
【点睛】本题考查绝对值的化简,是基础考点,难度容易,掌握绝对值的代数意义、绝对值的几何意义是解题关键.
4.-2的倒数是()
A. B.2C. D.
【答案】D
【解析】
【分析】
根据乘积为1的两个数互为倒数进行求解即可.
【详解】因为 ,
所以-2的倒数为 ,
故选D.
【点睛】本题考查了倒数,熟练掌握倒数的概念以及求解方法是解题的关键.
【解析】
【分析】
直接运用等式的性质进行判断即可.
【详解】A、若 ,等式两边都加3再减 ,则 ;所以A正确;
B、若 ,等式两边都乘以2,则 ;所以B错误;
C、若 ,当 时,则 ;所以C错误;
D、若 ,等式两边都乘以2同时除以 ,则 ;所以D错误;
故选:A.
【点睛】本题主要考查了等式的基本性质.等式性质1、等式的两边同时加上或减去同一个数或字母,等式仍成立;等式性质2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.
9.如图是几个小立方块所搭的几何体从上面看到的图形,小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的图形是( )
A. B. C. D.
(必考题)初中数学七年级下期末经典练习(提高培优)(1)
一、选择题1.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .602.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°3.已知关于x 的不等式组{x >1x <m的解中有3个整数解,则m 的取值范围是( ) A .3<m≤4B .4≤m<5C .4<m≤5D .4≤m≤54.已知实数a ,b ,若a >b ,则下列结论错误的是A .a-7>b-7B .6+a >b+6C .55ab > D .-3a >-3b5.下面不等式一定成立的是( )A .2a a <B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b > 6.10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间7.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.若不等式组20{210x a x b +---><的解集为0<x <1,则a ,b 的值分别为( ) A .a =2,b =1 B .a =2,b =3 C .a =-2,b =3 D .a =-2,b =19.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.8 10.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm 11.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 12.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)13.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,4 14.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限. A .一 B .二 C .三 D .四15.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题16.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为______________.17.某小区地下停车场入口门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD =120° ,则∠ABC = ________.18.已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N (下面是推理过程,请你填空).解:∵∠BAE+∠AED=180°(已知) ∴ AB ∥ ( )∴∠BAE= ( 两直线平行,内错角相等 )又∵∠1=∠2∴∠BAE ﹣∠1= ﹣∠2即∠MAE=∴ ∥NE ( )∴∠M=∠N ( )19.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向 右平移到△A′B′D′的位置得到图②,则阴影部分的周长为_________.20.若二元一次方程组3354x y x y +=⎧⎨-=⎩的解为x a y b=⎧⎨=⎩,则a ﹣b=______. 21.二项方程32540x +=在实数范围内的解是_______________22.如图,已知AB 、CD 相交于点O,OE ⊥AB 于O ,∠EOC=28°,则∠AOD=_____度;23.关于x 的不等式组352223x x x a-≤-⎧⎨+>⎩有且仅有4个整数解,则a 的整数值是______________.24.如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA=6cm ,PB=5cm ,PC=7cm ,则点P 到直线l 的距离是_____cm.25.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.三、解答题26.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)被抽样调查的学生有______人,并补全条形统计图;(2)每天户外活动时间的中位数是______(小时);(3)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?27.某工厂现有甲种原料3600kg ,乙种原料2410kg ,计划利用这两种原料生产A ,B 两种产品共500件,产品每月均能全部售出.已知生产一件A 产品需要甲原料9kg 和乙原料3kg ;生产一件B 种产品需甲种原料4kg 和乙种原料8kg .(1)设生产x 件A 种产品,写出x 应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A 产品每件获得利润1.15万元,B 产品每件获得利润1.25万元;第二种定价方案可使A 和B 产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)28.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.29.某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?30.为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.A3.C4.D5.D6.B7.D8.A9.C10.C11.A12.A13.C14.B15.D二、填空题16.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C(32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大17.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得CD∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于A∠BCD=120°求得答案【详解】如图过18.见解析【解析】【分析】由已知易得AB∥CD则∠BAE=∠AEC又∠1=∠2所以∠MAE=∠AEN则AM∥EN故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线19.2【解析】【分析】根据两个等边△ABD△CBD的边长均为1将△ABD沿AC方向向右平移到△ABD的位置得出线段之间的相等关系进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2即可20.【解析】【分析】把xy的值代入方程组再将两式相加即可求出a﹣b的值【详解】将代入方程组得:①+②得:4a﹣4b=7则a﹣b=故答案为【点睛】本题考查二元一次方程组的解解题的关键是观察两方程的系数从而21.x=-3【解析】【分析】由2x3+54=0得x3=-27解出x值即可【详解】由2x3+54=0得x3=-27∴x=-3故答案为:x=-3【点睛】本题考查了立方根正确理解立方根的意义是解题的关键22.62【解析】【分析】【详解】∵∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°23.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a的不等式组求出即可【详解】解不等式3x-5≤2x-2得:x≤3解不能等式2x+3>a得:x>∵不等24.【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度可得答案【详解】解:∵PB⊥lPB=5cm∴P到l的距离是垂线段PB的长度5cm故答案为:5【点睛】本题考查了点到直线的距离的定25.145【解析】【分析】如图:延长AB交l2于E根据平行线的性质可得∠AED=∠1根据可得AE//CD根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB交l2于E∵l三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB∥CE所以∠B=∠3=30故选B【点睛】熟练运用平行线的判定和性质.2.A解析:A【解析】∠︒∴∠︒∴∠∠︒ .故选A.1=1303=502=23=1003.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1<x<m,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4.D解析:D【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 5.D解析:D【解析】【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 当0a ≤时,2a a ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误; C. 若ab >,当0cd =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确;故选D .【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.6.B解析:B【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.7.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.8.A解析:A【解析】试题分析:先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.解:20210x ax b+->⎧⎨--<⎩①②,由①得,x>2﹣a,由②得,x<12b+,故不等式组的解集为;2﹣a<x<12b +,∵原不等式组的解集为0<x<1,∴2﹣a=0,12b+=1,解得a=2,b=1.故选A.9.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.10.C解析:C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C .考点:平移的性质.11.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->x b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.12.A解析:A【解析】【分析】根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系进行解答即可.【详解】解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1).故选:A .【点睛】考查坐标问题,关键是根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系解答.13.C解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.14.B解析:B【解析】【分析】由点P在x轴上求出a的值,从而得出点Q的坐标,继而得出答案.【详解】∵点P(a,a-1)在x轴上,∴a-1=0,即a=1,则点Q坐标为(-1,2),∴点Q在第二象限,故选:B.【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.15.D解析:D【解析】解:∵直线l1∥l2,∴∠3=∠1=44°.∵l3⊥l4,∠2=90°-∠3=90°-44°=46°.故选D.二、填空题16.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C(32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大解析:(1,3)或(5,1)【解析】【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:①如图1,当A平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点A的横坐标增大了1,纵坐标增大了2,平移后的B坐标为(1,3),②如图2,当B平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故答案为:(1,3)或(5,1)【点睛】本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.17.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得CD∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于A∠BCD=120°求得答案【详解】如图过解析:150°【解析】【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=120°,求得答案.如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=120°,∠BAE=90°,∴∠1=60°,∠2=90°,∴∠ABC=∠1+∠2=150°.故答案是:150o.【点睛】考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.18.见解析【解析】【分析】由已知易得AB∥CD则∠BAE=∠AEC又∠1=∠2所以∠MAE=∠AEN则AM∥EN故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线解析:见解析【解析】【分析】由已知易得AB∥CD,则∠BAE=∠AEC,又∠1=∠2,所以∠MAE=∠AEN,则AM∥EN,故∠M=∠N.【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补,两直线平行)∠BAE=∠AEC(两直线平行,内错角相等)又∵∠1=∠2,∴∠BAE−∠1=∠AEC−∠2,即∠MAE=∠NEA,∴AM∥EN,(内错角相等,两直线平行)∴∠M=∠N(两直线平行,内错角相等)【点睛】考查平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.19.2【解析】【分析】根据两个等边△ABD△CBD的边长均为1将△ABD沿AC方向向右平移到△ABD的位置得出线段之间的相等关系进而得出OM+MN+NR+GR+E G+OE=A′D′+CD=1+1=2即可【解析】【分析】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【详解】解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为2.20.【解析】【分析】把xy的值代入方程组再将两式相加即可求出a﹣b的值【详解】将代入方程组得:①+②得:4a﹣4b=7则a﹣b=故答案为【点睛】本题考查二元一次方程组的解解题的关键是观察两方程的系数从而解析:7 4【解析】【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【详解】将x ay b=⎧⎨=⎩代入方程组3354x yx y+=⎧⎨-=⎩,得:3354a ba b+=⎧⎨-=⎩①②,①+②,得:4a﹣4b=7,则a﹣b=74,故答案为74.【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值.21.x=-3【解析】【分析】由2x3+54=0得x3=-27解出x值即可【详解】由2x3+54=0得x3=-27∴x=-3故答案为:x=-3【点睛】本题考查了立方根正确理解立方根的意义是解题的关键【解析】【分析】由2x 3+54=0,得x 3=-27,解出x 值即可.【详解】由2x 3+54=0,得x 3=-27,∴x=-3,故答案为:x=-3.【点睛】本题考查了立方根,正确理解立方根的意义是解题的关键.22.62【解析】【分析】【详解】∵∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°解析:62【解析】【分析】【详解】∵OE AB ⊥,28EOC ∠=,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°. 23.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a 的不等式组求出即可【详解】解不等式3x -5≤2x -2得:x≤3解不能等式2x+3>a 得:x >∵不等解析:1,2【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a 的不等式组,求出即可.【详解】解不等式3x-5≤2x -2,得:x≤3,解不能等式2x+3>a ,得:x >32a -, ∵不等式组有且仅有4个整数解,∴-1≤32a -<0, 解得:1≤a <3,∴整数a 的值为1和2,故答案为:1,2.【点睛】本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度可得答案【详解】解:∵PB⊥lPB=5cm∴P 到l 的距离是垂线段PB 的长度5cm 故答案为:5【点睛】本题考查了点到直线的距离的定解析:【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【详解】解:∵PB ⊥l ,PB=5cm ,∴P 到l 的距离是垂线段PB 的长度5cm ,故答案为:5.【点睛】本题考查了点到直线的距离的定义,熟练掌握是解题的关键.25.145【解析】【分析】如图:延长AB 交l2于E 根据平行线的性质可得∠AED=∠1根据可得AE//CD 根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB 交l2于E ∵l解析:145【解析】【分析】如图:延长AB 交l 2于E ,根据平行线的性质可得∠AED=∠1,根据αβ∠∠=可得AE//CD ,根据平行线的性质可得∠AED+∠2=180°,即可求出∠2的度数.【详解】如图:延长AB 交l 2于E ,∵l 1//l 2,∴∠AED=∠1=35°,∵αβ∠∠=,∴AE//CD ,∴∠AED+∠2=180°,∴∠2=180°-∠AED=180°-35°=145°,故答案为145【点睛】本题考查了平行线的判定和性质,通过内错角相等证得AE//CD 是解题关键.三、解答题26.(1)500;(2)1;(3)该校每天户外活动时间超过1小时的学生有800人.【解析】【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.【详解】(1)0.5小时的有100人占被调查总人数的20%,∴被调查的人数有:10020%500÷=,27.(1)94(500)360038(500)2410x x x x +-≤⎧⎨+-≤⎩;(2)符合的生产方案为①生产A 产品318件,B 产品182件;②生产A 产品319件,B 产品181件;③生产A 产品320件,B 产品180件;(3)第二种定价方案的利润比较多.【解析】分析:(1)关系式为:A 种产品需要甲种原料数量+B 种产品需要甲种原料数量≤3600;A 种产品需要乙种原料数量+B 种产品需要乙种原料数量≤2410,把相关数值代入即可;(2)解(1)得到的不等式,得到关于x 的范围,根据整数解可得相应方案;(3)分别求出两种情形下的利润即可判断;详解:(1)由题意()94(500)3600385002410x x x x +-≤⎧⎨+-≤⎩. (2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x 为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A 产品318件,B 产品182件;②生产A产品319件,B产品181件;③生产A产品320件,B产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元),②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.点睛:本题考查理解题意能力,生产不同产品所用的原料不同,关键是在原料范围内求得生产的产品,从而求解.找出题目中的不等量关系列出不等式组是解答本题的关键.28.证明见解析.【解析】【分析】由∠1=∠2,得BD∥CE,所以∠4=∠E,又∠3=∠E,所以∠3=∠4,可得AD∥BE.【详解】证明:∵∠1=∠2,又∵∠3=∠E,∴BD∥CE,∴∠3=∠4,∴∠4=∠E,∴AD∥BE.【点睛】本题考核知识点:平行线的判定.解题关键点:理解平行线的判定.29.(1)有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润大,最多为7550元.【解析】【分析】(1)设购进甲种型号的电视机x台,则乙种型号的电视机y台.数量关系为:两种不同型号的电视机50台,金额不超过76000元;(2)根据利润=数量×(售价-进价),列出式子进行计算,即可得到答案.【详解】解:(1)设购进甲种型号的电视机x台,则乙种型号的电视机(50-x)台.则1500x+2100(50-x)≤76000,解得:x≥4813.则50≥x≥4813.∵x是整数,∴x=49或x=50.故有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润为:49×(1650-1500)+(2300-2100)=7550(元)方案二的利润为:50×(1650-1500)=7500(元).∵7550>7500∴方案一的利润大,最多为7550元.【点睛】本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.30.(1)40;(2)答案见解析;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【解析】【分析】(1)由两个统计图可以发现第一次22名优秀的同学占55%,故该班总人数为2255%=40÷;(2)第四次优秀人数为:4085%=34⨯,第三次优秀率为3240×100%=80%,据此可以补全统计图;(3)根据图像可以写出优秀人数逐渐增多,增大的幅度逐渐减小等信息.【详解】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:3240×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点睛】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.。
〈精选〉人教版七年级数学上册 1.1 正数和负数 同步测试题部分含答案5份汇总
1.1正数和负数随堂练习一、选择题1.如果收入80元记作+80元,那么支出20元记作()A.+20元B.-20元C.+100元D.-100元2.一个物体做左右方向的运动,规定向右运动6m记做+6m,那么向左运动8m记做( )。
A.+8mB.-8mC.+14mD.-14m3.下列说法:①+2是正数,但2不是正数;②0既不是正数也不是负数;③0℃表示没有温度;④一个数不是正数就是负数;⑤如果a是正数,那么-a一定是负数,其中正确的有()A.1个B.2个C.3个D.4个4.四个数-3.14,0,1,2中为负数的是()A.-3.14 B.0 C.1 D.25. 如果收入100元记作+100元,那么支出100元记作()A.-100元B.+100元C.-200元D.+200元6.若某日最低气温为“-3 ℃”,则它的意义是 ( )。
A.零上3 ℃B.零下3 ℃C.比最低气温多3 ℃D.比最低气温少3 ℃7.在-3,-5,-1,0这四个数中,与其余三个数不同的是()A.-3 B.-5 C.-1 D.08. 某天的温度上升了-2℃的意义是( )A.上升了2℃ B.下降了-2℃C.下降了2℃ D.没有变化9.我国是较早认识负数的国家,南宋数学家李冶在算筹的个位数上用斜画一杠表示负数,如“-32”写成“”,下列算筹表示负数的是()。
A. B. C. D.10. 纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时 +2 -13当北京6月15日23时,悉尼、纽约的时间分别是( )A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时二、填空题11. 用正数或负数表示下面的数量:(1)零下7 ℃:________;(2)海拔220 m:________;(3)如果向右走150 m记作+150 m,那么向左走280 m记作________.12.小王利用计算机设计了一个计算程序,输入和输出的数据如下表所示。
人教版七年级数学知识点试题精选-度分秒的换算
人教版七年级数学知识点试题精选-度分秒的换算七年级上册度分秒的换算1.选择题(共20小题)1.如果∠1=45°24′,∠2=45.3°,∠3=45°18′,那么()A.∠1≠∠2 B.∠2≠∠3 C.∠1≠∠3 D.以上都不对2.0.25°=()′=()″.A.15′,900″ B.15′,900″ C.()′,()″ D.15′,0.5″3.把18°15′36″化为度表示,正确的是()A.18.15° B.18.16° C.18.26° D.18.36°4.将8.35°用度、分、秒表示正确的是()A.8°20′ B.8°21′ C.8°3′5″ D.8°30′5″5.40°15′的是()A.20°7′30″ B.20°7′ C.20°8′ D.20°6.4°32′35″×6的结果是()A.27°15′30″ B.28°27′30″ C.24°200′ D.24°32′35″7.38.33°可化为()A.38°19′48″ B.38°19′8″ C.38°20′3″ D.38°30′3″8.若∠1=25°12′,∠2=25.12°,∠3=25.2°,则下面说法正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠1,∠2,∠3互不相等9.把一个周角7等分,每一份是(精确到分)()A.51°28′ B.51°27′ C.51°26′ D.51°25′10.若∠A=20°18′,∠B=20°15′30″,∠C=20.25°,则()A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C >∠B D.∠C>∠A>∠B11.下列计算错误的是()A.0.25°=900″ B.1.5°=90′ C.1000″=16.67°D.125.45°=1254.5′12.把15°48′36″化成以度为单位是()A.15.8° B.15.4836° C.15.81° D.15.36°13.如图∠1=35°19′,则∠2的度数为()A.144°81′ B.54°81′ C.54°41′ D.144°41′14.已知:∠A=25°12′,∠B=25.12°,∠C=25.2°,下列结论正确的是()A.∠A=∠B B.∠B=∠C C.∠A=∠C D.三个角互不相等15.如图所示:若∠DEC=50°17′,则∠AED=()A.129°43′ B.129°83′ C.130°43′ D.128°43′2.答案解析1.题目中∠2=45.3°,应该改为∠2=45°18′,因此答案为C。
七年级数学上册 线段和角精选练习题
线段和角精选练习题一.选择题(共22小题)1.如图是某个几何体的展开图,该几何体是()A.圆柱B.圆锥C.圆台D.四棱柱2.如图,线段AD上有两点B、C,则图中共有线段()A.三条B.四条C.五条D.六条3.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个 B.2个 C.3个 D.4个4.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线5.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣26.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.6cm或10cm D.4cm或16cm8.如图,在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB长为()A.1cm B.1.5cm C.2cm D.4cm9.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个 B.2个 C.3个 D.4个10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间11.若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°12.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④13.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°14.如图,在△ABC中,过点A作BC边上的高,正确的作法是()A. B. C. D.15.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°16.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15°B.20°C.25°D.30°17.一个角是这个角的余角的2倍,则这个角的度数是()A.30°B.45°C.60°D.75°18.如图,∠1和∠2都是∠α的余角,则下列关系不正确的是()A.∠1+∠α=∠90°B.∠2+∠α=90°C.∠1=∠2 D.∠1+∠2=90°19.如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A,B点,则此时两轮船行进路线的夹角∠AOB的度数是()A.165°B.155°C.115° D.105°20.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB=()A.40°B.60°C.120° D.135°21.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,则∠COE=()A.65°B.70°C.75°D.80°22.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE平分∠BOC,则∠DOE ()A.一定是钝角B.一定是锐角C.一定是直角D.都有可能二.填空题(共3小题)23.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到个三角形.24.如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于度.25.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为度.三.解答题(共12小题)26.如图,四边形ABCD,在四边形内找一点O,使得线段AO、BO、CO、DO的和最小.(画出即可,不写作法)27.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.28.如图,C,D是线段AB上的两点,已知AC:CD:DB=1:2:3,MN分别是AC,BD的中点,且AB=36cm,求线段MN的长.29.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.30.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.31.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.32.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是,∠AOC的余角是;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.33.如图,已知∠AOB=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.34.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.35.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC 和∠BOC.(1)填空:与∠AOE互补的角是;(2)若∠AOD=36°,求∠DOE的度数;(3)当∠AOD=x°时,请直接写出∠DOE的度数.36.已知,如图,∠AOC=90°,∠DOE=90°,∠AOB=56°,E,O,B三点在同一条直线上,OF平分∠DOE,求∠COF的度数.37.如图,∠AOB=120°,射线OD是∠AOB的角平分线,点C是∠AOB外部一点,且∠AOC=90°,点E是∠AOC内部一点,满足∠AOC=3∠AOE.(1)求∠DOE的度数;(2)请通过计算,找出图中所有与∠AOE互余的角.试题解析一.选择题(共22小题)1.如图是某个几何体的展开图,该几何体是()A.圆柱B.圆锥C.圆台D.四棱柱【分析】侧面为长方形,底边为2个圆形,故原几何体为圆柱.2.如图,线段AD上有两点B、C,则图中共有线段()A.三条B.四条C.五条D.六条【分析】由图知,线段有AB,BC,CD,AC,BD,AD.3.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个 B.2个 C.3个 D.4个【分析】根据正数、负数、直线、射线的定义和表示方法对各小题分析判断后利用排除法求解.4.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线【分析】根据线段的性质,可得答案.5.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣2【分析】根据数轴上两点间距离的定义进行解答即可.6.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.6cm或10cm D.4cm或16cm【分析】由于点C的位置不确定,故应分点C在AB之间与点C在AB外两种情况进行讨论.8.如图,在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB长为()A.1cm B.1.5cm C.2cm D.4cm【分析】由已知条件可知,AB+BC=AC,又因为O是线段AC的中点,则OB=AB﹣AO,故OB可求.9.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个 B.2个 C.3个 D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间 D.BC之间【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.11.若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.12.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.13.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°【分析】根据图形得出∠1+∠2=90°,然后根据∠1的度数比∠2的度数大50°列出方程求解即可.14.如图,在△ABC中,过点A作BC边上的高,正确的作法是()A. B. C. D.【分析】从三角形的一个顶点向它的对边引垂线,从顶点到垂足之间的线段是三角形的高,据此作高.15.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°【分析】根据图形和题目中的条件,可以求得∠AOB的度数和∠COD的度数,从而可以求得∠AOD 的度数.16.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15°B.20°C.25°D.30°【分析】依据∠COB=∠COD+∠AOB﹣∠AOD求解即可.17.一个角是这个角的余角的2倍,则这个角的度数是()A.30°B.45°C.60°D.75°【分析】先表示出这个角的余角为(90°﹣α),再列方程.18.如图,∠1和∠2都是∠α的余角,则下列关系不正确的是()A.∠1+∠α=∠90°B.∠2+∠α=90°C.∠1=∠2 D.∠1+∠2=90°【分析】根据互为余角的两个角的和等于90°和同角的余角相等解答.19.如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A,B点,则此时两轮船行进路线的夹角∠AOB的度数是()A.165°B.155°C.115° D.105°【分析】根据题意可得:∠1=50°,∠2=25°,再根据角的和差关系可得答案.20.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB=()A.40°B.60°C.120° D.135°【分析】设∠AOC=x,则∠BOC=2x,则∠AOD=1.5x,最后,依据∠AOD﹣∠AOC=∠COD列方程求解即可.21.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,则∠COE=()A.65°B.70°C.75°D.80°【分析】首先由角平分线定义求得∠COD的度数,然后根据∠COE=∠DOE﹣∠COD即可求得∠COE 的度数.22.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE平分∠BOC,则∠DOE ()A.一定是钝角B.一定是锐角C.一定是直角D.都有可能【分析】直接利用角平分线的性质得出∠AOD=∠DOC,∠BOE=∠COE,进而得出答案.二.填空题(共3小题)23.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到6个三角形.【分析】从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成(n﹣2)个三角形.24.如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于135度.【分析】根据平角和角平分线的定义求得.25.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为140度.【分析】根据角平分线的定义得到∠AOC=2∠AOD=40°,根据平角的定义计算即可.三.解答题(共12小题)26.如图,四边形ABCD,在四边形内找一点O,使得线段AO、BO、CO、DO的和最小.(画出即可,不写作法)【分析】要确定点O的位置,根据“两点之间,线段最短”只需要连接AC,BD,交点即为所求.27.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.【分析】根据线段的性质:两点之间线段最短,即可得出答案.28.如图,C,D是线段AB上的两点,已知AC:CD:DB=1:2:3,MN分别是AC,BD的中点,且AB=36cm,求线段MN的长.【分析】根据比例设AC=xcm,CD=2xcm,DB=3xcm,然后根据AC的长度列方程求出x的值,再根据线段中点的定义表示出CM、DN,然后根据MN=CM+CD+DN求解即可.29.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.【分析】因为点M是AC的中点,则有MC=AM=AC,又因为CN:NB=1:2,则有CN=BC,故MN=MC+NC 可求.30.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.【分析】直接利用周角的定义得出∠AOC=120°,进而利用已知得出答案.31.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.【分析】(1)首先根据角平分线定义可得∠COD=∠AOC,∠COE=∠BOC,然后再根据角的和差关系可得答案;(2)首先计算出∠BOE的度数,再利用180°减去∠BOE的度数可得答案.32.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是∠AOE,∠AOC的余角是∠BOC;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.【分析】(1)根据互余和互补解答即可;(2)利用角平分线的定义和平角的定义解答即可.33.如图,已知∠AOB=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.【分析】根据余角和补角的概念进行计算即可.34.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.【分析】(1)根据角平分线的定义求出∠BOC的度数,根据邻补角的性质求出∠AOC的度数,根据余角的概念计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.35.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角是∠BOE、∠COE;(2)若∠AOD=36°,求∠DOE的度数;(3)当∠AOD=x°时,请直接写出∠DOE的度数.【分析】(1)先求出∠BOE=∠COE,再由∠AOE+∠BOE=180°,即可得出结论;(2)先求出∠COD、∠COE,即可得出∠DOE=90°;(3)先求出∠AOC、COD,再求出∠BOC、∠COE,即可得出∠DOE=90°.36.已知,如图,∠AOC=90°,∠DOE=90°,∠AOB=56°,E,O,B三点在同一条直线上,OF平分∠DOE,求∠COF的度数.【分析】依据同角的余角相等,可得∠COD=∠AOB=56°,再根据OF平分∠DOE,∠DOE=90°,即可得到∠DOF=∠DOF=45°,最后依据∠COF=∠COD+∠DOF进行计算即可.37.如图,∠AOB=120°,射线OD是∠AOB的角平分线,点C是∠AOB外部一点,且∠AOC=90°,点E是∠AOC内部一点,满足∠AOC=3∠AOE.(1)求∠DOE的度数;(2)请通过计算,找出图中所有与∠AOE互余的角.【分析】(1)根据角平分线的性质可得∠BOD=∠AOD=∠AOB=60°,再计算出∠AOE的度数,然后可得∠DOE的度数;(2)根据余角定义进行分析即可.。
(必考题)初中数学七年级下期末经典习题(提高培优)(1)
一、选择题1.已知二元一次方程组m 2n 42m n 3-=⎧⎨-=⎩,则m+n 的值是( ) A .1 B .0C .-2D .-1 2.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .3.如图,数轴上表示2、5的对应点分别为点C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .5-B .25-C .45-D .52-4.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°5.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.如图,在平面直角坐标系xOy 中,点P(1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位至点P 3,第4次向右跳动3个单位至点P 4,第5次又向上跳动1个单位至点P 5,第6次向左跳动4个单位至点P 6,….照此规律,点P 第100次跳动至点P 100的坐标是( )A .(﹣26,50)B .(﹣25,50)C .(26,50)D .(25,50)8.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩ 9.已知{x =1y =2 是关于x ,y 的二元一次方程x-ay=3的一个解,则a 的值为( ) A .1B .-1C .2D .-2 10.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b=⎧⎨=⎩,则a 、b 分别为( ) A .a=8,b=﹣2B .a=8,b=2C .a=12,b=2D .a=18,b=8 11.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个12.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -= B .321a b += C .491b a -=- D .941a b +=13.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个14.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3 B .5C .7D .9 15.若0a <,则下列不等式不成立的是( )A .56a a +<+B .56a a -<-C .56a a <D .65a a < 二、填空题16.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____.17.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为______________.18.某小区地下停车场入口门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD =120° ,则∠ABC = ________.19.如果a 的平方根是3±,则a =_________20.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B , 则点B 的坐标为_______.21.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________ 22.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .23.如图,直线//a b ,点B 在直线上b 上,且AB ⊥BC ,∠1=55°,则∠2的度数为______.24.已知方程组236x yx y+=⎧⎨-=⎩的解满足方程x+2y=k,则k的值是__________.25.关于x的不等式111x-<-的非负整数解为________.三、解答题26.某运输公司现将一批152吨的货物运往A,B两地,若用大小货车15辆,则恰好能一次性运完这批货.已知这两种大小货车的载货能力分别为12吨/辆和8吨/辆,其运往A,B 两地的运费如下表所示:目的地(车型)A地(元/辆)B地(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆.(用二元一次方程组解答)(2)现安排其中的10辆货车前往A地,其余货车前往B地,设前往A地的大货车为x辆,前往A,B两地总费用为w元,试求w与x的函数解析式.27.如图,直线AB与CD相交于点O,∠BOE=∠DOF=90°.(1)写出图中与∠COE互补的所有的角(不用说明理由).(2)问:∠COE与∠AOF相等吗?请说明理由;(3)如果∠AOC=15∠EOF,求∠AOC的度数.28.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a 辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.29.问题情境在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG =α,则∠CFG 等于______(用含α的式子表示).30.解不等式-3+3+121-3-18-xxx x⎧≥⎪⎨⎪<⎩()【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.C4.B5.A6.B7.C8.A9.B10.C11.B12.D13.C14.B15.C二、填空题16.m>-2【解析】【分析】首先解关于x和y的方程组利用m表示出x+y代入x+y>0即可得到关于m的不等式求得m的范围【详解】解:①+②得2x+2y=2m+4则x+y=m+2根据题意得m+2>0解得m>17.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C(32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大18.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得CD∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于A∠BCD=120°求得答案【详解】如图过19.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义20.(﹣1﹣1)【解析】试题解析:点B的横坐标为1-2=-1纵坐标为3-4=-1所以点B的坐标是(-1-1)【点睛】本题考查点的平移规律;用到的知识点为:点的平移左右平移只改变点的横坐标左减右加;上下平21.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=422.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D23.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【24.-3【解析】分析:解出已知方程组中xy的值代入方程x+2y=k即可详解:解方程组得代入方程x+2y=k得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义25.012【解析】【分析】先解不等式确定不等式的解集然后再确定其非负整数解即可得到答案【详解】解:解不等式得:∵∴∴的非负整数解为:012故答案为:012【点睛】本题主要考查了二次根式的应用及一元一次不三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:24 23m nm n-=⎧⎨-=⎩①②②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.2.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①②∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 3.C解析:C【解析】【分析】首先可以求出线段BC 的长度,然后利用中点的性质即可解答.【详解】∵表示25C ,B , 5,∵点C 是AB 的中点,则设点A 的坐标是x ,则5∴点A 表示的数是5故选C .【点睛】本题主要考查了数轴上两点之间x 1,x 2的中点的计算方法.4.B解析:B【解析】分析:先根据平行线的性质得出∠2+∠BAD =180°,再根据垂直的定义求出∠2的度数. 详解:∵直线a ∥b ,∴∠2+∠BAD =180°.∵AC ⊥AB 于点A ,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B .点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.5.A解析:A【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.6.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 7.C解析:C【解析】【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数). 故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50.故选:C .【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.8.A解析:A【解析】【分析】【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩, 故选D .考点:由实际问题抽象出二元一次方程组. 9.B解析:B【解析】【分析】把{x =1y =2代入x-ay=3,解一元一次方程求出a 值即可. 【详解】∵{x =1y =2是关于x ,y 的二元一次方程x-ay=3的一个解, ∴1-2a=3解得:a=-1故选B.【点睛】本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数是方程的解,那么它一定满足这个方程.10.C解析:C【解析】试题解析:将x=5,y=b代入方程组得:10{53b ab+=-=,解得:a=12,b=2,故选C.考点:二元一次方程组的解.11.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.12.D解析:D【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.13.C解析:C【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.15.C解析:C【解析】【分析】直接根据不等式的性质进行分析判断即可得到答案.【详解】A .0a <,则a 是负数,56a a +<+可以看成是5<6两边同时加上a ,故A 选项成立,不符合题意;B .56a a -<-是不等式5<6两边同时减去a ,不等号不变,故B 选项成立,不符合题意;C .5<6两边同时乘以负数a ,不等号的方向应改变,应为:56a a >,故选项C 不成立,符合题意;D .65a a<是不等式5<6两边同时除以a ,不等号改变,故D 选项成立,不符合题意. 故选C .本题考查的实际上就是不等式的基本性质:不等式的两边都加上(或减去)同一个数(或式子)不等号的方向不变;不等式两边同乘以(或除以)同一个正数,不等号的方向不变;不等式两边同乘以(或除以)同一个负数,不等号的方向改变.二、填空题16.m>-2【解析】【分析】首先解关于x和y的方程组利用m表示出x+y代入x+y>0即可得到关于m的不等式求得m的范围【详解】解:①+②得2x+2y=2m+4则x+y=m+2根据题意得m+2>0解得m>解析:m>-2【解析】【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-=+⎧⎨+=⎩①②,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.17.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C (32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大解析:(1,3)或(5,1)【解析】【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:①如图1,当A平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点A的横坐标增大了1,纵坐标增大了2,平移后的B坐标为(1,3),②如图2,当B平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故答案为:(1,3)或(5,1)【点睛】本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.18.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得CD∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于A∠BCD=120°求得答案【详解】如图过解析:150°【解析】【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=120°,求得答案.【详解】如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=120°,∠BAE=90°,∴∠1=60°,∠2=90°,∴∠ABC=∠1+∠2=150°.故答案是:150o.【点睛】考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.19.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义解析:81【解析】【分析】根据平方根的定义即可求解.【详解】∵9的平方根为3±,,所以a=81【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.20.(﹣1﹣1)【解析】试题解析:点B的横坐标为1-2=-1纵坐标为3-4=-1所以点B的坐标是(-1-1)【点睛】本题考查点的平移规律;用到的知识点为:点的平移左右平移只改变点的横坐标左减右加;上下平解析:(﹣1,﹣1)【解析】试题解析:点B的横坐标为1-2=-1,纵坐标为3-4=-1,所以点B的坐标是(-1,-1).【点睛】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.21.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4解析:4;【解析】试题解析:把21xy=⎧⎨=⎩代入方程组得:25{21a bb a++=①=②,①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,22.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.23.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【解析:【解析】【分析】先根据∠1=55°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出结论【详解】解:∵AB⊥BC,∠1=55°,∴∠3=90°-55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等。
(必考题)七年级数学上册第一单元《有理数》-填空题专项经典题(含答案解析)(1)
一、填空题1.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A,B对应的数分别为0和1-,若ABC绕着顶点顺时针方向在数轴上翻转1次后,点C所对应的数为1,则再翻转3次后,点C所对应的数是________.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C在数轴上,∴点C对应的数是1134+⨯=.故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.2.比较大小:364--_____________()6.25--.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小解析:<【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】∵3276 6.7544--=-=-,()6.25 6.25--=,由于 6.75 6.25-<,∴36( 6.25)4--<--,故答案为:<.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.3.一个数的25是165-,则这个数是______.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1解析:−8【分析】把这个数看成单位“1”,它的25对应的数量是165-,求这个数用除法【详解】(165-)÷25=−8.故答案为−8.【点睛】此题考查有理数的除法,解题关键在于这个数看成单位“1”4.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.5×108【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n是正数;当原数解析:5×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.6.给下面的计算过程标明运算依据:(+16)+(-22)+(+34)+(-78)=(+16)+(+34)+(-22)+(-78)①=[(+16)+(+34)]+[(-22)+(-78)]②=(+50)+(-100)③=-50.④①______________;②______________;③______________;④______________.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则,相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).依此即可求解.【详解】第①步,交换了加数的位置;第②步,将符号相同的两个数结合在一起;第③步,利用了有理数加法法则;第④步,同样应用了有理数的加法法则.故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.【点睛】考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算.7.在数轴上,距离原点有2个单位的点所对应的数是________.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x 由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型【分析】由绝对值的定义可知:|x |=2,所以x =±2.【详解】设距离原点有2个单位的点所对应的数为x ,由绝对值的定义可知:|x |=2,∴x =±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.8.已知0a >,0b <,b a >,比较a ,a -,b ,b -四个数的大小关系,用“<”把它们连接起来:_______.b <-a <a <-b 【分析】先在数轴上标出ab-a-b 的位置再比较即可【详解】解:∵a >0b <0|b|>|a|∴b <-a <a <-b 故答案为:b <-a <a <-b 【点睛】本题考查了数轴相反数和有理数的大小解析:b <-a <a <-b【分析】先在数轴上标出a 、b 、-a 、-b 的位置,再比较即可.【详解】解:∵a >0,b <0,|b|>|a|,∴b <-a <a <-b ,故答案为:b <-a <a <-b .【点睛】本题考查了数轴,相反数和有理数的大小比较,能知道a 、b 、-a 、-b 在数轴上的位置是解此题的关键.9.化简﹣|+(﹣12)|=_____.﹣12;【分析】利用绝对值的定义化简即可【详解】﹣|+(﹣12)|=故答案为﹣12【点睛】本题考查了绝对值化简熟练掌握绝对值的定义是解题关键解析:﹣12;【分析】利用绝对值的定义化简即可.【详解】﹣|+(﹣12)|=|12|12--=-故答案为﹣12.【点睛】本题考查了绝对值化简,熟练掌握绝对值的定义是解题关键.10.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________.-4【解析】试题【解析】试题两点的距离为8,则点A 、B 距离原点的距离是4,∵点A ,B 互为相反数,A 在B 的右侧,∴A 、B 表示的数是4,-4.11.绝对值小于100的所有整数的积是______.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.在一次区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______ .85【解析】分析:先求出总分再求出平均分即可解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+(−2)+(−6)+8=40(分)∴该校8名参赛学生的平均成绩是80+(40解析:85【解析】分析:先求出总分,再求出平均分即可.解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+[(−2)+(−6)+8]=40(分),∴该校8名参赛学生的平均成绩是80+(40÷8)=85(分).故答案为85.点睛:本题考查的是正数和负数,熟知正数和负数的概念是解答此题的关键.13.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.14.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案.15.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a3•a4=(a•a•a)•(a•a•a•a)=__;(2)归纳、概括:a m•a n=__;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=__.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即解析:a7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a相乘可以写成a7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决;(3)运用以上的结论,可以知道:x m+n=x m•x n,即可解决问题.【详解】解:(1)根据材料规律可得a3•a4=(a•a•a)•(a•a•a•a)=a7;(2)归纳、概括:a m•a n=m na a a a⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=x m•x n=4×9=36.故答案为:a7,a m+n,36.【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.16.计算(﹣1)÷6×(﹣16)=_____.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键解析:136.【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16),=-16×(−16),=1 36.故答案为1 36.【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.17.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm 的圆,它的周长约31.4 cm ,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.18.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方 乘法 加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.19.计算:3122--=__________;︱-9︱-5=______.-24【分析】直接根据有理数的减法运算即可;先运算绝对值再进行减法运算【详解】=-=-2;︱-9︱-5==9-5=4故答案为-24【点睛】本题考查了绝对值的化简以及有理数的运算解题的关键是掌握有理数解析:-2 4【分析】直接根据有理数的减法运算即可;先运算绝对值,再进行减法运算.【详解】3122--=-42=-2;︱-9︱-5==9-5=4, 故答案为-2,4.【点睛】本题考查了绝对值的化简以及有理数的运算,解题的关键是掌握有理数的运算法则.20.已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab<0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:解析:±8【分析】首先根据绝对值的性质得出两数,进而分析得出答案.【详解】设|a|=5,|b|=3,则a=±5,b=±3,∵ab<0,∴当a=5时,b=-3,∴5-(-3)=8;当a=-5时,b=3,∴-5-3=-8.故答案为:±8.【点睛】本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.21.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a (a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.22.33278.5 4.51.67--=____(精确到千分位)【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则解析: 2.559-【分析】根据有理数的运算法则进行运算,再精确到精确到千分位.【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-.【点睛】此题主要考查近似数,解题的关键是熟知有理数的运算法则.23.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5)=[____]+46=_____+46=____.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.24.数轴上A 、B 两点所表示的有理数的和是 ________.-1【解析】由数轴得点A 表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.25.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.26.数轴上表示 1 的点和表示﹣2 的点的距离是_____.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.27.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.28.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.-、9,现以点C为29.一条数轴上有点A、B、C,其中点A、B表示的数分别是16A B'=,则C点表示的折点,将放轴向右对折,若点A对应的点A'落在点B的右边,若3数是______.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B'=可得点A'为12,再根据A与A'以C为折点对折,即C为A,A'中点即可求解.【详解】解:翻折后A'在B右侧,且3A B'=.所以点A'为12,∵A与A'以C为折点对折,则C为A,A'中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.30.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,。
(必考题)七年级数学上册第一单元《有理数》-选择题专项经典测试(专题培优)(1)
一、选择题1.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个B .2个C .3个D .4个A 解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】①a -不一定是负数,故该说法错误;②||a 一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.2.计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.3.有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a < C解析:C【分析】根据数轴可得0a b <<且a b >,再逐一分析即可. 【详解】 由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C .【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.4.计算-2的结果是( ) A .0B .-2C .-4D .4A解析:A【详解】解:因为|-2|-2=2-2=0,故选A . 考点:绝对值、有理数的减法5.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0C 解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .6.6-的相反数是( )A .6B .-6C .16D .16- B 解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B .7.若1<x <2,则|2||1|||21x x x x x x---+--的值是( )A .﹣3B .﹣1C .2D .1D解析:D【分析】 在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】 本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.8.当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( )A .海拔23米B .海拔﹣23米C .海拔175米D .海拔129米B 解析:B【解析】由已知,当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,则应该记作“海拔-23米”,故选B.9.下列四个式子,正确的是( ) ①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④B .①C .①②D .②③D 解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=- ⎪⎝⎭, 33.83 3.754>=, ∴33.834⎛⎫-<-+ ⎪⎝⎭,故①错误;②∵33154420⎛⎫--== ⎪⎝⎭,21335502⎛⎫--== ⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.10.如果向右走5步记为+5,那么向左走3步记为( )A.+3 B.-3 C.+13D.-13B解析:B【解析】试题用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,由此得:如果向右走5步记为+5,那么向左走3步记为﹣3.故选B.11.若a,b互为相反数,则下面四个等式中一定成立的是()A.a+b=0 B.a+b=1C.|a|+|b|=0 D.|a|+b=0A解析:A【解析】a,b互为相反数0a b⇔+=,易选B.12.绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C .13.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .-12 B .12 C .56 D .56A 解析:A【分析】根据有理数加减法法则计算即可得答案.【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A .【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.14.若2020M M +-=+,则M 一定是( )A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数B解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M +|-20|=|M |+|20|,∴M≥0,为非负数.故答案为B .【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.15.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2B .1,3C .4,2D .4,3A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.16.下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 17.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B B解析:B【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.18.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是()A.28 B.34 C.45 D.75C解析:C【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a- 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a,则上边的数是a - 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C选项是正确的.【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.19.如果|a|=-a,下列成立的是()A.-a一定是非负数B.-a一定是负数C.|a|一定是正数D.|a|不能是0A解析:A【分析】根据绝对值的性质确定出a的取值范围,再对四个选项进行逐一分析即可.【详解】∵|a|=-a,∴a≤0,A、正确,∵|a|=-a,∴-a≥0;B、错误,-a是非负数;C、错误,a=0时不成立;D、错误,a=0时|a|是0.故选A.【点睛】本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.20.下列说法中,正确的是()A.正数和负数统称有理数B .既没有绝对值最大的数,也没有绝对值最小的数C .绝对值相等的两数之和为零D .既没有最大的数,也没有最小的数D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A 不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B 不合题意; 绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C 不合题意;既没有最大的数,也没有最小的数,正确,故选项D 符合题意.故选:D .【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键. 21.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0B 解析:B【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.22.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C不符合题意,2-=,故选项D不符合题意,(1)1故选:A.【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.23.已知a、b在数轴上的位置如图所示,将a、b、-a、-b从小到排列正确的一组是()A.-a<-b<a<b B.-b<-a<a<bC.-b<a<b<-a D.a<-b<b<-a D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a<0<b,且|a|>b,∴a<-b<b<-a,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.24.下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3A.1 B.2 C.3 D.4C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.25.下列说法正确的是()A.近似数5千和5000的精确度是相同的B.317500精确到千位可以表示为31.8万,也可以表示为5⨯3.1810C.2.46万精确到百分位D.近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A.近似数5千精确度到千位,近似数5000精确到个位,所以A选项错误;B.317500精确到千位可以表示为31.8万,也可以表示为5⨯,所以B选项正确;3.1810C.2.46万精确到百位,所以C选项错误;D.近似数8.4和0.7的精确度是一样的,所以D选项错误.故选B.【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.26.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.27.已知︱x︱=4,︱y︱=5且x>y,则2x-y的值为()A.-13 B.+13 C.-3或+13 D.+3或-1C解析:C【分析】由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.28.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个B .2个C .3个D .4个A解析:A【分析】 根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.29.13-的倒数的绝对值( )A.-3 B.13-C.3 D.13C解析:C 【分析】首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】13-的倒数为-3,-3绝对值是3,故答案为:C.【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.30.用计算器求243,第三个键应按()A.4 B.3 C.y x D.=C 解析:C【解析】用计算器求243,按键顺序为2、4、y x、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.。
人教版七年级数学知识点试题精选-度分秒的换算
第1页(共25页)页)七年级上册度分秒的换算一.选择题(共20小题)1.∠1=45゜24ʹ,∠2=45.3゜,∠3=45゜18ʹ,则(,则( ) A .∠1=∠2 B .∠2=∠3 C .∠1=∠3 D .以上都不对 2.0.25°0.25°==( )ʹ=( )ʺ. A .25ʹ,2500ʺ B .15ʹ,900ʺ C .()ʹ,()ʺ D .15ʹ,0.5ʺ3.把18°15ʹ36ʺ化为用度表示,下列正确的是(化为用度表示,下列正确的是( ) A .18.15° B .18.16° C .18.26° D .18.36° 4.将8.35°用度、分、秒表示正确的是(用度、分、秒表示正确的是( ) A .8°20ʹ B .8°21ʹ C .8°3ʹ5ʺ D .8°30ʹ5ʺ 5.40°15ʹ的是(是( )A .20°B .20°7ʹC .20°8ʹD .20°7ʹ30ʺ 6.4°32ʹ35ʺ×6的结果为(的结果为( )A .28°27ʹ30ʺB .27°15ʹ30ʺC .24°200ʹD .24°32ʹ35ʺ 7.38.33°可化为(可化为( ) A .38°30ˊ3ʺ38°30ˊ3ʺ B B .38°20ˊ3ʺ38°20ˊ3ʺ C C .38°19ˊ8ʺ38°19ˊ8ʺ D D .38°19ˊ48ʺ8.若∠1=25°12ʹ,∠2=25.12°,∠3=25.2°,则下面说法正确的是(,则下面说法正确的是( ) A .∠1=∠2 B .∠2=∠3C .∠1=∠3D .∠1,∠2,∠3互不相等9.把一个周角7等分,每一份是(精确到分)( ) A .51°28ʹ B .51°27ʹ C .51°26ʹ D .51°25ʹ10.若∠A=20°18ʹ,∠B=20°15ʹ30〞,∠C=20.25°,则(,则( )A .∠A >∠B >∠C B .∠B >∠A >∠C C .∠A >∠C >∠BD .∠C >∠A >∠B 11.下列计算错误的是(.下列计算错误的是( ) A .0.25°=900ʺ B .1.5°=90ʹ C .1000ʺ=()°D .125.45°125.45°=1254.=1254.=1254.5ʹ5ʹ 12.把15°48ʹ36ʺ化成以度为单位是(化成以度为单位是( )A.15.8° B.15.4836° C.15.81° D.15.36°13.如图∠1=35°19ʹ,则∠2的度数为(的度数为( )A.144°41ʹ B.144°81ʹ C.54°41ʹ D.54°81ʹ14.已知:∠A=25°12ʹ,∠B=25.12°,∠C=25.2°,下列结论正确的是(,下列结论正确的是( ) A.∠A=∠B B.∠B=∠CC.∠A=∠C D.三个角互不相等15.如图所示:若∠DEC=50°17ʹ,则∠AED=( )129°443ʹ B.129°83ʹ C.130°43ʹ D.128°43ʹA.129°16.已知∠1=37°36ʹ,∠2=37.36°,则∠1与∠2的大小关系为(的大小关系为( ) A.∠1<∠2 B.∠1=∠2 C.∠1>∠2 D.无法比较17.下列计算错误的是(.下列计算错误的是( )A.1.9°=6840ʺ B.90ʹ=1.5°C.32.15°=32°15ʹ D.2700ʺ=45ʹ18.已知∠1=27°18ʹ,∠2=27.18°,∠3=27.3°,则下列说法正确的是(,则下列说法正确的是( ) A.∠1=∠3 B.∠1=∠2 C.∠1<∠2 D.∠2=∠319.下列关系式正确的是(.下列关系式正确的是( )35°5ʹ D D.35.5°<35°5ʹA.35.5°=35°5ʹ B.35.5°=35°50ʹ35.5°=35°50ʹ C C.35.5°>35°5ʹ20.将28°42ʹ31ʺ保留到“ʹ”为(为( )A.28°42ʹ B.28°43ʹ C.28°42ʹ30ʺ D.29°00ʹ二.填空题(共20小题)21.82°10ʹ×5= ,(15)°= 度 分.22.46度15分= °.23.168°28ʹ31ʺ﹣148°46ʹ57ʺ= . 24.计算23°53ʹ×3+10107°43ʹ7°43ʹ÷5= . 25.计算:77°53ʹ26ʺ+33.3°33.3°== . 26.单位换算:38.9°38.9°== 度 分. 27.36.6°36.6°== ° ʹ.28.计算:52°25ʹ+39°36ʹ28ʺ= . 29.32°46ʹ30ʺ×4= . 30.8°8°18'=18'= °. 31.填空:10°20ʹ24ʺ= °.32.计算:①33°52ʹ+21°54ʹ= ;②36°27ʹ×3= . 33.将16.8°换算成度、分、秒的结果是换算成度、分、秒的结果是 . 34.90°﹣25°25ʹ25ʺ= . 35.(1)25.5°25.5°== ° ʹ; (2)13.26°13.26°== ° ʹ ʺ; (3)45°12ʹ= °; (4)63°38ʹ15ʺ= °.36.1.25°1.25°== ʹ= ʺ;1800ʺ= ʹ= °.37.把34.27°用度、分、秒表示,应为用度、分、秒表示,应为 ° ʹ ʺ. 38.计算:33.21°33.21°== ° ʹ ʺ. 39.(1)15°15°15'12''=15'12''= ; (2)30.26°30.26°== ° ' ''. 40.180°﹣60°56ʹ4ʺ= .三.解答题(共10小题) 41.计算下列各题: (1)150°19ʹ42ʺ+26°40ʹ28ʺ (2)33°15ʹ16ʺ×5. 42.计算:23°25ʹ24ʺ×7. 43.计算:①96°﹣18°26ʹ59ʹ②83°46ʹ+52°39ʹ16ʺ③20°30ʹ×8④105°24ʹ15ʺ÷344.计算:(1)28°32ʹ46ʺ+15°36ʹ48ʺ(2)﹣42÷(﹣4)×﹣0.25×(﹣12)+|﹣5|+|﹣(3)x﹣=2﹣(4)﹣=.45.按要求完成下列各小题:(1)计算:100°+9°20ʹ﹣89°40ʹ30ʺ(2)当(x﹣3)2+|y+2|=0时,求代数式的值. 46.计算:(1)22°18ʹ×5;(2)90°﹣57°23ʹ27ʺ.47.如图,(1)若∠1=25°,∠2=26°,则∠ABC= °;(2)若∠1=25°26ʹ,∠2=26°13ʹ,则∠ABC= ° ʹ; (3)若∠1=25°,∠ABC=52°,则∠2= °;(4)若∠1=24°26ʹ,∠ABC=53°10ʹ,则∠2= ° ʹ.48.计算:107°43ʹ÷5.49.计算:(1)23°36ʹ+66°24ʹ;(2)180°﹣132°4ʹ;(3)(43°12ʹ÷2﹣10°5ʹ)×3. 50.计算(1)34°25ʹ20ʺ×3+35°42ʹ (2)﹣1=.七年级上册度分秒的换算参考答案与试题解析一.选择题(共20小题)1.∠1=45゜24ʹ,∠2=45.3゜,∠3=45゜18ʹ,则(,则( ) A .∠1=∠2 B .∠2=∠3 C .∠1=∠3 D .以上都不对 【分析】把45.3゜化成度分秒的形式,即可得到答案. 【解答】解:∠2=45.3゜=45°18ʹ, ∵∠3=45゜18ʹ, ∴∠2=∠3, 故选:B .【点评】此题主要考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.2.0.25°0.25°==( )ʹ=( )ʺ. A .25ʹ,2500ʺ B .15ʹ,900ʺ C .()ʹ,()ʺ D .15ʹ,0.5ʺ【分析】根据1度等于60分,1分等于60秒,由大单位转换成小单位乘以60,按此转化即可.【解答】解:0.25°0.25°==(0.25×60)ʹ=15ʹ=(15×60)ʺ=900ʺ. 故选故选B . 【点评】本题主要考查了度、分、秒之间的换算,相对比较简单,注意以60为进制.3.把18°15ʹ36ʺ化为用度表示,下列正确的是(化为用度表示,下列正确的是( ) A .18.15° B .18.16° C .18.26° D .18.36°【分析】根据1度等于60分,1分等于60秒,18°15ʹ36ʺ由小单位转换成大单位除以60,按此转化即可.【解答】解:∵36ʺ÷60=0.6ʹ,0.6ʹ÷60=0.01°, 15ʹ÷60=0.25°,∴18°15ʹ36ʺ=18°+0.25°+0.01°0.01°=18.26°=18.26° 故选:C ..【点评】本题主要考查的是度、分、秒的换算,相对比较简单,注意以60为进制即可.4.将8.35°用度、分、秒表示正确的是(用度、分、秒表示正确的是( ) A .8°20ʹ B .8°21ʹ C .8°3ʹ5ʺ D .8°30ʹ5ʺ【分析】进行度、分、秒的转化运算,注意以60为进制.【解答】解:根据角的换算可得8.35°8.35°=8°=8°+0.35×60ʹ =8°+21ʹ =8°21ʹ. 故选B .【点评】此题主要考查度、分、秒的转化运算,属于基础题,相对比较简单,注意以60为进制,要一步一步运算,不要急于求成.5.40°15ʹ的是(是( )A .20°B .20°7ʹC .20°8ʹD .20°7ʹ30ʺ【分析】度数乘以一个数,则用度、分、秒分别乘以这个数,秒的结果满60则转化为分,分的结果满60则转化为度.【解答】解:40°15ʹ×=40°×+15ʹ×=20°7ʹ30ʺ. 故选D .【点评】主要考查了角的运算.要掌握其运算方法.计算乘法时,秒满60时转化为分,分满60时转化为度.6.4°32ʹ35ʺ×6的结果为(的结果为( )A .28°27ʹ30ʺB .27°15ʹ30ʺC .24°200ʹD .24°32ʹ35ʺ【分析】根据度分秒的乘法,从小的单位乘,满60 时向上一单位近1,可得答案.【解答】解:4°32ʹ35ʺ×6=24°192ʹ210ʺ=27°15ʹ30ʺ, 故选:B .【点评】本题考查了度分秒的换算,利用了度分秒的乘法,从小的单位乘,满60 时向上一单位近1.7.38.33°可化为(可化为( )A .38°30ˊ3ʺ38°30ˊ3ʺB B .38°38°202020ˊ3ʺˊ3ʺˊ3ʺC C .38°19ˊ8ʺ38°19ˊ8ʺD D .38°19ˊ48ʺ【分析】进行度、分、秒的转化运算,注意以60为进制. 【解答】解:38.33°=38°19ʹ48ʺ 故选D .【点评】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.8.若∠1=25°12ʹ,∠2=25.12°,∠3=25.2°,则下面说法正确的是(,则下面说法正确的是( ) A .∠1=∠2 B .∠2=∠3C .∠1=∠3D .∠1,∠2,∠3互不相等【分析】据观察题中的角表示方法,只要把∠1转化为度的形式,即可比较三个角的大小.【解答】解:∵∠1=25°=25.2°,∴∠1=∠3. 故选C .【点评】本题主要考查比较的大小,把∠1转化为度的形式是解本题的关键.9.把一个周角7等分,每一份是(精确到分)( ) A .51°28ʹ B .51°27ʹ C .51°26ʹ D .51°25ʹ【分析】周角是360度,用这个数除以7,就可以得到.注意精确到分. 【解答】解:360°÷7≈51°26ʹ. 故选C .【点评】本题考查了度分秒的换算,本题考查了度分秒的换算,注意精确到某一位,注意精确到某一位,注意精确到某一位,即是对下一位进行四舍即是对下一位进行四舍五入.10.若∠A=20°18ʹ,∠B=20°15ʹ30〞,∠C=20.25°,则(,则( )A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B 【分析】∠A、∠B已经是度、分、秒的形式,只要将∠C化为度、分、秒的形式,即可比较大小.【解答】解:∵∠A=20°18ʹ,∠B=20°15ʹ30〞,∠C=20.25°=20°15ʹ,∴∠A>∠B>∠C.故选A.【点评】主要考查了两个角比较大小.在比较时要注意统一单位后再比较.11.下列计算错误的是(.下列计算错误的是( )A.0.25°=900ʺ B.1.5°=90ʹC.1000ʺ=()° D.125.45°=1254.5ʹ【分析】根据1°=60ʹ,1ʹ=60ʺ,进行转换,即可解答.【解答】解:A、0.25°=900ʺ,正确;B、1.5°=90ʹ,正确;C、1000ʺ=()°,正确;D.125.45°=7527ʹ,故本选项错误;故选:D.【点评】本题考查了度分秒之间的换算,解决本题的关键是掌握1°=60ʹ,1ʹ=60ʺ.12.把15°48ʹ36ʺ化成以度为单位是(化成以度为单位是( )A.15.8° B.15.4836° C.15.81° D.15.36°【分析】根据度、分、秒之间的换算关系求解.【解答】解:15°48ʹ36ʺ,=15°+48ʹ+(36÷60)ʹ,=15°+(48.6÷60)°,=15.81°.故选C.【点评】本题考查了度、分、秒之间的换算关系:1°=60ʹ,1ʹ=60ʺ,难度较小.13.如图∠1=35°19ʹ,则∠2的度数为(的度数为( )A.144°41ʹ B.144°81ʹ C.54°41ʹ D.54°81ʹ【分析】根据角的和差,可得答案.【解答】解:∠2=180°﹣∠1=180°﹣35°19ʹ=179°60ʹ﹣35°19ʹ=144°41ʹ,故选:A.【点评】本题考查了度分秒的换算,利用角的和差是解题关键.14.已知:∠A=25°12ʹ,∠B=25.12°,∠C=25.2°,下列结论正确的是(,下列结论正确的是( ) A.∠A=∠B B.∠B=∠CC.∠A=∠C D.三个角互不相等【分析】根据小单位华大单位除以进率,可得答案.【解答】解:∠A=35°12ʹ=25.2°=∠C>∠B,故选:C.【点评】本题考查了度分秒的换算,小单位华大单位除以进率是解题关键.15.如图所示:若∠DEC=50°17ʹ,则∠AED=( )129°443ʹ B.129°83ʹ C.130°43ʹ D.128°43ʹA.129°【分析】根据邻补角的定义得出得出∠AED=180°﹣∠DEC,代入求出即可.【解答】解:∵∠DEC=50°17ʹ,∴∠AED=180°﹣∠DEC =180°﹣50°17ʹ =129°43ʹ, 故选A .【点评】本题考查了邻补角,度、分、秒之间的换算的应用,能知道∠AED +∠DEC=180°是解此题的关键.16.已知∠1=37°36ʹ,∠2=37.36°,则∠1与∠2的大小关系为(的大小关系为( ) A .∠1<∠2 B .∠1=∠2 C .∠1>∠2 D .无法比较 【分析】根据1°等于60ʹ,把分化成度,比较大小可得答案. 【解答】解:∵37°36ʹ=37.6°, 37.6°>37.36°, ∴∠1>∠2. 故选:C .【点评】本题考查了角的大小比较和度分秒的换算,在比较角的大小时有时可把分化为度来进行比较.17.下列计算错误的是(.下列计算错误的是( ) A .1.9°=6840ʺ B .90ʹ=1.5°C .32.15°=32°15ʹD .2700ʺ=45ʹ【分析】根据大单位化小单位乘以进率,小单位化大单位除以进率,可得答案. 【解答】解:A 、1.9°=114ʹ=6840ʺ,故A 正确; B 、90ʹ=1.5°,故B 正确;C 、32.15°32.15°=32°=32°+0.15×60=32°9ʹ,故C 错误;D 、2700ʺ=45ʹ,故D 正确;故选:C .【点评】本题考查了度分秒的换算,本题考查了度分秒的换算,利用大单位化小单位乘以进率,利用大单位化小单位乘以进率,利用大单位化小单位乘以进率,小单位化大小单位化大单位除以进率是解题关键.18.已知∠1=27°18ʹ,∠2=27.18°,∠3=27.3°,则下列说法正确的是(,则下列说法正确的是( ) A .∠1=∠3 B .∠1=∠2 C .∠1<∠2 D .∠2=∠3 【分析】先表示成度、分、秒的形式,再逐个判断即可.【解答】解:∵∠1=27°1=27°18ʹ18ʹ,∠2=27.18°=27°10ʹ48ʺ,∠3=27.3°=27°18ʹ, A 、∠1=∠3,故本选项正确; B 、∠1≠∠2,故本选项错误; C 、∠1>∠2,故本选项错误; D 、∠2≠∠3,故本选项错误;故选A .【点评】本题考查了度、分、秒之间的换算的应用,能正确进行度、分、秒之间的换算是解此题的关键,注意:1°=60ʹ,1ʹ=60ʺ.19.下列关系式正确的是(.下列关系式正确的是( )A .35.5°=35°5ʹB .35.5°=35°50ʹ35.5°=35°50ʹC C .35.5°>35°5ʹ35°5ʹD D .35.5°<35°5ʹ 【分析】根据大单位化小单位乘以进率,可得答案. 【解答】解:A 、35.5°=35°30ʹ,35°30ʹ>35°5ʹ,故A 错误; B 、35.5°=35°30ʹ,35°30ʹ<35°50ʹ,故B 错误; C 、35.5°=35°30ʹ,35°30ʹ>35°5ʹ,故C 正确; D 、35.5°=35°30ʹ,35°30ʹ>35°5ʹ,故D 错误; 故选:C .【点评】本题考查了度分秒的换算,大单位化成效单位乘以进率是解题关键.20.将28°42ʹ31ʺ保留到“ʹ”为(为( )A .28°42ʹB .28°43ʹC .28°42ʹ30ʺD .29°00ʹ 【分析】根据小单位化大单位除以进率,可得答案. 【解答】解:28°42ʹ31ʺ=28°42.5ʹ≈28°43ʹ, 故选:B .【点评】本题考查了度分秒的换算,利用小单位化大单位除以进率是解题关键.二.填空题(共20小题)21.82°10ʹ×5= 410°50ʹ ,(15)°= 15 度 40 分.【分析】把度和分分别乘以5,即可得出答案.把()°化成分,即可得出答案.【解答】解:∵82°×5=410°,10ʹ×5=50ʹ,∴82°10ʹ×5=410°50ʹ,∵()°=(×60)ʹ=40ʹ,∴(15)°=15度40分,故答案为:410°50ʹ,15,40.【点评】本题考查了度分秒之间的换算的应用,注意:1°=60ʹ,1ʹ=60ʺ,1ʺ=()ʹ,1ʹ=()°.22.46度15分= 4.25 °.【分析】先把15分化成度,即可得出答案.【解答】解:∵15分=()度=0.25°,∴46度15分=4.25°故答案为:4.25.【点评】本题考查了度分秒之间的换算的应用,注意:1°=60ʹ,1ʹ=60ʺ,1ʹ=()°,1ʺ=()ʹ.23.168°28ʹ31ʺ﹣148°46ʹ57ʺ= 19°41ʹ34ʺ .【分析】根据度、分、秒的进制为60直接计算即可.【解答】解:168°28ʹ31ʺ﹣148°46ʹ57ʺ=19°41ʹ34ʺ.【点评】本题考查了角的运算,涉及到度、分、秒的进制,认真计算即可得解.24.计算23°53ʹ×3+107°43ʹ÷5= 93°11ʹ36ʺ .【分析】度与分分别乘以3或除以5,然后把所得的结果相加,度与度,分与分,秒与秒对应相加,分的结果若满60,则转化为度,秒的结果若满60,则转化为分.【解答】解:原式=69°159ʹ+21°32ʹ36ʺ=90°191ʹ36ʺ=93°11ʹ36ʺ.【点评】此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.分与分相加结果满60ʹ,转化为1°.25.计算:77°53ʹ26ʺ+33.3°33.3°== 111°11ʹ26ʺ .【分析】先将33.3°转化为33°18ʹ,然后度与度、分与分、秒和秒对应相加,秒的结果满60转化为分,分的结果满60转化为度.【解答】解:77°53ʹ26ʺ+33.3°=77°53ʹ26ʺ+33°18ʹ=110°71ʹ26ʺ=111°11ʹ26ʺ. 故答案为:111°11ʹ26ʺ.【点评】本题考查度分秒的换算,属于基础题,比较简单,注意以60为进制即可.分与分相加得71ʹ,结果满60,转化为1°11ʹ.26.单位换算:38.9°38.9°== 38 度 54 分.【分析】根据度分秒是60进制,把0.9°乘以60进行计算即可得解. 【解答】解:∵0.9×60=54, ∴38.9°38.9°=38=38度54分. 故答案为:38,54.【点评】本题考查了度分秒的换算,是基础题,主要利用了度分秒是60进制.27.36.6°36.6°== 36 ° 36 ʹ.【分析】进行度、分、秒的转化运算,注意以60为进制. 【解答】解:36.6°=36° 36ʹ. 故答案为:36,36.【点评】此类题考查了度、分、秒的转化运算,相对比较简单,注意以60为进制即可.28.计算:52°25ʹ+39°36ʹ28ʺ= 92°1ʹ36ʺ .【分析】根据度分秒的加法,相同单位相加,满60时向上以单位近1,可得答案.【解答】解:52°25ʹ+39°36ʹ28ʺ=91°61ʹ36ʺ=92°1ʹ36ʺ, 故答案为:92°1ʹ36ʺ.【点评】本题考察了度分秒的换算,度分秒的加法,相同单位相加,满60时向上以单位近1.29.32°46ʹ30ʺ×4= 131°6ʹ .【分析】把度、分、秒分别乘以4,先看秒的结果若满60转化为分,再看分的结果若满60,则转化为度.【解答】解:32°46ʹ30ʺ×4=128°184ʹ120ʺ=131°6ʹ, 故答案为:131°6ʹ.【点评】此类题是进行度、分、秒的乘法计算,相对比较简单,注意以60为进制即可.30.8°8°18'=18'= 8.3 °.【分析】先把18ʹ除以60,再把所得的结果加到度上即可. 【解答】解:∵18ʹ÷60=0.3° ∴8°8°18'=8.3°18'=8.3°. 故答案为8.3.【点评】此类题是进行度、分之间的换算,相对比较简单,注意以60为进制即可.31.填空:10°20ʹ24ʺ= 10.34 °.【分析】根据大的单位化小的单位乘以进率,根据大的单位化小的单位乘以进率,小的单位化大的单位除以进率,小的单位化大的单位除以进率,小的单位化大的单位除以进率,可可得答案.【解答】解:10°20ʹ24ʺ=10°20.4ʹ=10.34°, 故答案为:10.34.【点评】本题考查了度分秒的换算,利用了小的单位化大的单位除以进率.32.计算:①33°52ʹ+21°54ʹ= 55°46ʹ ;②36°27ʹ×3= 109°21ʹ .【分析】①利用度加度,分加分,再进位即可;②利用度和分分别乘以3,再进位.【解答】解:①33°52ʹ+21°54ʹ=54°106ʹ=55°46ʹ;②36°27ʹ×3=108°81ʹ=109°21ʹ; 故答案为:55°46ʹ;109°21ʹ.【点评】此题主要考查了度分秒的计算,关键是掌握在进行度、分、秒的运算时也应注意借位和进位的方法.33.将16.8°换算成度、分、秒的结果是换算成度、分、秒的结果是 16°48ʹ .【分析】根据将高级单位化为低级单位时,乘以60,即可求得答案. 【解答】解:16.8°16.8°=16°=16°+0.8×60ʹ=16°+48ʹ=16°48ʹ. 故答案为:16°16° 48'48'. 【点评】此类题考查了进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.34.90°﹣25°25ʹ25ʺ= 64°34ʹ35ʺ .【分析】根据度分秒的减法,可得答案.【解答】解:原式=89°59ʹ60ʺ﹣25°25ʹ25ʺ=64°34ʹ35ʺ, 故答案为:64°34ʹ35ʺ.【点评】本题考查了度分秒的换算,不够减时向上一单位借一当60再减.35.(1)25.5°25.5°== 25 ° 30 ʹ; (2)13.26°13.26°== 13 ° 15 ʹ 36 ʺ; (3)45°12ʹ= 45.2 °;(4)63°38ʹ15ʺ= 63.2575 °.【分析】(1)根据大单位化小单位乘以进率,可得答案; (2)根据大单位化小单位乘以进率,可得答案;(3)根据小单位化大单位除以进率,可得答案; (4)根据小单位化大单位除以进率,可得答案. 【解答】解:(1)25.5°═25°+0.5×60=25° 30ʹ; (2)13.26°13.26°=13°=13°+0.26×60=13°15ʹ+0.6×60=13° 15ʹ36ʺ; (3)45°12ʹ=45°+12÷60=45.2°;(4)63°38ʹ15ʺ=63°38ʹ+15÷60=63°+38.15÷60=63.2575°, 故答案为:25,30;13,15,26;45.2;63.2575.【点评】本题考查了度分秒的换算,本题考查了度分秒的换算,熟记大单位化小单位乘以进率,熟记大单位化小单位乘以进率,熟记大单位化小单位乘以进率,小单位化大小单位化大单位除以进率是解题关键.36.1.25°1.25°== 75 ʹ= 4500 ʺ;1800ʺ= 30 ʹ= 0.5 °.【分析】1°=60ʹ,1分=60秒,即1ʹ=60ʺ.将高级单位化为低级单位时,将高级单位化为低级单位时,乘以乘以60,反之,将低级单位转化为高级单位时除以60. 【解答】解:1.25°=75ʹ=4500ʺ; 1800ʺ=30ʹ=0.5°,故答案为:75;4500;30;0.5.【点评】此题主要考查了度分秒的换算,关键是掌握1°=60ʹ,1分=60秒,即1ʹ=60ʺ.37.把34.27°用度、分、秒表示,应为用度、分、秒表示,应为 34 ° 16 ʹ 12 ʺ.【分析】根据1度=60分,即1°=60ʹ,1分=60秒,即1ʹ=60ʺ进行计算即可. 【解答】解:34.27°=34°16ʹ12ʺ. 故答案为:34;16;12.【点评】此题主要考查了度、分、秒的换算,关键是掌握角的度量单位度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.38.计算:33.21°33.21°== 33 ° 12 ʹ 36 ʺ.【分析】让0.21°乘60变为分,得到的小数再乘以60变为秒即可. 【解答】解:33.21°=33°12.6ʹ=33° 12ʹ36“.故答案是:33;12;36.【点评】本题考查了度分秒的换算.此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.分与分相加得106ʹ,结果满60,转化为1°46ʹ.39.(1)15°15°15'12''=15'12''= 15.25° ; (2)30.26°30.26°== 30 ° 15 ' 36 ''. 【分析】(1)将低级单位转化为高级单位时除以进率,依此即可求解; (2)将高级单位化为低级单位时乘以进率,依此即可求解. 【解答】解:(1)15°15°15'12''=15.2515'12''=15.25°; (2)30.26°30.26°=30°=30°=30°15'36''15'36''. 故答案为:15.25°;30,15,36.【点评】此题考查了度、分、秒的换算,具体换算可类比时钟上的时、分、秒来说明角的度量单位度、分、秒之间也是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法.40.180°﹣60°56ʹ4ʺ= 119°3ʹ56ʺ .【分析】根据度分秒的减法,相同单位相减,不够减时向上一单位借1当60再减,可得答案.【解答】解:180°﹣60°56ʹ4ʺ =179°59ʹ60ʺ﹣60°56ʹ4ʺ =119°3ʹ56ʺ,故答案为:119°3ʹ56ʺ.【点评】本题考查了度分秒的换算,度分秒的减法,相同单位相减,不够减时向上一单位借1当60再减.三.解答题(共10小题) 41.计算下列各题:(1)150°19ʹ42ʺ+26°40ʹ28ʺ(2)33°15ʹ16ʺ×5.【分析】(1)把度、分、秒分别计算,即可得出答案;(2)把度、分、秒分别乘以5,即可求出答案.【解答】解:(1)原式=150°+26°+19ʹ+40ʹ+42ʺ+28ʺ=190°59ʹ70ʺ=180°10ʺ;(2)原式=33°×5+15ʹ×5+16ʺ×5=165°75ʹ80ʺ=166°16ʹ20ʺ.【点评】本题考查了度分秒之间的换算的应用,注意:1°=60ʹ,1ʹ=60ʺ,1ʹ=()°,1ʺ=()ʹ.42.计算:23°25ʹ24ʺ×7.【分析】利用度分秒分别乘以7,再进位即可.【解答】解:23°25ʹ24ʺ×7,=161°175ʹ168ʺ,=163°57ʹ48ʺ.【点评】此题主要考查了度分秒的计算,关键掌握在进行度、分、秒的运算时应注意满60向前进1的进位的方法.43.计算:①96°﹣18°26ʹ59ʹ②83°46ʹ+52°39ʹ16ʺ③20°30ʹ×8④105°24ʹ15ʺ÷3【分析】①两个度数相减,被减数可借1°转化为60ʹ,借一分转化为60ʺ,再计算;②两个度数相加,度与度,分与分,秒与秒对应相加,分的结果若满60,则转化为度;③度数乘以一个数,则用度、分、秒分别乘以这个数,秒的结果满60则转化为分,分的结果满60则转化为度.④度数除以一个数,则用度、分、秒分别除以这个数,秒不够则从分中转化,分不够则从度中转化.【解答】解:①96°﹣18°26ʹ59ʹ=77°33ʹ1ʺ;②83°46ʹ+52°39ʹ16ʺ=136°25ʹ16ʺ;③20°30ʹ×8=164°;④105°24ʹ15ʺ÷3=35°8ʹ5ʺ.【点评】此类题考查了度、分、秒的减法、加法、乘法、除法计算,相对比较简单,注意以60为进制即可.44.计算:(1)28°32ʹ46ʺ+15°36ʹ48ʺ﹣5|(2)﹣42÷(﹣4)×﹣0.25×(﹣12)+|+|﹣(3)x﹣=2﹣(4)﹣=.【分析】(1)先度、分、秒分别计算,再满60进1即可;(2)先算乘方,再算乘除,最后算加减即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)先算除法,再去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)28°32ʹ46ʺ+15°36ʹ48ʺ=43°68ʹ94ʺ=44°9ʹ34ʺ;﹣5|(2)﹣42÷(﹣4)×﹣0.25×(﹣12)+|+|﹣=﹣16÷(﹣4)×+3+5=1+3+5=9;(3)方程两边都乘以10得:10x ﹣5(x ﹣1)=20﹣2(x +2),10x ﹣5x +5=20﹣2x ﹣4,10x ﹣5x +2x=20﹣4﹣5,7x=11,x=;(4)方程变形为:8x ﹣3﹣(25x ﹣4)=12﹣10x ,8x ﹣3﹣25x +4=12﹣10x ,8x ﹣25x +10x=12+3﹣4,﹣7x=11,x=﹣.【点评】本题考查了度、分、秒之间的换算,有理数的混合运算,解一元一次方程的应用,程的应用,能运用所学的知识进行计算是解此题的关键,能运用所学的知识进行计算是解此题的关键,能运用所学的知识进行计算是解此题的关键,注意:注意:注意:解一元一次方程解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化成1,有理数的混合运算要注意运算顺序,难度适中.45.按要求完成下列各小题:(1)计算:100°+9°20ʹ﹣89°40ʹ30ʺ(2)当(x ﹣3)2+|y +2|=0时,求代数式的值.【分析】(1)根据度分秒的加法,相同单位相加,再根据度分秒的减法,相同单位相减,不够减时向上一单位借1当60再减,可得答案;(2)根据非负数的和为零,可得每个非负数为零,可得x 、y 的值,再根据代数式求值,可得答案.【解答】解:(1)原式=109°20ʹ﹣89°40ʹ30ʺ=108°79ʹ60ʺ﹣89°40ʹ30ʺ=19°39ʹ30ʺ;(2)由(x﹣3)2+|y+2|=0,得x﹣3=0,y+2=0.解得x=3,y=﹣2.当x=3,y=﹣2时,==.【点评】本题考查了度分秒的换算,度分秒的加法,同一单位相加,满60时向上以单位近1,度分秒的减法,不够减时向上一单位借1当60再减.46.计算:(1)22°18ʹ×5;(2)90°﹣57°23ʹ27ʺ.【分析】(1)先让度、分、秒分别乘5,秒的结果若满60,转换为1分;分的结果若满60,则转化为1度.相同单位相加,满60,向前进1即可.(2)此题是度数的减法运算,注意1°=60ʹ即可.【解答】解:(1)22°18ʹ×5=110°90ʹ=111°30ʹ;(2)90°﹣57°23ʹ27ʺ=32°36ʹ33ʺ.【点评】度、分、秒的乘法计算,应让度、分、秒分别乘所给因数,看分或秒哪个满60,向前进1即可.进行度、分、秒的减法计算,相对比较简单,注意以60为进制即可.47.如图,(1)若∠1=25°,∠2=26°,则∠ABC= 51 °;(2)若∠1=25°26ʹ,∠2=26°13ʹ,则∠ABC= 51 ° 39 ʹ;(3)若∠1=25°,∠ABC=52°,则∠2= 27 °;(4)若∠1=24°26ʹ,∠ABC=53°10ʹ,则∠2= 28 ° 44 ʹ.【分析】(1)根据度分秒的加法,相同单位相加,满60时向上一单位近1,可得答案;(2)根据度分秒的加法,相同单位相加,满60时向上一单位近1,可得答案; (3)根据度分秒的减法,相同单位相减,不够减时向上一单位借一当60再减,可得答案;(4)根据度分秒的减法,相同单位相减,不够减时向上一单位借一当60再减,可得答案.【解答】解:(1)若∠1=25°,∠2=26°,则∠ABC=∠1+∠2=25°+26°26°=51°=51°; (2)若∠1=25°26ʹ,∠2=26°13ʹ,则∠ABC ═∠1+∠2=25°26ʹ+26°13ʹ=51°39ʹ;(3)若∠1=25°,∠ABC=52°,则∠2=∠ABC ﹣∠1=52°﹣25°25°=27°=27°; (4)若∠1=24°26ʹ,∠ABC=53°ABC=53°101010ʹʹ,则∠2=∠ABC ﹣∠1=53°10ʹ﹣24°26=28°44ʹ, 故答案为:51;51,39;27;28,44.【点评】本题考查了度分秒的换算,度分秒的加法,相同单位相加,满60时向上一单位近1;度分秒的减法,相同单位相减,不够减时向上一单位借一当60再减.48.计算:107°43ʹ÷5.【分析】根据度分秒的除法,从大单位算起,余下的化成下一单位再除,可得答案.【解答】解:107°43ʹ÷5=21°+(120ʹ+43ʹ)÷5=21°+32ʹ+180ʺ÷5=21°32ʹ36ʺ.【点评】本题考查了度分秒的换算,度分秒的除法,从大单位算起,余下的化成下一单位再除.49.计算:(1)23°36ʹ+66°24ʹ;(2)180°﹣132°4ʹ;(3)(43°12ʹ÷2﹣10°5ʹ)×3.【分析】类比与小数的计算方法,计算度分秒即可,注意满60进一,借一当60. 【解答】解:(1)23°36ʹ+66°24ʹ=89°60ʹ=90°;(2)180°﹣132°4ʹ=179°60ʹ﹣132°4ʹ=47°56ʹ;(3)(43°12ʹ÷2﹣10°5ʹ)×310°55ʹ)×3=(21°36ʹ﹣10°=11°31ʹ×3=33°93ʹ=34°33ʹ.【点评】此题考查度分秒的换算,注意度分秒之间的换算:1度=60分,1分=60秒.50.计算(1)34°25ʹ20ʺ×3+35°42ʹ(2)﹣1=.【分析】(1)根据度分秒的乘法,先从小单位算起,满60时向上一单位进1,根据度分秒的加法,相同单位相加,满60时向上一单位进1,可得答案;(2)根据方程的一般步骤,可得答案.【解答】解:(1)原式=102°75ʹ60ʺ+35°42ʹ=103°16ʹ+35°42ʹ=138°58ʹ.(2)两边都乘以6,得3(x+1)﹣6=2(2x﹣3).去括号,得3x +3﹣6=4x ﹣6,移项,得3x ﹣4x=﹣6﹣3+6,合并同类项,得﹣x=﹣3,系数化为1,得x=3.【点评】本题考查了解一元一次方程,本题考查了解一元一次方程,去分母是解题关键,去分母是解题关键,去分母是解题关键,不含分母的项不要漏不含分母的项不要漏乘分母的最小公倍数.。
人教版七年级数学知识点试题精选-等式的性质
七年级上册等式的性质一.选择题(共20小题)1.根据等式性质,由x=y可得()A.4x=y+4 B.cx=cy C.2x﹣8=2y+8 D.2.如果am=an,那么下列等式不一定成立的是()A.am﹣3=an﹣3 B.5+am=an+5 C.m=n D.﹣2am=﹣2an3.下列各式说法错误的是()A.如果x2=y2,那么﹣3ax2=﹣3ay2B.如果=,那么x=yC.如果ac=bc,那么a=bD.如果a=b,那么a2=b24.已知等式a=b,c为任意有理数,则下列等式中,不一定成立的是()A.a+c=b+c B.ac=bc C.﹣a2c=﹣b2c D.=5.下列式子变形不正确的是()A.若a+c=b+c,则a=b B.若x=y,则C.若x=y,则3x﹣1=3y﹣1 D.若,则x=y6.如果x=y,那么下列等式不一定成立的是()A.x﹣10=y﹣10 B.﹣C.D.7.下列说法正确的是()A.如果a=b,那么a+c=b﹣c B.如果|a|=|b|,那么a=bC.如果a=b,那么D.如果x=y,那么x2=y28.如图,天平两边盘中标有相同字母的物体的质量相同,若A物体的质量为20克,当天平处于平衡状态时,B物体的质量为()A.5克 B.10克C.15克D.30克9.下列由已知得出的结论,不正确的是()A.已知m=n,则ma=na B.已知m=n,则m+a2=n+a2C.已知m=n,则=D.已知m=n,则m﹣a2=n﹣a210.下列判断中正确的是()A.若=5,则x=1 B.若1+2x=7,则x=3C.若4x=2,则x=2 D.若2x﹣6=0,则2x=﹣611.已知x=y,则下列各式:,其中正确的有()A.2个 B.3个 C.4个 D.5个12.下列等式变形错误的是()A.由a=b得a+5=b+5 B.由a=b得C.由x+2=y+2得x=y D.由﹣3x=﹣3y得x=﹣y13.下列变形正确的是()A.若x2=y2,则x=y B.若=,则x=yC.若x(x﹣2)=3(x﹣2),则x=3 D.若(m+n)x=(m+n)y,则x=y,14.下列等式变形中,错误的是()A.由a=b,得a+5=b+5 B.由a=b,得=C.由x+2=y+2,得x=y D.由﹣3x=﹣3y,得x=y15.下列等式变形错误的是()A.由m=n得m+2=n+2 B.由m=n得=C.由m﹣3=n﹣3得m=n D.由﹣3x=﹣3y得x=﹣y16.若xy=xz成立,则下列式子未必成立的是()A.y=z B.x(y+1)=x(z+1)C.xy2=xyz D.x(y﹣1)=x(z﹣1)17.在下列等式变形中错误的是()A.因为a=b,所以a+3=b+3 B.因为ax=bx,所以a=bC.因为a=b,所以D.因为a+x=b+x,所以a=b18.下列变形正确的是()A.若﹣2x=5,那么x=5+2 B.若3x+2=7,那么3x=7﹣2C.若3﹣2(x﹣1)=6,则3﹣2x+1=6 D.若﹣3x=4,那么x=﹣19.若2x=﹣,则8x=()A.﹣4 B.﹣2 C.﹣ D.420.下列等式变形中,结果不正确的是()A.如果a=b,那么a+2b=3b B.如果a=3,那么a﹣k=3﹣kC.如果m=n,那么mc2=nc2D.如果mc2=nc2,那么m=n二.填空题(共20小题)21.若x=y,y=2,则x﹣2=.22.在等式﹣x=3的两边都或,得x=﹣12,这是根据.23.若a=b,b=c,c=d,则a和d之间的关系式为.24.若a=b,则..(判断对错)25.用适当的数或整式填空,使所得结果仍是等式,并说明是根据等式的哪一条性质,以及怎样变形的:(1)如果2x+7=10.那么2x=10﹣;(2)如果,那么a=;(3)如果2a=1.5.那么6a=;(4)如果﹣5x=5y;那么x=.26.如果2x+7=20,那么2x=20﹣,这是根据等式的性质:等式两边得到的.27.已知等式(x﹣4)m=x﹣4,且m≠1,则x=.28.已知,,将y用x的代数式表示为.29.在等式4x﹣2=1+2x的两边都,得到等式2x=3,根据是.30.已知m=an,当a=时,有m=n成立.31.由(a+b)x=a2﹣b2得x=d﹣b的条件是.32.若﹣2a=,则ab=.33.在公式s=vt+5t2中,已知s、t(t>0),那么v=(用s、t的代数式表示).34.已知,用含x的整式表示y,则y=.35.已知﹣,可求得x=,这是根据.36.列等式表示:x的4倍与7的和等于20.37.将方程4x+3y=6变形成用y的代数式表示x,则x=.38.已知x=﹣3a+4,y=2a+3,如果用x表示y,则y=.39.如果﹣5x+6=1﹣6x,那么x=,根据.40.方程﹣=1可变形为﹣=.三.解答题(共10小题)41.利用等式的性质解下列方程:(1)x+25=95;(2)x﹣12=﹣4;(3)0.3x=12;(4)=﹣3.42.已知5x2﹣5x﹣3=7,利用等式的性质,求x2﹣x的值.43.已知2x2﹣3=5,你能求出x2+3的值吗?说明理由.44.如果在等式5(x+2)=2(x+2)的两边同除以x+2就会得到5=2.我们知道5≠2,由此可以猜测x+2等于.45.已知等式(x﹣4)m=x﹣4且m≠1,求2x2﹣(3x﹣x2﹣2)+1的值.46.老师在黑板上写了一个等式:(a+3)x=4(a+3).王聪说x=4,刘敏说不一定,当x≠4时,这个等式也可能成立.你认为他俩的说法正确吗?用等式的性质说明理由.47.怎样从等式m﹣3=m,得到m=﹣6?48.一位同学在对一等式变形时,却得到了1=﹣1的明显的错误,可他又找不到出错的地方,你能帮他找出错误的原因吗?他变形的等式如下:4x=﹣6y等式两边都减去2x﹣3y,得4x﹣(2x﹣3y)=﹣6y﹣(2x﹣3y),所以,2x+3y=﹣3y﹣2x,两边同时除以2x+3y,得=,整理得1=﹣1.49.说明下列等式变形的依据(1)由a=b,得a+3=b+3;(2)由a﹣1=b+1,得a=b+4.50.利用等式的性质解方程:(1)5﹣x=﹣2(2)3x﹣6=﹣31﹣2x.七年级上册等式的性质参考答案与试题解析一.选择题(共20小题)1.根据等式性质,由x=y可得()A.4x=y+4 B.cx=cy C.2x﹣8=2y+8 D.【分析】根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式,针对每一个选项进行判断即可解决.【解答】解:A、根据等式的性质,由x=y可得4x=4y,故此选项错误;B、根据等式的性质,由x=y可得cx=cy,故此选项正确;C、根据等式的性质,由x=y可得2x﹣8=2y﹣8,故此选项错误;D、根据等式的性质,当c≠0时,由x=y可得=,故此选项错误.故选:B.【点评】此题主要考查了等式的性质,关键是熟练掌握等式的性质定理.2.如果am=an,那么下列等式不一定成立的是()A.am﹣3=an﹣3 B.5+am=an+5 C.m=n D.﹣2am=﹣2an【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【解答】解:A、am=an,根据等式的性质1,两边同时减去3,就得到am﹣3=an ﹣3,故此选项正确;B、am=an,根据等式的性质1,两边同时加上5,就得到5+am=an+5,故此选项正确;C、当m=0时,m=n不一定成立,故此选项错误.D、根据等式的性质2,两边同时乘以﹣2,即可得到﹣2am=﹣2an,故此选项正确;故选:C.【点评】此题主要考查了等式的性质,利用等式的性质对根据已知得到的等式进行正确变形是解决问题的关键.3.下列各式说法错误的是()A.如果x2=y2,那么﹣3ax2=﹣3ay2B.如果=,那么x=yC.如果ac=bc,那么a=bD.如果a=b,那么a2=b2【分析】根据等式两边都乘以同一个整式,结果仍是等式,可判断A、B、D,根据等式两边都除以同一个不为零的整式,结果仍是等式,可判断C,可得答案.【解答】解:A 如果x2=y2,﹣3ax2=﹣3ay2,故A正确;B如果,那么x=y,故B正确C如果ac=bc (c≠0),那么a=b,故C错误;D 如果a=b,那么a2=b2,故D正确;故选:C.【点评】本题考查了等式的性质,注意等式两边都除以同一个不为零的整式,结果仍是等式.4.已知等式a=b,c为任意有理数,则下列等式中,不一定成立的是()A.a+c=b+c B.ac=bc C.﹣a2c=﹣b2c D.=【分析】根据等式的性质,等式的两边都加或都减同一个整式,结果不变,等式的两边都乘以或除以同一个不为零的整式,结果不变,可得答案.【解答】解;A、两边都加c,故A正确;B、两边都乘以c,故B正确;C、两边都乘方,再都乘以﹣c,故C正确;D、当C=0时,无意义,故D错误;故选:D.【点评】本题考查了等式的性质,注意等式的两边都除以同一个不为零的数,结果不变.5.下列式子变形不正确的是()A.若a+c=b+c,则a=b B.若x=y,则C.若x=y,则3x﹣1=3y﹣1 D.若,则x=y【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【解答】解:A、根据等式性质1,等式两边都减c,即可得到a=b;B、根据等式性质2,该变形需要条件a≠0;C、先根据等式性质2,两边都乘以3,再根据等式性质1,两边都减1,即可得到3x﹣1=3y﹣1;D、根据等式性质2,两边都乘以a即可;综上所述,故选B.【点评】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.6.如果x=y,那么下列等式不一定成立的是()A.x﹣10=y﹣10 B.﹣C.D.【分析】利用等式的性质对每个式子进行变形即可找出答案.【解答】解:A、根据等式性质1,x=y两边同时减10得x﹣10=y﹣10;B、根据等式性质2,x=y两边同时乘以﹣得﹣=﹣;C、根据等式性质2,x=y两边同时除以a+1≠0时得=;D、根据等式性质2,x=y两边同时除以|a|+1,得=;综上所述,故选C.【点评】本题主要考查等式的性质.运用等式性质2时,必须注意等式两边所乘的(或除以的)数或式子不为0,才能保证所得的结果仍是等式.7.下列说法正确的是()A.如果a=b,那么a+c=b﹣c B.如果|a|=|b|,那么a=bC.如果a=b,那么D.如果x=y,那么x2=y2【分析】根据等式的性质1;等式的两边同时加上或减去同一个数,等式仍然成立;可以知道A不正确;再根据绝对值的定义;表示数a的点与原点的距离可以判断B不正确;根据等式的性质2;等式的两边同时乘以(或除以不为零)同一个数,等式仍然成立,可以判断C不正确;根据等式的性质2;等式的两边同时乘以(或除以不为零)同一个数,等式仍然成立,x•x=y•x,又x=y所以x•x=y•y,即x2=y2可以判断D正确.【解答】解:A、如果a=b,那么a+c=b+c根据等式的性质1:等式的两边同时加上c,等式仍然成立,故本选项错误.B、如果|a|=|b|,则a=±b;a,b相等时绝对值相等,a,b是相反数时绝对值也相等,故本选项错误.C、如果a=b,根据等式的性质2;等式的两边同时除以不为零的同一个数,等式仍然成立,此题中没说明c≠0,故本选项错误.D、如果x=y,则x•x=y•x,因为x=y,所以x•x=y•y,即x2=y2,故本选项D正确.故选D.【点评】此题主要考查了等式的性质的应用,做题时一定要注意等式的两边同时除以不为零的同一个数,等式才仍然成立;很多同学忽视除以不为零这个条件.8.如图,天平两边盘中标有相同字母的物体的质量相同,若A物体的质量为20克,当天平处于平衡状态时,B物体的质量为()A.5克 B.10克C.15克D.30克【分析】由图可得2A+B=A+3B,利用等式的性质两边同时减去(A+B)可得,A=2B,所以可求得B的质量.【解答】解:由图可得2A+B=A+3B,利用等式的性质两边同时减去(A+B)可得,A=2B,且A的质量为20克,所以B的质量为10克,故选B.【点评】本题主要考查等式的性质,解题的关键是由图得到等式.9.下列由已知得出的结论,不正确的是()A.已知m=n,则ma=na B.已知m=n,则m+a2=n+a2C.已知m=n,则=D.已知m=n,则m﹣a2=n﹣a2【分析】根据等式的性质进行判断.【解答】解:A、在等式m=n的两边同时乘以a,不等式仍成立,即ma=na,故本选项不符合题意;B、在等式m=n的两边同时加上a2,不等式仍成立,即m+a2=n+a2,故本选项不符合题意;C、当a=0时,等式=不成立.故本选项符合题意;D、在等式m=n的两边同时减去a2,不等式仍成立,即m﹣a2=n﹣a2,故本选项不符合题意;故选:C.【点评】本题主要考查了等式的基本性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.10.下列判断中正确的是()A.若=5,则x=1 B.若1+2x=7,则x=3C.若4x=2,则x=2 D.若2x﹣6=0,则2x=﹣6【分析】各项中方程利用等式的性质变形得到结果,即可做出判断.【解答】解:A、若=5,则x=25,错误;B、若1+2x=7,则x=3,正确;C、若4x=2,则x=,错误;D、若2x﹣6=0,则2x=6,错误.故选B.【点评】此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.11.已知x=y,则下列各式:,其中正确的有()A.2个 B.3个 C.4个 D.5个【分析】根据等式的性质进行解答即可.【解答】解:∵x=y,∴x﹣1=y﹣1,故本式正确;∵x=y,∴2x=2y,故2x=5y错误;∵x=y,∴﹣x=﹣y,故本式正确;∵x=y,∴x﹣3=y﹣3,∴=,故本式正确;当x=y=0时,无意义,故=1错误.故选B.【点评】本题考查的是等式的性质,熟知等式的基本性质1,2是解答此题的关键.12.下列等式变形错误的是()A.由a=b得a+5=b+5 B.由a=b得C.由x+2=y+2得x=y D.由﹣3x=﹣3y得x=﹣y【分析】利用等式的性质对每个式子进行变形即可找出答案.【解答】解:A、根据等式性质1,a=b两边都加5,即可得到a+5=b+5,变形正确,故选项错误;B、根据等式性质2,a=b两边都除以﹣9,即可得到,变形正确,故选项错误;C、根据等式性质1,x+2=y+2两边都减去2,即可得到x=y,变形正确,故选项错误;D、根据等式性质2,﹣3x=﹣3y两边都除以﹣3,即可得到x=y,变形错误,故选项正确.故选D.【点评】本题考查了等式的性质.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.13.下列变形正确的是()A.若x2=y2,则x=y B.若=,则x=yC.若x(x﹣2)=3(x﹣2),则x=3 D.若(m+n)x=(m+n)y,则x=y,【分析】分别利用等式的性质分析得出即可.【解答】解:A、若x2=y2,则x=±y,故此选项错误;B、若=,则x=y,正确;C、若x(x﹣2)=3(x﹣2),则x=3或2,故此选项错误;D、若(m+n)x=(m+n)y,则x=y,m+n≠0,故此选项错误.故选:B.【点评】此题主要考查了等式的性质,正确掌握等式的性质是解题关键.14.下列等式变形中,错误的是()A.由a=b,得a+5=b+5 B.由a=b,得=C.由x+2=y+2,得x=y D.由﹣3x=﹣3y,得x=y【分析】根据等式的性质即可求出答案.【解答】解:等式的两边需要同时乘以3或﹣3,从而可得:或故选(B)【点评】本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.15.下列等式变形错误的是()A.由m=n得m+2=n+2 B.由m=n得=C.由m﹣3=n﹣3得m=n D.由﹣3x=﹣3y得x=﹣y【分析】根据等式的性质:等式的两边都乘以(或除以)同一个不为零的整式,结果不变,等式的两边都加(或减)同一个数(或整式),结果不变,可得答案.【解答】解:A、两边都加2,结果不变,故A正确;B、两边都除以﹣2,结果不变,故B正确;C、两边都加3,结果不变,故C正确;D、左边诚意﹣1,又变成一1,故D错误;故选:D.【点评】本题考查了等式的性质,等式的两边都乘以(或除以)同一个不为零的整式,结果不变,等式的两边都加(或减)同一个数(或整式),结果不变.16.若xy=xz成立,则下列式子未必成立的是()A.y=z B.x(y+1)=x(z+1)C.xy2=xyz D.x(y﹣1)=x(z﹣1)【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【解答】解:A、当x=0时,y≠z,故A错误;B、两边都加x,故B正确;C、两边都乘以同一个不为零的数,故B正确;D、两边都减x,故D正确;故选:A.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.17.在下列等式变形中错误的是()A.因为a=b,所以a+3=b+3 B.因为ax=bx,所以a=bC.因为a=b,所以D.因为a+x=b+x,所以a=b【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立,可得答案.【解答】解:A、因为a=b,所以a+3=b+3,故A正确;B、x=0时,a=b,故B错误;C、两边都除以3,故C正确;D、两边都减x,故D正确;故选:B.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.18.下列变形正确的是()A.若﹣2x=5,那么x=5+2 B.若3x+2=7,那么3x=7﹣2C.若3﹣2(x﹣1)=6,则3﹣2x+1=6 D.若﹣3x=4,那么x=﹣【分析】利用等式的性质逐一判定即可.【解答】解:A、若﹣2x=5,那么x=5÷(﹣2),此选项错误;B、若3x+2=7,那么3x=7﹣2,此选项正确;C、若3﹣2(x﹣1)=6,则3﹣2x+2=6,此选项错误;D、若﹣3x=4,那么x=﹣,此选项错误.故选:B.【点评】本题主要考查了等式的基本性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.19.若2x=﹣,则8x=()A.﹣4 B.﹣2 C.﹣ D.4【分析】根据等式的性质,先解方程2x=﹣,再把x的数值代入8x即可.【解答】解:2x=﹣2x÷2=﹣÷2x=,当x=﹣时,8x=8×(﹣)=﹣2,故选B.【点评】本题主要考查了等式的性质2,利用等式的性质解得x是解答此题的关键.20.下列等式变形中,结果不正确的是()A.如果a=b,那么a+2b=3b B.如果a=3,那么a﹣k=3﹣kC.如果m=n,那么mc2=nc2D.如果mc2=nc2,那么m=n【分析】根据等式的两边加或都减同一个数,结果仍是等式;根据等式两边都成一或除以同一个不为0的数,结果仍是等式.【解答】解:A、等式两边都加2b,故A正确;B、等式两边都减k,故B正确;C、两边都乘以c2,故C正确;D、c=0时,故D错误;故选:D【点评】本题考查了等式的性质,等式的两边加或都减同一个数,结果仍是等式;等式两边都成一或除以同一个不为0的数,结果仍是等式.二.填空题(共20小题)21.若x=y,y=2,则x﹣2=0.【分析】根据等式的性质,两边都减去2即可.【解答】解:x=y的两边都减去2得,x﹣2=y﹣2,∵y=2,∴y﹣2=0,∴x﹣2=0.故答案为:2.【点评】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.22.在等式﹣x=3的两边都乘以﹣4或除以﹣,得x=﹣12,这是根据等式的性质2.【分析】根据等式的性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式分别进行分析可得答案.【解答】解:在等式﹣x=3的两边都乘以﹣4或除以﹣,得x=﹣12,这是根据等式的性质2,故答案为:乘以﹣4;除以﹣;等式的性质2.【点评】此题主要考查了等式的性质,关键是掌握等式的性质.23.若a=b,b=c,c=d,则a和d之间的关系式为a=d.【分析】根据等式的基本性质进行解答.【解答】解:∵a=b,b=c,∴a=c.又∵c=d,∴a=d.故填:a=d.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.24.若a=b,则.×.(判断对错)【分析】根据等式的基本性质进行解答.【解答】解:若a=b=0时,等式不成立.故答案是:×.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.25.用适当的数或整式填空,使所得结果仍是等式,并说明是根据等式的哪一条性质,以及怎样变形的:(1)如果2x+7=10.那么2x=10﹣﹣7(等式的两边同时减去7,等式仍成立);(2)如果,那么a=8(等式的两边同时乘以4,等式仍成立);(3)如果2a=1.5.那么6a= 4.5(等式的两边同时乘以3,等式仍成立);(4)如果﹣5x=5y;那么x=﹣y(等式的两边同时除以﹣5,等式仍成立).【分析】根据等式的基本性质进行填空.【解答】解:(1)根据等式的性质1,若2x+7=10,则2x=10﹣7(等式的两边同时减去7,等式仍成立);故填:﹣7(等式的两边同时减去7,等式仍成立);(2)根据等式性质2,若,则a=8(等式的两边同时乘以4,等式仍成立);故填:8(等式的两边同时乘以4,等式仍成立);(3)根据等式性质2,若2a=1.5,则6a=4.5(等式的两边同时乘以3,等式仍成立);故填:4.5(等式的两边同时乘以3,等式仍成立);(4)根据等式性质2,若﹣5x=5y,则x=﹣y(等式的两边同时除以﹣5,等式仍成立);故填:﹣y(等式的两边同时除以﹣5,等式仍成立).【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.26.如果2x+7=20,那么2x=20﹣7,这是根据等式的性质:等式两边都减去7得到的.【分析】根据等式的基本性质进行计算.【解答】解:在2x+7=20的两边同时减去7,得2x=20﹣7,故填:7;都减去7.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.27.已知等式(x﹣4)m=x﹣4,且m≠1,则x=4.【分析】首先把方程整理成(m﹣1)x=4m﹣4,再根据等式的性质2,两边同时除以m﹣1即可.【解答】解:(x﹣4)m=x﹣4,整理得:(m﹣1)x=4m﹣4,∵m≠1,∴m﹣1≠0,根据等式的性质2,两边同时除以m﹣1得:=,即:x=4.故答案为:4.【点评】此题主要考查了等式的性质,关键是掌握等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.28.已知,,将y用x的代数式表示为y=.【分析】有x和a之间的关系可先用x表示出a,再代入y=1﹣,即可得到y 与x的关系式.【解答】解:∵x=1﹣,∴a=﹣,又∵y=1﹣,∴y=1﹣,即y=.故答案为y=.【点评】本题考查的是用一个未知数表示另一个未知数,解题的依据是等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等.29.在等式4x﹣2=1+2x的两边都加上(2﹣2x),得到等式2x=3,根据是等式性质1.【分析】此题可把变形后与变形前等号前两式相减即可求出即可求出原式与变形后的等式的数量关系.例如2x﹣(4x﹣2)=2x﹣4x+2=2﹣2x.【解答】解:根据等式性质1,在等式4x﹣2=1+2x的两边都加上2﹣2x,得到等式2x=3.【点评】遇到此类题目要先确定等式变形前后用的是性质1还是2,在用相应的方法求解.30.已知m=an,当a=1时,有m=n成立.【分析】根据等式的基本性质2作答.【解答】解:根据等式的基本性质2,等式m=an变形为m=n,等式左边除以1,右边同时除以1,等式仍成立,∴a=1.故答案为1.【点评】本题主要考查了等式的基本性质.等式性质2:等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.31.由(a+b)x=a2﹣b2得x=d﹣b的条件是a+b≠0.【分析】利用等式的性质判断即可.【解答】解:由(a+b)x=a2﹣b2得x=a﹣b的条件是a+b≠0,故答案为:a+b≠0【点评】此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.32.若﹣2a=,则ab=﹣.【分析】根据等式的性质,可得答案.【解答】解;方程得两边都乘以﹣,得ab=﹣,故答案为:﹣.【点评】本题考查了等式的性质,利用了等式的性质2.33.在公式s=vt+5t2中,已知s、t(t>0),那么v=(用s、t的代数式表示).【分析】把s,t看作已知数,解关于字母v的一元一次方程即可.【解答】解:∵s=vt+5t2,∴vt=s﹣5t2,又∵t>0,∴v=.故答案为:.【点评】本题考查的是用两个未知数表示另一个未知数,解题的依据是等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等.34.已知,用含x的整式表示y,则y=.【分析】先把等式两边同乘以42得x﹣13y=42,再把两边同时减去x,得﹣13y=42﹣x,两边同时除以﹣13得y=.【解答】解:根据等式性质2,等式两边同乘以42,得x﹣13y=42,根据等式性质1,等式两边同时减去x,得﹣13y=42﹣x,根据等式性质2,等式两边同时除以﹣13,得y=.【点评】本题考查了等式的性质.等式的性质1,等式的两边加(或减)同一个数(或式子),结果仍相等.等式的性质2,等式的两边乘(或除)同一个不为0的数(或式子),结果仍相等.35.已知﹣,可求得x=−,这是根据等式的性质2.【分析】根据等式的基本性质2可知:由﹣,可求得x=﹣.【解答】解:根据等式的基本性质2,﹣两边都乘以﹣,可求得x=﹣.【点评】主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.36.列等式表示:x的4倍与7的和等于204x+7=20.【分析】由x的4倍与7的和等于20,根据等式的表示方法,即可求得答案.【解答】解:∵x的4倍与7的和等于20,∴列等式表示为:4x+7=20.故答案为:4x+7=20.【点评】此题考查了等式的表示方法.此题比较简单,注意理解题意是解此题的关键.37.将方程4x+3y=6变形成用y的代数式表示x,则x=.【分析】先根据等式的性质1:等式两边同加﹣3y,再根据等式性质2:等式两边同除以4,得出结论.【解答】解:4x+3y=6,4x=6﹣3y,x=,故答案为:.【点评】本题考查了等式的性质,表示x就是求未知数x的值,把等式变形为ax=b 的形式,再利用等式性质2变形为x=;注意本题要把y当常数.38.已知x=﹣3a+4,y=2a+3,如果用x表示y,则y=﹣x.【分析】把x=﹣3a+4两边同时减4得x﹣4=﹣3a,两边同时除以﹣3得a=,代入等式y=2a+3中即可求出答案.【解答】解:∵x=﹣3a+4,∴x﹣4=﹣3a,∴a=,∴y=2a+3=2•+3=﹣x.【点评】本题考查了等式的性质.等式的性质1,等式的两边加(或减)同一个数(或式子),结果仍相等.等式的性质2,等式的两边乘(或除)同一个不为0的数(或式子),结果仍相等.39.如果﹣5x+6=1﹣6x,那么x=﹣5,根据等式性质1.【分析】根据等式的基本性质1可知:﹣5x+6=1﹣6x先两边同加6x,再同减去6,可得x=﹣5.【解答】解:根据等式的基本性质1,﹣5x+6=1﹣6x两边同加6x,得x+6=1,根据等式性质1,等式两边同减去6,可得x=﹣5.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.40.方程﹣=1可变形为﹣=1.【分析】观察等式的左边,根据分数的性质,分子分母都乘以相同的数,分数的值不变.【解答】解:∵﹣变形为﹣,是利用了分数的性质,∴右边不变,故答案为1.【点评】本题考查了等式的性质,性质1:等式两边同加上或减去同一个数或式子,仍是等式;性质2:等式两边同乘以或除以同一个不为零的数或式子,仍是等式.三.解答题(共10小题)41.利用等式的性质解下列方程:(1)x+25=95;(2)x﹣12=﹣4;(3)0.3x=12;(4)=﹣3.【分析】等式的两个基本性质分别是:等式的两边同时加上或减去同一个数,等式的大小不变;等式的两边同时乘上同一个数或除以同一个不为0的数,等式的大小不变;据此解答.【解答】解:(1)方程两边同时减去25得:x+25﹣25=95﹣25,解得x=70;(2)方程两边同时加上12得x﹣12+12=﹣4+12,解得:x=8;(3)方程两边同时除以0.3得0.3x÷0.3=12÷0.3,解得:x=40;(4)方程两边同时乘以得:×=﹣3×,解得:x=﹣.【点评】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.42.已知5x2﹣5x﹣3=7,利用等式的性质,求x2﹣x的值.【分析】首先根据等式的性质1,两边同时+3得5x2﹣5x=10,再根据等式的性质2,两边同时除以5即可得到答案.【解答】解:5x2﹣5x﹣3=7,根据等式的性质1,两边同时+3得:5x2﹣5x﹣3+3=7+3,即:5x2﹣5x=10,根据等式的性质2,两边同时除以5得:=,即:x2﹣x=2.【点评】此题主要考查了等式的性质,关键是掌握等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.43.已知2x2﹣3=5,你能求出x2+3的值吗?说明理由.【分析】先有2x2﹣3=5,得出2x2=5+3,求出x2的值,再把x2的值代入x2+3中,即可求出答案.【解答】解:由2x2﹣3=5,得:2x2=5+3,x2=4,则x2+3=4+3=7.【点评】此题考查了等式的性质,掌握等式的性质是本题的关键,等式性质1:等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2:等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.44.如果在等式5(x+2)=2(x+2)的两边同除以x+2就会得到5=2.我们知道5≠2,由此可以猜测x+2等于0.【分析】根据等式的性质,等式的左右两边同时乘以或除以同一个非0的数或式子,所得的结果仍然是等式.本题中两边同时除以x+2所得的结果不是等式,说明不满足等式的性质,即x+2=0.本题也可以通过解方程的方法求出x的值,进而求出x+2的值.【解答】解:等式5(x+2)=2(x+2)的两边同除以x+2就会得到5=2,故x+2=0.故填:0.【点评】本题主要考查了等式的性质,通过本题,我们应该想到:在解一元一次方程的时候,特别是系数化为1这一步的化简中,注意方程两边同时除的式子一定不能是0.。
人教版七年级数学知识点试题精选-方程的定义及一元一次方程
方程的定义及一元一次方程一.选择题(共20小题)1.下列各式中,方程的个数有()①x+3y=0;②;③πx2+2πx;④x+2×3=6.A.l个B.2个 C.3个 D.4个2.以﹣2为解的方程是()A.6x﹣2=5x B.3x+2=2x﹣4 C.3(x﹣2)=﹣2 D.=﹣13.下列方程,以﹣2为解的方程是()A.3x﹣2=2x B.4x﹣1=2x+3 C.5x﹣3=6x﹣2 D.3x+1=2x﹣14.如果﹣4是关于x的方程2x+k=x﹣1的解,那么k等于()A.﹣13 B.3 C.﹣5 D.55.下列方程中,解为x=4的是()A.2x+1=10 B.2(x﹣1)=6C.x+3=2x﹣2 D.﹣3x﹣8=56.下列格式中,是一元一次方程的是()A.6x+8 B.3x﹣15=x C.3x+5y=7 D.x2+3x=17.在以下的式子中:+8=3;12﹣x;x﹣y=3;x+1=2x+1;3x2=10;2+5=7;其中是方程的个数为()A.3 B.4 C.5 D.68.下列说法中,正确的是()A.代数式是方程B.方程是代数式C.等式是方程D.方程是等式9.下列各式中:①x=0;②2x>3;③x2+x﹣2=0;④+2=0;⑤3x﹣2;⑥x=x﹣1;⑦x﹣y=0;⑧xy=4,是方程的有()A.3个 B.4个 C.5个 D.6个10.下面各小题括号里的数,均是它前面的方程的解的是()A.3x﹣1=5(2)B.+1=0(﹣5,﹣7)C.x2﹣3x=4(4,1)D.x(x ﹣2)(x+4)=0(2,4)11.已知下列方程:①x﹣2=;②0.2x=1;③=x﹣3;④x2﹣4﹣3x;⑤x=0;⑥x﹣y=6.其中一元一次方程有()A.2个 B.3个 C.4个 D.5个12.若关于x的方程2x﹣(2a﹣1)x+3=0的解是x=3,则a=()A.1 B.0 C.2 D.313.下列四个式子中,是方程的是()A.3+2=5 B.a2+2ab+b2C.2x﹣3 D.x=114.下列各数中,是方程2x+1=﹣5的解的是()A.0 B.2 C.﹣3 D.﹣215.已知(m+2)x|m|﹣1﹣6=0是关于x的一元一次方程,则m的值是()A.1 B.﹣1 C.﹣2 D.216.已知关于x的一元一次方程(a+3)x|a|﹣2+6=0,则a的值为()A.3 B.﹣3 C.±3 D.±217.下面属于方程的是()A.x+5 B.x﹣10=3 C.5+6=11 D.x÷12>2018.若(m﹣2)x|m|﹣1=﹣5是一元一次方程,则m的值为()A.±2 B.﹣2 C.2 D.419.下列各式中,是一元一次方程的是()A.x2+2=x2﹣1 B.=x+1 C.xy+2x=2y﹣2 D.=x﹣220.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=二.填空题(共20小题)21.下列各式中是方程的有.(仅填序号)(1)5﹣(﹣3)=8:(2)ab+3a;(3)6x﹣1﹣9;(4)8x>1;(5)xy=3.22.关于x的方程9x﹣2=kx+7的解是2,则k的值为.23.要使x=﹣4是方程(x﹣3)(x+a)=0的解,a应等于.24.(1﹣n)x|n|=3是关于x的一元一次方程,则n=.25.1:2x﹣1;2:2x+1=3x;3:﹣3;4:t+1=3中,代数式有,方程有(填入式子的序号).26.你知道下列语句中哪些是对的,哪些是错的吗?如果对,在题后的“下打“√”,如果不对,请在“”下打“√”:(1)方程是等式(2)等式是方程(3)因为x=y,所以3x=3y,那么,如果ax=ay,那么x=y..27.一件衣服打八折后,售价为88元,设原价为x元,可列方程为.28.已知方程2mx m+2=1是关于x的一元一次方程,则m=.29.请写出一个方程的解是2的一元一次方程:.30.语句“x的3倍比y的大7”用方程表示为:.31.若x=是方程mx﹣1=2+m的解,则m=.32.方程﹣2x m+1=4是关于x的一元一次方程,则m=.33.关于x的方程3x﹣2k=3的解是﹣1,则k的值是.34.在①x+1;②3x﹣2=﹣x;③|π﹣3|=π﹣3;④2m﹣n=0,等式有,方程有.(填入式子的序号)35.下列式子是方程的有①1+2=3 ②x﹣1=5 ③a+b=b+a④x﹣y=3 ⑤x+1=2x﹣4.36.在x=0,x=﹣2,x=﹣4中,是方程的解的是.37.若2x3﹣2k+3k=1是关于x的一元一次方程,则k=,方程的解为.38.已知关于x的方程4ax+5=﹣3﹣a的解为,则3a+5的值为.39.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是.40.已知关于x的方程(k﹣2)x|k﹣1|﹣10=0是一元一次方程,则k=.三.解答题(共10小题)41.判断下列各式是不是方程,不是的说明为什么(1)4×5=3×7﹣1(2)2x+5y=3.(3)9﹣4x>0.(4)(5)2x+3.42.方程17+15x=245,,2(x+1.5x)=24都只含有一个未知数,未知数的指数都是1,它们是一元一次方程,方程x2+3=4,x2+2x+1=0,x+y=5是一元一次方程吗?若不是,它们各是几元几次方程?43.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)44.关于x的方程:10kx﹣9=0的解为﹣1,求k的值.45.已知是方程的解,求m的值.46.检验括号里的数是不是它前面方程的解:3x+1=10(x=3,x=4,x=﹣4).47.若(a+5)x b﹣3+4=2是关于x的一元一次方程,求a,b的值.48.已知关于x的一元一次方程(|m|﹣2)x2+(m+2)x+12=0,求(x+m)2010.49.在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入圆圈(1)中,属于一次方程的序号填入圆圈(2)中,既属于一元方程又属于一次方程的序号填入两个圆圈的公共部分.①3x+5=9:②x2+4x+4=0;③2x+3y=5:④x2+y=0;⑤x﹣y+z=8:⑥xy=﹣1.50.先阅读下列一段文字,然后解答问题.已知:方程的解是x1=2,x2=﹣;方程的解是x l=3,x2=﹣;方程的解是x l=4,x2=﹣;方程的解是x l=5,x2=﹣.问题:观察上述方程及其解,再猜想出方程的解,并写出检验.方程的定义及一元一次方程参考答案与试题解析一.选择题(共20小题)1.下列各式中,方程的个数有()①x+3y=0;②;③πx2+2πx;④x+2×3=6.A.l个B.2个 C.3个 D.4个【分析】本题主要考查的是方程的定义,含有未知数的等式叫方程,据此可得出正确答案【解答】解:①④都是方程,②不含未知数,因而不是方程,③不是等式,因而不是方程.故选B.【点评】解题关键是依据方程的定义.含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).2.以﹣2为解的方程是()A.6x﹣2=5x B.3x+2=2x﹣4 C.3(x﹣2)=﹣2 D.=﹣1【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=﹣1分别代入四个选项进行检验即可.【解答】解:A、把x=﹣2代入方程6x﹣2=5x,左边=6×(﹣2)﹣2=﹣14,右边=5×(﹣2)=﹣10,左边≠右边,即x=﹣2不是该方程的解.故本选项错误;B、把x=﹣2代入方程3x+2=2x﹣4,左边=3×(﹣2)+2=﹣4,右边=2×(﹣2)﹣4=﹣8,左边≠右边,即x=﹣2不是该方程的解.故本选项错误;把x=﹣2代入方程3(x﹣2)=﹣2,左边=3×(﹣2﹣2)=﹣12,右边=﹣2,左边≠右边,即x=﹣2不是该方程的解.故本选项错误;把x=﹣2代入方程=﹣1,左边==﹣1,右边=﹣1,左边=右边,即x=﹣2是该方程的解.故本选项正确;故选D.【点评】本题的关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.3.下列方程,以﹣2为解的方程是()A.3x﹣2=2x B.4x﹣1=2x+3 C.5x﹣3=6x﹣2 D.3x+1=2x﹣1【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.【解答】解:A、将x=﹣2代入原方程.左边=3×(﹣2)﹣2=﹣8,右边=2×(﹣2)=﹣4,因为左边≠右边,所以x=﹣2不是原方程的解.B、将x=﹣2代入原方程.左边=4×(﹣2)﹣1=﹣9,右边=2×(﹣2)+3=﹣1,因为左边≠右边,所以x=﹣2是原方程的解.C、将x=﹣2代入原方程.左边=5×(﹣2)﹣3=﹣13,右边=6×(﹣2)﹣2=﹣14,因为左边≠右边,所以x=﹣2不是原方程的解.D、将x=﹣2代入原方程.左边=3×(﹣2)+1=﹣5,右边=2×(﹣2)﹣1=﹣5,因为左边=右边,所以x=﹣2是原方程的解.故选D.【点评】解题的关键是根据方程的解的定义.使方程左右两边的值相等的未知数的值是该方程的解.4.如果﹣4是关于x的方程2x+k=x﹣1的解,那么k等于()A.﹣13 B.3 C.﹣5 D.5【分析】根据方程解的定义,将方程的解代入方程可得关于字母系数k的一元一次方程,从而可求出k的值.【解答】解:把x=﹣4代入方程,得:2×(﹣4)+k=﹣4﹣1,即﹣8+k=﹣5故k=3.故选B.【点评】已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.5.下列方程中,解为x=4的是()A.2x+1=10 B.2(x﹣1)=6C.x+3=2x﹣2 D.﹣3x﹣8=5【分析】根据方程解的定义,将方程后边的数代入方程,看是否能使方程的左右两边相等.【解答】解:A、当x=4时,左边=2×4+1=9≠右边,则x=4不是该方程的解.故本选项错误;B、当x=4时,左边=2×(4﹣1)=6=右边,则x=4是该方程的解.故本选项正确;C、当x=4时,左边=×4+3=5≠右边,则x=4不是该方程的解.故本选项错误;D、当x=4时,左边=﹣3×4﹣8=﹣20≠右边,则x=4不是该方程的解.故本选项错误;故选:B.【点评】本题考查了方程的解.已知条件中涉及到方程的解,把方程的解代入原方程进行检验是解题的关键.6.下列格式中,是一元一次方程的是()A.6x+8 B.3x﹣15=x C.3x+5y=7 D.x2+3x=1【分析】根据一元一次方程的定义进行解答.【解答】解:A、6x+8不是方程.故本选项错误;B、由原方程得到2x﹣15=0,符合一元一次方程的定义.故本选项正确;C、该方程中含有两个未知数,属于二元一次方程.故本选项错误;D、该方程的未知数的最高次数是2,属于一元二次方程.故本选项错误;故选B.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.7.在以下的式子中:+8=3;12﹣x;x﹣y=3;x+1=2x+1;3x2=10;2+5=7;其中是方程的个数为()A.3 B.4 C.5 D.6【分析】根据方程的定义对各选项进行逐一分析即可.【解答】解:12﹣x不是方程,因为不是等式;2+5=7不是方程,因为不含有未知数;+8=3、x﹣y=3、x+1=2x+1、3x2=10都是方程,字母是未知数,式子又是等式;故选:B.【点评】本题考查的是方程的定义,熟知含有未知数的等式叫方程是解答此题的关键.8.下列说法中,正确的是()A.代数式是方程B.方程是代数式C.等式是方程D.方程是等式【分析】含有未知数的等式叫方程,等式是用等号连接的,表示相等关系的式子,代数式一定不是等式,等式不一定含有未知数也不一定是方程.【解答】解:方程的定义是指含有未知数的等式,A、代数式不是等式,故不是方程;B、方程不是代数式,故B错误;C、等式不一定含有未知数,也不一定是方程;D、方程一定是等式,正确;故选D.【点评】本题主要考查方程的概念,含有未知数的等式叫方程,要熟练掌握方程的定义.9.下列各式中:①x=0;②2x>3;③x2+x﹣2=0;④+2=0;⑤3x﹣2;⑥x=x﹣1;⑦x﹣y=0;⑧xy=4,是方程的有()A.3个 B.4个 C.5个 D.6个【分析】方程就是含有未知数的等式,据次定义可得出正确答案.【解答】解:(1)根据方程的定义可得①③④⑦⑧是方程;(2)②2x>3是不等式,不是方程;(3)⑤3x﹣2不是等式,就不是方程.(4)⑥化简以后不含未知数,因而不是方程.故有5个式子是方程.故选C.【点评】本题考查了方程的定义,判断一个式子是方程必须同时具备两点,一是等式,二是含有未知数.10.下面各小题括号里的数,均是它前面的方程的解的是()A.3x﹣1=5(2)B.+1=0(﹣5,﹣7)C.x2﹣3x=4(4,1)D.x(x ﹣2)(x+4)=0(2,4)【分析】根据方程解的定义,将方程后边的数代入方程,看是否能使方程的左右两边相等.【解答】解:A、把x=2代入,左边=6﹣1=5左边=右边,因而2是方程的解.B、把x=﹣5代入,左边=+1=左边≠右边;因而﹣5不是方程的解;把x=﹣7代入方程,坐边=+1=,左边≠右边,因而﹣7不是方程的解;C、把x=4代入得到,左边=16﹣12=4,左边=右边,因而4是方程的解;把x=1代入得到,左边=1﹣3=﹣2,左边≠右边,因而1不是方程的解;D、把x=2,代入方程,左边=0,左边=右边,因而0是方程的解;把x=4,代入方程,左边=64,左边≠右边,因而4不是方程的解;故选A.【点评】已知条件中涉及到方程的解,把方程的解代入原方程进行检验是解题的关键.11.已知下列方程:①x﹣2=;②0.2x=1;③=x﹣3;④x2﹣4﹣3x;⑤x=0;⑥x﹣y=6.其中一元一次方程有()A.2个 B.3个 C.4个 D.5个【分析】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【解答】解:由题意得根据分析可得:①x﹣2=不是整式方程;④x2﹣4﹣3x不是方程;⑥x﹣y=6含有两个未知数.都不是一元一次方程.②0.2x=1;③=x﹣3;⑤x=0均符合一元一次方程的条件.故选:B.【点评】判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1.此类题目可严格按照定义解题.12.若关于x的方程2x﹣(2a﹣1)x+3=0的解是x=3,则a=()A.1 B.0 C.2 D.3【分析】方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.把x=3代入方程就可以得到了一个关于a的方程.解方程就可以求出a的值.【解答】解:把x=3代入方程得到:6﹣3(2a﹣1)+3=0解得:a=2.故选C【点评】本题主要考查了方程解的定义,已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解,可把它叫做“有解就代入”.13.下列四个式子中,是方程的是()A.3+2=5 B.a2+2ab+b2C.2x﹣3 D.x=1【分析】根据方程的定义选择正确的选项即可.【解答】解:A、3+2=5是等式,但不含未知数,此选项错误;B、a2+2ab+b2是代数式,此选项错误;C、2x﹣3是代数式,此选项错误;D、x=1是方程,此选项正确;故选D.【点评】本题主要考查了方程的定义,方程的定义:含有未知数的等式叫方程.方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.14.下列各数中,是方程2x+1=﹣5的解的是()A.0 B.2 C.﹣3 D.﹣2【分析】方程移项合并,把x系数化为1,求出解,即可做出判断.【解答】解:方程2x+1=﹣5,移项合并得:2x=﹣6,解得:x=﹣3.故选C.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.已知(m+2)x|m|﹣1﹣6=0是关于x的一元一次方程,则m的值是()A.1 B.﹣1 C.﹣2 D.2【分析】利用一元一次方程的定义可得:|m|﹣1=1,且m+2≠0,即可确定m 的值,【解答】解:根据题意得:|m|﹣1=1,且m+2≠0,解得m=2.故选D.【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.16.已知关于x的一元一次方程(a+3)x|a|﹣2+6=0,则a的值为()A.3 B.﹣3 C.±3 D.±2【分析】根据一元一次方程的定义列出关于a的不等式组,求出a的值即可.【解答】解:∵方程(a+3)x|a|﹣2+6=0是关于x的一元一次方程,∴,解得a=3.故选A.【点评】本题考查的是一元一次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.17.下面属于方程的是()A.x+5 B.x﹣10=3 C.5+6=11 D.x÷12>20【分析】根据方程的定义选择正确的选项即可.【解答】解:A、x+5是代数式,此选项错误;B、x﹣10=3是方程,此选项正确;C、5+6=11,不含未知数,此选项错误;D、x÷12>20是不等式,此选项错误;故选B.【点评】本题主要考查了方程的定义,方程的定义:含有未知数的等式叫方程.方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.18.若(m﹣2)x|m|﹣1=﹣5是一元一次方程,则m的值为()A.±2 B.﹣2 C.2 D.4【分析】根据一元一次方程的定义得到|m|﹣1=1,且m﹣2≠0.【解答】解:依题意得:|m|﹣1=1,且m﹣2≠0.解得m=﹣2.故选:B.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.19.下列各式中,是一元一次方程的是()A.x2+2=x2﹣1 B.=x+1 C.xy+2x=2y﹣2 D.=x﹣2【分析】利用一元一次方程的定义判断即可.【解答】解:=x+1是一元一次方程,故选B【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.20.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=【分析】根据一元一次方程的定义,可得答案.【解答】解:A、是一元二次方程,故A错误;B、是一元一次方程,故B正确;C、是二元一次方程,故C错误;D、是分式方程,故D错误;故选:B.【点评】本题考查了一元一次方程的定义,利用一元一次方程的定义是解题关键.二.填空题(共20小题)21.下列各式中是方程的有(5).(仅填序号)(1)5﹣(﹣3)=8:(2)ab+3a;(3)6x﹣1﹣9;(4)8x>1;(5)xy=3.【分析】本题主要考查的是方程的定义,含有未知数的等式叫方程,据此可得出正确答案.【解答】解:(1)不含未知数,故不是方程;(2)(3)(4)不是等式,故不是方程;(5)是方程.故答案是:(5)【点评】解题关键是依据方程的定义.含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).22.关于x的方程9x﹣2=kx+7的解是2,则k的值为.【分析】根据方程解的定义把x=2代入9x﹣2=kx+7得到关于k的方程,然后解一次方程即可.【解答】解:把x=2代入9x﹣2=kx+7得18﹣2=2k+7,解得k=.故答案为.【点评】本题考查了方程的解:解方程就是求出使方程中等号左右两边相等的未知数的值,这个值叫方程的解.23.要使x=﹣4是方程(x﹣3)(x+a)=0的解,a应等于4.【分析】把x=﹣4代入已知方程,即可列出a的新方程,通过解新方程来求a的值.【解答】解:依题意,得(﹣4﹣3)(﹣4+a)=0,解得,a=4.故填:4.【点评】本题考查了方程的解.解决本题的关键在于根据方程的解的定义将x=﹣4代入,从而转化为关于a的一元一次方程.24.(1﹣n)x|n|=3是关于x的一元一次方程,则n=﹣1.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:根据题意得:1﹣n≠0,且|n|=1,解得:n=﹣1.故答案是:﹣1.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.25.1:2x﹣1;2:2x+1=3x;3:﹣3;4:t+1=3中,代数式有1,3,方程有2,4(填入式子的序号).【分析】本题主要考查的是方程的定义,对照方程的两个特征解答.【解答】解:1不是方程,因为它不是等式而是代数式;2是方程,x是未知数;3不是方程,因为它不是等式而是代数式;4是方程,未知数是t.【点评】解题关键是依据方程的定义.含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).26.你知道下列语句中哪些是对的,哪些是错的吗?如果对,在题后的“下打“√”,如果不对,请在“”下打“√”:(1)方程是等式√(2)等式是方程√(3)因为x=y,所以3x=3y,那么,如果ax=ay,那么x=y.√.【分析】根据方程的定义,含有未知数的等式叫方程,所以方程一定是等式,而等式是用等号表示相等关系的式子,不一定是方程,【解答】解:∵含有未知数的等式叫方程,∴方程一定是等式,(1)正确,∵等式是用等号表示相等关系的式子,不一定有未知数,∴等式不一定是方程,(2)错误,∵如果a=0,那么ax=ay,但是x不一定等于y,∴(3)错误,故答案为√,√,√.【点评】本题考查了方程的定义以及等式的性质,难度不大.27.一件衣服打八折后,售价为88元,设原价为x元,可列方程为0.8x=88.【分析】根据打八折后售价等于88元列式即可.【解答】解:设原价为x元,根据题意得,0.8x=88.故答案为:0.8x=88.【点评】本题考查了方程的定义,理解打折的意义是解题的关键.28.已知方程2mx m+2=1是关于x的一元一次方程,则m=﹣1.【分析】由一元一次方程的定义可知m+2=1且2m≠0,从而可求得m的值.【解答】解:∵方程2mx m+2=1是关于x的一元一次方程,∴m+2=1.解得:m=﹣1.当m=﹣1时,2m=2×(﹣1)=﹣2≠0.∴m的值为﹣1.故答案为:﹣1.【点评】本题主要考查的是一元一次方程的定义,由一元一次方程的定义得到m+2=1且2m≠0是解题的关键.29.请写出一个方程的解是2的一元一次方程:x﹣2=0.【分析】可设未知数为x,由于x=2,那么x﹣2=0.【解答】解:答案不唯一,例如x﹣2=0.故答案为:x﹣2=0.【点评】解决本题的关键是把未知数看成2得到相应等式.30.语句“x的3倍比y的大7”用方程表示为:3x=y+7.【分析】根据x的3倍=x的+7,直接列方程.【解答】解:由题意,得3x=y+7.故答案为:3x=y+7.【点评】本题考查了列方程.列方程的关键是正确找出题目的相等关系,找的方法是通过题目中的关键词如:大,小,倍等.31.若x=是方程mx﹣1=2+m的解,则m=﹣6.【分析】方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.把x=代入方程,就得到关于m的方程,就可求出m的值.【解答】解:把x=代入方程得:m﹣1=2+m解得:m=﹣6.故填﹣6.【点评】本题主要考查了方程解的定义,已知x=是方程的解实际就是得到了一个关于m的方程.32.方程﹣2x m+1=4是关于x的一元一次方程,则m=0.【分析】利用一元一次方程的定义求出m的值.【解答】解:由方程﹣2x m+1=4是关于x的一元一次方程,得到m+1=1,即m=0.故答案为:0.【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.33.关于x的方程3x﹣2k=3的解是﹣1,则k的值是﹣3.【分析】把x=﹣1代入方程3x﹣2k=3计算即可求出k的值.【解答】解:把x=﹣1代入方程得:﹣3﹣2k=3,解得:k=﹣3,故答案为:﹣3.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.34.在①x+1;②3x﹣2=﹣x;③|π﹣3|=π﹣3;④2m﹣n=0,等式有③②④,方程有②④.(填入式子的序号)【分析】题主要考查的是方程的定义,含有未知数的等式叫方程,据此可得出正确答案.【解答】解:①x+1是代数式;②3x﹣2=﹣x是一元一次方程;③|π﹣3|=π﹣3是等式;④2m﹣n=0是二元一次方程;故答案为:②④③;②④.【点评】本题考查了方程的定义,解题关键是依据方程的定义,含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).35.下列式子是方程的有②③④⑤①1+2=3 ②x﹣1=5 ③a+b=b+a④x﹣y=3 ⑤x+1=2x﹣4.【分析】根据方程的定义进行判断.【解答】解:①1+2=3不是方程,因为不含有未知数;②x﹣1=5、③a+b=b+a、④x﹣y=3、⑤x+1=2x﹣4都是方程,都含有未知数,式子又是等式;故答案是:②③④⑤.【点评】本题考查了方程的定义:含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).36.在x=0,x=﹣2,x=﹣4中,是方程的解的是x=﹣4.【分析】方程移项合并,将x系数化为,求出解得到x的值,即可做出判断.【解答】解:移项得:x=﹣1﹣1=﹣2,解得:x=﹣4,则方程的解为x=﹣4.故答案为:x=﹣4.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.37.若2x3﹣2k+3k=1是关于x的一元一次方程,则k=1,方程的解为﹣1.【分析】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程,据此可得出关于k的方程,继而可求出k的值,也能求得方程的解.【解答】解:由一元一次方程的特点得3﹣2k=1,解得:k=1;故原方程可化为2x+3=1,解得:x=﹣1.故填:1、﹣1.【点评】判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1.此类题目可严格按照定义解题.38.已知关于x的方程4ax+5=﹣3﹣a的解为,则3a+5的值为﹣3.【分析】根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,从而可求出a的值,然后将其代入求值式即可得到答案.【解答】解:把x=代入方程,得:4×a+5=﹣3﹣a,解得:a=﹣.∴3a+5=3×(﹣)+5=﹣3.故答案为:﹣3.【点评】已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.39.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是1.【分析】●用a表示,把x=1代入方程得到一个关于a的方程,解方程求得a的值.【解答】解:●用a表示,把x=1代入方程得1=1﹣,解得:a=1.故答案是:1.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.40.已知关于x的方程(k﹣2)x|k﹣1|﹣10=0是一元一次方程,则k=0.【分析】根据一元一次方程的定义,可得答案.【解答】解:由题意,得|k﹣1|=1,且k﹣2≠0,解得k=0,故答案为:0.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.三.解答题(共10小题)41.判断下列各式是不是方程,不是的说明为什么(1)4×5=3×7﹣1(2)2x+5y=3.(3)9﹣4x>0.(4)(5)2x+3.【分析】根据方程的定义对各小题进行逐一分析即可.【解答】解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.【点评】本题考查的是方程的定义,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.42.方程17+15x=245,,2(x+1.5x)=24都只含有一个未知数,未知数的指数都是1,它们是一元一次方程,方程x2+3=4,x2+2x+1=0,x+y=5是一元一次方程吗?若不是,它们各是几元几次方程?【分析】根据一元一次方程的定义,一元二次方程的定义,二元一次方程的定义进行求解.【解答】解:方程x2+3=4,x2+2x+1=0,x+y=5不是一元一次方程;x2+3=4和x2+2x+1=0是一元二次方程;x+y=5是二元一次方程.【点评】本题考查了方程的定义.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.只含有一个未知数,未知项的次数为2的整式方程,叫一元二次方程.含有2个未知数,最高次项的次数是1的方程叫做二元一次方程.43.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)【分析】设x年后爸爸的年龄是小明年龄的2倍,再根据x年后两人的年龄是2倍关系列出方程即可.【解答】解:设x年后爸爸的年龄是小明年龄的2倍,根据题意得,36+x=2(12+x),x=12.【点评】本题考查了列一元一次方程,需要注意父子二人的年龄都增加x.44.关于x的方程:10kx﹣9=0的解为﹣1,求k的值.【分析】根据方程的解满足方程,把方程的解代入方程,可得关于k的一元一次方程,根据解一元一次方程,可得答案.【解答】解:把x=﹣1代入10kx﹣9=0,得﹣10k﹣9=0.移项,得﹣10k=9,系数化为1,得k=﹣.【点评】本题考查了方程的解,把方程的解代入方程得出关于k的一元一次方程是解题关键.45.已知是方程的解,求m的值.【分析】把x=代入方程,即可得到关于m的方程,即可求得m的值.【解答】解:根据题意得:3(m﹣×)+×=5m,解得:m=﹣.【点评】已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.46.检验括号里的数是不是它前面方程的解:3x+1=10(x=3,x=4,x=﹣4).【分析】把x的值分别代入方程进行验证即可.【解答】解:把x=3代入3x+1=10,左边=3×3+1=10=右边,即x=3是该方程的解;把x=4代入3x+1=10,左边=3×4+1=13≠右边,即x=4不是该方程的解;把x=﹣4代入3x+1=10,左边=3×(﹣4)+1=﹣11≠右边,即x=﹣4不是该方程的解;综上所述,x=3是原方程的解.【点评】本题考查了方程的解定义.方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.47.若(a+5)x b﹣3+4=2是关于x的一元一次方程,求a,b的值.【分析】根据一元一次方程的定义列出关于a,b的不等式组,求出a,b的值即可.【解答】解:∵(a+5)x b﹣3+4=2是关于x的一元一次方程,∴,解得.【点评】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.48.已知关于x的一元一次方程(|m|﹣2)x2+(m+2)x+12=0,求(x+m)2010.【分析】首先根据一次函数定义可得|m|﹣2=0且m+2≠0,计算出m的值为2,再把m=2代入(|m|﹣2)x2+(m+2)x+12=0可得:4x+12=0,解方程可得x的值,然后可得答案.【解答】解:由题意得:|m|﹣2=0且m+2≠0,解得:m=2,把m=2代入(|m|﹣2)x2+(m+2)x+12=0可得:4x+12=0,x=﹣3,则(x+m)2010=(﹣1)2010=1.【点评】此题主要考查了一元一次方程的定义,关键是掌握只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.。
人教版七年级数学知识点试题精选-有理数的加法
七年级上册有理数的加法一.选择题(共20小题)1.计算|﹣2|+1,结果正确的是()A.4 B.3 C.﹣2 D.﹣42.计算等于()A.﹣1 B.1 C.O D.43.北京与巴黎的时差为﹣7时(负数表示同一时刻北京晚的时数),如果北京时间为1月24日8时,那么巴黎时间为()A.1月25日1时B.1月24日1时C.1月24日15时D.1月24日3时4.计算﹣1+2的结果是()A.1 B.﹣1 C.﹣2 D.25.﹣3+2的结果是()A.﹣5 B.1 C.﹣1 D.﹣66.计算:4+(﹣6)的结果是()A.2 B.10 C.﹣2 D.﹣107.若x的相反数是3,y的绝对值是4,则x+y的值是()A.﹣1 B.7 C.7或﹣1 D.﹣7或18.已知字母a、b、c表示非零有理数,如果a+b+c=0,则下列说法正确的是()A.a、b、c中一定有两个互为相反数B.a、b、c都为0C.a与b不可能相等D.a是b与c的和的相反数9.绝对值不大于4的所有整数的和等于()A.﹣36 B.6 C.36 D.010.∑表示数学中的求和符号,主要用于求多个数的和,∑下面的小字,i=1表示从1开始求和;上面的小字,如n表示求和到n为止.即x i=x1+x2+x3+…+x n.则(i2﹣1)表示()A.n2﹣1 B.12+22+32+…+i2﹣iC.12+22+32+…+n2﹣n D.12+22+32+…+n2﹣(1+2+3+…+n )11.下列说法中,正确的是()A.符号不同的两个数互为相反数B.两个有理数和一定大于每一个加数C.有理数分为正数和负数D.所有的有理数都能用数轴上的点来表示12.计算(﹣6)+4的结果是()A.﹣10 B.﹣2 C.2 D.1013.一个数是11,另一个数比11的相反数大2,那么这两个数的和为()A.24 B.﹣24 C.2 D.﹣214.下列结论不正确的是()A.两个正数之和必为正数B.两数之和为正,则至少有一个数为正C.两数之和不一定大于某个加数D.两数之和为负,则这两个数均为负数15.“数学来源于生活,又服务于生活”;“生活中,数学无处不在”.在CCTV“开心辞典”栏目中,主持人问这样一道题目:若a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a、b、c的和等于多少?如果你是参赛选手,你应该选择()A.﹣1 B.0 C.1 D.不存在16.大于﹣3而不大于3的所有整数的和是()A.0 B.1 C.2 D.317.两个数相加,如果和小于每个加数,那么这两个加数()A.同为正数B.同为负数C.一正一负且负数的绝对值较大D.不能确定18.若a<0,b>0,且|a|>|b|,则a与b的和用|a|、|b|表示为()A.|a|﹣|b|B.﹣(|a|﹣|b|) C.|a|+|b| D.﹣(|a|+|b|)19.两个有理数的和是负数,那么这两个数一定()A.都是负数B.有一个为零C.绝对值不相等D.至少有一个数是负数20.计算|﹣|+1的结果是()A.B.1 C.﹣ D.﹣二.填空题(共20小题)21.已知x.y,z三个有理数之和为0,若x=8,y=﹣5,则z=.22.气温从﹣2℃上升3℃后的温度是.23.如果a=﹣2,b=﹣5,则a+b=.24.用算式表示:温度﹣10℃上升了3℃达到℃.25.当a=时,方框中两个数的和等0.26.数轴上A、B两点所表示的有理数的和是.27.绝对值小于的所有负整数的和为.28.计算﹣3+2的结果是.29.比﹣2大1的数是.30.计算:1+(﹣2)+3+(﹣4)+5+(﹣6)+…+99+(﹣100)=.31.若|x|=2,y=|﹣3|,则x+y的值为.32.已知m是6的相反数,n比m的相反数小2,则m+n等于.33.某运动员在东西走向的公路上练习跑步,跑步情况记录如下:(向东为正,单位:米)1000,﹣1200,1100,﹣800,1400,该运动员共跑的路程为米.34.气温由﹣1℃上升2℃后是.35.将1米长的线段,在中点处截断,剩下米,又把这米线段在中点处截断,剩下米;再把这米线段在中点处截断,剩下米,…,如此进行下处.例如:求,在图中观察出,通过这个操作,仔细思考,试求:=.36.(+10)+(﹣17)+(﹣23)=(+10)+[(﹣17)+(﹣23)]是运用了加法的.37.为了加快武汉“1+8”城市圈建设,武汉到孝感即将开通城际列车,武汉到孝感还有三个站点,每站之间的票价不同,试问将出台种票价.38.如果|x|=3,y=2,那么x+y=.39.某天最低气温是﹣8℃,最高气温比最低气温高9℃,则这天的最高气温是℃.40.﹣5.2+(+4.8)=.三.解答题(共10小题)41.计算:(1)+(﹣0.8);(2)﹣1+(﹣);(3));(4)﹣505+505.42.计算:(1)0+(﹣3)+(﹣5)+8+(﹣20);(2)9+6+(﹣3)+(﹣12)+7.43.计算:1+4+7+10+13+16+…+2011+2014.44.把有理数“﹣8,﹣6,﹣4,﹣2,0,2,4,6,8”填入下面的方格中,使每行,每列和对角线的数字之和都为“0”.45.(﹣8)+10+2+(﹣1)46.计算:(1)(﹣2)+(﹣1)(2)(﹣45)+(+23)(3)23+(﹣17)+(+7)+(﹣13)(4)+(﹣)+(﹣)+(﹣)+(5)(﹣2.6)+(﹣3.4)+(+2.3)+1.5+(﹣2.3)(6)a﹣12与b+8互为相反数,求a与b的和.47.计算:(+1)+(﹣3)+(+5)+(﹣7)+…+(+2009)+(﹣2011)48.某水利勘察队,第一天向上游走了5千米,第二天又向上游走了4千米,第三天向下游走了4.5千米,第四天又向下游走了4千米,结合有理数加法计算,确定第四天勘察队在出发点的什么位置?49.请你确定下列各式的和的符号:(1)2+3;(2)(﹣1)+(﹣5).50.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,﹣3,+10,﹣8,﹣9,+12,﹣10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻.七年级上册有理数的加法参考答案与试题解析一.选择题(共20小题)1.计算|﹣2|+1,结果正确的是()A.4 B.3 C.﹣2 D.﹣4【分析】先化简绝对值后,利用加法法则即可得出答案.【解答】解:原式=2+1=3,故选(B)【点评】本题考查绝对值的意义,属于基础题型.2.计算等于()A.﹣1 B.1 C.O D.4【分析】先计算同分母分数,再相加即可.【解答】解:=(﹣2﹣)+(+1)=﹣3+2=﹣1故选A.【点评】考查了有理数的加法,关键是灵活运用运算律简便计算.3.北京与巴黎的时差为﹣7时(负数表示同一时刻北京晚的时数),如果北京时间为1月24日8时,那么巴黎时间为()A.1月25日1时B.1月24日1时C.1月24日15时D.1月24日3时【分析】由于同一时刻北京比巴黎晚的时数为7时,则巴黎的时间=北京的时间﹣晚的时数.【解答】解:由题意得,8﹣7=1.则巴黎时间为1月24日1时.故选B.【点评】本题考查了有理数的加法,直接相加,比较简单.4.计算﹣1+2的结果是()A.1 B.﹣1 C.﹣2 D.2【分析】异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.【解答】解:﹣1+2=2﹣1=1.故选A.【点评】熟练运用有理数的加法法则.5.﹣3+2的结果是()A.﹣5 B.1 C.﹣1 D.﹣6【分析】根据运算法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;故﹣3+2=﹣1.【解答】解:﹣3+2=﹣1.故选C.【点评】本题考查有理数的加法运算法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③互为相反数的两个数相加得0.④一个数同0相加,仍得这个数.6.计算:4+(﹣6)的结果是()A.2 B.10 C.﹣2 D.﹣10【分析】根据有理数的加法法则,进行计算即可.【解答】解:4+(﹣6)=﹣(6﹣4)=﹣2,故选C.【点评】本题考查了有理数的加法法则,比较简单,是识记的内容.7.若x的相反数是3,y的绝对值是4,则x+y的值是()A.﹣1 B.7 C.7或﹣1 D.﹣7或1【分析】根据相反数的定义和绝对值的性质,先求出x、y的值,再代值求解.【解答】解:由题意,得:x=﹣3,y=±4;当x=﹣3,y=4时,x+y=﹣3+4=1;当x=﹣3,y=﹣4时,x+y=﹣3﹣4=﹣7.故选D.【点评】此题主要考查绝对值的性质以及相反数的定义.需注意的是互为相反数的两个数绝对值相等,不要漏解.8.已知字母a、b、c表示非零有理数,如果a+b+c=0,则下列说法正确的是()A.a、b、c中一定有两个互为相反数B.a、b、c都为0C.a与b不可能相等D.a是b与c的和的相反数【分析】将a+b+c=0进一步转化为a=﹣(b+c)后即可确定答案.【解答】解:根据题意得:a=﹣(b+c),故a是b与c的和的相反数,故选D.【点评】本题考查了有理数的加法,解题的关键是对原式进行正确的变形.9.绝对值不大于4的所有整数的和等于()A.﹣36 B.6 C.36 D.0【分析】找出绝对值不大于4的所有整数,求出之和即可.【解答】解:绝对值不大于4的所有整数有:0,±1,±2,±3,±4,之和为0.故选D【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.10.∑表示数学中的求和符号,主要用于求多个数的和,∑下面的小字,i=1表示从1开始求和;上面的小字,如n表示求和到n为止.即x i=x1+x2+x3+…+x n.则(i2﹣1)表示()A.n2﹣1 B.12+22+32+…+i2﹣iC.12+22+32+…+n2﹣n D.12+22+32+…+n2﹣(1+2+3+…+n )【分析】根据求和公式x i=x1+x2+x3+…+x n,可得答案.【解答】解:(i2﹣1)=12﹣1+22﹣1+32﹣1+…n2﹣1=12+22+32+…+n2﹣n,故选:C.【点评】本题考查了有理数的加法,利用了求和公式.11.下列说法中,正确的是()A.符号不同的两个数互为相反数B.两个有理数和一定大于每一个加数C.有理数分为正数和负数D.所有的有理数都能用数轴上的点来表示【分析】A、根据有相反数的定义判断.B、利用有理数加法法则推断.C、按照有理数的分类判断:有理数D、根据有理数与数轴上的点的关系判断.【解答】解:A、+2与﹣1符号不同,但不是互为相反数,错误;B、两个负有理数的和小于每一个加数,错误;C、有理数分为正有理数、负有理数和0,错误;D、所有的有理数都能用数轴上的点来表示,正确.故选D.【点评】本题考查的都是平时做题时出现的易错点,应在做题过程中加深理解和记忆.12.计算(﹣6)+4的结果是()A.﹣10 B.﹣2 C.2 D.10【分析】绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.【解答】解:原式=﹣(6﹣4)=﹣2.故选:B.【点评】本题考查的是有理数的加法,掌握有理数的加法法则是解题的关键.13.一个数是11,另一个数比11的相反数大2,那么这两个数的和为()A.24 B.﹣24 C.2 D.﹣2【分析】先根据相反数的定义求出11的相反数,再根据有理数的加法求出比11的相反数大2的数,再把两数相加即可.【解答】解:∵11的相反数是﹣11,∴比11的相反数大2是﹣9,∴这两个数的和为11+(﹣9)=2.故选C.【点评】本题考查了相反数的定义和有理数的加法.解答此题的关键是熟知相反数的概念及有理数的加法法则.14.下列结论不正确的是()A.两个正数之和必为正数B.两数之和为正,则至少有一个数为正C.两数之和不一定大于某个加数D.两数之和为负,则这两个数均为负数【分析】根据有理数的加法运算法则进行判断.有理数加法法则:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.③一个数同0相加,仍得这个数.【解答】解:A、同号两个正数相加,取正号,并把绝对值相加,可知两个正数之和必为正数正确,不符合题意;B、因为两数都为负数或都为0或一正一负,两数之和都不为正;至少有一个数为正,两数之和为正正确,不符合题意;C、因为两个负数之和小于每个加数,所以两数之和不一定大于某个加数正确,不符合题意;D、因为0+(﹣1)=﹣1,所以两数之和为负,则这两个数均为负数不正确,符合题意.故选B.【点评】本题是对有理数加法法则的考查,熟记和理解法则是解题的关键.15.“数学来源于生活,又服务于生活”;“生活中,数学无处不在”.在CCTV“开心辞典”栏目中,主持人问这样一道题目:若a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a、b、c的和等于多少?如果你是参赛选手,你应该选择()A.﹣1 B.0 C.1 D.不存在【分析】最小的自然数为0,最大的负整数为﹣1,绝对值最小的有理数为0,由此可得出答案.【解答】解:由题意得:a=0,b=﹣1,c=0,∴a+b+c=0+(﹣1)+0=﹣1,故选:A.【点评】本题考查有理数的知识,难度不大,根据题意确定a、b、c的值是关键.16.大于﹣3而不大于3的所有整数的和是()A.0 B.1 C.2 D.3【分析】根据有理数的大小比较法则找出符合条件的数即可.【解答】解:大于﹣3而不大于3的所有整数是﹣2,﹣1,0,1,2,3,﹣2+(﹣1)+0+1+2+3=3,故选:D.【点评】本题考查了有理数的加法,本题应注意不大于是指小于和等于,不小于是指大于且等于.17.两个数相加,如果和小于每个加数,那么这两个加数()A.同为正数B.同为负数C.一正一负且负数的绝对值较大D.不能确定【分析】根据有理数的加法法则,两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.【解答】解:两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.例如:(﹣1)+(﹣3)=﹣4,﹣4<﹣1,﹣4<﹣3,故选B.【点评】本题考查了有理数的加法,掌握有理数的加法法则、绝对值及比较两个数的大小是解题的关键.18.若a<0,b>0,且|a|>|b|,则a与b的和用|a|、|b|表示为()A.|a|﹣|b|B.﹣(|a|﹣|b|) C.|a|+|b| D.﹣(|a|+|b|)【分析】利用有理数的加法法则判断即可.【解答】解:∵a<0,b>0,且|a|>|b|,∴a+b<0,则a+b=﹣(|a|﹣|b|),故选B【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.19.两个有理数的和是负数,那么这两个数一定()A.都是负数B.有一个为零C.绝对值不相等D.至少有一个数是负数【分析】根据有理数的加法法则,由和是负数,可得加数的关系,可得答案.【解答】解:负数加负数等于负数,负数加0等于负数,负数加正数,负数的绝对值大,和是负数.故选:D.【点评】本题考查了有理数的加法,一正数一负数时,负数的绝对值大,两负数,一负数与零,和都是负数.20.计算|﹣|+1的结果是()A.B.1 C.﹣ D.﹣【分析】原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=+1=,故选A【点评】此题考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.二.填空题(共20小题)21.已知x.y,z三个有理数之和为0,若x=8,y=﹣5,则z=﹣3.【分析】根据题意得到x+y+z=0,将x与y的值代入计算即可求出z的值.【解答】解:由题意得:x+y+z=0,将x=8,y=﹣5代入得:z=﹣x﹣y=﹣8+5=﹣3.故答案为:﹣3.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.22.气温从﹣2℃上升3℃后的温度是1℃.【分析】上升3℃即是比原来的温度高了3℃,所以把原来的温度加上3℃即可得出结论.【解答】解:∵温度从﹣2℃上升3℃,∴﹣2℃+3℃=1℃.故答案为:1℃.【点评】考查了有理数的加法,此题要先判断正负号的意义:上升为正,下降为负;在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.23.如果a=﹣2,b=﹣5,则a+b=﹣7.【分析】根据同号两数相加,取相同符号,把绝对值相加,可得答案.【解答】解:a+b=(﹣2)+(﹣5)=﹣(2+5)=﹣7,故答案为:﹣7.【点评】本题考查了有理数的加法,同号两数相加,取相同符号,把绝对值相加.24.用算式表示:温度﹣10℃上升了3℃达到﹣10+3℃.【分析】上升用正数表示,下降用负数表示,根据题意列式即可.【解答】解:(﹣10+3)℃,故答案为:(﹣10+3)℃.【点评】本题考查了有理数的加法的实际应用,比较简单.25.当a=﹣3时,方框中两个数的和等0.【分析】根据互为相反数的两个数相加得0计算计可.【解答】解:∵a+3=0,∴a和3互为相反数,即a=﹣3.【点评】本题利用了加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不等的异号加减,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.26.数轴上A、B两点所表示的有理数的和是﹣1.【分析】此题借助数轴用数形结合的方法求解.由数轴可知点A表示的数是﹣3,点B表示的数是2,所以A,B两点所表示的有理数的和是﹣1.【解答】解:由数轴得,点A表示的数是﹣3,点B表示的数是2,∴A,B两点所表示的有理数的和是﹣3+2=﹣1.【点评】本题考查数轴的有关知识.借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.27.绝对值小于的所有负整数的和为﹣10.【分析】根据绝对值性质可知,绝对值小于的所有负整数为:﹣1,﹣2,﹣3,﹣4,从而求得它们的和.【解答】解:根据绝对值性质得,绝对值小于的所有负整数为:﹣1,﹣2,﹣3,﹣4,所以(﹣1)+(﹣2)+(﹣3)+(﹣4)=﹣10.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.28.计算﹣3+2的结果是﹣1.【分析】根据有理数的加法法则:绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进行计算即可.【解答】解:﹣3+2=﹣(3﹣2)=﹣1,故答案为:﹣1.【点评】此题主要考查了有理数的加法,关键是掌握有理数的加法法则,注意结果符号的判断.29.比﹣2大1的数是﹣1.【分析】根据有理数的加法法则计算即可.【解答】解:根据题意,得﹣2+1=﹣(2﹣1)=﹣1.【点评】掌握有理数的运算法则:异号的两个数相加,取绝对值较大的数的符号,再把绝对值相减.30.计算:1+(﹣2)+3+(﹣4)+5+(﹣6)+…+99+(﹣100)=﹣50.【分析】原式两项两项结合,计算即可得到结果.【解答】解:原式=(1﹣2)+(3﹣4)+…+(99﹣100)=﹣1﹣1…﹣1=﹣50,故答案为:﹣50【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.31.若|x|=2,y=|﹣3|,则x+y的值为1或5.【分析】利用绝对值的代数意义求出x与y的值,即可求出x+y的值.【解答】解:∵|x|=2,y=|﹣3|,∴x=2或﹣2,y=3,当x=2,y=3时,x+y=2+3=5;当x=﹣2,y=3时,x+y=﹣2+3=1;故答案为:1或5.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.32.已知m是6的相反数,n比m的相反数小2,则m+n等于﹣2.【分析】根据题意列出方程,求出方程的解得到m与n的值,即可确定出m+n 的值.【解答】解:根据题意得:m=﹣6,n+2=m,解得:m=﹣6,n=4,则m+n=﹣6+4=﹣2.故答案为:﹣2【点评】此题考查了有理数的加法,以及相反数,熟练掌握相反数的定义是解本题的关键.33.某运动员在东西走向的公路上练习跑步,跑步情况记录如下:(向东为正,单位:米)1000,﹣1200,1100,﹣800,1400,该运动员共跑的路程为5500米.【分析】求出运动情况中记录的各个数的绝对值的和即可.【解答】解:各个数的绝对值的和:1000+1200+1100+800+1400=5500千米,则该运动员共跑的路程为5500米.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.而求路程不考虑方向,是各数的绝对值的和.34.气温由﹣1℃上升2℃后是1℃.【分析】根据上升2℃即是比原来的温度高了2℃,就是把原来的温度加上2℃即可.【解答】解:∵气温由﹣1℃上升2℃,∴﹣1+2=1℃.故答案为:1℃.【点评】此题考查了有理数的加法,要先判断正负号的意义:上升为正,下降为负,再根据有理数加法运算法则进行计算.35.将1米长的线段,在中点处截断,剩下米,又把这米线段在中点处截断,剩下米;再把这米线段在中点处截断,剩下米,…,如此进行下处.例如:求,在图中观察出,通过这个操作,仔细思考,试求:=.【分析】由图中可知:+=1﹣;++=1﹣;…,故左侧式子的和等于1减去最后一个加数,据此求解.【解答】解:根据题意可得,+=1﹣;++=1﹣;…故=1﹣=.故答案为.【点评】通过观察,分析、归纳并发现其中的规律:=1﹣,并应用发现的规律解决问题是应该具备的基本能力.36.(+10)+(﹣17)+(﹣23)=(+10)+[(﹣17)+(﹣23)]是运用了加法的结合律.【分析】观察等式发现后两项结合,故利用了加法结合律.【解答】解:(+10)+(﹣17)+(﹣23)=(+10)+[(﹣17)+(﹣23)]是运用了加法的结合律.故答案为:结合律.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.37.为了加快武汉“1+8”城市圈建设,武汉到孝感即将开通城际列车,武汉到孝感还有三个站点,每站之间的票价不同,试问将出台10种票价.【分析】包括起点站,终点站,中途的三个站共5个站,可以理解为一条直线上5个点,求其中线段的条数问题.【解答】解:根据题意,得4+3+2+1=10(种)即将出台10种票价.【点评】本题也可以把每个站看做线段上的一个点,根据数线段条数的方法进行计算.38.如果|x|=3,y=2,那么x+y=﹣1或5.【分析】因为|x|=3,所以x=3或x=﹣3,再分别代入x+y计算得出结果即可.【解答】解:因为|x|=3,所以x=3或x=﹣3,当x=3,y=2时,x+y=3+2=5;当x=﹣3,y=2时,x+y=﹣3+2=﹣1;所以么x+y=﹣1或5.故答案为:﹣1或5.【点评】此题考查绝对值的意义,有理数的加法,注意分类讨论思想的渗透.39.某天最低气温是﹣8℃,最高气温比最低气温高9℃,则这天的最高气温是1℃.【分析】根据题意列出算式,按照异号两数相加,取绝对值较大加数的符号,用较大绝对值减较小绝对值可得结果.【解答】解:∵最低气温是﹣8℃,最高气温比最低气温高9℃,∴最高气温为:﹣8+9=+(9﹣8)=1;故答案为:1.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.40.﹣5.2+(+4.8)=﹣0.4.【分析】根据加法法则计算可得.【解答】解:﹣5.2+(+4.8)=﹣(5.2﹣4.8)=﹣0.4,故答案为:﹣0.4【点评】本题主要考查有理数的加法,熟练掌握有理数的加法法则是解题的关键.三.解答题(共10小题)41.计算:(1)+(﹣0.8);(2)﹣1+(﹣);(3));(4)﹣505+505.【分析】注意有理数的加法法则:同号相加,取相同符号,并把绝对值相加;符号不相同的异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.【解答】解:(1)原式=﹣﹣=﹣;(2)原式=﹣1﹣=﹣2;(3)原式=6﹣3=2;(4)原式=0.【点评】此题要注意:分数和小数相加时,一般要把小数化为分数,然后即可通分计算.42.计算:(1)0+(﹣3)+(﹣5)+8+(﹣20);(2)9+6+(﹣3)+(﹣12)+7.【分析】(1)原式利用加法交换律及结合律将符合相同的数结合,利用同号相加的法则计算,再利用异号两数相加的法则计算即可得到结果;(2)原式利用加法交换律及结合律将符合相同的数结合,利用同号相加的法则计算,再利用异号两数相加的法则计算即可得到结果.【解答】解:(1)原式=﹣28+8=﹣20;(2)原式=﹣15+21=7.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.43.计算:1+4+7+10+13+16+…+2011+2014.【分析】根据后一项加数比前一项加数大3,可得项数,根据等式的性质,可得答案.【解答】解:由后一项加数比前一项加数大3,得1+3(n﹣1)=2014,解得n=672,设S=1+4+7+10+13+16+…+2011+2014①,S=2014+2011+2008+…+10+7+4+1②,①+②得2S=(1+2014)×672,S==347040.【点评】本题考查了有理数的加法,先求出加数的个数,再求出和.44.把有理数“﹣8,﹣6,﹣4,﹣2,0,2,4,6,8”填入下面的方格中,使每行,每列和对角线的数字之和都为“0”.【分析】九方格题目先将数字按从小到大的顺序填入方格后,将对角数字交换位置,再顺时针旋转一格即可.【解答】解:如图所示:【点评】本题结合九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准正中间的数字0.45.(﹣8)+10+2+(﹣1)【分析】原式结合后,相加即可得到结果.【解答】解:原式=(﹣8﹣1)+(10+2)=﹣9+12=3.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.46.计算:(1)(﹣2)+(﹣1)(2)(﹣45)+(+23)(3)23+(﹣17)+(+7)+(﹣13)(4)+(﹣)+(﹣)+(﹣)+(5)(﹣2.6)+(﹣3.4)+(+2.3)+1.5+(﹣2.3)(6)a﹣12与b+8互为相反数,求a与b的和.【分析】(1)(2)(3)(5)根据有理数的加法的运算方法,求出每个算式的值各是多少即可.(4)应用加法交换律和加法结合律,求出算式的值是多少即可.(6)根据a﹣12与b+8互为相反数,可得:(a﹣12)+(b+8)=0,据此求出a 与b的和是多少即可.【解答】解:(1)(﹣2)+(﹣1)=﹣4(2)(﹣45)+(+23)=﹣45+23=﹣22(3)23+(﹣17)+(+7)+(﹣13)=6+7﹣13=0(4)+(﹣)+(﹣)+(﹣)+=(﹣)﹣(+)+=0﹣1+=﹣(5)(﹣2.6)+(﹣3.4)+(+2.3)+1.5+(﹣2.3)=﹣6+2.3﹣2.3+1.5=﹣4.5(6)∵a﹣12与b+8互为相反数,∴(a﹣12)+(b+8)=0,∴a+b=4.【点评】此题主要考查了有理数的加法的运算方法,以及相反数的含义和求法,要熟练掌握,解答此题的关键是要明确有理数的加法法则.47.计算:(+1)+(﹣3)+(+5)+(﹣7)+…+(+2009)+(﹣2011)【分析】两个一组,得到原式=﹣2×503,依此计算即可求解.【解答】解:(+1)+(﹣3)+(+5)+(﹣7)+…+(+2009)+(﹣2011)=(+1﹣3)+(+5﹣7)+…+(+2009﹣2011)=﹣2×503=﹣1006.【点评】考查了有理数的加法,将原式变形为(+1﹣3)+(+5﹣7)+…+(+2009﹣2011)是解题的关键.48.某水利勘察队,第一天向上游走了5千米,第二天又向上游走了4千米,第三天向下游走了4.5千米,第四天又向下游走了4千米,结合有理数加法计算,确定第四天勘察队在出发点的什么位置?【分析】根据题意列出算式,计算即可得到结果.【解答】解:设上游方向为正,下游方向为负,根据题意得:5+4﹣4.5﹣4=1﹣=,则第四天勘察队在出发点的上游千米处.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.49.请你确定下列各式的和的符号:(1)2+3;(2)(﹣1)+(﹣5).【分析】(1)(2)先根据有理数的加法法则计算出它们的值,再判断出它们的和的符号.【解答】解:(1)∵2+3=5,∴2+3>0;(2)∵(﹣1)+(﹣5)=﹣6,∴(﹣1)+(﹣5)<0.【点评】此题考查了有理数的加法,掌握有理数的加法法则是本题的关键,同号两数相加,取相同的符号,并把它们的绝对值相加.50.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,﹣3,+10,﹣8,﹣9,+12,﹣10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻.【分析】数轴上点的移动规律是“左减右加;求走过的总路程需要算它们的绝对值的和.【解答】解:(1)否,0+5﹣3+10﹣8﹣9+12﹣10=﹣3,故没有回到0;(2)(|+5|+|﹣3|+|+10|+|﹣8|+|﹣9|+|+12|+|﹣10|)×2=114粒.【点评】主要考查了数轴,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.。
《好题》初中七年级数学上册第一章《有理数》经典测试题(培优提高)
《好题》初中七年级数学上册第一章《有理数》经典测试题(培优提高)一、选择题1.(0分)下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个B .2个C .3个D .4个A解析:A【分析】 根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则. 2.(0分)下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--= C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】 (2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.3.(0分)已知n 为正整数,则()()2200111n -+-=( ) A .-2B .-1C .0D .2C 解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n 为正整数,∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 4.(0分)下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A 选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B 选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C 选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D 选项中的两个数互为相反数, 故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 5.(0分)绝对值大于1小于4的整数的和是( )A .0B .5C .﹣5D .10A 解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.6.(0分)下列各组数中,互为相反数的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|A 解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.7.(0分)一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 3 C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.8.(0分)如果向右走5步记为+5,那么向左走3步记为( )A.+3 B.-3 C.+13D.-13B解析:B【解析】试题用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,由此得:如果向右走5步记为+5,那么向左走3步记为﹣3.故选B.9.(0分)把实数36.1210-⨯用小数表示为()A.0.0612 B.6120 C.0.00612 D.612000C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(0分)已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>0A解析:A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.二、填空题11.(0分)若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积++++的最小值为__.【分析】先把2000abcde=,则它们的和a b c d eabcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键. 12.(0分)23(2)0x y -++=,则x y 为______.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键.13.(0分)已知a 是7的相反数,b 比a 的相反数大3,则b 比a 大____.17【分析】先根据相反数的定义求出a 和b 再根据有理数的减法法则即可求得结果【详解】由题意得a =-7b =7+3=10∴b -a =10-(-7)=10+7=17故答案为:17【点睛】本题考查了有理数的减法解析:17【分析】先根据相反数的定义求出a 和b ,再根据有理数的减法法则即可求得结果.【详解】由题意,得a =-7,b =7+3=10.∴b -a =10-(-7)=10+7=17.故答案为:17.【点睛】本题考查了有理数的减法,解答本题的关键是熟练掌握有理数的减法法则∶减去一个数等于加上这个数的相反数.14.(0分)把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.15.(0分)在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.16.(0分)A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【 解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,则20(70)207090--=+=(米),即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.17.(0分)化简﹣|+(﹣12)|=_____.﹣12;【分析】利用绝对值的定义化简即可【详解】﹣|+(﹣12)|=故答案为﹣12【点睛】本题考查了绝对值化简熟练掌握绝对值的定义是解题关键解析:﹣12;【分析】利用绝对值的定义化简即可.【详解】--=-﹣|+(﹣12)|=|12|12故答案为﹣12.【点睛】本题考查了绝对值化简,熟练掌握绝对值的定义是解题关键.18.(0分)在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.19.(0分)如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数解析:﹣48【分析】数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是14cm ,即 1cm 表示 4个单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm 表示 4个单位长度,即可求得这个数的绝对值.【详解】数轴左边 12 厘米处的点表示的有理数是﹣48.故答案为﹣48.【点睛】本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.20.(0分)已知2x =,3y =,且x y <,则34x y -的值为_______.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.三、解答题21.(0分)计算下列各题:(1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].解析:(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12) =14×(﹣12)﹣13×(﹣12)﹣1×(﹣12) =(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.22.(0分)计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(0分)计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键. 24.(0分)计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法; (2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+=142-=132-.【点睛】此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键. 25.(0分)321032(2)(3)5-÷---⨯解析:﹣31.【分析】根据有理数的混合运算法则计算即可.【详解】解:321032(2)(3)5-÷---⨯=10-32÷(﹣8)-9×5=10-(﹣4)-45=10+4-45=14-45=﹣31.【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则.26.(0分)计算:(1)113623⎛⎫-⨯- ⎪⎝⎭(2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.27.(0分)计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 解析:(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52=-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 28.(0分)把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--.解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】 先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.。
人教版七年级数学知识点试题精选-角平分线的定义
七年级上册角平分线的定义一.选择题(共20小题)1.如图A、O、B三点共线,OD平分∠AOC,OE平分∠BOC,则∠DOE度数为()A.30°B.60°C.90°D.120°2.如图,点O在直线AB上,OD平分∠BOC,若∠BOD=55°,则∠AOC的度数是()A.110°B.70°C.55°D.35°3.如图,如果∠AON=∠BOM,OC平分∠MON,那么图中除∠AON=∠BOM外,相等的角还有()A.1对 B.2对 C.3对 D.4对4.如图,OC是∠AOB的平分线,下列表达式中错误的是()A.∠AOC=∠AOB B.∠AOB=2∠BOC C.∠AOC=∠COB D.∠AOB=2∠O5.如图,OM平分∠AOB,OC是∠AOB内部的一条射线,ON平分∠BOC,有以下说法:①∠AOC=∠BOM②∠CON=∠BON③∠AOC=∠AOM+∠COM④∠AOC=∠BOM+∠COM⑤∠AOC=2∠MOC+∠COB⑥∠AOC=2∠MOC+2∠CON⑦∠AOC=2∠MON其中正确的有()个.A.4 B.5 C.6 D.76.如图,已知∠AOB是直角,OM平分∠AOC,ON平分∠BOC,则∠MON的度数是()A.60°B.50°C.45°D.30°7.点C在∠AOB的内部,现在五个等式:∠AOB=∠BOC,∠BOC=∠AOB,∠AOB=2∠AOC,∠AOB=2∠AOC,∠AOC+∠BOC=∠AOB,其中能表示OC是∠AOB 平分线的等式有()A.2个 B.3个 C.4个 D.5个8.如图,∠AOB是平角,∠AOC,∠BOC的角平分线分别是OD,OE,则∠DOE 是()A.80°B.90°C.100° D.105°9.如图,射线OC,OD在∠AOB的内部,OC是∠AOD的平分线,若∠AOB=100°,∠COD=15°,则∠BOD的度数为()A.85°B.80°C.70°D.60°10.如图,已知∠AOB=40°,∠AOC=90°,OD平分∠BOC,则∠AOD的度数是()A.20°B.25°C.30°D.35°11.如图,已知OD平分∠AOB,OE平分∠BOD,若=,则的值为()A.B.C.D.12.如图,已知∠BOC=40°,OD平分∠AOC,∠AOD=25°,那么∠AOB的度数是()A.65°B.50°C.40°D.90°13.点M,O,N顺次在同一直线上,射线OC,OD在直线MN同侧,且∠MOC=64°,∠DON=46°,则∠MOC的平分线与∠DON的平分线夹角的度数是()A.85°B.105°C.125° D.145°14.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,则∠MON的度数为()A.30°B.45°C.60°D.75°15.点P在∠MON内部,则四个等式:①∠POM=∠NOP;②∠PON+∠POM=∠MON;③∠MOP=∠MON,④∠MON=2∠NOP,其中能表示OP是角平分线的式子有()A.1个 B.2个 C.3个 D.4个16.已知∠AOB=60°,作射线OC,使∠AOC等于40°,OD是∠BOC的平分线,那么∠BOD的度数是()A.100°B.100°或20°C.50°D.50°或10°17.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°18.如图,∠AOB是直角,∠AOC=38°,OD平分∠BOC,则∠AOD的度数为()A.52°B.38°C.64°D.26°19.射线OC在∠AOB的内部,下列给出的条件中不能得出OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOC+∠BOC=∠AOBC.∠AOB=2∠AOC D.∠BOC=∠AOB20.如图所示,已知O是直线AB上一点,∠1=68°,OD平分∠BOC,则∠2的度数是()A.40°B.45°C.44°D.46°二.填空题(共20小题)21.若∠AOB=4∠α,OC为∠AOB的角平分线,则∠AOC=∠α.22.如图,∠AOB=68°,OC平分∠AOB,则∠BOC的度数为.23.如图,∠1=∠2=∠3=∠4.(1)那么OD是的角平分线,OE是是的角平分线,OC是的角平分线;(2)=4∠1,==3∠1;(3)∠BOD=∠BOC=∠AOB;(4)若∠BOE=30°,那么∠AOE=.24.一个角的平分线把这个角分为30°的两个角,则这个角是.25.从一个角的点引出一条线,把这个角分成个,这条线叫做这个角的平分线.如图所示,如果OC是∠AOB的平分线,那么:①∠AOC==;②∠AOB==.26.一条以一个角的为的射线把这个角分成的角,这条射线叫做这个角的.27.如图,∠AOB是直角,∠BOC=50°,OM平分∠AOC,ON平分∠BOC,则∠MON的度数为.28.如图,OC平分∠AOB,若∠BOC=29°34′,则∠AOB=°′.29.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOB=.30.如图,O是直线AB上一点,OC为任意一条射线,OD平分∠BOC,OE平分∠AOC.若∠BOC=66°,则∠EOC=度.31.如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线,其中正确的是.(填序号)32.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是.33.如图,已知A,O,E三点在同一条直线上,OB平分∠AOC,OD平分∠COE,则∠BOC与∠COD的关系为.34.如图所示,已知OE是∠AOC的平分线,OD是∠BOC的平分线.(1)若∠AOC=120°,∠BOC=β,求∠DOE;;(2)若∠AOC=α,∠BOC=β(α>β),求∠BOE..35.已知直线AB上有一点O,射线OC、OD在AB的同侧,∠AOD=24°,∠BOC=46°,则∠AOD与∠BOC的平分线的夹角的度数为.36.如图,O是直线AB上的一点,OD平分∠AOC,OE平分∠BOC,则∠DOE=度.37.如图,OB在∠AOC内部,且∠BOC=3∠AOB,OD是∠AOB的平分线,∠BOC=3∠COE,则下列结论:①∠EOC=∠AOE;②∠DOE=5∠BOD;③∠BOE=(∠AOE+∠BOC);④∠AOE=(∠BOC﹣∠AOD).其中正确结论有.38.如图所示,∠AOB=85°,∠AOC=10°,OD是∠BOC的平分线,则∠BOD的度数为度.39.如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°10′,则∠AOB的度数为.40.如图,OC平分∠AOB,若∠AOC=27°30′,则∠AOB=度.三.解答题(共10小题)41.如图,OB是∠AOC的平分线,OD是∠EOC的平分线.(1)如果∠AOD=75°,∠BOC=19°,则∠DOE的度数为;(2)如果∠BOD=56°,求∠AOE的度数.解:如图,因为OB是∠AOC的平分线,所以=2∠BOC.因为OD是∠EOC的平分线,所以=2∠COD.所以∠AOE=∠AOC+∠COE=2∠BOC+2∠COD=°.42.已知平角AOB及其平分线OC,如果作射线OD,使∠BOD与∠COD的度数之比为7:3,那么∠AOD等于多少度?43.已知,如图,∠AOB=90°,∠EOD=70°,OE、OD分别是∠AOB和∠BOC的角平分线,求∠BOC的度数.44.如图,已知O为直线AF上一点,OE平分∠AOC,(1)若∠AOE=20°,求∠FOC的度数;(2)若OD平分∠BOC,∠AOB=84°,求∠DOE的度数.45.如图所示,BD平分∠ABC,BE分∠ABC成2:5的两部分,∠DBE=27°,求∠ABC的度数.46.如图,O是直线AB上的一点,OC是△BOD的平分线,已知∠AOD=113°24′,求∠COD的度数.47.如图1,OM是∠BOC的角平分线,ON是∠AOC的角平分线,且∠AOB=76°.(1)求∠MON的度数;(2)当OC在∠AOB内另一个位置时,∠MON的值是否发生变化?若不变化,请你在图2中画图加以说明;(3)由(1)、(2)你发现了什么规律?当OC在∠AOB外的某一个位置时,你发现的规律还成立吗?请你在图3中画图加以说明.48.如图,点O为直线AB上一点,∠AOC=50°,OD平分∠AOC.(1)求∠BOD的度数;(2)若OE平分∠BOC,求∠DOE的度数.49.如图,OC是∠AOM的平分线,OD是∠BOM的平分线.(1)如图1,若∠AOB=90°,∠AOM=60°,求∠COD的度数;(2)如图2,若∠AOB=90°,∠AOM=130°,则∠COD=°;(3)如图3,若∠AOB=m°,∠AOM=n°,则∠COD=°.50.如图所示,OC是∠AOD的平分线,OE是∠BOD的平分线.(1)若∠AOB=120°,则∠COE是多少度?(2)若∠EOC=65°,∠DOC=25°,则∠BOE是多少度?七年级上册角平分线的定义参考答案与试题解析一.选择题(共20小题)1.如图A、O、B三点共线,OD平分∠AOC,OE平分∠BOC,则∠DOE度数为()A.30°B.60°C.90°D.120°【分析】根据角平分线的定义可得∠COD=∠AOC,∠COE=∠COB,再根据∴∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)可得答案.【解答】解:∵OD平分∠AOC,OE平分∠BOC,∴∠COD=∠AOC,∠COE=∠COB,∴∠DOE=∠COD+∠COE=∠AOC+∠COB=180°=90°,故选:C.【点评】此题主要考查了角平分线的定义,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.2.如图,点O在直线AB上,OD平分∠BOC,若∠BOD=55°,则∠AOC的度数是()A.110°B.70°C.55°D.35°【分析】先由角平分线的定义得出∠BOC=2∠BOD,再根据邻补角定义即可求解.【解答】解:∵OD平分∠BOC,∠BOD=55°,∴∠BOC=2∠BOD=110°,∵AB是直线,∴∠AOC=180°﹣∠B0C=70°.故选B.【点评】此题考查角平分线与邻补角的定义,属于基础题,比较简单.3.如图,如果∠AON=∠BOM,OC平分∠MON,那么图中除∠AON=∠BOM外,相等的角还有()A.1对 B.2对 C.3对 D.4对【分析】根据角平分线的定义和图中角与角间的和差关系进行计算.【解答】解:∵∠AON=∠BOM,∴∠AON+∠MON=∠BOM+∠MON,即∠AOM=∠BON;又∵OC平分∠MON,∴∠MOC=∠NOC,∴∠AON+∠NOC=∠BOM+∠MOC,即∠AOC=∠BOC.综上所述,图中除∠AON=∠BOM外,相等的角还有∠AOM=∠BON、∠MOC=∠NOC、∠AOC=∠BOC,共有3对.故选:C.【点评】本题考查了角平分线的定义.实际上是根据角平分线定义得出所求角与已知角的关系转化求解.4.如图,OC是∠AOB的平分线,下列表达式中错误的是()A.∠AOC=∠AOB B.∠AOB=2∠BOC C.∠AOC=∠COB D.∠AOB=2∠O 【分析】根据角平分线的定义对各选项进行逐一分析即可.【解答】解:A、∵OC是∠AOB的平分线,∴∠AOC=∠AOB,故本选项正确;B、∵OC是∠AOB的平分线,∴∠AOB=2∠BOC,故本选项正确;C、∵OC是∠AOB的平分线,∴∠AOC=∠COB,故本选项正确;D、∵从点O出发由三个角,故不能确定∠AOC的大小,故本选项错误.故选D.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.5.如图,OM平分∠AOB,OC是∠AOB内部的一条射线,ON平分∠BOC,有以下说法:①∠AOC=∠BOM②∠CON=∠BON③∠AOC=∠AOM+∠COM④∠AOC=∠BOM+∠COM⑤∠AOC=2∠MOC+∠COB⑥∠AOC=2∠MOC+2∠CON⑦∠AOC=2∠MON其中正确的有()个.A.4 B.5 C.6 D.7【分析】根据角平分线的定义对各小题进行逐一分析即可.【解答】解:∵OM平分∠AOB,ON平分∠BOC,∴∠AOM=∠BOM,∠BON=∠CON.①∵∠AOM=∠BOM,∴∠AOC≠∠BOM,故本小题错误;②∵ON平分∠BOC,∴∠CON=∠BON,故本小题正确;③由图可知,∠AOC=∠AOM+∠COM,故本小题正确;④∵∠AOC=∠AOM+∠COM,∠AOM=∠BOM,∴∠AOC=∠BOM+∠COM,故本小题正确;⑤∵∠AOC=∠AOM+∠MOC,∠AOM=∠BOM,∠BOC+∠MOC=∠BOM,∴∠AOC=2∠MOC+∠COB,故本小题正确;⑥∵∠AOC=2∠MOC+∠COB,∠COB=2∠CON,∴∠AOC=2∠MOC+2∠CON,故本小题正确;⑦∵∠AOM=∠BOM=2∠CON+∠MOC,∠BOM=2∠CON,∴∠AOC=∠AOM+∠MOC=2∠CON+∠MOC+∠MOC=2∠MON.故本小题正确.故选C.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.6.如图,已知∠AOB是直角,OM平分∠AOC,ON平分∠BOC,则∠MON的度数是()A.60°B.50°C.45°D.30°【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB 的关系,即可求出∠MON的度数.【解答】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∴∠MON=∠MOC﹣∠NOC=(∠AOC﹣∠BOC)=(∠AOB+∠BOC﹣∠BOC)=∠AOB=45°.故选C.【点评】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.7.点C在∠AOB的内部,现在五个等式:∠AOB=∠BOC,∠BOC=∠AOB,∠AOB=2∠AOC,∠AOB=2∠AOC,∠AOC+∠BOC=∠AOB,其中能表示OC是∠AOB 平分线的等式有()A.2个 B.3个 C.4个 D.5个【分析】根据角平分线的定义对各等式进行逐一分析即可.【解答】解:点C在∠AOB的内部时,∠AOB>∠BOC,原等式不能表示OC是∠AOB平分线;∠BOC=∠AOB,原等式能表示OC是∠AOB平分线;∠AOB=∠AOC,原等式不能表示OC是∠AOB平分线;∠AOB=2∠AOC,原等式能表示OC是∠AOB平分线;∠AOC+∠BOC=∠AOB,原等式不能表示OC是∠AOB平分线;故选A.【点评】本题考查的是角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.8.如图,∠AOB是平角,∠AOC,∠BOC的角平分线分别是OD,OE,则∠DOE 是()A.80°B.90°C.100° D.105°【分析】本题比较多的条件是角平分线,OD和OE分别是∠AOC,∠BOC的角平分线,则2∠DOC+2∠EOC=180°,从而可以求解.【解答】解:∵OE平分∠BOC,OD平分∠AOC,∴∠AOC=2∠DOC,∠BOC=2∠COE,∵∠AOC+∠BOC=180°,∴2∠DOC+2∠EOC=180°,∴∠DOE=90°,故选:B.【点评】本题主要考查了角平分线的性质,关键是掌握角平分线把角分成相等的两部分.9.如图,射线OC,OD在∠AOB的内部,OC是∠AOD的平分线,若∠AOB=100°,∠COD=15°,则∠BOD的度数为()A.85°B.80°C.70°D.60°【分析】根据角平分线的定义,及角的和差进行计算即可.【解答】解:∵OC是∠AOD的平分线,∴∠AOD=2∠COD,∵∠COD=15°,∴∠AOD=2∠COD=30°,∵∠BOD=∠AOB﹣∠AOD,∠AOB=100°,∴∠BOD=100°﹣30°=70°.故选C.【点评】此题考查了角的平分线的定义,及角的和差计算,解题的关键是:根据角平分线的定义,先求出∠AOD的度数.10.如图,已知∠AOB=40°,∠AOC=90°,OD平分∠BOC,则∠AOD的度数是()A.20°B.25°C.30°D.35°【分析】先求出∠BOC=40°+90°=130°,再根据角平分线的定义求得∠BOD=65°,把对应数值代入∠AOD=∠BOD﹣∠AOB即可求解.【解答】解:∵∠AOB=40°,∠AOC=90°,∴∠BOC=40°+90°=130°,∵OD平分∠BOC,∴∠BOD=65°,∴∠AOD=∠BOD﹣∠AOB=65°﹣40°=25°.故选B.【点评】本题主要考查了角平分线的定义和角的运算.要会结合图形找到其中的等量关系:∠BOC=∠AOC+∠AOB,∠AOD=∠BOD﹣∠AOB是解题的关键.11.如图,已知OD平分∠AOB,OE平分∠BOD,若=,则的值为()A.B.C.D.【分析】由=,可设∠AOC=3x,∠BOC=2x,则∠AOB=5x,由OD平分∠AOB,可得∠AOD=∠BOD==,进而可得∠DOC=x,由OE平分∠BOD,可得∠DOE=∠BOE=∠BOD=,进而可得∠COE=∠DOE﹣∠DOC=,将∠COE=,∠BOE=,代入即可.【解答】解:∵=,可∴设∠AOC=3x,∠BOC=2x,则∠AOB=5x,∵OD平分∠AOB,∴∠AOD=∠BOD==,∴∠DOC=∠AOC﹣∠AOD=x,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=,∴∠COE=∠DOE﹣∠DOC=,∴==故选:C.【点评】本题主要考查了角平分线的定义,解题的关键是利用角平分线的定义找出各角之间的关系.12.如图,已知∠BOC=40°,OD平分∠AOC,∠AOD=25°,那么∠AOB的度数是()A.65°B.50°C.40°D.90°【分析】利用角平分线的定义得出∠COD=25°,进而得出答案.【解答】解:∵OD平分∠AOC,∠AOD=25°,∴∠COD=25°,∴∠AOB的度数是:∠BOC+∠AOD+∠COD=90°.故选:D.【点评】此题主要考查了角平分线的定义,得出∠COD的度数是解题关键.13.点M,O,N顺次在同一直线上,射线OC,OD在直线MN同侧,且∠MOC=64°,∠DON=46°,则∠MOC的平分线与∠DON的平分线夹角的度数是()A.85°B.105°C.125° D.145°【分析】先画出图形,然后根据角平分线的定义解题.【解答】解:如图,设∠MOC的平分线为OE,∠DON的平分线为OF,∵∠MOC=64°,∠DON=46°,∴∠MOE=∠MOC=×64°=32°,∠NOF=∠DON=×46°=23°,∴∠EOF=180°﹣∠MOE﹣∠NOF=180°﹣32°﹣23°=125°.故选C.【点评】根据题意画出图形是解题的关键.然后根据角平分线的定义进行计算.14.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,则∠MON的度数为()A.30°B.45°C.60°D.75°【分析】根据角平分线的定义得到∠MOC=∠AOC,∠NOC=∠BOC,则∠MON=∠MOC﹣∠NOC=(∠AOC﹣∠BOC)=∠AOB,然后把∠AOB的度数代入计算即可.【解答】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∵∠AOC=∠AOB+∠BOC,∴∠MON=∠MOC﹣∠NOC=(∠AOB+∠BOC﹣∠BOC)=∠AOB,∵∠AOB=90°,∴∠MON=×90°=45°.故选B.【点评】本题考查了角平分线的定义,做这类题时学生总会认为条件不够,其实只要把这些等量关系合并化简即可求出角的度数,所以学生做题时有是不要急于计算,而是要先化简后再合并,属于基础题.15.点P在∠MON内部,则四个等式:①∠POM=∠NOP;②∠PON+∠POM=∠MON;③∠MOP=∠MON,④∠MON=2∠NOP,其中能表示OP是角平分线的式子有()A.1个 B.2个 C.3个 D.4个【分析】利用角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线可得答案.【解答】解;如图:根据角平分线定义可得三个等式:①∠POM=∠NOP,③∠MOP=∠MON,④∠MON=2∠NOP;故选:C.【点评】此题主要考查了角平分线定义,题目比较简单,画出图形分析即可.16.已知∠AOB=60°,作射线OC,使∠AOC等于40°,OD是∠BOC的平分线,那么∠BOD的度数是()A.100°B.100°或20°C.50°D.50°或10°【分析】分为两种情况:①当OC在∠AOB外部时,②当OC在∠AOB内部时,求出∠BOC,根据∠BOD=∠BOC求出即可.【解答】解:分为两种情况:①当OC在∠AOB外部时,∵∠AOB=60°,∠AOC=40°,∴∠BOC=60°+40°=100°,∵OD是∠BOC的平分线,∴∠BOD=∠BOC=50°,②当OC在∠AOB内部时,∵∠AOB=60°,∠AOC=40°,∴∠BOC=60°﹣40°=20°,∵OD是∠BOC的平分线,∴∠BOD=∠BOC=10°,故选D.【点评】本题考查了角平分线定义和角的有关计算,解此题的关键是求出符合条件的所有情况.17.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°【分析】由于OA与∠BOC的位置关系不能确定,故应分OA在∠BOC内和在∠BOC外两种情况进行讨论.【解答】解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON﹣∠AOM=40°﹣10°=30°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D.【点评】本题考查的是角平分线的定义,解答≜此题时要根据OA与∠BOC的位置关系分两种情况进行讨论,不要漏解.18.如图,∠AOB是直角,∠AOC=38°,OD平分∠BOC,则∠AOD的度数为()A.52°B.38°C.64°D.26°【分析】先求得∠BOC的度数,然后由角平分线的定义可求得∠BOD的度数,最后根据∠AOD=∠AOB﹣∠BOD求解即可.【解答】解:∠BOC=∠AOB﹣∠AOC=90°﹣38°=52°,∵OD平分∠BOC,∴∠BOD=∠BOC=26°.∴∠AOD=∠AOB﹣∠BOD=90°﹣26°=64°.故选:C.【点评】本题主要考查的是角平分线的定义,掌握角平分线的定义是解题的关键.19.射线OC在∠AOB的内部,下列给出的条件中不能得出OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOC+∠BOC=∠AOBC.∠AOB=2∠AOC D.∠BOC=∠AOB【分析】利用角平分的定义从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.可知B不一定正确.【解答】解:A、正确;B、不一定正确;C、正确;D、正确;故选B.【点评】此题主要考查了从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.20.如图所示,已知O是直线AB上一点,∠1=68°,OD平分∠BOC,则∠2的度数是()A.40°B.45°C.44°D.46°【分析】根据角平分线的定义求出∠BOC,再根据邻补角的定义列式计算即可得解.【解答】解:∵OD平分∠BOC,∴∠BOC=2∠1=2×168°=136°,∴∠2=180°﹣∠BOC=180°﹣136°=44°.故选C.【点评】本题考查了角平分线的定义,邻补角的定义,熟记概念并准确识图是解题的关键.二.填空题(共20小题)21.若∠AOB=4∠α,OC为∠AOB的角平分线,则∠AOC=2∠α.【分析】直接根据角平分线的定义即可求解.【解答】解:∵∠AOB=4∠α,OC为∠AOB的角平分线,∴∠AOC=∠AOB=×4∠α=2∠α.故答案为:2.【点评】本题考查了角平分线的性质:从角的顶点引一条射线,把这个角分成相等的两部分,那么这条射线叫这个角的平分线.22.如图,∠AOB=68°,OC 平分∠AOB ,则∠BOC 的度数为 34° .【分析】根据角平分线的定义即可直接求解.【解答】解:∵OC 平分∠AOB ,∴∠BOC=∠AOB=×68=34°.故答案是:34°.【点评】此题主要考查了垂线和角平分线的定义,理解定义是关键.23.如图,∠1=∠2=∠3=∠4.(1)那么OD 是 ∠AOB 和∠COE 的角平分线,OE 是 ∠BOD 是的角平分线,OC 是 ∠AOD 的角平分线;(2) ∠AOB =4∠1, ∠BOC = ∠AOE =3∠1;(3)∠BOD= ∠BOC= ∠AOB ;(4)若∠BOE=30°,那么∠AOE= 90° .【分析】根据角平分线的定义、结合图形进行解答即可.【解答】解:(1)OD 是∠AOB 和∠COE 的角平分线,OE 是∠BOD 是的角平分线,OC是∠AOD的角平分线;(2)∠AOB=4∠1,∠BOC=∠AOE=3∠1;(3)∠BOD=∠BOC=∠AOB;(4)若∠BOE=30°,那么∠AOE=90°,故答案为:(1)∠AOB和∠COE;∠BOD;∠AOD;(2)∠AOB;∠BOC;∠AOE;(3);;(4)90°.【点评】本题考查的是角平分线的定义,掌握角平分线是经过角的顶点把这个角分成相等的两个角的射线是解题的关键.24.一个角的平分线把这个角分为30°的两个角,则这个角是60°.【分析】依据角平分线的定义回答即可.【解答】解:∵一个角的平分线把这个角分为30°的两个角,∴这个角=30°×2=60°.故答案为:60°.【点评】本题主要考查的是角平分线的定义,掌握角平分线的定义是解题的关键.25.从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图所示,如果OC是∠AOB的平分线,那么:①∠AOC=∠BOC=∠AOB;②∠AOB=2∠AOC=2∠BOC.【分析】根据角平分线的定义和性质进行解答即可.【解答】解:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线;①∠AOC=∠BOC=∠AOB;②∠AOB=2∠AOC=2∠BOC.故答案为:顶;射;两;相等的角;射;①∠BOC;∠AOB;②2∠AOC;2∠BOC.【点评】从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.(2)性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.26.一条以一个角的顶点为端点的射线把这个角分成两个相等的角,这条射线叫做这个角的平分线.【分析】根据角平分线的定义解答.【解答】解:顶点、端点、两个相等.一条以一个角的顶点为端点的射线把这个角分成两个相等的角,这条射线叫做这个角的平分线.【点评】此题考查了角平分线的定义,直接按定义填空即可.27.如图,∠AOB是直角,∠BOC=50°,OM平分∠AOC,ON平分∠BOC,则∠MON的度数为45°.【分析】先根据∠AOB是直角,∠BOC=50°得出∠AOC的度数,再根据OM平分∠AOC,ON平分∠BOC得出∠COM与∠CON的度数,由∠MON=∠COM﹣∠CON 即可得出结论.【解答】解:∵∠AOB是直角,∠BOC=50°,∴∠AOC=90°+50°=140°.∵OM平分∠AOC,ON平分∠BOC,∴∠COM=∠AOC=×140°=70°,∠CON=∠BOC=25°,∴∠MON=∠COM﹣∠CON=70°﹣25°=45°.故答案为:45°.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.28.如图,OC平分∠AOB,若∠BOC=29°34′,则∠AOB=59°8′.【分析】从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.根据定义求得即可.【解答】解:∠AOB=2×29°34′=59°8′.故答案为59、8.【点评】本题主要考查了角平分线的定义.29.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOB=28°.【分析】设∠AOB=x°,根据已知和角平分线定义得出∠AOD=∠COD=(x+14)°,求出∠AOC=2∠AOD=3∠AOB,得出方程3x=2(x+14),求出方程的解即可.【解答】解:设∠AOB=x°,∵∠BOD=14°,OD平分∠AOC,∴∠AOD=∠COD=(x+14)°,∵∠BOC=2∠AOB,∴∠AOC=2∠AOD=3∠AOB,∴3x=2(x+14),解得:x=28,∴∠AOB=28°,故答案为:28°.【点评】本题考查了角平分线定义和角的有关计算的应用,解此题的关键是能得出关于x的方程,难度适中.30.如图,O是直线AB上一点,OC为任意一条射线,OD平分∠BOC,OE平分∠AOC.若∠BOC=66°,则∠EOC=57度.【分析】先根据OE平分∠AOC,∠BOC=66°求出∠COD的度数,再由OD平分∠BOC,OE平分∠AOC得出∠EOD的度数,根据∠EOC=∠EOD﹣∠COD即可得出结论.【解答】解:∵OE平分∠AOC,∠BOC=66°,∴∠COD=∠BOC=×66°=33°,∵OD平分∠BOC,OE平分∠AOC,∴∠EOD=∠EOC+∠COD=∠AOC+∠BOC=(∠AOC+∠BOC)=90°,∴∠EOC=∠EOD﹣∠COD=90°﹣33°=57°.故答案为:57.【点评】本题考考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.31.如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线,其中正确的是①③④.(填序号)【分析】根据角的计算和角平分线性质,对四个结论逐一进行计算即可.【解答】解:①∵∠AOC=∠BOD=90°,∴∠AOB=90°﹣∠BOC,∠COD=90°﹣∠BOC,∴∠AOB=∠COD;故①正确.②只有当OB,OC分别为∠AOC和∠BOD的平分线时,∠AOB+∠COD=90°;故②错误.③∵∠AOC=∠BOD=90°,OB平分∠AOC,∴∠AOB=∠COB=45°,则∠COD=90°﹣45°=45°∴CB平分∠BOD;故③正确.④∵∠AOC=∠BOD=90°,∠AOB=∠COD(已证);∴∠AOD的平分线与∠COB的平分线是同一条射线.故④正确.故答案为:①③④.【点评】此题主要考查学生对角的计算,角平分线的理解和掌握,此题难度不大,属于基础题.32.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是40°.【分析】根据角平分线的定义求出∠DEB的度数,然后根据平角等于180°列式进行计算即可求解.【解答】解:∵EF是∠BED的角平分线,∠DEF=70°,∴∠DEB=2∠DEF=2×70°=140°,∴∠AED=180°﹣∠DEB=180°﹣140°=40°.故答案为:40°.【点评】本题考查了角平分线的定义,平角等于180°,是基础题,需熟练掌握.33.如图,已知A,O,E三点在同一条直线上,OB平分∠AOC,OD平分∠COE,则∠BOC与∠COD的关系为∠BOC+∠DOC=90°.【分析】根据已知得出∠AOC+∠EOC=180°,∠BOC=∠AOC,∠DOC=EOC,求出∠BOC+∠DOC=(∠AOC+∠EOC)=90°,即可得出答案.【解答】解:∠BOC+∠DOC=90°,理由是:∵A,O,E三点在同一条直线上,OB平分∠AOC,OD平分∠COE,∴∠AOC+∠EOC=180°,∠BOC=∠AOC,∠DOC=EOC,∴∠BOC+∠DOC=(∠AOC+∠EOC)=180°=90°,∴∠BOC与∠COD的关系为∠BOC+∠DOC=90°,故答案为:∠BOC+∠DOC=90°.【点评】本题考查了角平分线定义和角的有关计算的应用,能识别图形是解此题的关键.34.如图所示,已知OE是∠AOC的平分线,OD是∠BOC的平分线.(1)若∠AOC=120°,∠BOC=β,求∠DOE;60°﹣β;(2)若∠AOC=α,∠BOC=β(α>β),求∠BOE.α﹣β.【分析】根据角平分线的性质计算.【解答】解:(1)∠AOC=120°,∴∠COE=60°(角平分线定义),∵∠BOC=β,∴∠COD=β(角平分线定义),∴∠DOE=60°﹣β;(2)∵∠AOC=α,OE是∠AOC的平分线,且∠BOC=β(α>β),∴∠COE=α(角平分线定义).∴∠BOE=∠COE﹣∠BOC=α﹣β.【点评】此题主要考查了角平分线定义.由角平分线的定义,易求该角的度数.35.已知直线AB上有一点O,射线OC、OD在AB的同侧,∠AOD=24°,∠BOC=46°,则∠AOD与∠BOC的平分线的夹角的度数为145°.【分析】先根据题意画出图形,然后依据角平分线的定义求得∠AOF和∠EOB的度数,然后依据平角是180°可求得∠EOF的度数.【解答】解:如图所示:∵OF平分∠AOD,∴∠AOF=AOD==12°.同理可知:∠EOB=.∴∠EOF=180°﹣∠AOF﹣∠EOB=180°﹣12°﹣23°=145°.故答案为:145°.【点评】本题主要考查的是角平分线的定义,根据题意画出图形是解题的关键.36.如图,O是直线AB上的一点,OD平分∠AOC,OE平分∠BOC,则∠DOE=90度.【分析】利用角平分线的性质计算.【解答】解:∵OD平分∠AOC,OE平分∠BOC,则∠DOE=(∠AOC+∠BOC)=90°.故答案为90.【点评】此题主要考查角平分线的定义和平角的定义.37.如图,OB在∠AOC内部,且∠BOC=3∠AOB,OD是∠AOB的平分线,∠BOC=3∠COE,则下列结论:①∠EOC=∠AOE;②∠DOE=5∠BOD;③∠BOE=(∠AOE+∠BOC);④∠AOE=(∠BOC﹣∠AOD).其中正确结论有①②④.【分析】根据∠BOC=3∠AOB,∠BOC=3∠COE,得∠COE=∠AOB,则∠BOC=∠AOE,设∠AOD=x,则∠AOB=∠COE=2x,∠AOE=∠BOC=6x,得出①②④正确,③不正确.【解答】解:①∵∠BOC=3∠AOB,∠BOC=3∠COE,∴∠COE=∠AOB,∴∠COE+∠BOE=∠AOB+∠BOE,∴∠BOC=∠AOE,∵OD是∠AOB的平分线,∴∠AOD=∠BOD,设∠AOD=x,则∠AOB=∠COE=2x,∠AOE=∠BOC=6x,∴∠COE=∠AOE;所以①正确;②∵∠DOE=∠BOD+∠BOE=x+4x=5x,∠BOD=x,∴∠DOE=5∠BOD,所以②正确;③∵∠BOE=4x,(∠AOE+∠BOC)=(6x+6x)=6x,∴∠BOE≠(∠AOE+∠BOC),所以③不正确;④∵∠AOE=6x,(∠BOC﹣∠AOD)=(6x﹣x)=6x,∴∠AOE=(∠BOC﹣∠AOD),所以④正确.故答案为:①②④.【点评】本题考查了角平分线的性质和角的和差倍分,一般情况下,根据已知条件得出各角之间的关系,设一个最小角为x°,分别表示出各角的关系,得出相应的结论.38.如图所示,∠AOB=85°,∠AOC=10°,OD是∠BOC的平分线,则∠BOD的度数为37.5度.【分析】利用角与角的和差关系及角平分线的性质计算.【解答】解:∵∠AOB=85°,∠AOC=10°∴∠BOC=85°﹣10°=75°又∵OD是∠BOC的平分线,∴∠BOD=∠COD=∠BOC,即∠BOD的度数为×75°=37.5°故∠BOD的度数为37.5度.【点评】本题主要考查角平分线的知识点,比较简单.39.如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°10′,则∠AOB的度数为100°40′.【分析】直接利用角平分线的性质得出∠AOC的度数,进而得出答案.【解答】解:∵OD是∠AOC的平分线,且∠COD=25°10′,∴∠AOC=2×25°10′=50°20′,∵OC是∠AOB的平分线,∴∠AOB的度数为:50°20′×2=100°40′.故答案为:100°40′.【点评】此题主要考查了角平分线的定义,正确把握定义是解题关键.40.如图,OC平分∠AOB,若∠AOC=27°30′,则∠AOB=55度.【分析】直接利用角平分线的定义得出∠AOC=∠BOC,进而得出答案.【解答】解:∵OC平分∠AOB,∴∠AOC=∠BOC,∵∠AOC=27°30′,∴∠AOB=27°30′×2=55°.故答案为:55.【点评】此题主要考查了角平分线的定义以及度分秒的换算,正确把握角平分线的定义是解题关键.三.解答题(共10小题)41.如图,OB是∠AOC的平分线,OD是∠EOC的平分线.(1)如果∠AOD=75°,∠BOC=19°,则∠DOE的度数为37°;(2)如果∠BOD=56°,求∠AOE的度数.解:如图,因为OB是∠AOC的平分线,所以AOC=2∠BOC.因为OD是∠EOC的平分线,所以COE=2∠COD.所以∠AOE=∠AOC+∠COE=2∠BOC+2∠COD=112°°.【分析】(1)角平分线的定义求得∠AOC=38°,∠DOE=∠DOC=∠AOD﹣∠AOC=75°﹣38°=37°;(2)根据角平分线的定义易求∠AOE=2∠BOD.【解答】解:(1)∵OB是∠AOC的平分线,∠BOC=19°,∴∠AOC=2∠BOC=38°.∴∠DOC=∠AOD﹣∠AOC=75°﹣38°=37°.又∵OD是∠EOC的平分线,∴∠DOE=∠DOC=37°.故填:37°;(2)如图,因为OB是∠AOC的平分线,所以AOC=2∠BOC.因为OD是∠EOC的平分线,所以COE=2∠COD.所以∠AOE=∠AOC+∠COE=2∠BOC+2∠COD=112°°.故填:∠AOC,∠COE,112°.【点评】本题考查了角平分线的定义.解题时,实际上是根据角平分线定义得出所求角与已知角的关系转化求解.42.已知平角AOB及其平分线OC,如果作射线OD,使∠BOD与∠COD的度数之比为7:3,那么∠AOD等于多少度?【分析】根据题意画出图形,由角平分线的定义得出∠COB的度数,再根据∠BOD 与∠COD的度数之比为7:3求出∠COD的度数,根据∠AOD=∠AOC+∠COD即可得出结论.【解答】解:如图1所示,∵∠AOB=180°,OC是∠AOB的平分线,∴∠COB=×180°=90°.∵∠BOD与∠COD的度数之比为7:3,∴∠COD=∠COB=×90°=27°,∴∠AOD=∠AOC+∠COD=90°+27°=117°.如图2所示,∵∠AOD:∠COD=1:3,∴∠AOD=90°×=22.5°.答:∠AOD等于117°或22.5°.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.43.已知,如图,∠AOB=90°,∠EOD=70°,OE、OD分别是∠AOB和∠BOC的角平分线,求∠BOC的度数.【分析】先由∠AOB=90°,OE是∠AOB的角平分线,得出∠EOB=∠AOB=45°,那么∠BOD=∠EOD﹣∠EOB=70°﹣45°=25°,再由OD是∠BOC的角平分线,得出∠BOC=∠BOD=50°.【解答】解:∵∠AOB=90°,OE是∠AOB的角平分线,∴∠EOB=∠AOB=45°,∵∠EOD=70°,∴∠BOD=∠EOD﹣∠EOB=70°﹣45°=25°,∵OD是∠BOC的角平分线,∴∠BOC=∠BOD=50°.【点评】本题考查了角的计算及角平分线的定义,首先确定各角之间的关系,利用角平分线的性质来求.44.如图,已知O为直线AF上一点,OE平分∠AOC,(1)若∠AOE=20°,求∠FOC的度数;(2)若OD平分∠BOC,∠AOB=84°,求∠DOE的度数.【分析】①利用角平分线的定义求出∠AOC,∠FOC与∠AOC和是180°.②从图中不难看出∠DOE是由∠AOB与∠BOC半角之和,也就是∠AOB的一半.【解答】解:①∵OE平分∠AOC,∠AOE=20°∴∠AOC=2∠AOE=40°∴∠FOC=180°﹣∠AOC=140°;②∵OE平分∠AOC,OD平分∠BOC,∴∠AOE=∠COE=∠AOC,∠COD=∠BOD=∠BOC,∴∠DOE=∠COE+∠COD=∠AOC+∠BOC=∠AOB,已知∠AOB=84°∴∠DOE=42°.【点评】本题考查了角平分线的定义,解决本题的关键牢记角平分线的定义,注意实际问题中的转化.45.如图所示,BD平分∠ABC,BE分∠ABC成2:5的两部分,∠DBE=27°,求∠ABC的度数.【分析】此题的关键是要先设∠ABC的度数.然后再利用题中的关系求出,∠DBE 的值,让它与27°列成等式.从而求出∠ABC的度数.【解答】解:设∠ABC=α,则∠ABD=,∠ABE=α∵∠DBE=∠ABD﹣∠ABE∴﹣α=27°得α=126°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学精选试题①
初一数学
学校: 班级: 姓名: 考号:
说明:
1.本试卷满分100分,考试时间60分钟;
2.在试卷的上方内填写班级、姓名、考号,填上座位号,密封线内不要答题;
一、概念默写(10分)
1.(5分)科学记数法: 。
2.(5分)同类项: 。
二、选择题(每空3分,30分)
1.如果x>o,y<0,那么y,y-x,y+x 的大小顺序为( ) A.y>y-x>y+x B.y+x>y-x>y C.y>y+x>y-x D.y+x>y>y-x
2.有理数a,b 在数轴上的位置如图所示,则他们的距离是( )
a 0
b A.a+b B.a-b C.-a+b D.-a-b
3.计算(-1)2011 -(-1)2012的结果是( ) A.2 B.0 C.-1 D.-2
4.下列各组数中互为相反数的是( ) A.-23 与-3 2 B 。
-23 与(-2)3 C.-3 2 与(-3)2 D.(-3*2)2与-3*22
5.下列说法正确的是( )
A 。
a 为有理数,则a+5一定大于5 B.a 为有理数,则(-a)+|a|可能为负数 C.a,b 为有理数,则a+b>a-b
D.a,b 为不等于0的有理数,则ab 与a 同号
b
6.某粮店出售的两种品牌的面粉包装袋上分别标有质量为(25+0.1)千克,(25+0.2)千克的字样,从中任意取出两袋,他们的质量最多相差( )
A.0.8千克 B 。
0.6千克 C 。
0.5千克 D 。
0.4千克
7.若3x+ax+y-6y 合并同类项后,不含有x 项,则a 的值是( ) A.2 B 。
-3 C 。
0 D 。
-1
8.若|a|=3,|b|=4,且|a-b=a-b,则a+b 的值是( ) A.1 B.-1 C.7或1 D.-7或-1
9.π是( )
A.整数
B.分数
C.有理数
D.以上都不对
10.若a=(-2)*(-3),b=(-2)3,c=-(-3)2,则a 、b 、c 的大小关系是( ) A.a>b>c B.c>b>a C.c>a>b D.a>c>b 三、填空题(一空1分,9分,第4空2分。
)
四、解方程。
(16分) 1、(0.5+x)+x=9.8÷2
高一语文期未试卷 第 2 页(共 2 页)
2
2、7(6.5+x)=87.5
五、解决问题。
(35分)
1. 甲队有32人,乙队有28人,如果要使甲队的人数是乙队人数的2倍,那么需从乙队抽调多少人到甲队?
2. 甲槽有水34升,乙槽有水18升。
现在两槽同时排水,都是平均每分排除2升。
多少分钟后,甲槽的水是乙槽的水的3倍?
3. 某渔场的甲仓库存鱼30吨,乙仓库存鱼40吨。
要再往这两个仓库运送80吨鱼,使甲仓库的存鱼量为乙仓库的存鱼量的1.5倍。
应往甲仓库和乙仓库分别运送多少吨鱼?
4. 甲,乙两人步行的速度之比是7:5,两人分别从A,B 两地同时出发,相向而行,0.5小时后相遇,如果他们分别从A,B 两地同时出发,同向而行,那么甲追上乙需要多少小时?
王老师给学生出了这样一道题:七年级一班共有36人参加数学和科学兴趣小组,其中参加数学兴
趣小组的人数是参加科学兴趣小组的2倍,而两个兴趣小组都参加的有21人。
(1)你知道参加数学兴趣小组的有多少人吗?(2)根据解出的结果,请你判断王老师设计的这个题目是否合理?如果不合理,请改动其中的数据,并把改动后的结果解出来。
5.。