wnt bone formation

合集下载

Wnt信号通路与软骨细胞老化研究进展

Wnt信号通路与软骨细胞老化研究进展

Wnt信号通路与软骨细胞老化研究进展摘要】Wnt/β-catcnin信号通路是Wnt信号传导通路中最为经典的信号通路。

它是调节软骨代谢的重要途径。

Wnt蛋白被证实在软骨基质合成和转归,骨质形成和转归中发挥着重要作用。

氧化应激所致的细胞老化过程中,p53/p21在细胞老化调控通路中发挥着核心作用。

p53/p21通路在Wnt信号激活关节软骨促间充质祖细胞老化中起介导作用。

本文就Wnt信号通路与软骨细胞老化的研究进展展开综述。

【关键词】Wnt/β-catcnin信号通路;细胞老化;软骨细胞;p53通路【中图分类号】R3 【文献标识码】A 【文章编号】1007-8231(2015)13-0001-03【Abstract】 Wnt/beta catcnin signaling pathway is the most classic Wnt signaling pathways in the signal path. It is an important approach to regulate metabolism of cartilage. Wnt - proved in cartilage matrix synthesis and transfer And bone formation and outcome plays an important role. Oxidative stress caused by cell aging , p53 / p21 regulation pathway plays a central role in cellular ageing. P53 / p21 pathways between Wnt signaling activation of articular cartilage to promote mesenchymal progenitor cells aging plays a mediating role.In this paper, the Wnt signaling pathway and the research progress of cartilage cell aging were reviewed.【Key words】Wnt / β-catenin signaling pathway; Cell aging; Cartilage cells; P53 pathway细胞老化是指可增殖细胞在信号通路的调控下,不可逆地脱离细胞周期后进入的一种相对稳定的状态。

Wnt信号通路在成骨细胞中的作用:成骨还是破骨?

Wnt信号通路在成骨细胞中的作用:成骨还是破骨?

中国组织工程研究 第18卷 第33期 2014–08–13出版Chinese Journal of Tissue Engineering Research August 13, 2014 Vol.18, No.33P .O. Box 10002, Shenyang 110180 5366www.CRTER .org刘艳玲,女,1983年生,四川省三台县人,汉族,泸州医学院口腔医学院在读硕士,医师。

doi:10.3969/j.issn.2095-4344. 2014.33.021 []中图分类号:R318 文献标识码:A 文章编号:2095-4344 (2014)33-05366-06 稿件接受:2014-07-08Liu Yan-ling, Studying for master’s degree, Physician, Stomatological Hospital of Luzhou Medical College, Luzhou 646000, Sichuan Province, China; Department of Stomatology, People’s Hospital of Deyang, Deyang 618000, Sichuan Province, ChinaAccepted: 2014-07-08Wnt 信号通路在成骨细胞中的作用:成骨还是破骨?刘艳玲1,2,李方兵2,赵 曦2 (1泸州医学院口腔医学院,四川省泸州市 646000;2德阳市人民医院口腔科,四川省德阳市 618000)文章亮点:1 此问题的已知信息:研究表明,Wnt 信号通路参与调节骨髓间充质干细胞向成骨细胞分化,促进成骨细胞增殖和分化,抑制成骨细胞的程序性死亡,间接影响破骨细胞的功能。

2 文章增加的新信息:Wnt 信号途径是体内重要的信号调节系统之一,对成骨细胞、破骨细胞和软骨细胞的分化、增殖和程序性死亡过程中扮演重要角色。

淫羊藿治疗骨质疏松的研究进展

淫羊藿治疗骨质疏松的研究进展

淫羊藿治疗骨质疏松的研究进展随着世界老龄化的增长,骨质疏松的发病率逐渐增高。

中医药在防治骨质疏松方面有其独特的优势,大量研究表明淫羊藿在治疗骨质疏松方面疗效确切。

本文中作者对近几年来淫羊藿总黄酮、单体及其复方制剂抗骨质疏松症的相关研究近况进行了综述。

标签:淫羊藿;黄酮类化合物;复方;骨质疏松骨质疏松症是全身性的骨骼疾病,其主要特征为骨量减少和骨组织微结构的破坏,因此导致骨脆性增加、骨强度下降,大大增加了骨折的发生率。

骨质疏松是一个全球性的骨骼健康问题,世界上骨质疏松症患者已超过2亿人,我国骨质疏松症患者多达9 000 万,其中50岁以上妇女发病率高达50%。

骨质疏松症成为公认的严重的社会公共健康问题[1]。

1 淫羊藿总黄酮抗骨质疏松的作用雷光华等[2]对大鼠给予被动吸烟,建立骨质疏松模型,然后分别给予不同剂量的淫羊藿黄酮和高效钙,发现两者均能显著改善骨小梁形态学结构,增加骨量。

Fang X [3]等人在细胞水平(UMR-106)和动物水平上分别证明了淫羊藿提取物具有较好的抗骨质疏松作用,具有很好的开发价值。

高小明等[4]的研究结果也同样证明了淫羊藿提取物对去卵巢大鼠所引起的骨质疏松的有较好的治疗作用,能够有效的增加大鼠骨密度及离体骨重量。

濮祖茂等[5]对大鼠股骨头形态进行扫描电镜观察和分析,探讨了淫羊藿总黄酮对切除卵巢的骨质疏松的大鼠的防治作用。

研究结果表明,淫羊藿总黄酮治疗组的大鼠骨小梁结构具有明显的改善,骨小梁直径变大、间距变小,相对于对照组表面较为平整光滑。

史晓林等[6] 研究表明淫羊藿总黄酮可以促进成骨细胞的骨形成能力和软骨细胞的骨化能力,从而促进骨痂的形成,加快骨质疏松大鼠的骨折愈合速度和强度。

冯云波等[7]的研究表明淫羊藿总黄酮防止大鼠骨质疏松可能是通过保护性腺来抑制骨吸收。

2 淫羊藿黄酮单体抗骨质疏松的作用蔡曼玲等[8]对淫羊藿中的黄酮单体对体外培养的成骨细胞的作用进行研究,结果表明:这些单体均能够促进成骨细胞的增殖和矿化作用。

Wnt信号通路在强直性脊柱炎发病过程中的作用

Wnt信号通路在强直性脊柱炎发病过程中的作用

Wnt信号通路在强直性脊柱炎发病过程中的作用刘剑雯【摘要】Ankylosing spondylitis( AS )is a complex, insidious and potentially disabling form of seronegative spondyloarthritis. Its pathological process can come down to enthesitis, bone erosion and syndesmophyte formation, syndesmophyte formation cause joint fusion stiffness and ultimately lead to disability. The process and mechanism of syndesmophyte formation remains unclear. The currently increasing studies indicate that the classic Wnt and bone morphogenetic protein signaling pathways play an important synergy in regulating the osteoblast function and bone formation.%强直性脊柱炎(AS)是一种病因复杂、发病隐匿且具有潜在致残性的血清阴性脊柱关节病.其关节病理变化过程可以归结为附着点炎、骨侵蚀、骨赘形成三个阶段,骨赘形成致关节融合强直最终导致残疾.AS的骨赘形成过程及机制尚不清楚.经典Wnt和骨形态发生蛋白信号通路在调节成骨细胞功能及骨形成中发挥重要的协同作用.【期刊名称】《医学综述》【年(卷),期】2011(017)015【总页数】3页(P2277-2279)【关键词】强直性脊柱炎;附着点炎;骨赘形成;Wnt;DKK-1【作者】刘剑雯【作者单位】福建医科大学附属第一医院风湿血液科,福州,350004【正文语种】中文【中图分类】R59强直性脊柱炎(ankylosing spondylitis,AS)是以骶髂关节和脊柱慢性炎症为主的全身性疾病。

中药单体及复方干预Wnt信号通路调控骨代谢的研究进展

中药单体及复方干预Wnt信号通路调控骨代谢的研究进展

·综述·中药单体及复方干预Wnt信号通路调控骨代谢的研究进展Δ李婷1*,张小琼2,刘梅2,王琴1,2 #(1.重庆医科大学药学院,重庆 400016;2.重庆中医药学院附属第一医院/重庆市中医院药剂科,重庆 400021)中图分类号 R285.5文献标志码 A 文章编号 1001-0408(2024)05-0623-06DOI 10.6039/j.issn.1001-0408.2024.05.20摘要骨代谢是指骨骼重塑过程中发生的分解合成代谢,其平衡由骨吸收和骨形成调控。

这种平衡稍有偏差就会导致各种骨骼疾病,如骨质疏松症、肾性骨病等。

中药单体和复方在治疗骨代谢疾病方面具有一定优势。

Wnt信号通路包括依赖β-连环蛋白(β-catenin)的经典Wnt信号通路和不依赖β-catenin的非经典Wnt信号通路,且2种通路均可通过调控骨形成和骨吸收来维持骨代谢平衡,对骨骼发育、骨量维持和骨重塑至关重要。

近年来,多种中药单体(如芍药内酯苷、梓醇、淫羊藿苷)以及中药复方(如左归丸、益肾固骨方、杜仲健骨方等)被证实可通过激活Wnt信号通路,促进骨髓间充质干细胞成骨分化、成骨细胞增殖和分化来修复骨损伤和治疗骨质疏松症。

基于此,本文总结了中药单体及复方干预Wnt信号通路调控骨代谢的研究进展,以期为中药防治骨代谢疾病的临床应用及新药研发提供思路。

关键词中药单体;中药复方;骨代谢;Wnt信号通路;骨形成;骨吸收Research progress of traditional Chinese medicine monomer and compound intervention on the Wnt signaling pathway in regulating bone metabolismLI Ting1,ZHANG Xiaoqiong2,LIU Mei2,WANG Qin1,2(1. College of Pharmacy,Chongqing Medical University, Chongqing 400016, China;2. Dept. of Pharmacy, the First Affiliated Hospital of Chongqing College of Traditional Chinese Medicine/Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China)ABSTRACT Bone metabolism refers to the decomposition and anabolism occurring during bone remodeling,and its balance is regulated by bone resorption and bone formation. A slight deviation of this balance causes various skeletal diseases,such as osteoporosis and renal osteodystrophy. Traditional Chinese medicine (TCM)monomers and compounds have certain advantages in treating bone metabolism diseases. The Wnt signaling pathway includes the canonical Wnt signaling pathway,dependent on β-catenin,and the non-canonical Wnt signaling pathway,independent of β-catenin. Both types of pathways can maintain bone metabolism balance by regulating bone formation and bone resorption and are essential for bone development,bone mass maintenance,and bone remodeling. A variety of TCM monomers (albiflorin,catalpol and icariin)and formulas (Zuogui pill,Yishen gugu prescription,Duzhong jiangu prescription,etc.)have been confirmed to promote differentiation of bone marrow mesenchymal stem cells,proliferation and differentiation of osteoblasts,bone injury repair,and osteoporosis improvement by activating the Wnt signaling pathway in recent years. Here,this article summarizes the research progress in the Wnt signaling pathway regulation of bone metabolism by TCM monomers and compounds to provide ideas for the clinical application of TCM and the research and development of new drugs for the prevention and treatment of bone metabolism diseases.KEYWORDS traditional Chinese medicine monomer;traditional Chinese medicine compound;bone metabolism;Wnt signaling pathway; bone formation; bone resorption骨代谢是指骨骼重塑过程中发生的分解合成代谢,受骨细胞、骨髓间充质干细胞(bone marrow mesenchy‐mal stem cells,BMSC)、成骨细胞、破骨细胞等参与的骨吸收与骨形成动态调控。

Wnt信号通路与骨质疏松治疗的相关研究进展

Wnt信号通路与骨质疏松治疗的相关研究进展

Wnt信号通路与骨质疏松治疗的相关研究进展成人骨骼是一种经过不断重塑的多功能器官。

骨骼的内稳态需要破骨细胞骨吸收和成骨细胞骨形成之间的平衡;如果这种平衡失调将导致骨质疏松症、硬化性骨病等各种骨骼疾病的发生。

为了找到有效和安全的治疗方法来调节骨形成,必须阐明骨细胞分化和活动的分子机制。

人类和小鼠的基因研究已经确立了Wnt信号作为刺激成骨细胞分化和活性的关键机制。

本文就Wnt信号通路与骨形成相关机制以及治疗骨质疏松方法的相关研究进行综述。

[Abstract] Adult bone is a multifunctional organ that has been continuously reshaped. The homeostasis of bone requires the balance between osteoclast bone absorption and osteogenesis. If this imbalance can lead to osteoporosis,sclerosing osteopathy and other bone diseases. In order to find effective and safe treatment methods to regulate bone formation,the molecular mechanism of bone cell differentiation and activity must be elucidated. Gene researches in humans and mice have established Wnt signaling as a key mechanism for stimulating osteoblast differentiation and activity.This paper reviews the related mechanisms of Wnt signaling pathway and bone formation and the treatment of osteoporosis.[Key words] Bone cell;Wnt;Osteoporosis;Review骨細胞主要存在于骨矿化基质中提供骨支撑。

音猬因子信号通路与骨质疏松症关系的研究进展

音猬因子信号通路与骨质疏松症关系的研究进展

音猬因子信号通路与骨质疏松症关系的研究进展许周媚;王清辉;查旋;徐道华【摘要】There are many pathways involved in bone development,such as Wnt,Notch,BMP,and Hedgehog signaling pathway.In the past 20 years,it has been proved that the Hedgehog signaling pathway is important in bone formation.Sonic hedgehog is the most widely expressed in the Hedgehog family,which is of great importance in the bone formation of axial skeleton,limb bone or craniofacial bone.The pathogenesis of osteoporosis in general is that the balance between bone formation and bone reabsorption is broken,with the decrease of osteoblast bone formation as one of the main reasons.This article reviews the relationship between sonic hedgehog and the main factors resulting in osteoporosis,in order to provide evidence for treating osteoporosis through the sonic hedgehog signaling pathway.%骨发育的过程受到多种信号通路的调节,如Wnt、Notch、BMP、Hedgehog信号通路等.Hedgehog信号通路对骨形成的作用在过去的二十几年已经被证实.音猬因子(Ssonic hedgehog,Shh)在Hedgehog家族中表达最广泛,在该信号传导通路上对轴骨、四肢骨、颅面骨等骨骼的形成起着重要作用.骨质疏松症发病机制归根到底是成骨细胞的骨形成能力与破骨细胞的骨吸收之间的平衡被打破,并且成骨细胞的骨形成作用下降是其主要影响因素之一.本文主要从分子水平对Shh信号通路与影响骨质疏松症发生的几个主要因素进行综述,为Shh信号通路应用于骨质疏松的防治提供理论依据.【期刊名称】《中国骨质疏松杂志》【年(卷),期】2017(023)004【总页数】8页(P534-540,547)【关键词】Sonic Hedgehog信号通道;骨质疏松;成骨分化;成脂分化【作者】许周媚;王清辉;查旋;徐道华【作者单位】广东医科大学药理学教研室,广东东莞523808;广东医科大学药理学教研室,广东东莞523808;广东医科大学药理学教研室,广东东莞523808;广东医科大学药理学教研室,广东东莞523808;广东医科大学中药与新药研究所,广东东莞523808【正文语种】中文【中图分类】R681骨质疏松症是一种以骨量减少、骨显微结构退化为特征,致使骨脆性增加、易于发生骨折的一种全身性骨骼疾病。

尿酸、Wnt信号通路与绝经后骨质疏松症的相关性研究

尿酸、Wnt信号通路与绝经后骨质疏松症的相关性研究

尿酸、Wnt信号通路与绝经后骨质疏松症的相关性研究【摘要】目的探讨血清尿酸、Wnt信号通路中关键指标与绝经后骨质疏松症的相关性。

方法纳入2019年1月至2021年6月在我院内分泌科就诊的90名绝经后女性,根据骨密度的状态,分为正常组、低骨组和骨质疏松组分析各指标相关性。

结果与正常组相比,低骨量组、骨质疏松组患者尿酸、β-catenin、Wnt3a水平均有统计学差异(P<0.05)。

绝经后女性血清中Wnt信号通路关键指标β-catenin、Wnt3a与腰椎、股骨颈、髋关节的骨密度(bone mineral density,BMD)均呈正相关(P<0.05)。

结论尿酸、Wnt信号通路关键指标与绝经后骨质疏松症有一定的相关性,尿酸和Wnt信号通路关键指标可能为绝经后骨质疏松症潜在的预测性生物标志物。

【关键词】绝经后;骨质疏松;尿酸;Wnt信号通路骨质疏松是一种以骨量减少和骨强度降低为特征的全身性疾病,骨脆性增加,导致骨折,目前骨质疏松已经成为全球普遍性公共卫生问题。

骨质疏松的发生与多种因素相关,但雌激素的缺乏和衰老是其发病的关键因素,50岁以上的人群骨质疏松症的患病率达19.2%,其中女性患病率32.1%[1]。

尿酸是细胞内外嘌呤代谢的最终产物,具有促氧化和抗氧化的作用。

Wnt/β-catenin信号通路在成骨分化过程中起着关键作用[2-3]。

本文旨在探讨绝经后女性尿酸、Wnt信号通路关键因子与骨质疏松症的关系。

1.资料与方法1.1一般资料纳入2019年1月至2021年6月在我院内分泌科就诊的90名绝经后女性,根据骨密度的状态,分为正常组、低骨组和骨质疏松组,其中,正常组:30例,BMD 的 T 值大于或等于-1;低骨量组:30例,BMD 的 T 值 -1 与-2.5 之间;骨质疏松组:30例,BMD的 T 值< -2.5 或(和)伴一处或多处骨折。

年龄40-70岁,自然绝经≥1年。

1.2方法入组人员均留取入组人员的空腹新鲜血液标本,约 5ml。

Wnt信号通路调控间充质干细胞成骨分化的研究进展

Wnt信号通路调控间充质干细胞成骨分化的研究进展

Wnt信号通路调控间充质干细胞成骨分化的研究进展陈小静;高艳虹【摘要】Wnt通路作为调控细胞生长、发育和分化的重要信号途径一直是医学研究的热点.近年来的研究表明,Wnt信号通路在调控间充质干细胞(MSCs)成骨分化过程中发挥重要作用,其机制已成为骨组织工程研究的热点,也为骨质疏松症等疾病的治疗提供了新思路.该文对Wnt信号通路调控MSCs成骨分化的研究进展进行综述.%Wnt signaling pathway has been the focus of medical research as it plays a significant role in regulating the growth, development and differentiation of cells. Recent studies have revealed that Wnt signaling pathway may play an important role in regulating the osteogenic differentiation of mesenchymal stem cells ( MSCs) , the mechanism of which has been the hotspot of bone tissue engineering and provides a new way for the treatment of diseases such as osteoporosis. The research progress of Wnt signaling pathway in regulating osteogenic differentiation of MSCs is reviewed in this paper.【期刊名称】《上海交通大学学报(医学版)》【年(卷),期】2013(033)001【总页数】5页(P99-103)【关键词】间充质干细胞;Wnt信号通路;成骨分化;骨形成【作者】陈小静;高艳虹【作者单位】上海交通大学医学院附属新华医院老年医学科,上海200092;上海交通大学医学院附属新华医院老年医学科,上海200092【正文语种】中文【中图分类】Q23间充质干细胞(mesenchymal stem cells, MSCs)是近年来发现的一类具有多向分化潜能的成体干细胞,主要存在于骨髓,体外分离培养后在不同的诱导条件下MSCs具有向成骨细胞、成软骨细胞、脂肪细胞、成肌细胞和神经细胞等多种细胞系分化的能力[1]。

甲状旁腺激素经不同信号通路调节骨代谢的研究进展

甲状旁腺激素经不同信号通路调节骨代谢的研究进展

中国骨伤 2021 年 6 月第 34 卷第 6 期 China J Orthop Trauma,Jun.2021 袁 Vol.34,No.6
•585 -
进、优化PTH或甲状旁腺激素相关肽(parathyroid hormone-related paptidr, PTHrP),甚至寻找更佳的骨 形成促进剂。目前已有许多研究发现,不同剂量及使
cAMP/PKA信号通路,是甲状旁腺激素调节骨组织代谢引起骨形成或骨吸收效应的主要机制遥(2)Gq”/PLC/PKC信号
通路,其主要功能为抑制成骨作用。(3)nonPLC/PKC信号通路,目前认为其发挥成骨效应,但具体内容尚不完全明确。
(4)3-jjjjstin信号通路,能通过受体脱敏及内吞机制仅产生成骨作用而无破骨的激活。对甲状旁腺激素激活的上述4
甲状旁腺激素(parathyroid hormone, PTH)是甲
基金项目:浙江省医药卫生科技计划(编号:2018ky156)曰宁波市自然 科学基金(编号:2019A610242);浙江省中医药科技计划(编号: 2020ZB225);中国科学院大学宁波华美医院"华美重点研究基金” (编号:2019HMZDKY14)
开放科学(资源服务)标识码(OSID):
Progress of parathyroid hormone regulating bone metabolism via different signaling pathways SONG Men,早sheng, YU Xiao元, RONG Peng-ze ,PANG Qing-jiang. 元 Department of Orthop ae dies ,Huamei Hospital, University ofChinese Academy ofSciences ,Ningbo 315010, Zhejiang, China ABSTRACT Parathyroid hormone is one kind of osteoanabolic agents widely used in clinic for osteoporosis. However, pjjjthyjoid hormone needs to be further optimized in the treatment of osteoporosis due to its two・way jjguljtojy effect of bone formation with low・dose intejmittent tjeatmentand bone resorption with high・dosecontinuous treatment. Hence,bjsed on the moleculjj mechanism of parathyroid hormone jjguljting bone metabolism, we conclude that parathyroid hormone jegulates bone metabolism mainly thjough the following signaling pathways: (1) Gs/cAMP/PKA signaling pathway,whichis the main mechanism of parathyroid hormone Jjguljting bone metabolism to lead to bone formation or bone resorption. (2) Gq/n/PLC/ PKC signaling pjthwjy,whose main function is to inhibit osteogenesis. (3)nonPLC/PKC signaling pathway, which is consid­ ered to playosteogenic jffect,but whose specific content is not completely cIjjj. (4) p-arrestin signaling pjthway,which can only induceosteogenesis without osteoclastic Jctivation byreceptor desensitization and endocytosis. In this work, we will review the specific contents and functions of the four main signaling pathways activated by parathyroid hormoneto find more optimalosteoanabolic agents. Among them,SOST and Dickkopf-1 monoclonal antibodies jjj novel targeted drugs. Parathyroid hormone-jelated peptide that specificjlly jctivates the nonPLC/PKC signaling pathway or p-jjrestin signaling pathway is worthy of further development and application. KEYWORDS Pjjjthyjoid hormone; Signaling pathway; Osteoporosis

Wntβ-catenin信号通路在骨关节炎软骨修复中的调控研究

Wntβ-catenin信号通路在骨关节炎软骨修复中的调控研究

Wnt/β-catenin信号通路在骨关节炎软骨修复中的调控研究 【摘要】Wnt 信号通路广泛地存在于生物体中,调节控制着如细胞形态与功能的分化及维持、免疫、应激、凋亡等生命过程。

随着对其研究的不断深入,发现Wnt 信号通路对早期软骨的化生与形成、体外软骨细胞的增殖与分化具有重要的作用,特别是其经典Wnt/β-catenin信号通路与骨关节炎的发生发展有重要联系,Wnt 蛋白家族、β-catenin以及相关抑制因子可以调节软骨细胞功能和代谢。

【关键词】Wnt 信号通路;β-catenin;软骨细胞; 骨关节炎【ABSTRACT】 The Wnt signaling exists in every kinds of species and r egulates a variety of biological processes including cell fate,proli feration and function,immunity,stress,apoptosis and so on. During the researching,Wntsignaling also plays an important role in chondr ocyte differentiation and maturation.Wnt protein family, β-catenin and related inhibitors can regulate the function and metabolism of ch ondrocytes.【Key words】Wnt signaling pathways; β catenin Chondrocytes; Osteo arthritis;; Review literature骨关节炎( Osteoarthritis, OA )又称为退行性关节炎, 是以关节软骨退变及破坏为主要病变特征的慢性疾病。

Wnt 信号通路对牙齿发育和牙囊成骨向分化的调控作用

Wnt 信号通路对牙齿发育和牙囊成骨向分化的调控作用

Wnt 信号通路对牙齿发育和牙囊成骨向分化的调控作用陈婵婵(综述);凌均蓕(审校)【摘要】Wnt 信号通路包括经典 Wnt/β-catenin 信号通路和非经典通路,对个体组织发育和干细胞的自我更新具有重要调控作用,在包括颅面部器官在内的几乎所有器官发生过程中都必需 Wnt 信号通路的调控。

研究发现,Wnt/β-catenin 信号通路不仅在牙齿发育过程中参与了上皮和间充质的相互作用,在牙囊细胞的分化过程亦有 Wnt 信号通路的参与。

本文就 Wnt 信号通路在牙齿发育和牙囊成骨/成牙骨质向分化中的调控作用研究进展作一综述。

%Abstract] Wnt signalling pathways include the canonical Wnt pathway and non -canonical pathways.Grow-ing evidence indicates that Wnt signaling pathways orchestrate tissue development and stem cell self-renewal.Wnt/β-catenin signaling is known to be crucial for tooth development and bone formation.Furthermore,several members of the Wnt family were observed in the presumptive dental epithelium or mesenchyme.The differentiation of dental follicle cells needs the regulation of Wnt signaling.This review emphasizes the role of Wnt signalling pathways in tooth devel-opment and the osteogenic differentiation of dental follicle.【期刊名称】《牙体牙髓牙周病学杂志》【年(卷),期】2015(000)003【总页数】4页(P175-178)【关键词】Wnt 信号通路;牙齿发育;牙囊;成骨向分化【作者】陈婵婵(综述);凌均蓕(审校)【作者单位】中山大学光华口腔医学院·附属口腔医院·口腔医学研究所,广东广州510055;中山大学光华口腔医学院·附属口腔医院·口腔医学研究所,广东广州510055【正文语种】中文【中图分类】R780.2Wnt是一类分泌型糖蛋白,在哺乳动物中至少有19种,是Wnt信号通路中的关键蛋白,可通过自分泌或旁分泌发挥作用。

Wnt3a Wnt经典通路与骨代谢相关研究进展

Wnt3a Wnt经典通路与骨代谢相关研究进展

Wnt3a Wnt经典通路与骨代谢相关研究进展骨组织的形成是骨细胞和细胞外基质相互作用、相互诱导分化的结果,而骨组织的形态结构、功能得以维持则主要是依靠成骨细胞(osteoblast,OB)与破骨细胞(osteoclast, 0C)的共同作用。

正常状态下,成骨细胞与破骨细胞处于一种动态平衡的状态。

当机体受到不同刺激时,二者之间的动态平衡被打破,就会引起骨的形态和结构发生变化,从而分别导致以骨质疏松、骨质破坏、骨质增生等症状为特点的骨代谢异常相关疾病的发生。

目前的研究证实:骨代谢不仅受OPG/RANKL/RANK系统调节[1],而且也受Wnt信号通路的调节。

Glass等[2]经分子生物学分析研究发现Wnt信号通路可以上调OPG/RANKL的比例从而抑制破骨细胞的形成。

Wnt 信号通道在成骨细胞分化中的作用正是近年来研究的热点。

2012年的研究证实:在人和小鼠体内进行实验均可观察到Wnt途径的增强最终导致成骨增加[3]。

越来越多的研究表明Wnt分泌蛋白对细胞功能如细胞分化、细胞增殖及细胞极化等均具有调节作用[4]。

Wnt3a是Wnt蛋白家族成员之一,是非常重要的Wnt配体,目前对其在肿瘤形成、骨代谢相关疾病的研究也有很多新的进展。

纵观近年来的文献,关于成骨方面的研究较多,而关于破骨方面的研究则较少。

本文就Wnt信号通路以及Wnt3a与骨代谢方面的相关研究进展做一综述。

1Wnt信号通路和Wnts1.1 Wnt信号通路概述Wnt基因是1982年Nusse[5]最早发现的,Wnt的命名来源于小鼠中的int 和果蝇中的wingles。

最初对Wnt基因的研究主要围绕其诱导肿瘤形成的功能,但后来许多证据都显示其在细胞繁殖、生物发育过程中发挥着重要作用[6]。

Wnt 信号通路近年来逐渐成为研究的热点,并且Wnt信号通路在骨生物学方面的地位也越来越引起人们的重视。

目前已知Wnt信号在细胞内有四条信号转导通路:Wnt/β-连环蛋白(Wnt/β-catenin)信号转导通路即经典通路、Wnt/Ca2+信号转导通路、平面细胞极性信号转导通路(Wnt/PCP通路)以及调节纺锤体定向和不对称细胞分裂的信号通路[7]。

Wnt/β—catenin调控骨形成分子机制的研究进展

Wnt/β—catenin调控骨形成分子机制的研究进展

Wnt/β—catenin调控骨形成分子机制的研究进展OP的病理机制主要与成骨分化能力减弱、成脂分化能力增强,骨组织微循环血供减少有关[1-2]。

BMSCs(Bone mesenchymal stem cells,BMSCs)是成骨细胞的起源。

在老龄OP患者中,BMSCs的含量不仅显著减少,分化能力明显减弱,且增殖缓慢,移植过程病毒感染风险大,免疫原性与成本也较高。

人脐血间充质干细胞(Human umbilical cord blood mesenchymal stem cells,hUCB-MSCs)在体外诱导条件下具有向成骨细胞定向分化的巨大潜能[3],来源更丰富,临床取材方便,分离纯度更高,具有强大的增殖与自我更新能力,免疫原性较低,能耐受更大程度的HLA配型不符,蕴藏着比BMSCs更加优越的临床应用价值[4]。

因此,通过持续激活Wnt/β-catenin信号通路,启动与增强hUCB-MSCs的自身成骨分化能力,为临床OP的干细胞治疗提供新的策略。

1 Wnt/β-catenin调控骨形成的分子机制Wnt/β-catenin信号通路对成骨分化的调控主要表现在控制MSCs的分化方向和早期分化潜能。

Wnt蛋白和卷曲蛋白FZD(Frizzled)以及低密度脂蛋白受体LRPs(LDL-rececptor related proteins)结合激发了细胞内信号转导,使GSK-3β磷酸化而失活,从而维持β-catenin的稳定。

稳定的β-catenin在细胞质内聚集,转移到细胞核内,后与转录因子TCF/LEF结合,启动细胞靶基因Runx-2、DKx-5,Osterix等的转录,调控MSCs的生长(图1示)。

Wnt/β-catenin的激活不仅可促进MSCs向成骨细胞分化,通过上调成骨相关基因直接促进骨形成,而且可通过抑制成脂关键因子PPARγ-2等的表达来调控前体细胞定向成骨分化。

图11.1激活Wnt/β-catenin信号通路调控MSCs成骨分化Wnt/β-catenin信号通路通过调控BMSCs的分化方向和早期分化潜能来调节成骨分化能力[5]。

WNT3A、WNT4对人牙周膜干细胞成骨分化能力的影响

WNT3A、WNT4对人牙周膜干细胞成骨分化能力的影响

WNT3A、WNT4对人牙周膜干细胞成骨分化能力的影响摘要: WNT信号通路在成骨过程中起着重要的调节作用。

本研究旨在探讨WNT3A和WNT4对人牙周膜干细胞(H-PDLCs)成骨分化的影响及其机制。

通过实验室培养分离H-PDLCs对WNT3A 和WNT4进行转染,并检测其对细胞成骨分化相关蛋白(ALP、OCN、RUNX2)表达的影响。

结果发现,WNT3A和WNT4转染后能够提高H-PDLCs的ALP、OCN、RUNX2基因和蛋白表达水平,促进其成骨分化,并且WNT3A促进的效果更为显著。

此外,Western blot结果显示,WNT3A和WNT4的促成骨分化效应与PI3K/AKT信号通路有关。

综上,WNT3A和WNT4能够促进H-PDLCs的成骨分化,其机制可能与PI3K/AKT信号通路有关。

关键词: WNT3A、WNT4、牙周膜干细胞、成骨分化、PI3K/AKT 信号通路Abstract: The WNT signaling pathway plays an important regulatory role in the process of osteogenesis. The purpose of this study was to investigate the effects and mechanisms of WNT3A and WNT4 on the osteogenic differentiation ability of human periodontal ligament stem cells (H-PDLCs). H-PDLCs were transfected with WNT3A and WNT4 in the laboratory, and the effects of these transfections on the expression of osteogenic differentiation-related proteins (ALP, OCN, RUNX2) incells were detected. The results showed that WNT3A and WNT4 transfection could increase the expression levels of ALP, OCN, and RUNX2 genes and proteins in H-PDLCs, promote their osteogenic differentiation, and theeffect of WNT3A was more significant. In addition, Western blot results showed that the osteogenic differentiation-promoting effects of WNT3A and WNT4 were related to the PI3K/AKT signaling pathway. In summary, WNT3A and WNT4 can promote the osteogenic differentiation of H-PDLCs, and their mechanism may be related to the PI3K/AKT signaling pathway.Keywords: WNT3A, WNT4, periodontal ligament stem cells, osteogenic differentiation, PI3K/AKT signaling pathwayIntroductionPeriodontal ligament (PDL) is a connective tissue that surrounds the teeth and connects them to the alveolar bone. PDL stem cells (PDLCs) are a unique populationof stem cells with a high potential fordifferentiation into various lineages, including osteoblasts, periodontal ligament fibroblasts, and cementoblasts, among others (Seo et al., 2004). Osteogenic differentiation of PDLCs is of great significance for periodontal regeneration and the treatment of periodontal diseases.WNT signaling pathway plays a crucial role in osteogenic differentiation and bone development (Day et al., 2005). WNT3A and WNT4 are members of the WNT family that regulate the osteogenic differentiation of mesenchymal stem cells (MSCs) and induce bone formation (MacDonald et al., 2004; Zhu et al., 2006). However, little is known about the effects of WNT3A and WNT4 on the osteogenic differentiation of PDLCs.In this study, we investigated the effects of WNT3A and WNT4 on the osteogenic differentiation of human PDLCs (H-PDLCs) and the underlying mechanism.Materials and methodsIsolation and culture of H-PDLCsH-PDLCs were obtained from human periodontal tissues and cultured as previously described (Seo et al., 2004). The cells were characterized by positive expression of mesenchymal stem cell markers and negative expression of hematopoietic markers (data not shown).Osteogenic differentiationH-PDLCs were seeded in 12-well plates at a density of 2×10^4 cells/well and cultured in osteogenic induction medium (OIM) containing 10% fetal bovine serum (FBS), 50 μg/mL ascorbic acid, 10 mM β-glycerophosphate, and 100 nM dexamethasone, supplemented with recombinant human WNT3A or WNT4 (50 ng/mL), or vehicle control. After 14 days of culture, the cells were fixed in 4% paraformaldehyde and stained with Alizarin Red S to visualize calcium deposition.Real-time PCR analysisTotal RNA was extracted from the cells using TRIzol reagent (Invitrogen, USA) and reverse transcribed using the PrimeScript™ RT reagent kit (TaKaRa, Japan). Real-time PCR (RT-P CR) was performed using the SYBR® Premix Ex Taq™ II kit (TaKaRa, Japan) on a Bio-Rad CFX96™ Real-Time PCR Detection System (Bio-Rad, USA). The primer sequences are listed in Table 1. The relative mRNA expression levels were calculated using the 2^-∆∆CT method.Western blot analysisWhole-cell lysates were prepared using RIPA lysis buffer (Thermo Fisher Scientific, USA) and the proteinconcentration was determined using the BCA Protein Assay Kit (Thermo Fisher Scientific, USA). Westernblot analysis was performed as previously described (Zhang et al., 2019). Antibodies against p-PI3K, PI3K, p-AKT, AKT, and GAPDH were purchased from Cell Signaling Technology (USA).Statistical analysisData are expressed as the mean ± standard deviation (SD) and were analyzed using one-way ANOVA followed by Tukey's post hoc test. P < 0.05 was considered statistically significant.ResultsWNT3A and WNT4 promote osteogenic differentiation ofH-PDLCsTo investigate the effects of WNT3A and WNT4 on the osteogenic differentiation of H-PDLCs, the cells were cultured in OIM supplemented with recombinant human WNT3A or WNT4 (50 ng/mL), or vehicle control. Alizarin Red S staining showed that WNT3A and WNT4significantly promoted calcium deposition in the cells compared to the control group (Figure 1A). RT-PCR analysis showed that the mRNA expression levels ofosteogenic markers, including ALP, Runx2, OCN, and OPN, were significantly upregulated by WNT3A and WNT4 treatment (Figure 1B). These results indicate that WNT3A and WNT4 can promote the osteogenicdifferentiation of H-PDLCs.WNT3A and WNT4 activate the PI3K/AKT signaling pathway in H-PDLCsTo investigate the mechanisms underlying theosteogenic differentiation-promoting effects of WNT3A and WNT4, the activation of the PI3K/AKT signaling pathway was analyzed by Western blot. The results showed that WNT3A and WNT4 significantly increased the protein expression levels of p-PI3K and p-AKT in H-PDLCs, while total PI3K and AKT levels remained unchanged (Figure 2A). To confirm the involvement of the PI3K/AKT signaling pathway in the osteogenic differentiation of H-PDLCs, LY294002, a specific inhibitor of PI3K/AKT, was used. LY294002 treatment significantly inhibited the osteogenicdifferentiation-promoting effects of WNT3A and WNT4,as indicated by the decreased calcium deposition and mRNA expression levels of ALP, Runx2, OCN, and OPN (Figure 2B and 2C). These results suggest that the osteogenic differentiation-promoting effects of WNT3A and WNT4 are related to the activation of the PI3K/AKTsignaling pathway.DiscussionIn this study, we investigated the effects of WNT3A and WNT4 on the osteogenic differentiation of H-PDLCs and the underlying mechanism. The results showed that WNT3A and WNT4 significantly promoted the osteogenic differentiation of H-PDLCs, as indicated by the increased calcium deposition and mRNA expressionlevels of osteogenic markers. Furthermore, our data demonstrate that the osteogenic differentiation-promoting effects of WNT3A and WNT4 are related to the activation of the PI3K/AKT signaling pathway.The activation of the WNT signaling pathway has been shown to promote osteogenic differentiation and bone formation in MSCs (MacDonald et al., 2004; Zhu et al., 2006). In addition, WNT3A and WNT4 have been reported to induce the osteogenic differentiation of MSCs (Zhao et al., 2018; Jaberi et al., 2019). Our study extends these findings by demonstrating that WNT3A and WNT4 can also promote the osteogenic differentiation of H-PDLCs.The PI3K/AKT signaling pathway is involved in various cellular processes, including cell growth,proliferation, survival, and differentiation (Manning and Cantley, 2007). Previous studies have shown that the PI3K/AKT signaling pathway is activated by WNT signaling in various cell types (Bertrand et al., 2005; Moon et al., 2005). Our data show that WNT3A and WNT4 activate the PI3K/AKT signaling pathway in H-PDLCs,and the inhibition of this pathway by LY294002 attenuates the osteogenic differentiation-promoting effects of WNT3A and WNT4.In conclusion, our study demonstrates that WNT3A and WNT4 can promote the osteogenic differentiation of H-PDLCs, and their mechanism may be related to the activation of the PI3K/AKT signaling pathway. These findings provide a theoretical basis for theapplication of WNT3A and WNT4 in periodontal tissue engineering and periodontal regeneration.ReferencesBertrand, F.E., Angus, C.W., Partis, W.J., Sigounas, G., 2005. Developmental pathways in colon cancer: crosstalk between WNT, BMP, Hedgehog and Notch. Cell Cycle 4, 1186–1190.Day, T.F., Guo, X., Garrett-Beal, L., Yang, Y., 2005. Wnt/beta-catenin signaling in mesenchymal progenitorscontrols osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8, 739–750.Jaberi, E., Sabzevari, A., Poswal, H., Tayebi, L., Razi, Z.R., Behravan, J., 2019. Wnt signaling modulator DKK1 as an osteogenic differentiation enhancer of human adipose-derived stem cells. J. Cell. Biochem. 120, 2918–2932.MacDonald, B.T., Joiner, D.M., Oyserman, S.M., Sharma, P., Goldstein, S.A., He, X., Hauschka, P.V., 2004. Bone morphogenetic protein- and Wnt-induced osteogenesis in heterotopic ectopic sites. J. Bone Miner. Res. 19, 1185–1194.Manning, B.D., Cantley, L.C., 2007. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274.Moon, R.T., Bowerman, B., Boutros, M., Perrimon, N., 2005. The promise and perils of Wnt signaling through beta-catenin. Science 308, 826–833.Seo, B.M., Miura, M., Gronthos, S., Bartold, P.M., Batouli, S., Brahim, J., Young, M., Robey, P.G., Wang, C.Y., Shi, S., 2004. Investigation of multipotent postnatal stem cells from human periodontal ligament.Lancet 364, 149–155.Zhao, X., Xiao, G., Yao, J., Peng, T., Yan, F., Wang, S., 2018. Osteogenic differentiation of mesenchymal stem cells in mineralization-inducing mediumcontaining dexamethasone: An in vitro and in vivo analysis. Exp. Ther. Med. 15, 1897–1904.Zhu, M., Zhang, Y., Ling, J., Cao, R., Chen, X., Zhao, Y., Zhang, Y., Chen, J., Guo, W., Deng, Z., Qiao, Y., Xu, X., Hu, J., Li, M., Zhou, Q., Shi, S., Jin, Y., 2006. The effect of simvastatin on the osteogenic differentiation and bone formation in vivo. PLoS ONE 1, e115.Table 1. Primer sequences used in RT-PCR analysis.Gene Forward primer Reverse primerALP CCAGGACAGAATGGGAATCAAG GCCGTCAGTGGTACGTTTCTTRunx2 TGGATGCCCTTTGTCAAGTGA TTTTGGTGTTTCTTGGGGCTT OCN GCAGGAGGGCAATAAGGTAG TCAGCCAACTCTCATTTTGGOPN CCAAAGGGCAGAGACAACAA TGCTGTTAGGATGCTGGGTTFigure 1. WNT3A and WNT4 promote osteogenic differentiation of H-PDLCs. A, Alizarin Red S staining of H-PDLCs cultured in osteogenic induction medium(OIM) supplemented with recombinant human WNT3A or WNT4 (50 ng/mL) or vehicle control, after 14 days of culture. B, mRNA expression levels of osteogenic markers in H-PDLCs after treatment with WNT3A or WNT4 as detected by RT-PCR. Data are expressed as the mean ± SD (n=3). *P < 0.05, **P < 0.01 vs. control.Figure 2. WNT3A and WNT4 activate the PI3K/AKT signaling pathway in H-PDLCs. A, Western blot analysis of the protein expression levels of p-PI3K, PI3K, p-AKT, AKT, and GAPDH in H-PDLCs after treatment with WNT3A or WNT4 for 30 min. B, Alizarin Red S staining of H-PDLCs cultured in OIM supplemented with WNT3A or WNT4 in the presence or absence of LY294002 (10 μM), after 14 days of culture. C, mRNA expression levels of osteogenic markers in H-PDLCs after treatment with WNT3A or WNT4 in the presence or absence of LY294002, as detected by RT-PCR. Data are expressed as the mean ± SD (n=3). *P < 0.05, **P < 0.01 vs. control; #P < 0.05, ##P < 0.01 vs. WNT3A or WNT4In conclusion, our results demonstrate that WNT3A and WNT4 activate the PI3K/Akt signaling pathway in H-PDLCs, which leads to increased osteogenic differentiation. This effect is mediated through the upregulation of osteogenic marker expression and mineralization activity. Furthermore, blockade of thePI3K/Akt pathway using LY294002 abolished the WNT-induced osteogenic differentiation, suggesting that this pathway is necessary for the WNTs’ effects on H-PDLCs.Our findings have potential clinical implications for the use of WNTs in regenerative therapies for periodontal disease. The activation of the PI3K/Akt pathway by WNTs may enhance the ability of H-PDLCs to regenerate damaged periodontal tissues. Further studies are needed to determine the optimal dosage and duration of WNT treatment, as well as the effects of other signaling pathways and growth factors in combination with WNTs in promoting periodontal regeneration.In addition to periodontal tissue regeneration, the activation of the PI3K/Akt pathway by WNTs may have broader implications for the regeneration of other tissues and organs. The PI3K/Akt pathway has been shown to play important roles in cell survival, proliferation, and differentiation, as well as in tissue repair and regeneration. Therefore, further investigation into the role of WNTs and the PI3K/Akt pathway in tissue regeneration may lead to the development of new therapeutic approaches for a wide range of diseases and disordersThe potential for using WNTs and the PI3K/Akt pathway for tissue regeneration is an important field of research that has the potential to revolutionize the way we approach various diseases and disorders. ThePI3K/Akt pathway has been shown to be integral in repairing and regenerating tissues, and understanding more about how WNTs activate this pathway may allow us to develop more targeted and effective treatments.One example of how this research could benefitpatients is in the field of heart disease. Heart disease is the leading cause of death worldwide, with over 17 million deaths per year. Currently, treatments for heart disease are limited and are often focused on managing symptoms rather than curing the disease. However, by understanding the role of WNTs and thePI3K/Akt pathway in heart tissue regeneration, researchers could potentially develop new therapies that promote the regeneration of damaged heart tissue, potentially offering a cure for heart disease.Another area where this research is especially promising is in the field of nerve regeneration. The maintenance and regeneration of nerve tissue iscritical for many different neurological disorders, including spinal cord injury, Alzheimer's disease, and multiple sclerosis. By understanding better how WNTsand the PI3K/Akt pathway work in promoting nerve tissue regeneration, researchers could potentially develop new therapies to help individuals with these and other disorders regain function and improve their quality of life.Overall, understanding the role of WNTs and thePI3K/Akt pathway in tissue regeneration has the potential to lead to significant improvements in a wide range of diseases and disorders. Continuing research in this area will be critical in developing more targeted and effective treatments that can offer hope to those who suffer from these conditionsIn conclusion, research on WNTs and the PI3K/Akt pathway in tissue regeneration has shown great potential in developing new therapies for various diseases and disorders. The understanding of these pathways can pave the way for more targeted and effective treatments, improving the quality of lifefor those suffering from these conditions. Further research and investigation in this area are crucial to continue advancing medical knowledge and developing new treatments for patients。

杜仲醇提取物诱导骨髓间充质干细胞成骨分化中的Wnt信号途径

杜仲醇提取物诱导骨髓间充质干细胞成骨分化中的Wnt信号途径

杜仲醇提取物诱导骨髓间充质干细胞成骨分化中的Wnt信号途径张贤;朱丽华;钱晓伟;谭湘陵【摘要】10.3969/j.issn.2095-4344.2012.45.030% 背景:近年来,中药及中药有效部分对骨质疏松的干预和治疗作用的报道较多,但涉及细胞成骨分化调控的信号途径的报道较少.目的:观察杜仲诱导大鼠骨髓间充质干细胞成骨分化过程中Wnt 信号途径相关基因表达的变化.方法:将第3代 SD 大鼠骨髓间充质干细胞,接种到6孔培养板中,每孔1×103个细胞,24 h 后更换诱导培养基(含体积分数为7.5%胎牛血清的DMEM/F12(1∶1)加1/1000浓度的杜仲醇提取物).阴性对照组仍为正常培养基培养.诱导8 h,1 d,3 d 和7 d 时采用 RT-qPCR 法测定 Wnt 信号途径中Fzd 和 LRP 受体系列、β-catenin、核内 Wnt 调控靶基因系列及 Wnt 抑制因子(WIF1)等表达变化.结果与结论:与阴性对照组比较,诱导3 d 后 Fzd2表达升高11.86倍,Fzd3升高达到2倍;诱导7 d 后,Fzd2表达升高5.12倍,Fzd3恢复到正常水平;β-catenin 在诱导3 d 时表达升高达2倍;WIF1在诱导3 d 和7 d 后表达显著下降.结果提示 Wnt 信号途径可能参与了杜仲促骨髓间充质干细胞成骨分化过程.【期刊名称】《中国组织工程研究》【年(卷),期】2012(000)045【总页数】4页(P8520-8523)【关键词】杜仲;骨髓间充质干细胞;Wnt;基因表达;大鼠;干细胞【作者】张贤;朱丽华;钱晓伟;谭湘陵【作者单位】南京中医药大学无锡附属医院,江苏省无锡市214000;南京中医药大学无锡附属医院,江苏省无锡市214000;南通大学生命科学学院,江苏省南通市226019;南通大学生命科学学院,江苏省南通市226019【正文语种】中文【中图分类】R394.20 引言研究表明,杜仲对骨质疏松具有明显的干预和治疗作用[1],体外细胞培养实验发现,杜仲能够诱导骨髓间充质干细胞成骨分化[2-3]。

骨-软骨交互作用与骨关节炎的研究进展

骨-软骨交互作用与骨关节炎的研究进展

骨-软骨交互作用与骨关节炎的研究进展郑洁(综述);王瑞辉;寇久社(审校)【摘要】骨关节炎( OA)进程中,为适应局部生化环境及生物信号的改变,由软骨及软骨下骨构成的关节功能单位经历了不可控制的分解及合成代谢的重构过程。

软骨及软骨下骨信号分子的交互作用使两者在病理上相互影响、相互作用。

新生血管及微裂隙的形成为骨-软骨间分子通讯提供结构基础。

WNT、骨形态发生蛋白、转化生长因子β和丝裂原活化蛋白激酶等信号通路可能是构成OA中骨-软骨交互作用的分子基础。

%During osteoarthritis ( OA ) , functional units of joints comprising cartilage and subchondral bone undergo uncontrolled catabolic and anabolic remodeling processes to adapt to local biochemical and bio-logical signals.There is interplay between articular cartilage and subchondral bone in OA pathology.Forma-tion of vascularization and microcracks in joints contribute to molecular crosstalk between cartilage and sub-chondral bone during the process of OA.Wingless-type,bone morphogenic protein,transforming growth factor-βand mitogen-activated protein kinases signals may be the molecular basis for interaction of cartilage and sub-chondral bone in OA pathology.【期刊名称】《医学综述》【年(卷),期】2015(000)014【总页数】3页(P2507-2509)【关键词】骨关节炎;软骨;WNT信号;骨形态发生蛋白;丝裂原活化蛋白激酶【作者】郑洁(综述);王瑞辉;寇久社(审校)【作者单位】陕西中医学院针灸推拿系,陕西咸阳712046;陕西中医学院针灸推拿系,陕西咸阳712046;陕西中医学院第二附属医院康复针灸科,陕西咸阳712046【正文语种】中文【中图分类】R683骨关节炎(osteoarthritis,OA)是以进行性关节软骨退变、骨赘形成及继发关节间隙变窄为主要特征的退行性关节疾病[1]。

骨硬化蛋白的研究进展

骨硬化蛋白的研究进展

骨硬化蛋白的研究进展骨硬化蛋白(sclerostin),是一种由SOST基因编码的分泌型糖蛋白,通过与细胞表面的低密度脂蛋白相关蛋白复合受体(LRP4/5/6)结合抑制Wnt信号通路。

从其发现之初就有大量研究探讨其在Wnt通路中的作用机制及在骨代谢中的作用。

本文就Wnt通路、SOST基因及骨硬化蛋白的进展做一简要综述。

1.Wnt信号通路Wnt信号通路最初于1982年由Nusse和Varmus在研究小鼠乳腺肿瘤病毒时发现,后续研究发现其最关键的胞浆及核调控分子是β连环蛋白(β-catenin),故提出Wnt-β- catenin经典通路。

在细胞质内,Wnts家族蛋白与Wnt受体复合物(由Fzd4和Lrp5/6构成)结合后引起Lrp5/6胞内段末端氨基磷酸化[1],进而导致轴素结合位点的形成并与糖原合成激酶3(GSK3)和肿瘤性结肠息肉病蛋白结合形成蛋白复合物。

若无Wnt上游途径,GSK3可使β- catenin的氨基末端的泛素依赖性蛋白酶体的作用位点磷酸化使其失活和降解。

当存在Wnt信号时GSK3活性受到抑制使胞浆内的β-catenin稳定和活化,胞浆内β-catenin浓度升高导致β-catenin的核转位并与DNA结合蛋白的LEF/TCF家族结合导致目的基因启动子反式激活。

近年来,还发现核内的反式转录激活因子TAZ也可调控β-catenin水平,并独立于TCF/LEF位点外调控Wnt信号通路[2]。

2.SOST基因在对Von Buchem’s病(VBD)和骨硬化症(sclerosis)[3]这两种常染色体隐性遗传的罕见的高骨量疾病进行家系研究时发现两者的致病基因均定位于染色体17q12-q21的D17S1787~D17S930区域有关,故将其命名为SOST基因,其除在骨骼中[4]表达外也可肾脏、肺、胰腺中表达[5][6],其转录活性主要由近端启动子和远端增强子调控,而ERC5区域增强子的其主要部分[7],TGF-β和激活蛋白A(ActivinA)[8]等均可增强ERC5的活性。

骨细胞分泌sclerostin抑制骨形成

骨细胞分泌sclerostin抑制骨形成

骨细胞分泌sclerostin抑制骨形成罗明志;马云彤;罗雯;李莺【摘要】骨细胞可以感受理化刺激然后分泌多种信号分子调节骨重建.Sclerostin 是成熟性骨细胞分泌的一种抑制骨形成的糖蛋白.对sclerostin的发现、分泌细胞类型、分子特点和作用受体进行了简单回顾,并介绍sclerostin抑制成骨作用的信号通路,重点介绍sclerostin通过Wnt信号抑制成骨作用的分子机制.随后对基于sclerostin的作用机制设计药物用于治疗骨丢失的前景进行了展望.%Under physico-chemical stimulations,osteocytes secret multiple signal molecules to regulate bone remodeling.Sclerostin is a kind of glycoside protein secreted by mature osteocytes and inhibits bone formation.In this paper,we review the discovery,category of secretory cell,molecular features and action receptor of sclerostin and give an introduction to the signal pathway of sclerostin in inhibiting bone remodeling.We mainly address the molecular mechanism of sclerostin in inhibiting bone formation through Wnt signal.Based on the functional mechanism of sclerostin,we predict the possible treatment of bone loss.【期刊名称】《西安文理学院学报(自然科学版)》【年(卷),期】2012(015)002【总页数】4页(P6-9)【关键词】骨重建;骨细胞;sclerostin;Wnt信号【作者】罗明志;马云彤;罗雯;李莺【作者单位】西安文理学院生物技术学院,陕西西安710065/西北工业学生命学院,陕西西安710072;西安文理学院学报编辑部,陕西西安710065;西安文理学院生物技术学院,陕西西安710065;西安文理学院生物技术学院,陕西西安710065【正文语种】中文【中图分类】Q26骨是具有代谢活性的组织,受到多种理化因素调节.骨组织受到的机械应力发生改变时,骨量和组织结构将发生改变.增加骨组织的负载会导致骨量增加;骨组织负荷减小会导致骨量减少,如长时间卧床和失重会导致骨丢失[1].两种类型细胞参与到骨重建,包括血液系统来源的破骨细胞和具有成骨作用的骨基质细胞来源的成骨细胞和骨细胞.成骨细胞和破骨细胞在骨组织内只是短时间的存在,且数量少,位置不定.骨细胞则是骨组织内的主要细胞,且长期存在[2];而且骨细胞借助在骨陷窝-骨小管内的细胞突触和骨表面的细胞联系起来[3],这种结构对于骨细胞感知机械应力和传递信号十分重要[4].有研究表明骨细胞可能在骨组织响应机械应力的过程中起着重要作用[5].但骨细胞感受机械应力后如何进一步地调控骨形成/骨吸收的平衡还不是很清楚.Martin认为骨细胞在感受机械应力的作用后会产生信号分子,通过骨陷窝-骨小管系统到达骨表面,抑制骨衬细胞的激活,并且抑制成骨细胞的骨形成[6].早期的研究发现骨细胞可以分泌NO和PGE2等信号分子调节成骨作用.最新的研究发现骨细胞分泌的糖蛋白sclerostin在调节骨重建的过程中发挥关键作用,可以抑制骨形成[7].1 Sclerostin的发现硬化性骨化病(Sclerosteosis)和Van Buchem综合症(van Buchem disease,vbch)是两类少见的骨骼紊乱性疾病,两种均为隐性遗传病,其主要特征都是骨量增加,对其致病机制的深入研究发现sclerostin.1.1 硬化性骨化病和Van Buchem综合症硬化性骨化病最早报道于1958年[8].这种疾病最明显的特征是颅骨和下颌骨骨量增加,常见的症状还有口眼歪斜、巨人症和手部畸形.Van Buchem综合症和硬化性骨化病类似,表现为骨密度增加,但一般没有高身材和手部畸形病症.这两种疾病都是由骨形成活性增强导致骨量增加引起.Beighton在1984年推测这两种疾病的产生机制有相关性[9].1.2 Sclerostin的发现比利时安特卫普大学医学遗传学系Van等人在1998[10]和1999年[11]首先采用细胞遗传学方法将硬化性骨化病及Van Buchem综合症的相关基因定位到了人11号染色体的17q12-q21区域;随后采用基因定位克隆方法将致病的SOST 基因克隆[8].这种基因对应的蛋白称之为sclerostin.结果发现硬化性骨化病是由于这个基因的3种突变(2个在外显子上发生无义突变,1个在内含子剪切位点突变导致剪切错误),Van Buchem综合症则是由于在SOST基因下游35 kb处一个含有SOST基因增强子的52 kb片段的缺失[12],这些突变均导致骨细胞sclerostin表达量降低,引起骨量增加,上述现象提示这种基因对骨形成过程具有负调控作用.同时其他研究者的研究结果提示不同种族的患者SOST基因突变的位点可能有多种[13].2 Sclerostin分泌细胞骨组织内sclerostin不能由未分化的成骨细胞表达,而是由成熟的矿化骨细胞表达[14].Kenneth采用免疫组化的方法研究发现当成骨细胞分泌骨基质形成类骨质将自己包围后,自己就变成新生的骨细胞,但此时没有sclerostin表达,只有当基质矿化以后,这种蛋白才开始分泌,进而反馈性地抑制矿化作用.这种结果还提示该蛋白的产生应当是由一种刺激信号作用的结果.破骨细胞和成骨细胞均不能分泌sclerostin[15].3 Sclerostin抑制成骨作用的分子机制3.1 Sclerostin作用受体Sclerostin是一种分泌性的糖蛋白,其氨基酸序列和分泌性的糖蛋白DAN家族相似.DAN家族包括DAN、cerberus、gremlin、DAN相关蛋白、cerberus和caronte,它们都有一个共同的特性,即含有可以抑制骨形态发生蛋白(Bone Morphogenetic Protein,BMP)活性的胱氨酸结结构[13].BMP通过和具有丝氨酸/苏氨酸激酶活性的BMPⅠ和Ⅱ型受体结合,激活具有转录效应的蛋白Smad发挥功能,促进骨形成.该过程受到多个阶段调控,其中包括细胞外阶段.BMP结合的拮抗物可以阻止其和BMPR结合发挥功能.早期认为sclerostin是通过抑制骨形态发生蛋白信号发挥功能[16],即认为sclerostin是一种骨形态发生蛋白的拮抗物,抑制BMP信号进而抑制骨形成.但Van研究发现sclerostin不会抑制KS483细胞碱性磷酸酶基础水平的表达,也不会抑制BMP诱导的C2C12细胞碱性磷酸酶激活;同时对BMP诱导的KS483细胞的Smad的磷酸化和MSX-2的转录激活均没有影响,这些现象与noggin和gremli等典型的BMP拮抗物的作用结果不同,不能阻止BMP引起的靶分子的激活,提示sclerostin在发挥作用的过程中可能不是通过BMP信号通路[17].通过亲和实验发现sclerostin和BMP亲和力很低.随后的研究表明Wnt受体LRP5/6是sclerostin的受体[18].3.2 Wnt信号通路Wnt信号在胚胎发育、肿瘤发生和可再生组织稳态维持中均具有重要作用[19].信号起始于Wnt和细胞膜上复合受体的结合,这种受体包括卷曲蛋白(Frizzled,Fz)和LRP5/6蛋白.Wnt是一种分泌性糖蛋白家族,是发育过程中重要信号分子,多达几十种.Fz蛋白是一种G蛋白偶联受体蛋白.当Wnt和受体结合后会募集胞内一些蛋白和复合受体的胞内结构域结合,进而传递信号,如募集和修饰Disheveled蛋白.β-catenin是Wnt信号通路中的一个重要分子,它在胞质内的含量受到胞外Wnt 调节.当缺乏Wnt时,β-catenin会在casein kinase 1[20]和GSK-3β等多种蛋白的作用下磷酸化,随后和泛素结合,进而被蛋白酶降解.当Wnt存在时,可以抑制GSK-3β磷酸激酶的活性,使得β-catenin能够在胞质内积累,当浓度达到一定程度时,会转移到细胞核,和Tcf/Lef转录因子家族的蛋白结合,调控经典Wnt信号通路相关蛋白的表达[21].依据Wnt和复合受体的不同,Wnt信号可以有3种不同的通路,分别为经典、非经典和Ca2+通路,其中经典Wnt通路在骨形成过程中具有重要作用.Wnt信号在多个层次均受到调控.细胞外的调控主要在两个方面,一类是分泌性的Fz相关蛋白,它们是Fz蛋白的诱饵蛋白,可以和Wnt结合,进而阻止Wnt和复合受体的结合.另外一类是和LRP5/6结合,抑制Wnt信号,包括dickkopf(Dkk)和sclerostin.对Dkk的研究发现它是一种Wnt信号的拮抗物,至今在哺乳动物中已发现4种Dkk.但是只有Dkk1和Dkk2是经典的Wnt信号的拮抗物,它们均可以和LRP5/6及Kremen的复合体结合,并且通过第二个富含半胱氨酸的结构域抑制Wnt信号[21].3.3 Sclerostin通过Wnt信号抑制成骨作用硬化性骨化病是由于sclerostin表达缺失引起,这个结论提示sclerostin可能是成骨作用的抑制剂.与此相印证的是,在小鼠体内过表达sclerostin,然后以骨钙素作为成骨指标,结果发现骨量减少,同时骨矿含量、皮质厚度、骨小梁和骨长度均减小[16].但是对骨吸收影响不大.体外的实验结果进一步表明sclerostin可以抑制成骨细胞的发育,包括成骨细胞的增殖以及早期和晚期分化[13].同时还发现sclerostin可以增加成骨细胞的Caspase活性,诱导成骨细胞凋亡,这可能是sclerostin抑制骨形成的另外一种机制[22].还有实验结果表明,被新矿化的基质包埋的骨细胞可以分泌sclerostin并运送到骨表面的成骨细胞,进而在各个阶段抑制成骨细胞的发育,最终导致骨形成的抑制;Li等人[23]研究表明sclerostin可以和LRP5/6结合,抑制成骨细胞经典Wnt信号通路,从而抑制骨形成.4 总结和展望综上所述,sclerostin是成熟性骨细胞分泌的一种抑制成骨作用的糖蛋白,可以和成骨细胞表面的LRP5/6结合,从而抑制Wnt信号,抑制成骨细胞的成骨活性.骨丢失是一种严重影响人类健康的骨疾病.现在已经找到一些药物可以对抗骨丢失,但除PTH还没有很好促进骨形成药物.因此深入研究sclerostin抑制骨形成的机制无论是对骨胳发育的认识还是对寻找治疗骨质疏松症的有效药物都具有重要的意义,如可以采用sclerostin抗体治疗骨丢失[24].[参考文献][1] HUANG Y,DAI ZQ,LING SK,et al.Gravity,a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells[J].J Biomed Sci,2009,16(1):87.[2] KNOTHE TATE ML,ADAMSON JR,TAMI AE,et al.The osteocyte [J].Int J Biochem Cell Biol,2004,36(1):1-8.[3] BELLIDO T.Osteocyte control of bone formation via Sost/sclerostin [J].J Musculoskelet Neuronal Interact,2006,6(4): 360-363.[4] ARDEN EM,BURGER EH,NIJWEIDE PJ.Function of osteocytes in bone[J].J Cell Biochem,1994,55:287-299.[5] BURGER EH,KLEIN-NULEND J.Mechanotransduction in bone-role of the lacunocanalicular network[J].FASEB J,1999,13:101-112.[6] MARTIN RB.Does osteocyte formation cause the nonlinear refilling of osteons[J].Bone,2000,26:71-78.[7] CEJKA D,JÄGER-LANSKY A,KIEWEG H,et al.Sclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients[J].Nephrol Dial Transplant,2012,27(1):226-230.[8] BALEMANS W,EBELING M,PATEL N,et al.Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein(SOST)[J].Hum Mol Genet,2001,10:537-543.[9] BEIGHTON P,BARNARD A,HAMERSMA H,et al.The syndromic status of sclerosteosis and van Buchem disease[J].Clin.Genet,1984,25:175-181.[10]VAN HUL W,BALEMANS W,VAN HE,et al.Van Buchem disease(hyperostosis corticalis generalisata)maps to chromosome 17q12-q21[J].Am J Hum Genet,1998,62:391-399.[11]BALEMANS W,VAN DEN EJ,FREIRE PAES-ALVES A,etal.Localization of the gene for sclerosteosis to the Van Buchem disease-gene region on chromosome 17q12-q21[J].Am J Hum Genet,1999,64:1661-1669.[12]LÖWIK CW,VAN BEZOOIJEN RL.Wnt signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation[J].J Musculoskelet Neuronal Interact,2006,6(4):357.[13]BRUNKOW ME,GARDNER JC,VAN NESS J,et al.Bone dysplasia sclerosteosis results from loss of the SOST gene product,a novel cystine knot-containing protein[J].Am J Hum Genet,2001,68:577-589. [14]VAN BEZOOIJEN RL,ROELEN BAJ.VISSER A,et al.Sclerostin is an osteocyte-expressed negative regulator of bone formation,but not a classical BMP antagonist[J].J Exp Med,2004,199(6):805-814.[15]POOLE KE,VAN BEZOOIJEN RL,LOVERIDGE N,et al.Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation [J].The FASEB Journal,2005,19(13):1842-1844.[16]WINKLER DG,SUTHERLAND MK,GEOGHEGAN JC,et al.Osteocyte control of bone formation via sclerostin,a novel BMP antagonist[J].EMBO,2003,22(23):6267-6276.[17]WINKLER DG,YU C,GEOGHEGAN JC,et al.Noggin and Sclerostin Bone Morphogenetic Protein Antagonists Form a Mutually Inhibitory Complex[J].J Biol Chem,2004,279(35):36293-36298.[18]OTT SM.Sclerostin and Wnt Signaling-The Pathway to Bone Strength[J].J Clin Endocrinol Metab,2005,90(12): 6741-6743.[19]KRISHNAN V,BRYANT HU,MACDOUGALD OA.Regulation of bone mass by Wnt signaling[J].J Clin Invest,2006,116(5):1202-1209. [20]DAVIDSON G,WU W,SHEN J,et al.Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction [J].Nature,2005,438:867-872.[21]CLEVERS H.Wnt/β-catenin signaling in development and disease [J].Cell,2006,127(3):469-480.[22]SUTHERLAND MK,GEOGHEGAN JC,YU C,et al.Sclerostin promotes the apoptosis of human osteoblastic cells:a novel regulation of bone formation[J].Bone,2004,35:828-835.[23]LI X,ZHANG Y,KANG H,et al.Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling[J].J Biol Chem,2005,280(20):19883-19887.[24]LI X,OMINSKY MS,WARMINGTON KS,et al.Sclerostin antibody treatment increases bone formation,bone mass,and bone strength in a rat model of postmenopausal osteoporosis[J].J Bone Miner Res,2009,24(4):578-588.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Molecular and Cellular Endocrinology 310 (2009) 52–62Contents lists available at ScienceDirectMolecular and CellularEndocrinologyj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /m ceReviewIs Wnt signalling the final common pathway leading to bone formation?Frances Milat a ,b ,c ,∗,Kong Wah Ng a ,baSt Vincent’s Institute,9Princes St,Fitzroy,Victoria 3065,AustraliabDepartment of Endocrinology and Diabetes,St Vincent’s Health,Fitzroy,Victoria 3065,Australia cPrince Henry’s Institute,PO Box 5152,Clayton,Victoria 3168,Australiaa r t i c l e i n f o Article history:Received 30April 2009Received in revised form 3June 2009Accepted 4June 2009Keywords:Bone formation Wnt LRPOsteoblasts PTH BMPsa b s t r a c tSince the discovery of the link between mutations in the LRP5gene and human bone mass,considerable progress has been made in our understanding of Wnt signalling and bone formation.The connection between canonical Wnt signalling and bone formation is convincing,and there is evidence of interaction between the Wnt signalling pathway and key growth factors,transcriptional factors and systemic hor-mones.More recently,the role of the non-canonical pathway in bone metabolism has also started to be explored as well as potential bone–gut interactions.This review focuses on the role of the Wnt pathway in osteoblast differentiation as well as the interplay between Wnt signalling and other pathways involved in bone formation.© 2009 Elsevier Ireland Ltd. All rights reserved.Contents 1.Introduction..........................................................................................................................................522.The osteoblast........................................................................................................................................533.The Wnt/␤-catenin signalling pathway .............................................................................................................533.1.Overview......................................................................................................................................534.The Wnt proteins and bone biology .................................................................................................................545.The Wnt receptors and bone biology................................................................................................................556.Antagonists of the Wnt signalling pathway .........................................................................................................566.1.Dickkopfs (Dkks)..............................................................................................................................566.2.Secreted frizzled related proteins (sFRPs)....................................................................................................566.2.1.Wnt inhibitory factor (Wif-1).......................................................................................................577.SOST,Wnt/␤-catenin signalling and bone formation................................................................................................578.Interaction between Wnt/␤-catenin signalling and key growth factors,transcriptional factors and systemic hormones.........................578.1.Bone morphogenetic proteins (BMPs)........................................................................................................578.2.Parathyroid hormone (PTH)..................................................................................................................589.Conclusions ..........................................................................................................................................59Acknowledgements..................................................................................................................................59References ...........................................................................................................................................591.IntroductionBone is a specialised connective tissue with an intricate system of metabolically active cells and extracellular matrix that are vital to the performance of its structural,mechanical and metabolic roles.∗Corresponding author at:Prince Henry’s Institute,PO Box 5152,Clayton,Victoria 3168,Australia.Tel.:+61395944372;fax:+61395946125.E-mail address:at@ (at).Osteoblasts and osteoclasts are continually involved in the regen-eration,remodelling and repair of a vast network of bone matrix.Our understanding of the regulation of bone formation continues to evolve,with genetic and molecular studies identifying key local and systemic factors involved in bone remodelling (Zaidi,2007).In 2001,new insights into the control of bone mass came from discoveries related to the gene for low-density lipoprotein receptor-related protein 5(LRP5).LRP5,LRP6and Frizzled (Fzd)function as co-receptors for Wnt proteins,and the LRP and Fzd receptor com-plex provide signal transduction for the canonical Wnt signalling0303-7207/$–see front matter © 2009 Elsevier Ireland Ltd. All rights reserved.doi:10.1016/j.mce.2009.06.002at,K.W.Ng/Molecular and Cellular Endocrinology310 (2009) 52–6253pathway.Loss of function mutations in the LRP5gene were shown to be associated with low bone mass in the osteoporosis pseudoglioma syndrome(Gong et al.,2001),whereas a single amino-acid substitu-tion(G171V)in the same gene was associated with a high bone mass state(Boyden et al.,2002;Little et al.,2002).Later,six other amino-acid substitutions were also shown to result in the high bone mass phenotype(Van Wesenbeeck et al.,2003;Ai et al.,2005).Animal studies largely confirmed what was seen in human disease,with LRP5−/−mice demonstrating decreased osteoblast proliferation and low bone mass(Kato et al.,2002).In contrast,mice over-expressing the human G171V LRP5mutation associated with high bone mass had a phenotype with increased bone mass similar to that described in the original kindred(Babij et al.,2003).Since the original publication connecting Wnt signalling to bone formation less than a decade ago,there has been a stream of research aimed at elucidating the complex roles that Wnt proteins, endogenous Wnt inhibitors and various signalling pathways play in the regulation of bone mass.This review will focus on the role of the Wnt pathway(and its components)in the regulation of osteoblast differentiation and bone formation as well as the interplay between Wnt signalling and other pathways involved in bone formation. 2.The osteoblastThe osteoblast is derived from multipotential mesenchymal stem cells,which also give rise to bone marrow stromal cells, chondrocytes,muscle cells and adipocytes under the influence of local growth factors,hormonal regulators and transcriptional fac-tors(Aubin et al.,2006).Bone formation results from a series of events that involves the differentiation of mesenchymal precursor cells into osteoblast precursors(osteoprogenitor,pre-osteoblast), the maturation of osteoblasts and the formation and the miner-alisation of matrix(Martin et al.,2008).Under light microscopy, osteoblasts appear as plump cells approximately20–30␮m in diameter lined up on the surface of unmineralised osteoid.The osteoblast has an eccentric round nucleus,a strongly basophilic cytoplasm and a prominent Golgi apparatus(Doty and Schofield, 1976).The plasma membrane of the osteoblast is rich in alkaline phosphatase and this is a useful marker for the detection of mature osteoblasts in culture.Osteoblasts have receptors for parathyroid hormone,prostaglandins,oestrogen,vitamin D3,several adhesion molecules and cytokines reflecting the key factors involved in local and systemic regulation of osteoblast function.Osteoblasts express receptor activator of NF␬B ligand(RANKL)on its cell surface,which interacts with its cognate receptor RANK(receptor activator of NF␬B)on osteoclast precursors to promote osteoclast differentia-tion.Osteoblasts also secrete osteoprotegerin(OPG),a decoy RANK receptor,which inhibits osteoclast formation(Suda et al.,1999). Towards the end of the matrix secretory period,the osteoblast loses its synthetic capacity and either becomes a lining cell or becomes trapped behind an advancing calcification front and is embedded in bone as an osteocyte.Lining cells appear elongated andflattened under light microscopy,and cover cancellous and endocortical bone surfaces.Lining cells are also known as resting osteoblasts,surface osteoblasts,inactive osteoblasts andflattened mesenchymal cells(Martin et al.,2008).In comparison,the osteo-cyte is the most abundant cell type in bone,with as many as10times the number of osteocytes as osteoblasts.They have a stellate mor-phology and reside in lacunae in mineralised matrix(Parfitt,1977). The osteocytes in their lacunae communicate with each other and other cells via extensions of their plasma membrane that run along canaliculi.They have long been thought to be mechano-sensors in bone that communicate with osteoblasts and osteoblast pro-genitors through the canalicular network,and targeted ablation of osteocytes has been shown to induce osteoporosis with defective mechanotransduction(Tatsumi et al.,2007).Osteocytes are also responsive to changes in systemic factors as shown by increased osteocyte apoptosis with glucocorticoid excess or oestrogen with-drawal(Tomkinson et al.,1997;Weinstein et al.,1998,2000).In recent years however,the complex role of the osteocyte in the con-trol of bone mass has been appreciated through the discovery of the protein product of the SOST(SclerOSTeosis)gene,sclerostin.Scle-rostin is produced exclusively by osteocytes and its critical role in the inhibition of bone formation is evident in the sclerosing bone dysplasias caused by inactivating mutations in SOST(Balemans et al.,2001;Brunkow et al.,2001).Targeted deletion of the SOST gene in mice results in increased bone formation and bone strength(Li et al.,2008);conversely transgenic mice over-expressing SOST have low bone mass(Loots et al.,2005).The action of sclerostin is to antagonise LRP5/6-mediated Wnt signalling and the complex inter-play between sclerostin,hormonal and transcriptional regulators of bone formation will be examined in the latter part of this review.3.The Wnt/␤-catenin signalling pathway3.1.OverviewSince the discovery of thefirst Wnt gene27years ago(Nusse and Varmus,1982)research into the area of Wnt signalling has expanded to encompass areas as diverse as embryogenesis,oncoge-nesis,haematology,stem cell research and now bone biology.Wnt proteins are critical signalling molecules in developmental biology, with roles in early axis specification(Huelsken et al.,2000),brain patterning(Heisenberg et al.,2001),intestinal development(Batlle et al.,2002)and limb development(Hartmann and Tabin,2000, 2001).Wnt proteins play a vital role in adult tissue maintenance, with aberrations in Wnt signalling leading to disease.Diverse con-ditions such as familial adenomatous polyposis(Kinzler et al.,1991; Nishisho et al.,1991),familial exudative vitreoretinopathy with retinal angiogenesis(Robitaille et al.,2002;Niemann et al.,2004), osteoporosis pseudoglioma syndrome(Gong et al.,2001)and high bone mass disorders(Boyden et al.,2002;Little et al.,2002)are all caused by mutations in genes encoding Wnt signal transducing proteins.It is through understanding of the role of Wnt signalling in bone formation that new therapeutic targets may be sought to relieve the burden of osteoporosis and other diseases affecting the skeleton.Wnts are secreted glycoproteins that activate at least three receptor-mediated signalling pathways to regulate cellular activ-ities.Wnt family members are defined by sequence homology to Drosophila wingless(wg)and the murine int-1proto-oncogene(hence its name).To date,nineteen Wnt genes have been identified in the mouse and human genomes (/rnusse/wntwindow.htlm).Historically, Wnt proteins were grouped into two classes,canonical and non-canonical,based on their activity in in vivo assays or cell lines. Canonical Wnts(including Wnt1,Wnt3A,Wnt8,Wnt10b)stabilise ␤-catenin and induce transcription of TCF/LEF target genes.In con-trast,non-canonical Wnts(including Wnt4,Wnt5a and Wnt11) activate Wnt signalling independent of␤-catenin transcriptional function.Non-canonical Wnt pathways are diverse and include Wnt/planar cell polarity signalling,the Wnt–cGMP/Ca2+pathway and a protein kinase A pathway(Semenov et al.,2007).More recently,however,it has been proposed that Wnt proteins them-selves are not canonical or non-canonical,but that distinct sets of receptors determine the signalling pathway initiated by the Wnt proteins(van Amerongen et al.,2008).The Wnt–␤-catenin signalling pathway is the most extensively studied pathway with direct relevance to basic bone biology.The critical function of the Wnt pathway is to activate␤-catenin-54 at,K.W.Ng /Molecular and Cellular Endocrinology310 (2009) 52–62Fig.1.(A)Wnt signalling pathway in the inactive state,showing a ligand Wnt inhibited by a decoy sFRP,the co-receptor,LRP5/6,bound by either inhibitory protein,sclerostin or Dkk,and GSK-3␤in the active state,resulting in proteosomal degradation of ␤-catenin.(B)Active Wnt signalling,with LRP5/6engaging in receptor complex after Wnt binding,disruption of GSK-3␤inhibitory complex,stabilisation of ␤-catenin and its translocation to nucleus where it activates transcription.With kind permission from Springer Science +Business Media:Osteoporosis International,Regulatory pathways revealing new approaches to the development of anabolic drugs for osteoporosis,19(8),2008,pp.1125–38,Martin TJ,Sims NA,Ng KW,Fig.2.dependent transcription (Fig.1).In the absence of Wnt receptor activation,␤-catenin is phosphorylated by a complex that con-tains the scaffolding protein axin,adenomatous polyposis coli protein (APC),glycogen synthase kinase-3␤(GSK3)and casein kinase I (Krause et al.,2008).The kinases phosphorylate ␤-catenin,allowing it to be recognised by the E3ubiquitin ligase ␤-TrCP and targetted for proteosomal degradation (Aberle et al.,1997).␤-Catenin mutants that lack the phosphorylation sites necessary for degradation cannot transmit Wnt signals and acti-vate Wnt target genes (Munemitsu et al.,1996).Cytoplasmic ␤-catenin levels are normally kept low through this continu-ous degradation.In contrast,in the presence of Wnt ligands,this degradation pathway is inhibited and ␤-catenin accumu-lates in the cytoplasm and nucleus.Nuclear ␤-catenin can then interact with transcription factors such as lymphoid enhancer-binding factor 1/T cell-specific transcription factor (TCF/LEF)to affect transcription through the recruitment of various cofactors.A large number of Wnt target genes have been identified to date (/∼rnusse/pathways/targets.html ).The precise mechanism by which Wnt binding to its receptors triggers downstream signalling events is subject to debate and is part of ongoing research (Fuerer et al.,2008).The binding of Wnt to the receptors Fzd and LRP5or LRP6(LRP5/6)(Pinson et al.,2000;Tamai et al.,2000;Wehrli et al.,2000;He et al.,2008)mediates Wnt signalling at the plasma membrane.While the mechanisms by which this receptor complex initiates signalling remains to be understood,Wnt-induced phosphorylation of LRP6is critical.The phosphorylation of the PPPSP motif of LRP6by GSK3,which primes the phosphorylation of xS in the PPPSPxS motif by casein kinase I is thought to provide the docking site for axin within the LRP6intra-cellular domain (Tamai et al.,2004;Davidson et al.,2005;Zeng et al.,2005;Nusse,2008).This process also involves the cytoplasmic scaf-folding protein dishevelled (Dsh/Dvl),and recent work has shown that Wnt induces LRP6signalosomes and promotes dishevelled-dependent LRP6phosphorylation (Bilic et al.,2007).Fzd,Dvl and axin were all shown to be required for LRP6phosphorylation by GSK3(Zeng et al.,2008).Axin is a critical protein in the ␤-catenin destruction complex and acts as a negative regulator of Wnt signalling (Nusse,2008).The docking of Axin to the LRP cytoplasmic tail facilitates the dis-sociation of the Axin/APC/GSK3destruction complex,leading to ␤-catenin stabilisation and subsequent nuclear translocation.Once in the nucleus,␤-catenin interacts with LEF/TCF transcrip-tion factors to initiate transcriptional activation of target genes (Behrens et al.,1996).In the absence of Wnt signalling,TCF forms a complex with Groucho (Cavallo et al.,1998)and acts as a repressor of Wnt target genes.Interactions between Groucho and the histone deacetylase Rpd3mediate the repression (Chen et al.,1999).␤-Catenin displaces Groucho from LEF/TCF (Daniels and Weis,2005)and this is thought to be a mechanism for the switch from transcrip-tional repression to activation.There are other negative regulators of ␤-catenin including “inhibitor of ␤-catenin and TCF”(ICAT)and Chibby,a nuclear antagonist that binds to the C-terminus of ␤-catenin (Takemaru et al.,2003).Much of the molecular complexity of gene transcription in response to Wnt signalling remains to be elucidated.4.The Wnt proteins and bone biologyWnts are secreted glycoproteins with 350–400amino acids and 23–24residues of conserved cysteines (Uusitalo et al.,1999),many of which are likely to participate in intramolecular disulfide bonds.The structures of Wnt molecules remain elusive,as they are hydrophobic,highly insoluble and until recently,have been difficult to purify.The first isolation of an active Wnt molecule,Wnt3a (Willert et al.,2003),demonstrated palmitoylation on a conserved cysteine (C77),which explained the insoluble nature of Wnts.There is in vitro evidence that osteoblasts produce Wnt pro-teins.In mouse bone marrow stromal osteoblast cultures,a marked increase in expression of Wnt7b was noted after induction of differ-entiation (Zhang et al.,2004)and Wnt7b induced a 3-fold increase in LEF-1reporter activity.Wnt1,Wnt4and Wnt14were detected in calvaria and primary osteoblasts (Kato et al.,2002)and Wnt1,Wnt4,at,K.W.Ng/Molecular and Cellular Endocrinology310 (2009) 52–6255Wnt5a and Wnt7a were detected in two of four osteosarcoma cell lines(Hoang et al.,2004).Some Wnt proteins have been shown to have an effect on bone physiology.Wnt10b−/−mice have decreased trabecular bone and serum osteocalcin(Bennett et al.,2005).FABP4-Wnt10b mice that express the Wnt10b transgene in marrow have increased bone mass and strength and the elevated bone mass appeared to confer pro-tection against ageing and ovariectomy.The expression of Wnt10b in mesenchymal progenitors induced the expression of Runx2and osterix and stimulated osteoblastogenesis(Bennett et al.,2005). Wnt10b inhibited the adipogenic transcription factors C/EBP␣and PPAR␥and blocked adipogenesis.Wnt1,Wnt2and Wnt3a have been shown to induce the expres-sion of alkaline phosphatase in mesenchymal cell lines(Gong et al.,2001;Rawadi et al.,2003).Over-expression of␤-catenin-dependent Wnt1,Wnt2and Wnt3a resulted in an increase in alkaline phosphatase activity,whereas over-expression of the␤-catenin independent Wnt4and Wnt5a had no effect.Though Wnt3a induced alkaline phosphatase gene expression in mesenchymal cells,Runx2/Cbfa1,osteocalcin and collagen type1gene expression were not affected.Furthermore,the induction of alkaline phos-phatase by Wnt3a was independent of BMP2and sonic hedgehog (SHH),but inhibition of Wnt signalling disrupted the ability of BMP2 and SHH to induce alkaline phosphatase.Wnt3a had also been shown to inhibit adipocyte differentiation,with decreased expres-sion of PPAR␥in mesenchymal C3H10T1/2cells over-expressing Wnt3a.In a study of Wnt3a+/−male mice,a decrease in bone mass was seen(Takada et al.,2007),highlighting the role of the canon-ical Wnt cascade in osteoblastogenesis(Gong et al.,2001;Glass et al.,2005).However,adipogenesis seemed unaffected in Wnt3a+/−mice.Wnt5a has been shown to induce osteoblastogenesis through the attenuation of PPAR␥-induced adipogenesis in bone mar-row mesenchymal stem cells(Takada et al.,2007).Wnt5a activated the non-canonical Wnt signalling cascade through CaMKII–TAK1–TAB2–NLK and did not activate the TCF/LEF canoni-cal signalling.Furthermore,the same group showed that Wnt5a+/−mice had a reduction in bone mass with a reduced number of osteoblasts,whereas an increased number of adipocytes were seen in the bone marrow.Non-canonical Wnt signalling repressed PPAR␥function through chromatin inactivation triggered by recruitment of a repressing histone methyltransferase(Takada et al.,2007).Both the canonical and non-canonical Wnt signalling pathways play a role in osteoblastogenesis.5.The Wnt receptors and bone biologyThefirst identified Wnt receptors were members of the Friz-zled family of receptors(Wodarz and Nusse,1998).Several groups subsequently showed that members of the low-density lipopro-tein receptor family were essential co-receptors for Wnt signalling (Pinson et al.,2000;Tamai et al.,2000;Wehrli et al.,2000).There are currently10members of the Fzd gene family and Fzd receptors can bind Wnt proteins with a Kd of1.6nM(He,2003).Structurally, the Fzd receptor has an extracellular Wnt-binding domain,a seven transmembrane segment and an intracellular C-terminal tail.Wnts interact with Fzd through a cysteine-rich domain(CRD)on the extracellular surface(Hsieh et al.,1999;Wu and Nusse,2002).LDL receptor-related proteins have been classically known for their role in lipoprotein metabolism and atheroma formation but LDL receptor-related proteins are critical in the Wnt signalling pathway.The importance of thefly ortholog of LRP,arrow,as a co-receptor in the initiation of Wg signalling was demonstrated9years ago(Wehrli et al.,2000).LRP5and LRP6are71%homologous.At the amino terminus of the extracellular domain of LRP5and6,four ␤-propeller motifs alternate with four epidermal growth factor-like repeats.This creates binding sites for extracellular ligands(He et al.,2004;Williams and Insogna,2009).The cytoplasmic tail is anchored into the plasma membrane by a single pass transmem-brane segment.The cytoplasmic tail contains the series of highly conserved PPPS/TP motifs,which,as discussed earlier,are phos-phorylated following Wnt activation.The transport of LRP from the endoplasmic reticulum to the cell membrane requires a molecu-lar chaperone known as mesoderm development(Mesd)in mice (Hsieh et al.,2003).Molecular chaperones promote the folding of lipoprotein receptors in the endoplasmic reticulum.The effect of Mesd deficiency in the mouse is severe,with abnormal devel-opment of anterior–posterior polarity and impaired mesodermal differentiation(Hsieh et al.,2003).In humans,two kindreds with a familial high bone mass phenotype were found to have a Gly171-to-Val mutation in LRP5(Boyden et al.,2002;Little et al.,2002). This point mutation was predicted to disturb the structure of the first six-bladed␤-propeller module in LRP5.The G171V mutation inhibits the ability of Dkk1and potentially other proteins to bind to LRP5and inhibit Wnt signalling.In addition,the G171V mutation was shown to disrupt the interaction of LRP5with Mesd(Zhang et al.,2004),resulting in fewer LRP5molecules on the cell surface.Mice with disruption of LRP5in all cells,similar to patients with OPPG,have a low bone mass phenotype and persistent embryonic eye vascularisation(Kato et al.,2002).The low bone mass became evident in the postnatal period and was secondary to reduced osteoblast proliferation.Cbfa1expression was normal in the Lrp5−/−mice,revealing that the phenotypic bone changes were a Cbfa1 independent phenomenon.Interestingly,deletion of␤-catenin in differentiated osteoblasts in mice did not result in the phenotypic and molecular abnormalities in bone cells seen with the inactiva-tion of LRP5.This mutation primarily affected bone resorption,with an increase in osteoclasts secondary to a decrease in OPG(Glass et al.,2005).This demonstrates the complexity of Wnt signalling in bone formation,with␤-catenin controlling osteoclast differentia-tion by regulating OPG expression in differentiated osteoblasts.In contrast,conditional deletion of␤-catenin in limb and head mes-enchyme in mouse embryos resulted in osteoblast precursors that were blocked in differentiation with subsequent development into chondrocytes instead of osteoblasts(Day et al.,2005;Hill et al., 2005).Recently,Yadav et al.(2008)demonstrated that LRP5inhibited tryptophan hydroxylase(Tph1)expression,a rate-limiting enzyme in the gut-derived serotonin biosynthetic pathway,inhibiting sero-tonin synthesis in the duodenum.Serotonin had previously been implicated in the regulation of bone mass(Warden et al.,2005) and gut-specific deletion of LRP5was shown to result in low bone mass phenotype seen in LRP5null mice(Yadav et al.,2008).In contrast,osteoblast-specific deletion of LRP5did not cause a sim-ilar osteoblast defect.The authors pointed out that the low bone phenotype of LRP5null mice appeared postnatally,with normal bone formation during development,and furthermore that the osteoblast proliferation defect in LRP5−/−mice postnatally was not cell autonomous.The evidence for an important role for Wnt sig-nalling in bone formation remains compelling.It is possible that LRP6,rather than LRP5,is the critical co-receptor for Wnt signalling in bone.Though Yadav et al.(2008)did not exclude the possibility that LRP5may regulate osteoblast differentiation in bone postna-tally,their work provides convincing evidence from mouse genetics for an important role of LRP5in inhibiting serotonin production,and has demonstrated for thefirst time the role of complex gut–bone interactions in the regulation of bone mass.Likely consistent with this,the LRP6loss of function bone phenotype is much more severe than the LRP5loss of function phenotype,reflecting the critical role of LRP6during embryogenesis.Although LRP6−/−mice die at birth (Pinson et al.,2000),LRP6heterozygous mice display reduced bone56 at,K.W.Ng/Molecular and Cellular Endocrinology310 (2009) 52–62mass(Holmen et al.,2004).In2007,a mis-sense mutation in LRP6 that resulted in impaired Wnt signalling was reported in a family with autosomal dominant early coronary artery disease,metabolic risk factors and osteoporosis(Mani et al.,2007).Wnt proteins are not the only known ligands for the Fzd–LRP5/6 receptor complex.There are secreted proteins that antagonise the receptor directly.Other antagonists interfere with Wnt proteins themselves.6.Antagonists of the Wnt signalling pathwayThere are several known classes of proteins that antagonise vertebrate Wnts.Dickkopfs(Dkk)proteins and Wise compete for the LRP5/6receptor to prevent canonical signalling.In con-trast,secreted frizzled related proteins(sFRPs),Cerberus and Wnt Inhibitory Factor1(WIF-1)bind to directly to Wnts.Studies of Cerberus and Wise are largely limited to the Xenopus,so we will concentrate on Dkks,sFRPs and Wif-1and their contribution to Wnt signalling in bone.Furthermore,the product of the SOST gene,scle-rostin,will also be reviewed as an important inhibitor of canonical Wnt signalling.6.1.Dickkopfs(Dkks)The Dkk family has four members—Dkk1–Dkk4.Dkk gene expression is both temporally and spatially regulated throughout development,and there are elevated expression patterns in tissues that mediate epithelial-mesenchymal transformation(Monaghan et al.,1999),including the heart,limbs and bone.Dkk1is the most extensively studied DKK family member.In embryos,Dkk1is involved in head development(Glinka et al.,1997). Dkk−/−mice lack head structures anterior to the otic vesicle as well as anterior neural structures including the telencephalon,dien-cephalon and parts of the midbrain(Mukhopadhyay et al.,2001). Xenopus embryos over-expressing Dkk1develop enlarged heads and shortened tails(Glinka et al.,1997).However,Dkk1also has an important role in bone biology.Dkk1mRNA has been isolated from osteocytes(Zhang et al.,2004)and osteosarcoma cell lines (Gregory et al.,2003).Dkk1over-expression in transgenic mice resulted in severe osteopenia with a49%reduction in the number of osteoblasts(Li et al.,2006).In contrast,mice engineered to lack Dkk1led to an increase bone formation and bone mass(Morvan et al.,2006).Gene expression profiling in myeloma patients with and without bone lesions demonstrated that an elevated expression of Dkk1by plasma cells correlated with bone disease(Tian et al., 2003).Treatment of C2C12cells with recombinant Dkk1and patient sera containing high Dkk1levels inhibited BMP2/Wnt-induced ALP production.More recently,the treatment of myeloma-bearing SCID-rab mice with anti-Dkk1antibody decreased osteolytic bone lesions,suggesting a potential role for Dkk1as a therapeutic target in myeloma bone disease(Yaccoby et al.,2007).Dkk1binds to LRP6with high affinity(Bafico et al.,2001;Mao et al.,2001;Semenov et al.,2001)as well as to the Kremens(Mao et al.,2002),another class of transmembrane protein.There are two Kremen proteins—Kremen1and Kremen2.Kremen2,Dkk1and LRP6form a complex that disrupts Wnt/LRP signalling by promoting removal of the Wnt receptor from the plasma membrane by endo-cytosis(Mao et al.,2002).It is postulated that the internalisation of LRP through Kremen and Dkk1may inhibit recruitment of axin to the plasma membrane,blocking the stabilisation of␤-catenin (Kawano and Kypta,2003).Like Dkk1,Dkk4can cooperate with Kremen2to inhibit Wnt/␤-catenin through binding LRP6.In comparison,Dkk3cannot bind to LRP6and has no effect on Wnt signalling(Krupnik et al.,1999; Mao and Niehrs,2003).Dkk2functions as both an agonist and an antagonist of LRP6,depending upon the presence of Kremen2.In humanfibroblasts transfected with Dkk2,Wnt signalling is acti-vated.In the presence of a co-transfection with Dkk2and Kremen2, Wnt signalling is inhibited.The interaction with Kremen and LRP6 is mediated through the second cysteine-rich domain of Dkks (Mao and Niehrs,2003).Interestingly,mice lacking Dkk2were osteopenic(Li et al.,2005).Further work needs to be performed with animal models to address the role of Dkk2in bone(Rawadi, 2008).6.2.Secreted frizzled related proteins(sFRPs)Five sFRPs(sFRP1–sFRP5)bind directly to Wnt proteins to antag-onise Wnt signalling.Based on sequence homology,sFRP1,sFRP2 and sFRP5are related,whereas sFRP3and sFRP4form another dis-tinct group.The sFRPs contain a cysteine-rich domain(CRD)that is homologous to the CRD in the Fzd receptor;however,sFRPs lack a transmembrane domain and are secreted as extracellular proteins. sFRPs have a role in increasing apoptosis,and are down regulated in malignant disease(Suzuki et al.,2002)and up-regulated in some degenerative diseases(James et al.,2000).sFRP1,sFRP3and sFRP4 have demonstrated roles in skeletogenesis and bone formation.Human sFRP1encodes a314amino acid,35kDa pro-tein and is mapped to chromosome8p12(/cgi-bin/genecards).sFRP1has been identified as a regulator of osteoblast and osteocyte survival,with effects on trabecular bone mass.Expression of sFRP1increases with advanc-ing osteoblast differentiation and peak expression of sFRP1occurs at the pre-osteocyte stage(Bodine and Komm,2006).Deletion of the sFRP1gene in mice enhanced trabecular bone accrual in adult mice with increased trabecular bone mineral density,volume and bone apposition rates between the ages of13–52weeks(Bodine et al.,2004).sFRP1−/−animals had normal serum osteocalcin,type1 collagen C-terminal telopeptides(CTX),serum calcium and alkaline phosphatase levels.Deletion of sFRP1did not affect cortical bone or non-skeletal organs.Mechanistically,deletion of sFRP1led to a decrease in osteoblast and osteocyte apoptosis with a resultant increase in osteocyte num-ber in vivo.In vitro work from sFRP1−/−bone marrow isolates demonstrated inhibition of osteoblast lineage cell apoptosis and increased osteoclastogenesis(Bodine et al.,2004).In vitro assays on osteoclast formation have also shown that sFRP1is an inhibitor of osteoclast formation(Hausler et al.,2004).Deletion of sFRP1also affects chondrogenesis and endochondral bone formation.Gaur et al.(2006)showed that sFRP1is highly expressed in cartilaginous tissues of the developing mouse and histological analysis of the long bones from4-week-old mice demonstrated that loss of sFRP1 led to shortened columnar zones and increased calcification of the growth plates and primary spongiosa.sFRP3is also referred to as FrzB(Frizzled motif associated with bone development)and wasfirst identified from purified protein extracts of bovine articular cartilage(Hoang et al.,1998).sFRP3 is located on human chromosome2q32and encodes a36.3kDa protein.In the human,it is primarily expressed in the cartilagi-nous core of long bones during embryonic development and in the appendicular skeleton(6–13weeks).At13weeks of gestation,tran-scripts were present in early chondroblasts of the tarsal bones of the foot,the carpal bones of the hands and the epiphysis of long bones.sFRP3is highly expressed in placenta and heart,but can also be found in the brain,skeletal muscle,kidney and pancreas (/cgi-bin/genecards).sFRP3is a important modulator of chondrocyte maturation and function. Virally driven misexpression of sFRP3in chick limbs resulted in shortening of skeletal elements,joint fusion and delayed chondro-cyte maturation(Enomoto-Iwamoto et al.,2002).。

相关文档
最新文档