材料的介电性能
材料物理性能学之材料的电性能
材料物理性能学之材料的电性能引言材料的电性能是材料物理性能学的一个重要研究分支,它研究的是材料在电场、电流和电磁波等电学环境下的行为和性能。
材料的电性能对于材料的应用具有关键影响,比方在电子学、能源转换和传感器等领域中起着重要作用。
本文将探讨材料的电性能的根本概念、测试方法和常见的应用。
1. 电导率电导率是材料的一个根本电学性能参数,表示材料导电能力的强弱。
它常用符号σ表示,单位为S/m〔西门子/米〕。
电导率的量值越大,材料越好的导电性能。
电导率可以通过测量材料的电阻率来计算。
2. 电阻率电阻率是材料对电流流动的阻碍能力的度量,常用符号ρ表示,单位为Ω·m。
电阻率和电导率是一对相互关联的物理量,它们之间的关系可以用以下公式表示:ρ = 1/σ。
电阻率可以通过测量材料的电阻来得到。
3. 介电性能除了导电性能,材料还具有介电性能。
介电性能是材料对电场的响应能力的度量。
具有良好介电性能的材料可以阻止电流的流动,并被广泛应用于电容器、绝缘材料和电子设备等领域。
介电性能可以通过测量材料的介电常数来评估。
4. 介电常数介电常数是材料在电场中响应的能力的度量,常用符号ε表示。
介电常数可分为静电介电常数和动态介电常数。
静电介电常数表示在静电场中材料的响应能力,而动态介电常数那么表示在交变电场中材料的响应能力。
介电常数越大,材料对电场的响应能力越强。
5. 半导体材料的特性半导体材料是一类介于导体和绝缘体之间的材料,它具有特殊的电性能。
半导体材料的电导率较低,但随着温度的升高会逐渐增大。
半导体材料的导电性能可以通过添加杂质来调控,从而实现半导体器件的制造。
6. 材料的应用材料的电性能对于众多领域的应用至关重要。
在电子学领域中,导电性能好的材料可以用于制造电路和导线等电子元器件。
在能源转换领域中,材料的电性能对太阳能电池和燃料电池等能源转换器件的效率和稳定性有重要影响。
在传感器领域中,材料的电性能可以用于制造压力传感器、温度传感器和湿度传感器等。
材料的介电性
电子位移极化 一切陶瓷介质中 离子位移极化 离子结构介质 离子松弛极化 离子结构的玻璃、 结构不紧密的晶体 及陶瓷 电子松弛极化 钛质瓷、高价金属 氧化物基陶瓷 转向极化 有机材料
直流-超高频 随温度变化有 极大值 直流-超高频 随温度变化有 极大值 直流-超高频 随温度变化有 极大值 直流-超高 随温度升高而 减弱
K=?
根据正、负离子对的固有谐振 频率用实验方法求解k值。
正负离子位移形成的偶极距
qE qx q i E k
离子极化率
q i k
2
d E k 2 dx
根据离子晶体的势能E(x),可 以得到k值。
2
离子位移极化模型(一维)
离子极化结论:
离子位移极化率与电子位移极化率几乎有相同的数量级; 离子位移极化只可能在离子晶体中存在,液体或气体介质
电介质基本常数之间的关系
提高电介质的介电常数有利于提高电容器的存
储电荷量,然而介电损耗也将随之增加,因而 寻找一种兼具有高介电常数和低介电损耗的电 介质是当前科学研究者的任务。
材料的介电常数越大,其介电强度不一定高;
电介质的电导越大,介电损耗也越高。
一些材料的介电性能
材料 真空 水 纸 红宝石云母 相对介电常数 1 78 3.5 5.4 介电强度/(kV· cm-1) ∞ — 1.4 16
介电常数:是指以电极化的方式传递、存贮或 记录电的作用。
电导:是指电介质在电场作用下存在泄露电流。
介电损耗:是电介质在电场作用下存在电能的损耗。
介电强度:是指在强电场下可能导致电介质的破坏。
好的电介质要求较容易极化,具有较高的介电常数和介电 强度,较低的电导和介电损耗。
第四节 材料的介电性
第三章-材料的介电性能
Idc Iac
I总
Ic
90
t
Ic:理想电容器充电造成的电流; Idc:电介质真实介质漏电流; Iac:真实电介质极化建立的电流
I
U
非理想电介质充电、损耗和总电流矢量图
3.2.1 复介电常数与介质损耗
3)复介电常量: 定义复介电常量ε* 和εr* ,有:
* ' i ''
r* r ' i r ''
离子、取向极化
原子种类和键合类型
空间电荷极化
面缺陷
(3) 外电场的频率:某种机制都是在不同的时间量级内发生的,
只有在某个领域频率范围内才有显著的贡献。
光学性质 介电性质
电子极化 离子极化
取向极化 空间电荷极化
电磁波谱中可 见光的辐射
红外波段
1015Hz
1012Hz- 1013Hz
亚红外波段 低频波段
P e0E
令电位移D为: D 0E P
代入得:
D 0E P 0E 0E( r 1) 0E r E
在各向同性的电介质中,电位移等于场强的ε倍。
3.1.4 电介质极化的机制: 电子极化,离子极化,电偶极子取向,空间电荷极化,分别对应电子、 原子、分子和空间电荷情况。 位移极化,由电子或离子位移产生电偶极距而产生的极化。分为电子位 移极化和离子位移极化。 1)电子位移极化:材料在外电场的作用下,原子中的 电子云将偏离带正电的原子核这个中心,原子就成为一个 暂时的感应的偶极子。 这种极化可以在光频下进行,10-14-10-10S 可逆 与温度无关 产生于所有材料中
热运动:无序 电 场:有序
d
第五章材料的介电性能,
材料 刚玉 云母晶体 氧化铝陶瓷 食盐晶体 LiF晶体 聚苯乙烯 高抗冲聚苯乙烯 聚苯醚 聚碳酸酯 9(6.5)[60(106)] 5.4~6.2 9.5~11.2 6.12 9.27 2.45~3.10(60) 2.45~4.75(60) 2.58(60) 2.97~3.71(60)
聚乙烯泡沫塑料
整理得:
5.1.4 影响介电常数的因素
• 介电类型 • 温度系数
• 介电常数与温度呈强的非线性关系,用温度系数描述温度特征难度大 • 介电常数与温度呈线性关系,可以用温度系数描述介电常数与温度的 关系
5.2 交变电场中的电介质
• 5.2.1 复介电常数
在变动的电场下,静态介电常数不再适用,而出现动态介电常数——复介电常数
第五章 材料的介电性能
5.1 介质极化和静态介电常数
5.2 交变电场中的电介质
• 在外电场作用下,材料发生两种响应,一种是电传导,另一种是 电感应。与导电材料相伴而生,主要应用于材料介电性能的这一 类材料总称为电介质(材料)。 • 表征材料的介电性能的基本参数:介电系数、介电损耗、电导率 和击穿强度。
一切陶瓷
离子结构 离子不紧 密的材料 高价金属 氧化物 有机
空间电荷 极化
结构不均 匀的材料
直流—— 光频 直流—— 红外 直流—— 超高频 直流—— 超高频 直流—— 超高频 直流—— 高频
无关
温度升高极 化增强 随温度变化 有极大值 随温度变化 有极大值 随温度变化 有极大值
无
很弱 有 有 有
随温度升高 而减小
在气体、液体和理想的完整晶体中,经常存在的微观极化机制是电子位移极化、离子位移极 化和固有电矩的取向极化
在非晶体固体、聚合物高分子、陶瓷以及不完整的晶体中,还会存在其他复杂的微观极化机制。 松弛极化、空间电荷极化和自发极化
材料介电性能
材料介电性能
材料的介电性能是指材料在电场作用下的响应能力,是描述材料在电场中的极化程度和导电性质的重要参数。
介电常数和介电损耗是描述材料介电性能的两个重要指标,对于材料的性能和应用具有重要意义。
首先,介电常数是材料在电场中的极化能力的量度,它是材料在电场中的相对极化能力与真空中的相对极化能力之比。
介电常数越大,表示材料在电场中的极化能力越强,其绝缘性能也越好。
介电常数的大小与材料的分子结构、晶体结构、晶格常数等密切相关。
一般来说,具有离子晶格结构的材料,其介电常数较大;而具有共价键结构的材料,其介电常数较小。
介电常数的大小对材料的电容器、介电体等电子器件的性能有着重要影响。
其次,介电损耗是材料在电场中能量损耗的指标,它是材料在交变电场中的电能损耗与储存电能之比。
介电损耗的大小与材料内部的分子摩擦、电子极化、电子迁移等因素密切相关。
介电损耗的大小直接影响着材料在高频电子器件中的应用,因为高频信号在传输过程中会受到材料的介电损耗的影响,从而影响信号的传输质量和稳定性。
综上所述,材料的介电性能对于材料的性能和应用具有重要意义。
了解材料的介电常数和介电损耗,有助于选取合适的材料用于不同的电子器件中,提高电子器件的性能和稳定性。
因此,对材料的介电性能进行深入研究和分析,对于推动材料科学和电子器件技术的发展具有重要意义。
各种材料的介电常数介绍
各种材料的介电常数介绍介电常数是物质对电场的响应能力的度量。
它表示了在给定电场下物质对电荷的极化程度,是表征材料介电性质的重要参数之一、不同材料具有不同的介电常数,下面将介绍几种常见材料的介电常数及其特点。
1.空气:空气的介电常数约为1,是所有常见材料中最低的。
空气具有较低的极化能力,电场作用下的电荷极化程度很小。
由于空气的介电常数较低,使得其耐电压能力较弱,容易被电击穿。
2.石英玻璃:石英玻璃的介电常数约为4,较空气高。
石英玻璃在电场中会发生较大程度的极化,使得电荷在电场作用下会被极化并保持一定的极化程度。
石英玻璃具有较好的绝缘性能和热稳定性,广泛应用于光学器件等领域。
3.金属:金属的介电常数非常接近于无穷大,可以视为无穷大。
这是因为金属具有非常高的导电性,外加电场会在金属内部引起自由电子的流动,电场作用下的电荷极化程度非常小。
由于金属具有较低的电阻,通常用作电器中的导体。
4.陶瓷:陶瓷的介电常数范围较广,一般在10~80之间。
陶瓷具有良好的绝缘性和耐高温性能,因此广泛应用于电容器、绝缘件等领域。
陶瓷的介电常数与其成分有关,不同成分的陶瓷具有不同的介电性质。
5.聚合物:聚合物的介电常数一般在3~8之间,较低。
聚合物具有较好的柔韧性和绝缘性能,在电容器、绝缘材料等领域有广泛应用。
聚合物的介电常数可通过改变其成分、结构以及添加填料等方式调控。
6.水:水的介电常数较高,约为80。
水是一种极性溶剂,可溶解许多离子和极性分子。
水在电场作用下会发生较大程度的极化,使得水具有良好的导电性。
水的介电常数随温度的变化较大,随着温度的升高,其介电常数会减小。
总的来说,不同材料的介电常数反映了它们在电场作用下的极化程度和导电性质。
不同介电常数的材料具有不同的电性能和应用领域。
了解材料的介电常数可以为材料选择和应用提供参考。
材料的介电性能
材料的介电性能材料的介电性能是指材料在电场作用下的响应能力,也是材料在电子学、光学、电磁学等领域中的重要性能参数之一。
介电性能的好坏直接影响着材料在电子器件、电力设备、通信设备等方面的应用效果。
在材料科学领域中,研究和提高材料的介电性能具有重要意义。
首先,介电常数是衡量材料介电性能的重要参数之一。
介电常数是材料在电场作用下的相对响应能力的指标,通常用ε表示。
介电常数越大,表示材料在电场作用下的响应能力越强,介电性能越好。
常见的高介电常数材料包括氧化铝、二氧化钛等,它们在电子器件中具有重要的应用价值。
其次,介电损耗是评价材料介电性能的另一个重要指标。
介电损耗是指材料在电场作用下吸收和释放能量的能力,通常用tanδ表示。
介电损耗越小,表示材料在电场作用下的能量损耗越小,介电性能越好。
在高频电子器件和微波器件中,要求材料的介电损耗尽可能小,以保证信号的传输和处理效果。
此外,介电强度也是衡量材料介电性能的重要参数之一。
介电强度是指材料在电场作用下能够承受的最大电场强度,通常用E表示。
介电强度越大,表示材料在电场作用下的抗击穿能力越强,介电性能越好。
在电力设备和高压电子器件中,要求材料的介电强度能够承受高电场强度,以保证设备的安全和稳定运行。
综上所述,材料的介电性能是材料科学中的重要研究内容之一。
通过研究和提高材料的介电常数、介电损耗和介电强度等参数,可以改善材料在电子学、电力设备、通信设备等领域的应用效果,推动相关领域的科学技术发展。
希望本文对材料的介电性能有所帮助,也希望相关领域的科研工作者能够进一步深入研究,推动材料科学的发展。
材料的介电性能范文
材料的介电性能范文一、电导率电导率是材料导电能力的度量。
导电能力越强,电子在材料中的移动越快,电流通过材料的能力越大。
铜、银等金属具有很高的电导率,而绝缘材料如橡胶、陶瓷等则具有很低的电导率。
介电材料的电导率很低,通常可以忽略不计。
二、介电常数介电常数是材料对电场的响应能力的度量。
介电常数越大,材料在电场作用下储存和释放电荷的能力越强,也会导致反应速度更快。
常见的介电常数范围从几个单位到上百个单位不等。
对于一些高介电常数的材料,如铁电材料,其介电常数在外加电场作用下会发生可逆的变化,使其有着重要的应用价值。
三、介电损耗介电损耗是材料在外加电场下能量转化为热量的过程。
当材料在电场中振荡或受到剧烈变化时,电能会以热能的形式耗散出去,表现为介质发热。
介电损耗可以通过电导率和介电常数来计算。
对于一些高损耗的材料,如介电体材料,可以通过改变其化学组成和结构来减小介电损耗,提高材料的效率和性能。
四、影响因素1.结构:材料的结构对其介电性能有重要影响。
晶体结构的材料通常具有更高的介电常数和更低的电导率,而非晶态结构的材料则相反。
这是因为晶体结构中的离子和电子可以更好地排列和移动,从而提高材料的介电特性。
2.成分:材料的成分也会影响其介电性能。
不同的元素和化学键控制了材料的特性,从而影响了其介电性能。
例如,添加不同的塑化剂可以改变聚合物材料的介电性能,使其能够在不同的应用中使用。
3.外部环境:外部环境,包括温度和湿度等因素,也会对材料的介电性能产生影响。
通常情况下,温度升高会导致材料的电导率增加,介电常数减小,介电损耗增大。
湿度的变化也会对材料的介电性能产生影响,因为湿度的变化会改变材料中水分子的浓度和运动能力。
总结:材料的介电性能与其电导率、介电常数、介电损耗等因素密切相关。
了解和控制材料的介电性能对于电子器件和电气设备的设计和制造具有重要意义。
通过选择合适的材料成分和结构,以及优化材料的外部环境条件,可以实现对材料介电性能的调控,提高其效率和性能。
各种材料的介电常数介绍
各种材料的介电常数介绍介电常数是材料在电场作用下的相对介电性质。
它是描述材料电性质的重要参数之一。
不同的材料介电常数不同,介电常数的大小和材料的化学成分、结构、温度、压力等因素有关。
以下是常用材料的介电常数介绍。
1. 空气空气是一种介电常数较小的物质,其介电常数为1。
由于空气的介电常数非常接近于真空的介电常数,因此在电学测量和电子技术中经常使用空气作为参照。
2. 塑料塑料是一种具有良好绝缘性能的材料,其介电常数范围广泛,一般在2到10之间。
不同类型的塑料介电常数不同,一般来说,聚烯烃类的塑料介电常数较小,约为2至3,而聚酰亚胺、聚苯硫醚等高分子材料的介电常数较大。
3. 陶瓷陶瓷是一种介电常数较大的材料,其介电常数一般在5至100之间。
由于其高介电常数,陶瓷在电子技术中被广泛应用,例如用于制作电容器、薄膜电阻器等电子元件。
4. 水水是一种介电常数较大的物质,其介电常数为80。
水的高介电常数使其在生物、化工等领域有着广泛的应用。
例如在电泳分离、电化学检测等领域中,水的介电性质被广泛应用。
5. 金属金属是一种具有良好导电性能的材料,其介电常数很小,一般不超过1。
由于金属的导电性能,金属常常被用作电子元件的导体。
在电子设备中,通过将金属导体和绝缘材料结合使用,可以实现电路的正常工作。
6. 玻璃玻璃是一种介电常数较大的材料,其介电常数一般在4至10之间。
由于玻璃具有良好的光学和机械性能,因此在光学器件、制作光纤、液晶显示器等领域中被广泛应用。
7. 橡胶总之,介电常数是材料电性质的重要参数之一,不同类型的材料介电常数有很大的差异,对材料的选择和电子器件的设计有着重要的影响。
材料的介电性能培训讲义
物质对外电场的响应除去电荷的传导外,还有电荷
短程运动与位移。这种电荷的短程运动与位移称为极化 (Polarization),其结果是促使正负电荷中心偏移、从而 产生电偶极矩。而以极化方式传递、储存或记录外电场 作用和影响的物质就是电介质。显然,电介质中起主要 作用的乃是束缚电荷而非自由电荷。极化可以来自极性 晶体或分子的自发极化、也可以来自电场的诱导作用。 介电响应可用如下方程描述:D=εε0E 或 P=χε0E,其中, D为电位移、P为极化强度、ε0为真空电容率、ε为相对 介电常数、χ为宏观极化率, ε与χ均为二阶对称张量。 由于ε =1+χ ,用相对介电常数与宏观极化率描述介电性 质是等价的。介电常数的物理意义可以理解为电介质在 极化过程中储存电荷能力之度量。
象称为电介质极的化极化。。
电偶极子与电偶极矩
电偶极子(electric dipole)
——两个相距很近的等量异号点电荷 +q与-q 所组成的带电系统。
电偶极矩(electric dipole moment) ——电偶极子中的一个电荷的电
量与轴线的乘积,简称电矩。
P = qL →
→ 电偶极矩的方向:负电荷指向正电荷。
极化现象及其物理量
1. 具有一系列偶极子和 束缚电荷的极化现象
在外电场中,电介质表面出现的 束缚电荷叫做极化电荷。
-
-
-
- --- --- -
+
+
+
-
-
-
真空
+
+
+
E
-
-
-
+
+
+
-
-
-
+
第五章 材料的介电性能
电场作用下离子间的键合被拉长,例如碱卤化物晶体就是
如此。图5.2所示是位移极化的简化模型。
图5.2 离子极化示意图
• 离子位移极化主要存在于具有离子晶体中,如云母、陶瓷 材料等,它具有如下特点:
• (1)形成极化所需的时间极短,约10-13s,故一般可以
认为与频率无关; • (2)属弹性极化,几乎没有能量损耗; • (3)温度升高时离子间的结合力降低,使极化程度增加 ,但离子的密度随温度升高而减小,使极化程度降低,通
•
取向极化的机理可以应用于离子晶体介质中 ,带有正、负电荷的成对的晶格缺陷所组成的离 子晶体中“偶极子”,在外电场作用下也可发生 取向极化。
• 固有电矩的取向极化具有如下特点: • (1)极化是非弹性的; • (2)形成极化需要的时间较长,为10-10~10-2s,故 其与频率有较大关系,频率很高时,偶极子来不及转动,
因而其减小;
• (3)温度对极性介质的有很大影响,温度高时,分子热 运动剧烈,妨碍它们沿电场方向取向,使极化减弱,故极 性气体介质常具有负的温度系数,但对极性液体、固体的 在低温下先随温度的升高而增加,当热运动变得较强烈时 ,又随温度的上升而减小。
(4)击穿—指在强电场下可能导致电介质的破坏。
四个基本特性各有其基本理论。
电介质理论包括: (1)电极化响应理论 (2)电介质中电荷转移、电导和电击穿理论 (3)唯象理论:(用电介质的特征函数描述)从物理学
的角度论述与介电有关的各种效应,建立统一的唯象理论
—热力学唯象理论(建立各种宏观物理量之间的关系) (4)微观理论:主要介绍晶格振动和声子统计方面的知 识。 (5)铁电理论:在下一章中讲。
介电材料和绝缘材料是电子和电气工程中不 可缺少的功能材料,在工程应用中,常在需要将 电路中具有不同电位的导体彼此隔开的地方使用 ,就是利用介质的绝缘特性,也就是应用材料的 介电性能。这一类材料总称为电介质。 比较常见的介电材料是电容器介质材料、压 电材料等。绝缘材料和介电材料都是高电阻率材 料,但两者是有区别的,好的介电材料一定是好 的绝缘材料,但好的绝缘材料就不一定是好的介 电材料了。
材料物理材料介电性能
材料物理材料介电性能材料物理是研究物质的结构、性质和行为的学科领域。
材料的介电性能是指材料对电场的响应能力,包括介电常数、介电损耗、电容率等电学参数。
这些参数直接影响着材料在电子器件、能源存储和传输等领域的应用。
首先,介电常数是介电性能的重要参数之一、它描述了材料在电场作用下的极化能力。
介电常数大的材料意味着材料在电场作用下更容易极化,从而使得材料可以存储更多的电荷。
一些常见的高介电常数材料包括铁电体和铁电薄膜。
这些材料在电子器件中被广泛应用,例如电容器和存储器件。
其次,介电损耗是材料介电性能的另一个关键参数。
它描述了材料在电场作用下吸收能量的能力。
也就是说,当电场作用下,部分电能会被转化为热能而损耗掉。
介电损耗大的材料会导致电能的浪费,从而降低电子器件的效率。
因此,在设计和选择材料时,介电损耗的降低是一个重要的考虑因素。
最后,电容率是衡量材料存储能量的指标。
它与介电常数和材料的体积有关。
当介电常数和电容率高时,材料可以存储更多的电荷,从而提高电容器的性能。
这对于能源存储和传输领域尤为重要,例如电动车的电池和太阳能电池的电容器。
除了介电常数、介电损耗和电容率之外,还有其他一些介电性能的重要参数。
例如,介电强度是指材料可以承受的最大电场强度。
当电场强度超过介电强度时,材料会发生击穿现象。
因此,了解材料的介电强度可以帮助我们设计更可靠和安全的电子器件。
总之,材料的介电性能对于电子器件、能源存储和传输等领域的应用至关重要。
通过研究和了解材料的介电常数、介电损耗、电容率和介电强度等参数,我们可以优化材料的性能,提高电子器件的效率和可靠性。
对于未来的材料科学和工程领域的发展,介电性能的研究和探索仍然是一个重要的方向。
介电材料的性能与应用
介电材料的性能与应用介电材料是一类具有特殊电性能的材料,其在很多领域都有广泛的应用。
本文将从介电材料的基本性质入手,介绍介电材料的性能与应用。
介电材料是指能够存储和释放电荷的材料,其主要特点是具有较高的介电常数和较低的电导率。
介电常数可以理解为材料在电场作用下介电性能的指标,介电常数越高,材料的存储和释放电荷的能力越强。
同时,介电材料的电导率较低,表明它们对电流的传导能力较差。
根据介电常数的大小,介电材料可以分为高介电常数材料和低介电常数材料。
高介电常数材料常用于电容器、绝缘材料和介电体等领域。
它们能够存储大量的电荷,因此在电子设备中起着重要的作用。
举个例子,电子器件中的电容器就是利用了高介电常数材料的特性,能够存储和释放电荷,实现电子信号的存储和传输。
低介电常数材料则常用于微波通信、光通信等高频领域。
高频信号传输时,要求材料具有较低的介电常数和损耗,以减少对信号的衰减和失真。
此外,低介电常数材料还可以用于光纤通信中的光波导材料,实现光信号的传输。
除了介电常数,介电材料还有其他一些重要的性能。
饱和极化强度是指在极化过程中,材料能够承受的最大电场强度。
饱和极化强度较高的材料可以在较高的电场下仍保持稳定的极化性能,因此在高压电力设备和高频电子器件中有广泛应用。
介电损耗是介电材料的另一个关键性能,指的是材料在电场作用下能量的耗损。
高介电损耗会导致信号衰减和失真,因此在一些对信号稳定性要求较高的应用中需要选择具有较低介电损耗的材料。
介电材料在众多领域中应用广泛。
电力行业中,介电材料被用于电力传输线路的绝缘材料,提高电力传输效率。
电子行业中,介电材料被用于电容器、电子设备的绝缘材料和介电体,实现电荷的存储和传输。
除了电子和电力行业,介电材料还在通信、医疗、航天等领域中发挥重要作用。
在通信领域,介电材料应用于微波通信设备、光纤通信中的光波导材料,提高通信信号的传输效率和质量。
在医疗领域,介电材料被用于制造医疗设备中的传感器和介电体,监测和储存生物信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正压电效应与逆压电效应统称为压电效应。具有压电 效应的物体称为压电体。
a: 在X方向上的二个晶体面上接电极,测定电荷密度。
X方向上受正应力T1(N/m2)时,测得X方向电极面上产生的束缚电荷Q, 其表面电荷密度σ (C/m2)与作用力成正比。
D1=d11T1
其中T1为沿法线方向正应力,d11为压电应变常量,其下标第一个1代 表电学量,第二个1代表力学量。
在Y方向上受正应力T2时,X方向上测电荷密度:
D1=d12T2
在Z方向上受正应力T3时,测电流为0
D1=d13T3=0 因为T3不等于0,则d13=0。
切应力:T4(yz或zy应力平面的切应力), T5(xz或zx平面), T6(xy或yx平面) 在切应力作用下,X方向上测电荷密度:
D3=0
对于α –石英晶体,无论在哪个方向上施加应力,在z方向 的 电极面上无压电效应。
3.4.1 压电性
以上正压电效应可以写成一般代数1
m=1, 2, 3 m为电学量,j为力学量
采用矩阵方式可表示为:
压电应变常量是有方向的,而且具有张量性质。
另外一种表示方法为: Dm=emiSi
3. 材料表面状态及边缘电场:
(2)边缘电场: 电极边缘常常电场集中,发生电场极变,使边缘局部电场强度升
高,导致击穿电压的下降。 影响因素: a: 电极周围媒质 b: 电场的分布(电极的形状、相互位置) c: 材料的介电系数、电导率
3.4.1 压电性
1.压电性:
1)正压电效应 :晶体受到机械作用力时,在一定方向的 表面上会出现数量相等、符号相反的束缚电荷;作用力反 向时,表面荷电性质亦反号,而且在一定范围内电荷密度 与作用力成正比。这种由机械能转化为电能的过程,为正 压电效应。
不均匀介质最简单的情况是双层介质。设双层介质具有各不相
同的电性质,ε1,σ1,d1和 ε2,σ2,d2 分别代表第一层、第二层
的介电常数、电导率、厚度。
若在此系统上加直流电压U,则各层内的电场强度E1,E2,为:
3.3.2 影响无机材料击穿强度的各种因素
上式表明:电导率小的介质承受场强高,电导率大 的介质承受场强低。在交流电压下也有类似的关系。
a: 固体介质材料不同,表面放电电压也不同。陶瓷介质由于介 电常数大、表面吸湿等原因,引起空间电荷极化,使表面电场畸变, 降低表面击穿电压。
b: 固体介质与电极接触不好,则表面击穿电压降低。 c: 电场的频率不同,表面击穿电压也不同。频率升高,击穿电 压降低。
3.3.2 影响无机材料击穿强度的各种因素
3.3.1 介电强度
Emax=(V/d)max
通 常 , 凝 聚 态 绝 缘 体 的 击 穿 电 场 范 围 约 为 (1055×106)V.cm-1。
介电强度依赖于材料的厚度, 厚度减小,介电强度 增加。由测试区域中出现的临界裂纹的几率决定。
还与环境温度和气氛、电极形状、材料表面状态、电 场频率和波形、材料成分和孔隙、晶体各向异性,非晶态结 构等因素有关。
如果σ1和σ2 相差甚大,则必然其中一层的 电场强度将大于平均场强E,这一层可能首先达到击穿强
度而被击穿。一层击穿以后,增加了另一层的电压,且电 场因此大大畸变,结果另一层也随之击穿。由此可见,材 料的不均匀性可能引起击穿场强的降低。
陶瓷中的晶相和玻璃相的分布可看成多层介 质的申联和并联,上述的分析方法同样适用。
而 d15=d16=0 X方向总电位移:
D1=d14T4
D1=d11T1+d12T2+d14T4
3.4.1 压电性
x方向总电位移: D1=d11T1+d12T2+d14T4
同样,在晶体y方向的平面上被电极,测y方向的电位移D2:
D2=d25T5+d26T6
同样,在晶体z方向的平面上被电极,测z方向的电位移D3:
3.3.2 影响无机材料击穿强度的各种因素
2. 材料中气泡的作用:
材料中含有气泡时,气泡的ε及σ很小,因此加上 电压后气泡上的电场较高。而气泡本身的抗电强度比固体介
质 要 低 得 多 ( 一 般 空 气 的 Eb≈33kv/cm , 而 陶 瓷 的 Eb≈80kv/cm ),所以首先气泡击穿,引起气体放电(电离),
3.3.1 介电强度
例:设计一方案,满足3KV下存储10-4C的要求 ,设 电介质材料厚0.02mm的BaTiO3,求电介质的厚度 及面积。(注:BaTiO3的介电强度为120KV/cm)。
3.3.1 介电强度
一些电介质的介电强度 单位:106V/cm
Al2O3 (0.03mm) Al2O3 (0.6mm) Al2O3 (0.63cm) 云母 (0.002cm) 云母 (0.006cm)
加了击穿的可能性。 电击穿是一种集体现象。能量通过其它粒子(例如,已经
从电场中获得了足够能量的电子和离子)传送到被击穿的组 分中的原子或分子上。
3.3.2 影响无机材料击穿强度的各种因素
1.介质的不均匀性:
无机材料常常为不均匀介质,有晶相、玻璃相和气孔存在,这使无机材 料的击穿性质与均匀材料不同。
产生大量的热,容易引起整个介质击穿。由于在产生热量的 同时,形成相当高的内应力,材料也易丧失机械强度而被破 坏,这种击穿称为电—机械—热击穿。
3.3.2 影响无机材料击穿强度的各种因素
3. 材料表面状态及边缘电场: (1)固体介质的表面放电
固体介质的表面放电属于气体放电。固体介质常处于周围气体媒 质中,击穿时,常发现介质本身并未击穿,但有火花掠过它的表面, 这就是表面放电。
m=1, 2, 3 i=1, 2, 3, 4, 5, 6
Emi为压电应力常量,Si为应变
7.0 BaTiO3 (0.02cm,单晶) 0.04
1.5 BaTiO3 (0.02cm,多晶) 0.12
0.18
环氧树脂
160-200
10.1
聚苯乙烯
160
9.7
硅橡胶
220
3.3.1 介电强度
• 电击穿: 1. 电场强度高时会形成电流脉冲发生击穿,由此产生点坑,
孔洞和通道并连通。 2. 击穿发生于材料的表面,通过表面水分或污染杂质增