自回归移动平均模型

合集下载

时间序列中的ARMA模型

时间序列中的ARMA模型
件期望是相等的,若设为u,则得到 :
c u=
1 (1 2 ... p)
的无条
6
ARIMA模型的概念
Yt-u=1(Yt-1-u)+ 2(Yt-2-u)+...+p(Yt-p-u)+vt
0=1 1+ 2 2+...+p p+ 2 1=1 0+ 2 1+...+ p p-1
……
p=1 p-1+ 2 p-2+...+ p 0
1-1Z- 2Z2 -...- pZp 0
特征方程的根全部落在单位圆以外时, ARMA(p,q)是一个平稳过程。
9
ARIMA模型的概念
3.ARMA(p, q)过程的特征
1)E(Yt)=
c
1 (1 2 ... p)
2)ARMA(p, q)过程的方差和协方差
10
ARIMA模型的概念
四. AR、MA过程的相互转化
于滞后长度描图)。
14
ARMA模型的识别
2. 自相关函数和偏自相关函数的概念
①自相关函数
过程Yt的第j阶自相关系数即 j j 0 ,
自相关函数记为ACF(j) 。 ②偏自相关函数
偏自相关系数 *j度量了消除中间滞后项影响
后两滞后变量之间的相关关系。偏自相关函数 记为PACF(j)
15
ARMA模型的识别
结论一:平稳的AR(p)过程可以转化为一个MA(∞)过程, 可采用递归迭代法完成转化
结论二:特征方程根都落在单位圆外的 MA(q)过程具 有可逆性
平稳性和可逆性的概念在数学语言上是完全等价的, 所不同的是,前者是对AR过程而言的,而后者是对 MA过程而言的。

eviews实验指导ARIMA模型建模与预测

eviews实验指导ARIMA模型建模与预测

eviews实验指导ARIMA模型建模与预测在数据分析和时间序列预测的领域中,ARIMA 模型是一种非常强大且实用的工具。

通过eviews 软件来实现ARIMA 模型的建模与预测,可以帮助我们更高效地处理和分析数据,做出更准确的预测。

接下来,让我们逐步深入了解如何使用eviews 进行ARIMA 模型的建模与预测。

首先,我们要明白什么是 ARIMA 模型。

ARIMA 全称为自回归移动平均整合模型(Autoregressive Integrated Moving Average Model),它由三个部分组成:自回归(AR)部分、差分(I)部分和移动平均(MA)部分。

自回归(AR)部分是指当前值与过去若干个值之间存在线性关系。

例如,如果说一个时间序列在 AR(2)模型下,那么当前值就与前两个值有关。

移动平均(MA)部分则表示当前值受到过去若干个随机误差项的线性影响。

差分(I)部分用于将非平稳的时间序列转化为平稳序列。

平稳序列在统计特性上,如均值、方差等,不随时间变化而变化。

在 eviews 中进行 ARIMA 模型建模与预测,第一步是数据的导入和预处理。

打开 eviews 软件后,选择“File”菜单中的“Open”选项,找到我们要分析的数据文件。

数据的格式通常可以是 Excel、CSV 等常见格式。

导入数据后,需要对数据进行初步的观察和分析,了解其基本特征,比如均值、方差、趋势等。

接下来,判断数据的平稳性。

这是非常关键的一步,因为 ARIMA 模型要求数据是平稳的。

我们可以通过绘制时间序列图、计算自相关函数(ACF)和偏自相关函数(PACF)来直观地判断数据的平稳性。

如果时间序列图呈现明显的趋势或周期性,或者自相关函数和偏自相关函数衰减缓慢,那么很可能数据是非平稳的。

对于非平稳的数据,我们需要进行差分处理。

在 eviews 中,可以通过“Quick”菜单中的“Generate Series”选项来实现差分操作。

时间序列计量经济学模型概述

时间序列计量经济学模型概述

时间序列计量经济学模型概述时间序列计量经济学模型是在经济学研究中广泛使用的一种方法,用于分析经济变量随时间的变化。

该模型基于时间序列数据,即经济变量在一段时间内的观测值。

时间序列计量经济学模型的核心是建立经济变量之间的关系,以解释和预测经济现象的变化。

其中最常用的模型是自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)和季节性时间序列模型。

自回归移动平均模型(ARMA)是一个包含自回归项和移动平均项的线性模型。

该模型以过去的观测值和随机项为输入,预测当前观测值。

ARMA模型基于假设,即经济变量的行为受到历史观测值的影响。

自回归条件异方差模型(ARCH)是一种考虑了随时间变化方差的模型。

该模型通过引入一个条件异方差项,模拟经济变量中的波动性。

ARCH模型的应用范围广泛,特别是在金融市场波动性分析中。

季节性时间序列模型用于分析具有明显季节性特征的经济变量,如销售额、就业人数等。

这些模型通常基于季节、趋势和随机成分的组合,以预测未来观测值。

在建立时间序列计量经济学模型时,常常需要进行模型识别、参数估计和模型诊断等步骤。

识别模型的目标是确定适当的模型结构,参数估计则是利用历史数据估计模型的参数值。

模型诊断用于检验模型的拟合程度和误差分布是否符合模型假设。

时间序列计量经济学模型在经济研究中有广泛的应用,例如预测未来经济指标、分析经济周期和波动性、评估政策效果等。

它提供了一种量化的方法,使经济学家可以更好地理解和解释经济变量的演变。

时间序列计量经济学模型是经济学研究中一种重要的统计工具,广泛应用于宏观经济、金融市场和企业经营等领域。

它可以帮助我们理解和解释经济变量随时间的变化规律,进行预测和政策分析。

本文将进一步探讨时间序列计量经济学模型的相关概念和应用。

在构建时间序列计量经济学模型之前,首先需要了解时间序列数据的特点。

时间序列数据是按照时间顺序排列的一系列观测值,通常具有趋势性、季节性、周期性和随机性等特征。

arima预测模型公式

arima预测模型公式

arima预测模型公式ARIMA模型是一种用于时间序列预测的经典模型,它能够对未来的趋势进行准确的预测。

ARIMA模型的全称是AutoRegressive Integrated Moving Average,即自回归积分移动平均模型。

它包含了自回归(AR)、差分(Integrated)和移动平均(MA)三个部分,通过对时间序列数据的分析和建模,可以得到一个用于预测的数学公式。

ARIMA模型的预测公式可以表示为:Y(t) = c + ϕ(1)Y(t-1) + ϕ(2)Y(t-2) + ... + ϕ(p)Y(t-p) + θ(1)e(t-1) + θ(2)e(t-2) + ... + θ(q)e(t-q)其中,Y(t)表示时间序列在时刻t的值,c是一个常数,ϕ(1)、ϕ(2)、...、ϕ(p)是自回归系数,θ(1)、θ(2)、...、θ(q)是移动平均系数,e(t-1)、e(t-2)、...、e(t-q)是残差项。

在ARIMA模型中,自回归(AR)部分表示当前的值与过去若干个值之间的线性关系,通过自回归系数可以确定这种关系的强度和方向。

移动平均(MA)部分表示当前的值与过去的残差项之间的线性关系,通过移动平均系数可以确定这种关系的强度和方向。

差分(Integrated)部分表示对时间序列进行差分操作,用于消除非平稳性,使得模型更易于建立。

ARIMA模型的建立过程通常包括模型的选择、参数的估计和模型的检验三个步骤。

模型的选择可以通过观察时间序列的自相关图和偏自相关图来确定自回归阶数p和移动平均阶数q。

参数的估计可以使用最大似然估计或最小二乘法来进行。

模型的检验可以使用残差分析、Ljung-Box检验和模型预测误差的检验等方法来进行。

ARIMA模型在实际应用中具有广泛的用途。

例如,在经济领域,ARIMA模型可以用于预测股票价格、GDP增长率、通货膨胀率等指标;在气象领域,ARIMA模型可以用于预测气温、降雨量、风速等气象变量;在销售预测中,ARIMA模型可以用于预测产品的销售量和市场需求等。

arima数学建模

arima数学建模

arima数学建模
摘要:
1.ARIMA 模型介绍
2.ARIMA 模型的组成部分
3.ARIMA 模型的应用
4.ARIMA 模型的优缺点
正文:
ARIMA(AutoRegressive Integrated Moving Average)模型是一种用于时间序列预测的数学建模方法。

它是由自回归模型(AR)、差分整合(I)和移动平均模型(MA)组合而成的。

这种模型主要用于分析和预测具有线性趋势的时间序列数据,例如股票价格、降雨量和气温等。

ARIMA 模型的组成部分主要包括三个部分:自回归模型(AR)、差分整合(I)和移动平均模型(MA)。

自回归模型(AR)是一种通过自身过去的值来预测当前值的线性模型。

差分整合(I)是为了使时间序列数据平稳而进行的一种数学处理。

移动平均模型(MA)则是通过计算时间序列数据的平均值来预测未来值的模型。

ARIMA 模型在实际应用中具有广泛的应用。

例如,在金融领域,ARIMA 模型可以用于预测股票价格和汇率等;在气象领域,ARIMA 模型可以用于预测降雨量和气温等;在工业生产领域,ARIMA 模型可以用于预测产量和销售量等。

尽管ARIMA 模型在时间序列预测方面具有很好的效果,但它也存在一些
优缺点。

首先,ARIMA 模型的优点在于其理论基础扎实,模型结构简单,计算简便,预测精度较高。

然而,ARIMA 模型也存在一些缺点,例如需要选择合适的模型参数,对非线性时间序列数据的预测效果较差,不能很好地处理季节性和周期性等因素。

总的来说,ARIMA 模型是一种重要的数学建模方法,它在时间序列预测领域具有广泛的应用。

差分整合移动平均自回归模型

差分整合移动平均自回归模型

差分整合移动平均自回归模型差分整合移动平均自回归模型(ARIMA)是一种常见的时间序列预测方法,可以对时间序列数据进行建模和预测。

本文将介绍ARIMA 模型的基本原理、建模方法和实际应用。

一、ARIMA模型的基本原理ARIMA模型是由自回归模型(AR)、差分(I)和移动平均模型(MA)三个部分组成的。

自回归模型是指当前值与过去值之间存在相关关系,差分是指对时间序列进行差分操作,移动平均模型是指当前值与过去误差之间存在相关关系。

ARIMA模型的公式为:$$ARIMA(p,d,q):(AR(p)+I(d)+MA(q))$$其中,p表示自回归模型的阶数,d表示差分次数,q表示移动平均模型的阶数。

ARIMA模型的建立过程需要确定p、d、q的值。

二、ARIMA模型的建模方法ARIMA模型的建模方法包括模型识别、参数估计和模型检验三个步骤。

1. 模型识别模型识别是指确定ARIMA模型的阶数p、d、q的值。

通常可以通过自相关函数(ACF)和偏自相关函数(PACF)的图形来确定p、q的值,通过单位根检验来确定d的值。

2. 参数估计参数估计是指对ARIMA模型中的参数进行估计。

可以使用最大似然估计法(MLE)或最小二乘估计法(OLS)来估计ARIMA模型中的参数。

3. 模型检验模型检验是指对ARIMA模型的拟合效果进行检验。

可以通过残差分析、预测误差和模型拟合度等指标来评估ARIMA模型的拟合效果。

三、ARIMA模型的实际应用ARIMA模型在实际应用中广泛使用,可以用于股票价格预测、气象预测、销售预测等领域。

下面以股票价格预测为例,介绍ARIMA模型的实际应用。

1. 数据预处理首先需要对股票价格数据进行预处理,包括缺失值处理、异常值处理和数据平滑等操作。

可以使用Python等编程语言进行数据预处理。

2. 模型建立根据股票价格数据的特点,可以使用ARIMA模型进行预测。

首先需要确定ARIMA模型的阶数p、d、q的值,然后使用MLE或OLS方法对模型参数进行估计,最后对模型进行检验。

12自回归移动平均模型

12自回归移动平均模型

ARIMA模型自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA)目录[隐藏]∙ 1 什么是A RIMA模型?∙ 2 ARIMA模型的基本思想∙ 3 ARIMA模型预测的基本程序∙ 4 相关链接o 4.1 各国的box-jenkins模型名称∙ 5 ARlMA模型案例分析o 5.1 案例一:ARlMA模型在海关税收预测中的应用o 5.2 案例二:基于A RIMA模型的备件消耗预测方法[1]∙ 6 参考文献[编辑]什么是ARIMA模型?ARIMA模型全称为自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出的一著名时间序列预测方法,所以又称为box-jenkins模型、博克思-詹金斯法。

其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。

[编辑]ARIMA模型的基本思想ARIMA模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。

这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。

现代统计方法、计量经济模型在某种程度上已经能够帮助企业对未来进行预测。

[编辑]ARIMA模型预测的基本程序(一)根据时间序列的散点图、自相关函数和偏自相关函数图以ADF单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。

一般来讲,经济运行的时间序列都不是平稳序列。

(二)对非平稳序列进行平稳化处理。

如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。

时间序列分析中的自回归移动平均模型研究论文素材

时间序列分析中的自回归移动平均模型研究论文素材

时间序列分析中的自回归移动平均模型研究论文素材自回归移动平均模型(ARMA)是一种常用的时间序列分析方法,被广泛应用于经济、金融和社会科学等领域。

本文旨在探讨ARMA模型的研究素材,包括相关理论、应用案例和计算方法等方面的内容。

以下是对ARMA模型的研究素材的详细讨论。

一、ARMA模型的理论基础ARMA模型是自回归模型(AR)和移动平均模型(MA)的结合,它基于两个主要的假设:一是时间序列的值与过去的值相关,即自回归项;二是时间序列的值与随机误差项相关,即移动平均项。

ARMA 模型的数学表达式可表示为:\[Y_t = c + \varphi_1Y_{t-1} + \varphi_2Y_{t-2} + \ldots +\varphi_pY_{t-p} + \varepsilon_t - \theta_1\varepsilon_{t-1} -\theta_2\varepsilon_{t-2} - \ldots - \theta_q\varepsilon_{t-q}\]其中,\(Y_t\)表示时间序列的值,\(c\)表示截距,\(\varphi_i\)和\(\theta_i\)表示自回归系数和移动平均系数,\(\varepsilon_t\)表示白噪声误差项。

二、ARMA模型的应用案例ARMA模型在实际应用中具有广泛的用途。

以下是一些典型的ARMA模型应用案例:1. 股票价格预测ARMA模型可以用于预测股票价格的走势。

通过对历史股票价格数据进行ARMA模型的参数估计,可以预测未来一段时间内的股票价格变化趋势,为投资者提供决策参考。

2. 经济数据分析ARMA模型可以用于分析经济数据的周期性和趋势性。

通过对经济指标的ARMA建模,可以揭示经济变量之间的关系,为宏观经济政策的制定提供依据。

3. 疫情传播模型ARMA模型可以用于建立疫情传播模型,对疫情的发展趋势进行预测。

通过对病例数、传染率等数据进行ARMA建模,可以评估疫情的爆发和扩散情况,为疫情防控提供科学依据。

自回归移动平均模型

自回归移动平均模型

第二章 自回归移动平均模型一些金融时间序列的变动往往呈现出一定的平稳特征,由Box 和Jenkins 创立的ARMA 模型就是借助时间序列的随机性来描述平稳序列的相关性信息,并由此对时间序列的变化进行建模和预测。

第一节 ARMA 模型的基本原理ARMA 模型由三种基本的模型构成:自回归模型(AR ,Auto-regressive Model ),移动平均模型(MA ,Moving Average Model )以及自回归移动平均模型(ARMA ,Auto-regressive Moving Average Model )。

2.1.1 自回归模型的基本原理 1.AR 模型的基本形式AR 模型的一般形式如下:t p t p t t t y y y y εφφφ+++++=--- 2211c其中,c 为常数项, p φφφ 21, 模型的系数,t ε为白噪声序列。

我们称上述方程为p 阶自回归模型,记为AR(p )。

2.AR 模型的平稳性此处的平稳性是指宽平稳,即时间序列的均值,方差和自协方差均与时刻无关。

即若时间序列}{t y 是平稳的,即μ=)(t y E ,2)(σ=t y Var ,2),(s s t t y y Cov σ=-。

为了描述的方便,对式(2.1)的滞后项引入滞后算子。

若1-=t t x y ,定义算子“L ”,使得1-==t t t x Lx y ,L 称为滞后算子。

由此可知,k t t kx x L -=。

对于式子(2.1),可利用滞后算子改写为:t t p p t t t y L y L Ly y εφφφ+++++= 221c移项整理,可得:t t p p y L L L εφφφ+=----c )1(221AR(p )的平稳性条件为方程01221=----pp L L L φφφ 的解均位于单位圆外。

3.AR 模型的统计性质 (1)AR 模型的均值。

假设AR(p )模型是平稳的,对AR(p )模型两边取期望可得:)c (E )(Ε2211t p t p t t t y y y y εφφφ+++++=---根据平稳序列的定义知,μ=)(E t y ,由于随即干扰项为白噪声序列,所以0)(E =t ε,因此上式可化简为:021)1(φμφφφ=----p所以,pφφφφμ----=2101直接计算AR(p )模型的方差较困难,这里引入Green 函数。

时间序列分析模型

时间序列分析模型

时间序列分析模型时间序列分析是一种用来处理时间变化数据的统计分析方法。

它将观测数据按照时间顺序进行排列,并利用过去的数据来预测未来的发展趋势。

在时间序列分析中,通常会使用一些常见的模型,如自回归(AR)、移动平均(MA)和自回归移动平均(ARMA)模型。

自回归模型(AR)是时间序列分析中最基本的模型之一。

它假设未来的观测值可以通过当前和过去的观测值来预测。

AR 模型的数学表达式为:Y_t = c + ∑(φ_i * Y_t-i) + ε_t其中,Y_t表示第t个观测值,c表示常数,φ_i表示第i个滞后的自回归系数,ε_t表示误差项。

通过对AR模型进行参数估计,可以得到最优的系数估计值,从而进行未来观测值的预测。

移动平均模型(MA)是另一种常见的时间序列分析模型。

它假设未来的观测值可以通过当前和过去的误差项来预测。

MA 模型的数学表达式为:Y_t = μ + ∑(θ_i * ε_t-i) + ε_t其中,Y_t表示第t个观测值,μ表示均值,θ_i表示第i个滞后的移动平均系数,ε_t表示误差项。

通过对MA模型进行参数估计,可以得到最优的系数估计值,从而进行未来观测值的预测。

自回归移动平均模型(ARMA)是将AR模型和MA模型结合起来的一种复合模型。

它假设未来的观测值可以通过当前观测值、滞后观测值和误差项来预测。

ARMA模型的数学表达式为:Y_t = c + ∑(φ_i * Y_t-i) + ∑(θ_i * ε_t-i) + ε_t其中,Y_t表示第t个观测值,c表示常数,φ_i表示第i个滞后的自回归系数,θ_i表示第i个滞后的移动平均系数,ε_t表示误差项。

通过对ARMA模型进行参数估计,可以得到最优的系数估计值,从而进行未来观测值的预测。

总之,时间序列分析模型是一种通过利用过去数据来预测未来数据的统计分析方法。

其中,自回归模型、移动平均模型和自回归移动平均模型是一些常见的时间序列分析模型。

通过对这些模型进行参数估计,可以得到最优的预测结果。

计量学1-自回归移动平均模型分析

计量学1-自回归移动平均模型分析
这些模型分别记为MA(2)、MA(q)和MA(∞)。
9
引进滞后算子L( Lt t1, L2t t2 , ),移动
平均模型可分别表示为:
Yt
Yt t t1 (1 L)t (L)t
Yt t 1t1 2t2 (11L 2L2 )t 2 (L)t
q
Yt j t j (11L 2L2 q Lq )t q (L)t j0
型才是可逆的。
19
2、MA(q)模型
(1)平稳性
根据MA(q)的定义得到 :
E(Yt )
0
Var(Yt )
2
(1
12
2 q
)
k
Cov(Yt ,Ytk )
(
k
0
k 1 1 k 2 2
k q
q
qk
)
2
k 1, , q
20
(2)可逆性
MA(q)模型 Yt t 1t 1 2t 2 qt q
4、预测和控制 利用所得到的模型进行预测分析,包括静态预 测和动态预测,多步预测等,利用模型进行控 制。预测本身也是对模型的进一步检验。
7
二、自回归移动平均模型 (一)移动平均模型(moving average process,
MA) 移动平均过程就是一个白噪声过程不同时间随
机变量的加权和。 最简单的移动平均过程是当期和前一期白噪声
Yt Yt1 t
Yt 1Yt1 2Yt2 t
p
Yt 1Yt1 pYt p t iYti t i 1
Yt 1Yt1 t iYti t
i 1
11
引进滞后算子表示方法,上述AR模型则 可以分别表示为:
(1 L)Yt 1(L)Yt t (11L 2L2 )Yt 2 (L)Yt t (11L 2L2 p Lp )Yt p (L)Yt t (11L 2L2 )Yt (L)Yt t

自回归移动平均模型

自回归移动平均模型
1
1
1
2
1
1
2
n
{
2
}
7
m阶平稳过程
z z
强平稳的要求苛刻,因而引入较弱的条件 如果一个平稳过程 m 阶以下矩 ( 包括 m 阶矩 ) 的取 值与时间无关,称随机过程为m阶平稳过程。 随机过程为m阶平稳过程并不要求 x 和x 的概 率分布相同,仅要求这两个分布的主要特征相 同,只要求相等到m阶矩。
t1
t1 + k
z
8
二阶平稳(弱平稳、协方差平稳)
z z
z z z z z
只注重时间序列的一阶矩、二阶矩。 }1T T个均值为E(x1), E(x2),…, E(xT),T 假设一个时间序列 {xt,其 个方差为Var(x1), Var(x2),…, Var(xT),和T(T-1)/2个协方差为 Cov(xi, xj),i≠j。 如果 E ( x1 ) = ... = E ( xT ) = E ( xt ) = μ < ∞ Cov( xi , x j ) = σ ij < ∞
5
平稳性
z
z z
一个时间序列是随机变量按时间顺序排列的观测 值,在经济和金融的应用中,我们仅能得到的是 时间序列的一次实现,时间序列分析的目标就是 从观测到的一次实现来对过程进行推断,常用的 方法就是选择一个适当的模型来近似描述所研究 的过程。 选择一个适当的模型,就涉及到评价样本数据的 联合分布函数 F ( x1 , x 2 , " xT ) = Pr( X 1 ≤ x1 ,", X T ≤ xT ) 其中,T是样本容量,xi是实数。通常{xt}是一个 观测序列。为了能更好地为时间序列构模,需要 限制联合分布。进一步,为了预测,还要说明过 程分布的一些关键性质,即时间不变性。

自回归移动平均模型ARMA(p,q

自回归移动平均模型ARMA(p,q

Hale Waihona Puke 图10.4.1由图10.4.1可以看出p = 1和q = 1,即样本数据具有 ARMA(1,1)模型过程。
(二)模型的估计 模型的理论计算过程较繁杂,我们这里仍然直接利 用EViews软件计算:
在工作文件主窗口点击Quick/Estimate Equation , 在Equation Specification 对话框中填入 y ma(1) ar(1) 便得到模型ARMA(1,1)的估计结果,如图10.4.2所示:
图10.4.2
由图10.4.2可以知道模型为:
yˆ t =0.0134yt-1+ut+0.945ut-1
而这个计算是一个复杂的过程,为了实际应用的方 便我们采用直接利用计算机软件EViews来判断p和q 的数值各是多少,从而就确定了模型和模型的阶数。 在样本数据窗口,点击View/Correlogram 然后在对 话框中选择滞后期数,我们这里选取12,再点击 “OK”得到自相关系数和偏自相关系数及其图形, 如图10.4.1所示:
在实际应用中,用ARMA(p,q)拟合实际数据时所 需阶数较低,p和q的数值很少超过2。因此, ARMA模型在预测中具有很大的实用价值
二、ARMA模型阶数的确定和模型的估计 (一)ARMA模型阶数的确定 是建立AR模型、MA模型还是ARMA模型?这就 需要确定p和q的数值各是多少,为此需要计算 样本数据的自相关系数和偏自相关系数。
最简单的自回归移动平均模型是ARMA(1,1),其
yt 1 yt1 ut 1ut1
(10.4.1)
模型ARMA(p,q)
yt 1 yt1 2 yt2 p yt p ut 1ut1 2 ut2 q utq
(10.4.2)

时间序列分析与的基本模型

时间序列分析与的基本模型

时间序列分析与的基本模型时间序列分析是一种重要的统计学方法,用于预测和解释时间序列的行为。

它可以应用于各种领域,如经济学、金融学、气象学等。

本文将介绍时间序列分析的基本模型及其应用。

一、时间序列分析概述时间序列分析是指通过对时间序列数据进行建模和分析,来研究时间序列的特征、趋势和周期性等。

它可以帮助我们理解时间序列中的规律,并进行预测和决策。

二、基本模型1. 自回归模型(AR)自回归模型是一种线性模型,它假设当前观测值与过去的观测值之间存在关系。

自回归模型的一般形式为AR(p),其中p表示过去p个观测值对当前观测值的影响程度。

AR模型可以用公式表示为:```X(t) = c + Σ(φ(i) * X(t-i)) + ε(t)```其中,X(t)表示当前观测值,φ(i)表示对应滞后期的系数,ε(t)表示误差项。

2. 移动平均模型(MA)移动平均模型是一种线性模型,它假设当前观测值与过去观测值的误差之间存在关系。

移动平均模型的一般形式为MA(q),其中q表示过去q个观测误差对当前观测值的影响程度。

MA模型可以用公式表示为:```X(t) = μ + Σ(θ(i) * ε(t-i)) + ε(t)```其中,μ表示均值,θ(i)表示对应滞后期的系数,ε(t)表示误差项。

3. 自回归移动平均模型(ARMA)自回归移动平均模型是自回归模型和移动平均模型的结合。

ARMA模型的一般形式为ARMA(p,q),其中p表示自回归项数,q表示移动平均项数。

ARMA模型可以用公式表示为:```X(t) = c + Σ(φ(i) * X(t-i)) + Σ(θ(i) * ε(t-i)) + ε(t)```4. 自回归积分移动平均模型(ARIMA)自回归积分移动平均模型是自回归模型、差分和移动平均模型的结合。

ARIMA模型的一般形式为ARIMA(p,d,q),其中p表示自回归项数,d表示差分次数,q表示移动平均项数。

ARIMA模型可以用公式表示为:```(1-B)^d * X(t) = c + Σ(φ(i) * X(t-i)) + Σ(θ(i) * ε(t-i)) + ε(t)```其中,B是滞后算子。

arima模型

arima模型

ARIMA模型(英语:自回归综合移动平均模型),差分综合移动平均自回归模型,也称为综合移动平均自回归模型(移动也可以称为滑动),是时间序列预测分析方法之一。

在ARIMA(p,d,q)中,AR是“自回归”,p是自回归项的数量;MA是“移动平均数”,q是移动平均项的数量,d是使其成为固定序列的差(顺序)的数量。

尽管ARIMA 的英文名称中没有出现“difference”一词,但这是关键的一步。

非平稳时间序列在消除其局部水平或趋势后显示出一定的同质性,也就是说,该序列的某些部分与其他部分非常相似。

经过微分处理后,可以将该非平稳时间序列转换为平稳时间序列,称为均质非平稳时间序列,其中差值的数量为齐次。

因此,可以得出结论如果存在一个D阶非平稳时间序列,那么如果存在一个平稳时间序列,则可以称为ARMA(p,q)模型,其中,它们是自回归系数多项式和移动平均系数多项式。

零均值白噪声序列。

该模型可以称为自回归求和移动平均模型,表示为ARIMA(p,d,q)。

当差分阶数D为0时,ARIMA模型等效于ARMA模型,即两个模型之间的差分为差分阶数D是否等于零,即序列是否平稳。

ARIMA模型对应于非平稳时间序列,而ARMA模型对应于平稳时间序列。

时间序列的预处理包括两个测试:平稳性测试和白噪声测试。

ARMA 模型可以分析和预测的时间序列必须满足平稳非白噪声序列的条件。

检查数据的平稳性是时间序列分析中的重要步骤,通常通过时间序列和相关图进行检查。

时序图的特点是直观,简单,但误差较大。

自相关图,即自相关和部分自相关函数图,相对复杂,但结果更准确。

本文使用时序图直观地判断,然后使用相关图进行进一步测试。

如果非平稳时间序列有增加或减少的趋势,则需要进行差分处理,然后进行平稳性测试,直到稳定为止。

其中,差异的数量为ARIMA(p,d,q)的顺序。

从理论上讲,差异的数量越多,时间序列信息的非平稳确定性信息的提取就越充分。

从理论上讲,差异数量越多越好。

ARIMA模型-自回归移动平均模型

ARIMA模型-自回归移动平均模型
一、ARlMA模型原理
ARIMA模型全称为自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA)。是由博克思(Box)fFfl詹金斯 (Jenkins)于70年代初提出的一著名时问序列预测方法,所以又称为box-jenkins模型、博克思一詹金斯法。其中ARIMA(p,d.q)称为差分自回 归移动平均模型,AR是自回归,P为自回归项;MA为移动平均,q为移 动平均项数,d为时间序列成为平稳时所做的差分次数。ARIMA模型可 分为3种:(1)自回归模型(简称AR模型);(2)滑动平均模型(简称MA模 型);(3)自回归滑动平均混合模型(简称ARIMA模型)。
主要税源商品的不稳定,为关区税收工作增加了难度。
(二)本地企业异地纳税仍保持较大规模
据统计,2007年江门关区企业在异地进口异地报关应税货值85.2亿 元人民币,比2006年增长13.6%,应征税收为9.2亿元,较2006年增长 7.4%.占江门区同期应征税收总额的四成多。
从口岸分布来看,大部分本地企业异地纳税进口行为分布在广州口 岸。在广州口岸纳税4.7亿元,下降占异地纳税总值的51.1%。另外。 在黄埔口岸纳税1.7亿元,下降4.8%;在拱北口岸纳税1.3亿元,增加3 倍从商品来看,异地纳税进口的商品主要是废塑料、废五金、木浆、冰 乙酸、正丁醇、脂肪醇、冻猪杂碎、IEl挖掘机、初级形状聚乙烯等商 品,税款均超过千万元,部分商品曾经在本关区口岸大量进口。废塑料 进口3亿元,下降10.9%;废五金进口1.2亿元,增长87.6%;木浆进口 7783万元,增长17.2%;冰乙酸进口6593万元,下降19.4%;正丁醇 进口3498万元,增长3.5倍;脂肪醇进口3366万元。32.3%;冻猪杂碎 进口3313万元,增长2.3倍;旧挖掘机进口3101万元,下降1.7%;初 级形状聚乙烯进口2539万元,下降54%。其中正丁醇、冻猪杂碎和废 五金进口增长迅猛。

varma向量自回归移动平均模型python实现

varma向量自回归移动平均模型python实现

Varma向量自回归移动平均模型是一种经济学和金融学领域常用的时间序列分析模型。

它可以用来预测和解释时间序列数据的变化趋势,对于金融市场的波动和趋势分析具有重要意义。

本文将介绍如何使用Python实现Varma模型,并对其原理和应用进行讨论。

一、Varma向量自回归移动平均模型的概念和原理Varma模型是由向量自回归模型(Var)和向量移动平均模型(Ma)组合而成的。

向量自回归模型是一种多变量时间序列模型,它假设当前时刻的多个变量值与过去若干时刻的所有变量值相关。

向量移动平均模型则是一种多变量时间序列模型,它假设当前时刻的多个变量值与过去若干时刻的随机误差相关。

Varma模型可以用数学公式表示为:Yt = C + Φ1Yt-1 + Φ2Yt-2 + ... + ΦpYt-p + Θ1et-1 + Θ2et-2 + ... + Θqet-q + et其中,Yt是一个k维向量,表示当前时刻的k个变量值;C是一个k 维向量,表示常数项;Φ1, Φ2, ..., Φp是k×k维矩阵,表示自回归项的系数;Θ1, Θ2, ..., Θq是k×k维矩阵,表示移动平均项的系数;et 是一个k维向量,表示当前时刻的随机误差。

二、Python实现Varma模型的步骤1. 数据准备我们需要准备时间序列数据,包括多个变量的观测值。

可以使用Pandas库读取和处理数据,将其转换为DataFrame类型。

2. 模型拟合接下来,我们使用statsmodels库中的VARMAX类拟合Varma模型。

首先要指定自回归阶数p和移动平均阶数q,并且调用fit方法拟合模型。

还需要考虑是否包含常数项C和是否使用最大似然估计方法进行参数估计。

3. 模型诊断拟合完成后,需要对模型进行诊断,检验模型的拟合效果和假设检验的显著性。

可以使用statsmodels库中的diagnostic检验函数进行自相关性、异方差性等方面的检验。

趋势追踪的几大模型

趋势追踪的几大模型

趋势追踪的几大模型
1. 线性回归模型:该模型基于线性关系进行预测,通过拟合数据的线性函数来预测未来的趋势。

它是最简单和常见的趋势追踪模型之一。

2. 移动平均模型:该模型使用过去一段时间内的平均值来预测未来的趋势。

常见的移动平均模型包括简单移动平均(SMA)和指数加权移动平均(EMA)等。

3. 自回归移动平均模型(ARIMA):ARIMA模型结合了自回归、移动平均和差分技术,用于分析和预测时间序列数据。

它可以捕捉到数据的长期和短期趋势。

4. 随机游走模型:随机游走模型假设未来的趋势与当前时刻的值无关,即未来的值完全随机。

这种模型通常用于预测不存在趋势的随机数据。

5. 非线性回归模型:非线性回归模型可以捕捉到不符合线性关系的数据趋势。

常见的非线性回归模型包括多项式回归、指数回归和对数回归等。

这些模型可以根据实际需求和数据特征选择使用,也可以组合多个模型进行集成预测,以提高趋势追踪的准确性和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 时间序列计量经济学模型的 理论与方法
第一节 随机时间序列的特征 第二节 随机时间序列分析模型 第三节 协整分析与误差修正模型 第四节 向量自回归模型
§4.1 随机时间序列的特征
一、随机时间序列模型简介 二、趋势平稳与差分平稳 三、时间序列平稳性的检验
一、随机时间序列模型简介
一个标有时间脚标的随机变量序列被称为时间序 列(time series)。
……
Xt = X0 + 1 + 2 +… + t
•var(Xt ) = t2, Xt的方差与时间 t 有关,而非常数,
因此随机游走是非平稳序列。
4. 齐次非平稳过程
对随机游走序列Xt取一阶差分(first difference):
X t X t X t1 t
由于 t 是一个白噪声,则序列{ΔXt }是平稳的。
由定义知:白噪声序列是平稳的。
另一个简单的随机时间列序被称为随机游走 (random walk),该序列由如下随机过程生成:
Xt = Xt-1 + t 这里,t 是一个白噪声, t ~ N(0,2)。
该序列 同均值,但方差不同:
•E(Xt ) = E(Xt -1)
X1 = X0 + 1 X2 = X1 + 2 = X0 + 1 + 2
就是平稳的。 如果Yt 是二阶齐次非平稳过程,则序列:
Wt = Yt − Yt-1= 2Yt 就是平稳的。
5. 单整与非单整
• 如果一个时间序列经过一次差分变成平稳序 列,也称原序列是1阶单整(integrated of 1)序列, 记为I(1)过程。如果经过d 次差分后变成平稳序 列, 则称原序列是d 阶单整(integrated of d), 记为 I(d)。
前提假设:时间序列是由某个随机过程 (Stochastic process) 生成的。即,假定序列 X1,X2,…,XT 的每一个数值都是从一个概率分布中 随机得到。当收集到一个时间序列数据集时,就 得到该随机过程的一个可能结果或实现 (realization)。
1. 时间序列的平稳性
假定某个时间序列是由某一随机过程生成,即 假定时间序列Xt的每一个数值都是从一个概率分 布中随机得到,如果时间序列Xt 满足:
二、趋势平稳与差分平稳随机过程
1. 确定性时间趋势
描述非平稳经济时间序列一般有两种方法,一 种方法是包含一个确定性时间趋势:
Yt a t ut
(*)
其中 ut 是平稳序列;a + t 是线性趋势函数。
这种过程也称为趋势平稳的,因ห้องสมุดไป่ตู้如果从式(*)
中减去 a + t,结果是一个平稳过程。
一般时间序列可能存在一个非线性函数形式的 确定性时间趋势,例如可能存在多项式趋势:
只能计算样本自相关函数(Sample autocorrelation
function):
T k
(Yt Y )(Ytk Y )
ˆk t 1 T
(Yt Y )2
k k
t 1
• 为了检验自相关函数的某个数值 ρk 是否为0, 可以用Bartlett的研究结果:如果时间序列由白
噪声生成,则对所有k > 0, k ~ N(0, 1/T )
• 为了检验所有k > 0的自相关函数 ρk 都为0的联 合假设,可以采用Box-Pierce的Q 统计量:
K
Q T (T 2)
ˆ k2
k 1 T k
• Q 统计量近似地服从自由度为k 的 2分布。如
果计算出Q 值大于显著性水平 α下的临界值,就
有1-α的把握拒绝所有k (k > 0)同时为0的原假设。
对照极限法则和时间序列的平稳性条件研究发现, 如果模型设定正确,并且所有时间序列是平稳的, 时间序列的平稳性可以替代随机抽样假定,模型随 机误差项仍然满足极限法则。
3. 白噪声和随机游走
一个最简单的随机时间序列是一具有零均值同 方差的独立同分布序列:
Xt = t , t ~ N(0,2)
该序列常被称为是一个白噪声(white noise)。
1)均值E(Xt )= 是与时间t 无关的常数; 2)方差Var(Xt )=2是与时间t 无关的常数; 3)协方差Cov(Xt , Xt +k)=k 是只与时期间隔k 有
关,与时间t 无关的常数;
则称该随机时间序列是平稳的(stationary),而 该随机过程是一平稳随机过程(stationary stochastic process)。
• I(0)代表平稳时间序列。
• 多次差分无法变为平稳的时间序列称为非单 整的(non-integrated)。
6. 自相关函数、Q统计量
随机时间序列Yt 的自相关函数(autocorrelation function, ACF):
k=k / 0
自相关函数是关于滞后期k的递减函数。
对一个随机过程只有一个实现(样本), 因此,
2. 平稳性与经典回归
经典计量模型的数学基础是极限法则,以独立随机 抽样为样本,如果模型设定正确,模型随机误差项 满足极限法则和由极限法则导出的基本假设,继而 进行的参数估计和统计推断是可靠的。
以时间序列数据为样本,破坏了随机抽样的假定, 则经典计量模型的数学基础能否被满足成为一个重 要问题。
非平稳序列中有一类序列可以通过差分运算, 得到具有平稳性的序列,考虑下式
yt a yt1 ut
(*)
也可写成: yt (1 L) yt a ut
(**)
其中 a 是常数, ut 是一个白噪声序列。式(*)的差分 序列是含漂移 a 的随机游走,说明 yt 的差分序列 yt是平稳序列。 (**)式中L表示滞后算子。
这提示我们如果一个时间序列是非平稳的,常 常可以通过取差分的方法形成平稳序列。
如果一个时间序列是非平稳的,经过一次或多 次差分后成为平稳序列,产生这样的非平稳序列 的随机过程称为齐次随机过程。原序列转化为平 稳序列所需的差分次数称为齐次的阶数。
如果Yt 是一阶齐次非平稳过程,则序列: Wt =Yt −Yt-1= Yt
Yt a 1 t 2 t2 L n tn ut (**)
t = 1, 2, , T 同样可以除去这种确定性趋势,然后分析和预 测去势后的时间序列。对于中长期预测而言,能 准确地给出确定性时间趋势的形式很重要。如果 Yt 能够通过去势方法排除确定性趋势,转化为平 稳序列,称为退势平稳过程。
2. 差分平稳过程
相关文档
最新文档