一元一次方程提高练习题

合集下载

一元一次方程-提高题

一元一次方程-提高题

一元一次方程应用题1. 方程|2x -3|=4的解为 .2. 规定运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,例如⎪⎪⎪⎪⎪⎪2345=2×5-3×4=-2,若⎪⎪⎪⎪⎪⎪x -1-2x 3=6x -5,则x 的值是 . 3. 下列说法中:① 若a +b +c =0,则(a +c )2=b 2.② 若a +b +c =0,则x =1一定是关于x 的方程ax+b +c =0的解.③ 若a +b +c =0,且abc ≠0,则abc >0. ④ 若a +b +c =0,则|a |=|b +c |.其中正确的是 .4. 已知a ,b 为定值,关于x 的方程kx +a 3=1-2x +bk6,无论k 为何值,它的解总是1,则a +b = . 5. 某商场经销一种商品,由于进货时的价格比原来的进价低了8%,但售价不变,这样使得利润率由原利润率a %增长为(a +10)%,则原利润率为 . 6. 一客轮逆水行驶,船上一乘客掉了一件物品,浮在水面上,乘客发现后,轮船立即掉头去追(轮船掉头时间不计),已知轮船从掉头到追上共用9分钟,则乘客丢失了物品后 分钟后发现的? 7. 如图,已知正方形ABCD 的边长为24厘米.甲、乙两动点同时从顶点A 出发,甲以2厘米/秒的速度沿正方形的边按顺时针方向移动,乙以4厘米/秒的速度沿正方形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动,则第四次相遇时甲与最近顶点的距离是_________厘米.8. 在一个轨道长为180cm 的“磁悬浮”轨道架上做钢球碰撞实验,如图所示,轨道架上安置二楼三个大小、质量完全相同的钢球A 、B 、C ,左右各有一个钢制挡板D 和E ,其中C 到左挡板的距离为40cm ,B 到右挡板的距离为50cm ,A 、B 两球相距30cm .碰撞实验中(钢球大小、相撞时间不记),钢球的运动都是匀速的,当一钢球以一速度撞向另一静止钢球时,这个钢球停留在被撞钢球的位置,被撞钢球则以同样的速度向前运动,钢球撞到左右挡板则以相同的速度反向运动,现A 球以每秒10cm 的速度向右匀速运动.① ________秒后B 球第二次撞向右挡板E ;② ________秒后B 球第n (n 为正整数)次撞向右挡板E .9. 图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,求这个长方体的高.10. 一个长方体水箱,从里面量长40厘米,宽30厘米,高30厘米,箱中水面高10厘米,放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面,这时水面高多少厘米?11. 某校七年级2班的男生人数是女生人数的1.8倍,在一次数学测试中,全班成绩的平均分是75分,其中女生的平均分比男生的平均分高20%,则女生的平均分是多少?12. 《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的23,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?”13. 聪明的小亮在晚上6点多一点开始解一道数学题,当时钟面时针与分针正好成直角,当他解完这道题时,发现此时7点不到,而时针与分针又恰好成直角,则小亮解这道题共用了多少分钟?14. 小明放学后沿某路公共汽车路线,以每小时4千米的速度步行回家.沿途该路公共汽车每9分钟就有一辆从后面超过他,每7分钟又遇到迎面开来的一辆车.如果这路公共汽车按相同的时间隔以同一速度不停地运行,那么汽车站每隔多少分钟发一辆车?15. 我们把数轴上表示数-1的点称为离心点,记作点Φ,对于两个不同的点M和N,若点M、N到离心点Φ的距离相等,则称点M、N互为离心变换点.例如:图1中,因为表示数-3的点M和表示数1的点N,它们与离心点Φ的距离都是2个单位长度,所以点M、N互为离心变换点.(1)已知点A表示数a,点B表示数b,且点A、B互为离心变换点,①若a=-4,则b=;若b=π,则a=.②用含a的式子表示b,则b=.③若把点A表示的数乘以3,再把所得数表示的点沿着数轴向左移动3个单位长度恰好到点B,则点A表示的数是(2)若数轴上的点P表示数m,Q表示数m+6.对P点做如下操作:点P沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的离心变换点,点P2沿数轴向右移动k个单位长度得到P3,P4为P3的离心变换点…,依此顺序不断地重复,得到P5,P6,…,P n①已知P2019表示的数是-5,求m的值;②对Q点做如下操作:Q1为Q的离心变换点,将数轴沿原点对折后Q1的落点为Q2,Q3为Q2的离心变换点,将数轴沿原点对折后Q3的落点为Q4,…,依此顺序不断地重复,得到Q s,Q6,…,Q n,若无论k为何值,P n与Q n两点间的距离都是26,则n=16.若一数轴上存在两动点,当第一次相遇后,速度都变为原来的两倍,第二次相遇后又都能恢复到原来的速度,则称这条数轴为魔幻数轴.如图,已知一魔幻数轴上有A,O,B三点,其中A,O对应的数分别为-10,0,AB为47个单位长度,甲,乙分别从A,O两点同时出发,沿数轴正方向同向而行,甲的速度为3个单位/秒,乙的速度为1个单位/秒,甲到达点B后以当时速度立即返回,当甲回到点A时,甲、乙同时停止运动.(1)点B对应的数为,甲出发秒后追上乙(即第一次相遇)(2)当甲到达点B立即返回后第二次与乙相遇,求出相遇点在数轴上表示的数是多少?(3)甲、乙同时出发多少秒后,二者相距2个单位长度?(请直接写出答案)17.甲、乙两个班学生到集市上购买苹果,苹果的价一次购买苹果48kg,丙班两次共购买苹果90kg.(1)若甲班第一次购买16kg,第二次购买32kg,则乙班比甲班少付多少元?(2)若甲班两次共付费126元,则甲班第一次、第二次分别购买苹果多少千克?(3)若两班两次共付费196元,则丙班第一次、第二次分别购买苹果多少千克?18.某水果店计划批发购进两种水果.下表是A、B、(1)50kg,请你研究一下可能的进货方案;(2)若水果店将A种水果的售价定为14元/kg,要使购进的这批水果获得50%的利润,对于(1)中可能的购进方案,另一种水果的售价应该定为多少?19.小明在学习过程中遇到这样一个问题:“一个木箱漂浮在河水中,随河水向下游漂去,在木箱上游和木箱下游各有一条小船,分别为甲船和乙船,两船距木箱距离相等,同时划向木箱,若两船在静水中划行的速度是30m/min,那么哪条小船先遇到木箱?”小明是这样分析解决的:小明想通过比较甲乙两船遇见木箱的时间,知道哪条小船先遇见木箱.设甲船遇见木箱的时间为xmin,乙船遇见木箱的时间为ymin,开始时两船与木箱距离相等,都设为am,如图1.如图2,利用甲船划行的路程-木箱漂流的路程=开始时甲船与木箱的距离:列方程:x(30+5)-5x=a解得,x=a30所以甲船遇见木箱的时间为a30min.(1)参照小明的解题思路继续完成上述问题;(2)借鉴小明解决问题的方法和(1)中发现的结论解决下面问题:问题:“在一河流中甲乙两条小船,同时从A地出发,甲船逆流而上,乙船顺流而下;划行10分钟后,乙船发现船上木箱不知何时掉入水中,乙船立即通知甲船,两船同时掉头寻找木箱,若两船在静水中划行的速度是v(单位:m/min,v大于5),水流速度是5m/min,两船同时遇见木箱,那么木箱是出发几分钟后掉入水中的?”。

中考数学 专题03 一元一次方程(专题测试-提高)(解析版)

中考数学 专题03 一元一次方程(专题测试-提高)(解析版)

专题03 一元一次方程(专题测试-提高)学校:___________姓名:___________班级:___________考号:___________一、选择题(共12小题,每小题4分,共48分)1.(2019·福建中考模拟)王涵同学在某月的日历上圈出了三个数a ,b ,c ,并求出了它们的和为45,则这三个数在日历中的排位位置不可能的是( )A.B .C .D.【答案】C 【详解】A. 设最小的数是x .x +x +7+x +14=45,解得x =8,故本选项不合题意;B. 设最小的数是x .x +x +1+x +8=45,解得:x =12,故本选项不合题意;C. 设最小的数是x .x +x +6+x +14=45,解得:,故本选项错误,符合题意;253xD. 设最小的数是x .x +x +6+x +12=45,解得:x =9,故本选项不合题意.故选:C.2.(2019·四川中考模拟)下面是一个被墨水污染过的方程:2x﹣=3x+,答案显示此方程的解是x12=﹣1,被墨水遮盖的是一个常数,则这个常数是( )A .1B .﹣1C .﹣D .1212【答案】D 【详解】∵x=-1是方程的解,∴2×(-1)-=3×(-1)+,12-2-=-3+,12解得=.12故选D .3.(2017·内蒙古中考模拟)某商店有两个进价不同的台灯,都卖了64元,按成本计算,其中一个盈利60%,另一个亏本20%,在此次买卖中,这家商店( )A .亏了8元B .赚了32元C .不亏不赚D .赚了8元【答案】D 【详解】设两种台灯进价为x 、y ,则:①,解得:;6064x x =-%40x =②,解得:;2064y y -=-%80y =∴具体盈利情况为:=(元).2644080⨯--8∴这家商店赚了8元.所以答案为D 选项.4.(2017·广西中考模拟)已知三角形的三边长为连续整数,且周长为12cm ,则它的最短边长为( )A .2cm B .3cmC .4cmD .5cm【答案】B 【详解】设大小处于中间的边长是xcm ,则最大的边是(x +1)cm ,最小的边长是(x −1)cm .则(x +1)+x +(x −1)=12,解得:x =4,则最短的边长是:4−1=3cm .故选B.5.(2019·浙江中考模拟)小刚从家跑步到学校,每小时跑12km ,会迟到5分钟;若骑自行车,每小时骑15km ,则可早到10分钟.设他家到学校的路程是xkm ,则根据题意列出方程是( )A .B .10515601260x x -=+10515601260x x -=-C .D .1051512x x +=-10515601260x x +=-【答案】D 【详解】解:设他家到学校的路程是xkm ,依题意,得:.10515601260x x +=-故选:D .6.(2019·湖北中考真题)欣欣服装店某天用相同的价格卖出了两件服装,其中一件盈利,(0)a a >20%另一件亏损,那么该服装店卖出这两件服装的盈利情况是( )20%A .盈利B .亏损C .不盈不亏D .与售价有关a 【答案】B 【详解】设第一件衣服的进价为元,x 依题意得:,(120%)x a +=设第二件衣服的进价为元,y 依题意得:,(120%)y a -=,()()120%120%x y ∴+=-整理得:,32x y =该服装店卖出这两件服装的盈利情况为:,0.20.20.20.30.1x y x x x -=-=-即赔了元,0.1x 故选B .7.(2018·河北中考模拟)有两种饮料,种饮料的单价比种饮料的单价少元,小明同学买了盒饮料A B 1A 瓶,种饮料瓶,共花了元.若设种饮料单价为元/瓶,则下面所列方程正确的是( )2B 313A x A .2(x-1)+3x=13B .2x+3(x-1)=13C .2(x+1)+3x=13D .2x+3(x+1)=13【答案】D 【详解】设A 种饮料单价为x 元/瓶,则B 种饮料单价为(x +1)元,根据小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,可得方程为:2x +3(x +1)=13.故选:D .8.(2013·江苏中考真题)已知关于x 的方程2x+4=m﹣x 的解为负数,则m 的取值范围是A .B .C .m <4D .m >44m<34m>3【答案】C 【详解】试题分析:解2x+4=m﹣x 得,。

一元一次方程 的解法(提高)__一元一次方程的解法(提高)巩固练习

一元一次方程 的解法(提高)__一元一次方程的解法(提高)巩固练习

【巩固练习】一、选择题1.(2015秋•榆阳区校级期末)关于x 的方程3x+5=0与3x+3k=1的解相同,则k=( )A.-2B.C.2D. 4343-2.下列说法正确的是 ( ) .A .由7x =4x -3移项得7x -4x =-3B .由去分母得2(2x -1)=1+3(x -3)213132x x --=+C .由2(2x -1)-3(x -3)=1去括号得4x -2-3x -9=4D .由2(x -1)=x+7移项合并同类项得x =53.将方程去分母得到方程6x -3-2x -2=6,其错误的原因是( ) .211123x x ---=A .分母的最小公倍数找错B .去分母时,漏乘了分母为1的项C .去分母时,分子部分的多项式未添括号,造成符号错误D .去分母时,分子未乘相应的数4.解方程,较简便的是( ).4530754x ⎛⎫-= ⎪⎝⎭A .先去分母B .先去括号C .先两边都除以D .先两边都乘以45455.小明在做解方程作业时,不小心将方程中一个常数污染了看不清楚,被污染的方程是:■,怎么办呢?小明想了想,便翻看了书后的答案,此方程的解是,11222y y -=+53y =于是小明很快补上了这个常数,并迅速完成了作业.同学们,你们能补出这个常数吗?它应是( ).A .1B .2C .3D .46. 某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ).A .54盏B .55盏C .56盏D .57盏7. “△”表示一种运算符号,其意义是,若,则等于 ( 2a b a b ∆=-(13)2x ∆∆=x ).A .1 B . C . D .2 12328.关于的方程无解,则是 ( ).x (38)70m n x ++=mn A .正数 B .非正数 C .负数 D .非负数 二、填空题9.(福建泉州)已知方程||x 2=,那么方程的解是 . 10. 当x= _____ 时,x -的值等于2..31x +11.已知关于x 的方程的解是4,则________.3322x a x -=+2()2a a --=12.若关于x 的方程ax+3=4x+1的解为正整数,则整数a 的值是 .13.(2014秋•高新区校级期末)如果5x+3与﹣2x+9是互为相反数,则x﹣2的值是 .14.a 、b 、c 、d 为有理数,现规定一种新的运算:,那么当a b ad bc c d=-时,则x =______.241815x =-三、解答题15.解下列方程:(1) ;521042345102y y y --+-=-+(2) ;111233234324x x x x ⎧⎫⎡⎤⎛⎫----=+⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭(3).0.150.1330200.30.110.07300.2x x x +++-=+16. 解关于的方程:x ;(2) (3)()148x b ax +=-(1)(1)(2)m x m m -=--(1)(2)1m m x m --=-17. (2015•裕华区模拟)定义一种新运算“⊕”:a ⊕b=a ﹣2b ,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x ﹣3)⊕(x+1)=1,求x 的值.【答案与解析】一、选择题1.【答案】C .【解析】解第一个方程得:x=﹣,解第二个方程得:x=∴=﹣解得:k=2.2. 【答案】A【解析】由7x =4x -3移项得7x -4x =-3;B .去分母得2(2x -1)=213132x x --=+6+3(x -3);C .把2(2x -1)-3(x -3)=1去括号得4x -2-3x+9=1;D .2(x -1)=x+7,2x -2=x+7,2x -x =7+2,x =93.【答案】C 【解析】把方程去分母,得3(2x -1)-2(x -1)=6,6x -3-2x+2=6与6x -211123x x ---=3-2x -2=6相比较,很显然是符号上的错误.4.【答案】B【解析】因为与互为倒数,所以去括号它们的积为1.45545.【答案】B【解析】设被污染的方程的常数为k ,则方程为,把代入方程得11222y y k -=+53y =,移项得,合并同类项得-k =-2,系数化为1得k =2,故1015326k -=+5110623k -=+-选B .6.【答案】B【解析】设有盏,则有个灯距,由题意可得:,解x (1)x -36(1061)70(1)x -=-得:55x =7.【答案】B【解析】由题意可得:“△”表示2倍的第一个数减去第二个数,由此可得:,132131∆=⨯-=-而,解得:(13)(1)212x x x ∆∆=∆-=+=12x =8.【答案】B【解析】原方程可化为:,将“”看作整体,只有(38)7m n x +=-38m n +时原方程才无解,由此可得均为零或一正一负,所以的值应为非正380m n +=,m n mn 数.二、填空9.【答案】1222x x ==-,10.【答案】213=x 11.【答案】24【解析】把x =4代入方程,得,解得a =6,从而(-a )2-2a =24.344322a -=+12.【答案】2或3【解析】由题意,求出方程的解为:314-=-x ax , ,因为解为正整数,所以,即或2)4(-=-x a 42--=a x 214a --=-或2a =3.13.【答案】-6.【解析】由题意得:5x+3+(﹣2x+9)=0,解得:x=﹣4,∴x ﹣2=﹣6.14.【答案】3【解析】由题意,得2×5-4(1-x )=18,解得x =3.三、解答题15. 【解析】解:(1)原方程可化为:212y +-=解得:4y =-(2)原方程可化为: 11233234322x x x x ⎡⎤⎛⎫----=+ ⎪⎢⎥⎝⎭⎣⎦移项,合并得: 123943x x x ⎛⎫--=-- ⎪⎝⎭解得:229x =-(3)原方程可化为:151332311732x x x +++-=+去分母,化简得:1513x -=解得: 1315x =-16. 【解析】解:(1)原方程可化为:(4)8a xb -=+ 当时,方程有唯一解:;4a ≠84b x a +=-当,时,方程无解;4a =8b ≠-当,时,原方程的解为任意有理数,即有无穷多解.4a =8b =-(2)(1)(1)(2)m x m m -=-- 当,即时,方程有唯一的解:.10m -≠1m ≠2x m =-当,即时,原方程变为.原方程的解为任意有理数,即有无10m -=1m =00x ⋅=穷多解.(3) (1)(2)1m m x m --=-当时,原方程有唯一解:;1,2m m ≠≠12x m =-当时,原方程的解为任意有理数,即有无穷多解;1m =当时,原方程无解.2m =17.【解析】解:(1)根据题中的新定义得:原式=﹣3﹣4=﹣7;(2)已知等式变形得:x﹣3﹣2(x+1)=1,去括号得:x﹣3﹣2x﹣2=1,移项合并得:﹣x=6,解得:x=﹣6.。

人教版七年级数学上《实际问题与一元一次方程》提高训练

人教版七年级数学上《实际问题与一元一次方程》提高训练

《实际问题与一元一次方程》提高训练一、选择题1.方程|2x+1|=7的解是()A.x=3B.x=3或x=﹣3C.x=3或x=﹣4D.x=﹣42.关于x的方程|a|=x的解与方程2x﹣2=0的解相同,则a的值是()A.1B.﹣1C.±1D.03.若关于x的方程|2x﹣3|+m=0无解,|3x﹣4|+n=0只有一个解,|4x﹣5|+k=0有两个解,则m,n,k的大小关系是()A.m>n>k B.n>k>m C.k>m>n D.m>k>n4.若三个连续偶数的和为18,则它们的积为()A.216B.49C.192D.4805.检修一台机器,甲、乙小组单独做分别需要7.5h,5h就可完成.两小组合作2h后,由乙小组单独完成,还需()小时才能完成机器的检修任务.A.1B.C.D.2二、填空题6.已知方程的解也是方程|2﹣7x|=a的解,则a等于.7.从2019年1月5日起,全国铁路将开始实施新的列车运行图,被誉为“最美高铁线路”的杭黄高铁即将开通运营,届时从无锡到黄山会有直达高铁,它的运行速度比原来的普通火车的运行速度快200km/h,约用3.5h到达,运行时间缩短了7小时.如果在相同的路线上,无锡东站到黄山北站的距离不变,设“杭黄高铁”的运行速度为xkm/h,依题意,可列方程为.8.按下面的程序计算:若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值为.9.经调查,某校学生上学所用的交通方式中,选择“自行车”、“公交车”、“其它”的比例为7:3:2,若该校学生有3200人,则选择“公交车”的学生人数是人.10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,根据题意可列方程得.三、解答题11.阅读以下例题:解方程:|x﹣3|=2.解:(1)当x﹣3≥0时,方程化为x﹣3=2,所以x=5;(2)当x﹣3<0时,方程化为x﹣3=﹣2,所以x=1.根据上述阅读材料,解方程:|2x+1|=7.12.A、B两种型号的机器生产同一种产品,已知7台A型机器一天生产的产品装满8箱后还剩2个,5台B型机器一天生产的产品装满6箱后还剩8个.每台A型机器比每台B型机器一天少生产2个产品,求每箱装多少个产品?13.中国移动开设两种通讯业务,全球通用户,先缴50元月租费,每通话一分钟再付0.4元,神州行用户,不缴月租费,每通话一分钟,付话费0.6元.(1)假设一个月内通话时间为120分钟,两种通话方式的费用分别是多少?(直接写出答案)(2)一个月通话时间为多少分钟,两种通讯方式费用相同?(列方程计算)(3)某人预计一个月内使用话费120元,则他应该选择哪种通讯方式更合算?说明理由.14.冬季的哈尔滨,银装素裹,吸引来大批冰雪运动爱好者.某商场看准商机,需订购一批冰鞋,现有甲、乙两个供应商,均标价每双80元.为了促销,甲说:“凡来我处进货一律九折.”乙说:“如果超出60双,则超出的部分打八折”(1)购进多少双时,去两个供应商处的进货价钱一样多?(2)第一次购进了100双,第二次购进的数量比第一次购进的2倍多10双,如果你是商场经理该花多少钱进货?(3)在(2)的条件下,第一次购进的冰鞋商场加价12.5%,全部售出.如果第二次购进的冰鞋也能全部售出,则每双冰鞋售价是多少时,商场两批冰鞋的总利润率为25%?15.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上若点A表示的数是x,点B表示的数是﹣2,则点A和B之间的距离是,若AB=2,那么x为;(3)当x是时,代数式|x+2|+|x﹣1|=5;(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,PQ=1?(请写出必要的求解过程)《实际问题与一元一次方程》提高训练参考答案与试题解析一、选择题1.方程|2x+1|=7的解是()A.x=3B.x=3或x=﹣3C.x=3或x=﹣4D.x=﹣4【分析】根据绝对值的性质,可化简方程,根据解一元一次方程,可得答案.【解答】解:当x≥﹣时,方程化简为2x+1=7,解得x=3;当x<﹣时方程化简为﹣2x﹣1=7,解得x=﹣4;故选:C.【点评】本题考查了含绝对值符号的一元一次方程,利用绝对值的性质化简方程是解题关键.2.关于x的方程|a|=x的解与方程2x﹣2=0的解相同,则a的值是()A.1B.﹣1C.±1D.0【分析】先求出第二个方程的解,把x1代入第一个方程,求出方程的解即可.【解答】解:解方程2x﹣2=0得:x=1,∵关于x的方程|a|=x的解与方程2x﹣2=0的解相同,∴代入得:|a|=1,解得:a=±1,故选:C.【点评】本题考查了含绝对值符号的一元一次方程,能得出关于a的方程是解此题的关键.3.若关于x的方程|2x﹣3|+m=0无解,|3x﹣4|+n=0只有一个解,|4x﹣5|+k=0有两个解,则m,n,k的大小关系是()A.m>n>k B.n>k>m C.k>m>n D.m>k>n【分析】比较m、n、k的大小,只有从给出已知条件中,算出其值,比较它们的大小,就会迎刃而解了.【解答】解:(1)∵|2x﹣3|+m=0无解,∴m>0.(2)∵|3x﹣4|+n=0有一个解,∴n=0.(3)∵|4x﹣5|+k=0有两个解,∴k<0.∴m>n>k.故选:A.【点评】本题主要考查的是含有绝对值符号的一元一次方程的拓展计算题,要充分利用已知条件.难易适中.4.若三个连续偶数的和为18,则它们的积为()A.216B.49C.192D.480【分析】根据三个连续偶数的和为18,设中间的数为x,列方程求出三个数,再计算它们的积.【解答】解:设中间一个偶数为x,列方程得(x﹣2)+x+(x+2)=18,解得x=6.则这三个偶数为4、6、8.其积为4×6×8=192.故选:C.【点评】本题是一元二次方程的应用,关键是知道相邻两个偶数的差是2,在解题时要能根据题意得出等量关系,列出方程即可解题.5.检修一台机器,甲、乙小组单独做分别需要7.5h,5h就可完成.两小组合作2h后,由乙小组单独完成,还需()小时才能完成机器的检修任务.A.1B.C.D.2【分析】利用总共量为1,进而表示出甲、乙的工作量得出等式求出答案.【解答】解:设两小组合做2h后,再由乙小组单独做,还需x小时才能完成这台机器的检修任务,根据题意可得:2(+)+x•=1,解得:x=.答:还需小时后才能完成这台机器的检修任务.故选:C.【点评】此题主要考查了一元一次方程的应用,根据总共量为1得出等式是解题关键.二、填空题6.已知方程的解也是方程|2﹣7x|=a的解,则a等于7.【分析】根据同解方程,可得关于a的方程,根据解方程,可得答案.【解答】解:由解得x=,由方程的解也是方程|2﹣7x|=a的解,将x=代入|2﹣7x|=a,得|2﹣7×|=a,解得a=7故答案为:7.【点评】本题考查了同解方程,利用同解方程得出关于a的方程是解题关键.7.从2019年1月5日起,全国铁路将开始实施新的列车运行图,被誉为“最美高铁线路”的杭黄高铁即将开通运营,届时从无锡到黄山会有直达高铁,它的运行速度比原来的普通火车的运行速度快200km/h,约用3.5h到达,运行时间缩短了7小时.如果在相同的路线上,无锡东站到黄山北站的距离不变,设“杭黄高铁”的运行速度为xkm/h,依题意,可列方程为 3.5x=(7+3.5)(x+200).【分析】根据“高铁速度×运行时间=普通火车速度×运行时间”可得方程.【解答】解:设“杭黄高铁”的运行速度为xkm/h,依题意,可列方程为:3.5x=(7+3.5)(x+200),故答案为:3.5x=(7+3.5)(x+200).【点评】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,找到题目蕴含的相等关系.8.按下面的程序计算:若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值为22或111.【分析】由5x+1=556,解得x=111,即开始输入的x为111,最后输出的结果为556;当开始输入的x值满足5x+1=111,最后输出的结果也为556,可解得x=22;当开始输入的x值满足5x+1=22,最后输出的结果也为556,但此时解得的x的值为小数,不合题意.【解答】解:当输入一个正整数,一次输出556时,5x+1=556,解得:x=111;当输入一个正整数,两次后输出556时,5x+1=111,解得:x=22;当输入一个正整数,三次后输出556时,5x+1=22,解得:x=4.2(不合题意)故答案为:22或111.【点评】本题考查了一元一次方程的应用,解题的关键是根据程序框图列出方程,求出符合条件的x的值.9.经调查,某校学生上学所用的交通方式中,选择“自行车”、“公交车”、“其它”的比例为7:3:2,若该校学生有3200人,则选择“公交车”的学生人数是800人.【分析】设选择“公交车”的学生人数是3x,则自行车的有7x,其他的有2x,根据该校学生有3200人,列出方程,求出x的值,即可得出答案.【解答】解:设选择“公交车”的学生人数是3x,根据题意得:7x+3x+2x=3200,解得:x=,则选择“公交车”的学生人数是×3=800人;故答案为:800.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,根据题意可列方程得1000(26﹣x)=2×800x.【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故答案为:1000(26﹣x)=2×800x【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.三、解答题11.阅读以下例题:解方程:|x﹣3|=2.解:(1)当x﹣3≥0时,方程化为x﹣3=2,所以x=5;(2)当x﹣3<0时,方程化为x﹣3=﹣2,所以x=1.根据上述阅读材料,解方程:|2x+1|=7.【分析】根据绝对值的性质,可化简绝对值方程,根据解方程,可得答案.【解答】解:当2x+1≥0时,方程化为2x+1=7,解得x=3;当2x+1<0时,方程化为2x+1=﹣7,解得x=﹣4.所以原方程的解为x=3或x=﹣4.【点评】本题考查了含绝对值符号的一元一次方程,利用绝对值的性质化简方程是解题关键.12.A、B两种型号的机器生产同一种产品,已知7台A型机器一天生产的产品装满8箱后还剩2个,5台B型机器一天生产的产品装满6箱后还剩8个.每台A型机器比每台B型机器一天少生产2个产品,求每箱装多少个产品?【分析】设每箱装x个产品,根据每台A型机器比每台B型机器一天少生产2个产品,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设每箱装x个产品,根据题意得:+2=,解得:x=12.答:每箱装12个产品.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.13.中国移动开设两种通讯业务,全球通用户,先缴50元月租费,每通话一分钟再付0.4元,神州行用户,不缴月租费,每通话一分钟,付话费0.6元.(1)假设一个月内通话时间为120分钟,两种通话方式的费用分别是多少?(直接写出答案)(2)一个月通话时间为多少分钟,两种通讯方式费用相同?(列方程计算)(3)某人预计一个月内使用话费120元,则他应该选择哪种通讯方式更合算?说明理由.【分析】(1)根据两种缴费方式,代入120分钟计算得结果;(2)设出未知数,根据两种通话费用相同列出方程,求解即可;(3)比较两种通讯方式的通话时间,得结论.【解答】解:(1)全球通用户通话120分钟需缴纳话费:50+0.4×120=98(元);神州行用户通话120分钟需缴纳话费:0.6×120=72(元).答:全球通用户的费用为98元,神州行用户的费用为72元.(2)设一个月通话x分钟,两种通讯方式费用相同.由题意,得50+0.4x=0.6x,解得x=250即一个月通话250分钟,两种通讯方式费用相同;(3)他选择神州行更合算.理由:若他选择的是全球通,可通话时间为t1,则50+0.4t1=120,t1=175(分钟);若他选择的是神州行,可通话时间为t2,则0.6t2=120,t2=200(分钟).∵200>175∴选择神州行更合算.【点评】本题考查了一元一次方程的应用,理解题意是解决本题的关键.14.冬季的哈尔滨,银装素裹,吸引来大批冰雪运动爱好者.某商场看准商机,需订购一批冰鞋,现有甲、乙两个供应商,均标价每双80元.为了促销,甲说:“凡来我处进货一律九折.”乙说:“如果超出60双,则超出的部分打八折”(1)购进多少双时,去两个供应商处的进货价钱一样多?(2)第一次购进了100双,第二次购进的数量比第一次购进的2倍多10双,如果你是商场经理该花多少钱进货?(3)在(2)的条件下,第一次购进的冰鞋商场加价12.5%,全部售出.如果第二次购进的冰鞋也能全部售出,则每双冰鞋售价是多少时,商场两批冰鞋的总利润率为25%?【分析】(1)设购进x双时,去两个供应商处的进货价钱一样多,根据总价=单价×数量结合两供应商的优惠政策,即可得出关于x的一元一次方程,解之即可得出结论;(2)由(1)可得出第一次选择甲供应商实惠、第二次选择乙供应商实惠,分别求出两次进货所需资金,相加后即可得出结论;(3)设第二次购进的冰鞋售价为y元/双,根据利润=销售收入﹣成本,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设购进x双时,去两个供应商处的进货价钱一样多,根据题意得:80×0.9x=80×60+80×0.8(x﹣60),解得:x=120.答:购进120双时,去两个供应商处的进货价钱一样多.(2)第一次选择甲供应商实惠,需要80×0.9×100=7200(元),第二次选择乙供应商实惠,需要80×60+80×0.8×(100×2+10﹣60)=14400(元),∴7200+14400=21600(元).答:商场经理该花21600元钱进货.(3)设第二次购进的冰鞋售价为y元/双,根据题意得:7200×(1+12.5%)+(100×2+10)y﹣21600=21600×25%,解得:y=90.答:第二次购进的冰鞋售价是90元/双时,商场两批冰鞋的总利润率为25%.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)由(1)找出两次进货选择哪家供应商省钱;(3)找准等量关系,正确列出一元一次方程.15.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;(2)数轴上若点A表示的数是x,点B表示的数是﹣2,则点A和B之间的距离是|x+2|,若AB=2,那么x为0或﹣4;(3)当x是﹣3或2时,代数式|x+2|+|x﹣1|=5;(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,PQ=1?(请写出必要的求解过程)【分析】(1)根据两点间的距离,可得答案;(2)根据两点间的距离,可得答案;(3)根据绝对值的性质,可化简方程,根据解方程,可得答案;(4)根据PQ的距离为1,可得方程,根据解方程,可得答案.【解答】解:(1)数轴上表示2和5的两点之间的距离是5﹣2=3,数轴上表示1和﹣3的两点之间的距离是1﹣(﹣3)=4;(2)数轴上若点A表示的数是x,点B表示的数是﹣2,则点A和B之间的距离是|x+2|,若AB=2,得x+2=2或x+2=﹣2,解得x=0或x=﹣4;(3)当x<﹣2时,﹣x﹣2﹣x+1=5,解得x=﹣3,当﹣2≤x<1时,x+2+1﹣x|=5,方程无解,当x≥1时,x+2+x﹣1=5,解得x=2,故答案为:3,4;|x+2|,0或﹣4;﹣3或2;(4)设运动x秒后,点Q与点P相距1个单位,由题意,得①P超过Q,3x﹣x=10+1,解得x=,②P在Q的后边,3x﹣x=10﹣1,解得x=,答:运动或秒后,点Q与点P相距1个单位.【点评】本题考查了一元一次方程的应用,实数与数轴,利用两点间的距离是解题关键,解(4)的关键是利用PQ的距离为1得出方程,要分类讨论,以防遗漏.。

___版七年级上册一元一次方程提高培优题汇总

___版七年级上册一元一次方程提高培优题汇总

___版七年级上册一元一次方程提高培优题汇总一元一次方程拔高题汇总1.若方程 $2x+a-4=0$ 的解为 $x=-2$,则 $a=$ __C__。

A。

$-8$;B。

$0$;C。

$2$;D。

$8$。

2.若代数式 $\frac{x}{x-1}$ 的值为 $1$,则 $x=$ __B__。

A。

$3$;B。

$1$;C。

$-3$;D。

$-1$。

3.已知代数式 $8x-7$ 与 $6-2x$ 的值互为相反数,那么$x$ 的值等于 __B__。

A。

$-\frac{11}{5}$;B。

$-\frac{3}{4}$;C。

$\frac{6}{5}$;D。

$\frac{5}{6}$。

4.若方程 $2x+a-4=0$ 的解为 $x=-2$,则 $a=$ __C__。

A。

$-8$;B。

$0$;C。

$2$;D。

$8$。

5.若 $a$,$b$ 互为相反数($a\neq0$),则方程$ax+b=0$ 的根为 __C__。

A。

$1$;B。

$-1$;C。

$1$ 或 $-1$;D。

任意数。

6.当 $x=3$ 时,代数式 $3x-5ax+10$ 的值为 $7$,则$a=$ __A__。

A。

$2$;B。

$-2$;C。

$1$;D。

$-1$。

7.一份数学试卷共有 $25$ 道选择题,每题得 $4$ 分,错题倒扣 $1$ 分。

某同学得了 $70$ 分,他一共做对了 __B__ 道题。

A。

$17$ 道;B。

$18$ 道;C。

$19$ 道;D。

$20$ 道。

8.把方程 $\frac{2x-17}{-2x}=1$ 中的分母化为整数,正确的式子是 __B__。

A。

$\frac{x}{17-2x}=-1$;B。

$\frac{x}{17+2x}=-1$;C。

$\frac{x}{-17+2x}=10$;D。

$\frac{x}{-17-2x}=-1$。

9.电视机售价连续两次降价 $10\%$,降价后每台电视机的售价为 $a$ 元,则该电视机的原价为 __A__。

部编数学七年级上册必刷提高练【第3章《一元一次方程》章节达标检测】(解析版)含答案

部编数学七年级上册必刷提高练【第3章《一元一次方程》章节达标检测】(解析版)含答案

2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)提高第3章《一元一次方程》章节达标检测考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021七上·澄海期末)下列方程中,与13x x -=-+的解相同的是( )A .20x +=B .230x -=C .22x x-=D .20x -=【答案】D【完整解答】解:13x x -=-+,移项合并同类项得:24x = ,解得:2x =,A 、20x +=,解得:2x =- ,与13x x -=-+的解不相同,故本选项不符合题意;B 、230x -=,解得:32x =,与13x x -=-+的解不相同,故本选项不符合题意;C 、22x x -=,解得:2x =- ,与13x x -=-+的解不相同,故本选项不符合题意;D 、20x -=,解得:2x = ,与13x x -=-+的解相同,故本选项符合题意;故答案为:D【思路引导】先求出方程13x x -=-+的解,再将x 的值分别代入各选项判断即可。

2.(2分)(2021七上·滨城期末)下列等式的变形中,正确的是( )A .如果22a bc c=,那么a =b B .如果a =b ,那么2121a bc c =++C .如果ax =ay ,那么x =y D .如果m =n ,那么2244m nc c =--【答案】A【完整解答】A. 如果22a b c c=,那么a =b ,符合题意;B. 当12c =-时,等式不成立,不符合题意;C. 当a=0时,等式成立,但x 和y 不一定相等,不符合题意; D. 当2c =±时,等式不成立,不符合题意.故答案为:A .【思路引导】根据等式的性质逐项判断即可。

3.(2分)(2021七上·呼和浩特期末)下列方程变形中,正确的是( )A .方程2332t =,系数化为1得1t =B .方程325(1)x x -=--,去括号得3255x x -=--C .方程1125x x--=,去分母得5(1)210x x --=D .方程3221x x -=+,移项得3212x x -=-+【答案】C【完整解答】解:A 、系数化为1,两边同时除以23,得94t =,故不符合题意;B 、去括号得()3255255x x x -=--=-+,不符合题意;C 、去分母两边同时乘以10,得()51210x x --=,符合题意;D 、移项得3212x x -=+,不符合题意;故答案为:C .【思路引导】利用解方程的方法及步骤逐项判断即可。

《一元一次方程》提高测试

《一元一次方程》提高测试

《一元一次方程》提高测试一 填空题(本题共20分,每小题4分): 1.x = 时,代数式532-x 与代数式332-x 的差为0;答案:9;提示:得方程532-x -(332-x )=0,解得x =9.2.x =3是方程4x -3(a -x )=6x -7(a -x )的解,那么a = ; 答案:29;提示:据方程的解的意义得关于a 的方程12-3(a -3)=18-7(a -3),解得 a =29.3.x =9 是方程b x =-231的解,那么=b ,当=b 1时,方程的解 ; 答案:1,x =9或x =3. 提示:当=b 1时,方程b x =-231转化为两个一元一次方程1231=-x 或1231-=-x ,解得9=x 或3=x .4.若是2ab 2c 3x -1与-5ab 2c 6x +3是同类项,则x = ; 答案:34-.提示:据同类项的意义得方程 3x -1= 6x +3,解得x =34-.5.x =43是方程|k |(x +2)=3x 的解,那么k = . 答案:119±. 提示:根据方程的解的意义得关于 k 的方程|k |(43+2)=3×43,解得|k |=119所以 119±=k.二 解下列方程(本题50分,每小题10分): 1.2{3[4(5x -1)-8]-20}-7=1;解:2{3[4(5x -1)-8]-20}-7=1, 2{3[20x -12]-20}-7=1, 2{60x -56}-7=1, 60x -56=4, 60x =60, x =1;2.⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛-46151413121x =1;解:先去分母,得⎢⎢⎣⎡⎝⎛+⎥⎦⎤-⎪⎪⎭⎫-461514131x =2, ⎝⎛-=-⎪⎪⎭⎫-6615141x ,0151=-x , 5=x ; 3.x -2[x -3(x +4)-5]=3{2x -[x -8(x -4)]}-2; 解:先去小括号,再去中括号、大括号,及时合并同类项,得 x -2[x -3x -12-5]=3{2x -[x -8x +32]}-2, x +4x +34=3{2x +7x -32}-2, 5x +34=27x -98, -22x =-132, x =6; 4.03.04.05233.12.188.1=-----x xx ;解:先把系数化为整数,得03450203013128018=-----x xx ,再去分母,两边都乘以60,得0)450(20)313(3)8018(5=-----x x x ,去括号,合并同类项,得01311310=+-x , 101=x ;6.45234x x x x =---.解:去分母,得x x x x 5)234(4=---, x x x x 5)34(24=---,去括号,整理,得x x 3382=-,去分母3,解得 78-=x .三 解下列应用问题(本题30分,每小题10分): 1.用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40 m 3, 第一架工作16小时,第二架工作24小时,共掘土8640 m 3,问每架掘土机每小时可以掘土多少 m 3? 解:设第一架掘土机每小时掘土x m 3 ,那么,第二架掘土机每小时掘土(x -40)m 3, 依题意 ,有16x +24(x -40)= 8640, 解得 x = 240所以,第一架掘土机每小时掘土240立方米,第二架掘土机每小时掘土200 m 32.甲、乙、丙三个工厂共同筹办一所厂办学校,所出经费不同,其中甲厂出总数的72,乙厂出甲丙两厂和的21,已知丙厂出了16000元.问这所厂办学校总经费是多少,甲乙两厂各出了多少元?解:设这所厂办学校总经费是x 万元,依题意,有72x +21(72x +1.6)= x -1.6 ,解得 x = 4.2所以,总经费42000元,甲厂出12000元,乙厂出14000元.3.一条山路,从山下到山顶,走了1小时还差1km ,从山顶到山下,用50分钟可以走完.已知下山速度是上山速度的1.5倍,问下山速度和上山速度各是多少,单程山路有多少km .解:设上山速度为每小时x km ,那么下山速度为每小时1.5x km ,依题意,有x +1=65×1.5x ,解得 x = 4所以,上山速度为每小时4 km ,下山速度为每小时6 km ,单程山路为5 km .。

人教版数学七年级上《一元一次方程应用题》能力提高题

人教版数学七年级上《一元一次方程应用题》能力提高题

列一元一次方程解应用题一、设直接未知数1.我国政府为解决老百姓看病难的问题,决定下调药品价格,某种药品在1999年涨价30%后, 2001年降价70%至a 元,则这种药品在1999年涨价前的价格为元.2.光明中学初中一年级一、二、三班向希望学校共捐书385本.一班与二班捐书的本数之比为4︰3,—班与三班捐书的本数之比为6 :7,那么二班捐书本.3.某车间共有86名工人,已知每人平均每天可加工甲种部件15个,或乙种部件12个,或丙种部件9个,要使加工后的部件按3个甲种部件、2个乙种部件和1个丙种部件配套,则应安排人加工甲种部件,人加工乙种部件,人加工丙种部件。

4.甲、乙同在一百米起跑线处,甲留在原地未动,乙则以每秒7 米的速度跑向百米终点,5秒后甲听到乙的叫声,看到乙跌倒在地,已知声音的传播速度是每秒340米,这时乙已经跑了米。

(精确到个位)5.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小明最多能买支钢笔。

6.某妇人买了一包弹球,其中41是绿色的,81是黄色的,余下的51是蓝色,如果有12个蓝色的弹球,那么她总共买了()个弹球。

A. 48B. 60C. 96D. 720E. 19207.某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加().A.20%B.25%C.80%D.75%8.甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么().A.甲比乙大5岁B.甲比乙大10岁C.乙比甲大10岁D.乙比甲大5岁9.甲、乙、丙、丁4人拿出同样多的钱,合伙订购同样规格的若干货物.货物买来后,甲、乙、丙分别比丁多拿了3、7、14件货物,最后结算时,乙付给丁14元,那么丙应付给丁()元. A.28B.56C.70D.11210.天池旅馆二层客房比底层的多5间,黄冈市某中学参加数学竞赛有48人,若全部安排在底层,每间住4人,房间不够;而每间住5人,有的房间未住满,又若全部安排在二层,每间住3人,房间不够;而每间住4人,有的房间未住满,这家旅馆底层共有房间()个.A.9B.10C.llD.1211.某市为了鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨部分,按每吨0.45元收费;超过10吨而不超过20吨部分,按每吨0.80元收费;超过20吨部分按 1.5元/吨收费.现已知李老师家六月份缴水费14元,问李老师家六月份用水多少吨?12.某公园有东、西两个门,开园半小时内东门售出成人票65张,儿童票12张,收票款568元,西门售出成人票81张,儿童票8张,收票款680元,问此公园成人票、儿童票每张售价各几元?13.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不是3本,设该校买了m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m ;(2)求出该校的获奖人数及所买课外读物的本数.14.某商店有A种练习本出售,每本零售价为0.30元,一打(12本)售价为 3.00元,买10打以上的,每打还可以按 2.70元付款,解答下列问题:(1)初三、一班共57人,每人需要1本A种练习本,则该班集体去买时,最少需付多少元?(2)初三年级共227人,每人需要1本A种练习本,则该年级集体去买时,最少需付多少元?15.在3点和4点之间,时钟上的分针和时针在何时重合?16.革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元?17.商场出售的A 型冰箱每台售价2190元,每日耗电量为1度,而B 型节能冰箱每台售价虽比A 型冰箱髙出10%,但每日耗电量却为0.55度,现将A 型冰箱打折出售(打一折后的售价为原价的101),问商场至少打几折出售,消费者购买才合算?(按使用期10年,每年365 天,每度电0.40元计算)18.某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票以购买日起,可供持票者使用一年).年票分A 、B 、C 三类:A 类年票每张120元,持票者进入园林时,无需再用门票;B 类年票每张60元,持票者进人该园林时,需再购买门票,每次2元;C 类年票每张40元,持票者进入该园林时,需再购买门票,每次3元;(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进人该园林的次数最多的购票方式;(2)求一年中进入该园林至少超过多少次时,购买A 类年票比较合算?19.某人大学毕业后,准备到母校探望曾经教过自己的一位老师.他带了50元人民币,先到百货公司买了—些罐失和饮料,共用去30元;经过水果市场时,他打算买1500克香蕉和1500克苹果,但发现所带的钱不够,结杲只好少买了500克香蕉,这样所带钱数尚有结余,已知香蕉每500克3元,苹果价格也是整数,试求苹果的价格。

用一元一次方程解决问题(提升训练)(原卷版) (3)

用一元一次方程解决问题(提升训练)(原卷版) (3)

4.3 用一元一次方程解决问题【基础训练】一、单选题1.列方程表示“我校七年级学生人数为n ,其中女生占55%,男生有90人”正确的是( ) A .55%90n = B .()145%90n -= C .45%90n n += D .55%90n n += 2.小康中学七年级(1)班学生进行拔河比赛分组,若每组 7 人,则有 2 人分不到组里;若每组 8 人,则最后一组差 4 人,若设计划分 x 组,则可列方程为( )A .7 x + 2 = 8x - 4B .7 x - 2 = 8x + 4C .7 x + 2 = 8x + 4D .7 x - 2 = 8x - 43.丽宏幼儿园王阿姨给小朋友分苹果,如果每人分3个.则剩余1个;如果每人分4个,则还缺2个.问有多少个苹果?设幼儿园有x 个小朋友,则可列方程为( )A .3x ﹣1=4x +2B .3x +1=4x ﹣2C .1234x x +-=D .1234x x -+= 4.小宝今年5岁,妈妈35岁,( )年后,妈妈的年龄是小宝的2倍.A .30B .20C .10D .以上都不对5.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何.大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中人家户数是多少.根据题意,设城中人家户数为x 户,可列方程为( )A .11003x +=B .1003x x +=C .11003x +=D .11003x += 6.因燃油涨价,从甲城市到乙城市的货运价格上调 20%,三个月后又因燃油价格的回落而下调 20%,则下调后的货运价格与上涨前相比是( )A .贵了B .便宜了C .没有变化D .由于开始价格不知道,因此无法确定7.为了季末清仓,丹尼斯超市某品牌服装按原价第一次降价20%,第二次降价100元,此时该服装的利润率是10%.已知这种服装的进价为600元,那么这种服装的原价是多少?设这种服装的原价为x 元,可列方程为( ) A .80%(100)10%600x -= B .80%(100)60010%600x --= C .20%10060010%600x --= D .80%10060010%600x --=8.星期天小亮与妈妈一起上街买衣服,在一服装店以8折的优惠价为小亮买了一套服装,比标价省了15元,则小亮买这套衣服用了( )A .35元B .60元C .75元D .85元9.校门口一文具店把一个足球按进价提高80%为标价,然后再按7折出售,这样每卖出一个足球可盈利6.5元,求一个足球的进价是多少元?设一个足球进价为x 元,根据题意所列方程正确的是( )A .(180%)70% 6.5x x +-=B .(180%)70% 6.5x x +•-=C .80%70% 6.5x x •-=D .(180%)(170%) 6.5x x +--=10.某商场销售一批电风扇,每台售价560元,可获利25%,求每台电风扇的成本价.设每台电风扇的成本价为x 元,则得到方程( )A .560﹣x =25%xB .560﹣x =25%C .x =560×20%D .25%x =56011.如图是某超市电子表的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮助算一算,该电子表的原价是( )A .21元B .22元C .23元D .24元12.有一列数,按一定规律排成23452,2,2,2,2---……其中相邻的三个数的和为a ,则这三个数中最大的数与最小的数的差为( )A .aB .aC .2aD .2a13.若三个连续偶数的和为18,则它们的积为( )A .216B .49C .192D .48014.设有x 个人共种a 棵树苗,如果每人种6棵,则剩下4棵树苗未种;如果每人种8棵,则缺2棵树苗.根据题意,列方程正确的是( )A .6x ﹣4=8x +2B .6x +4=8x ﹣2C .46a +=48a -D .46a -=28a + 15.一天早上,小宇从家出发去上学.小宇在离家800米时,突然想起班级今天要进行建党100周年合唱彩排,表演的衣服忘了,于是小宇立即打电话通知妈妈送来,自己则一直保持原来的速度继续赶往学校,妈妈接到电话后,马上拿起衣服以180米/分的速度沿相同的路线追赶小宇,10分钟后追上了小宇,把衣服给小宇后又立即以原速原路返回,小宇拿到衣服后继续原速赶往学校(打接电话、拿取衣服等时间都忽略不计).当小宇妈妈回到家中时,恰好小宇也刚好到学校.则小宇家离学校的距离为( )A .1800米B .2000米C .2800米D .3200米16.如图,长方形ABCD 中有6个形状、大小相同的小长方形,且6,24EF CD ==,则图中阴影部分的面积为( )A .216B .144C .192D .9617.某商品的进价是1528元,按商品标价的八折出售时,利润是12%,如果设商品的标价为x 元,那么可列出正确的方程是( )A .81528(112%)x =⨯+B .0.8152812%x =⨯C .()0.81528112%x =⨯+D .0.815280.8(112%)x =⨯+18.某商品在进价的基础上提价20%后以96元的价格出售,则该商品的进价为( )A .60元B .70元C .80元D .86元19.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .10031003x x -+= B .10031003x x --= C .3(100)1003x x +-= D .3(100)1003x x --= 20.如图是一个运算程序:若4x =-,输出结果m 的值与输入y 的值相同,则y 的值为( )A .2-或1B .2-C .1D .2或1-21.某微信平台将一件商品按进价提高40%后标价,又以八折优惠卖出,结果每件仍获利78元,这件商品的进价是多少元?若设这种商品每件的进价是x 元,那么所列方程为( )A .80%(140%)78x x +-=B .40%(180%)78x +=C .80%(140%)78x x -+=D .80%(140%)78x x --=22.小明同学在日历上圈出了三个相邻的数a ,b ,c ,并求出了它们的和为81,则这三个数在日历中的排列位置可能的是( )A .B .C .D .23.幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”(图1所示),把“洛书”用今天的数学符号翻译出来,就是一个三阶幻方(图2所示)观察图1、图2,请你探究出洛书三阶幻方中的奇数和偶数的位置、数和数之间的数量关系所呈现的规律,并用这个规律,求出图3幻方中b a 的值为( )A .0B .1-C .2-D .3-24.根据图中给出的信息,下面所列方程正确的是( )A .()2286522x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭B .()2286522x x ππ⎛⎫⎛⎫⨯=⨯⨯- ⎪ ⎪⎝⎭⎝⎭C .()22865x x ππ⨯=⨯⨯-D .22865x ππ⨯=⨯⨯25.如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧称盘中也有一袋玻璃球,还有2个各20克的砝码,现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为( )A .10gB .20gC .15gD .25g26.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=-B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+27.整理一批数据,由一个人做要40小时完成.现在计划由x 人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率相同,则得( )A .()82414040x x ++= B .()82414040x x -+= C .()42814040x x -+= D .()()428214040x x -++= 28.李女士在城西银泰购买某件正价商品,使用“喵街365卡”打完九折后再通过“满就减”活动优惠了a 元,最终支付了b 元,那么该商品原价为( )A .0.9a b +B .0.9()a b +C .0.9b a -D .0.9()b a -29.某班有学生40人,参加篮球社的人数是参加足球社人数的2倍,既参加篮球社又参加足球社的有5人,既不参加篮球社也不参加足球社的有9人,则只参加足球社的人数是( )A .12B .24C .19D .730.完成某项工程,甲单独做10天完成,乙单独做7天完成,现在由甲先做了3天,乙再参加合作,求完成这项工程总共用去的时间,若设完成此项工程总共用x天,则下列方程中正确的是()A.31107x xB.331107x xC.1107x xD.31107x x二、填空题31.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”,大约成书于公元前200年~公元前50年,其中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,则多出3400钱;每人出300钱,则多出100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为_________.32.一列火车匀速行驶,经过一条长300米的隧道,从车头开始进入隧道到车尾离开隧道一共需要20秒的时间;隧道中央的顶部有一盏灯,垂直向下发光照在火车上的时间是8秒,设该火车的长度为x米,根据题意可列一元一次方程____________.33.为坚决打赢疫情防控阻击战,某小区决定组织工作人员对本小区进行排查,现对工作人员进行分组,若每组安排8人;则余下3人;若每组安排9人,则还缺5人,则该小区工作人员共有______人.34.如图是一个由两个相同的大正方形(甲),一个小正方形(乙)和两个相同的直角三角形(丙)无缝拼接而成的六边形,已知这个六边形的面积为272cm,则图中阴影部分面积为________2cm.35.中国古代数学著作《算法统宗》中有这样一题:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关,”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,请你求出此人第三天的路程为__________.三、解答题36.完成一项工作,一个工人需要16天才能完成.开始先安排几个工人做1天后,又增加1人和他们一起做2天,结果完成了这项工作的一半,假设每个工人的工作效率相同.(1)开始安排了多少个工人?(2)如果要求再用2天做完剩余的全部工作,还需要再增加多少个工人一起做?37.小明和小亮练习一百米赛跑,小明的速度是6米/秒,小亮的速度是7.5米/秒.(1)列方程求解:若小明先跑3秒,小亮经过多长时间追上小明?(2)若小明先跑4秒,小亮能否追上小明?(直接写出结果,不必说明理由)38.甲工程队原有55人,乙工程队有35人,现因工作需要,需从甲工程队调出一些人到乙工程队,使乙工程队的人数是甲工程队人数的2倍.(1)列方程解应用题:求应从甲工程队调出多少人到乙工程队?(2)此时,甲工程队还剩 人.39.数轴上,两点之间的距离可以用这两点中右边的点所表示的数减去左边的点所表示的数来计算,例如:数轴上M 、N 两点表示的数分别是-1和2,那么M 、N 两点之间的距离就是()213MN =--=.如图,在数轴上点A 表示的数是-5,点B 表示最大的负整数,点C 和点B 表示的数互为相反数,已知P 为数轴上一动点,其表示的数是x .(1)AB = ,BC = .(2)当点P 在线段AC 上时,①用含x 的代数式表示:PA= ,PC= .①若7.4PA PB PC ++=,求x 的值.(3)若点P ,Q 分别从B ,C 同时向A 点运动,点P 的速度为2个单位秒,点Q 的速度为3个单位秒,点P 运动至A 点后停止运动,同时Q 点也停止运动,运动的时间为t 秒.①试说明2AP PQ =①当t 为多少时,Q 点刚好追上P 点,并求此时两者相遇的点在数轴上对应的数.40.下表中记录了一次试验中时间和温度的数据.(1)如果温度的变化是均匀的,21min 时的温度是多少?(用一元一次方程求解)(2)什么时间的温度是34C ︒.41.一艘船从A 码头顺流航行到B 码头,用了3小时;从B 码头逆流航行返回A 码头,用了3.5小时.已知水流的速度是2/,km h 求AB 、两码头之间的航程.42.列方程解应用题:在洱海保护治理工作中,洱海生态廊道建设是洱海保护体系的最后一道污染物拦截防线,也是洱海最重要的一道生态安全屏障.大理市政府于2019年启动了129公里洱海生态廊道建设.截止2020年10月止,已经完成主体建设68公里,其余61公里正在全线推进.记者了解到:其中有一段长2400米的河道需要工程队进行整治.甲工程队每天可完成35米,乙工程队每天可完成45米.(1)若该任务由甲、乙两个工程队合作完成,请问整治这段河道任务用了多少天?(2)若在前期,由于乙工程队需要机械维修,则先由甲工程队单独整治一段时间,剩下的工程由甲、乙两队来合作完成.整治完了全部河道共用时48天,求甲、乙工程队分别整治了多少米的河道?43.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下表记录了5个参赛者的得分情况.(1)参赛者答对一道题得多少分,答错一道题扣多少分?(2)参赛者F得76分,他答对了几道题?44.列方程解应用题:为提高学生的运算能力,我县某学校七年级在元旦之前组织了一次数学速算比赛.速算规则如下:速算试题形式为计算题,共20道题,答对一题得5分,不答或错一题倒扣1分.梓萌同学代表班级参加了这次比赛,请解决下列问题:(1)如果梓萌同学最后得分为76分,那么她计算对了多少道题?(2)梓萌同学的最后得分可能为85分吗?请说明理由.45.某班在一次数学兴趣活动中要分为四个组,已知第二组人数比第一组人数32少5人,第三组人数比第一组与第二组人数的和少15人,第四组人数与第一组人数的2倍的和是34,若设第一组有x人.(1)用含x的式子表示第二、三、四组的人数,把答案填在下表相应的位置.(2)该班的总人数是否可以为47人?若可以,请写出每组的具体人数;若不可以,请说明理由.46.足球比赛的计分规则是胜一场得3分,平一场得1分,负一场得0分”,一支足球队在某个赛季中共比赛16场,现已比赛了10场,负3场,共得17分,问:(1)前10场比赛中这支足球队共胜多少场?(2)这支足球队打满16场比赛,最高能得多少分47.某商场以每部500元的价格购进某品牌手机共100部,加价50%后标价销售.在国庆期间,商场计划降价销售.如果商场按降价后的价格售完这批手机,仍可盈利20%,求应按几折销售.48.红旗中学美术课外小组女同学占全组人数的14,加入6个女同学后,女同学就占全组人数的12,求美术课外小组原来的人数.49.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价40元,乒乓球每盒定价8元,经洽谈后,甲店全部按定价的9折优惠,乙店买一副球拍赠一盒乒乓球.该班需球拍5副,乒乓球若干盒(不小于5盒)问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?50.现有树苗若干棵,计划栽在一段公路的一侧,要求路的两端各栽1棵,并且每2棵树的间隔相等.方案一:如果每隔5m栽1棵,则树苗缺100棵;方案二:如果每隔6m栽1棵,则树苗正好用完.根据以上方案,请算出原有树苗的棵数和这段路的长度.51.M校七年级社会实践小组去商场调查商品销售情况,了解该商场以每件100元的价格购进了某品牌运动服400件,并以每件140元的价格销售了300件.元旦之即,该商场准备采取促销措施,将剩下的运动服降价销售.请你帮商场计算一下,每件运动服降价多少元时,销售完这批运动服正好达到盈利35%的预期目标?52.某工人原计划每天生产45个零件,到预定期限还有220个零件不能完成.若提高工效20%,则到期将超额完成140个.此工人原计划生产零件多少个?预定期限是多少天?53.甲、乙两家商场同时出售同样的水瓶和水杯,且定价相同,请根据图中提供的信息,回答:一个水瓶与一个水杯分别是多少元?(请列方程解应用题)54.列方程解应用题:某电视台组织知识竞赛,共设20道选择题,每题必答,下表记录了3个参赛者的得分情况.(1)参赛者小婷得76分,她答对了几道题?(2)参赛者小明说他得了80分,他说的对吗?请说明理由.55.某公司要把240吨白砂糖运往某市的A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,这两种货车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车530元/辆,小车420元/辆,运往B地的运费为:大车700元/辆,小车500元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前A往地,其中调往A地的大车有a辆,那么调往A地的小车有辆,其余的货车前往B地,则其中调往B地的大车有辆,小车有辆.若设总运费为w元,则w与a的关系式(用含a有的代数式表示w)是.56.小丽每天要在7:50之前赶到距家1500m的学校上学.一天,小丽以1.2m/s的速度出发,5min后,小丽m s的速度去追小丽,并且在途中追上了她.的爸爸发现她忘了带数学书.于是,爸爸立即以1.8/(1)爸爸追上小丽用了多长时间?(2)追上小丽时,距离学校还有多远?57.有一旅客携带了25千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李托运票,现该旅客购买的飞机票和行李托运票共645元.(1)该旅客需要购买千克的行李托运票;(2)该旅客购买的飞机票是多少元?58.课本中数学活动问题:一种笔记本售价为23元/本,如果买100本以上(不含100本),售价为22元/本.请回答下面的问题:(1)列式表示买n本笔记本所需钱数.(2)按照这种售价规定,会不会出现多买比少买反而付钱少的情况?通过列式计算加以说明.(3)如果需要100本笔记本,怎样购买能最省钱?59.某商场第一季度销售甲、乙两种冰箱若干台,其中乙种冰箱的数量比甲种冰箱多销售40台,第二季度甲种冰箱的销量比第一季度增加10%,乙种冰箱的销量比第一季度增加20%,且第二季度两种冰箱的总销量达到554台.求:(1)该商场第一季度销售甲种冰箱多少台?(2)若每台甲种冰箱的利润为250元,每台乙种冰箱的利润为300元,则该商场第二季度销售冰箱的总利润是多少元?60.滴滴快车是一种便捷的出行工具,计价规则如下表:(1)小敏乘坐滴滴快车,行车里程5公里,行车时间20分钟,则小敏下车时应付多少车费?(2)小红乘坐滴滴快车,行车里程10公里,下车时所付车费29.4元,则这辆滴滴快车的行车时间为多少分钟?。

七年级数学上册一元一次方程专项练习题

七年级数学上册一元一次方程专项练习题

一.选择题(共10小题)1.下列是一元一次方程的是()A.x+3=B.x2+3x=1C.x+y=5D.7x+1=32.下列等式变形正确的是()A.由x﹣1=5,得x=4B.由4x=2,得x=2C.由ax=bx,得a=b D.由﹣3x=6,得x=﹣23.在解方程3x+5=﹣2x﹣1的过程中,移项正确的是()A.3x﹣2x=﹣1+5B.﹣3x﹣2x=5﹣1C.﹣3x﹣2x=﹣5﹣1D.3x+2x=﹣1﹣54.若和3﹣2x互为相反数,则x的值为()A.﹣3B.3C.1D.﹣15.已知A=2x+1,B=5x﹣4,若A比B小1,则x的值为()A.2B.﹣2C.3D.﹣36.在如图所示的三阶幻方中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为()A.20B.21C.30D.317.小强同学想根据方程7x+6=8x﹣6编一道应用题:“几个人共同种一批树苗,_____,求参与种树的人数.”若设参与种树的有x人,那么横线部分的条件应描述为()A.若每人种7棵,则缺6棵树苗;若每人种8棵,则剩下6棵树苗未种B.若每人种7棵,则缺6棵树苗;若每人种8棵,则缺6棵树苗C.若每人种7棵,则剩下6棵树苗未种;若每人种8棵,则剩下6棵树苗未种D.若每人种7棵,则剩下6棵树苗未种;若每人种8棵,则缺6棵树苗8.下边是2020年1月份的日历表,平移表中带阴影的方框,则方框中三个数的和可能是()A.57B.84C.89D.939.2022年卡塔尔世界杯于北京时间11月21日0时正式开幕.某足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场10.某商品原先的利润率为30%,为了促销,现降价30元销售,此时利润率下降为15%,那么该商品的进价是()A.130B.150C.200D.300二.填空题(共6小题)11.关于x的一元一次方程ax﹣5=3的解是2,则a的值为4.12.某钢厂预计今年的钢产量比去年增加15%,可达到230万吨.去年的钢产量是多少?如果设去年产量为x万吨,那么可列方程为,方程的解是x=.13.我们定义一种新的运算:x*y=x+y﹣xy,其中等号右边的运算为正常的加减乘除运算,例如3*2=3+2﹣3×2=﹣1.在上述运算法则下,若2*x=﹣5,则x=.14.幻方是中国古代的一种谜题,又称九宫图,即在正方形网格中填上9个整数,使每行、每列及对角线上的数字之和都相等.图中给出了幻方的部分数字,则x=.15.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为,则所有满足条件的x的值为.16.如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为17,当点N移动到点A时,点M所对应的数为5,则点A在数轴上表示的数为.三.解答题(共5小题)17.解下列方程:(1)x+2=12﹣4x;(2).18.一艘船从甲码头顺流而行,用了3小时到达乙码头,该船从乙码头返回甲码头逆流而行,用了5小时,已知水流速度是3千米/小时,求船在静水中的速度.18.我校举行七年级数学运算闯关赛,要求每班选派五位选手参赛,每位选手需要计)算30道题目,只有答对25道题目以上才能获奖.如果以答对25道题为基准,用正数表示超过基准的题数.下面是七年级某班五名同学的答题情况统计表:答题情况统计表张明李丽王杰刘浩徐春4﹣352﹣1(1)该班五位同学中,答对题数最多的同学比答对题数最少的同学多答对几题?(2)若每答对一道题目得4分(不写或写错得0分),求该班五位同学的总分.19.列一元一次方程解应用题:数学老师为了表扬计算擂台赛满分的同学,决定从网店给同学们买一些练习本作为奖品,该网店按表中所示的方式卖本:(1)当老师买多少本时,分两次购买(每次购买数量不超过20本)与一次性购买所花费用相同?20本及以下20本以上单价4元/本超过20本的部分打8折邮费一次5元一次14元(2)临近双十一,对于购买20本以上的顾客,商家给出了更大优惠:所有练习本都按照8折出售.当老师想买20个本时,怎么购买更合理?20.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】数轴上点A表示的数为﹣4,点B表示的数为6,点P从点A出发,以每秒1个单位长度的速度沿数轴向终点B匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,Q到达A点后,再立即以同样的速度返回B点,当点P到达终点后,P.Q两点都停止运动,设运动时间为t秒(t>0).【综合运用】(1)填空:A,B两点间的距离AB=,线段AB的中点表示的数为.(2)当t为何值时,P,Q两点间距离为3.(3)若点M为AQ的中点,点N为BP的中点,在运动过程中,的值是否会发生变化?若变化,请说明理由,若不变,请求出相应的数值.21.如图,数轴上点A表示的数为﹣4,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t秒(t>0).(1)A,B两点间的距离等于,线段AB的中点表示的数为;(2)用含t的代数式表示:t秒后.点P表示的数为,点Q表示的数为;(3)求当t为何值时,PQ=AB?(4)若点M为PQ的中点,当点M到原点距离为9时,t=.22.如图,已知数轴上点A表示的数为a,B表示的数为b,且a、b满足(a﹣10)2+|b+6|=0.动点P从点A出发,以每秒8个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点A表示的数是,点B表示的数是,点P表示的数是(用含t的式子表示)(2)当点P在点B的左侧运动时,M、N分别是P A、PB的中点,求PM﹣PN的值;(3)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,点P运动多少秒时P、Q两点相距4个单位长度?。

难点突破“一元一次方程应用题(提高)”压轴题50道(含详细解析)

难点突破“一元一次方程应用题(提高)”压轴题50道(含详细解析)

“一元一次方程应用题”压轴题50道(含详细解析)一.解答题(共50小题)1.如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后分钟时,甲乙两人第一次在正方形的顶点处相遇;(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是.2.梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.3.某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:消费金额a(元)200≤a<400400≤a<500500≤a<700700≤a<900…获奖券金额(元)3060100130…根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元).购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到13的优惠率?4.联想中学本学期前三周每周都组织初三年级学生进行一次体育活动,全年级400名学生每人每次都只参加球类或田径类中一个项目的活动.假设每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动.(1)如果第一次与第二次参加球类活动的学生人数相等,那么第一次参加球类活动的学生应有多少名?(2)如果第三次参加球类活动的学生不少于200名,那么第一次参加球类活动的学生最少有多少名?5.据了解,火车票价按“全程参考价×实际乘车里程数总里程数”的方法来确定.已知A站至H站总里程数为1 500千米,全程参考价为180元.下表是沿途各站至H 站的里程数:车站名A B C D E F G H各站至H站的里程数(单位:千米)15001130910622402219720例如,要确定从B站至E站火车票价,其票价为180×(1130−402)1500=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元);(2)旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的(要求写出解答过程).6.2012年,某地开始实施农村义务教育学校营养计划﹣﹣“蛋奶工程”.该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.(1)一个鸡蛋中含蛋白质的质量为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?7.从2009年4月1日起,中国铁路实施了新的列车运行图,根据新的运行图,此次做出调整最大的是客运列车,而其中部分列车的运行速度也将大大缩短.预计某高速列车在甲、乙两城市间单程直达运行时间为半小时.某次试车时,试验列车由甲城市到乙城市的行驶时间比预计时间多用了6分钟,由乙城市返回甲城市的行驶时间与预计时间相同.如果这次试车时,由乙城市返回甲城市比去乙城市时平均每小时多行驶40千米,那么这次试车时由甲城市到乙城市的平均速度是每小时多少千米?8.某牛奶公司计划在三栋楼之间建一个取奶站,三栋楼在一条直线上,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米、已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,公司提出两种建站方案:方案一:让每天所有取奶的人到奶站的距离最小;方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和,(1)若按第一种方案建站,取奶站应建在什么位置?(2)若按方案二建站,取奶站应建在什么位置?(3)在(2)的情况下,若A楼每天取奶的人数增加,增加的人数不超过22人,那么取奶站将离B楼越来越远,还是越来越近?请说明理由.9.“中国竹乡”安吉县有着丰富的毛竹资源.某企业已收购毛竹52.5吨.根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加0.5吨,每吨可获利5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了二种方案:方案一:将毛竹全部粗加工后销售,则可获利元.方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.10.在“三峡明珠”宜昌市蕴含着丰富的水电、旅游资源,建有三峡工程等多座大型水电站,随着2003年三峡工程首批机组发电,估计当年将有200万人次来参观三峡大坝(参观门票按每张50元计)由此获得的旅游总收入可达到7.02亿元,相当于当年三峡工程发电总收入的26%,(每度电收入按0.1元计),据测算,每度电可创产值5元,而每10万元产值就可以提供一个就业岗位,待三峡工程全部建成后,其年发电量比2003年宜昌市所有水电站的年发电总量还多了75%,并且是2003年宜昌市除三峡工程以外的其它水电站的年发电量总和的4倍,(1)旅游部门测算旅游总收入是以门票为基础,再按一定比值确定其它收入(吃、住、行、购物、娱乐的收入),两者之和即为旅游总收入,请你确定其它收入与门票收入的比值;(2)请你评估三峡工程全部完工后,由三峡工程年发电量而提供的就业岗位每年有多少个?11.用A4纸在甲誊印社复印文件,复印页数不超过50时,每页收费0.12元;复印页数超过50时,超过部分每页收费降为0.08元.在乙誊印社复印同样的文件,不论复印多少页,每页收费0.09元.设复印页数为x(x>50)(1)用含x的式子分别表示在甲誊印社复印文件时的费用为:元,在乙誊印社复印文件时的费用为:元;(2)复印页数为多少时,两处的收费相同?12.甲、乙两支“徒步队”到野外沿相同路线徒步,徒步的路程为24千米.甲队步行速度为4千米/时,乙队步行速度为6千米/时.甲队出发1小时后,乙队才出发,同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿),他跑步的速度为10千米/时.(1)乙队追上甲队需要多长时间?(2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1千米?13.我国元朝朱世杰所著的《算学启蒙》(1299年)一书中有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:快马每天走240里,慢马每天走150里.慢马先走12天,快马几天可以追上慢马?(1)设快马x天可以追上慢马,请你将如下的线段图补充完整:(2)根据(1)中线段图所反映的数量关系,列方程解决问题.14.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是.(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(4)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?15.如图1,有A、B两动点在线段MN上各自做不间断往返匀速运动(即只要动点与线段MN的某一端点重合则立即转身以同样的速度向MN的另一端点运动,与端点重合之前动点运动方向、速度均不改变),已知A 的速度为3米/秒,B 的速度为2米/秒(1)已知MN=100米,若B 先从点M 出发,当MB=5米时A 从点M 出发,A出发后经过 秒与B 第一次重合;(2)已知MN=100米,若A 、B 同时从点M 出发,经过 秒A 与B 第一次重合;(3)如图2,若A 、B 同时从点M 出发,A 与B 第一次重合于点E ,第二次重合于点F ,且EF=20米,设MN=s 米,列方程求s .16.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表购买服装的套数1套至45套 46套至90套 91套以上 每套服装的价格60元 50元 40元(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.17.一个自行车队进行训练,训练时所有队员都以相同的速度前进,突然,1号队员以每小时比其他队员快10千米的速度独自行进,行进了10千米后掉转车头,速度不变往回骑,直到与其他的队员会合.从1号队员离队开始到与其他队员重新会合,经过了15分钟.(1)其他队员的行进速度是多少?(2)1号队员从离队开始到与队员重新会合这个过程中,经过多长时间与其他队员相距1千米?18.近期,重庆商品住宅市场房屋销售出现销售量和销售价齐涨态势,数据显示,2016年12月,甲、乙房地产公司的销售面积一共17000平方米,乙房地产公司的单价是甲房地产公司单价的98.甲房地产公司单价为每平方米0.8万元,两家销售的总金额为14430万元.(1)求2016年12月,甲、乙房地产公司各销售了多少平方米.(2)根据市场需求,甲、乙房地产公司决定调整2017年1月份的房价,甲房地产公司每平方米的售价上涨a%,销售量预计比12月减少200平方米:乙房地产公司决定以降价促销的方式应对当前的形势,每平方米的售价下调13 a%,销售面积预计将比12月增加700平方米,预计1月份两家的总销售额恰好为15310万元,求a的值.19.松雷中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件.且单独加工这批校服甲厂比乙厂要多用20天.在加工过程中,学校需付甲厂每天费用80元、付乙厂每天费用120元.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,而乙工厂每天的生产速度也提高25%,乙工厂单独完成剩余部分.且乙工厂的全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲厂单独完成;方案二:由乙厂单独完成;方案三:按(2)问方式完成;并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天10元的午餐补助费,请你通过计算帮学校选择一种即省时又省钱的加工方案.20.列方程解应用题今年某网上购物商城在“双11购物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?21.已知A,B,C三个圆柱形容器的底面积之比为1:2:3,且容器的高都为10cm,若A,B,C三个容器中分别装有液面高度为6cm、8cm、6cm的液体,现把C容器中的液体分别倒入A,B两个容器中,直至装满这两个容器(无溢出),此时C容器中还剩120cm3的液体.(1)若设A容器的底面积为x(cm2),请用含x的代数式表示三个容器中液体的总体积;(2)求C容器的体积;(3)若A,B,C三个容器中的液体可互相倒入(无溢出),最后是否能使三个容器中的液体体积都相等?若能,求出每个容器中的液体体积;若不能,说明理由.22.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,直接写出点P对应的数;(2)数轴的原点右侧是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?23.某军舰在静水中的速度为70千米/时,有一天它顺水航行去钓鱼岛执行巡航任务,途中有一救生圈落入水中,发现时救生圈已距军舰35千米,若水流速度为10千米/时.(1)求从救生圈落水到被发现用了多长时间?(2)发现后,舰长马上派摩托艇取回救生圈,摩托艇在静水中的速度为140千米/时,军舰仍以原速前进,摩托艇拿到救生圈后马上返回军舰,求从救生圈落水到摩托艇返回军舰共用多少小时?24.某超市在“元旦”促销期间规定:超市内所有商品按标价的80%出售,同时当顾客在消费满一定金额后,按如下方案获得相应金额的奖券:消费金额a(元)的范围100≤a<400400≤a<600600≤a<800获得奖券金额(元)40100130根据上述促销方法知道,顾客在超市内购物可以获得双重优惠,即顾客在超市内购物获得的优惠额=商品的折扣+相应的奖券金额,例如:购买标价为440元的商品,则消费金额为:440×80%=352元,获得的优惠额为:440×(l﹣80%)+40=128元.(1)若购买一件标价为800元的商品,则消费金额为元,获得的优惠额是元;(2)若购买一件商品的消费金额a在450≤a<800之间,请用含a的代数式表示优惠额;(3)某顾客购买一件商品的消费金额在100元与800元之间(含100元,不含800元),她能否获得150元的优惠额?若能,求出该商品的消费金额.25.重庆派森白•橙汁有限公司现有鲜甜橙48吨,若直接销售,每吨可获利500元:若制成普通橙汁销售,每吨可获利2200元;若引进世界一流的榨汁生产线后,则制成派森百NFC橙汁,每天可获利2500元,本工厂的生产能力是:若制成普通橙汁,每天可加工鲜甜橙4吨;若制成派森百NFC橙汁,每天可加工鲜甜橙3吨(两种加工方式不能同时进行).受气温条件限制,这批鲜甜橙必须在15天内全部销售并加工完成,为此该公司设计了以下两种可行方案:方案一:15天时间全部用来生产派森百NFC橙汁,其余直接销售鲜甜橙;方案二:将一部分制成派森百NFC橙汁,其余制成普通橙汁,并恰好15天完成.(1)若重庆派森百橙汁有限公司采川方案一,可获利多少元?(2)若重庆派森百橙汁有限公司采用方案二,可获利多少元?26.正值度尾文旦柚收成之际,在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达2000元;经精加工包装后销售,每吨利润为3000元.当地一家公司收购了600吨,该公司加工厂的生产能力是:如果对文旦柚进行粗加工,每天可加工50吨;如果进行精加工,每天可加工20吨,但每天两种方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批文旦柚全部销售或加工完毕,为此公司研制了三种加工方案.方案一:将文旦柚全部进行粗加工;方案二:尽可能多的对文旦柚进行精加工,没有来得及加工的文旦柚在市场上直接销售;方案三:将部分文旦柚进行精加工,其余文旦柚进行粗加工,并恰好在15天完成,如果你是公司经理,你会选择哪种方案,说明理由.27.如图,将连续奇数1,3,5,7,…排成如下数表,观察十字框内5个数,探索这五个数之间的规律,解答下面的问题:(1)设十字框中间的数为a,请用含a的式子表示十字框内5个数的和为.(2)十字框内5个数的和能等于2010吗?若能,请求出框内5个数;若不能,请说明理由;(3)十字框内5个数的和能等于2015吗?若能,请求出框内5个数;若不能,请说明理由.28.新石商店新进一批衬衣和成对的暖瓶,暖瓶的对数正好是衬衣件数的一半.每件衬衣进价是40元,每对暖瓶的进价也是40元,商店将这批物品以高出进价10%的价钱卖了出去,因商店职员需要,留下了7件物品.这时,商店发现所卖这批物品的钱数恰好等于买进这批物品所花的钱数.这批物品的利润可用留下的7件物品的零售价之和所代表.这7件物品都是什么?它们值多少钱?29.如图,时钟是我们常见的生活必需品,其中蕴含着许多数学知识.(1)我们知道,分针和时针转动一周都是度,分针转动一周是分钟,时针转动一周有12小时,等于720分钟;所以,分针每分钟转动度,时针每分钟转动度.(2)从5:00到5:30,分针与时针各转动了多少度?(3)请你用方程知识解释:从1:00开始,在1:00到2:00之间,是否存在某个时刻,时针与分针在同一条直线上?若不存在,说明理由;若存在,求出从1:00开始经过多长时间,时针与分针在同一条直线上.30.动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距16个单位长度.已知动点A、B的速度比是1:3(速度单位:单位长度/秒).(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动4秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B 点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动,若点C一直以25个单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度?31.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?32.已知某提炼厂10月份共计从矿区以每吨4000元价格购买了72吨某矿石原料,该提炼厂提炼矿石材料的相关信息如下表所示:提炼方式每天可提炼原材料的吨数提炼率提炼后所得产品的售价(元/吨)每提炼1吨原材料消耗的成本(元)粗提炼790%300001000精提炼360%900003000注:①提炼率指提炼后所得的产品质量与原材料的比值;②提炼后的废品不产生效益;③提炼厂每天只能做粗提炼或精提炼中的一种.受市场影响,提炼厂能够用于提炼矿石原材料的时间最多只有12天,若将矿石原材料直接在市场上销售,每吨的售价为5000元,现有3种提炼方案:方案①:全部粗提炼;方案②:尽可能多的精提炼,剩余原料在市场上直接销售(直接销售的时间忽略不计);方案③:一部分粗提炼,一部分精提炼,且刚好12天将所有原材料提炼完.问题:(1)若按照方案③进行提炼,需要粗提炼多少天?(2)哪个提炼方案获得的利润最大?最大利润是多少?(3)已知提炼厂会根据每月的利润按照一定的提成比例来计算每个月需要给工厂员工发放的总提成,具体计算方法如下表:提炼厂利润不超过150万元的部分超过150万元但不超过200万元的部分超过200万元的部分提成比例8%a%15%现知按照(2)问中的最大利润给员工发放的10月份的总提成为15.09万元,11月份和12月份提炼厂获得的总利润为480万元,11月份和12月份给员工的总提成为50.6万元,且12月份的利润比11月份的利润大,求提炼厂12月份的利润.33.若A、B两点在数轴上所表示的数分别为a、b,则A、B两点间的距离可记为|a﹣b|:(1)如图:若A、B两点在数轴上所表示的数分别为﹣2、4,求A、B两点的距离为;(2)若A、B两点分别以每秒3个单位长度和每秒1个单位长度的速度同时沿数轴正方向运动,设运动时间为t秒,解答下列问题:①运动t秒后,A点所表示的数为,B点所表示的数为;(答案均用含t的代数式表示)②当t为何值时,A、B两点的距离为4?34.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A 出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动运动的过程中有处相遇,相遇时t=秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)35.已知:如图所示,O为数轴的原点,A,B分别为数轴上的两点,A点对应的数为﹣30,B点对应的数为100.(1)A、B间的距离是.(2)若电子蚂蚁P从B点出发,以8个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从A点出,以4个单位长度/秒向左运动.请问:多少秒后两只电子蚂蚁之间的距离是610个单位长度?(3)若点C是数轴上原点左侧的点,C到B的距离是C到原点O的距离的3倍,求点C对应的数是多少?。

一元一次方程培优提高习题精选

一元一次方程培优提高习题精选

一元一次方程培优提高习题精选例题1.关于x的方程ax﹣6=2x,通过代值检验发现当a=0时,方程的解为x=﹣3;当a=1时,方程的解为x=﹣6;当a=2时,方程无解.试讨论a与方程的解有什么关系?解:化简方程ax﹣6=2x,得(a﹣2)x=6,当a≠2时,有唯一解x=,当a=2时,方程无解.例题2.已知:(a+2b)y2﹣+5=0是关于y的一元一次方程:(1)求a,b的值.(2)若x=a是﹣+3=的解,求丨5a﹣2b丨﹣丨4b﹣2m|的值.解:(1)∵(a+2b)y2﹣+5=0是关于y的一元一次方程,a+2b=0,a+2=1,a=﹣3,b=;(2)把x=a=﹣3,代入,m=26,丨5a﹣2b丨﹣丨4b﹣2m|=|5×(﹣3)﹣2×|﹣|4×﹣2×26|=18﹣46=﹣28.例题3.已知m,n是有理数,单项式﹣x n y的次数为3,而且方程(m+1)x2+mx﹣tx+n+2=0是关于x的一元一次方程.(1)分别求m,n的值.(2)若该方程的解是x=3,求t的值.(3)若题目中关于x的一元一次方程的解是整数,请直接写出整数t的值.解:(1)由题意得:n=2,m=﹣1;(2)(m+1)x2+mx﹣tx+n+2=0,当x=3时,3m﹣3t+n+2=0,∵n=2,m=﹣1,∴﹣3﹣3t+2+2=0,t=;(3)(m+1)x2+mx﹣tx+n+2=0,∵n=2,m=﹣1,∴﹣x﹣xt+4=0,x=t==﹣1,∴t≠﹣1,x≠0∵t是整数,x是整数,∴当x=1时,t=3,当x=4时,t=0,当x=﹣1时,t=﹣5,当x=﹣4时,t=﹣2,当x=2时,t=1,当x=﹣2时,t=﹣3.例题4.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.解:(1)∵方程3x=m是和解方程,∴=m+3,解得:m=﹣.(2)∵关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,∴﹣2n=mn+n,且mn+n﹣2=n,解得m=﹣3,n=﹣.习题精练:1.一元一次方程都可以变形为形如ax=b(a,b为常数,且a≠0)的方程,称为一元一次方程的最简形式.关于x的方程ax=b(a,b为常数,且a≠0)解的讨论:当a≠0时,是一元一次方程,有唯一解x=;当a=0,且b=0时,它有无数多个解,任意数都是它的解;当a=0,且b≠0时,它无解,因为任何数都不可能使等式成立.讨论关于当x的方程(a﹣4)x=2的解.2.阅读下列文字后,解答问题:我们知道,对于关于x的方程ax=b,当a不等于0时,方程的解为x=;当a等于0,b也等于0时,所有实数x都能使方程等式成立,也就是说方程的解为全体实数;当a 等于0,而b不等于0时,没有任何x能满足方程使等式成立,此时,我们说方程无解.根据上述知识,判断a,b为何值时,关于x的方程a(4x﹣2)﹣3b=8x﹣7的解为全体实数?a,b为何值时,无解.3.【阅读理解】如果一个无限小数的各数位上的数字,从小数部分的某一位起,按一定顺序不断重复出现,那么这样的小数叫做无限循环小数,简称循环小数.例如,0.333…,写作,像这样的循环小数称为纯循环小数.又如,0.1666…、0.0456456456…,它们可分别写作、,像这样的循环小数称为混循环小数.【问题探究】小明课后利用方程的知识探索发现,所有纯循环小数都可以化为分数,例如,化为分数,解决方法是:设x=,即x=0.333…,将方程两边都×10,得10x=3.333…,即10x=3+0.333…,又因为x=0.333…,所以10x=3+x,所以9x=3,即x=,所以=.尝试解决下列各题:(1)把化成分数为.(2)请利用小明的方法,把纯循环小数化成分数.【问题归纳】循环小数中重复出现的一个或几个数字叫做它的一个循环节,例如0.333…、0.0456456456…的循环节分别为“3”、“456”.其实,把纯循环小数化为分数时,分数的分子是它的一个循环节的数字所组成的数,分母则由若干个9组成,9的个数为一个循环节的数字的个数.例如:;;.请直接写出以下纯循环小数化为分数的结果:=,=.【问题拓展】小丽在对混循环小数研究时发现,所有混循环小数都可以先化为纯循环小数,然后再化为分数.例如:.请把混循环小数化为分数.4.已知关于x的方程的两个解是;又已知关于x的方程的两个解是;又已知关于x的方程的两个解是;…,小王认真分析和研究上述方程的特征,提出了如下的猜想.关于x的方程的两个解是;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题.(1)关于x的方程的两个解是x1=和x2=;(2)已知关于x的方程,则x的两个解是多少?5.阅读理解:若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2+qc+m=0,移项得:m=﹣c3﹣pc2﹣qc,即有:m=c×(﹣c2﹣pc﹣q),由于﹣c2﹣pc﹣q与c及m都是整数,所以c是m的因数.上述过程说明:整数系数方程x3+px2+qx+m =0的整数解只可能是m的因数.例如:方程x3+4x2+3x﹣2=0中﹣2的因数为±1和±2,将它们分别代入方程x3+4x2+3x﹣2=0进行验证得:x=﹣2是该方程的整数解,﹣1,1,2不是方程的整数解.解决问题:(1)根据上面的学习,请你确定方程x3+x2+5x+7=0的整数解只可能是哪几个整数?(2)方程x3﹣2x2﹣4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.6.数轴上点A对应的数为a,点B对应的数为b,点A在负半轴,且|a|=3,b是最小的正整数.(Ⅰ)求线段AB的长;(Ⅱ)若点C在数轴上对应的数为x,且x是方程2x+1=3x﹣4的根,在数轴上是否存在点P使P A+PB=BC+AB,若存在,求出点P对应的数,若不存在,说明理由.(Ⅲ)如图,若Q是B点右侧一点,QA的中点为M,N为QB的四等分点且靠近于Q 点,当Q在B的右侧运动时,有两个结论:①QM+BN的值不变,②QM﹣BN的值不变,其中只有一个结论正确,请你判断正确的结论,并求出其值.7.问题提出:我们知道,等式具有性质:(1)等式两边同时加或减同一个代数式,所得结果仍是等式;(2)等式两边同时乘同一个数或除以同一个不为0的数,所得结果仍是等式.那么任意一个三阶幻方是否也有类似的性质?问题探究:为了探究上述问题,我们不妨从简单的三阶幻方①入手;探究一如图②,九个数2,3,4,5,6,7,8,9,10已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方②,所以构成三阶幻方①的九个数同时加1,所得到的九个数仍可构成一个三阶幻方.如图③,九个数﹣2,﹣1,0,1,2,3,4,5,6已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方③,所以构成三阶幻方①的九个数同时减3,所得到的九个数仍可构成一个三阶幻方.请把九个数0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5填到图④的方格中,使得每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方④,所以构成三阶幻方①的九个数同时减0.5,所得到的九个数仍可构成一个三阶幻方.(1)根据探究一可得任意三阶幻方的性质(1):.探究二:如图⑤,九个数3,6,9,12,15,18,21,24,27已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方⑤.所以构成三阶幻方①的九个数同时乘3,所得到的九个数仍可构成一个三阶幻方.如图⑥,九个数0.5,1,1.5,2,2.5,3,3.5,4,4.5已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方⑥.所以构成三阶幻方①的九个数同时除以2,所得到的九个数仍可构成一个三阶幻方.请把九个数﹣4,﹣8,﹣12,﹣16,﹣20,﹣24,﹣28,﹣32,﹣36填到图⑦的方格中,使得每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方⑦.所以构成三阶幻方①的九个数同时乘﹣4,所得到的九个数仍可构成一个三阶幻方.(2)根据探究二可得任意三阶幻方的性质(2):.性质应用:6,8,10,12,14,16,18,20,22这九个数能否构成三阶幻方?请在图8中用三阶幻方的性质进行说明.8.重温例题:小丽在水果店花18元买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元.小丽买了苹果和橘子各多少千克?解决问题:(1)设所购买的苹果质量为xkg.请你将下列同学的探究过程补充完整.①小明同学列出了下表,并根据相等关系“买苹果的金额+买橘子的金额=18元”,可得方程:.单价(元/kg)质量(kg)金额(元)苹果 3.2x 3.2x橘子 2.66﹣x 2.6(6﹣x)合计618②小红、小王、小颖三位同学分别给出了不同于小明同学的表格和方程,请补充完整.(友情提醒:表格中的空格表达式不同于小明所填的,所列方程不要化简.)i小红根据相等关系“所买苹果的质量+橘子的质量=6kg”,得方程.单价(元/kg)质量(kg)金额(元)苹果 3.2x 3.2x橘子 2.618﹣3.2x合计618ii小王根据相等关系“苹果的单价×其质量=苹果购买金额”,得方程.单价(元/kg)质量(kg)金额(元)苹果 3.2x橘子 2.66﹣x 2.6(6﹣x)合计618iii小颖根据相等关系“橘子的单价×其质量=橘子购买金额”,得方程.单价(元/kg)质量(kg)金额(元)苹果 3.2x 3.2x橘子 2.66﹣x合计618(2)设苹果购买金额为y元,下列方程正确的是.(填写正确的序号)①;②y+2.6(6﹣)=18;③3.2(6﹣)=y;④3.2(6﹣)=18﹣y.9.综合与实践情境再现:举世瞩目的港珠澳大桥东接香港,西接珠海、澳门,全长55千米,是世界上最长的跨海大桥,被誉为“新世界七大奇迹”之一.如图,香港口岸点B至珠海口岸点A约42千米,海底隧道CD全长约7千米,隧道一端的东人工岛点C到香港口岸的路程为12千米,某一时刻,一辆穿梭巴士从香港口岸发车,沿港珠澳大桥开往珠海口岸.10分钟后,一辆私家车也从香港口岸出发沿港珠澳大桥开往珠海口岸,在私家车出发的同时,一辆大客车从珠海口岸出发开往香港口岸.已知穿梭巴士的平均速度为72千米/时,大客车的平均速度为78千米/时,私家车的平均速度为84千米/时.问题解决:(1)穿梭巴士出发多长时间与大客车相遇?(2)私家车能否在到达珠海口岸前追上穿梭巴士?说明理由;(3)穿梭巴士到达珠海口岸后停车5分钟供乘客上下车,之后立即沿原路按原速度返回香港口岸.设该巴士从香港口岸出发后经过的时间为t小时.请从下列A,B两题中任选一题作答我选择题A:①该巴士返程途中到珠海口岸的路程为千米(用含t的代数式表示);②该巴士返程途中到东人工岛的路程为6千米时,t的值为.B:①该巴士返程途中到香港口岸的路程为千米(用含t的代数式表示);②私家车到达珠海口岸时,用5分钟办完事立即返回香港口岸.若其返程途中的速度为96千米/时,私家车返程途中与巴士之间相距的路程为4千米时,t的值为.10.阅读下面的材料:如图①,若线段AB在数轴上,A,B两点表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向右移动7cm到达B点,用1个单位长度表示lcm.(1)请你在数轴上表示出A,B两点的位置;(2)若将点A向左移动xcm,则移动后点A表示的数为(用含x的代数式表示);(3)若点M从原点O出发以每秒1个单位长度的速度沿数轴向右匀速运动,设运动时间为t(秒),同时,另一动点N从点B出发,以每秒2个单位长度的速度向左匀速运动,到达原点O后立即原速度返回向右匀速运动,当MN=1cm时,求t的值.11.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴我们发现有许多重要的规律:例如,若数轴上A点、B点表示的数分别为a、b,则A、B两点之间的距离AB=|a﹣b|,线段AB的中点M表示的数为.【问题情境】在数轴上,点A表示的数为﹣20,点B表示的数为10,动点P从点A出发沿数轴正方向运动,同时,动点Q也从点B出发沿数轴负方向运动,已知运动到4秒钟时,P、Q两点相遇,且动点P、Q运动的速度之比是3:2(速度单位:单位长度/秒).【综合运用】(1)点P的运动速度为单位长度/秒,点Q的运动速度为单位长度/秒;(2)当PQ=AB时,求运动时间;(3)若点P、Q在相遇后继续以原来的速度在数轴上运动,但运动的方向不限,我们发现:随着动点P、Q的运动,线段PQ的中点M也随着运动.问点M能否与原点重合?若能,求出从P、Q相遇起经过的运动时间,并直接写出点M的运动方向和运动速度;若不能,请说明理由.参考答案与试题解析1.【分析】分a=4和a≠4两种情况分别求解可得.【解答】解:当a≠4 时,有唯一解x=,当a=4 时,无解.【点评】本题主要考查一元一次方程的解,解题的关键是熟练掌握等式的基本性质.2.【分析】根据题意把原方程移项、合并同类项,再根据一次项系数为0和不为0两种情况讨论方程解的情况.【解答】解:原方程可以化为:4(a﹣2)x=2a+3b﹣7,当a﹣2=0且2a+3b﹣7=0,即当a=2,b=1时,方程的解为全体实数;当a﹣2=0而2a+3b﹣7≠0,即a=2,b≠1时,方程无解.【点评】本题考查了一元一次方程解的情况,在解答时要注意一次项系数为0和不为0两种情况,不要漏解.3.【分析】尝试解决下列各题:(1)根据阅读材料设=x,方程两边都乘10,转化为1+x=10x,求出其解即可;(2)根据阅读材料设=x,方程两边都乘100,转化为16+x=100x,求出其解即可;【问题归纳】:设=x,方程两边都乘100,转化为35+x=100x,求出其解即可;:设=x,方程两边都乘1000,转化为18+x=1000x,求出其解即可;【问题拓展】根据阅读材料化混循环小数为:×20.,再由材料转化为整数与另一无限循环小数的和,依次化简可得结论.【解答】【问题探究】解:(1)设=x,即x=0.111…,将方程两边都×10,得10x=1.111…,即10x=1+0.111…,又因为x=0.111…,所以10x=1+x,所以9x=1,即x=,所以=.故答案为:;(2)设=x,100x=100x=16+x…(2分)【问题归纳】解:设:=x,100x=35.,100x=35+x,x=,设:=x,1000x=18.1,1000x=18+x,x=,故答案为:,…(1分+1分)【问题拓展】解:=…(2分)【点评】本题考查了无限循环小数转化为分数的运用,还考查了等式性质的运用,解答时根据等式的性质变形建立方程是解答的关键.4.【分析】(1)根据上述的结论方程的两个解是,即可猜想得到答案;(2)可以把x﹣1看作一个整体,即方程两边同时减去1,得x﹣1+=11+,然后根据猜想得到x﹣1=11,x﹣1=,进一步求得方程的解.【解答】解:(1)根据猜想的结论,则x1=11,x2=;(2)原方程可以变形为x﹣1+=11+,则x﹣1=11,x﹣1=.则x1=12,x2=.【点评】此题要能够根据探索得到的结论进行分析求解,能够运用换元法进行求解,有一定难度.5.【分析】(1)认真学习题目给出的材料,掌握“整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数”,再作答.(2)根据分析(1)得出3的因数后再代入检验可得出答案.【解答】解:(1)由阅读理解可知:该方程如果有整数解,它只可能是7的因数,而7的因数只有:1,﹣1,7,﹣7这四个数.(2)该方程有整数解.方程的整数解只可能是3的因数,即1,﹣1,3,﹣3,将它们分别代入方程x3﹣2x2﹣4x+3=0进行验证得:x=3是该方程的整数解.【点评】本题考查同学们的阅读能力以及自主学习、自我探究的能力,该类型的题是近几年的热点考题.认真学习题目给出的材料,掌握“整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数”是解答问题的基础.6.【分析】(I)先根据条件求出a、b的值,再求AB的长;(II)先解方程求出x的值,则点C在数轴上对应的数为5,从而得出BC+AB=6,即P A+PB=6,分三种情况进行讨论:①点P在A的左侧,②点P在A、B之间,③点P在B的右侧,列式分别计算得出结果;(III)设点Q在数轴上对应的数为a,分别计算①和②两式的值,不含a的值不变.【解答】解:(I)∵点A在负半轴,且|a|=3,∴a=﹣3,∵b是最小的正整数,∴b=1,∴AB=1﹣(﹣3)=4,则线段AB的长为4;(II)存在这样的点P,设P在数轴上对应的数为y,2x+1=3x﹣4,x=5,则点C在数轴上对应的数为5,∴BC+AB=×(5﹣1)+4=6,分三种情况进行讨论:①当y<﹣3时,即点P在A的左侧,此时P A+PB=﹣3﹣y+1﹣y=6,y=﹣4,②当﹣3<y<1时,即点P在A、B之间,∵AB=4,∴P A+PB=AB≠6,所以此种情况不符合条件;③y>1时,即点P在B的右侧此时P A+PB=y+3+y﹣1=2y+2=6,y=2,综上所述:点P对应的数是﹣4或2;(III)QM﹣BN的值不变,理由是:设点Q在数轴上对应的数为a,∵QA的中点为M,∴QM=AQ,∵N为QB的四等分点且靠近于Q点,∴BN=BQ,①QM+BN=×AQ+×BQ=(a+3)+(a﹣1)=a+,②QM﹣BN=AQ﹣×BQ=(a+3)﹣(a﹣1)=2,所以QM﹣BN的值不变,总是2.【点评】本题考查了数轴和一元一次方程,比较复杂,需要认真理解题意,明确数轴上两点的距离等于两点坐标之差的绝对值是关键.7.【分析】(1)根据图②、③的作法将九个数同时减0.5填到图④中相应位置,类比等式性质得出规律即可;(2)根据图⑤、⑥的作法将九个数同时乘﹣4填到图⑦相应位置,可类比等式的性质得出规律;将1,2,3,4,5,6,7,8,9这9个数先乘以2、再加上4即可得出结论.【解答】解:(1)如图④,由题意知,三阶幻方的性质(1)构成三阶幻方的九个数,每个数同时加或减同一个数,所得到的九个数仍能构成三阶幻方.故答案为:构成三阶幻方的九个数,每个数同时加或减同一个数,所得到的九个数仍能构成三阶幻方;(2)如图⑦,由题意得:三阶幻方的性质(2)构成三阶幻方的九个数,每个数同时乘同一个数或除以同一个不为0的数,所得到的九个数仍能构成三阶幻方.故答案为:构成三阶幻方的九个数,每个数同时乘同一个数或除以同一个不为0的数,所得到的九个数仍能构成三阶幻方.先将三阶幻方的九个数1,2,3,4,5,6,7,8,9,每个数都乘2,得2,4,6,8,10,12,14,16,18,根据三阶幻方性质②,2,4,6,8,10,12,14,16,18能构成三阶幻方.再将2,4,6,8,10,12,14,16,18,每个数都加4得6,8,10,12,14,16,18,20,22,根据三阶幻方性质①,6,8,10,12,14,16,18,20,22能构成三阶幻方.所以,6,8,10,12,14,16,18,20,22这九个数能构成三阶幻方,如图⑧,【点评】本题主要考查数字的变化类,理解题意类比等式的性质是解题的关键.6,8,10,12,14,16,18,20,228.【分析】(1)根据“苹果质量+橘子质量=6kg,苹果单价×苹果质量=苹果购买金额和橘子的单价×其质量=橘子购买金额”填表、列出方程即可;(2)分别根据“苹果质量+橘子质量=6kg和苹果单价×苹果质量=苹果购买金额”可得答案.【解答】解:(1)①设小丽买了x千克的苹果,则她买橘子(6﹣x)千克.由题意得:3.2x+2.6(6﹣x)=18;故答案为:3.2x+2.6(6﹣x)=18;②i补全表格如下:单价(元/kg)质量(kg)金额(元)苹果 3.2x 3.2x橘子 2.618﹣3.2x合计618根据相等关系“所买苹果的质量+橘子的质量=6kg”,得方程:x+=6,故答案为:x+=6;ii补全表格如下:单价(元/kg)质量(kg)金额(元)苹果 3.2x18﹣2.6(6﹣x)橘子 2.66﹣x 2.6(6﹣x)合计618根据相等关系“苹果的单价×其质量=苹果购买金额”,得方程:3.2x=18﹣2.6(6﹣x),故答案为:3.2x=18﹣2.6(6﹣x).iii补全表格如下:单价(元/kg)质量(kg)金额(元)苹果 3.2x 3.2x橘子 2.66﹣x18﹣3.2x合计618根据相等关系“橘子的单价×其质量=橘子购买金额”,得方程:2.6(6﹣x)=18﹣3.2x,故答案为:2.6(6﹣x)=18﹣3.2x.(2)设苹果购买金额为y元,所列方程正确的是①③,故答案为:①③.【点评】本题主要考查由实际问题抽象出一元一次方程,解题的关键是审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x 的式子表示相关的量,找出之间的相等关系列方程.9.【分析】(1)根据“穿梭巴士的路程+大客车的路程=香港口岸点B至珠海口岸点A约42千米”列出一元一次方程进行解答便可;(2)通过列方程解应用题求出私家车追上穿梭巴士的时间,再与穿梭巴士到达珠海口岸的时间比较便可;(3)根据题意列出正确的代数式,分情况讨论列出方程进行解答便可.【解答】解:(1)设穿梭巴士出发经x小时与大客车相遇,根据题意列方程:72x+78(x﹣)=42解得x=答:穿梭巴士出发经小时与大客车相遇;(2)私家车不能在到达珠海口岸前追上穿梭巴士,理由如下:设私家车追上穿梭巴士所用的时间为y小时依题意列方程:72(y+10÷60)=84y,解得:y=1,穿梭巴士从出发10分,到达珠海口岸还需要的时间为(42﹣12)÷72=∵<1,∴私家车不能在到达珠海口岸前追上穿梭巴士;(3)若选A:①72(t﹣)﹣42=72t﹣48;②当穿梭巴士在东人工岛的西方时,有42﹣12﹣(72t﹣48)=6,解得,t=1,当穿梭巴士在东人工岛的东方时,有(72t﹣48)﹣(42﹣12)=6,解得,t=,故答案为:①72t﹣48;②1h或h;若选择B:①42×2﹣72(t﹣)=90﹣72t;②当私家车在穿梭巴士后面4千米时,有72(t﹣)﹣[42+96(t﹣﹣)]=4,解得,t=;当私家车在穿梭巴士前面面4千米时,有[42+96(t﹣﹣)]﹣72(t﹣)=4,t=.故答案为:①90﹣72t;②h或h.【点评】本题是行程问题的相遇问题与追及问题的综合应用.主要考查了一元一次方程的应用,列代数式,关键是正确的列代数式与方程,使用分情况讨论的思想解决难点.10.【分析】(1):根据点的运动中时间•速度=路程求出路程,在结合数轴的特点,所以可以求出点A,B的位置.(2):因为点A:﹣2,所以当继续向左运动x时,点A:﹣2﹣x(3):分为两种情况,根据运动轨迹列出方程,题目中很详细了,就可以求出t的值.【解答】解(1):∵一个点从数轴上的原点开始,先向左移动2cm到达A点∴A:﹣2∵一个点从数轴上的原点开始,先向左移动2cm到达A点,再向右移动7cm到达B点∴7﹣2=5∴B:5(2):∵A:﹣2∴A:﹣2﹣x(3):①:当M,N相向而行时∴1•t+2•t=1解得:t=②:当M,N相遇后,背向而行时∴1•t++2•t﹣5=1解得:t=2答:t的值为或者2【点评】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.11.【分析】(1)设动点P、Q运动的速度分别为3x、2x单位长度/秒,根据“运动到4秒钟时,P、Q两点相遇”列方程,求解即可;(2)设运动时间为t秒,点P表示的数为﹣20+4.5t,点Q表示的数为10﹣3t,根据“PQ =AB”,列方程,求解即可;(3)先求出点P、Q在相遇点表示的数,设从点P、Q相遇起经过的时间为t秒时,线段PQ的中点M与原点重合,求出点P、Q表示的数,然后分四种情况列方程,求解即可.【解答】解:(1)设动点P、Q运动的速度分别为3x、2x单位长度/秒.则4×3x+4×2x=30,(或﹣20+4×3x=10﹣4×2x),解得x=1.5,3x=4.5(单位长度/秒),2x=3(单位长度/秒)故答案为4.5,3;(2)设运动时间为t秒.由题意知:点P表示的数为﹣20+4.5t,点Q表示的数为10﹣3t,则|(﹣20+4.5t)﹣(10﹣3t)|=×|(﹣20)﹣10|整理得|7.5t﹣30|=10,解得:t=或,答:运动时间为或秒;(3)点P、Q在相遇点表示的数为﹣20+4×4.5=﹣2,设从点P、Q相遇起经过的时间为t秒时,线段PQ的中点M与原点重合.①点P、Q均沿数轴正方向运动,则:,解得:t=,此时点M与原点重合,它沿数轴正方向运动,运动速度为(单位长度/秒);②点P沿数轴正方向运动,点Q沿数轴负方向运动,则:,解得:t=,此时点M与原点重合,它沿数轴正方向运动,运动速度为(单位长度/秒);③点P沿数轴负方向运动,点Q沿数轴正方向运动,则:,初中数学培优提高解得:t =﹣(舍去),此时点M不与原点重合;④点P沿数轴负方向运动,点Q 沿数轴负方向运动,则:,解得:t =﹣,此时点M不与原点重合;综上所述:点M与原点重合,它沿数轴正方向运动,运动速度为(单位长度/秒)或沿数轴正方向运动,运动速度为(单位长度/秒).【点评】本题考查了数轴、绝对值与一元一次方程的应用,是一个综合问题,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程,进而求解.第21页(共21页)。

第三章 一元一次方程(提高卷)-2021-2022学年七年级上学期数学单元测试(人教版)

第三章   一元一次方程(提高卷)-2021-2022学年七年级上学期数学单元测试(人教版)

一元一次方程提高一、单选题(共10小题)1.七年级学生人数为x,其中男生占52%,女生有150人,下列正确的是()A.1﹣52%x=150 B.x=150﹣52%xC.(1+52%)x=150 D.(1﹣52%)x=1502.商场销售某品牌冰箱,若按标价的八折销售,每件可获利200元,其利润率为10%,若按标价的九折销售,每件可获利()A.475元B.875元C.562.5元D.750元3.某区中学生足球赛共赛8轮(即每队均参赛8场),胜一场得3分,平一场得1分,输一场得0分,在这次足球赛中,育才中学远大足球队只输了一场球,共得17分,则该足球队胜了()场.A.6 B.5 C.4 D.34.若*是规定的运算符号,设a*b=ab+a+b,则在3*x=﹣17中,x的值是()A.﹣5 B.5 C.﹣6 D.65.已知(m2﹣1)x2+(m﹣1)x+7=0是关于x的一元一次方程,则m的值为()A.±1 B.﹣1C.1 D.以上答案都不对6.在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是()A.﹣1 B.1 C.0 D.27.一个长方形的周长为26cm,若这个长方形的长减少3cm,就可成为一个正方形,设这个长方形的长为xcm,可列方程()A.x﹣3=13﹣x B.x+3=13﹣x C.x+3=26﹣x D.x﹣3=26﹣x8.如图,在大长方形中放入6个形状、大小相同的小长方形,所标尺寸如图所示,则图中大长方形的面积是()A.96 B.112 C.126 D.1409.以下是解方程﹣=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=6.①去括号,得3x+1﹣2x+3=6.②移项,得3x﹣2x=6﹣1﹣3.③合并同类项,得x=2.④你认为解答过程()A.完全正确B.变形从①开始错误C.变形从②开始错误D.变形从③开始错误10.学校组织全国文明城市知识问答,共设有20道选择题,各题分值相同,每题必答.下表记录了A,B,D三名参赛学生的得分情况,则参赛学生E的得分可能是()参赛者答对题数答错题数得分A200100B19194D14664A.93 B.87 C.66 D.40二、填空题(共6小题)11.已知x a﹣3+6=0是关于x的一元一次方程,则a=.12.A、B两地之间的公路长108千米,小光骑自行车从A地到B地,小明骑自行车从B地到A地,两人都沿这条公路匀速前进,其中两人的速度都小于27千米/时.若同时出发3小时相遇,则经过小时两人相距36千米.13.a,b,c,d为有理数,现规定一种运算:=ad﹣bc,那么当=22时x的值是.14.定义一种新运算A※B=A2+AB.例如(﹣2)※5=(﹣2)2+(﹣2)×5=﹣6.按照这种运算规定,(x+2)※(2﹣x)=20,则x=.15.甲,乙二人分别从一条笔直的公路上的AB两地同时出发相向而行,甲每分钟走60米,乙每分钟走48米,5分钟后两人相距20米,则A.B两地之间的距离为米.16.春节来临之际,元祖蛋糕店对凤梨味,核桃味、绿茶味年糕(分别记为A、B、C)进行混装,推出了甲、乙两种礼盒.礼盒的成本是盒中年糕的成本与包装盒成本之和,每盒甲装有6个A,2个B,2个C,每盒乙装有2个A,4个B,4个C,每盒甲中年糕的成本之和是1个A成本的15倍,甲礼盒每盒的包装盒成本与乙礼盒每盒的包装盒成本的之比为3:4,每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%,当该店销售这两种礼盒的总利润率为25%时,甲、乙两种礼盒的销售量之比为.三、解答题(共7小题)17.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3);(2)﹣=1+.18.生产某种合金,需要甲、乙、丙三种原料,甲与乙之比是4:3,丙与乙之比为3:2,若需要这种合金92千克,问:甲、乙、丙三种原料是多少千克?19.A、B两地相距480千米,一列慢车从A地出发,每小时走60千米,一列快车从B地出发,每小时走65千米.(1)两车同时出发相向而行,几小时后相遇?(2)慢车出发1小时后快车从B地出发,同向而行,请问快车出发几小时后追上慢车?20.一项工程,甲工程队单独做20天完成,每天需费用160元;乙工程队单独做30天完成,每天需费用100元.(1)若由甲、乙两个工程队共同做6天后,剩余工程由乙工程队单独完成,求还需做几天;(2)由于场地限制,两队不能同时施工.若先安排甲工程队单独施工完成一部分工程,再由乙工程队单独施工完成剩余工程,预计共付工程总费用3120元,问甲、乙两个工程队各做了几天?21.阅读下列材料:现规定一种运算:=ad﹣bc.例如:=1×4﹣2×3=4﹣6=﹣2;=4x﹣(﹣2)×3=4x+6.按照这种规定的运算,请解答下列问题:(1)=(只填结果);(2)已知:=1.求x的值.(写出解题过程)22.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.请阅读下列材料:材料(一):代数式|x﹣2|的几何意义是数轴上表示有理数x所对应的点与表示有理数2所对应的点之间的距离;因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上表示有理数x所对应的点与表示有理数﹣1所对应的点之间的距离.材料(二):如图,点A、B、P分别表示有理数数﹣1、2、x,AB=3.∵|x+1|+|x﹣2|的几何意义是线段P A与PB的长度之和,∴当点P在线段AB上时,P A+PB=3,当点P在点A的左侧或点B的右侧时,P A+PB>3.∴|x+1|+|x﹣2|的最小值是3.解决问题:(1)在数轴上,若点M表示的数为﹣2,点Q表示的数为1,点N表示的数为6,请画出一条数轴,标出点M、Q、N的位置,直接写出线段NQ=;(2)在(1)的条件下,若数轴上点C表示的有理数为x,当|x+2|+|x﹣6|取最小值时,最小值为;直接写出此时x的取值范围;(3)在(1)的条件下,现有一只红色电子蚂蚁从数轴上的M点以每秒5个单位的速度出发,同时,另一只黑色电子蚂蚁从数轴上的N点以每秒4个单位的速度出发,设运动时间为t秒,试探究:经过多少秒后,两只电子蚂蚁的距离为10个单位?23.在数轴上,|a|表示数a的点到原点的距离.如果数轴上两个点A、B分别对应数a、b,那么A、B两点间的距离为:AB=|a﹣b|,这是绝对值的几何意义.已知如图,点A在数轴上对应的数为﹣3,点B对应的数为2.(1)求线段AB的长;(2)若点C在数轴上对应的数为x,且是方程x+1=x﹣2的解,在数轴上是否存在点M,使MA+MB=AB+BC?若存在,求出点M对应的数;若不存在,说明理由.(3)若点N是数轴上在点A左侧的一点,线段BN的中点为点Q,点P为线段AN的三等分点且靠近于点N,当点N在点A左侧的数轴上运动时,请直接判断AP﹣NQ的值是否变化,如果不变请直接写出其值,如果变化请说明理由.一元一次方程提高参考答案一、单选题(共10小题)1.【答案】D【分析】根据首先表示出女生所占百分比,然后再利用女生所占百分比乘以总人数=150人列出方程即可.【解答】解:由题意得:(1﹣52%)x=150,故选:D.【知识点】由实际问题抽象出一元一次方程2.【答案】A【分析】利用进价=利润÷利润率可求出该品牌冰箱的进价,设该品牌冰箱的标价为x元,根据“若按标价的八折销售,每件可获利200元”,即可得出关于x的一元一次方程,解之即可求出x的值,再将其代入(90%x﹣2000)中即可求出结论.【解答】解:该品牌冰箱的进价为200÷10%=2000(元).设该品牌冰箱的标价为x元,依题意得:80%x﹣2000=200,解得:x=2750,∴90%x﹣2000=90%×2750﹣2000=475(元).故选:A.【知识点】一元一次方程的应用3.【答案】B【分析】设该足球队胜了x场,则平了(8﹣1﹣x)场,根据总分=3×获胜的场数+1×踢平的场数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该足球队胜了x场,则平了(8﹣1﹣x)场,依题意得:3x+(8﹣1﹣x)=17,解得:x=5.故选:B.【知识点】一元一次方程的应用4.【答案】A【分析】根据a*b=ab+a+b,3*x=﹣17,可得:3x+3+x=17,据此求出x的值是多少即可.【解答】解:∵a*b=ab+a+b,3*x=﹣17,∴3x+3+x=﹣17,∴4x+3=﹣17,∴4x=﹣20,解得:x=﹣5.故选:A.【知识点】解一元一次方程、有理数的混合运算5.【答案】B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:由题意,得m2﹣1=0且m﹣1≠0,解得m=﹣1,故选:B.【知识点】一元一次方程的定义6.【答案】C【分析】已知等式利用题中的新定义化简,计算即可求出x的值.【解答】解:由题意知:2☆x=2+x﹣1=1+x,又2☆x=1,∴1+x=1,∴x=0.故选:C.【知识点】实数的运算、解一元一次方程7.【答案】A【分析】设这个长方形的长为xcm,宽为(13﹣x)cm,根据“若这个长方形的长减少3cm,就可成为一个正方形”,即可得出关于x的一元一次方程,此题得解.【解答】解:设这个长方形的长为xcm,宽为=(13﹣x)cm,依题意得:x﹣3=13﹣x.故选:A.【知识点】由实际问题抽象出一元一次方程8.【答案】D【分析】设小长方形的长、宽分别为xcm,ycm,根据图示可以列出方程组,然后解这个方程组即可求出小长方形长和宽,然后求得大长方形的长和宽,从而求得面积.【解答】解:设小长方形的长、宽分别为xcm,ycm,依题意得,解之得,∴小长方形的长、宽分别为8cm,2cm,∴S大长方形=AB•BC=14×10=140cm2,故选:D.【知识点】一元一次方程的应用、二元一次方程组的应用9.【答案】C【分析】根据去分母、去括号、移项、合并同类项、系数化为1解答即可.【解答】解:去分母,得3(x+1)﹣2(x﹣3)=6.①,正确,去括号,得3x+3﹣2x+6=6.②,错误,移项,得3x﹣2x=6﹣6﹣3.合并同类项,得x=﹣3,故选:C.【知识点】解一元一次方程、等式的性质10.【答案】D【分析】根据表格中3名参赛学生的得分情况,可知答错一题扣6分,设参赛学生E答错x道题(0≤x≤20,且x为整数),则其得分值为:100﹣6x,然后逐个选项进行计算,结果符合x的取值范围的为正确答案.【解答】解:根据表格数据,A学生答对20道得分100,由B、D同学得分情况可知答错一题扣6分,故设参赛学生E答错x道题(0≤x≤20,且x为整数),则其得分值为:100﹣6x选项A:令100﹣6x=93,解得x=,故A错误;选项B:令100﹣6x=87,解得x=,故B错误;选项C:令100﹣6x=66,解得x=,故C错误;选项D:令100﹣6x=40,解得x=10,故D正确.故选:D.【知识点】一元一次方程的应用二、填空题(共6小题)11.【答案】4【分析】利用一元一次方程的定义判断即可.【解答】解:∵x a﹣3+6=0是关于x的一元一次方程,∴a﹣3=1,解得:a=4.故答案为:4.【知识点】一元一次方程的定义12.【答案】2或4【分析】设经过x小时两人相距36千米,分两种情况讨论,列出方程可求解.【解答】解:设经过x小时两人相距36千米,当两人没有相遇前,,解得:x=2,当两人相遇后,,解得x=4,综上所述:经过2或4小时两人相距36千米,故答案为:2或4.【知识点】一元一次方程的应用13.【答案】4【分析】根据新定义的运算即可求出答案.【解答】解:根据题意可得:2×5﹣4(1﹣x)=22,10﹣4+4x=22,4x=22﹣10+4,4x=16,x=4,故答案为:4.【知识点】有理数的混合运算、解一元一次方程14.【答案】3【分析】先根据新定义规定的运算法则得出(x+2)2+(x+2)(2﹣x)=20,再将左边利用完全平方公式和平方差公式去括号,继而合并同类项、移项、系数化为1可得答案.【解答】解:根据题意得(x+2)2+(x+2)(2﹣x)=20,∴x2+4x+4+4﹣x2=20,∴4x+8=20,4x=12,解得x=3,故答案为:3.【知识点】解一元一次方程、整式的混合运算15.【答案】520或560【分析】设A,B两点的距离为xm,可分两种情况列方程:甲,乙两人相遇后相距20米或相遇前相距20米分别列方程,解方程即可求解.【解答】解:设A,B两点的距离为xm,由题意得x+20=(60+48)×5或x﹣(60+48)×5=20,解得x=520或560,答:A.B两地之间的距离为520或560米,故答案为520或560.【知识点】一元一次方程的应用16.【答案】4:5【分析】根据题意列出甲、乙的总成本和总销售额的代数式,由题该店销售这两种礼盒的总利润率为25%即可求解甲、乙两种礼盒的销售量之比.【解答】解:设凤梨味,核桃味、绿茶味年糕的成本分别为a、b、c,甲的包装成本为3p,乙的包装成本为4p,甲礼盒的销售量是x,乙礼盒的销售量是y,由题意可得每盒甲的成本为:6a+2b+2c+3p=15a+3p=3(5a+p),每盒乙的成本为:2a+4b+4c+4p=20a+4p=4(5a+p),∵每盒乙的利润率为20%,∴每盒乙的售价为:(1+20%)×4(5a+p)=4.8(5a+p),∵每盒乙的售价比每盒甲的售价高20%,∴每盒甲的售价为:4(5a+p)∵该店销售这两种礼盒的总利润率为25%,∴=25%,∴=∴=,∴甲、乙两种礼盒的销售量之比为4:5.故答案为:4:5.【知识点】一元一次方程的应用三、解答题(共7小题)17.【分析】(1)方程去括号,移项,合并同类项,系数化为1即可;(2)方程去分母,去括号,移项,合并同类项,系数化为1即可.【解答】解:(1)3x﹣7(x﹣1)=3﹣2(x+3),去括号,得3x﹣7x+7=3﹣2x﹣6,移项,得3x﹣7x+2x=3﹣6﹣7,合并同类项,得﹣2x=﹣10,系数化为1,得x=5;(2)﹣=1+,去分母,得(x﹣2)﹣2(x+2)=6+3(x﹣1),去括号,得x﹣2﹣2x﹣4=6+3x﹣3,移项,合并同类项,得﹣4x=9,系数化为1,得x=.【知识点】解一元一次方程18.【分析】由甲与乙、丙与乙的比可得出甲:乙:丙=8:6:9,设甲种原料需要8x千克,则乙种原料需要6x千克,丙种原料需要9x千克,根据需要这种合金92千克,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:∵甲:乙=4:3=8:6,丙:乙=3:2=9:6,∴甲:乙:丙=8:6:9.设甲种原料需要8x千克,则乙种原料需要6x千克,丙种原料需要9x千克,依题意得:8x+6x+9x=92,解得:x=4,∴8x=32(千克),6x=24(千克),9x=36(千克).答:甲种原料需要32千克,乙种原料需要24千克,丙种原料需要36千克.【知识点】一元一次方程的应用19.【分析】(1)设两车同时出发相向而行,x小时后相遇,根据两点间的距离=两车的速度之和×时间,即可得出关于x的一元一次方程,解之即可得出结论;(2)设快车出发y小时后追上慢车,则此时慢车出发(y+1)小时,根据快车追上慢车时两车的行驶路程相等,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设两车同时出发相向而行,x小时后相遇,依题意得:(60+65)x=480,解得:x=.答:两车同时出发相向而行,小时后相遇.(2)设快车出发y小时后追上慢车,则此时慢车出发(y+1)小时,依题意得:65y=60(y+1),解得:y=12.答:快车出发12小时后追上慢车.【知识点】一元一次方程的应用20.【分析】(1)设还需做x天,根据总工作量=甲工程队完成的工作量+乙工程队完成的工作量,即可得出关于x的一元一次方程,解之即可得出结论;(2)设甲工程队单独做了y天,则乙工程队单独做了(30﹣y)天,根据预计共付工程总费用3120元,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设还需做x天,依题意得:+=1,解得:x=15.答:还需做15天.(2)设甲工程队单独做了y天,则乙工程队单独做了=(30﹣y)天,依题意得:160y+100(30﹣y)=3120,解得:y=12,∴30﹣y=12.答:甲工程队做了12天,乙工程队做了12天.【知识点】一元一次方程的应用21.【答案】4【分析】(1)原式利用已知的新定义化简,计算即可求出值;(2)已知等式利用已知的新定义化简,求出解即可得到x的值.【解答】解:(1)根据题中的新定义得:原式=2+6×=2+2=4;故答案为:4;(2)由题意得:﹣=1,去分母,得:3x﹣5(x﹣3)=15,去括号,得:3x﹣5x+15=15,移项及合并,得:﹣2x=0,系数化为1,得:x=0.【知识点】有理数的混合运算、解一元一次方程22.【答案】【第1空】5【第2空】8【第3空】-2≤x≤6【分析】(1)根据题意作出图形即可;由两点间的距离公式求得NQ的值;(2)|x+2|+|x﹣6|的几何意义是线段CM与CN的长度之和;(3)分四种情况进行讨论:①两只电子蚂蚁同时向左出发,②两只电子蚂蚁同时向右出发,③红色电子蚂蚁向左,同时黑色电子蚂蚁向右出发,④红色电子蚂蚁向右,同时黑色电子蚂蚁向左出发,根据“两只电子蚂蚁的距离为10个单位”分别列出方程并解答.【解答】解:(1)如图:NQ=6﹣1=5.故答案是:5.(2)如图,点M、N、C分别表示有理数数﹣2、6、x,MN=8.∵|x+2|+|x﹣6|的几何意义是线段CM与CN的长度之和,∴当点C在线段MN上时,CM+CN=8,当点C在点M的左侧或点N的右侧时,CM+CN>8.∴|x+2|+|x﹣6|的最小值是8此时.故答案是:8;﹣2≤x≤6;(3)①两只电子蚂蚁同时向左出发,依题意得|﹣5t﹣2﹣(6﹣4t)|=10.解得t=2(t=﹣18舍去);②两只电子蚂蚁同时向右出发,依题意得|5t﹣2﹣(6+4t)|=10.解得t=18(t=﹣2舍去).③红色电子蚂蚁向左,同时黑色电子蚂蚁向右出发,依题意得|﹣5t﹣2﹣(6+4t)|=10.解得.④红色电子蚂蚁向右,同时黑色电子蚂蚁向左出发,依题意得|5t﹣2﹣(6﹣4t)|=10.解得.综上可知,经过2秒或18秒或秒后,两只电子蚂蚁的距离为10个单位.【知识点】非负数的性质:绝对值、数轴、一元一次方程的应用、数学常识23.【分析】(1)根据数轴上两点的距离公式计算便可.(2)根据已知线段的关系式,列出绝对值方程进行解答即可.(3)用点N表示的数n,列出AP﹣NQ关于n的代数式进行讨论解答即可.【解答】解:(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=|﹣3﹣2|=5.(2)存在.设M点对应的数为m,解方程x+1=x﹣2,得x=﹣6,∴点C对应的数为﹣6,∵MA+MB=AB+BC,∴|m+3|+|m﹣2|=|﹣3﹣2|+|﹣6﹣2|,即,|m+3|+|m﹣2|=13①当m≤﹣3时,有﹣m﹣3+2﹣m=13,解得m=﹣7;②当﹣3<m≤2时,有m+3+2﹣m=13,此方程无解;③当2<m时,有m+3+m﹣2=13,解得m=6;综上,M点的对应数为﹣7或6.(3)设点N对应的数为n,则NA=﹣n﹣3,NB=2﹣n,∵若点N是数轴上在点A左侧的一点,线段BN的中点为点Q,点P为线段AN的三等分点且靠近于点N,∴NQ=﹣1﹣n,则点Q对应的数为n﹣1;NP=﹣n﹣1,则P点对应的数为n﹣1;∴AP=﹣n﹣2,则AP﹣NQ=﹣.∴随着点N的移动,AP﹣NQ的值不变.【知识点】绝对值、数轴、一元一次方程的应用。

天津市七年级数学上册第三单元《一元一次方程》-解答题专项提高练习(含答案解析)

天津市七年级数学上册第三单元《一元一次方程》-解答题专项提高练习(含答案解析)

一、解答题1.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?解析:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】解:∵67604020⨯=40203650>∴所以一定有一个班的人数大于35人.设大于35人的班有学生x人,则另一班有学生(67-x)人,依题意得5060(67)3650x x+-=6730x-=答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.解方程:2x13+=x24+-1.解析:x=-2.【分析】按去分母,去括号,移项,合并同类项,系数化为1的步骤进行求解即可.【详解】去分母得:4(2x+1)=3(x+2)-12,去括号得:8x+4=3x+6-12,移项得:8x-3x=6-12-4,合并同类项得:5x=-10,系数化为1得:x=-2.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.3.10.3x -﹣20.5x + =1.2. 解析:4【解析】 试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题12 1.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=1820 x=128x=6.4 4.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?解析:10个家长,5个学生【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生,根据题意得:100x +100×0.8(15﹣x )=1400,解得:x =10,15﹣x =5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.5.利用等式的性质解下列方程:(1)x -2=5;(2)-23x =6; (3)3x =x +6. 解析:(1)x =7;(2)x =-9;(3)x =3【分析】(1)两边同时加上2即可求解;(2)两边同时乘-32即可求解;(3)两边同时减x,然后同时除以2即可求解.【详解】解:(1)等式两边加2,得x-2+2=5+2,即x=7.(2)等式两边乘-32,得x=6×(-32),即x=-9.(3)等式两边减x,得2x=6.两边除以2,得x=3.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.6.解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x.解析:(1)x=2;(2)x=2【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解.【详解】解:(1)合并同类项,得,-5x=-10系数化为1,得,x=2(2)移项,得3x+10x-0.5x=25合并同类项,得12.5x=25系数化为1,得,x=2【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学,问原有多少条船?解析:原有5条船.【分析】首先设原有x条船,根据“减少一条船,那么每条船正好坐9名同学;增加一条船,那么每条船正好坐6名同学”得出等式方程,求出即可.【详解】设原有x条船,如果减少一条船,即(x-1)条,则共坐9(x-1)人.如果增加一条船,则共坐6(x +1)人,根据题意,得9(x -1)=6(x +1).去括号,得9x -9=6x +6.移项,得9x -6x =6+9.合并同类项,得3x =15.系数化为1,得x =5.答:原有5条船.【点睛】此题主要考查了一元一次方程的应用,根据题意利用全班人数列出等量关系式是完成本题的关键.8.解方程:(1)5(8)6(27)22m m m +--=-+(2)2(3)7636x x x --+=- 解析:(1)10m =;(2)5x =【分析】(1)直接去括号、移项、合并同类项、化系数为1即可求解;(2)直接去分母、去括号、移项、合并同类项、化系数为1即可求解.【详解】解:(1)5(8)6(27)22m m m +--=-+5m 4012m 42m 22+-+=-+6m 60-=-m 10=(2)2(3)7636x x x --+=- ()6x 4x 336(x 7+-=--)6x 4x 1236x 7+-=-+11x 55=x 5=【点睛】此题主要考查解一元一次方程,解题的关键是熟练掌握解题步骤.9.某同学在解方程21233x x a -+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x =1.求a 的值,并正确地解方程.解析:a=2,x=-3【分析】 由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a 的值,然后将a 的值代入方程求解即可.【详解】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a=2代入21233x x a-+=-得:2x﹣1=x+2﹣6.解得:x=﹣3.【点睛】本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a)-2的解是解题的关键.10.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,交电费元.(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?解析:(1)0.6;122.5.(2)0.9x﹣82.5.(3)250千瓦.【分析】(1)根据100<150结合应交电费60元即可得出关于a的一元一次方程,解之即可得出a 值;再由150<200<300,结合应交电费=150×0.6+0.65×超出150千瓦时的部分即可求出结论;(2)根据应交电费=150×0.6+(300-150)×0.65+0.9×超出300千瓦时的部分,即可得出结论;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,分x在第二档及第三档考虑,根据总电费=均价×数量即可得出关于x的一元一次方程,解之即可得出x值,结合实际即可得出结论.【详解】(1)∵100<150,∴100a=60,∴a=0.6,若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元),故答案为0.6;122.5;(2)当x>300时,应交的电费150×0.6+(300-150)×0.65+0.9(x﹣300)=0.9x﹣82.5;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x﹣150)=0.62x,解得:x=250;当该居民用电处于第三档时,0.9x﹣82.5=0.62x,解得:x≈294.6<300(舍去).综上所述该居民用电不超过250千瓦时,其当月的平均电价每千瓦时不超过0.62元.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出代数式;(3)根据总电费=均价×数量列出关于x的一元一次方程.11.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)解析:(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a,则a的上一个数为a−18,下一个数为a+18,前一个数为a−2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a =2020,a =404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.12.某市居民生活用水实行“阶梯水价”收费,具体收费标准见下表:例:甲用户1月份用水25吨,应缴水费1.620 2.4(2520)44⨯+⨯-= (元).(1)若乙用户1月份用水10吨,则应缴水费________元;(2)若丙用户1月份应缴水费62.6元,则用水________吨;.(3)若丁用户1、2月份共用水60吨(1月份用水量超过了2月份),设2月份用水a 吨,求丁用户1、2月份各应缴水费多少元.(用含a 的代数式表示)解析:(1)16;(2)32; (3) 1月份应缴水费(155 3.3)a -元.当2月份用水量不超过20吨时,应缴水费1.6a 元;当2月份用水量超过20吨但不超过30吨时,应缴水费(2.416)a -元.【分析】(1)根据每户每月用水量不超过20时,水费价格为1.6元/吨,可知乙用户1月份用水10吨,则应缴水费:1.6×10,计算即可;(2)由于用水30吨时应缴水费为:1.6×20+2.4×10=56<62.6,所以丙用户1月份用水超过30吨,列出方程,求解即可;(3)由丁用户1、2两个月共用水60吨,设2月份用水a 吨,则1月份用水(60-a )吨,根据1月份用水量超过了2月份,得出1月份用水量超过了2月份,得出1月份用水量大于30吨,2月份用水量小于30吨,根据三级收费求出1月份应缴水费,分两种情况求出2月份应缴水费, ①当2月份用水量不超过20吨时;②当2月份用水量超过20吨但不超过30吨时;【详解】解:(1)依题意得:1.6×10=16;故答案为:16(2) 依题意得:由于用水30吨时应缴水费为:1.6×20+2.4×10=56<62.6,所以丙用户1月份用水超过30吨,设用水为x 吨,依题意得:56(30) 3.362.6x +-⨯=解得:x=32故答案为:32;(3)因为1月份用水量超过了2月份,所以1月份用水量超过了30吨,2月份用水量少于30吨.1月份应缴水费20 1.610 2.4 3.3(6030)(155 3.3)a a ⨯+⨯+--=-元.①当2月份用水量不超过20吨时,应缴水费1.6a 元;②当2月份用水量超过20吨但不超过30吨时,应缴水费1.6202.4(20)(2.416)a a ⨯+-=-元.【点睛】本题主要考查了列代数式,代数式求值,掌握列代数式,代数式求值是解题的关键. 13.青岛、大连两个城市各有机床12台和6台,现将这些机床运往海南10台和厦门8台,每台费用如表一:问题1:如表二,假设从青岛运往海南x 台机床,并且从青岛、大连运往海南机床共花费36万元,求青岛运往海南机床台数.问题2:在问题1的基础上,问从青岛、大连运往海南、厦门的总费用为多少万元?解析:问题1:青岛运往海南机床台数是4台;问题2:从青岛、大连运往海南、厦门的总费用为94万元.【分析】(1)假设从青岛运往海南x 台机床,则从大连运往海南的就是10-x 台,根据等量关系:“运往海南机床共花费36万元”,即可列出方程解决问题;(2)根据问题1中求出的分别从青岛和大连运出的台数,则它们剩下的台数都要运到厦门,由此利用乘法和加法的意义即可解答问题.【详解】(1)设从青岛运往海南x 台机床,则从大连运往海南的就是10-x 台,根据题意可得方程:4x+3(10-x )=36,4x+30-3x=36,x=6,则从大连运往海南的有:10-6=4(台).答:从青岛运往海南6台,从大连运往海南4台.(2)根据上面计算结果可知:青岛剩下12-6=6(台);大连剩下6-4=2(台), 剩下的这些都要运往厦门,所以需要的费用是:6×8+2×5,=48+10,=58(万元),36+58=94(万元).答:从青岛、大连运往海南、厦门的总费用为94万元.【点睛】观察表格,找出已知条件,和要求的问题,根据题干中的等量关系即可,此题条件稍微复杂,需要学生认真审题进行解答.14.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?解析:(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱.【分析】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,根据总价=单价×数量,分别求出在甲、乙两家商店购买需要的钱数是多少;然后根据在甲商店购买需要的钱数=在乙商店购买需要的钱数,列出方程,解方程,求出当购买乒乓球多少盒时,两种优惠办法付款一样即可;(2)首先根据总价=单价×数量,分别求出在甲、乙两家商店购买球拍5副、15盒乒乓球,球拍5副、30盒乒乓球需要的钱数各是多少;然后把它们比较大小,判断出去哪家商店购买比较合算即可.【详解】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,则30×5+5(x−5)=(30×5+5x)×90%5x+125=135+4.5x5x+125−4.5x=135+4.5x−4.5x0.5x+125=1350.5x+125−125=135−1250.5x=100.5x×2=10×2x=20答:当购买乒乓球20盒时,两种优惠办法付款一样.(2)①在甲商店购买球拍5副、15盒乒乓球需要:30×5+5×(15−5)=150+50=200(元)在乙商店购买球拍5副、15盒乒乓球需要:(30×5+5×15)×90%=225×90%=202.5(元)因为200<202.5,所以我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.答:我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.②在甲商店购买球拍5副、30盒乒乓球需要:30×5+5×(30−5)=150+125=275(元)在乙商店购买球拍5副、30盒乒乓球需要:(30×5+5×30)×90%=300×90%=270(元)因为270<275,所以我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 答:我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 考点:1.一元一次方程的应用;2.方案型.15.为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.下表是小明家1至4月份水量和缴纳水费情况,根据表格提供的数据,回答:)规定用量内的收费标准是 元吨,超过部分的收费标准是 元/吨;(2)问该市每户每月用水规定量是多少吨?(3)若小明家六月份应缴水费50元,则六月份他们家的用水量是多少吨?解析:(1)2;3(2)规定用水量为10吨(3)六月份的用水量为20吨【分析】(1)由小明家1,2月份的用水情况,可求出规定用量内的收费标准;由小明家3,4月份的用水情况,可求出超过部分的收费标准;(2)设该市规定用水量为a 吨,由小明家3月份用水12吨缴纳26元,即可得出关于a 的一元一次方程,解之即可得出结论;(3)设小明家6月份的用水量是x 吨,根据应缴水费=2×10+3×超出10吨部分,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】(1)由表可知,规定用量内的收费标准是2元/吨,超过部分的收费标准为3元/吨 (2)设规定用水量为a 吨;则23(12)26a a +-=,解得:10a =,即规定用水量为10吨;(3)∵2102050⨯=<,∴六月份的用水量超过10吨,设用水量为x 吨,则2103(10)50x ⨯+-=,解得:20x ,∴六月份的用水量为20吨【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:通过分析小明家1-4月用水量和交费情况,找出结论;找准等量关系,正确列出一元一次方程.16.青岛市某实验学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1天,再两人合作,问:还需几天可以完成这项工作?解析:(1)2.4天(2)2天【分析】(1)完成工作的工作量为1,根据工作时间=工作总量÷工作效率和,列式即可求解.(2)设徒弟先做1天,再两人合作还需x天完成,根据等量关系:完成工作的工作总量为1,列出方程即可求解.【详解】解:(1)11511=2.44612⎛⎫÷+=÷⎪⎝⎭(天).答:两个人合作需要2.4天完成.(2)设还需x天可以完成这项工作,根据题意,得11 64x x++=.解得=2x.答:还需2天可以完成这项工作.【点睛】本题考查一元一次方程的应用,根据题意列出方程并解答是解题关键17.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C 所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.解析:(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.18.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?解析:(1)(70a+2800),(56a+3360);(2)购买40只书架时,无论到哪家超市所付货款都一样;(3)第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【分析】(1)根据A、B两个超市的优惠政策即可求解;(2)由(1)和两家超市所付货款都一样可列出方程,再解即可;(3)去A超市买、去B超市买和去A超市购买20个书柜和20个书架,到B超市购买80只书架,三种情况讨论即可得出最少付款额.【详解】(1)根据题意得A超市所需的费用为:20×210+70(a﹣20)=70a+2800B超市所需的费用为:0.8×(20×210+70a)=56a+3360故答案为:(70a+2800),(56a+3360)(2)由题意得:70a+2800=56a+3360解得:a=40,答:购买40只书架时,无论到哪家超市所付货款都一样.(3)学校购买20张书柜和100只书架,即a=100时第一种方案:到A超市购买,付款为:20×210+70(100﹣20)=9800元第二种方案:到B超市购买,付款为:0.8×(20×210+70×100)=8960元第三种方案:到A超市购买20个书柜和20个书架,到B超市购买80只书架,付款为:20×210+70×(100﹣20)×0.8=8680元.因为8680<8960<9800所以第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,再列出方程.19.小明问小白:“你知道为什么任何无限循环小数都可以写成分数形式吗?”,看着小白一脸的茫然,小明热心地为小白讲解:(小明提出问题)利用一元一次方程将0.7⋅化成分数.(小明的解答)解:设0.7⋅=x.方程两边都乘以10,可得100.7⋅⨯=10x.由0.7⋅=0.777…,可知100.7⋅⨯=7.777…=7+0.7⋅,即7+x=10x.(请你体会将方程两边都乘以10起到的作用)可解得x79=,即0.779⋅=.(小明的问题)将0.4⋅写成分数形式.(小白的答案)49.(正确的!)请你仿照小明的方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.73⋅⋅;②0.432⋅.解析:①0.737399⋅⋅=,过程见解析;②0.433892900⋅=,过程见解析.【分析】①设0. 73⋅⋅=m ,程两边都乘以100,转化为73+m=100m ,求出其解即可.②设0.432⋅=n ,程两边都乘以100,转化为43+0.2⋅=100n ,求出其解即可.【详解】解:①设0.73⋅⋅=m ,方程两边都乘以100,可得100×0.73⋅⋅=100m .由0.73⋅⋅=0.7373…,可知100×0.73⋅⋅=73.7373…=73+0.73⋅⋅;即73+m =100m ,可解得m 7399=,即0.737399⋅⋅=. ②设0.432⋅=n ,方程两边都乘以100,可得100×0.432⋅=100n .∴43.2⋅=100n .∵0.229⋅=,∴4329+=100n n 389900= ∴0.433892900⋅=. 【点睛】 本题考查了无限循环小数转化为分数的运用,运用一元一次方程解实际问题的运用,解答时根据等式的性质变形建立方程是解答的关键.20.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是购买10本以上,每本按标价的8折卖.(1)小明要买20本练习本,到哪个商店较省钱?(2)小明要买10本以上练习本,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本练习本?解析:(1)到乙商店较省钱;(2)买30本;(3)最多可买41本练习本.【分析】(1)分别按照甲商店与乙商店给的优惠活动,计算出费用,哪个商店的费用更低,即更省钱,即可解决;(2)可设买x 本时到两个商店付的钱一样多,分别用x 表示到甲商店购买的钱与到乙商店购买的钱,令其相等,解出x ,即可解决本题;(3)设可买y 本练习本,分别算出到甲商店能买多少本,到乙商店能买多少本,取更多的即可解决.【详解】解:(1)∵甲商店:101(2010)170%17⨯+-⨯⨯=(元);乙商店:20180%16⨯⨯=(元).又∵17>16,∴小明要买20本练习本时,到乙商店较省钱.(2)设买x 本时到两个商店付的钱一样多.依题意,得10170%(10)80%x x ⨯+-=,解得30x =.∴买30本时到两个商店付的钱一样多.(3)设可买y 本练习本.在甲商店购买:1070%(10)32y +-=. 解得29034177y ==. ∵y 为正整数,∴在甲商店最多可购买41本练习本.在乙商店购买:80%32y =.解得40y =.∴在乙商店最多可购买40本练习本.∵41>40,∴最多可买41本练习本.【点睛】本题主要考查了一元一次方程的实际应用,能够找出等量关系,列出方程是解决本题的关键.21.老师在黑板上写了一个等式(3)4(3)a x a +=+.王聪说4x =,刘敏说不一定,当4x ≠时,这个等式也可能成立.(1)你认为他们俩的说法正确吗?请说明理由;(2)你能求出当2a =时(3)4(3)a x a +=+中x 的值吗?解析:(1)王聪的说法不正确,见解析;(2)4x =【分析】(1)根据等式的性质进行判断即可.(2)利用代入法求解即可.【详解】(1)王聪的说法不正确.理由:两边除以(3)a +不符合等式的性质2,因为当30a +=时,x 为任意实数. 刘敏的说法正确.理由:因为当30a +=时,x 为任意实数,所以当4x ≠时,这个等式也可能成立. (2)将2a =代入,得(23)4(23)x +=+,解得4x =.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的性质、等式的性质是解题的关键. 22.一位商人来到一座新城市,想租一套房子,A 家房东的条件是先交2000元,每月租金1200元;B 家房东的条件是每月租金1400元.(1)这位商人想在这座城市住半年,则租哪家的房子划算?(2)如果这位商人想住一年,租哪家的房子划算?(3)这位商人住多长时间时,租两家的房子租金一样?解析:(1)住半年时,租B 家的房子划算;(2)住一年时,租A 家的房子划算;(3)这位商人住10个月时,租两家的房子租金一样.【分析】(1)分别根据A 、B 两家租金的缴费方式计算A 、B 两家半年的租金,然后比较即得答案;(2)分别根据A 、B 两家租金的缴费方式计算A 、B 两家一年的租金,然后比较即得答案;(3)根据A 家租金(2000+1200×租的月数)=B 家租金(1400×租的月数)设未知数列方程解答即可.【详解】解:(1)如果住半年,交给A 家的租金是1200620009200⨯+=(元),交给B 家的租金是140068400⨯=(元),因为9200>8400,所以住半年时,租B 家的房子划算.(2)如果住一年,交给A 家的租金是120012200016400⨯+=(元),交给B 家的租金是14001216800⨯=(元),因为16400<16800,所以住一年时,租A 家的房子划算.(3)设这位商人住x 个月时,租两家的房子租金一样,根据题意,得120020001400x x +=.解方程,得10x =.答:这位商人住10个月时,租两家的房子租金一样.【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、明确A 、B 两家租金的缴费方式是解题的关键.23.在我国明代数学家吴敬所著的《九章算法比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”(“倍加增”指从塔的顶层到底层,每层灯的数量是上一层的2倍)那么,塔的顶层有几盏灯?解析:3盏【分析】根据题意列出方程求解即可.【详解】解:设塔的顶层有x 盏灯.根据题意,得248163264381x x x x x x x ++++++=.解得3x =.答:塔的顶层有3盏灯.【点睛】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键. 24.解方程:32122234x x ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦. 解析:8x =-【分析】先去括号,再按照移项、合并同类项、系数化为1的步骤解答即可.【详解】 解:去括号,得1324x x ---=, 移项、合并同类项,得364x -=, 系数化为1,得8x =-.【点睛】 本题考查了一元一次方程的解法,属于常考题型,熟练掌握解一元一次方程的方法是解题的关键.25.解方程:(1)36156x x -=--;(2)45173x x +=-; (3) 2.57.5516y y y --=-;(4)11481.5533z z +=-. 解析:(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 【分析】(1)先移项,再合并同类项,最后系数化为1即可.(2)先移项,再合并同类项,最后系数化为1即可.(3)先移项,再合并同类项,最后系数化为1即可.(4)先移项,再合并同类项,最后系数化为1即可.【详解】(1)移项,得36156x x +=-+.合并同类项,得99x =-.系数化为1,得1x =-. (2)移项,得41753x x -=--. 合并同类项,得1223x =-. 系数化为1,得66x =-.(3)移项,得 2.57.5165y y y --+=. 合并同类项,得65y =.系数化为1,得56y =. (4)移项,得11841.5533z z -=--. 合并同类项,得7410z =-.。

初一数学-一元一次方程综合能力提高

初一数学-一元一次方程综合能力提高

一元一次方程综合能力提高1、x =1是方程4kx -1=0的解,则k =________;2、x =-9是方程b x =|31|的解,那么b =________.3、若关于x 的方程3x 4n -7+5=17是一元一次方程,求n .4、根据题意,设未知数列出方程:(1)郝帅同学为班级买三副羽毛球拍,付出100元,找回6.40元,问每副羽毛球拍的单价是多少元?(2)某村2003年粮食人均占有量6650千克,比1949年人均占有量的50倍还多40千克,问1949年人均占有量是多少千克?5、已知:y 1=4x -3,y 2=12-x ,当x 为何值时,(1)y 1=y 2;(2)y 1与y 2互为相反数;(3)y 1比y 2小4.6、已知关于x 的方程2x -1=x +a 的解是x =4,求a 的值.7、下列各个方程的变形能否分别使所得新方程的解与原方程的解相同?相同的画“√”,不相同的画“×”,对于画“×”的,想一想错在何处?(1)2x +6=0变为2x =-6; ( ) (2)5243=x 变为;3452⨯=x( )(3)321=+-x 变为-x +1=6;( ) (4)431323++=--x x x 变为6(x -3)-4x =1+3(x +3); ( ) (5)(x +1)(x +2)=(x +1)变为x +2=1;( ) (6)x 2=25变为x =5. ( ) 8、已知(m 2-1)x 2-(m -1)x +8=0是关于x 的一元一次方程,它的解为n .(1)求代数式200(m +n )(n -2m )-3m +5的值;(2)求关于y 的方程m |y |=n 的解.9、你能在日历上圈出一个竖列上相邻的3个数,使得它们的和是15吗?说明理由.10、已知21=x 是方程x x a +=+21125的解,求关于x 的方程ax +2=a (1-2x )的解.11、某蔬菜基地三天的总产量是8390千克,第二天比第一天多产560千克,第三天比第一天的65多1200千克.问三天各产多少千克蔬菜?12、甲、乙两人投资合办一个企业,并协议按照投资额的比例多少分配所得利润.已知甲与乙投资额的比例为3∶4,首年所得的利润为38500元,则甲、乙二人分别获得利润多少元?13、已知关于x 的方程(a +1)x +(4a -1)=0的解为-2,则a 的值等于( ). (A)-2(B)0(C)32 (D)23 14、已知y =1是方程y y m 2)(312=--的解,那么关于x 的方程m (x -3)-2=m (2x -5)的解是( )(A)x =10(B)x =0(C)34=x (D)43=x 15、解下列方程(1)3(x -1)-2(2x +1)=12 (2)5(x +8)-5=6(2x -7)(3))1(21)1(2)1(31)1(3+--+-=+k k k k (4)3(y -7)-2[9-4(2-y )]=2216、已知关于x 的方程27x -32=11m 多x +2=2m 的解相同,求221m m +的值.17、解关于y 的方程-3(a +y )=a -2(y -a ).18、若关于x 的方程)1(422-=+x ax 的解为x =3,则a 的值为( ). (A)2 (B)22 (C)10 (D)-219、将103.001.05.02.0=+-xx 的分母化为整数,得( ).(A)1301.05.02=+-xx (B)1003505=+-x x (C)100301.05.020=+-x x (D)13505=+-x x 20、解方程.(1)757875xx -=- (2)22331+-=--y y y(3)454436+=-y y (4)62372345---=+-x x x x(5)3.15.032.04-=--+x x (6)2]2)14(32[23=---x x21、关于x 的方程(k +2)x 2+4kx -5k =0是一元一次方程,则k =________.22、已知方程mx +2=2(m -x )的解满足,0|21|=-x 则m 为________. 23、若2|x -1|=4,则x 的值为_________.24、(1)若ax +b =a -x (a ,b 是已知数,且a ≠-1),则x =______.(2)方程|x |=3的解是______,|x -3|=0的解是______,3|x |=-3的解是______,若|x +3|=3,则x =______. (3)在公式k b a S ⋅+=2)(中,已知S ,k ,a ,用S ,k ,a 的代数式表示b ,则b =______,当S =10,a =3,k =4时,则b =______.(4)等量关系“x 的5倍减去7,等于它的3倍加上8”可用方程表示为方程的解是______________. (5)若|x +3|=x +3,则x 的范围为______________. 25、解方程 (1)1)1(5332+-=-x x (2)15%x +10-x =10×32%(3)y y y --=+524121 (4)|5x +4|+2=8(5)1)23(32)31(21=+--xx (6)141710352212+-=+--x x x(7)21105.0)25(35.63.0303.0--=--x x(8)168421xx x x x ++++=26、若a ,b 为定值,关于x 的一元一次方程2632=--+bxx x ka 无论k 为何值时,它的解总是1,求a ,b 的值.27、某班同学参加平整土地劳动.运土人数比挖土人数的一半多3人.若从挖土人员中抽出6人运土,则挖土和运土的人数相等.求原来运土和挖土各多少人?28、某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?29、甲、乙两车分别从相距360千米的两地相向开出,已知甲车速度60千米/时,乙车速度40千米/时,若甲车先开1个小时,问乙车开出多少小时后两车相遇?30、A 、B 两地相距31千米,甲从A 地骑自行车去B 地,1小时后乙骑摩托车也从A 地去B 地.已知甲每小时行12千米,乙每小时行28千米.(1)问乙出发后多少小时追上甲;(2)若乙到达B 地后立即返回,则在返回路上与甲相遇时距乙出发多长时间?31、某行军纵队以8千米/时的速度行进,队尾的通讯员以12千米/时的速度赶到队伍前送一个文件.送到后立即返回队尾,共用14.4分钟.求队伍长.32、某人有急事,预定搭乘一辆小货车从A地赶往B地,实际上他乘小货车行了三分之一路程后改乘一辆小轿车,车速提高了一倍,结果提前一个半小时到达.已知小货车的速度是36千米/时,求两地间路程.33、一项工程甲、乙两队合作10天可以完成,甲队独做15天完成,现两队合作7天后,其余工程由乙队独做.乙队还需几天完成?34、检修一处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合做,但乙中途离开了一段时间,后2天由乙、丙合作完成.问乙中途离开了几天?35、某中学组织初一同学春游,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.已知45座客车日租金为每辆220元,60座客车日租金为每辆300元.试问:(1)初一年级人数是多少?原计划租用45座客车多少辆?(2)要使每个同学都有座位,怎样租车更合算?36、小刚和小明在课外学习中,用20张白卡纸做包装盒,每张白卡纸可以做2个盒身或者做3个盒底盖.且1个盒身和2个底盖恰好做成一个包装盒,为了充分利用材料使做成的盒身和底盖刚好配套,他们设计了两种方案:方案一:把这些白卡纸分成两部分,一部分做盒身,一部分做底盖;方案二:先把一张白卡纸适当剪裁出一个盒身和一个盒盖,余下的白卡纸分成两部分,一部分做盒身一部分做底盖.想一想,他们的方案是否可行?37、张新和李明相约到图书城去买书,请你根据他们的对话内容,求出李明上次所买书籍的原价.38、下表是甲商场电脑产品的进货单,其中进价一栏被墨迹污染,读了进货单后,请你算出这台电脑的进价是多少元.元39、八年级三班在召开期末总结表彰会前,班主任安排班长李强去商店买奖品,下面是李强与售货员的对话:李强说:阿姨好!售货员:同学,你好,想买点什么?李强说:我只有100元,请您帮忙安排买10支钢笔和15本笔记本。

上海中学七年级数学上册第三单元《一元一次方程》-解答题专项提高练习(培优练)

上海中学七年级数学上册第三单元《一元一次方程》-解答题专项提高练习(培优练)

一、解答题1.某市居民生活用水实行“阶梯水价”收费,具体收费标准见下表:例:甲用户1月份用水25吨,应缴水费1.620 2.4(2520)44⨯+⨯-= (元).(1)若乙用户1月份用水10吨,则应缴水费________元;(2)若丙用户1月份应缴水费62.6元,则用水________吨;.(3)若丁用户1、2月份共用水60吨(1月份用水量超过了2月份),设2月份用水a 吨,求丁用户1、2月份各应缴水费多少元.(用含a 的代数式表示)解析:(1)16;(2)32; (3) 1月份应缴水费(155 3.3)a -元.当2月份用水量不超过20吨时,应缴水费1.6a 元;当2月份用水量超过20吨但不超过30吨时,应缴水费(2.416)a -元.【分析】(1)根据每户每月用水量不超过20时,水费价格为1.6元/吨,可知乙用户1月份用水10吨,则应缴水费:1.6×10,计算即可;(2)由于用水30吨时应缴水费为:1.6×20+2.4×10=56<62.6,所以丙用户1月份用水超过30吨,列出方程,求解即可;(3)由丁用户1、2两个月共用水60吨,设2月份用水a 吨,则1月份用水(60-a )吨,根据1月份用水量超过了2月份,得出1月份用水量超过了2月份,得出1月份用水量大于30吨,2月份用水量小于30吨,根据三级收费求出1月份应缴水费,分两种情况求出2月份应缴水费, ①当2月份用水量不超过20吨时;②当2月份用水量超过20吨但不超过30吨时;【详解】解:(1)依题意得:1.6×10=16;故答案为:16(2) 依题意得:由于用水30吨时应缴水费为:1.6×20+2.4×10=56<62.6,所以丙用户1月份用水超过30吨,设用水为x 吨,依题意得:56(30) 3.362.6x +-⨯= 解得:x=32故答案为:32;(3)因为1月份用水量超过了2月份,所以1月份用水量超过了30吨,2月份用水量少于30吨.1月份应缴水费20 1.610 2.4 3.3(6030)(155 3.3)a a ⨯+⨯+--=-元.①当2月份用水量不超过20吨时,应缴水费1.6a 元;②当2月份用水量超过20吨但不超过30吨时,应缴水费1.6202.4(20)(2.416)a a ⨯+-=-元.【点睛】本题主要考查了列代数式,代数式求值,掌握列代数式,代数式求值是解题的关键. 2.江南生态食品加工厂收购了一批质量为10000kg 的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg ,求粗加工的这种山货的质量.解析:2000kg .【详解】解:设粗加工的该种山货质量为x kg ,根据题意,得()3200010000x x ++=,解得2000x =.答:粗加工的该种山货质量为2000kg .3.10.3x -﹣20.5x + =1.2. 解析:4【解析】 试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题12 1.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=1820 x=128x=6.4 4.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?解析:成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x 的值,根据盈利=售价-进价即可求得答案.【详解】设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.5.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.解析:(1)方案一省钱;(2)见解析;(3)见解析.【分析】(1)分别按两种方案结合已知数据计算、比较即可得到结论;(2)分别根据两种方案列出对应的表达式并化简即可;(3)按以下三种方式分别计算出各自所需费用并进行比较即可:①全按方案一购买;②全按方案二购买;③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子.【详解】(1)当x=100时,按方案一购买所需费用为:100×200=20000(元);按方案二购买所需费用为:100×(200+80)×80%=22400(元),∵20000<22400,∴方案一省钱;(2)当x>100时,按方案一购买所需费用为:100×200+80(x﹣100)=80x+12000(元);按方案二购买所需费用为:(100×200+80x)×80%=64x+16000(元),答:方案一、方案二的费用为:(80x+12000)元、(64x+16000)元;(3)当x=300时,①全按方案一购买:100×200+80×200=36000(元);②全按方案二购买:(100×200+80×300)×80%=35200(元);③先按方案一购买100张课桌,同时送100把椅子;再按方案二购买200把椅子,100×200+80×200×80%=32800(元),∵36000>35200>32800,∴先按方案一购买100张桌子,同时送100把椅子;再按方案二购买200把椅子最省.【点睛】(1)读题题意,弄清各数据间的关系是解答第1、2小题的关键;(2)解第3小题时,需分以下三种情况分别计算所需费用:①全按方案一购买;②全按方案二购买;③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子;解题时不要忽略了其中任何一种.6.解下列方程:(1)15(x +15)=1231-(x -7). (2)2110121364x x x -++-=-1. 解析:(1)x =-516;(2)x =16. 【分析】 (1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.【详解】解:(1)15(x +15)=1231-(x -7). 去分母,得6(x +15)=15-10(x -7).去括号,得6x +90=15-10x +70.移项及合并同类项,得16x =-5. 系数化为1,得x =-516. (2)2110121364x x x -++-=-1 去分母,得4(2x -1)-2(10x +1)=3(2x +1)-12.去括号,得8x -4-20x -2=6x +3-12.移项,得8x -20x -6x =3-12+4+2.合并同类项,得-18x =-3.系数化为1,得x =16. 【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.7.解下列方程: (1)51784a -=; (2)22146y y +--=1; (3)2131683x x x -+-= -1 解析:(1)3a =;(2)4y =-;(3)179x =. 【分析】 (1)先方程两边同乘以8去分母,再按照移项、合并同类项、系数化为1的步骤解方程即可得;(2)先方程两边同乘以12去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得;(3)先方程两边同乘以24去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】(1)方程两边同乘以8去分母,得5114a -=,移项,得5141a =+,合并同类项,得515a =,系数化为1,得3a =;(2)方程两边同乘以12去分母,得3(2)2(21)12y y +--=,去括号,得364212y y +-+=,移项,得341262y y -=--,合并同类项,得4y -=,系数化为1,得4y =-;(3)方程两边同乘以24去分母,得4(21)3(31)824x x x --+=-,去括号,得8493824x x x ---=-,移项,得8982443x x x --=-++,合并同类项,得917x -=-,系数化为1,得179x =. 【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.8.利用等式的性质解下列方程:(1)x -2=5; (2)-23x =6; (3)3x =x +6. 解析:(1)x =7;(2)x =-9;(3)x =3【分析】(1)两边同时加上2即可求解;(2)两边同时乘-32即可求解; (3)两边同时减x ,然后同时除以2即可求解.【详解】解:(1)等式两边加2,得x -2+2=5+2,即x =7.(2)等式两边乘-32,得x =6×(-32),即x=-9.(3)等式两边减x,得2x=6.两边除以2,得x=3.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.9.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x+1-1所以x=1.(3)两边加25 x,得35x-8+25x=-25x+1+25x.化简,得x-8=1.两边加8,得x-8+8=1+8.所以x=9.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.10.解下列方程(1)5m-8m-m=3-11;(2)3x+3=2x+7解析:(1)m=2;(2)x=4【分析】(1)先合并同类项,再化系数为1解一元一次方程即可;(2)先移项,再合并同类项解一元一次方程即可.【详解】(1)合并同类项,得 :﹣4m=﹣8,系数化为1,得: m=2,(2)移项,得:3x ﹣2x=7﹣3,合并同类项,得: x=4.【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法及步骤是解答的关键. 11.某地下停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场的小型汽车数量是中型汽车的3倍,这些车共缴纳停车费270元,则小型汽车有多少辆?解析:小型汽车有45辆【分析】设中型汽车有x 辆,则小型汽车有3x 辆,根据“这些车共缴纳停车费270元”列出关于x 的方程,然后求解方程即可.【详解】设中型汽车有x 辆,则小型汽车有3x 辆,根据题意,得643270+⨯=x x ,合并同类项,得18x =270,系数化为1,得x =15,则3x =45.答:小型汽车有45辆.【点睛】本题主要考查一元一次方程的应用,解此题的关键在于根据题意设出未知数,找到题中相等关系列出方程.12.关于x 的方程357644m x m x +=-的解比方程4(37)1935x x -=-的解大1,求m 的值. 解析:623m =-【分析】 分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可.【详解】 解:357644m x m x +=-, 整理得:2(310)321m x m x +=- 313x m =-解得:331mx=-,4(37)1935 x x-=-4747x=1x=由题意得:311 31m--=解得:623 m=-【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m的式子表示x,然后根据题意列出方程.13.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得;(2)根据2h后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.14.解方程:2x13+=x24+-1.解析:x=-2.【分析】按去分母,去括号,移项,合并同类项,系数化为1的步骤进行求解即可.【详解】去分母得:4(2x+1)=3(x+2)-12,去括号得:8x+4=3x+6-12,移项得:8x-3x=6-12-4,合并同类项得:5x=-10,系数化为1得:x=-2.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.15.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,交电费元.(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?解析:(1)0.6;122.5.(2)0.9x﹣82.5.(3)250千瓦.【分析】(1)根据100<150结合应交电费60元即可得出关于a的一元一次方程,解之即可得出a 值;再由150<200<300,结合应交电费=150×0.6+0.65×超出150千瓦时的部分即可求出结论;(2)根据应交电费=150×0.6+(300-150)×0.65+0.9×超出300千瓦时的部分,即可得出结论;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,分x在第二档及第三档考虑,根据总电费=均价×数量即可得出关于x的一元一次方程,解之即可得出x值,结合实际即可得出结论.【详解】(1)∵100<150,∴100a=60,∴a=0.6,若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元),故答案为0.6;122.5;(2)当x>300时,应交的电费150×0.6+(300-150)×0.65+0.9(x﹣300)=0.9x﹣82.5;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x﹣150)=0.62x,解得:x=250;当该居民用电处于第三档时,0.9x﹣82.5=0.62x,解得:x≈294.6<300(舍去).综上所述该居民用电不超过250千瓦时,其当月的平均电价每千瓦时不超过0.62元.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出代数式;(3)根据总电费=均价×数量列出关于x的一元一次方程.16.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,一块小正方形以及另两块长方形的纸板,恰好拼成一个大正方形,求大正方形的面积.解析:大正方形的面积是36cm2【分析】设小正方形的边长为x,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积.【详解】设小正方形的边长为x,则大正方形的边长为4+(5−x)cm或(x+1+2)cm,根据题意得:4+(5−x)=(x+1+2),解得:x=3,∴4+(5−x)=6,∴大正方形的面积为36cm2.答:大正方形的面积为36cm2.【点睛】本题考查了一元一次方程的应用,解题的关键是设出小正方形的边长并表示出大正方形的边长.17.统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座? 解析:102座. 【分析】根据等量关系为:暂不缺水城市+一般缺水城市+严重缺水城市=664,据此列出方程,解可得答案. 【详解】设严重缺水城市有x 座, 依题意得:(3x+52)+x+2x=664. 解得:x=102.答:严重缺水城市有102座. 【点睛】此题考查一元一次方程的应用,解题的关键在于找到合适的等量关系,列出方程求解.18.某同学在给方程21133x x a-+=-去分母时,方程右边的-1没有乘3,因而求得方程的解为2x =,试求a 的值,并正确地解方程. 解析:2a =,0x = 【分析】根据方程的定义,把2x =代入211x x a -=+-,求得a ,把a 代入原方程,去分母、去括号、移项、合并同类项得出议程的解. 【详解】把2x =代入211x x a -=+-,得:2a = ∴原方程为:212133x x -+=- 去分母得:2123x x -=+- 移项得:2231x x -=-+ 合并同类项得:0x = 【点睛】本题考查了解分数系数的一元一次方程,熟练掌握解方程的一般步骤是解题的关键. 19.某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30,-25,-30,+28,-29,-16,-15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存300吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a 元、出仓库的水泥装卸费是每吨b 元,求这7天要付多少元装卸费解析:(1)经过这7天,仓库里的水泥减少了57吨;(2)7天前仓库里存有水泥357吨;(3)这7天要付(58a+115b )元装卸费.【分析】(1)根据有理数的加法运算,可得答案; (2)根据有理数的减法运算,可得答案; (3)根据装卸都付费,可得总费用. 【详解】(1)∵+30-25-30+28-29-16-15=-57; ∴经过这7天,仓库里的水泥减少了57吨; (2)∵300+57=357(吨),∴那么7天前,仓库里存有水泥357吨.(3)依题意:进库的装卸费为:[(+30)+(+28)]a=58a ; 出库的装卸费为:[|-25|+|-30|+|-29|+|-16|+|-15|]b=115b , ∴这7天要付(58a+115b )元装卸费. 【点睛】本题考查了正数和负数及列代数式的知识,(1)有理数的加法是解题关键;(2)剩下的减去多运出的就是原来的,(3)装卸都付费. 20.已知14y x =-+,222y x =-. (1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着x 值的增大,1y 的值逐渐 ;2y 的值逐渐 . 解析:(1)2x =;(2)2x =;(3)表格详见解析,减小,增大. 【分析】(1)由题意可得关于x 的方程,解方程即得答案; (2)根据1y =122y +1可得关于x 的方程,解方程即得答案; (3)把x 的值依次代入1y 和2y 的关系式进行计算,即可完成表格;根据所填表格中的数据即可判断1y 和2y 的变化趋势. 【详解】解:(1)由题意得:422x x -+=-,解得:2x =, 所以,当2x =时,12y y =;(2)由题意得: 1(422)21x x -+=-+,解得:2x =, 所以,当2x =时,1y 的值比2y 的值的12大1. (3)由表格中的数据可知:随着值的增大,1的值逐渐减小;2的值逐渐增大. 故答案为:减小,增大. 【点睛】本题考查了一元一次方程的解法、代数式求值和根据表格判断代数式的变化趋势,正确列出方程、熟练掌握一元一次方程的解法是解题的关键.21.由于施工,需要拆除学校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少? 解析:6人 【分析】设先安排整理的人员有x 人,根据工作效率×工作时间×工作人数=工作总量结合题意,即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】解:设先安排整理的人员有x 人, 根据题意得:()1126=13030x x +⨯+, 解得:x =6.答:先安排整理的人员有6人. 【点睛】本题考查了一元一次方程的应用,找准等量关系正确列出一元一次方程是解题的关键. 22.一项工程,甲队独做10h 完成,乙队独做15h 完成,丙队独做20h 完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h ,问甲队实际工作了几小时? 解析:3 【分析】设三队合作时间为x ,总工程量为1,根据等量关系:三队合作部分工作量+乙、丙两队合作部分工作量=1,列式求解即可得到甲队实际工作时间. 【详解】设三队合作时间为xh ,乙、丙两队合作为(6)x h -,总工程量为1,由题意得:11111()()(6)11015201520x x ++++-=, 解得:3x =,答:甲队实际工作了3小时. 【点睛】本题主要考查了一元一次方程实际问题中的工程问题,准确分析题目中的等量关系以及设出未知量是解决本题的关键. 23.小明解方程21152x x a-++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为4x =,试求a 的值,并正确求出方程的解. 解析:=1a ,原方程的解为:13x = 【分析】首先根据错误的作法“方程左边的1没有乘以10”而得出4x =,代入错误方程,然后求出a 的值,最后进一步解方程即可.【详解】∵去分母时,方程左边的1没有乘以10, ∴2(21)15()x x a -+=+, ∵此时解得4x =, ∴2(241)15(4)a ⨯-+=+, 解得:=1a ,∴原方程为:211152x x --+=, 去分母可得:2(21)105(1)x x -+=-,去括号可得:421055x x -+=-, 移项、化简可得:13x -=-, 解得:13x =,∴=1a ,原方程的解为:13x =. 【点睛】本题主要考查了一元一次方程的求解,熟练掌握相关方法是解题关键. 24.解下列方程(1)32(4)25x x --=-; (2) 212164y y -+-=-; (3)312423(1)32x x x -+-+=-; (4)4 1.550.8 1.20.50.20.1x x x----= ; (5) 315x x +-= ; (6)解下列关于x 的方程211423x m mx ---=. 解析:(1)4x =;(2)4y =-;(3)83x =;(4)117x =-;(5)2x =-或32x =;(6)2+364=-m x m . 【分析】(1)先两边同时乘以5去分母,然后去括号解方程即可; (2)先两边同时乘以12去分母,然后去括号解方程即可; (3)先两边同时乘以6去分母,然后去括号解方程即可; (4)先两边同时乘以1去分母,然后去括号解方程即可; (5)分①当x≤13时,②当x >13时,两种情况,分别求出x 即可; (6)把m 当成已知数,先两边同时乘以12去分母,然后去括号解方程即可. 【详解】解:(1)103(4)510--=-x x10312510-+=-x x 351022--=--x x 832-=-x4x =;(2)()()4216224--+=-y y8461224---=-y y 224+16=-y28y =-4y =-;(3)()()2311232418(1)--++=-x x x62126121818--++=-x x x 1218182-=-+x x616-=-x83x =;(4)()()()24 1.5550.8101.2---=-x x x832541210--+=-x x x1710121-+=-x x 711-=x117x =-; (5)315x x +-= ①当x≤13时,()315+-+=x x24x -=2x =-,-2<13,∴2x =-满足;②当x >13时,()315+-=x x46x =32x =3123>, ∴32x =满足,∴2x =-或32x =; (6)()()32641--=-x m mx63644--=-x m mx 644+3+6-=-x mx m()642+3-=m x m2+364=-mx m . 【点睛】 本题是对解一元一次方程的考查,熟练掌握一元一次方程的解法是解决本题的关键. 25.如图,在一条不完整的数轴上,一动点A 向左移动4个单位长度到达点B ,再向右移动7个单位长度到达点C .(1)若点A 表示的数为0,求点B 、点C 表示的数; (2)如果点A ,C 表示的数互为相反数,求点B 表示的数;(3)在(1)的条件之下,若小虫P 从点B 出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q 恰好从点C 出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两只小虫在数轴上的点D 相遇,点D 表示的数是多少?解析:(1)点B 表示的数为4-,点C 表示的数为3;(2)点B 表示的数为 5.5-;(3)1【分析】(1)根据数轴上两点间的距离公式,分别求出B 、C 表示的数. (2)根据相反数的定义求解即可. (3)根据题意列出方程求解即可. 【详解】(1)若点A 表示的数为0,因为044-=-,所以点B 表示的数为4-. 因为473-+=,所以点C 表示的数为3. (2)若点A ,C 表示的数互为相反数,因为743AC =-=,所以点A 表示的数为 1.5-. 因为 1.54 5.5--=-,所以点B 表示的数为 5.5-. (3)设小虫P 与小虫Q 的运动时间为t . 依题意得0.50.27t t +=,解得10t =, 则点D 表示的数是0.51041⨯-=. 【点睛】本题考查了数轴的综合问题,掌握数轴两点的距离公式、相反数的性质、解一元一次方程的方法是解题的关键. 26.公园门票价格规定如下表:50人.若两个班都以班为单位购票,则一共应付1240元,问: (1)如果两班联合起来,作为一个团体购票,可省多少元? (2)两班各有多少学生?(3)如果七(1)班单独组织去公园游玩,作为组织者的你将如何购票才最省钱? 解析:(1)304元;(2)七(1)班有48人,七(2)班有56人;(3)买51张门票可以更省钱. 【分析】(1)利用算术方法即可解答;(2)若设初一(1)班有x 人,根据总价钱即可列方程; (3)应尽量设计的能够享受优惠. 【详解】(1)12401049304-⨯=(元),所以可省304元. (2)设七(1)班有x 人,则七(2)班有(104)x -人. 由题意得1311(104)1240x x +-=或139(104)1240x x +-=, 解得48x =或76x =(不合题意,舍去). 即七(1)班有48人,七(2)班有56人.(3)由(2)可知七(1)班共48人,若买48张门票,共需4813624⨯=(元),若买51张门票,共需5111561⨯=(元), 所以买51张门票可以更省钱. 【点睛】本题考查了一元一次方程的应用.在优惠类一类问题中,注意认真理解优惠政策,审题要细心.27.阅读下列解题过程,指出它错在哪一步?为什么?2(1)13(1)1x x --=--. 两边同时加上1,得2(1)3(1)x x -=-.第一步 两边同时除以(1)x -,得23=.第二步 所以原方程无解.第三步 解析:第二步出错,见解析 【分析】根据等式的基本性质判断即可. 【详解】解题过程在第二步出错理由如下:等式两边不能同时除以1x -,1x -可能为0. 【点睛】此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.利用等式的性质2进行化简时,一定要注意等式两边不能同时除以一个可能为0的式子,否则容易导致类似本题中出现的错解.28.如表是中国电信两种“4G 套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网流量超出部分加收超时费和超流量费) (1)若小萱某月主叫通话时间为220分钟,上网流量为800MB ,则她按套餐1计费需________元,按套餐2计费需________元;若小花某月按套餐2计费需129元,主叫通话时间为240分钟,则上网流量为________MB .(2)若上网流量为540MB ,是否存在某主叫通话时间t (分),按套餐1和套餐2计费相等?若存在,请求出t 的值;若不存在,请说明理由.(3)若上网流量为540MB ,直接写出当主叫通话时间t (分)满足什么条件时,选择套餐1省钱;当主叫通话时间t (分)满足什么条件时,选择套餐2省钱.解析:(1)143,109,900;(2)若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱. 【分析】(1)根据表中数据分别计算两种计费方式,第三空求上网流量时,可设上网流量为xMB ,列方程求解即可;(2)分0≤t <200时,当200≤t≤250时,当t >250时,三种情况分别计算讨论即可; (3)由(2)中结果直接得出. 【详解】(1)143,109,900 套餐1:490.2(220200)0.3(800500)+⨯-+⨯- 490.2200.3300=+⨯+⨯49490=++ 143=(元).套餐2:690.2(800600)+⨯- 690.2200=+⨯ 6940=+109=(元)设上网流量为x MB ,则690.2(600)129x +-=.解得900x =. 故答案为:143;109;900. (2)存在.当0200t 时,490.3(540500)6169+-=≠,所以此时不存在这样的t ,按套餐1和套餐2计费相等; 当200250t <时,490.2(200)0.3(540500)69t +-+-=.解得240t =; 当250t >时,490.2(200)0.3(540500)690.15(250)t t +-+-=+-.解得210t =,不合题意,舍去.综上,若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)由(2)可知,当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱. 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.29.解方程:41(7)6(7)55x x -=--. 解析:13x =【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解; 【详解】 解:移项,得41(7)(7)655x x -+-=. 将(7)x -看作一个整体,合并同类项,得76x -=. 移项及合并同类项,得13x =. 【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.30.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”解析:x =60【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案. 【详解】解:设有x 个客人,则65234x x x++= 解得:x =60; ∴有60个客人. 【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.。

一元一次方程应用题提高小测试

一元一次方程应用题提高小测试

《应用题提高小测试》用方程解应用题----金西丰子恺学校
1.杨过从汤溪到金华买火腿,先是上坡路,然后就是下坡路,上下的坡度都均匀。

杨过上坡速度都为每小时20千米,下坡速度都为每小时30千米。

从汤溪到金华用4小时,从金华返回汤溪用2小时。

求去时上坡路和下坡路分别为多少千米?
2.小龙女骑自行车从甲地到乙地,先骑一段上坡路,再骑一段平坦路。

她从甲地到乙地用了4小时,回程用了3小时。

小龙女在平坦路上速度是10千米,上坡速度是10千米,下坡路速度是20千米.甲乙两地的距离是多少千米?
3.一艘轮船航行在俩码头之间,顺水要用4小时,逆水要5小时,已知该船在静水里的速度是每小时30千米,求水流速度。

4.出租车在开始10千米以内收费10元,以后每走1千米,收费2元,现在收费26元,请问出租车开了多少千米?
5.金华市按以下规定收取每月的水费:用水量如果不超过8吨,按每吨2元收费;如果超过8吨,未超过的部分仍按每吨2元收取,而超过部分则按每吨3元收费.如果某用户5月份水费平均为每吨2.5元,那么该用户5月份应交水费多少元?。

上海 华东师范大学第一附属初级中学七年级数学上册第三单元《一元一次方程》阶段练习(提高培优)

上海 华东师范大学第一附属初级中学七年级数学上册第三单元《一元一次方程》阶段练习(提高培优)

一、选择题1.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( ) A .()182812x x -= B .()1828212x x -=⨯ C .()181412x x -=D .()2182812x x ⨯-=2.下列解方程的过程中,移项正确的是( )A .由5x −7y −2=0,得−2=7y +5xB .由6x −3=x +4,得6x −3=4+xC .由8−x =x −5,得−x −x =−5+8D .由x +9=3x −1,得x −3x =−1−9 3.把方程10.58160.60.9x x -++=的分母化为整数,结果应为( ) A .1581669x x -++= B .10105801669x x -++= C .101058016069x x -+-= D .15816069x x -++= 4.下列变形不正确的是( ) A .由2x-3=5得:2x=8 B .由-23x=2得:x=-3 C .由2x=5得:x=25D .由x+5 =3x-2得:7=2x5.已知a=2b ,则下列选项错误的是( ) A .a+c=c+2bB .a ﹣m=2b ﹣mC .2a b = D .2ab = 6.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( ) A .-2B .34C .2D .43-7.如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D8.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=- C .()322x -+=D .()()3221x x ++=-9.如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( )A .ab+2x 2B .ab ﹣2x 2C .ab+4x 2D .ab ﹣4x 210.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,则该电器的标价为( ) A .3750元B .4000元C .4250元D .3500元11.佳佳的压岁钱由爸爸存入某村镇银行,当年年利率为1.5%,一年后取出时得到本息和为4060元,则佳佳的压岁钱是( ) A .2060元 B .3500元C .4000元D .4100元12.把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律13.书架上,第一层书的数量是第二层书的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层书的数量的一半多3本.设第二层原有x 本书,则可列方程为( ) A .2x -8=12(x +8)+3 B .2x =12(x +8)+3 C .2x -8=12x +3 D .2x =12x +3 14.甲、乙、丙三辆卡车所运货物的质量之比为6:7:4.5,已知甲车比乙车少运货物12吨,则三辆卡车共运货物( ) A .120吨B .130吨C .210吨D .150吨15.四位同学解方程x−13−x+26=4−x2,去分母分别得到下面四个方程:①2x −2−x +2=12−3x ;②2x −2−x −2=12−3x ;③2(x −1)−(x +2)=3(4−x);④2(x −1)−2(x +2)=3(4−x).其中错误的是( ) A .②B .③C .②③D .①④二、填空题16.解关于x 的方程,有如下变形过程:①由2316x =-,得2316x =-; ②由342x -=,得324x =-;③由0.221 1.530.1x x -+=+,得366045x x +=-+; ④由253x x-=,得352x x -=. 以上变形过程正确的有_____.(只填序号)17.若关于x 的方程2x+a=9﹣a (x ﹣1)的解是x=3,则a 的值为_____. 18.方程2243x -=的解是__________ 19.若方程2(2)3m m x x ---=是一元一次方程,则m =________.20.某区民用电的计费方式为:白天时段的单价为m 元/度,晚间时段的单价为n 元/度.某户8月份白天时段用电量比晚间时段多50%,9月份白天时段用电量比8月份白天时段用电量少60%,结果9月份的总用电量虽比8月份的总用电量多20%,但9月份的总电费却比8月份的总电费少10%,则mn=______. 21.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.22.若关于x 的方程23360m x m --+=是一元一次方程,则这个方程的解是__________. 23.(1)如果33x y -=,那么x =_________; (2)如果2m n =,那么3m=___________. 24.在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号. 25.(1)由等式325x x =+的两边都________,得到等式5x =,这是根据____________; (2)由等式1338x -=的两边都______,得到等式x=_____,这是根据__________________. 26.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).三、解答题27.已知14y x =-+,222y x =-. (1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着x 值的增大,1y 的值逐渐 ;2y 的值逐渐 . 28.已知关于x 的方程:2(x ﹣1)+1=x 与3(x +m )=m ﹣1有相同的解,求以y 为未知数的方程3332my m x--=的解. 29.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 30.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案: 方案一:每买一张课桌就赠送一把椅子; 方案二:课桌和椅子都按定价的80%付款. 某校计划添置100张课桌和x 把椅子. (1)若x=100,请计算哪种方案划算;(2)若x >100,请用含x 的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程提高练习题
例题:
例1.解下列方程: (1)
35.0102.02.01.0=+--x x ; (2)01}1]1)12
1(21[21{21=----x ; (3)3(x+1)-31(x-1)=2(x-1)-2
1(x+1); (4)2(|x+1|-2)-3(2|x+1|-1)=7(1-|x+1|)-2 例2.已知关于x 的方程x a x x 4)]3(2[3=--和1851123=--+x a x 有相同的解,那么这个解是什么?
例3.求关于x 的方程153+=+-bx a x (1)有唯一解的条件;(2)有无数解的条件;(3)无解的条件.
例4.某商场经销一种商品,由于进货时的价格比原来的进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率是多少?
例5.汽车以每小时72千米的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回响,这时汽车离山谷多远?(声音的速度以340m/s 计算)
例6.一个五位数,左边三位数是右边两位数的5倍,如果把右边两位数移到前面,则新五位数比原来五位数的2倍多75,求原五位数.
例7.两条渡轮分别从江两岸同时开出,它们各自的速度分别是固定的,第一次相遇在距一岸700米处,相遇后继续前进,到对岸后立即返回(转向时间不计),第二次相遇在距另一岸400米处,求江面宽.
例8.若0)23(2=+++b ax x b a 是关于x 的一元一次方程,且x 有唯一解,求这个解.
例9.依法纳税是每个公民的义务,若按照下表中规定的税率交纳个人所得税:
800元后的余额,例如某人月收入是1020元,减除800元,应纳税所得额为220元,应交个人所得税11元.
张老师每月收入是相同的,且1999年第四季度交纳个人所得税99元,问张老师每月收入是多少元?
例10.1998年某人的年龄恰等于他出生公元年数的数字之和,那么他的年龄应当是几岁?
练习:
1.解下列方程: (1)2{3[4(5x-1)-8]-20}-7=1; (2)
5.702
.0202.05.601.064--=--x x ; (3)2503.002.003.05.09.04.0-=+-+x x x ; (4)3)1(3
2)]1(34[21+-=-+x x x ; (5)21)1(61)1(3121+-=-+x x x . 2.检验下列各数是不是方程151222+-=-x x x 的解(注意解题格式): (1)x=3
1-; (2)x=0; (3)x=2. 3.下列判断错误的是( ) A.若a=b,则ac-5=bc-5 B.若a=b,则
1122+=+c b c a C.若x=2,则x x 22= D.若ax=bx,则a=b
4.关于x 的方程)()(m x m k x k -=-有唯一解,则k,m 应满足的条件是( )
A.k ≠0,m ≠0
B. k ≠0,m=0
C.k=0,m ≠0
D. k ≠m
*5.你能用方程的知识把0.2
35 化成分数形式吗?
6.不久前,共青团中央等部门发起了“保护母亲河行动”,某校初三两个班的115名同学积极参与,踊跃捐款,已知初三(1)班有31的学生每人捐了10元,初三(2)班有5
2的学生每人捐了10元.两班其余学生每人都捐5元,两班捐款总数为785元.问两班各有多少名学生?
*7.自行车轮胎安装在前轮上行驶5000千米后报废,若安装在后轮上只能行驶3000千米.如果要行驶尽可能多的路程,当自行车行驶一定路程后用前后轮胎调换的方法,则安装在自行车上的轮胎最多可以行驶多少千米?
8.果品公司购进苹果5.2万千克,每千克的进价是0.98元,付运费的开支1840元,预计损耗为1%,如果希望全部销售后能获利17%,问每千克的零售价为多少元?
9.学生90人编成三组参加义务劳动,甲组与乙组的人数比为3:2,乙组与丙组的人数比为7:5,求各组各有多少人?
*10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里路程的二分之一就到达目的地了.问A 、B 两市相距多少千米?(认真分析,再作解答)。

相关文档
最新文档