人教A版选修2-1第三章第二课时导学案3.1.2空间向量的数乘运算(一)(已修改)
(新课程)高中数学《3.1.2 空间向量的数乘运算》课件 新人教A版选修2-1
6
其中向量 a 叫直线 l 的方向向量,如图所示.
若在 l 上取A→B=a,则①式可以化为O→P=O→A+tA→B= (1-t)·O→A+t·O→B.② 可得如下结论:对于空间任意点 O,若有O→B=λO→A+ (1-λ)O→C成立,则 A、B、C 三点共线.这一结论可
一点 O 和不共线的三点 A,B,C,有O→P=xO→A+y O→B+z O→C,
且 x+y+z=1 成立,则 P、A、B、C 四点共面.这一结论可作 为判定空间中四个点共面的常用方法.
9
题型一 空间向量的数乘运算
【例1】 已知在空间四边形 OABC 中,M, N 分别是对边 OA,BC 的中点,点 G 在
作为证明三点共线的常用方法.
7
2.共面向量定理的理解 (1)空间一点 P 位于平面 ABC 内的充要条
件是存在有序实数对(x,y),使A→P=xA→B+ yA→C;或对空间任意一点 O,有O→P=O→A+ xA→B+yA→C.如图所示.
8
(2)共面向量的充要条件给出了空间平面的向量表示式,说明空 间中任意一个平面都可以由一点及两个不共线的平面向量表示 出来,它既是判断三个向量是否共面的依据,又是已知共面条件 的另一种形式,可以借此将已知共面条件转化为向量式,以方便 向量运算.另外,若存在有序实数组(x,y,z)使得对于空间任意
∴四边形 EFGH 是梯形.
15
规律方法 判定两向量共线就是寻找x使a=xb(b≠0)成立, 为此可结合空间图形并运用空间向量运算法则化简出a=
MN 上,且 MG=2GN,如图所示,记O→A =a,O→B=b,O→C=c,试用向量 a,b, c 表示向量O→G.
高中数学第三章 3.1.2空间向量的数乘运算学案含解析新人教A版选修2_1
3.1.2 空间向量的数乘运算内容标准学科素养1.掌握空间向量数乘运算的定义及运算律.2.理解向量共线、向量共面的定义.3.掌握共线向量定理和共面向量定理,会证明空间三点共线、四点共面.提升逻辑推理发展直观想象授课提示:对应学生用书第54页[基础认识]知识点一空间向量的数乘运算预习教材P86-87,思考并完成以下问题平面向量的数乘运算是什么?满足哪些运算律?提示:(1)实数λ和向量a的乘积仍是一个向量.(2)|λa|=|λ||a|.(3)λa的方向.当λ>0时,λa的方向与a方向相同;当λ<0时,λa的方向与a的方向相反.(4)数乘运算的运算律λ(μa)=(λμ)a;λ(a+b)=λa+λb.知识梳理空间向量的数乘运算(1)定义:实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘运算.(2)向量a与λa的关系λ的范围方向关系模的关系λ>0方向相同λa的模是a的模的|λ|倍λ=0λa=0,其方向是任意的λ<0方向相反若λ,μ是实数,a,b是空间向量,则有①分配律:λ(a+b)=λa+λb;(λ+μ)a=λa+μa;②结合律:λ(μa)=(λμ)a.知识点二共线向量与共面向量思考并完成以下问题(1)在学习平面向量时,共线向量是怎样定义的?如何规定0与任何向量的关系?提示:方向相同或相反的两向量称为共线向量;0与任何向量是共线向量.(2)对空间任意两个向量a与b,如果a=λb,a与b有什么位置关系?反过来,a与b有什么位置关系时,a=λb?提示:类似于平面向量共线的充要条件,对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb(b≠0).(3)对空间任意两个不共线的向量a,b,如果p=x a+y b,那么向量p与向量a,b有什么位置关系?反过来,向量p与向量a,b有什么位置关系时,p=x a+y b?提示:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在惟一的有序实数对(x,y),使p=x a+y b.知识梳理共线向量与共面向量共线(平行)向量共面向量定义表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量平行于同一平面的向量叫做共面向量充要条件对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ使a=λb若两个向量a,b不共线,则向量p与a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b推论如果l为经过点A且平行于已知非零向量a的直线,那么对于空间任一点O,点P在直线l上的充要条件是存在实数t,使OP→=OA→+t a①,其中a叫做直线l的方向向量,如图所示.若在l上取AB→=a,则①式可化为OP→=OA→+tAB→如图,空间一点P位于平面MAB内的充要条件是存在有序实数对(x,y),使MP→=xMA→+yMB→或对空间任意一点O来说,有OP→=OM→+xMA→+yMB →1.已知空间四边形ABCD ,M ,G 分别是BC ,CD 的中点,连接AM ,AG ,MG ,则AB →+12(BD →+BC →)等于( ) A.AG →B.CG →C.BC →D.12BC → 答案:A2.满足下列条件,能说明空间不重合的A ,B ,C 三点共线的是( ) A.AB →+BC →=AC → B.AB →-BC →=AC → C.AB →=BC → D .|AB →|=|BC →| 答案:C3.对于空间的任意三个向量a ,b,2a -b ,它们一定是( ) A .共面向量 B .共线向量 C .不共面向量D .既不共线也不共面的向量 答案:A授课提示:对应学生用书第55页 探究一 空间向量的数乘运算[教材P 89练习2]如图,已知正方体ABCD -A ′B ′C ′D ′,点E ,F 分别是上底面A ′C ′和侧面CD ′的中心.求下列各式中x ,y 的值:(1)AC ′→=x (AB →+BC →+CC ′→); (2)AE →=AA ′→+xAB →+yAD →;(3)AF →=AD →+xAB →+yAA ′→.解析:(1)在正方体中,AC ′→=AB →+BC →+CC ′→, ∴x =1.(2)AE →=AA ′→+12A ′C ′=AA ′→+12AC →=AA ′→+12(AB →+AD →)∴x =y =12.(3)AF →=AD →+DF →=AD →+12DC ′→=AD →+12(DD ′→+DC →)=AD →+12AA ′→+12AB →,∴x =y =12.[例1] 已知ABCD 为正方形,P 是ABCD 所在平面外的一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O ,Q 是CD 的中点,求下列各式中x ,y 的值.(1)OQ →=PQ →+xPC →+yP A →; (2)P A →=xPO →+yPQ →+PD →.[解析] (1)如图所示,OQ →=PQ →+OP →,由向量加法的平行四边形法则可得PO →=12(PC →+P A →),∴OP →=-12PC →-12P A →,∴OQ →=PQ →+OP →=PQ →-12PC →-12P A →.∴x =-12,y =-12.(2)∵P A →=PD →+DA →=PD →+2QO → =PD →+2(PO →-PQ →)=PD →+2PO →-2PQ →. ∴x =2,y =-2.方法技巧 1.对向量进行分解或对向量表达式进行化简时,要准确运用空间向量加法、减法的运算法则,要熟悉数乘向量运算的几何意义,同时还要注意将相关向量向选定的向量进行转化.2.在△ABC 中,若D 为BC 边的中点,则AD →=12(AB →+AC →),这一结论可视为向量形式的中点公式,应用非常广泛,应熟练掌握.跟踪探究 1.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.(1)化简:A 1O →-12AB →-12AD →;(2)设E 是棱DD 1上的点,且DE →=23DD 1→,若EO →=xAB →+yAD →+zAA 1→,试求实数x ,y ,z 的值.解析:(1)A 1O →-12(AB →+AD →)=A 1O →-AO →=A 1A →.(2)EO →=AO →-AE →=12(AB →+AD →)-AD →-23AA 1→=12AB →-12AD →-23AA 1→, 所以x =12,y =-12,z =-23.探究二 空间共线向量定理及其应用[教材P 99习题3.1B 组2题改编]如图,已知空间四边形OABC 中,OA =OB ,CA =CB ,点E ,F ,G ,H 分别是OA ,OB ,BC ,CA 的中点.求证:四边形EFGH 是平行四边形. 证明:∵E ,F ,G ,H 分别为OA ,OB ,BC ,CA 的中点, ∴OE →=12OA →,OF →=12OB →,CG →=12CB →,CH →=12CA →.∵AB →=OB →-OA →=2OF →-2OE → =2(OF →-OE →)=2EF →, ∴AB ∥EF ,且|AB →|=2|EF →|. 同理HG ∥AB ,且|AB →|=2|HG →|,∴四边形EFGH 是平行四边形.[例2] 如图所示,在正方体ABCD -A 1B 1C 1D 1中,点E 在A 1D 1上,且A 1E →=2ED 1→,点F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c . 因为A 1E →=2ED 1→,A 1F →=23FC →,所以A 1E →=23A 1D 1→,A 1F →=25A 1C →,所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c .所以EF →=A 1F →-A 1E →=25a -415b -25c =25⎝⎛⎭⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →.因为EF →与EB →有公共点E ,所以E ,F ,B 三点共线.方法技巧 1.本题利用向量的共线证明了线线平行,解题时应注意向量共线与两直线平行的区别.2.判断或证明两向量a ,b (b ≠0)共线,就是寻找实数λ,使a =λb 成立,为此常结合题目图形,运用空间向量的线性运算法则将目标向量化简或用同一组向量表达.跟踪探究 2.如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.解析:∵M ,N 分别是AC ,BF 的中点,且四边形ABCD ,ABEF 都是平行四边形,∴MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,∴2MN →=12CA →+AF →+12FB →-12CA →+CE →-AF →-12FB →=CE →,即CE →=2MN →.∴CE →与MN →共线.探究三 空间共面向量定理及其应用[阅读教材P 88例1]如图,已知平行四边形ABCD ,过平面AC 外一点O 作射线OA ,OB ,OC ,OD ,在四条射线上分别取点E ,F ,G ,H ,并且使OE OA =OF OB =OG OC =OHOD =k ,求证:E ,F ,G ,H 四点共面.题型:空间四点共面的判定方法步骤:(1)由数乘运算表示出向量OE →,OF →,OG →,OH →. (2)由向量减法运算得出EG →.(3)由AB →、AC →、AD →的关系得出EG →、EF →、EH →的关系,从而判定E ,F ,G ,H 四点共面. [例3] 已知A ,B ,C 三点不共线,平面ABC 外的一点M 满足OM →=12OA →+13OB →+16OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. [解析] (1)因为OM →=12OA →+13OB →+16OC →,所以6OM →=3OA →+2OB →+OC →,所以3OA →-3OM →=(2OM →-2OB →)+(OM →-OC →), 因此3MA →=2BM →+CM →=-2MB →-MC →. 故向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,三个向量又有公共点M ,故M ,A ,B ,C 共面,即点M 在平面ABC 内.方法技巧 1.证明空间三个向量共面,常用如下方法:(1)设法证明其中一个向量可以表示成另两个向量的线性组合,即若a =x b +y c ,则向量a ,b ,c 共面;(2)寻找平面α,证明这些向量与平面α平行.2.对空间四点P ,M ,A ,B 可通过证明下列结论成立来证明四点共面:(1)MP →=xMA →+yMB →;(2)对空间任一点O ,OP →=OM →+xMA →+yMB →; (3)PM →∥AB →(或P A →∥MB →,或PB →∥AM →).跟踪探究 3.已知A ,B ,M 三点不共线,对于平面ABM 外的任意一点O ,确定在下列条件下,点P 是否与A ,B ,M 一定共面.(1)OM →+OB →=3OP →-OA →;(2)OP →=4OA →-OB →-OM →. 解析:(1)∵OM →+OB →=3OP →-OA →, ∴OP →=OM →+(OA →-OP →)+(OB →-OP →) =OM →+P A →+PB →, ∴OP →-OM →=P A →+PB →, ∴MP →=P A →+PB →,∴MP →,P A →,PB →为共面向量, ∴P 与A ,B ,M 共面.(2)OP →=2OA →+(OA →-OB →)+(OA →-OM →)=2OA →+BA →+MA →,根据空间向量共面的推论,点P 位于平面ABM 内的充要条件是OP →=OA →+xBA →+yMA →, ∴P 与A ,B ,M 不共面.授课提示:对应学生用书第56页[课后小结]利用向量的数乘运算可以判定两个向量共线、三个向量共面问题,进而解决几何中的点共线、点共面、线面平行等问题.[素养培优]混淆共面向量与共线向量的相关结论致误已知e 1,e 2是两个非零空间向量,如果AB →=e 1-2e 2,AC →=3e 1+4e 2,AD →=-e 1-8e 2,则下列结论正确的是( )A .A ,B ,C ,D 四点共线 B .A ,B ,C ,D 四点共面C .A ,B ,C ,D 不一定共面D .无法确定A ,B ,C ,D 四点的位置关系易错分析 由已知条件,AC →与AD →不共线,且AC →+AD →=2e 1-4e 2=2(e 1-2e 2)=2AB →,由此得(AC →+AD →)∥AB →.若设AC →+AD →=AE →,则A ,B ,E 三点共线,并不是A ,B ,C ,D 四点共线.考查逻辑推理的学科素养.自我纠正 因为AC →+AD →=2e 1-4e 2=2(e 1-2e 2)=2AB →,即AB →=12AC →+12AD →,所以由共面向量定理可知AB →,AC →,AD →三个向量共面.又因为A 是公共点,所以A ,B ,C ,D 四点共面,故选B. 答案:B。
人教版高中数学选修2-1第三章3.1.2空间向量的数乘运算
导入新课复习上一节课,我们借助“类比思想”把平面向量的有关概念及加减运算扩展到了空间.(1) 加法法则及减法法则平行四边形法则或三角形法则. (2) 运算律加法交换律及结合律.两个空间向量的加、减法与两个平面向量的加、减法实质是一样的.因为:空间任意两个向量都可平移到同一个平面内,成为同一平面内的向量.因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们.我们知道平面向量还有数乘运算及相应的运算律.借助类比思想,同样可以定义空间向量的数乘运算及相应的运算律.教学目标知识目标正确理解共线、方向向量等基本概念;初步掌握数乘运算,理解运算律;熟练掌握共线向量基本定理、推论及应用.能力目标经历知识形成探索过程,体验“类比”思想,并逐步学会“分析、归纳、抽象、概括等思维方法.情感目标1. 通过自主探究与合作交流,不断体验“成功”,激发学习热情和求知欲,充分体现学生的主体地位;2. 通过类比思想和方法的应用,感受和体会数学思想的魅力,培养学“做数学”的习惯和热情.教学重难点重点共线向量概念、基本定理及推论.难点共线概念的正确理解及较复杂的三点共线判定.知识要点1. 空间向量数乘运算的定义与平面向量一样,实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘(multiplication of vetor by salar)运算.(1)结果仍然是一个向量;(2)方向:当λ>0时,λa与a方向相同;当λ<0时,λa与a方向相反;当λ=0时,λa是零向量0; (3)大小: λa的长度是a长度的|λ|倍.aλa(λ<0)a λa(λ>0)2.数乘运算的运算律显然,空间向量的数乘运算满足分配律及结合律()λ(a +b )=λa +λbλ+μa =λa +μaλ(μa )=(λμ)a 即:知识要点(1) λa与a 之间是什么关系?(2) λa 与a 所在直线之间的关系?对于空间向量的数乘运算的运算律的证明,方法与证明平面向量数乘运算的运算律类似.知识要点3.共线向量(或平行向量)的定义表示空间向量的有向线段所在直线互相平行或重合,则称这些向量叫共线向量(colliner vectors)或平行向量(parallel vectors)记作a//b(1)向量平行与直线平行的比较;(2)关注零向量; (3)对空间任意两个向量a 与b ,如果 ,那么a 与b 有什么相等关系?反过来呢?b //a 零向量与任何向量平行(1)当我们说a,b共线时,表示a,b的两条有向线段所在直线既可能是同一直线,也可能是平行线;(2)当我们说a // b时,也具有同样的意义.知识要点4.共线向量基本定理对于空间任意两个向量a ,b(b≠0),a // b的充要条件是存在实数λ,使a = λb(1)b≠0的理解.若b=0,则a任意,λ不唯一;(2)若a // b,b // c,则a一定平行于c吗?(不一定,考虑中间向量为零向量)5.共线向量基本定理的推论如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对于空间任意一点像O ,点P 在直线l 上的充要条件是存在实数t ,使 OP = OA + ta. (1) AaOP B其中向量a叫做直线l的方向向量(direction vector)在l上取AB=a,则(1)式可化为OP = (1- t)OA + t OB.(2)说明: (1),(2)都叫做空间直线的向量参数表示式.由此可知,空间任意直线由空间一点及直线的方向向量唯一确定.知识要点6.共面向量定义平行于同一平面的向量,叫做共面向量(coplanar vectors).空间任意两个向量总是共面的,但空间任意三个向量既可能是共面的,也可能是不共面的.7.共面向量的定理如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在唯一的有序实数对(x、y),使p = x a + y b8.共面向量的定理的推论空间一点P位于平面MAB内的充分必要条件是存在有序实数对x、y,使MP = xMA + yMB或对空间任一定点O,有OP = OM + xMA + yMB.Ma AbB A' p P对空间任意一点O 和不共线的三点A 、B 、C ,试问满足向量关系式(其中x+y+z=1)的四点P 、A 、B 、 C 是否共面?OP =xOA+yOB +zOC解答原式可以变形为OP=(1-y-z)OA+yOB+zOC,OP-OA=y(OB-OA)+z(OC-OA), AP=y AB+z AC,所以,点P与点A,B,C共面.例题如下图,已知平行四边形ABCD,过平面AC外一点O作射线OA、OB、OC、OD,在四条射线上分别取点E、F、G、H,并且使OE OF OG OH====kOA OB OC OD求证:四点E、F、G、H共面.D'A'B'C'DA B CO分析:欲证E,F,G,H四点共面,只需证明EH,EF,EG共面.下面我们利用AD,AB,AC共面来证明.证明:因为 所以 OE=kOA ,OF=kOB , OG=kOC ,OH=kOD. 由于四边形ABCD 是平行四边形,所以AC=AB+AD. 解答OE OFOGOH====kOA OB OC OD继续因此EG=OG-OE=kOC-kOA=k AC=k(AB+AD)=k(OB-OA+OD-OA)=OF-OE+OH-OE=EF+EH.由向量共面的充要条件知E,F,G,H四点共面.课堂小结1.空间向量的数乘运算.2.空间向量的数乘运算的运算律.满足分配律及结合律.3.共线向量与共面向量共线向量 共面向量 定义 向量所在直线互相平行或重合. 平行于同一平面的向量,叫做共面向量. 定理 推论 运用 判断三点共线,或两直线平行 判断四点共线,或直线平行于平面)0a (b //a ≠b λa =p b a b y αx p +=ABt OA OP +=AC y AB x OA OP ++=共面1)y (x OBy OA x OP =++=1)z y (x 0OC z OB y OA x OP =++=++=高考链接1.(2006年福建卷)已知|OA|=1,|OB|= ,OA·OB=0,点C 在∠AOB 内,且∠AOC=30°,设OC=mOA+nOB (m 、n ∈R),则 等于_______. 3nm 3D. 33 C. 3B. 31 A. BOA =1,OB =3,OA.OB =0,解析: 点C 在AB 上,且∠AOC=30°设A 点坐标为(1,0),B 点的坐标为(0, )C 点的坐标为(x ,y)=( , ) OC =mOA+nOB(m,n R)∈33434则∴ 3n m ,41,n 43m ===课堂练习1.选择(1)若对任一点O 和不共线的三A,B,C,且有 则x+y+z=1是四点P 、A 、B 、C 共面的() A. 必要不充分条件 B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件 R),z y,(x,OC z OB y OA x OP ∈++= C(2)对于空间任意一点O ,下列命题正确的是(). A.若 ,则P 、A 、B 共线 B.若 ,则P 是AB 的中点C.若 ,则P 、A 、B 不共线D.若 ,则P 、A 、B 共线 OP =OA+t AB3OP =OA+AB OP=OA -t AB OP=-OA+AB A(3)下列命题正确的是()CA.若a与b共线,b与c共线,则a与c共线B.向量a,b,c共面就是它们所在的直线共面C.零向量没有确定的方向D.若a // b,则存在唯一的实数λ使得a = λb解答A.中向量b为零向量时要注意,B.中向量的共线、共面与直线的共线、共面不一样,D.中需保证b不为零向量.答案C.点评:零向量是一个特殊的向量,时刻想着零向量这一特殊情况对解决问题有很大用处.像零向量与任何向量共线等性质,要兼顾 .2.解答题已知:且m,n,p不共面.若a∥b,求x,y的值.,p2yn8m1)(xb0,p4n2m3a+++=≠--=空间向量在运算时,注意到如何利用空间向量共线定理.解答 ∵a // b,且a ≠0, ∴b= λ a ,即 又∵m ,n ,p 不共面,∴.p 4λn 2λm 3λp 2y n 8m 1)(x --=+++8.y 13,x ,42y 2831x =-=∴-=-=+习题答案1. (1)AD; (2)AG;(3)MG2. (2)x=1; (2)x=y=1/2; (3) x=y=1/2;3.CA QBRPSO。
高中数学 3.1.2空间向量的数乘运算(1)导学案 人教A版选修2-1
3.1.2 空间向量的数乘运算(一)【学习目标】1. 掌握空间向量的数乘运算律,能进行简单的代数式化简;2. 理解共线向量定理和共面向量定理及它们的推论;3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.【重点难点】向量的数乘运算律,能进行简单的代数式化简;用空间向量的运算意义及运算律解决简单的立体几何中的问题【学习过程】一、 自主预习(预习教材P 86~ P 87,找出疑惑之处)复习1:化简:⑴ 5()+4();⑵ .复习2:在平面上,什么叫做两个向量平行?在平面上有两个向量, 若是非零向量,则与平行的充要条件是二、合作探究 归纳展示探究任务一:空间向量的共线问题:空间任意两个向量有几种位置关系?如何判定它们的位置关系?三、讨论交流 点拨提升新知:空间向量的共线:32a b -23b a -()()63a b c a b c -+--+-,a b b a b1. 如果表示空间向量的 所在的直线互相 或,则这些向量叫共线向量,也叫平行向量.2. 空间向量共线:定理:对空间任意两个向量(), 的充要条件是存在唯一实数,使得推论:如图,l 为经过已知点A 且平行于已知非零向量的直线,对空间的任意一点O ,点P在直线l 上的充要条件是试试:已知 ,求证: A,B,C 三点共线.反思:充分理解两个向量共线向量的充要条件中的,注意零向量与任何向量共线.四、学能展示 课堂闯关例1 已知直线AB ,点O 是直线AB 外一点,若,且x +y =1,试判断A,B,P三点是否共线?变式:已知A,B,P 三点共线,点O 是直线AB 外一点,若,那么t =例2 已知平行六面体,点M 是棱AA 的中点,点G 在对角线A C 上,且CG:GA =2:1,设=,,试用向量表示向量.,a b 0b ≠//a b λ5,28,AB a b BC a b =+=-+()3CD a b =-,a b 0b ≠OP xOA yOB =+12OP OA tOB =+''''ABCD A B C D -'''CD a ',CB b CC c ==,,a b c ',,,CA CA CM CG变式1:已知长方体,M 是对角线AC 中点,化简下列表达式:⑴ ;⑵⑶变式2:如图,已知不共线,从平面外任一点,作出点,使得: ⑴⑵⑶⑷.小结:空间向量的化简与平面向量的化简一样,加法注意向量的首尾相接,减法注意向量要共起点,并且要注意向量的方向.※ 动手试试练1. 下列说法正确的是( )A. 向量与非零向量共线,与共线,则与 共线;B. 任意两个共线向量不一定是共线向量;C. 任意两个共线向量相等;D.若向量与共线,则.2. 已知,,若,求实数''''ABCD A B C D -''AA CB -'''''AB B C C D ++'111222AD AB A A +-,,A B C ABC O ,,,P Q R S 22OP OA AB AC =++32OQ OA AB AC =--32OR OA AB AC =+-23OS OA AB AC =+-a b b c a c a b a b λ=32,(1)8a m n b x m n =-=++0a ≠//a b .x五、学后反思※学习小结1. 空间向量的数乘运算法则及它们的运算律;2. 空间两个向量共线的充要条件及推论.※知识拓展平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.课后作业:。
导学设计高中数学人教A版选修2-1配套课件3.1.2空间向量的数乘运算
本 专 题 栏 目 开 关
填一填· 知识要点、记下疑难点
1.空间向量的数乘运算 (1)向量的数乘: 实数 λ 与空间向量 a 的乘积仍然是一个
λa 向量的数乘运算 . 向量, 记作 _______ , 称为 _______________ 当 λ>0 时,
本 专 题 栏 目 开 关
相同 ;当 λ<0 时, λa 与向量 a 方 λa 与向量 a 方向 ________
2.共线向量 (1)共线向量定义 表示空间向量 a,b 的有向线段所在的直线
本 专 题 栏 目 开 关
互相平行或重合 ,则向量 a, b 叫做 __________ 共线向量 或 __________________
a∥b . __________ 平行向量 ,记作 ________
(2)两向量共线的充要条件 对于空间任意两个向量 a, b (b≠ 0), a∥ b 的充要条件
探究点二 问题 1
向量共线问题
(1)两向量共线时,它们的方向有什么关系?
本 专 题 栏 目 开 关
(2)在两向量共线的充要条件中,为什么要求 b≠0?
答案
(1)两向量共线,则它们的方向相同或相反.
(2)由于我们已经规定了 0 与任意向量平行,所以当 b =0 时,a 与 b 是共线向量,可如果 a≠0,就不可能存 在实数 λ,使 a=λb 成立.
本 专 题 栏 目 开 关
例 1 设 A 是△BCD 所在平面外的一点,G 是△BCD 的重 → 1 → → → 心.求证:AG= (AB+AC+AD). 3 证明 连接 BG, 延长后交 CD 于点 E, 由G → 2→ 为△BCD 的重心,知BG= BE. 3 由题意知 E 为 CD 的中点, → 1→ 1→ ∴BE=2BC+2BD. → → → → 2→ AG=AB+BG=AB+3BE
(新课程)高中数学《3.1.1空间向量及其运算》导学案 新人教a版选修2-1
§3.1.1空间向量及其运算1. 理解空间向量的概念,掌握其表示方法;2. 会用图形说明空间向量加法、减法、数乘向量及它们的运算律;3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.8486复习1:平面向量基本概念:具有 和 的量叫向量, 叫向量的模(或长度); 叫零向量,记着 ; 叫单位向量. 叫相反向量, a 的相反向量记着 . 叫相等向量. 向量的表示方法有 , ,和 共三种方法.复习2:平面向量有加减以及数乘向量运算:1. 向量的加法和减法的运算法则有 法则 和 法则.2. 实数与向量的积:实数λ与向量a 的积是一个 量,记作 ,其长度和方向规定如下:(1)|λa |= .(2)当λ>0时,λa 与A. ;当λ<0时,λa 与A. ;当λ=0时,λa = .3. 向量加法和数乘向量,以下运算律成立吗?加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c )数乘分配律:λ(a +b )=λa +λb二、新课导学※ 学习探究探究任务一:空间向量的相关概念问题: 什么叫空间向量?空间向量中有零向量,单位向量,相等向量吗?空间向量如何表示?新知:空间向量的加法和减法运算:空间任意两个向量都可以平移到同一平面内,变为两个平面向量的加法和减法运算,例如右图中, OB = , AB = ,试试:1. 分别用平行四边形法则和三角形法则求,.a b a b +- a .2. 点C 在线段AB 上,且52AC CB =,则 AC = AB , BC = AB .反思:空间向量加法与数乘向量有如下运算律吗?⑴加法交换律:A. + B. = B. + a ;⑵加法结合律:(A. + b ) + C. =A. + (B. + c );⑶数乘分配律:λ(A. + b ) =λA. +λb .※ 典型例题例1 已知平行六面体''''ABCD A B C D -(如图),化简下列向量表达式,并标出化简结果的向量: AB BC + ⑴;'AB AD AA ++ ⑵;1'2AB AD CC ++ ⑶ 1(')2AB AD AA ++ ⑷.变式:在上图中,用',,AB AD AA 表示'',AC BD 和'DB .小结:空间向量加法的运算要注意:首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量.例2 化简下列各式: ⑴ AB BC CA ++ ; ⑵;AB MB BO OM +++ ⑶;AB AC BD CD -+- ⑷ OA OD DC -- .变式:化简下列各式: ⑸ OA OC BO CO +++ ; ⑹ AB AD DC -- ; ⑺ NQ QP MN MP ++- .小结:化简向量表达式主要是利用平行四边形法则或三角形法则,遇到减法既可转化成加法,也可按减法法则进行运算,加法和减法可以转化.※ 动手试试练1. 已知平行六面体''''ABCD A B C D -, M 为A 1C 1与B 1D 1的交点,化简下列表达式: ⑴ 111AA A B + ; ⑵ 11111122A B A D + ; ⑶ 111111122AA A B A D ++ ⑷ 1111AB BC CC C A A A ++++ .三、总结提升※ 学习小结1. 空间向量基本概念;2. 空间向量加法、减法、数乘向量及它们的运算律※ 知识拓展平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列说法中正确的是( ) A. 若∣a ∣=∣b ∣,则a ,b 的长度相同,方向相反或相同; B. 若a 与b 是相反向量,则∣a ∣=∣b ∣;C. 空间向量的减法满足结合律;D. 在四边形ABCD 中,一定有AB AD AC += . 2. 长方体''''ABCD A B C D -中,化简'''''AA A B A D ++ =3. 已知向量a ,b 是两个非零向量,00,a b 是与a ,b 同方向的单位向量,那么下列各式正确的是( ) A. 00a b = B. 00a b = 或00a b =- C. 01a = D. ∣0a ∣=∣0b ∣ 4. 在四边形ABCD 中,若AC AB AD =+ ,则四边形是( )A. 矩形B. 菱形C. 正方形D. 平行四边形5. 下列说法正确的是( )A. 零向量没有方向B. 空间向量不可以平行移动C. 如果两个向量不相同,那么它们的长度不相等D. 同向且等长的有向线段表示同一向量1. 在三棱柱中,M,N 分别为BC ,B'C'的中点,化简下列式子: ⑴ AM + BN ⑵'A N -'MC + 'BB2. 如图,平行六面体1111ABCD A B C D -中,点M 为AC 与的BD 的交点,AB a = ,AD b = ,1A A c = , 则下列向量中与1B M 相等的是( )A. 1122a b c -++ B. 1122a b c ++ C. 1122a b c -+ D. 1122a b c --+。
人教版高中数学选修2-1导学案:第三章第一节空间向量的数乘运算第一课时
第三章第一节空间向量的数乘运算第一课时设计者:曾刚 审核者: 执教: 使用时间:学习目标1.掌握解空间向量的数乘运算律,能进行简单的代数式化简;2. 了解共线向量定理及它们的推论;3. 能用两个空间向量共线的充要条件判断两个空间向量共线;4. 能用共线向量定理解决简单的立体几何中的问题.________________________________________________________________________________ 自学探究问题1. 请你试试化简以下式子: (1) 5(32a b -r r )+4(23b a -r r );⑵ ()()63a b c a b c -+--+-r r r r r r .问题2. 在平面上有两个向量,a b r r , 若b r 是非零向量,则a r 与b r 平行的充要条件是什么?问题3. 空间任意两个向量有几种位置关系?如何判定它们的位置关系? 【思维导航】(1)类比共线的两个平面向量对空间任意两个向量,a b r r (0b ≠r r ), //a b r r 的充要条件是什么? (2)两个向量,a b r r 共线向量的充要条件中需要注意些什么?【技能提炼】 1. 已知直线AB ,点O 是直线AB 外一点,若OP xOA yOB =+u u u r u u u r u u u r ,且x +y =1,试判断A,B,P 三点是否共线?【变式】1.已知A,B,P 三点共线,点O 是直线AB 外一点,若12OP OA tOB =+u u u r u u u r u u u r ,那么t =*2.如图,已知平行六面体ABCD -A ′B ′C ′D ′,点E 在AC ′上,且AE ∶EC ′=1∶2,点F ,G 分别是B ′D ′和BD ′的中点,求下列各式中的x ,y ,z 的值.(1)AE →=xAA ′→+yAB →+zAD →;(2)BF →=xBB ′→+yBA →+zBC →;(3)GF →=xBB ′→+yBA →+zBC →.【变式1】已知长方体''''ABCD A B C D -,M 是对角线AC '中点,化简下列表达式: ⑴ 'AA CB -u u u r u u u r ; ⑵ '''''AB B C C D ++u u u u r u u u u r u u u u r ;⑶ '111222AD AB A A +-u u u r u u u r u u u r【变式2】如图,已知,,A B C 不共线,从平面ABC 外任一点O ,作出点,,,P Q R S ,使得: ⑴22OP OA AB AC =++u u u r u u u r u u u r u u u r ⑵32OQ OA AB AC =--u u u r u u u r u u u r u u u r ⑶32OR OA AB AC =+-u u u r u u u r u u u r u u u r ⑷23OS OA AB AC =+-u u u r u u u r u u u r u u u r .【思考】类比空间向量与平面向量,你能得到在空间向量的化简运算中的异同点吗?在空间向量中的化简运算中要注意些什么?教师问题创生学生问题发现变式反馈1.下列说法正确的是( ) A. 向量a r 与非零向量b r 共线,b r 与c r 共线,则a r 与c r 共线;B. 任意两个相等向量不一定是共线向量;C. 任意两个共线向量相等;D. 若向量a r 与b r 共线,则a b λ=r r .*2.设M 是△ABC 的重心,记a =BC →,b =CA →,c =AB →,a +b +c =0,则AM →为( )A.b -c 2B.c -b 2C.b -c 3D.c -b 3*3. 已知32,(1)8a m n b x m n =-=++r r r r r r ,0a ≠r r ,若//a b r r ,求实数.x4. 已知平行六面体''''ABCD A B C D -,M 是AC 与BD 交点,若',,AB a AD b AA c ===u u u r u u u r r u u u r r r ,则与'B M u u u u r 相等的向量是( )A. 1122a b c -++r r r ;B. 1122a b c ++r r r ;C. 1122a b c -+r r r ;D. 1122a b c --+r r r。
高二数学选修2-1§3.1.2空间向量的数乘运算导学案
§3.1.2 空间向量的数乘运算利用10分钟阅读教材86~89面,并完成本学案 班级: 姓名: 一、学习目标(1)掌握空间向量的线性运算;(2)掌握空间向量的共线定理和共面定理,并能用它们分析解决有关问题; 二、知识要点1、空间向量的数乘运算(1)向量的数乘:实数λ与空间向量a 的乘积仍然是一个向量,记作 ,称为 .当0λ>时,a λ与向量a 方向 ;当0λ<时,a λ与向量a 方向 ;a λ的长度是a 的长度的 倍. (2)空间向量的数乘运算满足分配率与结合律:分配率: ;结合律: ; 2、共线向量(1)共线向量定义空间向量,a b 的有向线段所在的直线 ,则向量,a b 叫做 或 ,记作 . (2)两向量共线的充要条件对于空间任意两个向量,(0)a b b ≠,a ∥b 的充要条件是存在实数λ,使得 . (3)共线向量的推论如果l 为经过点A 平行于已知非零向量a 的直线,那么对于空间任一点O ,点P 在直线l 上的充要条件是存在实数λ使得O P O A a λ=+,其中a 叫做直线l 的 ;在l 上取A B a =,则上式可化为 ;此推论可以用来判断B A P ,,三点共线. 3、共面向量(1)共面向量的概念平行于 的向量,叫做共面向量. (2)三个向量共面的充要条件若两个向量,a b 不共线,则向量与向量,a b 共面的充要条件是存在唯一的有序实数对(,)x y ,使得 .(3)共面向量的推论空间一点P 位于平面MAB 内的充要条件是存在有序实数对),(y x ,使得 或对空间任意一点O 来说,有MB y MA x OM OP ++=. 三、 典型例题例1.已知正四棱锥ABCD P -,O 是正方形ABCD 的中心,Q 是CD 的中点,若y x ++=,求y x ,的值.例2.在下列命题中正确命题的是 . ①若向量,共线,则向量,所在的直线平行;②若向量,所在的直线是异面直线,则向量,一定不共面; ③若,,三向量两两共面,则,,三向量一定也共面; ④若向量,,共面,则存在实数y x ,,使得a xb yc =+;⑤若有a xb yc =+,则向量,,共面.例3.在正方体1111ABCD A B C D -中,E 在11D A 上,且112A =,F 在对角线C A 1上,且A 321=,求证:B F E ,,三点共线.变式:已知四边形ABCD 是空间四边形,H E ,分别是边,AB AD 的中点,,F G 分别是边,CD CB 上的点,且22,33CF CB CG CD ==。
人教A版选修2-1第三章第二课时同步练习3.1.2空间向量的数乘运算(一)(稍改)
§3.1.2 空间向量的数乘运算(一)一、选择题1. 下列说法正确的是( ) A. 与非零向量共线, 与共线,则与共线B. 任意两个相等向量不一定共线C. 任意两个共线向量相等D. 若向量a 与b 共线,则a = b2.设M 是△ABC 的重心,记a =BC →,b =CA →,c =AB →,a +b +c =0,则AM →为( )A.b -c 2B.c -b 2C.b -c 3D.c -b 33.当|a |=|b |≠0,且a 、b 不共线时,a +b 与a -b 的关系是( )A .共面B .不共面C .共线D .无法确定4.已知正方体ABCD -A ′B ′C ′D ′ ,点E 是A ′C ′的中点,点F 是AE 的三等分点,且AF =12EF ,则AF →等于( ) A.AA ′→+12AB →+12AD → B.12AA ′→+12AB →+12AD → C.12AA ′→+16AB →+16AD → D.13AA ′→+16AB →+16AD → 5.以下命题:①若a ,b 共线,则a 与b 所在直线平行;②若a ,b 所在直线是异面直线,则a 与b 一定不共面;③若a ,b ,c 三向量两两共面,则a ,b ,c 三向量一定也共面;④若a ,b ,c 三向量共面,则由a ,b 所在直线确定的平面与由b ,c 所在直线确定的平面一定平行或重合. 其中正确命题的个数为( )A .0个B .1个C .2个D .3个6.在三棱锥S —ABC 中,G 为△ABC 的重心,则有( )A.SG →=12(SA →+SB →+SC →)B.SG →=13(SA →+SB →+SC →) C.SG →=14(SA →+SB →+SC →) D.SG →=SA →+SB →+SC →二、填空题7.已知i ,j ,k 是三个不共面向量,已知向量a =12i -j +k ,b =5i -2j -k ,则4a -3b =_______________.8.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1A ,B 1B 的中点,O 为BD 1的中点.设AB →=a ,AA 1→=b ,AD →=c ,用a ,b ,c 表示下列向量:(1)D 1N →=_______________;(2)OM →=_______________.三、解答题9.如图,长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →、A 1M →共面.10.已知i 、j 、k 是不共面向量,a =i -2j +k ,b =-i +3j +2k ,c =-3i +7j.证明这三个向量共面.参考答案一、选择题1. [答案]A2.[答案] D[解析] M 为△ABC 重心,则AM →=23⎣⎡⎦⎤12(AB →+AC →)=13(AB →+AC →)=13(c -b ). 3.[答案] A[解析] 本题考查空间两向量的关系.由空间任何两个向量一定为共面向量可知选A.4.[答案] D[解析] 由条件AF =12EF 知,EF =2AF , ∴AE =AF +EF =3AF ,∴AF →=13AE →=13(AA ′→+A ′E →)=13(AA ′→+12A ′C ′→) =13AA ′+16(A ′D ′→+A ′B ′→)=13AA ′→+16AD →+16AB →. 5.[答案] A[解析] a ,b 共线是指a ,b 的方向相同或相反,因此a ,b 所在直线可能重合,故①错;由于向量是可以自由平移的,所以空间任意两个向量一定共面,故②错;从正方体一顶点引出的三条棱作为三个向量,虽然是两两共面,但这三个向量不共面,故③错;在平行六面体ABCD —A 1B 1C 1D 1中,AB →,A 1B 1→,DC →三向量共面,然而平面ABCD与平面ABB 1A 1相交,故④错,故选A.6.[答案] B[解析] SG →=SA →+AG →=SA →+13(AB →+AC →)=SA →+ 13(SB →-SA →)+13(SC →-SA →)=13(SA →+SB →+SC →).二、填空题7.[答案] -13i +2j +7k8.[答案] a -12b -c -12a -12c [解析] (1)D 1N →=a -12b -c (2)OM →=-12a -12c 三、解答题9.[解析] A 1B →=AB →-AA 1→,A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→,AN →=23AC →=23(AB →+AD →). ∴A 1N →=AN →-AA 1→=23(AB →+AD →)-AA 1→ =23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →. ∴A 1N →与A 1B →,A 1M →共面.10.[解析] 设a =λb +μc ,则i -2j +k =(-λ-3μ)i +(3λ+7μ)j +2λk ,∵i ,j ,k 不共面,∴⎩⎪⎨⎪⎧ -λ-3μ=13λ+7μ=-22λ=1,∴⎩⎨⎧ λ=12μ=-12,故存在实数λ=12,μ=-12,使a =λb +μc , 故a ,b ,c 共面.。
高中数学人教A版选修(2-1)3.1.2《空间向量的数乘运算》word导学案
3.1.2 空间向量的数乘运算【学习目标】理解空间向量共线、共面的充要条件 【自主学习】 1.共线向量与平面向量类似,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作b a //.当向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线位置关系如何?2.共线向量定理及其推论:类比平面向量共线定理,请写出空间向量共线定理.______________________________________________________________________. 请证明下面的推论:推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P在直线l 上的充要条件是存在实数t 满足等式 t +=a .其中向量a叫做直线l 的方向向量.由此可见,与利用平面向量判断三点共线一样,可以利用空间向量之间的关系判断空间三点共线.3. 共面向量:一般地,能平移到同一个平面内的向量叫共面向量. 探究:对空间任意两个不共线的向量b a ,,如果b y x p +=,那么p b α与,有什么位置关系?反过来,p b α与,有什么位置关系时,y x +=?由此得:共面向量定理 : 如果两个向量,不共线,那么向量与向量,共面的充要条件是存在有序实数组),(y x ,使得y x +=α.4.回答课本88页的思考。
【典例分析】例1如图,已知平行四边形ABCD ,过平面AC 外一点O 作射线OA,OB,OC,OD ,在四条射线上分别取点E ,F ,G ,H ,并且使,k ODOHOC OGOB OF OA OE ====求证:E,F,G,H 四点共面。
D【目标检测】已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M,N 分别在对角线BD,AE 上,且AE AN BD BM 31,31==.求证:MN//平面CDE证明:______________MN =______________= ______________= ______________= ______________= ______________=又与不共线,,,MN CD DE ∴共面.由于MN ⊄平面CDE ,所以________________.【总结提升】特别注意共面向量: 若,为不共线且同在平面α内,则与,共面的意义是p 在α内或//p α.。
2021秋高中数学人教A版选修2-1学案3.1.1空间向量及其加减运算 3.1.2空间向量的数乘运算
第三章空间向量与立体几何向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等方面也有着广泛的应用,如鸟巢体育场的钢结构、北斗卫星定位系统示意图等.本章是在必修2中学习了立体几何初步以及必修4中学习了平面向量的基础上,学习空间向量及其运算,把平面向量推广到空间向量,并利用空间向量的运算解决有关的立体几何问题.由于空间向量具有代数形式与几何形式的“双重身份”,使之成为中学数学知识的一个交汇点.学习目标1.空间向量及其运算(1)了解空间向量的概念、空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.2.空间向量的应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述线线、线面、面面的垂直、平行关系.(3)能用向量方法证明有关线面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角计算问题,了解向量方法在研究立体几何问题中的应用.本章重点空间向量的基本概念和基本运算;以空间向量为工具判断或证明立体几何中的线面位置关系;求空间角和空间的距离.本章难点用空间向量表示点、直线、平面的位置;用空间向量的运算表示空间直线与平面间的平行、垂直关系以及夹角的大小等;用空间向量解决立体几何问题.3.1空间向量及其运算3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算自主预习·探新知情景引入1987年11月台湾开放台胞来大陆探亲,开始时要从香港绕道,比如从台北到上海的路径是:台北→香港→上海.2008年7月开始两岸直航后,从台北到上海的路径是:台北→上海.如果把台北→香港的位移记为向量a,香港→上海的位移记为向量b,台北→上海的位移记为向量c,那么a+b与c有怎样的关系呢?新知导学1.空间向量(1)定义:在空间,具有__大小__和__方向__的量叫做空间向量.(2)长度或模:向量的__大小__.(3)表示方法:①几何表示法:空间向量用__有向线段__表示;②字母表示法:用字母a,b,c,…表示;若向量的起点是A,终点是B,也可记作:____,其模记为__|a|__或__||__.2.几类常见的空间向量名称方向模记法零向量__任意____0____0__单位向量任意__1__相反向量__相反__相等a的相反向量:__-a__ 的相反向量:____相等向量相同__相等__a=b(1)加法:=__+__=a+b.(2)减法:=__-__=a-b.(3)加法运算律:①交换律:a+b=__b+a__;②结合律:(a+b)+c=__a+(b+c)__.4.空间向量的数乘运算(1)定义:实数λ与空间向量a的乘积λa仍然是一个__向量__,称为向量的数乘运算.(2)向量a与λa的关系:λ的范围方向关系模的关系λ>0方向__相同__λa的模是a的模的__|λ|__倍λ=0λa=__0__其方向是任意的λ<0方向__相反__①分配律:λ(a+b)=__λa+λb__;②结合律:λ(μa)=__(λμ)a__5.平行(共线)向量与共面向量平行(共线)向量共面向量定义位置关系表示空间向量的有向线段所在的直线的位置关系:__互相平行或重合__ 平行于同一个__平面__的向量特征方向__相同或相反__特例零向量与__任意向量__共线充要条件对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使__a=λb__向量p与不共线向量a,b共面的充要条件是存在__唯一__的有序实数对(x,y)使__p=x a+y b__推论对空间任意一点O,点P在直线l上的充要条件是存在实数t满足等式__=+t a__,向量a为直线l的__方向向量__或在直线l上取向量=a,则=__+t__点P位于平面ABC内的充要条件是存在有序实数对(x,y),使=__x+y__或对空间任意一点O,有=__+x+y__预习自测1.下列命题中,假命题的是(D)A.向量与的长度相等B.两个相等的向量,若起点相同,则终点也相同C.只有零向量的模等于0D.在同一条直线上的单位向量都相等[解析]在同一条直线上的单位向量方向可能相同,也可能相反.2.下列命题中正确的是(C)A.若a与b共线,b与c共线,则a与c共线B.向量a、b、c共面即它们所在的直线共面C.零向量没有确定的方向D.若a∥b,则存在唯一的实数λ,使a=λb[解析]由零向量定义知选C.而A中b=0,则a与c不一定共线;D中要求b≠0;B中a,b,c所在的直线可能异面.3.化简下列各式:(1)++;(2)-+;(3)++-.结果为零向量的个数是(D)A.0个B.1个C.2个D.3个[解析]对于(1),++=+=0;对于(2),-+=+=0;对于(3),++-=(+)+(-)=+=0.4.(内蒙古赤峰市宁城县2019-2020学年高二期末)在平行六面体ABCD-A1B1C1D1中,点M为AC与BD的交点,=a,=b,=c则下列向量中与相等的是(A) A.-a+b+cB.a+b+cC.a-b+cD.-a-b+c[解析]因为利用向量的运算法则:三角形法则、平行四边形法则表示出=+=c+(-)=c-a+b,选A.5.已知A、B、C三点不共线,O是平面ABC外任一点,若由=++λ确定的一点P 与A、B、C三点共面,则λ=____.[解析]由P与A、B、C三点共面,∴++λ=1,解得λ=.互动探究·攻重难互动探究解疑命题方向❶空间向量的有关概念典例1(1)给出下列命题:①单位向量没有确定的方向;②空间向量是不能平行移动的;③有向线段可用来表示空间向量,有向线段长度越长,其所表示的向量的模就越大;④如果两个向量不相同,那么它们的长度也不相等.其中正确的是(C)A.①②B.②③C.①③D.①③④(2)如图,在以长、宽、高分别为AB=4,AD=2,AA1=1的长方体ABCD-A1B1C1D1中的八个顶点的两点为起点和终点的向量中,单位向量共有__8__个,模为的所有向量为__,,,,,,,__.[思路分析](1)依据空间向量的基本概念逐一进行分析;(2)单位向量的模为1,根据长方体的左右两侧的对角线长均为写出相应向量.[规范解答](1)①正确,单位向量的方向是任意的.②错误,空间向量可以平行移动.③正确,向量的模可以比较大小,有向线段长度越长,其所表示的向量的模就越大.④错误,如果两个向量不相同,它们的长度可以相等.(2)由于长方体的高为1,所以长方体的4条高所对应的向量,,,,,,,共8个单位向量.而其余向量模均不为1,故单位向量共8个.长方体的左、右两侧面的对角线长均为,故模为的向量有,,,,,,,.『规律总结』处理向量概念问题需注意两点①向量:判断与向量有关的命题时,要抓住向量的大小与方向,两者缺一不可.②单位向量:方向虽然不一定相同,但长度一定为1.┃┃跟踪练习1__■如图所示,以长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中.(1)试写出与相等的所有向量;(2)试写出的相反向量;(3)若AB=AD=2,AA1=1,求向量的模.[解析](1)与向量相等的所有向量(除它自身之外)有,及共3个.(2)向量的相反向量为,,,.(3)||=|++|∴||2=2+2+2=9∴||=3.命题方向❷空间向量的加减运算典例2如图,已知长方体ABCD—A′B′C′D′,化简下列向量表达式,并在图中标出化简结果的向量.(1)-;(2)++.[思路分析](1)分析题意,将等价转化为,转化为-,平行四边形法则得出结论.(2)应用平行四边形法则先求+,再应用三角形法则求+.[规范解答](1)-=-=+=.(2)++=(+)+=+=.向量、如图所示.『规律总结』化简向量表达式主要是利用平行四边形法则或三角形法则进行化简,在化简过程中遇到减法时可灵活应用相反向量转化成加法,也可按减法法则进行运算,加减法之间可相互转化.┃┃跟踪练习2__■(山东潍坊2018-2019学年高二期末)已知四棱锥P-ABCD的底面ABCD是平行四边形,设=a,=b,=c,则=(B)A.a+b+c B.a-b+cC.a+b-c D.-a+b+c[解析]如图所示,四棱锥P-ABCD的底面ABCD是平行四边形,=a,=b,=c,则=+=+=+(-)=-+=a-b+c.故选B.命题方向❸空间向量的数乘运算典例3已知四边形ABCD为正方形,P是ABCD所在平面外一点,P在平面ABCD上的射影恰好是正方形ABCD的中心O.Q是CD的中点,求下列各式中x、y的值:(1)=+x+y;(2)=x+y+.[思路分析]由题目可以获取以下主要信息:①四边形ABCD是正方形,O为中心,PO⊥平面ABCD,Q为CD中点;②用已知向量表示指定向量.解答本题需先画图,利用三角形法则或平行四边形法则表示出指定向量,再根据对应向量的系数相等,求出x、y即可.[规范解答]如图,(1)∵=-=-(+)=--,∴x=y=-.(2)∵+=2,∴=2-.又∵+=2,∴=2-.从而有=2-(2-)=2-2+.∴x=2,y=-2.『规律总结』 1.用已知向量表示未知向量是一项重要的基本功,直接关系到本章学习的成败,应认真体会,并通过训练掌握向量线性运算法则和运算律.2.空间向量的数乘运算定义,运算律与平面向量一致.┃┃跟踪练习3__■如图所示,在平行六面体ABCD-A1B1C1D1中,设=a,=b,=c,M、N、P分别是AA1、BC、C1D1的中点,试用a、b、c表示以下各向量:(1);(2);(3)+.[解析](1)∵P是C1D1的中点,∴=++=a++=a+c+=a+c+b.(2)∵N是BC的中点,∴=++=-a+b+=-a+b+=-a+b+c.(3)∵M是AA1的中点,∴=+=+=-a+(a+c+b)=a+b+c.又=+=+=+=c+a,∴+=(a+b+c)+(a+c)=a+b+c.命题方向❹共线向量典例4如图所示,ABCD-ABEF都是平行四边形,且不共面,M、N分别是AC、BF的中点,判断与是否共线?[思路分析]要判断与是否共线,由共线向量定理就是判定是否存在实数λ,使=λ.若存在,则与共线,否则与不共线.[规范解答]M、N分别是AC、BF的中点,而四边形ABCD、ABEF都是平行四边形,∴=++=++.又∵=+++=-+--,∴++=-+--.∴=+2+=2(++).∴=2,∴∥,即与共线.『规律总结』 1.判断向量共线的策略(1)熟记共线向量充要条件:①a∥b,b≠0,则存在唯一实数λ使a=λb;②若存在唯一实数λ,使a=λb,b≠0,则a∥b.(2)判断向量共线的关键是找到实数λ.2.证明空间三点共线的三种思路对于空间三点P、A、B可通过证明下列结论来证明三点共线.(1)存在实数λ,使=λ成立.(2)对空间任一点O,有=+t(t∈R).(3)对空间任一点O,有=x+y(x+y=1).┃┃跟踪练习4__■e1,e2为不共线的非零向量,如果a=4e1-e2,b=e1-e2,试判断a,b是否共线.[解析]∵a=4e1-e2,b=e1-e2,∴a=4(e1-e2)=4b,∴a,b为共线向量.命题方向❺共面问题典例5正方体ABCD-A1B1C1D1中,M、N、P、Q分别为A1D1、D1C1、AA1、CC1的中点,用向量方法证明M、N、P、Q四点共面.[思路分析]要证M、N、P、Q四点共面,只需证明、、共面,即寻求实数λ、μ、k,使得λ+μ+k=0.为此,令=a,=b,=c,将、、都用a、b、c线性表示,再寻求它们系数之间关系或者令=λ+μ,建立λ、μ的方程组解之.[规范解答]令=a,=b,=c,∵M、N、P、Q均为棱的中点,∴=b-a,=+=a+c,=++=-a+b+c.令=λ+μ,则-a+b+c=(μ-λ)a+λb+μc,∴,∴.∴=2+,因此向量、、共面,∴四点M、N、P、Q共面.『规律总结』 1.证明点P在平面ABC内,可以用=x+y,也可以用=+x+y,若用=x+y+z,则必须满足x+y+z=1.2.判定三个向量共面一般用p=x a+y b,证明点线共面常用=x+y,证明四点共面常用=x+y+z(其中x+y+z=1).┃┃跟踪练习5__■如图,已知E、F、G、H分别为空间四边形ABCD的边AB、BC、CD、DA的中点,用向量法证明E、F、G、H四点共面.[思路分析]要证E、F、G、H四点共面,根据共面向量定理,只需探求存在实数x,y,使=x+y成立.[解析]如图,连接BG、EG,则=,=,=(+),所以=+=+(+)=++=+.由共面向量定理的推论知E、F、G、H四点共面.学科核心素养空间向量的线性运算在立体几何中的应用(1)立体几何中的线线平行可转化为两向量的平行,即证明两向量具有数乘关系即可.证明线面平行、面面平行均可转化为证明线线平行,然后根据空间向量的共线定理进行证明.特别地,线面平行可转化为该直线的方向向量能用平面内的两个不共线向量表示.(2)在学习空间向量后,求解立体几何问题又增加了新的思路和方法.利用向量证明平行的关键是构造向量之间的线性关系.(3)解题时,应结合已知和所求,观察图形,联想相关的运算法则和公式,就近表示所需向量,再对照条件,将不符合要求的向量用新形式表示,如此反复,直到所有向量都符合目标要求为止.典例6如图所示,已知矩形ABCD和矩形ADEF所在平面互相垂直,点M,N分别在对角线BD,AE上,且BM=BD,AN=AE.求证:MN∥平面CDE.[思路分析]根据共面向量定理,证明向量平面CDE内两个不共线的向量共面即说明MN∥平面CDE.[规范解答]∵点M在BD上,且BM=BD,∴==+.同理,=+.∴=++=++=+=+.由于与不共线,根据向量共面的充要条件可知,,共面.因为MN不在平面CDE内,所以MN∥平面CDE.『规律总结』解答本题要注意向量共面与直线平行于平面的联系与区别,如果没有充分理解定义、定理的实质,本题容易漏掉MN不在平面CDE内而致错.┃┃跟踪练习6__■已知AB,CD是异面直线,CD⊂α,AB∥α,M,N分别是AC,BD的中点.求证MN∥α.[思路分析]运用共面向量定理先证出与平面α内两个不共线的向量共面,进而说明MN∥α.[证明]因为CD⊂α,AB∥α,且AB,CD是异面直线,所以在平面α内存在向量a,b,使得=a,=b,且两个向量不共线.由M,N分别是AC,BD的中点,得=(+++++)=(+)=(a+b).所以,a,b共面,所以MN∥α或MN⊂α.若MN⊂α,则AB,CD必在平面α内,这与已知AB,CD是异面直线矛盾.故MN∥α.易混易错警示典例7如图所示,已知空间四边形OABC,其对角线为OB,AC,M,N分别为OA,BC的中点,点G在线段MN上,且=2,若=x+y+z,则x,y,z的值分别为__,,__.[错解]因为M为OA的中点,所以=,因为=2,所以=,所以=OM+=+=+(-)=+=×+(+)=++所以x,y,z的值分别为,,.[辨析]错误的根本原因是空间向量的数乘运算与加法运算的几何意义综合应用不当.实际上,本题中由N是BC的中点知=(+).[正解]∵M为OA中点,∴=,∵=,∴=∴=+=+M=+=·+·(+)=++∴x,y,z的值为,,.。
3.1.空间向量的数乘运算-人教A版选修2-1教案
3.1 空间向量的数乘运算 - 人教A版选修2-1教案一、教学目标通过本课时的学习,学生应该掌握以下几个方面的知识:1.理解空间向量的数乘运算的概念和相关定义;2.能够进行空间向量的数乘运算,掌握计算方法和注意事项;3.能够应用数乘运算解决实际问题;4.理解向量数乘的几何意义。
二、教学重点和难点教学重点1.数乘运算的概念和定义;2.空间向量的数乘运算的计算方法和注意事项;3.运用向量数乘解决实际问题。
教学难点1.向量数乘的几何意义;2.空间向量的数乘运算涉及到三维空间的概念,考验学生的空间想象能力。
三、教学内容1. 数乘运算的概念和定义向量的数乘是指把向量和一个实数相乘的运算,通常记为 k\*a,其中 k 是实数, a 是向量。
向量空间 V 中的任意向量 a 经过数乘运算后得到的向量 b 依然在该向量空间 V 中,即b ∈ V。
向量数乘的几何意义是改变向量的长度和方向,如果 k>0,向量的方向不变,向量的长度变成原来的 k 倍;如果 k<0,向量的方向相反,向量的长度变成原来的|k| 倍。
2. 空间向量的数乘运算的计算方法和注意事项空间向量的数乘运算和平面向量的数乘运算类似,只是需要把向量坐标上的二维平面升级为三维空间。
设向量 a = (x1,y1,z1),k 是实数,则向量 k\*a = (kx1,ky1,kz1)。
需要注意的是,在计算时要注意精度误差的问题,一般为了精确度和计算方便,可以使用分数形式表示实数,如 1/2,2/3 等。
3. 运用向量数乘解决实际问题空间向量的数乘运算可以应用于计算物理量,如速度和加速度等,也可以用于绘制向量图形,如三角形、四面体等等。
在实际问题中,需要根据问题的具体情况选择合适的坐标系,并要善于运用空间几何直观理解。
4. 向量数乘的几何意义向量数乘在几何上的意义是将原向量拉长或缩短成以原向量为轴线的长度为 k 倍的新向量。
如果 k>0,则新向量和原向量同向;如果 k<0,则新向量和原向量反向。
人教版高中数学选修2-1导学案第3章第1节空间向量的数乘运算第2课时
第三章第一节空间向量的数乘运算第二课时设计者: 审核者: 执教: 使用时间:学习目标1.了解共面向量定理及它的推论;2. 能用共面向量定理解决简单的立体几何中的问题.________________________________________________________________________________ 自学探究问题1. 平面向量的基本定理是什么?问题2. 在平面中,两个平面向量共面应该满足什么条件?问题3. 空间任意两个向量不共线的两个向量,a b有怎样的位置关系?空间三个向量又有怎样的位置关系? 【思维导航】(1)共面向量是什么?(2)三个空间向量共面的充要条件是什么?你能证明它吗?问题4.如图,l 为经过已知点A 且平行于已知非零向量的直线,对空间的任意一点O ,点P 在直线l 上的充要条件是什么?你能证明吗?【试试】若空间任意一点O 和不共线的三点A,B,C 满足关系式111236OP OA OB OC =++,则点P 与 A,B,C 共面吗?【反思】若空间任意一点O 和不共线的三点A,B,C 满足关系式OP xOA yOB zOC =++,且点P与 A,B,C 共面,则x y z ++= .aPO【技能提炼】1. 下列等式中,使M ,A ,B , C 四点共面的个数是( )①;OM OA OB OC =-- ②111;532OM OA OB OC =++③0;MA MB MC ++= ④0OM OA OB OC +++= . A. 1 B. 2 C. 3 D. 4【变式】1.已知A,B,C 三点不共线,O 为平面ABC 外一点,若向量()17,53OP OA OB OC R λλ=++∈则P,A,B,C 四点共面的条件是λ=*2 .已知i 、j 、k 是不共面向量,a =i -2j +k ,b =-i +3j +2k ,c =-3i +7j ,证明这三个向量共面.【思考】空间向量的化简与平面向量的化简相类比,你能得出应该注意的问题吗?教师问题创生学生问题发现变式反馈1.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11AC是( ) A. 有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量. 2. 在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c 不共面,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ). A .0 B.1 C. 2 D. 3*3.已知三个向量a ,b ,c 不共面,并且p =a +b -c ,q =2a -3b -5c ,r =-7a +18b +22c ,向量p ,q ,r 是否共面?。
选修2-1 第三章 3.1.2 空间向量的数乘运算
→ → → → → 又∵MN=MC+CE+EB+BN 1 → → → 1→ =-2CA+CE-AF-2FB, 1→ → 1→ 1→ → → 1→ ∴2CA+AF+2FB=-2CA+CE-AF-2FB. → → → → → → → ∴CE=CA+2AF+FB=2(MA+AF+FN). → → → → → → ∴CE=2MN,∴CE∥MN,即CE与MN共线.
新知导学
6.a∥α是指a所在的直线____________ 在平面α内 或_____________. 平行于平面α 同一个平面 的向量叫做共面向量,共面向量所在 平行于____________ 异面 . 的直线可能相交、平行或________
7.空间任意两个向量总是共面的, 但空间任 意三个向量就不一定共面了.例如,图中的长 → → → 方体,向量AB、AC、AD,无论怎样平移都不 能使它们在同一平面内.
指明两向量有公共点,同理证明二直线平行方法类似.
如右图,已知四边形 ABCD 是空间 四边形, E、 H 分别是边 AB、 AD 的中点, → F、G 分别是边 CB、CD 上的点,且CF= 2→ → 2 → 3CB,CG=3CD. 求证:四边形 EFGH 是梯形.
[证明] ∵E、H 分别是 AB、AD 的中点, → 1→ → 1 → ∴AE=2AB,AH=2AD. → 2→ → 2 → ∵CF=3CB,CG=3CD, → 3→ → 3 → ∴CB=2CF,CD=2CG,
共线向量 温故知新 回顾复习平面向量中数乘向量与共线向量的概念与定理, 运算律. 思维导航 1 .参照平面向量思考,空间向量中,数乘向量的定义, 运算律,共线向量定理还成立吗?
2018-2019学年高中数学人教A版选修2-1学案:3.1.2 空间向量的数乘运算
3.1.2 空间向量的数乘运算1.掌握空间向量的数乘运算.2.理解共线向量定理及推论.3.理解共面向量定理及推论.[学生用书P50]1.向量的数乘运算(1)非零向量a 与λa (λ≠0)的方向要么相同,要么相反.(2)由于向量a ,b 可平移到同一个平面内,故a ±b ,λa ,λb ,λ(a ±b )也都在这个平面内,而平面向量满足数乘运算的分配律,所以空间向量也满足数乘运算的分配律.2.平行(共线)向量与共面向量判断(正确的打“√”,错误的打“×”)(1)实数与向量之间可进行加法、减法运算.( )(2)若表示两向量的有向线段所在的直线为异面直线,则这两个向量不是共面向量.( )(3)若a ∥b ,则存在惟一的实数λ,使a =λb .( ) (4)空间中任意三个向量一定是共面向量.( ) 答案:(1)× (2)× (3)× (4)× 已知λ∈R ,则下列命题正确的是( )A .|λa |=λ|a |B .|λa |=|λ|aC .|λa |=|λ||a | D.|λa |>0答案:C若e1,e 2不共线,则下列各组中的两个向量a ,b 共线的是 ( ) A .a =e 1-e 2,b =12e 1+12e 2B .a =12e 1-13e 2,b =2e 1-3e 2C .a =13e 1-12e 2,b =2e 1-3e 2D .a =e 1+e 2,b =12e 1-12e 2答案:C空间的任意三个向量a ,b ,3a -2b ,它们一定是( ) A .共线向量 B .共面向量C .不共面向量 D.既不共线也不共面向量 答案:B3a +2b -12(a -4b )=________.答案:52a +4b探究点1 空间向量的数乘运算[学生用书P51]如图,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N →;(3)MP →+NC 1→. 【解】 (1)因为P 是C 1D 1的中点, 所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为N 是BC 的中点,所以A 1N →=A 1A →+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →=-12a +(a +c +12b )=12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , 所以MP →+NC 1→=⎝⎛⎭⎫12a +12b +c +⎝⎛⎭⎫a +12c =32a +12b +32c .1.[变条件]若将本例中“P 为C 1D 1的中点”改为“P 在线段C 1D 1上,且C 1P PD 1=12”,其他条件不变,如何用a ,b ,c 表示AP →?解:因为C 1P PD 1=12,所以C 1P →=13C 1D 1→.所以AP →=AB →+BC →+CC 1→+C 1P → =AB →+AD →+AA 1→+13C 1D 1→=AB →+AD →+AA 1→-13AB →=23AB →+AD →+AA 1→,即AP →=a +23b +c . 2.[变条件]本例中若O 是B 1D 1的中点,其他条件不变,如何用a ,b ,c 表示AO →? 解:因为O 为B 1D 1的中点. 所以AO →=12AB 1→+12AD 1→=12(AA 1→+AB →)+12(AA 1→+AD →) =AA 1→+12AB →+12AD →=a +12b +12c .利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙利用中点坐标公式.在空间四边形ABCD 中,G 为△BCD 的重心,E ,F ,H 分别为边CD ,AD 和BC 的中点,化简下列各表达式.(1)AG →+13BE →+12CA →;(2)12(AB →+AC →-AD →). 解:(1)因为G 是△BCD 的重心, 所以|GE →|=13|BE →|,所以13BE →=GE →.又因为12CA →=EF →,所以由向量的加法法则,可知AG →+13BE →=AG →+GE →=AE →,AE →+12CA →=AE →+EF →=AF →.从而AG →+13BE →+12CA →=AF →.(2)如图所示,分别取AB ,AC 的中点P ,Q ,连接PH ,QH ,则四边形APHQ 为平行四边形,且有12AB →=AP →,12AC →=AQ →,而AP →+AQ →=AH →,12AD →=AF →,所以12(AB →+AC →-AD →)=AP →+AQ →-AF →=AH →-AF →=FH →.探究点2 空间向量的共线问题[学生用书P52]如图,在平行六面体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1D 1,AB 的中点,E 在AA 1上且AE =2EA 1,F 在CC 1上且CF =12FC 1,判断ME →与NF →是否共线.【解】 由已知可得,ME →=MD 1→+D 1A 1→+A 1E →=12BA →+CB →+13A 1A → =-NB →+CB →+13C 1C →=CN →+FC → =FN →=-NF →. 所以ME →=-NF →, 故ME →与NF →共线.[变条件]在本例中,若M 、N 分别为AD 1,BD 的中点,证明MN →与D 1C →共线.证明:连接AC ,则N ∈AC 且N 为AC 的中点, 所以AN →=12AC →,由已知得AM →=12AD 1→,所以MN →=AN →-AM →=12AC →-12AD 1→=12D 1C →. 所以MN →与D 1C →共线.(1)判断向量共线的方法判断向量共线就是充分利用已知条件找到实数λ,使a =λb (b ≠0)成立,同时要充分运用空间向量的运算法则,结合空间图形,化简得出a =λb (b ≠0),从而得出a ∥b .(2)证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线. ①存在实数λ,使P A →=λPB →成立;②对空间任一点O ,有OP →=OA →+tAB →(t ∈R ); ③对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).1.已知非零向量e 1、e 2不共线,则使k e 1+e 2与e 1+k e 2共线的k 的值是________.解析:若k e 1+e 2与e 1+k e 2共线, 则k e 1+e 2=λ(e 1+k e 2),所以⎩⎪⎨⎪⎧k =λ,λk =1.所以k =±1. 答案:±12.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E→=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.证明:设AB →=a ,AD →=b ,AA 1→=c . 因为A 1E →=2ED 1→,A 1F →=23FC →,所以A 1E →=23A 1D 1→,A 1F →=25A 1C →.所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→) =25a +25b -25c . 所以EF →=A 1F →-A 1E →=25a -415b -25c=25(a -23b -c ). 又EB →=EA 1→+A 1A →+AB → =-23b -c +a =a -23b -c ,所以EF →=25EB →,所以E ,F ,B 三点共线.探究点3 空间向量的共面问题[学生用书P53]如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且BM =13BD ,AN =13AE .求证:向量MN →,CD →,DE →共面.【证明】 因为M 在BD 上,且BM =13BD ,所以MB →=13DB →=13DA →+13AB →.同理AN →=13AD →+13DE →.所以MN →=MB →+BA →+AN →=⎝⎛⎭⎫13DA →+13AB →+BA →+⎝⎛⎭⎫13AD →+13DE → =23BA →+13DE →=23CD →+13DE →. 又CD →与DE →不共线,根据向量共面的充要条件可知MN →,CD →,DE →共面.证明空间三向量共面或四点共面的方法(1)向量表示:设法证明其中一个向量可以表示成另两个向量的线性组合,即若p =x a +y b ,则向量p ,a ,b 共面.(2)若存在有序实数组(x ,y ,z )使得对于空间任一点O ,有OP →=xOA →+yOB →+zOC →,且x +y +z =1成立,则P ,A ,B ,C 四点共面.已知非零向量e 1,e 2不共线,如果AB →=e 1+e 2,AC →=2e 1+8e 2,AD →=3e 1-3e 2,求证:A ,B ,C ,D 四点共面.证明:令AB →=xAC →+yAD →,则e 1+e 2=x (2e 1+8e 2)+y (3e 1-3e 2)=(2x +3y )e 1+(8x -3y )e 2. 因为e 1和e 2不共线,所以⎩⎪⎨⎪⎧2x +3y =1,8x -3y =1,解得⎩⎨⎧x =15,y =15.所以AB →=15AC →+15AD →,所以A ,B ,C ,D 四点共面.1.已知两非零向量e 1,e 2,且e 1与e 2不共线,设a =λe 1+μe 2(λ,μ∈R ,且λ2+μ2≠0),则( )A .a ∥e 1B .a ∥e 2C .a 与e 1、e 2共面D .以上三种情况均有可能解析:选C.假设a 与e 1共线,则a =k e 1,所以a =λe 1+μe 2可变为(k -λ)e 1=μe 2,所以e 1与e 2共线,这与e 1与e 2不共线相矛盾,故假设不成立,则A 不正确,同理B 不正确,则D 也错误.2.在平行六面体ABCD -EFGH 中,若AG →=xAB →-2yBC →+3zDH →,则x +y +z 等于( )A.76 B.23 C.56D.34解析:选C.由于AG →=AB →+AD →+CG →=AB →+BC →+DH →,对照已知式子可得x =1,-2y =1,3z =1,故x =1,y =-12,z =13,从而x +y +z =56.3.有下列命题:①若AB →∥CD →,则A ,B ,C ,D 四点共线;②若AB →∥AC →,则A ,B ,C 三点共线;③若e 1,e 2为不共线的非零向量,a =4e 1-e 2,b =-e 1+14e 2,则a ∥b ;其中真命题是________(把所有真命题的序号都填上).解析:根据共线向量的定义,知若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故①是假命题;若AB →∥AC →且AB →,AC →有公共点A ,则A ,B ,C 三点共线,所以②是真命题;由于a =4e 1-e 2=-4⎝⎛⎭⎫-e 1+14e 2=-4b ,所以a ∥b ,故③是真命题. 答案:②③4.在正方体ABCD -A 1B 1C 1D 1中,E 是上底面A 1C 1的中心,化简下列向量表达式,并在图中标出化简后的向量.(1)AB →+BC →+CC 1→; (2)AA 1→+12AB →+12AD →.解:(1)AB →+BC →+CC 1→=AC 1→.(2)AA 1→+12AB →+12AD →=AA 1→+12(AB →+AD →)=AA 1→+12(D 1C 1→+A 1D 1→)=AA 1→+12A 1C 1→=AA 1→+A 1E→=AE →.向量AC 1→,AE →如图所示.[学生用书P54][学生用书P129(单独成册)][A 基础达标]1.已知空间四边形ABCD 中,G 为CD 的中点,则AB →+12(BD →+BC →)等于( )A.AG →B.CG →C.BC →D.12BC → 解析:选A.AB →+12(BD →+BC →)=AB →+12×(2BG →)=AB →+BG →=AG →.2.设a ,b 是不共线的两个向量,λ,μ∈R ,且λa +μb =0,则( ) A .λ=μ=0 B .a =b =0 C .λ=0,b =0D.μ=0,a =0解析:选A .因为a ,b 不共线,所以a ,b 均为非零向量,又因为λa +μb =0,所以λ=μ=0.3.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( )A .A 、B 、D B .A 、B 、C C .B 、C 、DD.A 、C 、D解析:选A.因为AB →=a +2b .BD →=BC →+CD →=2a +4b =2(a +2b )=2AB →, 所以AB →∥BD →,由于AB →与BD →有一个公共点B , 所以A 、B 、D 三点共线.4.在下列条件中,使M 与A ,B ,C 一定共面的是( ) A.OM →=3OA →-2OB →-OC → B.OM →+OA →+OB →+OC →=0 C .MA →+MB →+MC →=0 D .OM →=14OB →-OA →+12OC →解析:选C .因为MA →+MB →+MC →=0,所以MA →=-MB →-MC →,所以M 与A ,B ,C 必共面. 5.给出下列命题:①若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0; ②|a |-|b |=|a +b |是a ,b 共线的充要条件; ③若AB →,CD →共线,则AB ∥CD ;④对空间任意一点O 与不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P ,A ,B ,C 四点共面.其中不正确命题的个数是( )A .1B .2C .3D .4解析:选C.显然①正确;若a ,b 共线,则|a |+|b |=|a +b |或|a +b |=||a |-|b ||,故②错误;若AB →,CD →共线,则直线AB ,CD 可能重合,故③错误;只有当x +y +z =1时,P ,A ,B ,C 四点才共面,故④错误.故选C.6.化简:12(a +2b -3c )+5(23a -12b +23c )-3(a -2b +c )=________.解析:原式=(12+5×23-3)a +(12×2-5×12+3×2)b +(-3×12+5×23-3)c =56a +92b -76c .答案:56a +92b -76c7.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则化简AB →+12BC →-32DE →-AD →的结果为________.解析:如图,延长DE 交边BC 于点F ,则AB →+12BC →=AF →,32DE →+AD →=AD →+DF →=AF →,故AB →+12BC →-32DE →-AD →=0. 答案:08.已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.解析:因为A ,B ,C 三点共线, 所以存在惟一实数k 使AB →=kAC →, 即OB →-OA →=k (OC →-OA →), 所以(k -1)OA →+OB →-kOC →=0. 又λOA →+mOB →+nOC →=0,令λ=k -1,m =1,n =-k ,则λ+m +n =0. 答案:0 9.如图,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE →=12OD →+xOB →+yOA →,求x ,y 的值.解:因为AE →=AB →+BC →+CE →=OB →-OA →+OC →-OB →-12OC →=-OA →+12OC →=-OA →+12(OD →+DC →)=-OA →+12(OD →+AB →)=-OA →+12OD →+12(OB →-OA →)=-32OA →+12OD →+12OB →,所以x =12,y =-32.10.在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P ,Q 分别为A 1D 1,D 1C 1,AA 1,CC 1的中点,求证:M ,N ,P ,Q 四点共面.证明:令D 1A 1→=a ,D 1C 1→=b ,D 1D →=c . 因为M ,N ,P ,Q 均为棱的中点,所以MN →=12b -12a ,MP →=MA 1→+A 1P →=12a +12c ,MQ →=MD 1→+D 1C 1→+C 1Q →=-12a +b +12c .令MQ →=λMN →+μMP →,则-12a +b +12c =12(μ-λ)a +12λb +12μc ,所以⎩⎪⎨⎪⎧12(μ-λ)=-12,12λ=1,12μ=12.解得⎩⎪⎨⎪⎧λ=2,μ=1.所以MQ →=2MN →+MP →, 所以向量MQ →,MN →,MP →共面,所以M ,N ,P ,Q 四点共面.[B 能力提升]11.对于空间一点O 和不共线的三点A ,B ,C ,有6OP →=OA →+2OB →+3OC →,则( ) A .O ,A ,B ,C 四点共面 B .P ,A ,B ,C 四点共面 C .O ,P ,B ,C 四点共面 D .O ,P ,A ,B ,C 五点共面解析:选B.由6OP →=OA →+2OB →+3OC →, 得OP →-OA →=2(OB →-OP →)+3(OC →-OP →), 即AP →=2PB →+3PC →,故AP →,PB →,PC →共面,又它们有公共点P , 因此,P ,A ,B ,C 四点共面.12.已知A ,B ,C 三点不共线,O 是平面ABC 外任意一点,若由OP →=15OA →+23OB →+λOC→确定的一点P 与A ,B ,C 三点共面,则λ=________.解析:根据P ,A ,B ,C 四点共面的条件,知存在实数x ,y ,z ,使得OP →=xOA →+yOB →+zOC →成立,其中x +y +z =1,于是15+23+λ=1,所以λ=215.答案:21513.已知A ,B ,C 三点不共线,另外一点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内. 解:(1)因为OA →+OB →+OC →=3OM →,所以OA →-OM →=(OM →-OB →)+(OM →-OC →)=BM →+CM →. 所以MA →=BM →+CM →=-MB →-MC →. 所以向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,所以M ,A ,B ,C 共面,即M 在平面ABC 内. 14.(选做题)如图,已知OE 是平行六面体OADB -CFEG 的体对角线,点M 是△ABC 的重心,求证:点M 在直线OE 上.证明:如图,连接AM 并延长交BC 于点H , 因为M 是△ABC 的重心, 所以H 为BC 的中点,所以AH →=12(AB →+AC →).所以AM →=23AH →=13(AB →+AC →) =13[(OB →-OA →)+(OC →-OA →)] =13OB →+13OC →-23OA →. 所以OM →=OA →+AM →=13(OA →+OB →+OC →).又因为OE →=OA →+AD →+DE →=OA →+OB →+OC →, 所以OM →=13OE →,所以点M 在直线OE 上.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.1.2 空间向量的数乘运算(一)
学习目标
1. 掌握空间向量的数乘运算律,能进行简单的代数式化简;
2. 理解共线向量定理和共面向量定理及它们的推论;
3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.
学习过程 一、课前准备
(预习教材P 86~ P 87,找出疑惑之处)
复习1:化简: ⑴)32(4)23(5a b b a -+-;
⑵ )()3(6c b a c b a -+--+-.
复习2:在平面上,什么叫做两个向量平行? 在平面上有两个向量a ,b , 若b 是非零向量,则a 与b 平行的充要条件是
二、新课导学
※ 学习探究
探究任务一:空间向量的共线
问题:空间任意两个向量有几种位置关系?如何判定它们的位置关系?
新知:空间向量的共线:
1. 如果表示空间向量的 所在的直线互相 或 ,则这些向量叫共线向量,也叫平行向量.
2. 空间向量共线:
定理:对空间任意两个向量a ,b (b 0≠), a ∥b 的充要条件是存在唯一实数λ,使得
推论:如图,l 为经过已知点A 且平行于已知非零向量的直线,对
空间的任意一点O ,点P 在直线l 上的充要条件是
试试:已知b a AB 5+=,b a BC 82+-=,)(3b a CD -=,求证:
A,B,D 三点共线.
反思:充分理解两个向量a ,b 共线向量的充要条件中的b 0≠,注意零向量与任何向量共
线.
※ 典型例题
例1 已知直线AB ,点O 是直线AB 外一点,若OB y OA x OP +=且x +y =1,试判断A,B,P 三点是否共线?
变式:已知A,B,P 三点共线,点O 是直线AB 外一点,若OB t OA OP +=2
1,那么t =
例2 已知平行六面体''''ABCD A B C D -,点M 是棱AA '的中点,点G 在对角线A 'C 上,且CG:GA '=2:1,设a CD =,b CB =,c CC =',试用向量a ,b ,c 表示向量CA ,'CA ,CM ,'CG .
变式1:已知长方体''''ABCD A B C D -,M 是对角线AC '中点,化简下列表达式:
⑴ CB AA -' ;
⑵ '''''D C C B AB ++;
⑶ A A AB AD '2
12121-+
变式2:如图,已知,,A B C 不共线,
从平面ABC 外任一点O ,作出点
,,,P Q R S ,使得: ⑴AC AB OA OP 22++= ⑵AC AB OA OQ 23--= ⑶AC AB OA OR 23-+= ⑷AC AB OA OS 32-+=.
小结:空间向量的化简与平面向量的化简一样,加法注意向量的首尾相接,减法注意向量要共起点,并且要注意向量的方向.
※ 动手试试
练1. 下列说法正确的是( )
A. 向量a 与非零向量b 共线,b 与c 共线,则a 与c 共线;
B. 任意两个共线向量不一定是共线向量;
C. 任意两个共线向量相等;
D. 若向量a 与b 共线,则a =λb .
2. 已知a =n m 23-,b =n m x 8)1(++,a 0≠,若a ∥b ,求实数.x
三、总结提升
※ 学习小结
1. 空间向量的数乘运算法则及它们的运算律;
2. 空间两个向量共线的充要条件及推论.
※ 知识拓展
平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.
学习评价
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好
B. 较好
C. 一般
D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 下列说法正确的是( ) A. a 与非零向量b 共线, b 与c 共线,则a 与c 共线
B. 任意两个相等向量不一定共线
C. 任意两个共线向量相等
D. 若向量a 与b 共线,则a =λb
2. 正方体''''ABCD A B C D -中,点E 是上底面''''A B C D 的中心, 若''AA z AB y AD x BB ++=, 则x = ,y = ,z = .
3. 若点P 是线段AB 的中点,点O 在直线AB 外,则=OP OA + OB .
4. 平行六面体''''ABCD A B C D -, O 为A 1C 与B 1D 的交点,则
=++)(3
1'AA AD AB ______ AO
5. 已知平行六面体''''ABCD A B C D -,M 是AC 与BD 交点,若=AB a ,=AD b , ='AA c ,则与M B '相等的向量是( ) A. c b a +-2121; B. c b a ++2
121; C. c b a ++-2121; D. c b a +--2
121. 课后作业
1.如图,已知空间四边形ABCD ,连接AC 、BD, E 、F 分别是BC 、CD 的中点,化简下列各表达式,并标出化简结果的向量:
(1)CD BC AB ++; (2))(21BC BD AB ++; (3))(2
1AC AB AF +-
2.如图,已知正方体ABCD -A ’B ’C ’D ’,点E 、F 分别是上底面A ’C ’ 和侧面CD ’的中心.求下列各式中x 、y 的值:
(1)''(CC BC AB x AC ++=)
(2)AD y AB x AA AE ++='
(3)'AA y AB x AD AF ++=。