变量与函数(3)

合集下载

变量与函数资料课件

变量与函数资料课件
的导数。
THANKS
感谢观看
函数在数学中的应用
01
02
03
代数函数
用于解决代数问题,如求 根、解方程等。
三角函数
用于研究三角形、圆和其 他几何形状的性质。
微积分函数
用于研究函数的极限、连 续性、可导性和积分等概 念。
函数在物理中的应用
力学函数
描述物体运动和力的关系 ,如速度、加速度和位移 等。
热力学函数
描述热现象中的状态和过 程,如温度、压力和熵等 。
二次函数
总结词:判别式
详细描述:判别式 Δ = b^2 - 4ac,用于判断二次函数的根的性质。当 Δ > 0 时 ,函数有两个不相等的实根;当 Δ = 0 时,有两个相等的实根;当 Δ < 0 时, 函数有两个复数根。
三角函数
总结词:周期性
详细描述:三角函数(如正弦、余弦、正切等)具有周期性,这意味着它们的值会重复出现。例如, 正弦函数的周期为 2π。
变量与函数资料课件
目录
• 变量与函数的基本概念 • 常见函数类型及其性质 • 函数的运算与变换 • 函数的实际应用 • 函数的极限与连续性 • 函数的导数与微分
01
变量与函数的基本概念
变量的定义与分类
总结词
变量的定义与分类
详细描述
变量是数学中表示数量或数值的符号,它可以表示一个具体的数值或者一个数 值的集合。根据变量的取值范围,可以将变量分为离散变量和连续变量。离散 变量只能取整数值,而连续变量可以取任意实数值。
将两个函数相乘,得到一个新 的函数。
除法运算
将一个函数除以另一个函数, 得到一个新的函数。
函数的复合运算
复合函数的定义

数学变量与函数关系

数学变量与函数关系

数学变量与函数关系在数学中,变量和函数是两个重要的概念。

变量是一个可以改变的量,而函数则是用来描述变量之间关系的工具。

变量和函数之间的关系是数学中的核心内容之一,它们的研究和应用不仅在数学领域中有重要意义,也在其他学科中发挥着重要作用。

一、变量的概念与分类变量是数学中一个基本的概念,它表示一个可以改变的量。

在数学中,变量可以分为自变量和因变量。

自变量是一个独立的变量,它的取值不受其他变量的影响;而因变量则是一个依赖于其他变量的变量,它的取值由自变量决定。

例如,在一次数学实验中,我们可以将自变量设定为时间,而因变量则是实验结果。

通过改变时间的取值,我们可以观察到实验结果的变化。

这个过程中,时间是自变量,实验结果是因变量。

二、函数的概念与表示函数是数学中描述变量之间关系的工具。

它可以将自变量的取值映射到因变量的取值。

函数通常用符号表示,例如f(x)或者y=f(x)。

其中,x是自变量,y是因变量,f是函数的名称。

函数可以用不同的方式表示,常见的表示方法有图表法、符号法和文字描述法。

图表法是通过绘制函数的图像来表示变量之间的关系。

符号法则是通过使用数学符号和公式来表示函数。

文字描述法则是通过使用自然语言来描述函数的性质和变化规律。

三、变量与函数的关系变量和函数之间存在着密切的关系。

变量是函数的构成要素之一,函数的定义中必然涉及到变量。

变量的取值不同,函数的取值也会有所不同。

例如,考虑一个简单的线性函数f(x) = 2x + 1。

在这个函数中,x是自变量,2x + 1是因变量。

当x取不同的值时,函数的取值也会有所不同。

当x为0时,函数的取值为1;当x为1时,函数的取值为3;当x为2时,函数的取值为5,依此类推。

这个例子说明了变量和函数之间的关系,即变量的取值决定了函数的取值。

四、变量与函数的应用变量和函数的研究和应用在数学中有着广泛的应用。

它们不仅在代数、几何等数学学科中发挥着重要作用,也在物理、经济等其他学科中得到了广泛的应用。

变量与函数

变量与函数

变量与函数一、知识回顾1、变量:在一个变化过程中可以取不同数值的量,函数中用x表示。

常量:在一个变化过程中只能取同一数值的量,往往用c来表示。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数的表示方法(1)列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

(2)解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

(3)图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

二、典型例题例1:骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化.在这一问题中,自变量是()A.沙漠B.体温 C.时间D.骆驼分析:因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量x和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是时间.解答:∵骆驼的体温随时间的变化而变化,∴自变量是时间;故选C.______________________________________________________________________例2:在圆的周长公式C=2r中,变量是________,________,常量是________.分析:根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.解答:∵在圆的周长公式C=2r中,C与r是改变的,是不变的;∴变量是C,r,常量是2.例3.下列各曲线中,不能表示y是x的函数的是()分析:根据函数是一一对应的关系,给自变量一个值,有且只有一个函数值与其对应,就是函数,如果不是,则不是函数.解答:在A、B、D、选项的图上任意取一点,做垂直于x的直线,发现只有一个交点,故正确。

变量与函数大一高数知识点

变量与函数大一高数知识点

变量与函数大一高数知识点高等数学是大一大二学生必修的一门基础课程,其中包括了许多重要的知识点。

其中,变量与函数是高等数学中最为基础和重要的概念之一。

一、变量变量是数学中使用的一种概念,它可以表示不同数值的符号或字母。

在数学中,我们常常用字母来表示变量,如x、y、z等等。

变量可以代表任意数的集合,也可以代表某一个具体的数值。

在数学中,我们通常用变量来表示未知数,通过解方程等方法来求解变量的数值。

变量在实际问题中也很常见,我们可以通过设定变量来描述实际问题的各种情况,从而得到数学模型并解决问题。

二、函数函数是数学中另一个重要的概念。

函数是一个特殊的关系,它将一个集合的元素(自变量)映射到另一个集合(因变量)。

函数常用符号表示为y = f(x),其中x为自变量,y为因变量,f为函数关系。

函数包含了定义域、值域和对应关系三个重要的概念。

定义域是自变量的取值范围,值域是因变量的取值范围,对应关系是自变量和因变量之间的映射关系。

函数在数学中有着广泛的应用。

它们可以用来描述各种数学模型,如直线方程、曲线方程等等。

通过函数的性质和图像,我们可以研究函数的增减性、极值、导数等,从而了解函数的行为和特点。

函数可以用来解决各种实际问题,如经济学中的生产函数、物理学中的运动方程等等。

因此,对于函数的理解和掌握是我们学习高等数学的基础。

三、变量与函数的关系变量与函数之间有着密切的关系。

在函数中,自变量常常是一个或多个变量,而函数则是对自变量的一种规定或设定。

变量作为函数中的自变量,它的取值范围和变化规律会影响到函数的性质和行为。

因此,变量的取值是函数研究中一个非常重要的问题。

在实际问题中,我们可以通过设定变量来描述问题的各种情况,从而建立函数模型。

通过分析自变量的取值范围和变化规律,我们可以研究函数的图像、性质和规律。

例如,我们可以用变量来表示一个物体的位置,然后建立位置和时间的函数关系,通过分析函数曲线的形状和变化趋势,我们可以了解物体的运动规律和特点。

数学中的变量与函数关系

数学中的变量与函数关系

数学中的变量与函数关系数学中的变量与函数关系是一项基础而重要的概念。

变量和函数是数学中常见的概念,它们用于描述事物之间的关系以及数值的变化规律。

在本文中,将详细探讨数学中的变量与函数关系的基本概念、性质和应用。

一、变量变量是数学中用来表示不确定或可变值的符号。

通常用字母表示,比如x、y或者其他字母。

变量可以代表不同的数值,并且可以随着问题的不同而改变。

例如,当我们要描述一辆汽车的速度时,可以用v表示变量,因为不同的汽车会有不同的速度。

变量可以分为独立变量和因变量。

独立变量是研究中独立选择或设定的变量,它不依赖于其他变量。

而因变量是依赖于其他变量的变量,它的值根据独立变量的取值而改变。

例如,在研究中,以一个人的年龄为独立变量,体重为因变量,我们可以观察到随着年龄的增加,体重也会有相应的变化。

二、函数函数是数学中常见的关系类型,它描述了变量之间的映射关系。

对于给定的输入(自变量),函数会给出相应的输出(因变量)。

函数通常用f(x)来表示,其中,f表示函数名称,x表示自变量的取值。

函数有许多不同的类型,包括线性函数、二次函数、指数函数等。

不同类型的函数具有不同的性质和特点,它们可以用来描述不同类型的变量与变量之间的关系。

函数可以通过图像、表格或者公式来表示,这些表示方式都能够清晰地展示出变量与函数的关系。

三、变量与函数关系的性质在数学中,变量与函数关系具有许多重要的性质,其中包括:1. 单调性:变量与函数关系可以是单调递增的或单调递减的。

当自变量增大时,函数值也增大,则称其为单调递增;当自变量增大时,函数值减小,则称其为单调递减。

2. 奇偶性:变量与函数关系可以是奇函数或偶函数。

当函数满足f(-x) = -f(x)时,称其为奇函数;当函数满足f(-x) = f(x)时,称其为偶函数。

3. 周期性:变量与函数关系可以是周期函数。

周期函数在一定区间内重复出现相同的值。

例如,正弦函数和余弦函数都是周期函数,它们在一定范围内以一定的周期重复出现。

19.1.1 变量与函数(第3课时)课件 (新版)新人教版八年级上

19.1.1 变量与函数(第3课时)课件 (新版)新人教版八年级上
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
请你按下面的问题进行思考: (1)在这个测量过程中,锅中油的温度w 是加热时 间t 的函数吗?
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
他测量出把油烧沸腾所需要的时间是160 s,这样就 可以确定该食用油的沸点温度.他是怎样计算的呢? 列表法、解析法
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
根据刚才问题的思考,你认为函数的自变量可以取 任意值吗? 在实际问题中,函数的自变量取值范围往往是有限 制的,在限制的范围内,函数才有实际意义;超出这个 范围,函数没有实际意义,我们把这种自变量可以取的 数值范围叫函数的自变量取值范围.
问题2 你能用含自变量的式子表示下列函数,并 说出自变量的取值范围吗? (1)等腰三角形的面积为12,底边长为 x,底边上 的高为 y,y 随着 x 的变化而变化;
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
请你按下面的问题进行思考: (2)能写出w 与t 的函数解析式吗?
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:

14.1变量与函数练习(第三课时)

14.1变量与函数练习(第三课时)

14.1变量与函数(第三课时)◆随堂检测1、对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的坐标与坐标,在坐标平面内描出相应的点,这些点组成的图形,就是这个函数的。

2、某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.右图描述了他上学的情景,下列说法中错误..的是()A.修车时间为15分钟B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.自行车发生故障时离家距离为1000米3、小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图象能表示小明离家距离与时间关系的是()4、由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万米3)与干旱的时间t(天)的关系如图所示,则下列说法正确的是( ).A.干旱开始后,蓄水量每天减少20万米3B.干旱开始后,蓄水量每天增加20万米3C.干旱开始时,蓄水量为200万米3D.干旱第50天时,蓄水量为1 200万米35、(贵州黔东南州)如图,在凯里一中学生耐力测试比赛中,甲、乙两学生测试的路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OABC和线段OD,下列说法正确的是()A.乙比甲先到终点A./B.C.D.(分钟)B.乙测试的速度随时间增加而增大C.比赛过程中(除去起点终点)两人相遇两次D.比赛全程甲的测试速度始终比乙的测试速度快下列四个图象中,不表示某一函数图象的是( ).◆课下作业1、如图,一个蓄水桶,60分钟可将一满桶水放干.其中,水位h (cm )随着放水时间t (分)的变化而变化.放水速度恒定,h 与t 的函数的大致图像为( ).2、如图是小明从学校到家里行进的路程S (米)与时间t (分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走的快,其中正确的有___________(填序号).ABCD的边上有一动点P沿3、如图,平面直角坐标系中,在边长为1的正方形A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )4、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y (千米)与时间t (分钟)的关系如图7所示.根据图象回答下列问题: (1)小明家离图书馆的距离是____________千米; (2)小明在图书馆看书的时间为___________小时; (3)小明去图书馆时的速度是______________千米/小时.5、某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头.假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(升)与接水时间x(分)的函数图象如图.请结合图象,回答下列问题: (1)根据图中信息,请你写出一个结论; (2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟.”你说可能吗?请说明理由.6、小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是多少?●体验中考1、如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x 时,点R 应运动到( )A .B .C .D .(分)A .N 处B .P 处C .Q 处D .M 处2.如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水。

数学中的变量与函数关系

数学中的变量与函数关系

数学中的变量与函数关系在数学中,变量和函数是两个重要的概念,它们之间存在着密切的关系。

变量是指在数学问题中可以改变的数值,而函数则是将一个或多个变量映射到另一个变量的规则。

本文将探讨变量与函数之间的关系,并介绍在数学中常见的变量与函数的应用。

一、变量的概念与特点变量是数学中常见的概念,它表示可以改变的数值。

在数学问题中,我们经常需要考虑各种不同的情况,而这些情况中的数值就可以用变量来表示。

例如,我们可以用字母x表示一个未知的数值,这样就可以通过改变x的值来研究不同的数学关系。

变量的特点主要有以下几个方面:1. 可变性:变量的值可以根据需要进行改变,从而反映不同的情况或条件。

2. 未知性:变量通常代表一个未知的数值,我们需要通过运算或实验来确定其具体的取值。

3. 表示方式:变量通常用字母表示,如x、y、z等,但也可以使用其他符号或字母组合。

二、函数的定义与表示方式函数是一种将一个或多个变量映射到另一个变量的规则。

它描述了输入和输出之间的关系,并可以用数学方式来表示。

通常,一个函数由以下几个要素组成:1. 自变量:函数的自变量是指输入的变量,也就是函数的参数。

它可以是一个或多个变量。

2. 因变量:函数的因变量是指函数的输出,也就是函数的值。

它通常用f(x)来表示,其中f表示函数的名称,x表示自变量。

3. 函数表达式:函数表达式是用来描述函数的数学式子,它由自变量和因变量之间的关系构成。

例如,f(x) = 2x表示一个线性函数,表示自变量x经过乘以2的运算后得到因变量f(x)。

函数可以用不同的表示方式来进行表达,常见的有以下几种形式:1. 显式表达式:函数表达式中直接给出了因变量与自变量之间的关系,如f(x)= 2x。

2. 隐式表达式:函数表达式中未直接给出因变量与自变量之间的关系,而是通过方程或不等式来描述,如x^2 + y^2 = 1表示一个圆的方程。

3. 参数方程:函数表达式中通过参数来描述因变量与自变量之间的关系,如x= cos(t), y = sin(t)表示一个单位圆的参数方程。

变量与函数知识点总结

变量与函数知识点总结

变量与函数知识点总结在计算机编程领域中,变量和函数是两个十分基础且重要的概念。

本文将对变量与函数的相关知识点进行总结,帮助读者更好地理解和应用它们。

一、变量变量是一种存储数据的容器。

在编程中,我们可以通过定义变量来存储各种类型的数据,如整数、浮点数、字符等。

以下是变量的相关知识点:1. 变量定义与命名变量的定义需要指定变量名和类型。

变量名是由字母、数字和下划线组成的字符串,不能以数字开头,且要遵循命名规范。

命名规范一般要求变量名具有描述性,能清晰表达变量的含义。

2. 变量的赋值与修改通过赋值操作,可以将某个值存储到变量中。

例如:int age = 25;这行代码将整数25赋值给名为age的变量。

变量的值可以随时修改,只需要通过赋值操作重新赋予新的值。

3. 变量的作用域变量的作用域指的是变量的可访问范围。

在不同的代码块中定义的变量拥有不同的作用域。

全局变量在整个程序中可见,而局部变量只在定义它们的代码块内可见。

4. 变量的数据类型常见的数据类型包括整型、浮点型、字符型等。

数据类型决定了变量能够存储的数据范围和操作方式。

不同编程语言可能支持的数据类型有所差异,需要根据具体语言的规范来选择适合的数据类型。

二、函数函数是一段可重复调用的代码块,用于完成特定的任务。

通过定义函数,可以提高代码的可读性和可维护性。

以下是关于函数的相关知识点:1. 函数的定义与调用函数定义包括函数名、参数列表和函数体。

函数名用于标识函数,参数列表指定函数接收的输入,函数体包含具体的代码实现。

函数的调用通过函数名和参数完成。

2. 函数的返回值函数通常可以返回一个结果,在函数体中使用return语句返回特定的值。

函数的返回类型需要在函数定义时指定。

3. 函数的参数传递函数可以接收多个参数,参数可以是不同的类型。

参数传递可以按值传递,也可以按引用传递。

按值传递是传递参数的副本,而按引用传递直接传递参数的地址。

4. 函数的递归递归是指函数可以直接或间接地调用自身。

19.1.1变量与函数3

19.1.1变量与函数3

第十九章一次函数第三课时函数的图像(1)学习目标1.掌握用描点法画出一些简单函数的图象;2.理解解析法和图象法表示函数关系的相互转换.重点难点1.结合实际问题,经历探索用图象表示函数的过程;2.通过学生自己动手,体会用描点法画函数的图象的步骤.教学过程一、复习引入问题1 在前面,我们曾经从如图所示的气温曲线上获得许多信息,回答了一些问题.现在让我们来回顾一下.你是如何从图上找到各个时刻的气温的?二、探究学习、初步认知1.正方形边长为x,面积为S.(1)S关于x的函数式: ____________,x的取值范围_______。

(2)由函数式填写下表:x 0 0.5 1 1.5 2 2.5 3 3.5 4S(3)在下边的格子上建立适当的直角坐标系(4)把上表格中各对数值所对应的点描在直角坐标系中(5)用平滑的曲线连接这些点,便得到函数的图象。

三、巩固练习、深化理解例1 画出函数y =x +1的图象. 列表:x y描点,连线:例2 画出函数221x y 的图象. 解 列表:x y描点,连线:四、变式提高、有所领悟1.在所给的直角坐标系中画出函数x y 21=的图象(先填写下表,再描点、连线).2.画出函数xy 6-=的图象(先填写下表,再描点、然后用光滑曲线顺次连结各点).(题1) (题2) 五、课堂小结 总结:由函数解析式画函数图象,一般按下列步骤进行: 1.列表:列表给出自变量与函数的一些对应值;2.描点:以表中对应值为坐标,在坐标平面内描出相应的点;3.连线:按照自变量由小到大的顺序,把所描各点用光滑的曲线连结起来.描出的点越多,图象越精确.有时不能把所有的点都描出,就用光滑的曲线连结画出的点,从而得到函数的近似的图象.六、课后作业1.(1)画出函数y=2x-1的图象(在-2与2之间,每隔0.5取一个x值,列表;并在直角坐标系中描点画图).(2)判断下列各有序实数对是不是函数y=2x-1的自变量x与函数y的一对对应值,如果是,检验一下具有相应坐标的点是否在你所画的函数图象上:(-2.5,-4),(0.25,-0.5),(1,3),(2.5,4).2.画出下列函数的图像(1)y=2x-1第一步:列表yx第二步:描点第三步:连线题2 题3a) 由y=2x-1图像可以看出,直线从左向右(填“上升”或“下降”),即当x由小变大时,y=2x-1随之;b) 判断点A(-2.5,-4),B(1,3),C(2.5,4)是否在函数y=2x-1的图像上。

八年级数学上册 变量与函数(3)-习题课课件 新人教版

八年级数学上册 变量与函数(3)-习题课课件 新人教版
(1)写出表示y与x的函数关系的式子。
y= 50-0.1x
(2)指出自变量x的取值范围。 x≤500 因为0.1x≤50 又因为x≥0 0≤x≤500
例1.一辆汽车的油箱中现有汽油50L,如果不再 加油,那么油箱中的油量y(单位:L)随行驶 里程x(单位:㏎)的增加而减少,平均耗油量 为0.1 L/㏎。 (3)汽车行驶200 ㏎时,油箱中还有多少汽油? 将x=200代入到y=50- 0.1x中,得 y=50- 0.1×200=30
(C)x ≠ ±1
5 x x 1
2
(2)函数y=
中,自变量x的取值范围是
_________
x≥-5
(3)函数y=x+
2 x
中,自变量x的取值范围是
x≤2 ________。
(4)下列函数中,自变量取值范围是2<x≤3的是
(A)y= (C)y= + x2
1 x2 1
x3 3 x
(B)y= (D)y=
函数的取值范围:当函数用解析式表 示出来时,使解析式有意义的自变量的取 值的全体。
在确定函数的自变量的取值范围时, 不仅要考虑函数关系式的意义,还要考虑 问题中的实际意义。
(1)分母不为0 (2)开偶数次方 的被开方数≥0
(1)y=
4x 1 x

2
的自变量x的取值范围是 ( )
C
(A)X
0
(B)x ≠ 1 (D)为一切实数
变量
常量
函数(因变量)
自变量
函数值
找出下列各式中的变量和常量。
S=4π
2 R
V=
4 3
π
3 R
2+9 y=8x
判断下列各式中y是x的函数吗? 并找出中的自变量和因变量。

变量与函数-知识讲解

变量与函数-知识讲解

变量与函数【学习目标】 1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围);2.能初步理解函数的概念;能初步掌握确定常见简单函数的自变量取值范围的基本方法;给出自变量的一个值,会求出相应的函数值.3. 理解函数图象上的点的坐标与其解析式之间的关系,会判断一个点是否在函数的图象上,明确交点坐标反映到函数上的含义.4. 初步理解函数的图象的概念,掌握用“描点法”画一个函数的图象的一般步骤,对已知图象能读图、识图,从图象解释函数变化的关系.【要点梳理】要点一、变量、常量的概念在一个变化过程中,我们称数值发生变化的量为变量.数值保持不变的量叫做常量.要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t ,速度60千米/时是常量,时间t 和里程s 为变量.要点二、函数的定义一般地,在一个变化过程中. 如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是x 的函数.要点诠释:对于函数的定义,应从以下几个方面去理解:(1)函数的实质,揭示了两个变量之间的对应关系;(2)对于自变量x 的取值,必须要使代数式有实际意义;(3)判断两个变量之间是否有函数关系,要看对于x 允许取的每一个值,y 是否都有唯一确定的值与它相对应.(4)两个函数是同一函数至少具备两个条件:①函数关系式相同(或变形后相同);②自变量x 的取值范围相同.否则,就不是相同的函数.而其中函数关系式相同与否比较容易注意到,自变量x 的取值范围有时容易忽视,这点应注意.要点三、函数的定义域与函数值函数的自变量允许取值的范围,叫做这个函数的定义域.要点诠释:考虑自变量的取值必须使解析式有意义。

(1)当解析式是整式时,自变量的取值范围是全体实数;(2)当解析式是分式时,自变量的取值范围是使分母不为零的实数;(3)当解析式是二次根式时,自变量的取值范围是使被开方数不小于零的实数;(4)当解析式中含有零指数幂或负整数指数幂时,自变量的取值应使相应的底数不为零;(5)当解析式表示实际问题时,自变量的取值必须使实际问题有意义.y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值.在函数用记号()y f x =表示时,()f a 表示当x a =时的函数值.要点诠释:对于每个确定的自变量值,函数值是唯一的,但反过来,可以不唯一,即一个函数值对应的自变量可以是多个.比如:2y x =中,当函数值为4时,自变量x 的值为±2.要点四、函数的图象对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.要点诠释:由函数解析式画出图象的一般步骤:列表、描点、连线.列表时,自变量的取值范围应注意兼顾原则,既要使自变量的取值有一定的代表性,又不至于使自变量或对应的函数值太大或太小,以便于描点和全面反映图象情况.【典型例题】类型一、变量与函数1、下列等式中,y 是x 的函数有( )A .1个 B.2个 C. 3个 D.4个【答案】C ;【解析】要判断是否函数,需判断两个变量是否满足函数的定义.对于221,x y -= 当x 取2,y 和它对应,对于||x y =,当x 取2,y 有两个值±2和它对应,所以这两个式子不满足函数的定义的要求:y 都有唯一确定的值与x 对应,所以不是函数,其余三个式子满足函数的定义,故选C.【总结升华】在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.抓住函数定义中的关键词语“y 都有唯一确定的值”,x 与y 之间的对应,可以是“一对一”,也可以是“多对一”,不能是“一对多”.举一反三:【变式】下列函数中与x y =表示同一函数的是( ) A.x y = B.xx y 2= C.2)(x y = D.33x y = 【答案】D ;提示:表示同一函数,自变量的取值要相同,化简后的解析式要相同.2、如图所示,下列各曲线中表示y 是x 的函数的有( ).A .1个B .2个C .3个D .4个【答案】 C ;【解析】这是一道函数识别题,从函数概念出发,领悟其内涵,此题不难得到答案,④不构成函数关系.【总结升华】在函数概念中注意两点:有两个变量,其中一个变量每取一个确定的值,另一个变量就有唯一的一个值与其对应.类型二、函数解析式3、求出下列函数的定义域.(1).52+-=x x y (2).423x y x =- (3).y =(4).y =(5).y =(6).2y x =+ 【答案与解析】解:(1).52+-=x x y ,x 为任何实数,函数都有意义; (2).423x y x =-,要使函数有意义,需2x -3≠0,即x ≠32;(3).y =2x +3≥0,即32x ≥-; (4).y =2x -1>0,即12x >;(5).y =x 为任何实数,函数都有意义;(6).y =,要使函数有意义,需3020x x +≥⎧⎨+≠⎩,即x ≥-3且x ≠-2. 【总结升华】自变量的取值范围必须使整个解析式有意义.4、如图所示,在△ABC 中,∠C =90°,AC =6,BC =10,设P 为BC 上任一点,点P 不与点B 、C 重合,且CP =x .若y 表示△APB 的面积.(1)求y 与x 之间的函数关系式;(2)求自变量x 的取值范围.【答案与解析】解: (1)因为AC =6,∠C =90°,BC =10, 所以116103022ABC S AC BC ∆==⨯⨯=. 又116322APC S AC PC x x ∆==⨯⨯=, 所以303APB ABC APC y S S S x ∆∆∆==-=-,即303y x =-.(2)因为点P 不与点B 、C 重合,BC =10,所以0<x <10.【总结升华】利用三角形面积公式找到函数关系式,要把握点P 是一动点这个规律,结合图形观察到点P 移动到特殊点,便可求出自变量的取值范围.举一反三:【变式】 小明在劳动技术课中要制作一个周长为80cm 的等腰三角形.请你写出底边长y (cm )与腰长x (cm )的函数关系式,并求自变量x 的取值范围.【答案】解:由题意得,2x y +=80,所以802y x =-,由于三角形两边之和大于第三边,且边长大于0,所以080202802x y x x x >⎧⎪=->⎨⎪>-⎩,解得2040x << 所以802,2040y x x =-<<.类型三、函数值5、 若y 与x 的关系式为306y x =-,当x =13时,y 的值为( ) A .5 B .10 C .4 D .-4【答案】C ; 【解析】130610643y =⨯-=-=.【总结升华】把13x =代入关系式可求得函数值. 类型四、函数的图象6、星期日晚饭后,小红从家里出去散步,如图所示,描述了她散步过程中离家的距离s (m )与散步所用的时间t (min )之间的函数关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题(1)公共阅报栏离小红家有______米,小红从家走到公共阅报栏用了______分钟;(2)小红在公共阅报栏看新闻一共用了______分钟;(3)邮亭离公共阅报栏有______米,小红从公共阅报栏到邮亭用了______分钟;(4)小红从邮亭走回家用了______分钟,平均速度是______米/分钟.【答案】(1)300,4;(2)6;(3)200,3;(4)5,100.【解析】由图象可知,0到4分钟,小红从家走到离家300米的报栏,4到10分钟,在公共报栏看新闻,10到13分钟从报栏走到200米外的邮亭,13到18分钟,从离家500米的邮亭返回家里.【总结升华】这个函数图象是由几条线段组成的折线,其中每条线段代表一个阶段的活动.这条线段左右端点的横坐标的差,对应相应活动所用的时间.举一反三:【变式】一列货运火车从南京站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,可以近似地刻画出火车在这段时间内的速度变化情况的是( ).【答案】B ;。

变量与函数关系的建立

变量与函数关系的建立

变量与函数关系的建立在计算机科学和数学领域,变量与函数是两个基本概念。

变量表示一个具体的值,而函数则表示输入与输出之间的关系。

在编程和数学问题中,我们经常需要建立变量与函数之间的关系,以便更好地理解和解决问题。

一、变量与函数的概念变量是计算机程序中存储和表示数据的一种方式。

它可以保存各种类型的数据,比如数字、文字、布尔值等,并且可以根据需要随时修改和使用。

在数学中,变量通常用字母表示,表示代表一个未知数或可变的数值。

函数是一种映射关系,它将输入值映射到特定的输出值。

函数可以用来描述各种数学问题或计算机程序中的逻辑关系。

函数由输入、函数体和输出组成,它可以接受一个或多个输入,在函数体中进行计算,最终得到一个输出结果。

二、变量与函数的关系在程序中,我们可以使用变量来存储函数的输出结果,以便在后续的计算中使用。

这种变量与函数之间的关系可以使程序更加灵活和高效。

例如,在一个简单的计算器程序中,我们可以定义一个变量x,将用户输入的数值赋给x,然后通过调用不同的函数对x进行运算,最后将结果保存在另一个变量中供用户查看。

此外,变量还可以作为函数的参数传递给函数,在函数内部使用并进行相应的计算。

通过这种方式,函数可以根据不同的输入值,返回不同的输出结果。

这种变量与函数之间的关系有助于提高程序的可扩展性和复用性。

三、变量与函数的实际应用在实际的编程和数学问题中,我们经常需要建立变量与函数之间的关系,以便解决复杂的问题。

例如,在数据分析领域,我们可以使用变量来表示不同的数据集,然后定义一系列函数来对这些数据进行分析和处理。

这种变量与函数之间的关系可以帮助我们更好地理解数据的特点和趋势,进而提供有效的决策依据。

在机器学习算法中,变量与函数的关系起着至关重要的作用。

我们可以使用变量表示输入样本的特征值,然后定义一个函数来拟合这些样本特征与输出标签之间的关系。

通过不断调整函数的参数和优化算法,我们可以找到最佳的函数参数,从而得到准确的预测结果。

数学中的变量与函数

数学中的变量与函数

数学中的变量与函数数学是一门抽象而且严谨的学科,其中最核心的概念之一就是变量与函数。

变量和函数在数学中扮演着重要的角色,它们帮助我们描述和理解世界中的各种数值关系和现象。

本文将探讨数学中的变量与函数的概念、特点以及它们在实际应用中的重要性。

一、变量:在数学中,变量是指可以取不同数值的量。

变量通常用字母来表示,例如x、y、a、b等。

它们的值可以根据具体的情况而变化,因此被称为变量。

变量可以代表不同的物理量,比如时间、距离、温度等。

使用变量可以简化问题的描述和解决过程,使得数学模型更加灵活且易于理解。

变量有两种类型:自变量和因变量。

自变量是指在函数中独立变化的量,它的取值不依赖于其他变量。

而因变量则是根据自变量的取值而确定的量,取值依赖于自变量。

自变量和因变量之间通常存在某种关系,这种关系可以用函数来表示。

二、函数:函数是数学中最重要的概念之一,它描述了自变量和因变量之间的关系。

函数可以理解为一种映射关系,它将每个自变量的取值映射到一个确定的因变量的取值上。

函数通常用f(x)或者y来表示,其中x为自变量,f(x)或y为因变量。

一个函数可以表示为y = f(x),其中x为输入,y为输出。

函数具有以下特点:1. 唯一性:对于同一个自变量,函数有且只有一个对应的因变量值。

2. 定义域和值域:函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。

3. 图像:函数可以用图像来表示,图像上的每个点(x, y)表示函数在自变量为x时,因变量为y的取值。

函数在数学中扮演着重要的角色,它们用来描述和解决各种实际问题。

比如,利用函数可以描述物体的运动规律、描述市场需求与价格之间的关系等。

函数还可以通过一些基本的运算进行组合,形成更复杂的函数,进而拓展数学模型的应用范围。

三、变量与函数的关系:变量和函数之间存在密切的关系。

函数可以包含一个或多个变量,而变量的值可以通过函数来确定。

变量可以作为函数的自变量,用来描述函数的输入;而函数的结果则可以用变量来表示,用来描述函数的输出。

数学中的变量与函数

数学中的变量与函数

数学中的变量与函数数学是一门研究数量、结构、空间以及变化规律等概念的科学学科。

在数学中,变量与函数是两个重要的概念,它们在数学理论和实际应用中扮演着重要的角色。

一、变量变量是数学中的一个基本概念,它代表着一个未知的数值或者可以改变的数值。

在数学中,我们通常用字母来表示变量,如x,y,z等。

变量可以表示不同的数值,因此在求解问题时,可以方便地代入不同的数值进行计算和推导。

在代数中,变量用于表示未知数或者可变数,同时也可以用于表示在一个范围内可取不同数值的数。

变量可以与常数进行运算,例如加法、减法、乘法和除法等。

通过变量的使用,我们可以建立方程或者不等式来解决实际问题,从而求解出未知数的值或者确定一个范围内的数。

二、函数函数是数学中的另一个基本概念,它描述了变量之间的依赖关系。

函数由一个自变量和一个因变量组成,自变量是输入的变量,而因变量是根据自变量的取值确定的输出值。

通常来说,我们用f(x)表示函数,其中f是函数的名称,x是自变量。

函数可以通过一个或多个数学表达式来定义。

例如,线性函数可以表示为f(x) = ax + b,其中a和b是常数;指数函数可以表示为f(x) =a^x,其中a是底数。

函数可以用图像表示,通过绘制自变量和因变量的关系,我们可以更直观地理解函数的性质和特点。

函数在数学中有着广泛的应用。

它可以用来描述物理现象、经济关系、自然规律等各种实际问题。

通过建立函数模型,我们可以预测未来的趋势或者进行优化和决策。

函数还可以用于求解方程和不等式,通过函数的性质和图像,我们可以找到方程或者不等式的解集。

三、变量与函数的关系变量与函数密切相关,它们在数学中起着互相支撑的作用。

变量是函数的基础,函数的定义和性质是由变量决定的。

变量可以作为函数的自变量,通过输入不同的数值来得到相应的函数值。

反过来,函数可以用来表示变量之间的关系,通过函数的定义和性质,我们可以推导出变量的特定取值条件。

在实际问题中,我们常常需要通过变量和函数来描述和解决复杂的情况。

变量与函数的概念以及函数的三种表示方法

变量与函数的概念以及函数的三种表示方法

变量与函数的概念
变量和常量:
世界是变化的,客观事物中存在大量的变量。

一般地,在一个变化过程中,我们称数值始终不变的量为常量,称数值变化的量为变量。

函数:
在同一个变化过程中,变量之间不是孤立的,而是相互联系的,某些变量的变化会引起其他变量的变化。

一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与之对应,那么我们就说,x是自变量,y是x的函数。

如果当x=a 时y=b,那么b叫做当自变量的值为a时的函数值。

函数的三种表示方法
(1)列表法
①若自变量的取值范围为有限的几个数值,则将自变量的所有取值和对应的函数值填写在表格中;
②若自变量的取值范围为含无限数值的一个区间,则从自变量的取值范围中选取(有代
(2)解析式法
y=… (x的取值范围,若没有则默认x的取值范围为全体实数)
(3)图像法
函数的图像:
一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。

描点法绘制函数图像:
①从x的取值范围中取出一些数值,并计算出y的对应值;
②在平面直角坐标系中描出点(x,y);
③用平滑曲线连接这些点。

表示函数时,要根据情况选择适当的方法,有时为全面地认识问题,需要几种方法同时使用。

《变量与函数》课件

《变量与函数》课件

二、函数
1. 函数的定义
函数是一段可重复使用的代码,用于执行特定的任务。它可以接受参数并返回结果。
2. 函数的调用
我们可以通过调用函数来执行其中的代码,并传递参数给函数以获得所需的结果。
3. 函数的返回值
函数的返回值是函数执行完毕后返回给调用者的结果。我们可以通过获取函数的返回值来使 用它。
三、实例演示
《变量与函数》PPT课件
欢迎来到我们的《变量与函数》PPT课件。在本课程中,我们将一起探索变 量和函数的概念,学习它们在编程中的作用以及如何正确使用它们。让我们 开始吧!
一、变量
1. 变量的定义
什么是变量?变量是用于存储数据的容器,可 以在程序中赋过赋值语句,我们可以将值赋给变量并在程 序中使用这些值。
1
1. 变量实例
让我们通过一个实例了解如何定义、赋
2. 函数实例
2
值和使用变量,以及变量在程序中的作 用。
现在,我们将展示一个函数的实例,演
示如何定义函数、调用函数,并解释函
数返回值的概念。
四、总结
1. 变量和函数的区别
变量和函数在编程中有不同的角色和用途,理解它们之间的区别对于编写高效的代码至关重 要。
2. 变量和函数的应用
掌握变量和函数的概念和使用方法后,我们可以将它们应用于解决实际问题和开发创新的程 序。
3. 其他相关知识
除了变量和函数的基本概念外,我们还会介绍全局变量和局部变量、函数的递归调用,以及 在不同编程语言中的差异。

变量与函数的定义及应用

变量与函数的定义及应用

变量与函数的定义及应用变量和函数是编程语言中最基本的概念之一,在编写代码时经常需要使用它们。

本文将介绍变量和函数的定义、用途和应用。

1. 变量的定义和应用变量是用来存储数据的容器,编写程序时必须首先定义变量,然后才能在程序中使用它们。

通常在定义变量时需要为其指定名称和数据类型。

(1)变量的定义在大多数编程语言中,变量的定义语句通常包含变量类型和名称。

例如,要定义一个整数类型的变量,可以使用如下语句:int num;这条语句定义了一个名为num的变量,它的数据类型是整数类型。

如果需要定义多个变量,可以使用逗号隔开,例如:int num1, num2;这条语句定义了两个整型变量num1和num2。

在有些编程语言中,定义变量时需要指定初始值。

例如,要定义一个初始值为10的整型变量,可以使用如下语句:int num = 10;(2)变量的应用定义变量后,可以在程序的任何地方使用它们。

例如,在使用C++编写的程序中,可以在函数中使用定义的变量,例如:int main(){int num = 10;cout << "num的值为:" << num << endl;return 0;在这个例子中,声明了一个名为num的变量,它的数据类型是int,值为10。

在main函数的第二行,输出了num的值。

2. 函数的定义和应用函数是一组预定义好的指令,用于执行特定的操作。

在编写程序时,通常需要多次调用函数,以实现不同的任务。

函数中通常包含输入参数、输出参数和一组操作。

(1)函数的定义函数的定义通常包含函数名称、输入参数、输出参数和操作。

例如,要定义一个名为add的函数,用于计算两个数值的和,可以使用如下语句:int add(int num1, int num2){return num1 + num2;在这个例子中,定义了一个名为add的函数,它接受两个整数类型的输入参数num1和num2,并返回它们的和。

数学中的函数与变量

数学中的函数与变量

数学中的函数与变量数学是一门抽象而又精确的学科,而函数和变量是数学中非常重要的概念。

函数可以理解为输入和输出之间的关系,而变量则是描述这种关系的元素。

在本文中,我们将深入探讨函数和变量在数学中的应用和意义。

一、函数的定义与表示函数是数学中一个非常基础的概念,它描述了两个集合之间的依赖关系。

一个函数通常被表示为f(x),其中x是自变量,f(x)是对应的函数值,也称为因变量。

函数可以用各种形式进行表示,例如:1.显式表达式:y = f(x)这是最常见也是最直观的函数表示形式。

y表示因变量,x表示自变量,f(x)表示函数关系。

例如,y = 2x表示一个线性函数,y的值是x的两倍。

2.隐式表达式:F(x, y) = 0对于某些函数关系,不能通过显式表达式表示。

在这种情况下,我们可以使用隐式函数来描述关系。

例如,对于一个圆的方程x^2 + y^2= 1,无法通过y = f(x)来表示,但可以通过F(x, y) = 0的形式来描述。

3.参数方程:x = f(t),y = g(t)有时,函数的自变量和因变量都可以用另外一个变量来表示。

例如,一个圆可以通过参数方程x = cos(t),y = sin(t)来表示,其中t为参数。

二、函数的特性与分类函数在数学中具有一些重要的特性,它们可以帮助我们理解和分析函数的性质。

下面是一些常见的函数特性:1.定义域与值域函数的定义域是自变量可以取的值的集合,值域是函数所有可能的输出值的集合。

例如,对于函数y = 2x,定义域为实数集,值域为所有的实数。

2.单调性单调性描述了函数的增减性质。

一个函数可以是递增的(对于所有x1 < x2,f(x1) < f(x2)),也可以是递减的(对于所有x1 < x2,f(x1) > f(x2))。

3.奇偶性奇偶性描述了函数的对称性质。

一个函数如果满足f(-x) = f(x),则该函数是偶函数;如果满足f(-x) = -f(x),则该函数是奇函数。

变量与函数教学设计 (3)

变量与函数教学设计 (3)

变量与函数【教学目标】1.了解常量变量的概念,体验在一个过程中常量与变量相对地存在。

2.了解函数与自变量概念能在某简单的过程中辨别函数与自变量 。

【教学重点】自变量与函数的概念。

【教学难点】本节范例由于学生知识的限制,对一些量不熟悉,而且涉及一定的物理知识,是本节教学的难点。

【教学方法】观察、比较、合作、交流、探索。

【教学过程】一、引言:一辆长途客车从杭州驶向上海,全程哪些量不变?哪些量在变?当我们用数学来分析现实世界的各种现象时,会遇到各种各样的量,如物体运动中的速度、时间和距离;圆的半径、周长和圆周率;购买商品的数量、单价和总价;某城市一天中各时刻变化着的气温;某段河道一天中时刻变化着的水位……在某一个过程中,有些量固定不变,有些量不断改变。

二、合作交流,探求新知:1.请讨论下面的问题:(1)圆的周长公式为r C π2=,请取r 的一些不同的值,算出相应的C 的值:=r cm =s cm =r cm =s cm=r cm =s cm=r cm =s cm……在计算半径不同的圆的面积的过程中,哪些量在改变,哪些量不变?(2)假设钟点工的工资标准为6元/时,设工作时数为t ,应得工资额为m ,则m =6t 取一些不同的t 的值,求出相应的m 的值:=t cm =mt cm ==mt cm ==mt cm ==m……在根据不同的工作时数计算钟点工应得工资额的过程中,哪些量在改变?哪些量不变?设问:一个量变化,具体地说是它的什么在变?什么不变呢?2.变量与常量的概念形成:在一个过程中,固定不变的量称为常量,如上面两题中,圆周率π和钟点工的工资标准6元/时。

可以取不同数值的量称为变量,如上面两题中,半径r和圆面积s,工作时数t和工资额m都是变量。

又如购买同一种商品时,商品的单价就是常量,购买商品数量和相应的总价就是变量;某段河道一天中各时刻变化着的水位也是变量。

注意:常量与变量必须存在与一个变化过程中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
请你按下面的问题进行思考: (2)能写出w 与t 的函数解析式吗?
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
请你按下面的问题进行思考: (3)求这种食用油沸点的温度.
课堂小结
(1)什么叫函数? (2)本课学习了哪些表示函数的方法? (3)在实际问题中,函数的自变量取值往往是有限 制的,怎样确定由实际问题抽象出的函数的自 变量取值范围?
课后作业
确定自变量的取值范围时,不仅要考虑使函数关系 式有意义,而且还要注意问题的实际意义.
做一做
例1 一辆汽车油箱中现有汽油50 L,它在高速公 路上匀速行驶时每千米的耗油量固定不变.行驶了100 km 时,油箱中剩下汽油40 L.假设油箱中剩下的油量 为 y(单位:L),已行驶的里程为 x(单位:km) . (1)在这个变化过程中,y 是x 的函数吗? (2)能写出表示 y 与 x 的函数关系的式子吗? (3)这个变化过程中,自变量 x 的取值范围是什么? (4)汽车行驶了200 km 时,油箱中还剩下多少汽油? 行驶了320 含自变量的式子表示下 列问题中的函数关系: (1)汽车以60 km/h 的速度匀速行驶,行驶的时间 为 t(单位:h),行驶的路程为 s(单位:km); (2)多边形的边数为 n,内角和的度数为 y. 函数的定义是,某一变化过程中有两个变量x,y, 对于变量x 每取一个确定的值,y 都有唯一确定的值与 之对应. 问题1(1)中,t 取-2 有实际意义吗? 问题1(2)中,n 取2 有意义吗?
作业:教科书第82~83页习题19.1 第5,10,11
题.
做一做
用关于自变量的数学式子表示函数与自变量之间的 关系,是描述函数的常用方法.这种式子叫做函数的解 析式.
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
说一说
根据刚才问题的思考,你认为函数的自变量可以取 任意值吗? 在实际问题中,函数的自变量取值范围往往是有限 制的,在限制的范围内,函数才有实际意义;超出这个 范围,函数没有实际意义,我们把这种自变量可以取的 数值范围叫函数的自变量取值范围.
练一练
问题2 你能用含自变量的式子表示下列函数,并 说出自变量的取值范围吗? (1)等腰三角形的面积为12,底边长为 x,底边上 的高为 y,y 随着 x 的变化而变化; (2)把边长为10 cm 的正方形纸板的四个角都截去 一个边长为 x 的小正方形,做成一个无盖的长方体,该 长方体的体积 V(单位:cm3)随 x(单位:cm)的变化 而变化.
八年级
下册
19.1.1 变量与函数(3)
课件说明
• 本课是在学习了函数概念的基础上,进一步讨论函 数的自变量取值范围,用解析法和列表法表示函数 关系,初步体会用函数描述和分析运动变化规律.
课件说明
• 学习目标: 1.了解解析法和列表法,并能用这两种方法表示简 单实际问题中的函数关系; 2.能确定简单实际问题中函数的自变量取值范围; 3.会初步分析简单实际问题中函数关系,讨论变量 的变化情况. • 学习重点: 用解析法和列表法表示函数关系,确定简单实际问题 的自变量取值范围.
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
请你按下面的问题进行思考: (1)在这个测量过程中,锅中油的温度w 是加热时 间t 的函数吗?
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
时间t/s 油温w/℃ 0 10 10 25 20 40 30 55
他测量出把油烧沸腾所需要的时间是160 s,这样就 可以确定该食用油的沸点温度.他是怎样计算的呢? 列表法、解析法
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
相关文档
最新文档