线面角基础练习题教学总结

合集下载

高中数学必修2立体几何专题线面角典型例题求法总结

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。

通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。

例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。

(2)SC 与平面ABC 所成的角。

BMHSCA解:(1) ∵SC ⊥SB,SC ⊥SA,图1∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。

(2) 连结SM,CM ,则SM ⊥AB,又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。

∠SCH 为SC 与平面ABC 所成的角。

sin ∠SCH=SH /SC∴SC 与平面ABC 所成的角的正弦值为√7/7(“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。

) 2. 利用公式sin θ=h /ι其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。

例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。

A 1C 1D 1H4C123BAD解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB,易得h=12/5 ,设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5,∴AB 与面AB 1C 1D 所成的角为arcsin0.83. 利用公式cos θ=cos θ1·cosθ2(如图3) 若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的一条直线,其中θ为OA 与OC 所成的角,B αOAC图3θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么 cos θ=cos θ1·cosθ2,它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角(常称为最小角定理)1.平面的斜线和平面所成的角:已知,如图,AO 是平面α的斜线,A 是斜足,OB 垂直于平面α,B 为垂足,则直线AB 是斜线在平面α内的射影。

2022-2023学年上海高二数学上学期同步知识点讲练重难点01线线角、线面角、二面角问题带讲解

2022-2023学年上海高二数学上学期同步知识点讲练重难点01线线角、线面角、二面角问题带讲解

重难点01线线角、线面角、二面角问题(重难点突破解题技巧与方法)1.求异面直线所成的角的三步曲2.求直线和平面所成角的关键作出这个平面的垂线进而斜线和射影所成角即为所求,有时当垂线较为难找时也可以借助于三棱锥的等体积法求得垂线长,进而用垂线长比上斜线长可求得所成角的正弦值。

3.找二面角的平面角的常用方法 (1)由定义做出二面角的平面角 (2)用三垂线定理找二面角的平面角 (3)找公垂面(4)划归为分别垂直于二面角的两个面的两条直线所成的角求异面直线所成的角一、填空题1.(2021·上海·复旦附中高二期中)已知四棱柱1111ABCD A B C D -中,异面直线11A C 与DB 所成角为3π,且11111,AC D B O ACDB O ==,1OA OB ==,则AB 的长为_________.【答案】1或3【分析】根据题意得出AOB ∠为异面直线11A C 与DB 所成角或所成角的补角,从而在AOB 中,应用余弦定理即可求出答案.【详解】因为11//AC AC ,所以AOB ∠为异面直线11A C 与DB 所成角或所成角的补角,即3AOB π∠=或23π, 当3AOB π∠=时,因为1OA OB ==,所以AOB 为等边三角形,所以1AB =;能力拓展技巧方法当23AOB π∠=时,因为1OA OB ==, 在AOB 中,由余弦定理,得22222cos33AB OA OB OA OB π,所以3AB =.故答案为:1或3.2.(2021·上海·格致中学高二期中)设E 是正方体1111ABCD A B C D -的棱1CC 的中点,在棱1AA 上任取一点P ,在线段1A E 上任取一点Q ,则异面直线PQ 与BD 所成角的大小为______.【答案】2π【分析】连接BD ,利用线面垂直的判定定理证得BD ⊥平面1A ECA ,再利用线面垂直的性质定理可知BD PQ ⊥,即可得解.【详解】连接BD ,由底面ABCD 为正方形,可知BD AC ⊥,由正方体的性质,可知1AA ⊥平面ABCD ,又BD ⊂平面ABCD ,则1AA ⊥BD 又1AA AC A =,则BD ⊥平面1A ECA ,由已知可知PQ ⊂平面1A ECA ,则BD PQ ⊥所以异面直线PQ 与BD 所成角的大小为2π 故答案为:2π3.(2021·上海中学高二期中)正方体1111ABCD A B C D -中,异面直线1AB 与BD所成角大小为______ 【答案】3π【分析】连接1AD 、11B D ,,证明11//B D BD ,可得11AB D ∠即为异面直线1AB 与BD 所成角,在11AB D 求11AB D ∠即可求解.【详解】如图,连接1AD 、11B D , 因为11//BB DD ,11BB DD =, 所以四边形11BB D D 是平行四边形, 所以11//B D BD ,所以11AB D ∠即为异面直线1AB 与BD 所成角, 设正方体1111ABCD A B C D -的棱长为a , 在11AB D 中,11112AD AB B D a ===, 所以11AB D 是等边三角形, 所以113AB D π∠=,即异面直线1AB 与BD 所成角为3π, 故答案为:3π二、解答题4.(2022·上海浦东新·高二期末)如图,在正方体1111ABCD A B C D -中.(1)求异面直线1A B 和1CC 所成的角的余弦值;(2)求证:直线1//A B 平面11DCC D . 【答案】(1)22(2)证明见解析 【分析】(1)根据已知11//CC BB ,可将异面直线1A B 和1CC 所成的角转化为直线1A B 和1BB 所成的角,再根据题目的边长关系,即可完成求解;(2)可通过连接1D C ,证明四边形11A BCD 为平行四边形,从而得到11//A B D C ,再利用线面平行的判定定理即可完成证明.(1)因为11//CC BB ,所以11A BB ∠就是异面直线1A B 和1CC 所成的角.又因为1111ABCD A B C D -为正方体,所以异面直线1A B 和1CC 所成的角为45o ,所以异面直线1A B 和1CC 所成的角的余弦值为22. (2)连接1D C ,因为11//A D BC 且11A D BC =,所以四边形11A BCD 为平行四边形,所以11//A B D C ;1A B ⊄平面11DCC D ,1D C ⊂平面11DCC D ;所以直线1//A B 平面11DCC D .即得证.线面角一、单选题1.(2022·上海市控江中学高二期末)如图,已知正方体1111ABCD A B C D -,点P 是棱1CC 的中点,设直线AB 为a ,直线11A D 为b .对于下列两个命题:①过点P 有且只有一条直线l 与a 、b 都相交;②过点P 有且只有两条直线l 与a 、b 都成75︒角.以下判断正确的是( )A .①为真命题,②为真命题B .①为真命题,②为假命题C .①为假命题,②为真命题D .①为假命题,②为假命题【答案】A【分析】①由正方形的性质,可以延伸正方形,再利用两条平行线确定一个平面即可;②一组邻边与对角面的夹角相等,在平面内绕P 转动,可以得到二条直线与a 、b 的夹角都等于75. 【详解】如下图所示,在侧面正方形11A B BA 和11A D DA 再延伸一个正方形11B E EB 和11D F FD ,则平面1E C 和1C F 在同一个平面内,所以过点P ,有且只有一条直线l ,即1EF 与a 、b 相交,故①为真命题;取1A A 中点N ,连PN ,由于a 、b 为异面直线,a 、b 的夹角等于11A B 与b 的夹角.由于11A C ⊂ 平面11A C ,NP ⊄平面11A C ,11NP AC ,所以NP 平面11A C ,所以NP 与11A B 与b 的夹角都为45 .又因为1C C ⊥平面11A C ,所以1C C 与11A B 与b 的夹角都为90,而457590<<,所以过点P ,在平面1A C 内存在一条直线,使得与11A B与b 的夹角都为75,同理可得,过点P ,在平面1A C 内存在一条直线,使得与a 与AD 的夹角都为75;故②为真命题. 故选:A二、填空题2.(2021·上海市行知中学高二阶段练习)6,且对角线与底面所成角的余弦值为33,则该正四棱柱的全面积等于_________. 【答案】10【分析】结合已知条件分别求出正四棱柱的底面边长和高即可求解. 【详解】由题意,正四棱柱1111ABCD A B C D -如下图:不妨设正四棱柱1111ABCD A B C D -底面边长为a ,1||AA h =,由已知条件可得,2222221||2(6)6BD a a h a h =++=+==,又因为1DD ⊥底面ABCD ,所以对角线1BD 与底面ABCD 所成角为1DBD ∠,因为对角线与底面所成角的余弦值为33,||2BD a =, 所以11||23cos ||36BD a DBD BD ∠===,解得1a =,从而2h =, 故该正四棱柱的表面积12411210S =⨯⨯+⨯⨯=. 故答案为:10. 三、解答题3.(2021·上海市大同中学高二阶段练习)如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=︒,PA 垂直于底面ABCD ,22PA AD AB BC ====,M 、N 分别为PC 、PB 的中点.(1)求证:PB DM ⊥;(2)求BD 与平面ADMN 所成的角. 【答案】(1)证明见解析;(2)6π.【分析】(1)由题设易得BC AB ⊥,由已知及线面垂直的性质有BC ⊥面PAB ,根据线面垂直的判定可证BC PB ⊥、PA AB ⊥,再由线面垂直的判定及平行的推论可得PB ⊥面ADMN ,最后由线面垂直的性质证结论.(2)若BD 与平面ADMN 所成角为θ,由线面垂直易知sin BNBDθ=,即可求线面角的大小. 【详解】(1)由90BAD ∠=︒即AD AB ⊥,又//AD BC ,有BC AB ⊥, ∵PA ⊥面ABCD ,BC ⊂面ABCD ,∴PA BC ⊥,而PA AB A =,则有BC ⊥面PAB , 又PB ⊂面PAB ,则BC PB ⊥, 由AB面ABCD ,有PA AB ⊥,且PA AB =,N 为PB 的中点,则AN PB ⊥,又M 为PC 的中点,有//BC MN ,即MN PB ⊥,而AN MN N =,又//AD BC ,则//AD MN ,即,,,A N D M 共面,∴PB ⊥面ADMN ,而DM ⊂面ADMN ,故PB DM ⊥.(2)由(1)知:PB ⊥面ADMN ,若BD 与平面ADMN 所成角为[0,]2πθ∈,且1BC =,∴2,22BN BD == ,则1sin 2BN BD θ==,故6πθ=.二面角一、单选题1.(2020·上海·曹杨二中高二期末)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则 A .,βγαγ<< B .,βαβγ<< C .,βαγα<< D .,αβγβ<<【答案】B【解析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B. 方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ)由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得 333222cos sin sin α=α=β=γ=B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法. 二、填空题2.(2021·上海·西外高二期中)在正方体1111ABCD A B C D -中,二面角1A BC A --的大小是___________. 【答案】4π 【分析】根据二面角的定义判断二面角1A BC A --的大小. 【详解】画出图象如下图所示, 由于1,BC A B BC AB ⊥⊥,所以1A BA ∠是二面角1A BC A --的平面角, 根据正方体的性质可知14A BA π∠=.故答案为:4π三、解答题3.(2022·上海·复旦附中高二期中)如图所示,某农户拟在院子的墙角处搭建一个谷仓,墙角可以看作如图所示的图形,其中OA 、OB 、1OO 两两垂直(OA 、OB 、1OO 均大于2米).该农户找了一块长、宽分别为2米和1米的矩形木板.将木板的一边紧贴地面,另外一组对边紧贴墙面,围出一个三棱柱(无盖)形的谷仓.(1)若木板较长的一边紧贴地面,3问:此时木板与两个墙面所成的锐二面角大小分别为多少?(2)应怎样摆放木板,才能使得围成的谷仓容积最大?并求出该最大值. 【答案】(1)6π和3π (2)体积最大值为1立方米,此时木板长边贴地,与两个墙面所成锐二面角均为45° 【分析】(1)利用设二面角为θ或三棱柱底面的一条直角边长为x 两种方法进行求解即可; (2)用(1)中的θ或x 表示谷仓容积,再利用三角函数和基本不等式,进行求最值即可得解. (1)法一:设其中一个锐二面角的大小为θ,则三棱柱底面的两条直角边长分别为2cos θ、2sin θ,高为1,体积132cos 2sin 1sin 22V Sh θθθ==⋅⋅⋅==6πθ=或3π,所以此时木板与两个墙面所成的锐二面角大小分别为6π和3π.法二:设三棱柱底面的一条直角边长为()02x x <<,则另一条直角边长为24-x ,高为1,体积2134122V Sh x x ==⋅⋅-⋅=,解得x =1或3,所以此时木板与两个墙面所成的锐二面角大小分别为6π和3π. (2)法一:同(1)中法一所设,若长边紧贴底面,体积12cos 2sin 1sin 212V Sh θθθ==⋅⋅⋅=≤,等号当且仅当4πθ=时成立;若短边紧贴底面,体积111cos sin 2sin 2222V Sh θθθ==⋅⋅⋅=≤,等号当且仅当4πθ=时成立;显然112>,所以体积最大值为1立方米,此时木板长边贴地, 与两个墙面所成锐二面角均为45°. 法二:同(1)中法二所设,若长边紧贴底面,体积2221441124x x V Sh x x +-==⋅⋅-⋅≤=, 等号当且仅当2x =时成立;若短边紧贴底面,体积22211112222x x V Sh x x +-==⋅⋅-⋅≤=,等号当且仅当22x =时成立; 显然112>,所以体积最大值为1立方米, 此时木板长边贴地,与两个墙面所成锐二面角均为45°(也可描述底面两条直角边长).4.(2021·上海·格致中学高二期中)在四棱锥P ABCD -中,底面为梯形,AB CD ∕∕,PAD △为正三角形,且2PA AB ==,90BAP CDP ∠=∠=︒,四棱锥P ABCD -的体积为23.(1)求证:AB ⊥平面PAD ;(2)求PC 与平面ABCD 所成角的正弦值;(3)设平面PAB ⋂平面PCD l =,求证:l AB ∕∕,并求二面角B l C --的大小.【答案】(1)证明见解析;(2)1510;(3)3π 【分析】(1)根据线面垂直的判定定理,结合题意,即可得证.(2)根据面面垂直的判定、性质定理,结合正三角形的性质,可证PQ ⊥平面ABCD ,则PCQ ∠即为PC 与平面ABCD 所成角,据四棱锥的体积,可求得CD 长,在Rt PCQ 中,求得各个边长,即可得答案. (3)根据线面平行的判定和性质定理,可证AB l ∕∕,结合题意,可得PA l ⊥,同理PD l ⊥,则APD ∠即为二面角B l C --所成的平面角,根据三角形性质,即可得答案.(1)证明:因为90CDP ∠=︒,所以CD DP ⊥,因为AB CD ∕∕,所以AB DP ⊥,又因为90BAP ∠=︒,即AB AP ⊥,且,AP DP ⊂平面PAD ,所以AB ⊥平面PAD ;(2)因为AB ⊥平面PAD ,AB平面ABCD ,所以平面PAD ⊥平面ABCD ,取AD 中点Q ,连接PQ ,CQ , 因为PAD △为正三角形,Q 为AD 中点,所以PQ AD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD=AD , 所以PQ ⊥平面ABCD ,所以PCQ ∠即为PC 与平面ABCD 所成角,在Rt PDQ 中,223PQ PD DQ -设CD 长为x ,则四棱锥P ABCD -的体积()1112+2323332ABCD V S PQ x =⨯=⨯⨯⨯= 求得CD 长4x =,在Rt CDQ △中,2217CQ CD DQ +=在Rt PCQ 中,2225PC CQ PQ =+所以315sin 1025PQ PCQ PC ∠===, 所以PC 与平面ABCD 所成角的正弦值为1510 (3)证明:因为AB CD ∕∕,CD ⊂平面PCD ,AB ⊄平面PCD ,所以AB ∕∕平面PCD ,又AB 平面PAB ,且平PAB ⋂平面PCD l =,所以AB l ∕∕.因为PA AB ⊥,AB l ∕∕,所以PA l ⊥,同理PD l ⊥,所以APD ∠即为二面角B l C --所成的平面角,因为PAD △为正三角形,所以3APD π∠=,即二面角B l C --的大小为3π. 一、填空题1.(2021·上海奉贤区致远高级中学高二期中)若正方体1111ABCD A B C D -的棱长为1,则异面直线AB 与11D B 之间的距离为___________.【答案】1【分析】作出正方体图像,观察即可得到答案﹒【详解】如图:巩固练习∵1BB 与AB 、11B D 均垂直,∴1BB 即为两异面直线的距离,故答案为:1二、解答题2.(2021·上海中学高二阶段练习)如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD ∥平面P AC ;(2)求异面直线1BD 与AP 所成角的大小.【答案】(1)证明见解析;(2)30°. 【分析】(1)AC 和BD 交于点O ,由1PO BD ∥即能证明直线1BD ∥平面PAC .(2)由1PO BD ∥,得APO ∠即为异面直线1BD 与AP 所成的角.由此能求出异面直线1BD 与AP 所成角的大小.(1)设AC 和BD 交于点O ,则O 为BD 的中点,连结PO ,又∵P 是1DD 的中点,∴1PO BD ∥,又∵PO ⊂平面PAC ,1BD ⊂平面PAC ,∴直线1BD ∥平面PAC ; (2)由(1)知,1PO BD ∥,∴APO ∠即为异面直线1BD 与AP 所成的角, ∵2PA PC ==122AO AC =PO AO ⊥,∴212sin 22AO APO AP ∠===.又(0APO ∠∈︒,90]︒,∴30APO ∠=︒ 故异面直线1BD 与AP 所成角的大小为30.3.(2021·上海市进才中学高二期中)已知正四棱锥P ABCD -中,1AB =,2PA =;(1)求侧棱与底面所成角的正弦值;(2)求正四棱锥P ABCD -的体积【答案】(1)144(2)146【分析】(1)由于正四棱锥P ABCD -,故顶点在底面的投影在底面的中心O ,连结,PO AO 分析可得PAO ∠即为侧棱与底面所成角,利用题干长度关系求解即可(2)由于PO ⊥平面ABCD ,故13P ABCD ABCD V PO S -=⨯⨯,计算即可 (1)由于正四棱锥P ABCD -,故顶点在底面的投影在底面的中心O ,连结,PO AO故PO ⊥平面ABCD ,PAO ∠即为侧棱与底面所成角由1AB =,2PA =,故2222AO AB ==又PO ⊥平面ABCD ,AO ⊂平面ABCD ,故PO AO ⊥22114422PO PA AO ∴=-=-= 故14sin 4PO PAO PA ∠== 即侧棱与底面所成角的正弦值为144 (2)由(1)PO ⊥平面ABCD ,且142PO = 故11141413326P ABCD ABCD V PO S -=⨯⨯=⨯⨯= 即正四棱锥P ABCD -的体积为1464.(2021·上海中学高二期中)如图,在矩形ABCD 中,M 、N 分别是线段AB 、CD 的中点,2AD =,4AB =,将ADM △沿DM 翻折,在翻折过程中A 点记为P 点.(1)从ADM △翻折至NDM 的过程中,求点P 运动的轨迹长度;(2)翻折过程中,二面角P −BC −D 的平面角为θ,求tan θ的最大值.【答案】2π(2)12【分析】(1)取DM 的中点E ,则从ADM △翻折至NDM 的过程中,点P 运动的轨迹是以点E 为圆心,AE 为半径的半圆,由此可求得点P 运动的轨迹长度.(2)由(1)得,连接AN ,并延长交BC 延长线于F ,过P 作PO EF ⊥,再过点O 作OG BC ⊥,则PGO ∠就是二面角P −BC −D 的平面角θ,设(),0PEO ααπ∠=≤≤,sin 2PO PE αα==,322,3cos OF OG αα==-,可得2sin tan PO PGO OG α∠==2sin k α=,运用辅助角公式和正弦函数的性质可求得最大值.(1)解:取DM 的中点E ,则从ADM △翻折至NDM 的过程中,点P 运动的轨迹是以点E 为圆心,AE 为半径的半圆,因为2AD =,4AB =,所以2AE =,所以点P 运动的轨迹长度为2π.(2)解:由(1)得,连接AN ,并延长交BC 延长线于F ,AN DM ⊥,折起后,有DM ⊥面PEN ,过P 作PO EF ⊥,则PO ⊥面DMBC ,再过点O 作OG BC ⊥,则PGO ∠就是二面角P −BC −D 的平面角θ, 设(),0PEO ααπ∠=≤≤, sin 2sin PO PE αα==,4222cos 322cos ,3cos OF AF AE OE OG ααα=--=--=-=-,2sin tan 3cos PO PGO OG αα∠==-, 令2sin 2sin cos 33cos k k k αααα=⇒+=-,所以22sin()3k k αβ++=,所以23112k k -≤≤+,解得1122k -≤≤. 所以tan θ的最大值为12.。

线面角和面面角两个典型例题

线面角和面面角两个典型例题
由题AE=AB=SA,SA⊥面ABCD,故SE⊥SB,面SEB⊥面EBC。
EB BC, CB 面SEB,SB 是SC 在面SEB内射影,
SE SC。
BSC 就是面SCD 与面SBA 所成二面角的平面角。
在RtSBC中, tan BSC BC 1 2 , SB 2 2
A
得SO 1, SD 11. 1 1 2 ABS的面积S1 AB SA ( AB) 2 2 2 2 1 连接DB, 得△DAB的面积 S 2 AB AD sin 135 0 2. 2
设D到平面 VS-ABD, 得 h S1 SO S 2 . 3 3
E D 1 解法一: 因AB、CD共面, AD BC,故 AB,CD相交,设其交点为 E
2
求面SCD与面SBA所成二面角的正切值。
2
A
B
C
E CD,CD 面SCD , E 面SCD ,同理E SAB,
连SE ,侧面SCD 面SAB SE , 那么E在面SCD、面SAB的交线上,
tan 2 . 2
练习:
选择题: 1、正四棱锥P-ABCD的所有棱长相等,E为PC中点,那么异面直线BE 与PA所成角的余弦值等于( D )
A,
1 2
B,
2 2
2 C, 3
D,
3 3
2、在正三棱锥S-ABC中,D为AB中点,且SD与BC所成角为450,则SD 与底面所成角的正弦值为(
C
3 3
例1、
四棱锥S-ABCD中,底面ABCD为平行四边形,侧 面SBC⊥底面ABCD,已知∠ABC=450,AB=2, S BC 2 2, SA SB 3.
(1)证明SA⊥BC; (2)求直线SD与平面SAB所成角的大小。

线面角的求法总结

线面角的求法总结

线面角的求法总结线面角是立体几何中的一个重要概念,指的是直线与平面之间的夹角。

在实际问题中,线面角的求法有多种方法,包括正投影法、平行线交线法、倾斜线投影法等。

下面将从这些不同的求法角度,总结线面角的求法方法。

一、正投影法正投影法是线面角的一种常用求法方法。

具体的求法步骤是:首先,以直线上的两点为基点,分别作两条垂直于平面的直线,将平面上的两个点投影到这两条垂直线上。

然后,连接两个投影点与基点,即可得到线面角。

简单来说,就是将线段的两个端点在平面上做垂线,再连接垂线与线段的两个端点所构成的三角形。

二、平行线交线法平行线交线法是另一种求解线面角的常用方法。

它适用于直线与平面的交点在平行线上的情况。

具体的求法步骤是:首先,找到平行于直线的两条线,并找出这两条线与交线的交点。

然后,以这两个交点为基点,分别作两条直线与交线相交,再连接交线两个端点与这两个交点,即可得到线面角。

简单来说,就是在平行线上找到与线段相交的两条线,将线段的两个端点与两个交点连线所构成的三角形。

三、倾斜线投影法倾斜线投影法是应用于倾斜线与平面的角的求法方法。

具体的求法步骤是:首先,判断倾斜线是否与平面相交,如果相交,则找到交点。

然后,以交点为基点,分别作两条垂直于平面的直线,并将交点投影到这两条垂直线上。

最后,连接两个投影点与交点,即可得到线面角。

简单来说,就是将倾斜线段的一个端点与交点连线,再以交点为顶点做一个角的投影。

四、线面角的特殊情况求解除了以上常用的求解线面角的方法外,还有一些特殊情况需要考虑。

例如,如果线段与平面平行,则线面角为无穷大;如果线段垂直于平面,则线面角为直角,即90度;如果线段在平面上,则线面角为0度。

这些特殊情况可以根据实际问题的需要灵活运用,以求解线面角。

总之,线面角的求法有多种方法,根据具体的问题和实际情况选择合适的方法进行求解。

正投影法、平行线交线法和倾斜线投影法是常用的求解方法,可以满足大多数情况下的求解需要。

第8章立体几何专题7 线面角的求解常考题型专题练习——【含答案】

第8章立体几何专题7 线面角的求解常考题型专题练习——【含答案】

线面角的求解【方法总结】1、线面角的范围:[0°,90°]2、线面角求法(一):先确定斜线与平面,找到线面的交点A为斜足;找线在面外的一点B,过点B向平面α做垂线,确定垂足O;连结斜足与垂足为斜线AB在面α上的投影;投影AO与斜线AB之间的夹角为线面角;把投影AO与斜线AB归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

注意:以上第二步过面外一点向平面做垂线的方法有一下几种:1)线在面外的一点B与平面上某点的连线正垂直于面α,无需再做辅助线;2)题中已知有与面α垂直的直线,过线在面外的一点B直接做此垂线的平行线;3)过线在面外的一点B做两垂直平面交线的垂线,利用面面垂直的性质证明OB⊥面α(这两个垂直平面一个是面α,另一个是过点B且与α垂直的平面)。

3、线面角求法(二)用等体积法,求出斜线PA在面外的一点P到面的距离,利用三角形的正弦公式进行求解。

114、线面角求法(三)利用空间向量进行求解,高二再学。

【巩固练习】1、已知正方体1111ABCD A B C D -的体积为162,点P 在正方形1111D C B A 上,且1,A C 到P 的距离分别为2,23,则直线CP 与平面11BDD B 所成角的正切值为( )A.2 B.3 C.12D.13【答案】A【解析】易知22AB =;连接1C P ,在直角1CC P ∆中,可计算22112C P CP CC =-=;又1112,4A P A C ==,所以点P 是11A C 的中点;连接AC 与BD 交于点O ,易证AC ⊥平面11BDD B ,直线CP 在平面11BDD B 内的射影是OP ,所以CPO ∠就是直线CP 与平面11BDD B 所成的角,在直角CPO ∆中,2tan 2CO CPO PO ∠== .2、把正方形沿对角线折起,当以四点为顶点的三棱锥体积最大时,直线和平面所成的角的大小为A.B.C.D.[来源网ZXXK]【答案】C【解析】如图所示,当平面平面时,三棱锥的体积最大,取的中点,则平面,故直线和平面所成的角为,则,所以,故选C.3、如图,在三棱锥P-ABC中,,PA AB⊥PC BC⊥,,AB BC⊥22,AB BC==5PC=,则PA与平面ABC所成角的大小为_______.【答案】45︒【解析】如图,作平行四边形ABCD,连接PD,由AB BC⊥,则平行四边形ABCD是矩形.由BC CD⊥,BC PC⊥,PC CD C=,∴BC⊥平面PCD,而PD⊂平面PCD,∴BC PD⊥,同理可得AB PD⊥,又AB BC B⋂=,∴PD⊥平面11ABCD .,PD CD PD AD ⊥⊥,PAD ∠是PA 与平面ABC 所成角.由2,5CD AB PC ===得1PD =,又1AD BC ==,∴45PAD ∠=︒.∴PA 与平面ABC 所成角是45︒.4、已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心O ,则AB 1与底面ABC 所成角的正弦值为( )A .23B .13C .33D .23【答案】A【解析】作1A H ⊥面ABC 于点H ,延长11B A 到D ,延长BA 到E 使得111B A A D =,,BA AE =如图则有11A EAB ,又因为1A O ⊥面ABC ,故1A EO ∠为所求角,且111sin AO A EO A E∠=。

求线面角的方法 总结

求线面角的方法 总结

求线面角的方法总结一、概述线面角是指一条直线与一个平面的夹角,常见于几何学、物理学等领域。

在实际应用中,求解线面角是非常重要的,因为它可以帮助我们计算出很多物理量,如反射角、折射角等。

本文将详细介绍如何求解线面角的方法。

二、基本概念1. 直线:在平面上无限延伸的一条连续的点。

2. 平面:在空间中无限延伸的一个连续的点集。

3. 线面角:由直线与平面之间所夹成的角度称为线面角。

三、求解方法1. 通过余弦定理求解余弦定理是指三边已知时,可以通过余弦函数来计算出任意一个角度大小。

因此,在已知直线和平面之间距离以及直线与平面夹角大小时,可以通过余弦定理来求解线面角。

具体步骤如下:(1)确定直线和平面之间距离d以及直线与平面夹角θ;(2)根据余弦定理公式cosθ = a²+b²-c²/2ab来计算出θ。

2. 通过正弦定理求解正弦定理是指在已知一个角度和它对应的两条边的长度时,可以通过正弦函数来计算出另外两个角度的大小。

因此,在已知直线和平面之间距离以及直线与平面夹角大小时,可以通过正弦定理来求解线面角。

具体步骤如下:(1)确定直线和平面之间距离d以及直线与平面夹角θ;(2)根据正弦定理公式sinα/a = sinβ/b = sinθ/d来计算出θ。

3. 通过向量求解在三维空间中,我们可以用向量来表示一条直线或者一个平面。

因此,在已知直线和平面的向量表达式时,可以通过向量的点积公式来求解它们之间的夹角。

具体步骤如下:(1)确定直线和平面的向量表达式L和N;(2)根据向量的点积公式cosθ = L·N/|L||N|来计算出θ。

四、注意事项1. 在使用余弦定理或正弦定理求解时,需要注意单位一致性问题。

通常情况下,我们需要将所有长度单位转换为相同的单位进行计算。

2. 在使用向量求解时,需要注意向量之间的坐标系一致性问题。

如果两个向量不在同一个坐标系中,则需要将它们转换到同一个坐标系中进行计算。

线面角的求法总结

线面角的求法总结

线面角的求法总结三种求解线面角的方法1.直接法:当平面的斜线与斜线在平面内的射影相交时,它们所成的角即为直线与平面所成的角。

一般通过解直角三角形来计算,其中垂线段是最重要的元素,它可以联系各线段。

例如,在四面体ABCS中,SA、SB、SC两两垂直,且∠SBA=45°,∠SBC=60°,M为AB的中点,求(1)BC与平面SAB所成的角。

(2)SC与平面ABC所成的角。

解:(1)由于SC垂直于SB和SA,因此SB是BC在平面SAB上的射影,∴∠XXX为60°。

2)连接SM和CM,得到SM垂直于AB。

由于SC垂直于AB,因此AB垂直于平面SCM,从而面ABC垂直于面SCM。

过S作SH⊥CM于H,则SH⊥平面ABC,∴CH即为SC在面ABC内的射影。

因此,∠SCH为SC与平面ABC所成的角,其正弦值为√7/7.2.利用公式sinθ=h/ι,其中θ是斜线与平面所成的角,h是垂线段的长,ι是斜线段的长。

求出垂线段的长是关键也是难点,可以使用三棱锥的体积相等来求解。

例如,在长方体ABCD-A1B1C1D1中,AB=3,BC=2,A1A=4,求AB与面AB1C1D1所成的角的正弦值。

解:设点B到AB1C1D1的距离为h,由于VAB1C1D1=VA1B1C1D,因此1/3S△AB1C1·h=1/3S△BB1C1·AB,解得h=12/5.设AB与面AB1C1D1所成的角为θ,则sinθ=h/AB=4/5.3.利用公式cosθ=cosθ1·cosθ2已知,其中AO是平面α的斜线,A是斜足,OB垂直于平面α,B为垂足,则直线AB是斜线在平面α内的射影。

设AC是平面α内的任意一条直线,且OBC垂直于AC,垂足为C,则∠BAO=θ1,∠BAC=θ2.例如,如图所示,求直线AB与平面α所成的角的余弦值。

解:由于OB垂直于平面α,因此∠XXX即为直线AB与平面α所成的角。

高中几何线面角的经典求解方法总结

高中几何线面角的经典求解方法总结

线面角的三种求法1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。

通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。

例1 ( 如图 1 )四面体 ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC =60°, M 为AB 的中点,求(1)BC 与平面 SAB 所成的角。

(2)SC 与平面 ABC 所成的角。

解:(1) ∵SC ⊥SB,SC ⊥SA,BMHSCA图1∴SC ⊥平面SAB 故SB 是斜线BC 在平面SAB 上的射影,∴∠SBC 是直线BC 与平面SAB 所成的角为60°。

(2)连结SM,CM ,则SM ⊥AB,又∵SC ⊥AB,∴AB ⊥平面SCM,∴面ABC ⊥面SCM过S 作SH ⊥CM 于H,则SH ⊥平面ABC ∴CH 即为SC 在面ABC 内的射影。

∠SCH 为SC 与平面ABC 所成的角。

sin ∠SCH=SH /SC∴SC 与平面ABC 所成的角的正弦值为√7/7(“垂线”是相对的,SC 是面SAB 的垂线,又是面ABC 的斜线.作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。

)2.利用公式sin θ=h/ι其中θ是斜线与平面所成的角,h 是垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。

例2(如图2)长方体ABCD-A 1B 1C 1D 1,AB=3,BC=2,A 1A=4,求AB 与面AB 1C 1D所成的角的正弦值。

A1C 1D1H4CB123BAD解:设点B 到AB 1C 1D 的距离为h,∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3S △AB 1C 1·h=1/3S △BB 1C 1·AB ,易得h=12/5设AB 与面A B 1C 1D 所成的角为θ,则sin θ=h/AB=4/5图23.利用公式cos θ=cosθ1·cosθ2已知,如图,AO 是平面α的斜线,A 是斜足,OB 垂直于平面α,B 为垂足,则直线AB 是斜线在平面α内的射影。

线线角、线面角、二面角知识点及练习

线线角、线面角、二面角知识点及练习

线线角、线面角、面面角专题一、异面直线所成的角1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角。

2.角的取值范围:090θ<≤︒;垂直时,异面直线当b a ,900=θ。

例1.如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点求异面直线1AC 与1B C 所成角的余弦值二、直线与平面所成的角1. 定义:平面的一条斜线和它在平面上的射影所成的锐角, 叫这条斜线和这个平面所成的角2.角的取值范围:︒︒≤≤900θ。

例2. 如图、四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。

(2)SC 与平面ABC 所成的角的正切值。

BMH S CA_1_A一、 二面角:1. 从一条直线出发的两个半平面所组成的图形叫做二面角。

这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

2. 二面角的取值范围:︒︒≤≤1800θ 两个平面垂直:直二面角。

3.作二面角的平面角的常用方法有六种:1.定义法 :在棱上取一点O ,然后在两个平面内分别作过棱上O 点的垂线。

2.三垂线定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得二面角的平面角。

3.向量法:分别作出两个半平面的法向量,由向量夹角公式求得。

二面角就是该夹角或其补角。

二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。

例3.如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求 (1)二面角111D C A D --所成的角的余弦值 (2)平面AB 1E 和底面C C BB 11所成锐角的正切值.A 1D 1B 1C 1 EDBCA巩固练习1.若直线a 不平行于平面α,则下列结论成立的是( )A.α内所有的直线都与a 异面;B.α内不存在与a 平行的直线;C.α内所有的直线都与a 相交;D.直线a 与平面α有公共点.2.空间四边形ABCD 中,若AB AD AC CB CD BD =====,则AD 与BC 所成角为( )A.030B.045C.060D.090 3.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有( )条A.3B.4C.6D.84.如图长方体中,AB=AD=23,CC 1=2,则二面角C 1—BD —C 的大小为( )A.300B.450C.600D.9005.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.求证:(1)直线EF ∥面ACD .(2)平面EFC ⊥平面BCD .6.如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.(1)证明:PQ ∥平面ACD ;(2)求AD 与平面ABE 所成角的正弦值.ABC D A 1B 1C 1D 17.如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,设SA=4,AB=2,求点A到平面SBD的距离;。

线线角、线面角、二面角知识点及练习

线线角、线面角、二面角知识点及练习

线线角、线面角、面面角专题一、异面直线所成的角1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角。

2.角的取值范围:090θ<≤︒;垂直时,异面直线当b a ,900=θ。

例1.如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点求异面直线1AC 与1B C 所成角的余弦值二、直线与平面所成的角1. 定义:平面的一条斜线和它在平面上的射影所成的锐角, 叫这条斜线和这个平面所成的角2.角的取值范围:︒︒≤≤900θ。

例2. 如图、四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。

(2)SC 与平面ABC 所成的角的正切值。

BMH S CA_1_A一、 二面角:1. 从一条直线出发的两个半平面所组成的图形叫做二面角。

这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

2. 二面角的取值范围:︒︒≤≤1800θ 两个平面垂直:直二面角。

3.作二面角的平面角的常用方法有六种:1.定义法 :在棱上取一点O ,然后在两个平面内分别作过棱上O 点的垂线。

2.三垂线定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得二面角的平面角。

3.向量法:分别作出两个半平面的法向量,由向量夹角公式求得。

二面角就是该夹角或其补角。

二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。

例3.如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求 (1)二面角111D C A D --所成的角的余弦值 (2)平面AB 1E 和底面C C BB 11所成锐角的正切值. A 1D 1B 1C 1 EDBCA巩固练习1.若直线a 不平行于平面α,则下列结论成立的是( )A.α内所有的直线都与a 异面;B.α内不存在与a 平行的直线;C.α内所有的直线都与a 相交;D.直线a 与平面α有公共点.2.空间四边形ABCD 中,若AB AD AC CB CD BD =====,则AD 与BC 所成角为( )A.030B.045C.060D.090 3.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有( )条A.3B.4C.6D.84.如图长方体中,AB=AD=23,CC 1=2,则二面角C 1—BD —C 的大小为()A.300B.450C.600D.9005.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.求证:(1)直线EF ∥面ACD .(2)平面EFC ⊥平面BCD .6.如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.(1)证明:PQ ∥平面ACD ;(2)求AD 与平面ABE 所成角的正弦值. ABC D A 1B 1C 1D 17.如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,设SA=4,AB=2,求点A到平面SBD的距离;。

线面角的求法

线面角的求法

03
线面角的应用
平面几何中的应用
01
直线和平面的交点
02
三角形的高线
通过线面角,可以确定一条直线和一 个平面的交点位置。
在三角形中,可以使用线面角确定高 线的位置,从而求得三角形的面积。
03
圆和直线的位置关系
通过线面角,可以确定一条直线和一 个圆的位置关系。
空间几何中的应用
确定空间中点的位置
通过线面角,可以确定一个点在 三个平面上的位置。源自空间几何体的表面积 和体积
通过线面角,可以确定一个几何 体的表面积和体积。
异面直线的距离
通过线面角,可以确定两条异面 直线之间的距离。
物理学中的应用
弹性碰撞
在弹性碰撞中,可以通过线面 角确定入射和反射的角度。
光的反射和折射
在光学中,可以通过线面角确定 光的反射和折射角度。
波的传播
在波的传播过程中,可以通过线面 角确定波的方向。
利用圆的性质
在圆中,利用圆的性质可以求出圆的半径和 圆心坐标等。
利用向量求解的技巧
01
02
03
向量的数量积
利用向量的数量积可以求 出两个向量的夹角,进而 求出线面角。
向量的向量积
利用向量的向量积可以求 出两个向量的外积,进而 求出线面角。
向量的模长
利用向量的模长可以求出 线段或平面的长度等。
06
计算点的坐标
根据题目所给条件,计算出线 段或平面上的点的坐标。
计算向量
利用向量的坐标运算性质,计 算出线段或平面上的向量的坐
标。
利用几何定理求解的技巧
利用勾股定理
在直角三角形中,利用勾股定理可以求出线 段或平面上的点到原点的距离。

数学线面角知识点六年级

数学线面角知识点六年级

数学线面角知识点六年级数学线面角知识点在六年级学习数学时,我们会接触到线面角的知识。

线面角是一种特殊的角度,它与线和面之间的关系密切相关。

下面将介绍线面角的定义、性质以及解题方法。

一、线面角的定义线面角是指一个角落在一个平面上,而另一边却不在这个平面上的角。

具体来说,线面角是由一条直线和一个平面所确定的角。

对于线面角,我们通常用字母m来表示。

二、线面角的性质1. 线面角的度数范围:线面角的度数范围可以是0°到180°之间的任何数值。

这是因为线面角可以是锐角、直角或者钝角。

2. 线面角的分类:根据线和面的位置关系,线面角可以分为内线面角和外线面角。

当线面角的一边在平面内,一边在平面外时,我们称之为内线面角。

当线面角的两边都在平面外时,我们称之为外线面角。

3. 线面角的补角和余角:线面角的补角是指与线面角的度数相加得到180°的角;线面角的余角是指与线面角的度数相减得到180°的角。

补角和余角的求解在解题中经常使用。

三、线面角的解题方法在解题时,我们可以根据线面角的定义和性质来运用不同的解题方法。

以下是一些常见的解题方法:1. 利用线面角的补角和余角:当一个线面角和它的补角或者余角有特定的关系时,我们可以通过求解补角或者余角来得到未知角的度数。

2. 利用线面角的相似性:当线面角所处的几何图形具有相似性质时,我们可以通过比较线面角的度数来求解未知角。

3. 利用线面角的平行关系:当一组线面角被直线切割成若干相等的线面角时,我们可以根据平行线的性质来利用已知角度求解未知角度。

四、线面角的应用线面角的知识在日常生活中有着广泛的应用。

以下是一些线面角的应用场景:1. 角度测量:我们可以利用线面角的知识来测量建筑物的倾斜度、车辆行驶方向等。

2. 图形辨认:线面角的特性可以帮助我们识别和辨认不同的几何图形。

3. 折纸与剪纸:线面角的折叠和剪切可以创造出各种有趣的纸艺作品。

总结起来,线面角是六年级数学中重要的一个知识点。

几何法求线线角,线面角,二面角的10类题型(教师版)

几何法求线线角,线面角,二面角的10类题型(教师版)

几何法求线线角、线面角、二面角常考题型题型一平行四边形平移法求线线角 4题型二中位线平移法求线线角 6题型三补形平移法求线线角 8题型四作垂线法求线面角 10题型五等体积法求线面角 13题型六定义法求二面角 15题型七三垂线法求二面角 17题型八垂面法求二面角 19题型九补棱法求二面角 22题型十射影面积法求二面角 25知识梳理一、线线角的定义与求解线线角主要是求异面直线所成角。

1、线线角的定义:①定义:设a,b是两条异面直线,经过空间任一点O作直线a ⎳a,b ⎳b,把a 与b 所成的锐角或直角叫做异面直线a,b所成的角(或夹角)②范围:0,π22、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.3、可通过多种方法平移产生,主要有三种方法:①平行四边形平移法;②中位线平移法;③补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).二、线面角的定义与求解1、线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角,取值范围:[0°,90°]2、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B为斜足;找线在面外的一点A,过点A向平面α做垂线,确定垂足O;(2)连结斜足与垂足为斜线AB在面α上的投影;投影BO与斜线AB之间的夹角为线面角;(3)把投影BO与斜线AB归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

3、公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解。

公式为:sinθ=h,其中θ是斜线与平面所成的角,h是垂线段的长,l是斜线段的长。

线线角线面角二面角知识点及练习

线线角线面角二面角知识点及练习

线线角、线面角、面面角专题一、异面直线所成的角1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角。

2.角的取值范围:090θ<≤︒;垂直时,异面直线当b a ,900=θ。

例1.如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点求异面直线1AC 与1B C 所成角的余弦值二、直线与平面所成的角1. 定义:平面的一条斜线和它在平面上的射影所成的锐角, 叫这条斜线和这个平面所成的角2.角的取值范围:︒︒≤≤900θ。

例2. 如图、四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。

(2)SC 与平面ABC 所成的角的正切值。

BMH S CA _ C _1_1_ A _1A_ C一、 二面角:1. 从一条直线出发的两个半平面所组成的图形叫做二面角。

这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

2. 二面角的取值范围:︒︒≤≤1800θ 两个平面垂直:直二面角。

3.作二面角的平面角的常用方法有六种:1.定义法 :在棱上取一点O ,然后在两个平面内分别作过棱上O 点的垂线。

2.三垂线定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得二面角的平面角。

3.向量法:分别作出两个半平面的法向量,由向量夹角公式求得。

二面角就是该夹角或其补角。

二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。

例3.如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求 (1)二面角111D C A D --所成的角的余弦值 (2)平面AB 1E 和底面C C BB 11所成锐角的正切值. 巩固练习A 1D 1B 1C 1 EDBCA1.若直线a 不平行于平面α,则下列结论成立的是( )A.α内所有的直线都与a 异面;B.α内不存在与a 平行的直线;C.α内所有的直线都与a 相交;D.直线a 与平面α有公共点.2.空间四边形ABCD 中,若AB AD AC CB CD BD =====,则AD 与BC 所成角为( )A.030B.045C.060D.090 3.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有( )条A.3B.4C.6D.84.如图长方体中,AB=AD=23,CC 1=2,则二面角C 1—BD —C 的大小为( ) A.300B.450C.600D.9005.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.求证:(1)直线EF ∥面ACD .(2)平面EFC ⊥平面BCD .6.如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.(1)证明:PQ ∥平面ACD ;(2)求AD 与平面ABE 所成角的正弦值.ABC D A 1B 1C 1D 17.如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,设SA=4,AB=2,求点A到平面SBD的距离;。

线线角、线面角、二面角知识点及练习

线线角、线面角、二面角知识点及练习

线线角、线面角、面面角专题一、异面直线所成的角1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角。

2.角的取值围:090θ<≤︒;垂直时,异面直线当b a ,900=θ。

例1.如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点求异面直线1AC 与1B C 所成角的余弦值二、直线与平面所成的角1.定义:平面的一条斜线和它在平面上的射影所成的锐角, 叫这条斜线和这个平面所成的角2.角的取值围:︒︒≤≤900θ。

例2. 如图、四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°,∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。

(2)SC 与平面ABC 所成的角的正切值。

BMH S CA _ C _1_1_ A _1A_ C一、 二面角:1. 从一条直线出发的两个半平面所组成的图形叫做二面角。

这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

2. 二面角的取值围:︒︒≤≤1800θ 两个平面垂直:直二面角。

3.作二面角的平面角的常用方法有六种:1.定义法 :在棱上取一点O ,然后在两个平面分别作过棱上O 点的垂线。

2.三垂线定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得二面角的平面角。

3.向量法:分别作出两个半平面的法向量,由向量夹角公式求得。

二面角就是该夹角或其补角。

二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。

例3.如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求 (1)二面角111D C A D --所成的角的余弦值 (2)平面AB 1E 和底面C C BB 11所成锐角的正切值.A 1D 1B 1C 1 EDBCA巩固练习1.若直线a 不平行于平面α,则以下结论成立的是()A.α所有的直线都与a 异面;B.α不存在与a 平行的直线;C.α所有的直线都与a 相交;D.直线a 与平面α有公共点.2.空间四边形ABCD 中,若AB AD AC CB CD BD =====,则AD 与BC 所成角为( )A.030B.045C.060D.0903.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有()条A.3B.4C.6D.84.如图长方体中,AB=AD=23,CC 1=2,则二面角C 1—BD —C 的大小为() A.300B.450C.600D.9005.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.求证:(1)直线EF ∥面ACD .(2)平面EFC ⊥平面BCD .6.如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.(1)证明:PQ ∥平面ACD ;(2)求AD 与平面ABE 所成角的正弦值.ABC DA 1B 1C 1D 17.如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,设SA=4,AB=2,求点A到平面SBD的距离;。

线面夹角知识点及试题与答案

线面夹角知识点及试题与答案

线面夹角知识点及试题与答案线面夹角知识点及试题与答案一、引言线面夹角是三维空间中两个向量之间角度的余弦值,是解决许多几何和工程问题的重要参数。

掌握线面夹角的概念、性质和计算方法对于理解空间几何关系和解决实际问题具有重要意义。

二、定义线面夹角是指直线与平面之间所成角度的余弦值,常用符号“<i>θ</i>”表示。

根据定义,线面夹角的范围在[0, 90°]之间,其中0°表示直线与平面平行,90°表示直线与平面垂直。

三、试题1及答案试题1:求直线l与平面π之间的夹角θ,已知直线l的方向向量s = (1, 2, 3),平面π的法向量n = (4, -3, 2),以及直线l上的点P(1, 2, 3)。

解:首先,根据点积公式,我们可以计算出直线l与平面π之间的法向量m = (4, -3, 2) × (1, 2, 3) = (-6, 9, -6)。

然后,根据线面夹角的公式,可计算夹角θ:sin(θ) = |(m · s) / (||m|| ||s||)| = |(-6 * 1 + 9 * 2 - 6 * 3) / (sqrt((-6)^2 + (9)^2 + (-6)^2) * sqrt(1^2 + 2^2 + 3^2))| = 0因为sin(θ) = 0,所以θ = 0°,即直线l与平面π平行。

四、试题2及解析试题2:求直线m与直线n之间的夹角θ,已知直线m的方向向量s1 = (1, -1, 2),直线n的方向向量s2 = (2, 3, -1),且两直线在点P(1, 1, 1)相交。

解析:首先,根据点积公式,我们可以计算出过点P且与直线m平行的向量s'_1 = (0, 2, -1)。

同理,过点P且与直线n平行的向量s'_2 = (1, 4, 0)。

然后,根据点积公式,我们可以计算出这两个向量之间的法向量n = s'_1 × s'_2 = (5, -1, 3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线面角基础练习题
线面角
1•如图,在长方体ABCD - A1B1C1D1 中,AB=BC=2 , AA 1=1,贝U AC 1 与平面成角的正弦值为 __________ .
2•正方体ABCD - A1B1C1D1中,BD1与平面AA1D1D所成的角的大小是
3•如图,在棱长为2的正方体ABCD - A1B1C1D1中,E是BC1的中点,则直线ABCD 所成角的正切值为 ________________________ .
4.在正三棱柱ABC - A1B1C1中,侧棱长为.:,底面三角形的边长为与侧面ACC1A1所成的角是____________ A1B1C1D
1
所DE
与平面1,贝U BC1
5
方体AC i 中,求下列线面角⑴DB i 与底面AC :2) AB 与平面AECD
6.体 ABCS 中,SA,SB,SC 两两垂直,/ SBA=45 , / SBC=60 , M 为 AB 的中 占
八、、) 求(1) BC 与平面SAB 所成的角
7.直线I 是平面a 的斜线,AB 丄a, B 为垂足,如果9 =45; / AOC=60,求直 线AO 与面a 所成角
2) SC 与平面ABC C
B
S H 。

的。

相关文档
最新文档