八年级上数学练习卷(1)
苏科版 八年级数学上册1.1-2.4综合训练卷(1)
苏科版2020-2021八年级数学上册1.1-2.4综合训练卷(1)一、选择题1、如图,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的图形是( )A .甲B .乙C .丙D .乙与丙2、如图,已知AB=AD ,添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90°3、如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF .给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AC =3BF .其中正确的结论为( )A .①②③B .①②④C .②③④D .①②③④4、剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A .B .C .D .5、新冠疫情发生以来,各地根据教育部“停课不停教,停课不停学”的相关通知精神,积极开展线上教学.下列在线学习平台的图标中,是轴对称图形的是( )A .B .C .D .6、如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A. 7B.14C. 17D. 207、如图,在中,边AB 、AC 的垂直平分线分别交BC 于E 、若,则周长为 A. 12B. 10C. 13D. 无法确定8、△ABC 中,∠BAC >∠B ,∠C =50°,将∠B 折叠,使得点B 与点A 重合,折痕PD 分别交AB 、BC于点D 、P ,当△APC 中有两个角相等时,∠B 的度数为( )A .40°或25°B .25°或32.5°C .40°或25°或32.5°D .65°或80°或50°9、如图,在△ABC 中,分别以点A ,B 为圆心,大于21AB 长为半径画弧,两弧相交于点E ,F ,连接AE ,BE ,作直线EF 交AB 于点M ,连接CM ,则下列判断不正确的是( )A .AB =2CM B .EF ⊥ABC .AE =BED .AM =BM10、如图,在△ABC 中,∠ACB =90°,D 是AB 上的点,过点D 作DE ⊥AB 交BC 于点F ,交AC 的延长线于点E ,连接CD ,∠DCA =∠DAC ,则下列结论正确的有( )①∠DCB =∠B ;②CD =AB ;③△ADC 是等边三角形;④若∠E =30°,则DE =EF +CF .A .①②③B .①②④C .②③④D .①②③④ 二、填空题 11、如图所示,ΔABC ≌ΔADE ,且,,则______. 12、如图,点A 、B 、C 都在方格纸的格点上,请你再找一个格点D ,使点A 、B 、C 、D 组成一个轴对称图形.这样的点D 最多能找到 个.13、如图,在3×3的正方形网格中,∠1+∠2=度.14、如图,∠DAB=∠EAC=65°,AB=AD,AC=AE,BE和CD相交于点O,AB和CD相交于P,AC和BE相交于F,则∠DOE的度数是.15、如图,直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC⊥BD;③AO= OC;④AB⊥BC.其中正确的结论有.16、如图,△ABC中,BD平分∠ABC,交AC于D,DE⊥AB于点E,△ABC的面积是42cm2,AB=10cm,BC=14cm,则DE=cm.17、如图,在△ABC中,AB=AC=4,∠B=∠C=15°.则△ABC的面积为.18、如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于°.19、如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于()A. 10B. 9C. 8D. 620、已知:如图,BD 为ABC ∆的角平分线,且BD BC =,E 为BD 延长线上的一点,BE BA =,过E 作EF AB ⊥,F 为垂足,下列结论:①ABD EBC ∆≅∆;②180BCE BCD ∠+∠=︒;③AD EF EC ==;④2BA BC BF +=,其中正确的结论有 (填序号).三、解答题21、如图,点E 、F 分别为线段AC 上的两个点,且DE ⊥AC 于点E ,BF ⊥AC 于点F ,若AB =CD ,AE =CF ,BD 交AC 于点M .求证:(1)AB ∥CD ;(2)点M 是线段EF 的中点.22、如图,△ADC 中,DB 是高,点E 是DB 上一点,AB =DB ,EB =CB ,M ,N 分别是AE ,CD 上的点,且AM =DN .(1)求证:△ABE ≌△DBC .(2)探索BM 和BN 的关系,并证明你的结论.23、已知:如图,BP 、CP 分别是△ABC 的外角平分线,PM ⊥AB 于点M ,PN ⊥AC 于点N .求证:PA 平分∠MAN .24、如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为xcm/s,其他条件不变,当点P、Q运动到某处时,有△ACP与△BPQ全等,求出相应的x、t的值.25、如图:在△ABC中,∠C=90° , AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.苏科版2020-2021八年级数学上册1.1-2.4综合训练卷(1)(答案)一、选择题1、如图,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的图形是( D )A .甲B .乙C .丙D .乙与丙2、如图,已知AB=AD ,添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( C )A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90°3、如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF .给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AC =3BF .其中正确的结论为( D )A .①②③B .①②④C .②③④D .①②③④4、剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A .B .C .D .解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A .5、新冠疫情发生以来,各地根据教育部“停课不停教,停课不停学”的相关通知精神,积极开展线上教学.下列在线学习平台的图标中,是轴对称图形的是( A )A .B .C .D .6、如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( C )B. 7 B.14C. 17D. 207、如图,在中,边AB、AC的垂直平分线分别交BC于E、若,则周长为 BA. 12B. 10C. 13D. 无法确定8、△ABC中,∠BAC>∠B,∠C=50°,将∠B折叠,使得点B与点A重合,折痕PD分别交AB、BC于点D、P,当△APC中有两个角相等时,∠B的度数为()A.40°或25°B.25°或32.5°C.40°或25°或32.5°D.65°或80°或50°解:当∠APC=∠C=50°时,∵∠B=∠P AB,∠APC=∠B+∠P AB=50°,∴∠B=25°,当∠P AC=∠C=50°时,∠APC=180°﹣50°﹣50°=80°,∴∠B=∠APC=40°,当∠CAP=∠CP A=(180°﹣50°)=65°时,∠B=∠CP A=32.5°,故选:C.9、如图,在△ABC中,分别以点A,B为圆心,大于长为半径画弧,两弧相交于点E,F,连接AE,BE,作直线EF交AB于点M,连接CM,则下列判断不正确的是()A.AB=2CM B.EF⊥AB C.AE=BE D.AM=BM【分析】根据基本作图得到EF是线段AB的垂直平分线,根据线段垂直平分线的概念和性质判断即可.【解析】由作图可知,EF是线段AB的垂直平分线,∴EF⊥AB,AE=BE,AM=BM,则B、C、D说法正确,不符合题意,AB与2CM的故选不确定,A错误,符合题意,故选:A.10、如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=BD∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.二、填空题11、如图所示,ΔABC≌ΔADE,且,,则______.12、如图,点A、B、C都在方格纸的格点上,请你再找一个格点D,使点A、B、C、D组成一个轴对称图形.这样的点D最多能找到个.【解答】解:如图所示:符合题意有2个点.故答案为:2.13、如图,在3×3的正方形网格中,∠1+∠2=度.解:如右图所示,∵AB=BE,BC=BD,∠ABC=∠EBD=90°,∴△ABC≌△EBD(SAS),∴∠ACB=∠1,∵∠ACB+∠2=90°,∴∠1+∠2=90°,故答案为:90.14、如图,∠DAB=∠EAC=65°,AB=AD,AC=AE,BE和CD相交于点O,AB和CD相交于P,AC和BE相交于F,则∠DOE的度数是115°.【分析】首先得出∠DAC=∠EAB,进而利用ASA得出△ADC≌△AEB,进而得出∠E=∠ACD,再利用三角形内角和定理得出∠EAF=∠COF=65°,即可得出答案.【解析】∵∠DAB=∠EAC=65°,∴∠DAB+∠BAC=∠BAC+∠EAC,∴∠DAC=∠EAB,在△ADC和△AEB中,,∴△ADC≌△AEB(SAS),∴∠E=∠ACD,又∵∠AFE=∠OFC,∴∠EAF=∠COF=65°,∴∠DOE=180°﹣∠COF=115°.故答案为:115°.15、如图,直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC⊥BD;③AO= OC;④AB⊥BC.其中正确的结论有①②③.16、如图,△ABC中,BD平分∠ABC,交AC于D,DE⊥AB于点E,△ABC的面积是42cm2,AB=10cm,BC=14cm,则DE=cm.【分析】作DF⊥BC于F,如图,根据角平分线的性质得到DE=DF,再利用三角形面积公式得到10×DE14×DF=42,则5DE+7DE=42,从而可求出DE的长.【解析】作DF⊥BC于F,如图,∵BD平分∠ABC,DE⊥AB,DE⊥AB,∴DE=DF,∵S△ADB+S△BCD=S△ABC,∴10×DE14×DF=42,∴5DE+7DE=42,∴DE(cm).故答案为.17、如图,在△ABC 中,AB =AC =4,∠B =∠C =15°.则△ABC 的面积为 .解:过C 作CD ⊥AB 交BA 的延长线于D ,∵∠B =∠ACB =15°,∴∠CAD =∠B +∠ACB =15°+15°=30°,∵AC =4cm ,CD 是AB 边上的高,∴CD =AC =×4=2,∴S △ABC =×4×2=4,故答案为:4.18、如图,在△ABC 中,∠ABC =90°,∠C =20°,DE 是边AC 的垂直平分线,连结AE ,则∠BAE 等于 50 °.【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质求出CE =AE ,求出∠EAC =∠C=20°,即可得出答案.【解析】∵在△ABC 中,∠ABC =90°,∠C =20°,∴∠BAC =180°﹣∠B ﹣∠C =70°,∵DE 是边AC 的垂直平分线,∠C =20°,∴CE =AE ,∴∠EAC =∠C =20°,∴∠BAE =∠BAC ﹣∠EAC =70°﹣20°=50°,故答案为:50.19、如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC=6,DE=3, 则△BCE 的面积等于( B )A. 10B. 9C. 8D. 620、已知:如图,BD 为ABC ∆的角平分线,且BD BC =,E 为BD 延长线上的一点,BE BA =,过E 作EF AB ⊥,F 为垂足,下列结论:①ABD EBC ∆≅∆;②180BCE BCD ∠+∠=︒;③AD EF EC ==;④2BA BC BF +=,其中正确的结论有 ①②④ (填序号).【解答】解:①BD 为ABC ∆的角平分线,ABD CBD ∴∠=∠,在ABD ∆和EBC ∆中,BD BC ABD CBD BE BA =⎧⎪∠=∠⎨⎪=⎩,()ABD EBC SAS ∴∆≅∆,∴①正确;②BD 为ABC ∆的角平分线,BD BC =,BE BA =,BCD BDC BAE BEA ∴∠=∠=∠=∠,ABD EBC ∆≅∆,BCE BDA ∴∠=∠,180BCE BCD BDA BDC ∴∠+∠=∠+∠=︒,∴②正确;③BCE BDA ∠=∠,BCE BCD DCE ∠=∠+∠,BDA DAE BEA ∠=∠+∠,BCD BEA ∠=∠,DCE DAE ∴∠=∠,ACE ∴∆为等腰三角形,AE EC ∴=,ABD EBC ∆≅∆,AD EC ∴=,AD AE EC ∴==, BD 为ABC ∆的角平分线,EF AB ⊥,而EC 不垂直与BC ,EF EC ∴≠,∴③错误;④过E 作EG BC ⊥于G 点,E 是BD 上的点,EF EG ∴=,在RT BEG ∆和RT BEF ∆中,BE BE EF EG =⎧⎨=⎩,()RT BEG RT BEF HL ∴∆≅∆,BG BF ∴=, 在RT CEG ∆和RT AFE ∆中,EF FG AE CE =⎧⎨=⎩,()RT CEG RT AEF HL ∴∆≅∆,AF CG ∴=, 2BA BC BF FA BG CG BF BG BF ∴+=++-=+=,∴④正确.故答案为:①②④.三、解答题21、如图,点E 、F 分别为线段AC 上的两个点,且DE ⊥AC 于点E ,BF ⊥AC 于点F ,若AB =CD ,AE =CF ,BD 交AC 于点M .求证:(1)AB ∥CD ;(2)点M 是线段EF 的中点.【解答】证明:(1)∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .在Rt △ABF 和Rt △CDE 中,,∴Rt △ABF ≌Rt △CDE (HL ),∴∠BAF =∠DCE ,∴AB ∥CD ;(2)∵Rt △ABF ≌Rt △CDE ,∴DE =BF ,在△DEM和△BFM中,,∴△DEM≌△BFM(AAS),∴MB=MD.即点M是线段EF的中点.22、如图,△ADC中,DB是高,点E是DB上一点,AB=DB,EB=CB,M,N分别是AE,CD上的点,且AM=DN.(1)求证:△ABE≌△DBC.(2)探索BM和BN的关系,并证明你的结论.(1)证明:∵DB是高,∴∠ABE=∠DBC=90°.在△ABE和△DBC中,,∴△ABE≌△DBC.(2)解:BM=BN,MB⊥BN.证明如下:∵△ABE≌△DBC,∴∠BAM=∠BDN.在△ABM和△DBN中,∴△ABM≌△DBN(SAS).∴BM=BN,∠ABM=∠DBN.∴∠DBN+∠DBM=∠ABM+∠DBM=∠ABD=90°.∴MB⊥BN.23、已知:如图,BP、CP分别是△ABC的外角平分线,PM⊥AB于点M,PN⊥AC于点N.求证:PA平分∠MAN.【分析】作PD⊥BC于点D,根据角平分线的性质得到PM=PD,PN=PD,得到PM=PN,根据角平分线的判定定理证明即可.【解答】证明:作PD⊥BC于点D,∵BP是△ABC的外角平分线,PM⊥AB,PD⊥BC,∴PM=PD,同理,PN=PD,∴PM=PN,又PM⊥AB,PN⊥AC,∴PA平分∠MAN.24、如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为xcm/s,其他条件不变,当点P、Q运动到某处时,有△ACP与△BPQ全等,求出相应的x、t的值.【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【解析】(1)△ACP≌△BPQ,∵AC⊥AB,BD⊥AB∴∠A=∠B=90°∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,,∴△ACP≌△BPQ;∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)存在x的值,使得△ACP与△BPQ全等,①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t,解得:x,t.25、如图:在△ABC中,∠C=90° , AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.。
苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)
第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。
八年级数学上阶段测试卷一
一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -3.14B. 0C. -2D. 22. 下列图形中,是轴对称图形的是()A. 矩形B. 三角形C. 圆D. 平行四边形3. 下列各式中,正确的是()A. 3a + 2b = 5a - 2bB. 3a - 2b = 5a + 2bC. 3a + 2b = 5a + 2bD. 3a - 2b = 5a - 2b4. 已知一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 14cmB. 16cmC. 18cmD. 20cm5. 下列各数中,是2的倍数的是()A. 0.4B. 1.6C. 2.5D. 3.26. 下列各式中,正确的是()A. a^2 = b^2B. a^2 = -b^2C. a^2 = b^2 ± 2abD. a^2 = b^2 + 2ab7. 已知一个长方体的长、宽、高分别为2cm、3cm、4cm,那么这个长方体的体积是()A. 24cm^3B. 26cm^3C. 28cm^3D. 30cm^38. 下列各式中,正确的是()A. a^3 = a^2 aB. a^3 = a a aC. a^3 = a a + aD. a^3 = a a - a9. 已知一个梯形的上底为2cm,下底为4cm,高为3cm,那么这个梯形的面积是()A. 6cm^2B. 8cm^2C. 10cm^2D. 12cm^210. 下列各数中,有理数是()A. √4B. √9C. √16D. √25二、填空题(每题3分,共30分)11. 3的倒数是__________,2的平方是__________。
12. 如果a=2,那么a+1的值是__________。
13. 已知一个圆的半径为5cm,那么这个圆的直径是__________cm。
14. 一个长方形的长是8cm,宽是6cm,那么这个长方形的周长是__________cm。
人教版八年级上数学第一次月考测试卷1
D. 80°
17. 如图,在△ ABC 中,∠ACB= 100°,AC=AE,BC=BD ,则∠ DCE 的度数为( )
A .20° B.25° C.30°
D. 40°
C
18、 如图, △ ABC 中, AB AC , A 30 , DE 垂直平
分 AC ,则 BCD 的度数为(
)
A
D
EB
A
A. 80
BAE=60°,则∠CAD 等于( )
A .70°
B. 60°
C.50°
D.110°
15、等腰三角形有两条边长为 4cm 和 9cm,则该三角形的周长是( )
A .17cm
B.22cm
C.17cm 或 22cm D. 18cm
16、等腰三角形的一个外角是 80°,则其底角是( )
A . 100°
B. 100°或 40° C. 40°
B. 75
C. 65
D. 45
E D
B
C
三、解答题。
19、如图,根据要求回答下列问题: 解:(1)点 A 关于 x 轴对称点的坐标是 _______________;
点 B 关于 y 轴对称点的坐标是 _______________; 点 C 关于原点对称点的坐标是 _______________; (2)作出与△ ABC 关于 x 轴对称的图形(不要求写作法)
B.△ ABC≌△ DFE
C.△ BAC≌△ DEF
D.△ ACB≌△ DEF
13、如图( 13),AC=AB, AD 平分∠ CAB,E 在 AD 上,则图中能全等的三角形的 对数是( )
A.1
B.2
C.3
D.4
14.如图(14),△ABC 中,D、E 是 BC 边上两点,AD=AE,BE=CD,∠1=∠2=110°,∠
八年级上册数学练习题
C第一章 勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长 (A )4 cm (B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.58. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ).(A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元10.如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ). (A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米. 12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题)15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于______________.17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:EABCDBDE ABCD第18题图7cm“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。
八年级数学北师大版上册课时练第1章《一定是直角三角形吗》 练习测试卷 含答案解析(1)
课时练第1单元一定是直角三角形吗一.选择题1.下列各组数中能作为直角三角形三边长的是()A .1,2,2B .3,4,5C .4,5,6D .13,14,152.一个三角形的三边长分别是cm cm cm 25,20,15,则这个三角形的面积是()A 2502cm B1502cm C2002cm D 不能确定3.由下列线段组成的三角形中,不是直角三角形的是()A .a=7,b=25,c=24B .a=2.5,b=2,c=1.5C .a=45,b=1,c=32D .a=15,b=20,c=254.在△ABC 中,若AC 2﹣BC 2=AB 2,则()A .∠A =90°B .∠B =90°C .∠C =90°D .不能确定5.下列各组数据不是勾股数的是()A .2,3,4B .3,4,5C .5,12,13D .6,8,106.满足下列条件的△ABC ,不是直角三角形的是()A .b 2=c 2-a 2B .a ∶b ∶c=3∶4∶5C .∠C=∠A -∠BD .∠A ∶∠B ∶∠C=12∶13∶157.下列各组线段中,能构成直角三角形的是()A .2,3,4B .3,4,6C .4,6,7D .5,12,138.如果△ABC 的三边分别为m 2-1,2m ,m 2+1(m >1)那么()A .△ABC 是直角三角形,且斜边长为m 2+1B .△ABC 是直角三角形,且斜边长2为mC .△ABC 是直角三角形,但斜边长需由m 的大小确定D .△ABC 不是直角三角形9.分别以下列四组数为一个三角形的边长:(1)6、8、10;(2)5、12、13;(3)8、15、17;(4)4、5、6,其中能构成直角三角形的有()A .四组B .三组C .二组D .一组10.已知一轮船以18n mile/h 的速度从港口A 出发向西南方向航行,另一轮船以24n mile/h 的速度同时从港口A 出发向东南方向航行,离开港口1.5h 后,两轮船相距()A .30n mileB .35n mileC .40n mileD .45n mile二.填空题11.请写出一组勾股数(三个数都要大于10).12.在⊿ABC 中,若5,7,252222==-=+c b a b a ,则最大边上的高为.13.在如图所示的方格中,连接格点AB 、AC ,则∠1+∠2=度.14.小白兔每跳一次为1米,先沿直线跳12次后左拐,再沿直线向前跳5次后左拐,最后沿直线向前跳13次正好回到原来的地方,则小白兔第一次左拐的角度是.15.已知一个三角形的三边分别为3k ,4k ,5k (k 为自然数),则这个三角形为,理由是.16.以ABC D 的三条边向外作正方形,16.依次得到的面积为25,144,169,则这个三角形是________三角形.17.在△ABC 中,AB =15,AC =20,D 是BC 边所在直线上的点,AD =12,BD =9,则BC =.18.观察下列各组勾股数,并寻找规律:①4,3,5;②6,8,10;③8,15,17;④10,24,26……请根据你发现的规律写出第⑦组勾股数:.三.解答题19.判断满足下列条件的三角形是否是直角三角形.(1)在△ABC 中,∠A =20°,∠B =70°;(2)在△ABC 中,AC =7,AB =24,BC =25;(3)△ABC 的三边长a 、b 、c 满足(a +b)(a -b)=c 2.20.一个零件的形状如图1所示,按规定这个零件中DBC A ÐÐ,都应是直角。
八年级数学上册(第一章 勾股定理)专题练习 试题
轧东卡州北占业市传业学校<第一章勾股定理>专题练习〔一〕双解问题例1 一个三角形的两边长是5和12,要使其成为一个直角三角形,那么第三边长应为多少?变式:1.小强家有一块三角形菜地,量得两边长分别为41m,15m,第三边上的高为9m,请你帮小强计算这块菜地的面积.2.在△ABC中,AB=15,AC=13,高CD=12,求三角形的周长.〔二〕折叠问题中利用勾股定理建立方程例2 如图,在长方形ABCD中,AD=10cm,AB=8cm,E是CD上一点,假设以AE为折痕,将△ADE翻折,点D 恰与BC边上的点F重合,求△AEF的面积.变式:1.如图,在△ABC中,AB=3,AC=4,BC=5,现将它折叠,使点B与点C重合,折痕DE的长为.2.长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合,折痕为EF,那么DE= cm.2题 3题3.如下列图,在长方形纸片ABCD中,AB=3,BC=4,现将顶点A、C重合,使纸片折叠压平,设折痕为EF,那么重垒局部△AEF的面积为.例3 把图一的矩形纸片ABCD折叠,B,C两点愉好重合落在AD边上的点P处〔如图二〕,∠MPN=90°,PM=3,PN=4,〔1〕求△PMN的周长;〔2〕求矩形纸片ABCD的面积.变式:如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5,在矩形ABCD的边AB上取一点M,在CD上取一点N ,将纸片沿MN 折叠,使MB 与DN 交于点K ,得到△MNK.〔1〕假设∠1=70°,求∠MKN 的度数.〔2〕△MNK 的面积能否小于12?假设能,求出此时∠1的度数;假设不能,试说明理由. 〔三〕勾股定理逆定理的应用例4 在△ABC 中,a=22mn -,b=2mn ,c=22m n +,其中m, n 是正整数,且m>n ,试判断△ABC 是不是直角三角形.变式:1.以下各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a、4a 、5a 〔a>0〕; ⑤m 2-n 2、2mn 、m 2+n 2〔m 、n 为正整数,且m>n 〕其中可以构成直角三角形的有〔 〕 A .5组 B .4组 C .3组 D .2组2. 设一个直角三角形两直角边分别为a 、b ,斜边上的高为h ,斜边长为c ,那么以c h +、a b +、h为边的三角形的形状是 三角形.3.四边形ABCD 中,∠C=90°,AB=4,BC=3,CD=12,AD=13,求四边形ABCD 的面积〔四〕勾股定理及逆定理与图形面积的整体计算例5 直角三角形的周长为92,斜边长为2,求它的面积. 变式:1.如图,△ABC 中,AB=AC ,AD=4,AD 为高,△ABC 的周长为16,S △ABC = .2.假设三角形的三边a 、b 、c 满足a +b =10,ab =18,c =8,那么此三角形是三角形.3..如图,△ABC 中,∠B=90°,两直角边AB=7,BC=24,三角形内有一点P到各边的距离相等,那么这个距离是〔 〕A. 1B. 3C. 4D. 5(五)勾股定理及逆定理的综合应用例6 如下列图,一根旗杆在离地面5米处断裂,旗杆顶部落承离杆底12米的A处,旗杆断裂前有多高?变式:现有一长25cm的云梯,架靠在一面墙上,梯子底端离墙7m,那么梯子可以到达墙的高度为m,假设梯子顶端下滑了4m,那么梯子底部在水平方向滑动了m.例7 如下列图,一圆柱油罐底面积的周长为24m,高为6m,一只壁虎从距底面1m的A处爬行到对角B处去捕食,它爬行的最短路线长为多少?例8 如下列图,高速公路的同侧有A、B两个村庄,它们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,且A1B1=8km.现在在高速公路的A1B1之间设一个出口P,使A、B两个村庄到P的距离之和最短,那么这个最短距离是多少?变式:1. 如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B离点C 5 cm,一只蚂蚁如果要沿着长方体的外表从点A爬到点B,需要爬行的最短距离是多少?2.公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所,AP=160米,假设拖拉机在行驶时,周围100米内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行使时,是否会受到影响?请说明理由,如果受到影响,拖拉机的速度是18千米/小时,那么受影响的时间为多少?例9 如图,四边形ABCD、EFGH、NHMC都是正方形,边长分别为1,2,c;A,B,N,E,F五点在同一直线上,正方形NHMC的面积=变式:如图,四边形ABCD,EFGH,NHMC都是正方形,边长分别为a、b、c,A、B、N、E、F五点在同一直线上,那么c= 〔用含有a,b的代数式表示〕.例10 某公司的大门如下列图,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.8m,宽为1.6m,问这辆车能否通过公司大门?并说明你的理由.变式:,如图△ABC中,∠C=90°,M为AB中点,∠PMQ=90°,求证PQ2=AP2+BQ2.。
沪科版数学八年级上册 月考检测卷(一)(含答案)
月考检测卷(一)(时间:120分钟满分:150分)题号一二三四五六七八总分得分一、选择题(本大题共10 小题,每小题4分,满分40 分)1.函数y=x+3x−1中,自变量x的取值范围是 ( )A.x≥-3B.x≥-3且x≠1C. x≠1D. x≠-3且x≠12.点P在第四象限,且点P到x轴的距离为3,点P到y轴的距离为2,则点P 的坐标为 ( )A.( -3,-2)B.(3,-2)C.(2,3)D.(2,-3)3.点P(m−1,m+3))在平面直角坐标系的y轴上,则点 P的坐标为( )A.( -4,0)B.(0,-4)C.(4,0)D.(0,4)4.一次函数y=(k+2)x+k²−4的图象经过原点,则k的值为( )A.2B. -2C.2或-2D.35.在平面直角坐标系中,线段A′B′是由线段AB 经过平移得到的,已知点A( -2,1)的对应点为.A′(3,1),点 B 的对应点为.B′(4,0),则点 B 的坐标为 ( )A.(9,0)B.(-1,0)C.(3,-1)D.( -3,-1)6.若一次函数y=(1−3m)x+1的图象经过点A(x₁,y₁)和点B(x₂,y₂),当x₁<x₂时,y₁<y₂,则 m 的取值范围是 ( )A. m<0B. m>0C.m<13D.m>137.一次函数y=2(x-3)的图象在y轴上的截距是 ( )A.2B. -3C. -6D.68.一次函数的图象交x轴于(2,0),交y轴于(0,3),当函数值大于0时,x的取值范围是 ( )A. x>2B. x<2C. x>3D. x<39.如图中表示一次函数 y =mx +n 与正比例函数:y=mnx;(m,n是常数,mn≠0)图象的是( )10.在同一条道路上,甲车从A地到B地,乙车从B地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是 ( )A.乙先出发的时间为0.5小时B.甲的速度是80 千米/小时C.甲出发0.5 小时后两车相遇D.甲到B 地比乙到A 地早 112小时二、填空题(本大题共4小题,每小题5分,满分20分)11.如果将电影票上“6排3 号”简记为(6,3),那么“9排21 号”可表示为 .12.已知直线y =x --n 与 y =2 x +m 的交点为( -2,3),则方程组 {x−y−n =0,2x−y +m =0的解是 .13.三角形ABC 中 BC 边上的中点为 M ,在把三角形 ABC 向左平移2 个单位,再向上平移3 个单位后,得到三角形A ₁B ₁C ₁的B ₁C ₁边上中点M ₁此时的坐标为(-1,0),则M 点坐标为 .14.已知一次函数y=(m+4)x+2m+2,无论m 取何值时,它的图象恒过的定点P ,则点 P 的坐标为 .若m 为整数,且它的图象不过第四象限,则m 的最小值为 .三、(本大题共2 小题,每小题8分,满分16 分)15.已知一次函数图象经过(3,5)和(-4,-9)两点,求此一次函数的表达式.16.如图,三角形ABC 三个顶点的坐标分别是A(4,3),B(3,1),C(1,2).(1)将三角形ABC 三个顶点的纵坐标都减去5,横坐标不变,分别得到点 A₁,B₁,C₁,,画出三角形.A₁B₁C₁;(2)将三角形ABC 向左平移5个单位,再向下平移5个单位得到三角形 A₂B₂C₂,,画出三角形.A₂B₂C₂.四、(本大题共2 小题,每小题8分,满分16 分)17.在平面直角坐标系中,点A从原点O出发,沿x轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1 个单位长度,这时点A₁,A₂,A₃,A₄的坐标分别为A₁(0,0),A₂(1,1) ,A₃(2,0),A₄(3,−1),按照这个规律解决下列问题:(1)写出点.A₅,A₆,A₇,A₈的坐标;(2)试写出点.Aₙ的坐标(n是正整数).18.如图,直线y=kx+b分别与x轴、y轴交于点A(−2,0),B(0,3),直线y=1−mx分别与x轴交于点C,与直线AB交于点 D.已知关于x的不等式kx+b>1−mx的解集是x>−45.分别求出k,b,m的值.五、(本大题共2 小题,每小题10 分,满分20 分)19.如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+b−4=0,点 C的坐标为(0,3).(1)求a,b的值及.S三角形ABC;(2)若点 M在x轴上,且S三角形ACM =13S三角形ABC,试求点 M的坐标.20.在平面直角坐标系中,O 为坐标原点,将三角形 ABC 进行平移,平移后点A,B,C的对应点分别是点D,E,F,点A,B,D,E的坐标分别为(0,a),(0,b),(a,12a),(m−b,12a+4).(1)若a=1,求m的值;(2)若点C(−a,14m+3),其中a>0..直线CE交y轴于点 M,且三角形BEM的面积为1,试探究AF和BF的数量关系,并说明理由.六、(本题满分12 分)21.在平面直角坐标系中,折线y=−|x−2|+1与直线y=kx+2k(k⟩0)如图所示.(1)直线y=kx+2k(k⟩0)与x轴交点的坐标为;(2)请用分段函数的形式表示折线y=−|x−2|+1;(3)若直线y=kx+2k(k⟩0)与折线y=−|x−2|+1有且仅有一个交点,直接写出k的取值范围.七、(本题满分12分)22.某超市准备购进甲、乙两种品牌的文具盒,甲、乙两种文具盒的进价和售价如下表.预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒数量x(个)之间的函数关系如图所示.甲乙进价/元1631售价/元2138(1)求y与x之间的函数表达式;(2)若超市准备用不超过6 300元购进甲、乙两种文具盒,则至少购进多少个甲种文具盒?(3)在(2)的条件下,写出销售所得的利润W(元)与x(个)之间的表达式,并求出获得的最大利润.八、(本题满分14分)23.如图,在平面直角坐标系中,长方形 OABC 的顶点 O 与坐标原点重合,顶点A,C分别在坐标轴上,顶点 B的坐标为(4,2).E为AB 的中点,过点D(6,0)和点 E的直线分别与BC,y轴交于点F,G.(1)求直线 DE 的函数表达式;(2)函数y=mx−1的图象经过点 F且与x轴交于点 H,求出点 F的坐标和m值;(3)在(2)的条件下,求出四边形 OHFG的面积.月考检测卷(一)1. B2. D3. D4. A5. B6. C7. C8. B9. C 10. D11.(9,21) 12.{x =−2,y =3 13.(1,-3) 14.(-2,-6) -115.解:设一次函数的表达式为y=kx+b.∵一次函数的图象经过(3,5)和(-4,9)两点,则有 {3k +b =5,−4k +b =−9.解得 {k =2,b =−1...一次函数的表达式为y=2x-1.16.解:(1)如图,三角形A ₁B ₁C ₁ 即为所求.(2)如图,三角形A ₂B ₂C ₂即为所求.17.解:(1)由图可得,A ₅(4,0),A ₆(5,1),A ₇(6,0),A ₈(7,-1).(2)根据图形可知,点的位置每4个数一个循环,每个点的横坐标为序数减1,纵坐标为0,1,0,-1循环,∴点An 的坐标(n 是正整数)为A(n-1,0)或A(n-1,1)或A(n-1,0)或A(n-1,-1).18.解:∵直线y=kx+b 分别与x 轴、y 轴交于点A( -2,0),B(0,3),∴{−2k +b =0,b =3.解得过点 A ,B 的直线的表达式为 y =32x +3.∵关于x 的不等式kx+b>1-mx 的解集是 x >−45,.点 D 的横坐标为 −45. 将 x =−45代入 y =32x +3,解得 y =95.∴ 点 D 的坐标为 (−54,95).将 x =−45,y =95代入y=1-mx,得 95=1−(−45)m.解得m=1.19.解:(1)∵|a+2|+√b-4=0,∴a+2=0,b-4=0.∴a=-2,b=4.∴点A 的坐标为(-2,0),点B 的坐标为(4,0).又∵点C 的坐标为(0,3),∴AB=|-2-4|=6,CO=3. ∴S 三角形ABC =12AB ⋅CO =12×6×3=9.(2)设点M 的坐标为(x,0),则AM=|x-( -2)|=|x+2|.又: ⋅S 三角形ACM =13S 三角形ABC ,∴12AM ⋅OC =13×9.∴12|x +2|×3=3.∴ |x+2|=2,即x+2=±2,解得x=0或x=-4.故点M 的坐标为(0,0)或(-4,0).20.解:(1)当a=1时,根据三角形ABC 平移得到三角形DEF,点A(0,1),点B(0,b)的对应点分别为点 D (1,12),点 E (m−b ,92),得 {m−b =1,b−92=1−12.解得 {b =5,m =6.故m 的值为6.(2)AF=BF.理由如下:由三角形ABC 平移得到三角形DEF ,点A(0,a),点B(0,b)的对应点分别为点D (a ,12a ),点 E(m−b ,12a +4),得 {a =m−b,①a−12a =b−(12a +4).②由②得b=a+4.③ 把③代入①,得m=2a+4.∴14m +3=12a +4.∴点 C 与点 E 的纵坐标相等.∴CE∥x 轴.∴M (0,12a +4).∴三角形 BEM 的面积 =12BM ⋅EM =1.:a >0,∴BM =a +4−(12a +4)=12a,EM =a.∴14a 2=1.∴a =2.∴点A 的坐标为(0,2),点B 的坐标为(0,6),点 C 的坐标为( -2,5),点 D 的坐标为((2, 12).又∵在平移中,点 F 与点 C 是对应点,点 D 与点 A 是对应点,∴点F 的坐标为(0,4).∴AF=4-2=2,BF=6-4=2.∴AF=BF.21.解:(1)( -2,0)(2)∵函数y=-|x-2|+1,∴当x>2时,|x-2|=x-2.∴函数的表达式为y=-x+2+1=-x+3.当x≤2时,|x-2|=2-x,∴函数的表达式为y=x-2+1=x-1.∴用分段函数的形式表示折线为 y ={x−1(x ≤2),−x +3(x⟩2)(3)k 的取值范围是 k>1或 k =14.22.解:(1)设y 与x 之间的函数表达式为y=kx+b,根据题意,得 {250=50k +b,150k +b.解得∴y 与x 之间的函数表达式为y=-x+300.(2)根据题意,得16x+31(-x+300)≤6300,解得x≥200.∵x 为正整数,∴至少购进200 个甲种文具盒.(3)根据题意,得W=(21-16)x+(38-31)(-x+300)= -2x+2 100.∵k= -2<0,∴W 随x 的增大而减小.23.解:(1)设直线DE 的函数表达式为y=kx+b.∵顶点B 的坐标为(4,2),E 为AB 的中点,∴点E 的坐标为(4,1).∵点D 的坐标为(6,0),将D,E 的坐标代入y=kx+b,得 {0=6k +b,1=4k +b.解得 {k =−12,b =3.直线 DE 的函数表达式为 y =−12x +3.(2)∵点 F 的纵坐标为2,且点 F 在直线 DE 上,∴将y=2代入 y =−12x +3,得 −12x +3=2.解得x=2.∴点F 的坐标为(2,2).∵函数y=mx-1的图象经过点 F,将(2,2)代入y=mx-1,得2m-1=2.解得 m =32.(3)设直线 FH 交y 轴于点 K.对于 y =32x−1,当y=0时, 32x−1=0,解得 x =23,即点H 的坐标为(23,0).∴OH =23.当x=0时,y=-1,即点K 的坐标为(0,-1).∴OK=1.同理可得,点G 的坐标为(0,3),则KG=4.∵长方形OABC 的顶点与O 重合,点B 的坐标为(4,2),∴点C 的坐标为(0.2).∴CF=2.23=113.。
八年级初二上册数学 人教版《课题学习 最短路径问题》 练习试题 测试卷(含答案)(1)
《13.4课题学习最短路径问题》课时练一、选择题1.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=()A.60°B.70°C.80°D.90°2.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°3.如下图是一个的正方形,现要在中轴线上找一点,使最小,则的位置应选在()点处.A.P B.Q C.R D.S4.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°5.如图,在△ABC中,AB=AC,∠BAC=60°,BC边上的高AD=8,E是AD上的一个动点,F是边AB的中点,则EB+EF的最小值是()A.5 B.6 C.7 D.86.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°7.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2 B.3∠A=2(∠1﹣∠2)C.3∠A=2∠1﹣∠2 D.∠A=∠1﹣∠28.附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP 与PC的长度比为何?()A.3:2 B.5:3 C.8:5 D.13:89.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD10.如图,∠AOB=30°,点P是∠AOB内的一个定点,OP=20cm,点C、D分别是OA、OB上的动点,连结CP、DP、CD,则△CPD周长的最小值为( )A.10cm B.15cm C.20cm D.40cm 二、填空题11.如图,把△ABC沿直线DE翻折后得到△A′DE,如果∠A′EC=32°,那么∠A′ED=.12.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是.13.如图,已知点P在锐角∠AOB内部,∠AOB=α,在OB边上存在一点D,在OA边上存在一点C,能使PD+DC最小,此时∠PDC= .14.如图,在△ABC中,AB=3,AC=4,AB⊥AC,EF垂直平分BC,点P为直线EF上一动点,则△ABP周长的最小值是.15.如图,△ABC中,AB=AC,BC=5,S△ABC=15,AD⊥BC于点D,EF垂直平分AB,交AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为__________.16.如图,△ABC中,AB=AC=13,BC=10,AD⊥BC,BE⊥AC,P为AD上一动点,则PE+PC最小值为.三、作图题17.要在河边修建一个水泵站,分别向张村、李庄送水(如图).修在河边什么地方,可使所用水管最短?试在图中确定水泵站的位置,并说明你的理由.18.如图,已知点A,B(3,﹣2)在平面直角坐标系中,按要求完成下列个小题.(1)写出与点A关于y轴对称的点C的坐标,并在图中描出点C;(2)在(1)的基础上,点B,C表示的是两个村庄,直线a表示河流,现要在河流a上的某点M处修建一个水泵站,向B、C两个村庄供水,并且使得管道BM+CM的长度最短,请你在图中画出水泵站M的位置.19.作图题:如图,已知点A,点B,直线l及l上一点M.(1)连接MA,并在直线l上作出一点N,使得点N在点M的左边,且满足MN=MA;(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.20.如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)(1)画出格点△ABC关于直线DE的对称的△A1B1C1;(2)在DE上画出点P,使PA+PC最小;(3)在DE上画出点Q,使QA﹣QB最大.四、解答题21.(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.(3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.参考答案1.D 2.D 3.B 4.D 5.D 6.C 7.A 8.A 9.B 10.C 11.74°.12.30°.13.2α.14.7.15.6.16.;17.解:先作点B关于河岸的对称点,然后连接此对称点与点A,交河岸于点P,点P即为所求.18.解:(1)写出与点A关于y轴对称的点C的坐标(﹣2,1),点C位置如图所示.(2)①作点B关于直线a的对称点B′,②连接CB′与直线a的交点为M.点M就是所求的点.(理由是两点之间线段最短)19.解:(1)作图如图1所示:(2)作图如图2所示:作图依据是:两点之间线段最短.20.解:(1)如图,△A1B1C1即为所求;(2)如图,连接A1C交DE于点P,点P即为所求;(3)延长AB交DE于点Q,点Q即为所求.21.解:(1)如图1,作C关于直线AB的对称点C′,连接C′D交AB于点P.则点P就是所要求作的点.理由:在l上取不同于P的点P′,连接CP′、DP′.∵C和C′关于直线l对称,∴PC=PC′,P′C=P′C′,而C′P+DP<C′P′+DP′,∴PC+DP<CP′+DP′∴CD+CP+DP<CD+CP′+DP′即△CDP周长小于△CDP′周长;(2)如图2,作P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB 于F,则点E,F就是所要求作的点.理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,∵C和P关于直线OA对称,∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,∵PE+EF+PF=CE+EF+DF,PE′+PF′+E′F′=CE′+E′F′+DE′,∴CE+EF+DF<CE′+E′F′+DF′,′∴PE+EF+PF<PE′+PF′+E′F′;(3)如图3,作M关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB 于F,则点E,F就是所要求作的点.理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,∵C和P关于直线OA对称,∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,由(2)得知MN+ME+EF+MF<ME′+E′F′+F′D.。
八年级数学第一次月考卷01(考试版A4)【测试范围:八年级上册第十一章~第十二章】(人教版)
2024-2025学年八年级数学上学期第一次月考卷01(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八年级上册第十一章~第十二章。
5.难度系数:0.85。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列长度的三条线段能组成三角形的是()A.6,2,3B.3,3,3C.4,3,8D.4,3,72.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性3.如图,CM是△ABC的中线,AB=10cm,则BM的长为()A.7cm B.6cm C.5cm D.4cm4.画△AAAAAA的AAAA边上的高AAAA,下列画法中正确的是()A.B.C.D.5.一个多边形的内角和等于540°,则它的边数为()A.4 B.5 C.6 D.86.请仔细观察用直尺和圆规作一个角∠AA′OO′AA′等于已知角∠AAOOAA的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠AA′OO′AA′=∠AAOOAA的依据是()A.SAS B.ASA C.AAS D.SSS7.如图,△ABE≌△ACF,若AB=5,AE=2,则EC的长度是()A.2 B.3 C.4 D.58.如图,若要用“HL”证明Rt△AAAAAA≌Rt△AAAAAA,则还需补充条件()A.∠AAAAAA=∠AAAAAA B.∠AA=∠AA C.AAAA=AAAA D.AAAA=AAAA9.如图,在Rt△AAAAAA中,∠AA=90°,∠AAAAAA的平分线AAAA交AAAA于点D,AAAA=3,则点D到AAAA的距离是()A.6 B.2 C.3 D.410.如图,已知△AAAAAA为直角三角形,∠AA=90°,若沿图中虚线剪去∠AA,则∠1+∠2的度数为()A.210°B.250°C.270°D.300°11.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去12.如图1,∠AADDDD=20°,将长方形纸片AAAAAAAA沿直线DDDD折叠成图2,再沿折痕为AADD折叠成图3,则∠AADDDD的度数为()A.100°B.120°C.140°D.160°二、填空题(本题共6小题,每小题2分,共12分.)13.在Rt△ABC中,∠C=90°,∠A=40°,则∠B= .14.如图,AAAA是△AAAAAA的高,∠AAAAAA=90°.若∠AA=35°,则∠AAAAAA的度数是.15.如图所示的两个三角形全等,则∠1的度数是.16.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.17.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P= °.18.如图,在射线OOAA,OOAA上分别截取OOAA1=OOAA1,连接AA1AA1,在AA1AA1、AA1AA上分别截取AA1AA2=AA1AA2,连接AA2AA2,…按此规律作下去,若∠AA1AA1OO=αα,则∠AA2023AA2023OO=.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:|−2|−6×�−12�+(−4)2+8.20.(6分)解不等式组�2xx+1>xx−123xx−1≤5,并写出它的所有正整数解.21.(8分)如图,AC和BD相交于点0,OA=OC,OB=OD,求证:DC//AB.22.(8分)如图△AAAAAA中,∠AA=40°,∠AAAAAA=∠AA.(1)作∠AAAAAA的平分线,交AAAA于点AA(用直尺和圆规按照要求作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠AAAAAA的大小.23.(10分)某校学生处为了了解全校1200名学生每天在上学路上所用的时间,随机调查了30名学生,下面是某一天这30名学生上学所用时间(单位:分钟):20,20,30,15,20,25,5,15,20,10,15,35,45,10,20,25,30,20,15,20,20,10,20,5,15,20,20,20,5,15.通过整理和分析数据,得到如下不完全的统计图.根据所给信息,解答下列问题:(1)补全条形统计图;(2)这30名学生上学所用时间的中位数为______ 分钟,众数为______ 分钟;(3)若随机问这30名同学中其中一名学生的时间,最有可能得到的回答是______ 分钟;(4)20分钟及以下的人数.24.(10分)中央大街工艺品店销售冰墩墩徽章和冰墩墩摆件,若购买4个冰墩墩徽章和2个冰墩墩摆件需要130元,购买3个冰墩墩徽章和5个冰墩墩摆件需要220元.(1)求每个冰墩墩徽章和每个冰墩墩摆件各需要多少钱?(2)若某旅游团计划买冰墩墩徽章和冰墩墩摆件共50个,所用钱数不超过1150元,则该旅游团至少买多少个冰墩墩徽章?25.(12分)如图,已知△AAAAAA中,AAAA=AAAA=20cm,AAAA=16cm,点AA为AAAA的中点.(1)如果点P在线段AAAA上以6cm/s的速度由A点向B点运动,同时,点Q在线段AAAA上由点B向C点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△AAAAAA与△AABBAA是否全等?说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△AAAAAA与△AABBAA全等?(2)若点Q以②中的运动速度从点B出发,点P以原来的运动速度从点A同时出发,都逆时针沿△AAAAAA三边运动,求经过多长时间点P与点Q第一次在△AAAAAA的哪条边上相遇?26.(12分)如图,在△AAAAAA中,∠AAAAAA=90°,AAAA=AAAA,点D为AAAA的中点.点E是直线AAAA上的一动点,连接AADD,作AADD⊥AADD交直线AAAA于点F.(1)如图1,若点E与点A重合时,请你直接写出线段AADD与AADD的数量关系;(2)如图2,若点E在线段AAAA上(不与A、B重合)时,请判断线段AADD与AADD的数量关系并说明理由;(3)若点E在AAAA的延长线上时,线段AADD与AADD的数量关系是否仍然满足上面(2)中的结论?请利用图3画图并说明理由.。
初中数学苏教版八年级上册第一章练习卷带解析
第1题:选择题(此题包括10小题,共50分)1(5分)要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如下图),能够说明△≌△,得,因此测得的长确实是的长,判定△≌△最适当的理由是()A.边角边B.角边角C.边边边D.边边角2(5分)如图,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于点E,CF⊥BD于点F,那么图中全等的三角形有( )A.5对B.6对C.7对D.8对3(5分)以下命题中正确的选项是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等4(5分)如下图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,那么以下结论不必然成立的是()A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA5(5分)如下图,别离表示△ABC的三边长,那么下面与△必然全等的三角形是()6(5分)已知:如下图,B、C、D三点在同一条直线上,AC=CD,∠B= ∠E=90°,AC⊥CD,那么不正确的结论是()A.∠A与∠D互为余角 B.∠A=∠2C.△ABC≌△CED D.∠1=∠27(5分)如下图,两条笔直的公路、相交于点O,C村的村民在公路的隔壁建三个加工厂A、B、D,已知AB="BC=CD=DA=5" km,村落C到公路的距离为4 km,那么C村到公路的距离是()km kmkm km8(5分)如下图,在△ABC中,AB=AC,∠ABC,∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同窗分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,上述结论必然正确的选项是()A.①②③B.②③④C.①③⑤D.①③④9(5分)如下图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB 于R,PS⊥AC于S,那么以下三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中()A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确10(5分)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上别离取点E,F,连结CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是(不添加辅助线).默写第2题:填空题(此题包括7小题,共35分)1(5分)如图,在Rt△ABC中,∠ACB=90°,BC="2" cm,CD ⊥AB,在AC上取一点E,使EC=BC,过点E作EF ⊥AC交CD的延长线于点F,假设EF=5 cm,那么AE= cm.2(5分)如下图,已知△ABC和△BDE均为等边三角形,连接AD、CE,假设∠BAD=39°,那么∠BCE= 度.3(5分)如下图,已知等边△ABC中,BD=CE,AD与BE相交于点P,那么∠APE是度.4(5分)如下图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,那么∠3= .5(5分)如下图,在△ABC中,∠C=90°,AD平分∠CAB,BC="8" cm,BD="5" cm,那么D点到直线AB的距离是 cm.6(5分)如下图,已知△ABC的周长是21,OB,OC别离平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,那么△ABC的面积是.7(5分)如下图,在△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足别离是E,F.那么以下结论:①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B,C两点的距离相等;④图中共有3对全等三角形,正确的有 .默写第3题:解答题(此题包括6小题,共60分)1(10分)如下图,四边形ABCD的对角线AC,BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.2(10分)如下图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.3(10分)如下图,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.4(10分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.5(10分)如下图,在△ABC中,AB=AC,BD⊥AC于D,CE ⊥AB于E,BD,CE相交于F.求证:AF平分∠BAC.6(10分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE,交CE于点F,交CD 于点G(如图①),求证:AE=CG;(2)直线AH垂直于直线CE,交CE的延长线于点H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.。
苏科版八年级数学上册第1章全等三角形 选择专项练习题(含解析)-doc
苏科版八年级数学上册第1章全等三角形选择专项练习题1.已知:BD=CB,AB平分∠DBC,则图中有( )对全等三角形.A.2对B.3对C.4对D.5对2.如图,已知AB=AC,点D、E分别在AB、AC上,且AD=AE,连接CD、BE,CD 与BE相交于点O,则下列结论错误的是( )A.∠B=∠C B.BD=CE C.OC=OD D.△OBD≌△OCE 3.根据下列条件,能作出唯一三角形的是( )A.AB=3,AC=4,∠B=30°B.∠A=50°,∠B=60°,AC=4C.AB=4,BC=4,AC=8D.∠C=90°,AB=64.如图,AD是△ABC的高,AD=BD,DE=DC,∠BAC=65°,则∠ABE的度数是( )A.20°B.25°C.30°D.35°5.如图,△ACE≌△DBF,若AD=11cm,BC=5cm,则AB长为( )A.6cm B.7cm C.4cm D.3cm6.如图,在△ABC中,AB=AC,点D是OABC外一点,连接AD、BD、CD,且BD交AC于点O,在BD上取一点E,使得AE=AD,∠EAD=∠BAC,若∠ABC=62°,则∠BDC的度数为( )A.56°B.60°C.62°D.64°7.如图,已知∠C=∠D,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠1=∠2;④∠B=∠E.其中能使△ABC≌△AED的条件有( )A.4个B.3个C.2个D.1个8.如图,已知△ABC的面积为16,BP平分∠ABC,且AD⊥BP于点P,则△BPC的面积是( )A.4B.6C.8D.129.如图,点A在DE上,AC=EC,∠1=∠2=∠3,则DE等于( )A.AB B.BC C.DC D.AE+AC10.如图,△ABC和△ECD都是等腰直角三角形,△ABC的顶点A在△ECD的斜边DE 上.下列结论:①△ACE≌△BCD;②∠DAB=∠ACE;③AE+AC=CD;④△ABD是直角三角形.其中正确的有( )A.1个B.2个C.3个D.4个11.如图,Rt△ABC中,CD⊥AB于D,E在AC上,过E作EF⊥AB于F,且EF=EC,连接BE交CD于G.结论:①∠CEB=∠BEF ②CG=EF ③∠BGC=∠AEB ④∠AEF=2∠ABE以上结论正确的个数是( )A.1B.2C.3D.412.如图,在△ABC中,D,E是BC边上的两点,AD=AE,BE=CD,∠1=∠2=110°,∠BAE=60°,则∠BAC的度数为( )A.90°B.80°C.70°D.60°13.如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为( )A.∠B=∠ADC B.2∠B=∠ADCC.∠B+∠ADC=180°D.∠B+∠ADC=90°14.如图,∠ABC=∠ACD=90°,BC=2,AC=CD,则△BCD的面积为( )A.2B.4C.D.615.如图,一块玻璃碎成三片,小智只带了第③块去玻璃店,就能配一块一模一样的玻璃,你能用三角形的知识解释,这是为什么?( )A.ASA B.AAS C.SAS D.SSS16.如图,在四边形ABCD中,点E在边AD上,∠BCE=∠ACD,∠BAC=∠D=40°,AB=DE,则∠BCE的度数为( )A.80°B.90°C.100°D.110°17.如图,AD是△ABC的中线,E、F分别是AD和AD延长线上的点,且DE=DF,连接BF、CE,下列说法:①CE=BF;②△ABD和△ACD的面积相等;③BF∥CE;④△BDF≌△CDE,其中正确的有( )A.1个B.2个C.3个D.4个18.如图,AD是△ABC的中线,CE⊥AD,BF⊥AD,点E、F为垂足,若EF=6,∠1=2∠2,则BC的长为( )A.6B.8C.10D.1219.如图,AB=AC,角平分线BF,CE相交于点O,AO的延长线与BC交于点D,则图中全等三角形的对数有( )A.8对B.7对C.6对D.5对20.如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,E为BC上一点,连接AE,2∠BAE=∠CAD,连接DE,下列结论中正确的有( )①AC⊥DE;②∠ADE=∠ACB;③若CD∥AB,则AE⊥AD;④DE=CE+2BE.A.①②③B.②③④C.②③D.①②④参考答案1.解:∵AB平分∠DBC,∴∠DBA=∠CBA,∵BD=BC,BA=BA,∴△BDA≌△BCA(SAS),∴∠BAD=∠BAC,AD=AC,∵AE=AE,∴△AED≌△AEC(SAS),∴DE=CE,∵BD=BC,BE=BE,∴△BDE≌△BCE(SSS),∴图中一共有3对全等三角形,故选:B.2.解:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C,故A正确,不符合题意;∵AB=AC,且AD=AE,∴AB﹣AD=AC﹣AE,∴BD=CE,故B正确,不符合题意;在△OBD和△OCE中,,∴△OBD≌△OCE(AAS),故D正确,不符合题意;根据题意,证明不出OC=OD,故C错误,符合题意;故选:C.3.解:根据AB=3,AC=4,∠B=30°,无法做出唯一的三角形,故选项A不符合题意;根据∠A=50°,∠B=60°,AC=4和AAS可以作出唯一的三角形,故选项B符合题意;∵AB=4,BC=4,AC=8,∴AB+BC=AC,∴以4,4,8为边不能组成三角形,故选项C不符合题意;根据∠C=90°,AB=6,无法做出唯一的三角形,故选项D不符合题意;故选:B.4.解:∵AD是△ABC的高,∴∠ADB=∠ADC=90°,在△BDE和△ADC中,,∴△BDE≌△ADC(SAS),∴∠DAC=∠DBE,∵∠DAC=∠BAC﹣∠BAD=65°﹣45°=20°,∴∠DBE=20°,∴∠ABE=∠ABD﹣∠DBE=25°,故选:B.5.解:∵△ACE≌△DBF,∴AC=BD,∴AC﹣BC=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB=(11﹣5)÷2=3(cm),故选:D.6.解:∵∠EAD=∠BAC,∴∠BAC﹣∠EAC=∠EAD﹣∠EAC,即:∠BAE=∠CAD;在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠ABD=∠ACD,∵∠BOC是△ABO和△DCO的外角,∴∠BOC=∠ABD+∠BAC,∠BOC=∠ACD+∠BDC,∴∠ABD+∠BAC=∠ACD+∠BDC,∴∠BAC=∠BDC,∵∠ABC=∠ACB=62°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣62°﹣62°=56°,∴∠BDC=∠BAC=56°,故选:A.7.解:①∵∠C=∠D,AC=AD,AB=AE,∴△ABC和△AED不一定全等,故①不符合题意;②∵∠C=∠D,AC=AD,BC=DE,∴△ABC≌△AED(SAS),故②符合题意;③∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,∴∠CAB=∠DAE,∵∠C=∠D,AC=AD,∴△ABC≌△AED(ASA),故③符合题意;④∵∠B=∠E,∠C=∠D,AC=AD,∴△ABC≌△AED(AAS),故④符合题意;所以,增加上列条件,其中能使△ABC≌△AED的条件有3个,故选:B.8.解:∵BP平分∠ABC,∴∠ABP=∠DBP,∵AP⊥BP,∴∠APB=∠DPB=90°,在△APB和△DPB中,,∴△APB≌△DPB(ASA),∴AP=PD,∴S△APB=S△DPB,S△APC=S△DPC,∴△BPC的面积=×△ABC的面积=8,故选:C.9.解:∵∠1=∠2,∴∠B=∠D,∵∠2=∠3,∴∠2+∠ACD=∠3+∠ACD,即∠ACB=∠ECD,在△ACB和△ECD中,,∴△ACB≌△ECD(AAS),∴AB=ED.故选:A.10.解:∵△ABC和△ECD都是等腰直角三角形,∴CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,∵∠ACE+∠ACD=∠ACD+∠BCD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),所以①正确;∵∠DAC=∠E+∠ACE,即∠DAB+∠BAC=∠E+∠ACE,而∠CAB=∠E=45°,∴∠DAB=∠ACE,所以②正确;∵AE+AC>CE,CE=CD,∴AE+AC>CD,所以③错误;∵△ACE≌△BCD,∴∠BDC=∠E=45°,∵∠CDE=45°,∴∠ADB=∠ADC+∠BDC=45°+45°=90°,∴△ADB为直角三角形,所以④正确.故选:C.11.解:∵AC⊥BC,EF⊥AB,EF=EC,∴BE平分∠ABC,∴∠ABE=∠CBE,∵∠EFB=∠ECB=90°,∴∠FEB=∠CEB,故①正确;或者:在Rt△BEC和Rt△BEF中,,∴Rt△BEC≌Rt△BEF(HL),∴∠FEB=∠CEB,故①正确;∵∠FEB=∠CEB=90°﹣∠EBF,∠BGD=∠CGE=90°﹣∠GBD,∴∠CEB=∠CGE,∴CE=CG,∵EF=EC,∴CG=EF,故②正确;∵∠BGC=180°﹣∠CGE,∠AEB=180°﹣∠CEG,∠CEG=∠CGE,∴∠BGC=∠AEB,故③正确;∵∠AEF=90°﹣∠A,∠ABC=90°﹣∠A,∴∠AEF=∠ABC,∵∠ABC=2∠ABE,∴∠AEF=2∠ABE,故④正确.综上所述:正确的结论有①②③④,共4个,故选:D.12.解:∵AD=AE,∴∠ADC=∠AEB,在△ACD和△ABE中,,∴△ACD≌△ABE(SAS),∴AC=AB,∠CAD=∠BAE=60°,∴∠B=∠C,∵∠C=∠1﹣∠CAD=110°﹣60°=50°,∴∠B=50°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣50°=80°,故选:B.13.解:在射线AD上截取AE=AB,连接CE,如图所示:∵∠BAD=90°,AC平分∠BAD,∴∠BAC=∠EAC,在△ABC与△AEC中,,∴△ABC≌△AEC(SAS),∴BC=EC,∠B=∠AEC,∵CB=CD,∴CD=CE,∴∠CDE=∠CED,∴∠B=∠CDE,∵∠ADC+∠CDE=180°,∴∠ADC+∠B=180°.故选:C.14.解:过点D作DH⊥BC,交BC的延长线于点H,∵∠ABC=90°,∴∠BAC+∠ACB=90°,∵∠ACD=90°,∴∠HCD+∠ACB=90°,∴∠BAC=∠HCD,在△ABC和△CHD中,,∴△ABC≌△CHD(AAS),∴DH=BC=2,∴△BCD的面积=×BC×DH=×2×2=2,故选:A.15.解:根据三角形全等的判定方法,根据角边角可确定一个全等三角形,只有第三块玻璃包括了两角和它们的夹边,只有带③去才能配一块完全一样的玻璃,是符合题意的.故选:A.16.解:∵∠BCE=∠ACD,又∵∠BCE=∠BCA+∠ACE,∠ACD=∠DCE+∠ACE,∴∠BCA=∠DCE,在△BAC和△EDC中,,∴△BAC≌△EDC(AAS),∴AC=CD,∴∠CAE=∠D,∵∠D=40°,∴∠CAD=40°,∴∠ACD=180°﹣∠CAD﹣∠D=180°﹣40°﹣40°=100°,∴∠BCE=∠ACD=100°.故选:C.17.解:∵AD是△ABC的中线,∴BD=CD,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故④正确∴CE=BF,∠F=∠CED,故①正确,∴BF∥CE,故③正确,∵BD=CD,点A到BD、CD的距离相等,∴△ABD和△ACD面积相等,故②正确,综上所述,正确的有4个,故选:D.18.解:∵∠1=2∠2,∠1+∠2=180°,∴∠2=60°,∴∠DCE=30°,∵AD是△ABC的中线,∴BD=CD,∵CE⊥AD,BF⊥AD,∴∠BFD=∠CED=90°,∵∠BDF=∠CDE,∴△BFD≌△CED(AAS),∴DE=DF,∵EF=6,∴DE=DF=3,∴CD=6,∴BC=12,故选:D.19.解:∵AB=AC,角平分线BF、CE交于点O,∴AO平分∠BAC,点D为BC的中点,∴BD=CD,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),同理可证:△OBD≌△OCD,△OBE≌△OCF,△OEA≌△OFA,△OBA≌△OCA,△BEC≌△CFB,△ABF≌△ACF,由上可得,图中共有7对全等的三角形,故选:B.20.解:如图,延长EB至G,使BE=BG,设AC与DE交于点M,∵∠ABC=90°,∴AB⊥GE,∴AB垂直平分GE,∴AG=AE,∠GAB=∠BAE=∠DAC,∵∠BAE=∠GAE,∴∠GAE=∠CAD,∴∠GAE+∠EAC=∠CAD+∠EAC,∴∠GAC=∠EAD,在△GAC与△EAD中,,∴△GAC≌△EAD(SAS),∴∠G=∠AED,∠ACB=∠ADE,∴②是正确的;∵AG=AE,∴∠G=∠AEG=∠AED,∴AE平分∠BED,当∠BAE=∠EAC时,∠AME=∠ABE=90°,则AC⊥DE,当∠BAE≠∠EAC时,∠AME≠∠ABE,则无法说明AC⊥DE,∴①是不正确的;设∠BAE=x,则∠CAD=2x,∴∠ACD=∠ADC==90°﹣x,∵AB∥CD,∴∠BAC=∠ACD=90°﹣x,∴∠CAE=∠BAC﹣∠EAB=90°﹣x﹣x=90°﹣2x,∴∠DAE=∠CAE+∠DAC=90°﹣2x+2x=90°,∴AE⊥AD,∴③是正确的;∵△GAC≌△EAD,∴CG=DE,∵CG=CE+GE=CE+2BE,∴DE=CE+2BE,∴④是正确的,故选:B.。
八年级上学期数学周练1(范围:三角形—全等三角形SAS)
2022-2023学年第一学期八年级数学练习1姓名:___________班级:___________学号:___________一、单选题1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列长度的三条线段,能组成三角形的是()A.4,6,10B.3,9,5C.8,6,1D.5,7,93.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等4.已知△ABC的三个内角度数之比为3△4△5,则此三角形是()三角形.A.锐角B.钝角C.直角D.不能确定5.如图,已知△ABC△△ABD,若55BAC,∠=∠的度数是()则CADA.115° B.110° C.105°D.100°6.下列多边形中,不能够单独铺满地面的是()A.正三角形B.正方形C.正五边形D.正六边形7.一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角α(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为() A.7 2°B.108°或14 4°C.144°D.7 2°或144°8.如图,四边形ABCD的对角线AC,BD相交于点O,=;ABO ADO△≌△,下列结论:△AC BD⊥;△CB CD=.其中所有正确结论的序号是()△ABC ADC△≌△;△DA DCA.△△△△ B.△△△ C.△△△ D.△△9.如图,将四边形纸片ABCD沿EF折叠,点A落在A1处,若∠1+∠2=90°,则∠A的度数是()A.45°B.40°C.35°D.30°10.如图,在△ABC中,△ABC,△ACB的平分线交于点O,D是△ACF与△ABC平分线的交点,E是△ABC的两外角平分线的交点,若△BOC=130°,则△D的度数为()A .25°B .30°C .40°D .50°二、填空题11.如图,已知AB AC =,若使ABD ACD △≌△,则需要补充一个条件_____________. 12.已知如图BD 、CE 是△ABC 的高,△A =50°,线段BD 、CE 相交于点O ,则△BOC =________.13.如图,已知AC AD =,BC BD =,CE DE =,则全等三角形共有_________对. 14.一个零件的形状如图,按规定△A =90°,△B =△D =25°,判断这个零件是否合格,只要检验△BCD 的度数就可以了.量得△BCD =150°,这个零件______(填“合格”不合格”). 15.如图,△A +△B +△C +△D +△E +△F +△G =________度.三、解答题16.已知一个多边形的内角和比其外角和的2倍多180°,求这个多边形的边数及对角线的条数?17.画一画,想一想:利用圆规和直尺作一个角β∠等于已知角α∠,你能说明作法的理论依据吗?18.如图,△ABC △△DEF ,△A =33°,△E =57°,CE =5cm .(1)求线段BF 的长;(2)试判断DF 与BE 的位置关系,并说明理由.19.如图所示,在△ABC中,D是BC边上一点,△1=△2,△3=△4.(1)若△1=35°,求△DAC的度数;(2)若△BAC=69°,求△DAC的度数.20.已知:如图,AB=DE,AB∥DE,BE=CF,且点B、E、C、F都在一条直线上,求证:AC∥DF.21.如图,△ACB和△DCE均为等腰三角形,点A、D、E在同一条直线上,BC和AE相交于点O,连接BE,若△CAB=△CBA=△CDE=△CED=50°.(1)求证:AD=BE;(2)求△AEB.22.如图,AD是△CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:(1)DO是△EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.(2)若将结论与AD是△CAB的角平分线、DE∥AB、DF∥AC中的任一条件交换,所得命题正确吗?23.如图,△ABC中,△ABC的角平分线与△ACB的外角△ACD的平分线交于A1.(1)当△A为70°时,△A1=______°;(2)△A1BC的角平分线与△A1CD的角平分线交于A2,△A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出△A与△An的数量关系______;(3)如图2,四边形ABCD中,△F为△ABC的角平分线及外角△DCE的平分线所在的直线构成的角,若△A+△D=230度,则△F=______.(4)如图3,若E为BA延长线上一动点,连EC,△AEC与△ACE的角平分线交于Q,当E滑动时有下面两个结论:△△Q+△A1的值为定值;△△Q-△A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.参考答案:1.D【分析】根据全等图形的定义,逐一判断选项,即可.【详解】解:A、两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形不能完全重合,不是全等图形,符合题意,C.两个图形不能完全重合,不是全等图形,不符合题意,D.两个图形能完全重合,是全等图形,不符合题意,故选D.【点睛】本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键.2.D【分析】根据构成三角形的条件:两边之和大于第三边,两边只差小于第三边进行逐一判断即可【详解】解:根据三角形的三边关系,知A、4+6=10,不能组成三角形,故A错误;B、3+5<9,不能组成三角形;故B错误;C、1+6<8,不能组成三角形;故C错误;D、5+7>9,能够组成三角形,故D正确.故选:D.【点睛】本题主要考查了构成三角形的条件,熟知构成三角形的条件是解题的关键.3.C【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【详解】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点睛】此题主要考查了全等图形,关键是掌握全等形的概念.4.A【分析】设三角的度数分别为:3x°4x°5x°,根据三角形内角和定理得3x+4x+5x=180,即可判断.【详解】解:△△ABC的三个内角度数之比为3△4△5,△设三角的度数分别为:3x°4x°5x°,△3x+4x+5x=180,解得:x=15,△三个内角的度数分别为:45°,60°,75°,△此三角形为锐角三角形.故选:A.【点睛】本题主要考查三角形的内角和定理及一元一次方程的应用,掌握三角形的内角和定理是解题的关键.5.B【分析】根据全等三角形的性质求出△BAD,再计算△CAD即可.【详解】△△ABC△△ABD ,且△BAC=55°,△△BAC=△BAD=55°,△△CAD=△BAC+△BAD=110°,故选B.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键. 6.C【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点, ∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C .【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.7.D【分析】因为赛车五次操作后回到出发点,五次操作一种是“正五边形“二种是“五角星“形,根据α最大值小于180°,经过五次操作,绝对不可能三圈或三圈以上.一圈360°或两圈720度.分别用360°和720°除以5,就可以得到答案.【详解】解:360÷5=72°,720÷5=144°.故选D .【点睛】本题主要考查了正多边形的外角的特点.正多边形的每个外角都相等. 8.B【分析】根据全等三角形的性质得出△AOB=△AOD=90°,OB=OD ,AB=AD ,再根据全等三角形的判定定理得出△ABC△△ADC ,进而得出其它结论.【详解】△△ABO△△ADO ,△△AOB=△AOD=90°,OB=OD ,AB=AD ,△AC△BD ,故△正确;△四边形ABCD 的对角线AC 、BD 相交于点O ,OB=OD ,AC△BD ,△BC=DC ,△正确;在△ABC 和△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,△△ABC△△ADC (SSS ),故△正确;AB=AD ,BC=DC ,没有条件得出DA=DC ,△不正确;综上,△△△正确,故选:B .【点睛】本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键.9.A【分析】根据翻折变换的性质和平角的定义求出△3+△4,再利用三角形的内角和定理列式计算即可得解.【详解】解:△四边形纸片ABCD 沿EF 折叠,点A 落在A 1处, △△3+△4=12(180°-△1)+12(180°-△2)=180°-12(△1+△2), △△1+△2=90°,△△3+△4=180°-12×90°=180°-45°=135°,在△AEF 中,△A =180°-(△3+△4)=180°-135°=45°.故选:A .【点睛】本题考查了三角形的内角和定理,翻折变换的性质,平角的定义,熟记各性质并整体思想的利用是解题的关键.10.C【分析】根据角平分线的定义和平角定义可得△OCD =△ACO +△ACD =90°,根据外角的性质可得BOC OCD D ∠=∠+∠,继而即可求解.【详解】解:△CO 平分ACB ∠,CD 平分ABC ∠的外角, △12ACO ACB ∠=∠,12ACD ACF ∠=∠, △180ACB ACF ∠+∠=︒, △()1902OCD ACO ACD ACB ACF ∠=∠+∠=∠+∠=︒, △BOC OCD D ∠=∠+∠,△1309040D BOC OCD ∠=∠-∠=︒-︒=︒,故选择C .【点睛】本题考查角平分线的定义,平角定义,三角形的外角性质,解题的关键是根据角平分线定义和平角定义可得△OCD =90°,根据外角的性质求得BOC OCD D ∠=∠+∠. 11.BD =CD 或△BAD =△CAD【分析】要使△ABD △△ACD ,由于AB =AC ,AD 是公共边,若补充条件BD =CD ,则可用SSS 判定其全等;若添加△BAD =△CAD ,则可用SAS 判定其全等.【详解】解:若补充条件BD =CD ,则可用SSS 判定其全等;若添加△BAD =△CAD ,则可用SAS 判定其全等.需补充的一个条件是BD =CD 或△BAD =△CAD .故答案为:BD =CD 或△BAD =△CAD .【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.12.130°【分析】根据高可得到△AEC =△ADB =△BDC =90°,利用三角形内角和定理求出△ACE 的度数,再利用三角形外角性质求解.【详解】解:△BD 、CE 均为△ABC 的高,△90AEC ADB BDC ∠∠∠︒===.△△A =50°,△180********ACE A ∠︒-︒-∠︒-︒︒===,△9040130BOC BDC ACE ∠∠∠︒︒︒=+=+=.故答案为:130°.【点睛】本题主要考查三角形的外角性质及三角形的内角和定理.解题的关键是熟练掌握三角形的外角性质定理是解答关键.13.3【分析】根据已知利用全等三角形的判定方法SSS 得出全等三角形即可.【详解】解:全等三角形共有3对,ACE ADE ≅△△,ACB ADB ≅,ECB EDB ≅, 理由:在ECB 和EDB △中EB EB EC ED BC BD =⎧⎪=⎨⎪=⎩,()ECB EDB SSS ∴≅,在ACE 和ADE 中AC AD AE AE EC ED =⎧⎪=⎨⎪=⎩,()ACE ADE SSS ∴≅,在ACB △和ADB △中AB AB AC AD BC BD =⎧⎪=⎨⎪=⎩,()ACB ADB SSS ∴≅.故答案为:3.【点睛】此题主要考查了全等三角形的判定,正确把握全等三角形的判定方法是解题关键.14.不合格【分析】连接AC并延长,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得△3=△1+△B,△4=△2+△D,再求出△BCD即可进行判定.【详解】解:如图,连接AC并延长,由三角形的外角性质可得,△3=△1+△B,△4=△2+△D,△△BCD=△3+△4=△1+△B+△2+△D=△BAD+△B+△D=90°+25°+25°=140°,△140°≠150°,△这个零件不合格.故答案为:不合格.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出两个三角形是解题的关键.15.540【分析】连接DG、AC,在四边形EFGD中,根据四边形内角和为360°,三角形内角和为180°,可得△1+△2=△3+△4,△5+△6+△B=180°,进而即可求解.【详解】解:连接DG、AC.在四边形EFGD中,得△E+△F+△EDG+△DGF=360°,又△1+△2=△3+△4,△5+△6+△B=180°,△△GAB+△B+△BCD+△EDC+△E+△F+△AGF=540°.故答案为540.【点睛】本题考查了多边形内角和定理与三角形内角和定理,掌握以上知识是解题的关键.16.所求的多边形的边数为7,这个多边形对角线为14条.【分析】设这个多边形的边数为n,根据多边形的内角和是(n-2)•180°,外角和是360°,列出方程,求出n的值,再根据对角线的计算公式即可得出答案.【详解】设这个多边形的边数为n,根据题意,得:(n﹣2)×180°=360°×2+180°,解得n=7,则这个多边形的边数是7,七边形的对角线条数为:1×7×(7﹣3)=14(条),答:所求的多边形的边数为7,这个多边形对角线为14条.【点睛】本题考查了对多边形内角和定理和外角和的应用,注意:边数是n 的多边形的内角和是(n -2)•180°,外角和是360°.17.见解析【分析】先利用基本作图方法尺规作β∠=α∠ ,再利用全等三角形的性质和判定解决问题即可.【详解】解:如图所示:作法:(1)如图所示,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ; (2)画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′;(3)以点C ′为圆心,CD 长为半径画弧,与第2步中所画的弧相交于点D ′;(4)过点D ′画射线O ′B ′,则β∠=α∠由作法得:OC =O 'C ',OD =O 'D ',CD =C 'D '在△OCD 和△O 'C 'D '中,OC O C OD O D CD C D ''⎧⎪''⎨⎪''⎩=== , △△OCD △△O 'C 'D '(SSS )△β∠=α∠(全等三角形的对应角相等)【点睛】本题考查作图−应用与设计作图,全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.18.(1)5cm ;(2)见解析【分析】(1)根据全等三角形的性质得出BC =EF ,求出EC =BF 即可;(2) 根据全等三角形的性质可得△A =△D =33°,根据三角形内角和定理求出△DFE 的度数,即可得出答案.【详解】() 1ABC △DEF ,BC EF ∴=,BC CF EF CF ∴+=+,即5cm BF CE ==;()2ABC △DEF ,33A ∠=︒,33A D ∴∠=∠=︒,180D E DFE ∠+∠+∠=︒,57E ∠=︒,180573390DFE ︒︒∴--︒∠==︒,DF BE ∴⊥.【点睛】本题考查了全等三角形的性质和三角形内角和定理,能灵活运用全等三角形的性质进行推理是解此题的关键.19.(1)△DAC=40°;(2)△DAC =32°.【分析】(1)根据三角形外角的性质可求出△4=△3=△1+△2=2△1=70°,然后可利用三角形内角和定理求△DAC 的度数;(2)根据三角形外角的性质,得出△4=△3=△1+△2=2△1,再根据三角形内角和定理,得出△DAC +△3+△4=180°,求出△DAC +4△1=180°结合△BAC =△1+△DAC =69°,可先求出△1的度数,然后可得△DAC 的度数.【详解】解:(1)△△1=35°,△1=△2,△3=△4,△△4=△3=△1+△2=2△1=70°,△△DAC=180°-△4-△3=180°-70°-70°=40°;(2)△△1=△2,△3=△4,△△4=△3=△1+△2=2△1,在△ADC 中,△DAC +△3+△4=180°,△△DAC +4△1=180°,△△BAC =△1+△DAC =69°,△△1+180°−4△1=69°,△△1=37°,△△DAC =69°−37°=32°.【点睛】本题主要考查了三角形内角和定理以及三角形外角性质的综合应用,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.20.详见解析【分析】首先利用平行线的性质△B=△DEF ,再利用SAS 得出△ABC△△DEF ,得出△ACB=△F ,根据平行线的判定即可得到结论.【详解】证明:∥AB∥DE ,∥∥B=∥DEC ,又∥BE=CF ,∥BC=EF ,在∥ABC 和∥DEF 中,AB DE B DEF BC EF ⎧⎩=⎪==⎪⎨∠∠, ∥∥ABC∥∥DEF (SAS ),∥∥ACB=∥F ,∥AC∥DF .【点睛】本题考查了平行线的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.21.(1)详见解析;(2)△AEB =80°.【分析】(1)欲证明AD=BE ,只要证明△ACD△△BCE (SAS )即可.(2)利用:“8字型”可以证明△OEB=△ACO ,即可解决问题.【详解】(1)证明:△△CAB =△CBA =△CDE =△CED =50°,△CA =CB ,CD =CE ,△ACB =△DCE =80°,△△ACD =△BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,△△ACD △△BCE (SAS ), △AD =BE .(2)解:△△ACD △△BCE ,△△CAD =△CBE ,△△COA =△BOE ,△△ACO =△BEO =80°,△△AEB =80°.【点睛】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,学会利用“8字型”证明角相等,属于中考常考题型. 22.(1)是,证明见解析(2)正确【分析】(1)DE ∥AB ,DF ∥AC ,得到平行四边形AFDE ,因为EAD FAD ∠=∠和DE ∥AB ,推出EAD EDA ∠=,得出AE DE =,即可得到答案;(2)△如和AD 是CAB ∠的角平分线交换,正确,理由与(1)证明过程相似;△如和DF ∥AC 交换,根据平行线的性质得到FDA EAD ∠=∠,根据AD 是CAB ∠的角平分线,DO 是EDF ∠的角平分线,推出EAF EDF ∠=∠,由平行线的性质得到AEF DFE ∴∠=∠,根据三角形的内角和定理即可求出DEF AFE ∠=∠,根据平行线的判定即可推出答案;△如和AE ∥DF 交换,正确理由与△类似.(1)解:DO 是△EDF 的角平分线,证明:△DE ∥AB ,DF ∥AC ,△四边形AFDE 是平行四边形,△AD 是△CAB 的角平分线,△△EAD =△F AD ,△DE ∥AB ,△△EDA =△F AD ,△△EAD =EDA ,△AE =DE ,△平行四边形AFDE 是菱形,△DO 是△EDF 的角平分线.(2)解:正确.△如和AD 是△CAB 的角平分线交换,正确,理由与(1)证明过程相似;△如和DE ∥AB 交换,理由是:△DF ∥AC ,△△FDA =△EAD ,△AD 是△CAB 的角平分线,DO 是△EDF 的角平分线,△△EAD =△F AD ,△EDA =△FDA ,△△EAF =△EDF ,△AE ∥DF ,△△AEF =△DFE ,△△EDF +△EFD +△DEF =180°,△EAF +△AEF +△AFE =180°,△△DEF=△AFE,△DE∥AB,正确.△如和AE∥DF交换,正确理由与△同理.答:若将结论与AD是△CAB的角平分线、DE∥AB、DF∥AC中的任一条件交换,所得命题正确.【点睛】本题主要考查了三角形的内角和定理,平行四边形的性质和判定,菱形的判定,平行线的性质和判定,三角形的角平分线,解题的关键是综合运用性质和判定进行证明是解此题的关键.23.(1)△A;70°;35°;(2)△A=2n△A n(3)25°(4)△△Q+△A1的值为定值正确,Q+△A1=180°.【分析】(1)根据角平分线的定义可得△A1BC=12△ABC,△A1CD=12△ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得△ACD=△A+△ABC,△A1CD=△A1BC+△A1,整理即可得解;(2)由△A1CD=△A1+△A1BC,△ACD=△ABC+△A,而A1B、A1C分别平分△ABC和△ACD,得到△ACD=2△A1CD,△ABC=2△A1BC,于是有△BAC=2△A1,同理可得△A1=2△A2,即△A=22△A2,因此找出规律;(3)先根据四边形内角和等于360°,得出△ABC+△DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出△ABC+(180°-△DCE)=360°-(α+β)=2△FBC+(180°-2△DCF)=180°-2(△DCF-△FBC)=180°-2△F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2△A1=△AEC+△ACE=2(△QEC+△QCE),利用三角形内角和定理表示出△QEC+△QCE,即可得到△A1和△Q的关系.【详解】解:(1)当△A为70°时,△△ACD-△ABD=△A,△△ACD-△ABD=70°,△BA1、CA1是△ABC的角平分线与△ACB的外角△ACD的平分线,△△A1CD-△A1BD=12(△ACD-△ABD)△△A1=35°;故答案为:A,70,35;(2)△A1B、A1C分别平分△ABC和△ACD,△△ACD=2△A1CD,△ABC=2△A1BC,而△A1CD=△A1+△A1BC,△ACD=△ABC+△BAC,△△BAC=2△A1=80°,△△A1=40°,同理可得△A1=2△A2,即△BAC=22△A2=80°,△△A2=20°,△△A=2n△A n,故答案为:△A=2△A n.(3)△△ABC+△DCB=360°-(△A+△D),△△ABC+(180°-△DCE)=360°-(△A+△D)=2△FBC+(180°-2△DCF)=180°-2(△DCF-△FBC)=180°-2△F,△360°-(α+β)=180°-2△F,2△F=△A+△D-180°,△△F=12(△A+△D)-90°,△△A+△D=230°,△△F=25°;故答案为:25°.(4)△△Q+△A1的值为定值正确.△△ACD-△ABD=△BAC,BA1、CA1是△ABC的角平分线与△ACB的外角△ACD的平分线△△A1=△A1CD-△A1BD=12△BAC,△△AEC+△ACE=△BAC,EQ、CQ是△AEC、△ACE的角平分线,△△QEC+△QCE=12(△AEC+△ACE)=12△BAC,△△Q=180°-(△QEC+△QCE)=180°-12△BAC,△△Q+△A1=180°.【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.。
人教版八年级数学上册练习题
人教版八年级数学上册练习题初中数学试卷八年级数学练题(1)一.选择题1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A。
7,24,25B。
3.4.5C。
3.4.5D。
4.7.82.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的(。
)倍A。
1B。
2C。
3D。
43.在下列说法中是错误的()A。
在△ABC中,∠C=∠A一∠B,则△ABC为直角三角形B。
在△ABC中,若∠A∶∠B∶∠C=5∶2∶3则△ABC为直角三角形C。
在△ABC中,若a=34c,b=c,则△ABC为直角三角形55D。
在△ABC中,若a∶b∶c=2∶2∶4,则△ABC为直角三角形4.四组数: ①9,12,15;②7,24,25;③32,42,52;④3a,4a,5a(a>0)中,可以构成直角三角形的边长的有(。
)A。
4组B。
3组C。
2组D。
1组5.三个正方形的面积如图1,正方形A的面积为(。
)A。
6B。
36C。
64D。
86.一块木板如图2所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的面积为(。
)A。
60B。
30C。
24D。
127.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为(。
)A。
6cmB。
8.5cmC。
30/60cmD。
13/13cm8.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距(。
)A。
50cmB。
100cmC。
140cmD。
80cm9.XXX想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为(。
)A。
8cmB。
10cmC。
12cmD。
14cm10.在△ABC中,∠ACB=90°,AC=40,CB=9,M、N 在AB上且AM=AC,BN=BC,则MN的长为(。
)A。
6B。
7C。
8D。
911.三角形的三边长分别为a2+b2、2ab、a2-b2(a、b都是正整数),则这个三角形是(。
2019-2020人教版八年级数学上册第12章全等三角形单元测试卷(1)解析版
人教新版初中数学八年级上学期《第12章全等三角形》2019年单元测试卷(1)一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2.(4分)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个3.(4分)用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是()A.SSS B.SAS C.ASA D.AAS4.(4分)如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC5.(4分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有()A.1个B.2个C.3个D.4个6.(4分)如图,一种测量工具,点O是两根钢条AC、BD中点,并能绕点O转动.由三角形全等可得内槽宽AB 与CD相等,其中△OAB≌△OCD的依据是()A.SSS B.ASA C.SAS D.AAS7.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=6,BC=10,AD⊥BC于D,BF平分∠ABC交AC于F,AD 于E,则线段AE的长为()A.3B.C.1.8D.48.(4分)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下七个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°;⑥△PCQ是等边三角形;⑦点C在∠AOE的平分线上,其中正确的有()A.3个B.4个C.5个D.6个9.(4分)如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,连CD,下列结论:①AB﹣AC=CE;②∠CDB=135°;③S△ACE=2S△CDB;④AB=3CD,其中正确的有()A.4个B.3个C.2个D.1个10.(4分)如图,在Rt△ABC中,∠C=90°,点D是AB的中点,DE⊥AB交AC于点E,DE=CE=,则AB 的长为()A.3B.3C.6D.6二.填空题(共6小题,满分24分,每小题4分)11.(4分)如图所示,点A、B、C、D在同一条直线上,△ACF≌△DBE,AD=10cm,BC=6cm,则AB的长为cm.12.(4分)如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于.13.(4分)如图,在△ABC中,射线AD交BC于点D,BE⊥AD于E,CF⊥AD于F,请补充一个条件,使△BED ≌△CFD,你补充的条件是(填出一个即可).14.(4分)如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D 到AB的距离为.15.(4分)如图所示,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.16.(4分)如图,任意画一个∠BAC=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AD=AE;④PD=PE;⑤BD+CE=BC;其中正确的结论为.(填写序号)三.解答题(共8小题,满分76分)17.(8分)已知,如图,△ABC≌△DEF,求证:AC∥DF.18.(8分)如图,等腰直角△ABC中,∠BAC=90°,AB=AC,∠ADB=45°(1)求证:BD⊥CD;(2)若BD=6,CD=2,求四边形ABCD的面积.19.(8分)如图,一条输电线路需跨越一个池塘,池塘两侧A,B处各立有一根电线杆,但利用现有皮尺无法直接测量出A,B的距离,请你根据所学三角形全等的知识,设计一个方案,测出A,B的距离(要求画出图形,写出测量方案和理由)20.(8分)如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.21.(8分)如图,请沿图中的虚线,用三种方法将下列图形划分为两个全等图形.22.(10分)如图,∠A=∠D=90°,BE平分∠ABC,且点E是AD的中点,求证:BC=AB+CD.23.(12分)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.24.(14分)如图,已知AE平分∠BAC,ED垂直平分BC,EF⊥AC,EG⊥AB,垂足分别是点F、G.求证:(1)BG=CF;(2)AB=AF+CF.人教新版初中数学八年级上学期《第12章全等三角形》2019年单元测试卷(1)参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.2.【解答】解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠F AC=∠EAB≠∠F AB,故②错误;EF=BC,故③正确;∠EAB=∠F AC,故④正确;综上所述,结论正确的是①③④共3个.故选:C.3.【解答】解:由作法易得OD=O′D',OC=0′C',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS.故选:A.4.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:D.5.【解答】解:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴AP⊥BC,AP=BC=PC,∠BAP=∠CAP=45°=∠C.∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EP A.∴△APE≌△CPF(ASA).∴①AE=CF;③EP=PF,即△EPF是等腰直角三角形;∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;④∵∠AGF=∠EGP=180°﹣∠APE﹣∠PEF=180°﹣∠APE﹣45°,∠AEP=180°﹣∠APE﹣∠EAP=180°﹣∠APE﹣45°,∴∠AEP=∠AGF.故正确的有①、③、④,共三个.故选:C.6.【解答】解:∵O是AC、BD的中点,∴AO=CO,BO=DO,在△OAB和△OCD中,∴△OAB≌△OCD(SAS),故选:C.7.【解答】解:如图作EH⊥AB于H.在Rt△ABC中,∵AB=6,BC=10,∴AC==8,∵AD⊥BC,∴AD==,∴BD==,∵∠EBH=∠EBD,∠EHB=∠EDB,BE=BE,∴△EBH≌△EBD(AAS),∴BH=BD=,DE=HE,设AE=x,则DE=EH=﹣x,在Rt△AEH中,∵AE2=AH2+EH2,∴x2=()2+(﹣x)2,∴x=3,∴AE=3,故选:A.8.【解答】解:如图1如示:∵△ABC和△CDE是正三角形,∴AC=BC,DC=EC,∠ACB=∠ECD=60°,又∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∴结论①正确;∵△ACD≌△BCE,∴∠CAP=∠CBD,又∵∠ACB+∠BCD+∠DCE=180°,∴∠BCD=60°,在△ACP和△BCQ中,∴,∴△ACP≌△BCQ(ASA),∴AP=BQ,PC=QC,∴△PCQ是等边三角形,∴∠CPQ=∠CQP=60°,∴∠CPQ=∠ACB=60°,∴PQ∥AE,∴结论②、③、⑥正确;∵△ACD≌△BCE,∴∠ADC=∠BCE,又∵∠ADC+∠DQO+∠DOQ=180°,∠QCE+∠CQE+∠QEC=180°,∠DQO=∠CQE,∴∠DOQ=∠QCE=60°,又∵∠DOQ=∠AOB,∴∠AOB=60°,∴结论⑤正确;若DE=DP,∵DC=DE,∴DP=DC,∴∠PCD=∠DPC,又∵∠PCD=60°,∴∠DPC=60°与△PCQ是等边三形相矛盾,假设不成立,∴结论④错误;过点C分别作CM⊥AD,CN⊥BE于点M、N两点,如图2所示:∵CM⊥AD,CN⊥BE,∴∠AMC=∠BNC=90°,在△ACM和△BCN中,,∴△ACM≌△BCN(AAS),∴CM=CN,又∵OC在∠AOE的内部,∴点C在∠AOE的平分线上,∴结论⑦正确;综合所述共有6个结论正确.故选:D.9.【解答】解:①过点E作EH⊥AB于H,如图1,∵∠ABC=45°,∴△BHE是等腰直角三角形,∴EH=BH,∵AE平分∠CAB,∴EH=CE,∴CE=BH,在△ACE和△AHE中,∵,∴△ACE≌△AHE(AAS),∴AH=AC,∴AB﹣AC=AB﹣AH=BH=CE,故①正确;②解法一:作∠ACN=∠BCD,交AD于N,∴∠ACN+∠NCE=∠BCD+∠NCE=90°,∵∠ACE=∠EDB=90°,∠AEC=∠BED,∴∠CAN=∠DBC,在△ACN和△BCD中,∵,∴△ACN≌△BCD(ASA),∴CN=CD,∴∠ADC=45°,∴∠BDC=45°+90°=135°;解法二:∵∠ACB=90°,BD⊥AE于D,∴∠ACB=∠ADB=90°,∴点A,B,D,C在以AB为直径的圆上,∴∠ADC=∠ABC=45°,∴∠BDC=∠ADB+∠ADC=90°+45°=135°解法三:如图2,延长BD、AC交于点G,∵AD平分∠BAG,AD⊥BG,∴BD=DG,∴CD是Rt△BCG的斜边的中线,∴CD=BD,∴∠DCB=∠DBC,∵∠GAD+∠G=∠DBC+∠G=90°,∴∠GAD=∠DBC=∠DCB=∠EAB,△CED和△AEB中,∵∠CED=∠AEB,∴∠ADC=∠ABC=45°,∴∠CDB=45°+90°=135°;故②正确;③如图2,延长BD、AC交于点G,∵AD平分∠BAG,AD⊥BG,∴BD=DG,∴CD是Rt△BCG的斜边的中线,∴CD=BD,S△BCD=S△CDG,∴∠DBC=∠DCB=22.5°,∴∠CBG=∠CAE=22.5°,∵AC=BC,∠ACE=∠BCG,∴△ACE≌△BCG,∴S△ACE=S△BCG=2S△BDC,故③正确;④∵AB=AG=AC+CG,∵BG=2CD>AC,CD>CG,∴AB≠3CD,故④错误,故选:B.10.【解答】解:连接BE,∵D是AB的中点,∴BD=AD=AB∵∠C=∠BDE=90°,在Rt△BCE和Rt△BDE中,∵,∴△BCD≌△BDE,∴BC=BD=AB.∴∠A=30°.∴tan A=即=,∴AD=3,∴AB=2AD=6.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:∵△ACF≌△DBE,∴AC=BD,∴AB=CD,∵AD=10cm,BC=6cm,∴AB+BC+CD=10cm,∴2AB=4cm,∴AB=2cm,故答案为:212.【解答】解:由题意得:AB=DB,AC=ED,∠A=∠D=90°,∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠1=∠ACB,∵∠ACB+∠2=180°,∴∠1+∠2=180°,故答案为:180°.13.【解答】解:可以添加条件:BD=DC.理由:∵BD=CD;又∵BE⊥AD,CF⊥AD,∴∠E=∠CFD=90°;∴在△BED和△CFD中,,∴△BED≌△CFD(AAS).故答案是:答案不唯一,如BD=DC.14.【解答】解:∵BC=10cm,BD:DC=3:2,∴DC=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为4cm.15.【解答】解:在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=DE=20米.故答案为:20.16.【解答】解:∵BE、CD分别是∠ABC与∠ACB的角平分线,∠BAC=60°,∴∠PBC+∠PCB=(180°﹣∠BAC)=(180°﹣60°)=60°,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣60°=120°,①正确;∵∠BPC=120°,∴∠DPE=120°,过点P作PF⊥AB,PG⊥AC,PH⊥BC,∵BE、CD分别是∠ABC与∠ACB的角平分线,∴AP是∠BAC的平分线,②正确;∴PF=PG=PH,∵∠BAC=60°∠AFP=∠AGP=90°,∴∠FPG=120°,∴∠DPF=∠EPG,在△PFD与△PGE中,,∴△PFD≌△PGE(ASA),∴PD=PE,④正确;在Rt△BHP与Rt△BFP中,,∴Rt△BHP≌Rt△BFP(HL),同理,Rt△CHP≌Rt△CGP,∴BH=BD+DF,CH=CE﹣GE,两式相加得,BH+CH=BD+DF+CE﹣GE,∵DF=EG,∴BC=BD+CE,⑤正确;没有条件得出AD=AE,③不正确;故答案为:①②④⑤.三.解答题(共8小题,满分76分)17.【解答】证明:∵△ABC≌△DEF,∴∠ACB=∠DFE,∴AC∥DF.18.【解答】解:(1)过A作AE⊥AD,交DB的延长线于E,∴∠EAD=90°,∵∠ADB=45°,∴∠AED=45°∴△ADE是等腰直角三角形,∴AE=AD,∵∠EAD=∠BAC=90°,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠DAC,在△AEB与△ADC中,∴△AEB≌△ADC(SAS),∴∠E=∠ADC=45°,∴∠BDC=∠BDA+∠ADC=45°+45°=90°,∴BD⊥CD.(2)由(1)可知,四边形ABCD的面积等于△AED的面积,S△AED=DE2=16.19.【解答】解:分别以点A、点B为端点,作AQ、BP,使其相交于点C,使得CP=CB,CQ=CA,连接PQ,测得PQ即可得出AB的长度.理由:由上面可知:PC=BC,QC=AC,在△PCQ和△BCA中,∴△PCQ≌△BCA(SAS),∴AB=PQ.20.【解答】证明:∵∠1=∠2,∴DE=CE.∵AD∥BC,∠A=∠B=90°,∴△ADE和△EBC是直角三角形,而AD=BE.∴Rt△ADE≌Rt△BEC(HL)21.【解答】解:如图所示:.22.【解答】证明:过点E作EF⊥BC于点F,则∠EFB=∠A=90°,又∵BE平分∠ABC,∴∠ABE=∠FBE,∵BE=BE,∴△ABE≌△FBE(AAS),∴AE=EF,AB=BF,又点E是AD的中点,∴AE=ED=EF,∴Rt△CDE≌Rt△CFE(HL),∴CD=CF,∴BC=CF+BF=AB+CD.23.【解答】(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.24.【解答】证明:(1)连接CE、BE,∵ED垂直平分BC,∴EC=EB,∵AE平分∠CAB,EF⊥AC,EG⊥AB,∴EF=EG,在Rt△CFE和Rt△BGE中,,∴Rt△CFE≌Rt△BGE,∴BG=CF;(2)∵AE平分∠BAC,EF⊥AC,EG⊥AB,∴EF=EG,在Rt△AGE和Rt△AFE中,,∴Rt△AGE≌Rt△AFE,∴AG=AF,∵AB=AG+BG,∴AB=AF+CF.。
2021-2022学年北京师大附属实验中学八年级(上)期末数学模拟练习试卷(1)
2021-2022学年北京师大附属实验中学八年级(上)期末数学模拟练习试卷(1)1.(单选题,2分)下列图标中,是轴对称的是()A.B.C.D.2.(单选题,2分)下列运算中,正确的是()A.a3+a3=2a6B.a5-a3=a2C.a2•a2=2a4D.(a5)2=a103.(单选题,2分)根据下列条件,不能画出唯一确定的△ABC的是()A.AB=3,BC=4,AC=6B.AB=4,BC=3,∠A=30°C.AB=4,∠B=45°,∠A=60°D.∠C=90°,AB=8,AC=44.(单选题,2分)如图,在△ABC中,BC的垂直平分线分别交AC,BC于点D,E.若△ABC 的周长为22,BE=4,则△ABD的周长为()A.14B.18C.20D.265.(单选题,2分)已知分式|x|−1的值为0,则x=()1−xA.1B.-1C.1或-1D.06.(单选题,2分)如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC的长是()A.2B.3C.4D.57.(单选题,2分)如图,在下列三角形中,若AB=AC,则不能被一条直线分成两个小等腰三角形的是()A.B.C.D.8.(单选题,2分)有两个正方形A、B.现将B放在A的内部得图甲;将A、B并列放置后,构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则A、B两个正方形的面积之和为()A.10B.11C.12D.139.(填空题,2分)当x满足 ___ 时,(x-2)0有意义,且(x-2)0=___ .10.(填空题,2分)开州区云枫街道一位巧娘,用了7年时间,绣出了21米长的《清明上河图》.全图长21米,宽0.65米,扎了600多万针.每针只约占0.000002275平方米.数据0.000002275用科学记数法表示为___ .11.(填空题,2分)如图,△ABC≌△CDA,∠BAC=94°,∠B=55°,则∠CAD=___ °.12.(填空题,2分)把关于x的多项式x2+ax+b分解因式,得(x+1)(x-3),则ab=___ .13.(填空题,2分)如图,等边△ABC中,BD是AC边上的中线,以点D为圆心、BD为半径作弧交BC延长线于点E,则∠CDE=___ °.14.(填空题,2分)若x2+2(m-3)x+16是完全平方式,则m的值为 ___ .15.(填空题,2分)如图,在△ABC中,AB=AC,D,E分别是AC,AB上的点,且BC=BD,AD=DE=EB,则∠A=___ 度.16.(填空题,2分)如图,∠ABC=60°,AB=4,动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,设点P的运动时间为t秒(t>0),当△ABP为锐角三角形时,t的取值范围是 ___ .17.(问答题,8分)将下列各式因式分解:(1)x3-10x2+25x;(2)a2(m-n)+b2(n-m).18.(问答题,12分)(1)计算:(a+2b)2-(2a3b+8ab3)÷2ab;(2)化简求值:a 2−b2a2−ab ÷[(1a)-1+ 2ab+b2a],其中a=-1,b=2.19.(问答题,6分)解方程:xx−1−1=3(x−1)(x+2)20.(问答题,6分)已知:线段m、n;求作:分别以线段m、n为斜边和直角边的直角三角形.(要求:尺规作图,不写作法,保留作图痕迹)21.(问答题,8分)列一元分式方程解应用题:某公司计划购买A、B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30千克材料,且A型机器人搬运1000千克材料所用的时间与B型机器人搬运800千克材料所用的时间相同.求B型机器人每小时搬运多少千克材料?22.(问答题,8分)操作题:如图,四边形ABCD中,∠B=∠D=90°,点M在线段BC上,点N在线段CD上.① 请画出当△AMN的周长最短时的点M和点N的位置;(不必用尺规作图,保留痕迹)② 请用量角器测量出① 中的∠MAN=___ °.(保留到个位)23.(问答题,8分)如图,AD || BC,AE平分∠BAD,点E为DC中点,求证:AD+BC=AB.24.(问答题,12分)已知点O是线段AB垂直平分线l上的一个动点,以BO为边作等边△BOC,点C在直线AB的上方且在直线l的右侧,连接AC交直线l于点D,连接BD.(1)如图1,点O在线段AB上,① 求证:∠BAC=∠ACO;② 直接用等式表示线段OD、BD、CD之间的数量关系:___ ;(2)若点O在线段AB的上方,连接AO、BO,且满足∠ABO≠30°.请在图中补全图形,用等式表示线段OD 、BD 、CD 之间的数量关系,并证明你的结论.25.(问答题,5分)阅读:对于两个不等的非零实数a ,b ,若分式(x−a )(x−b )x 的值为零,则x=a 或x=b .又因为 (x−a )(x−b )x = x 2−(a+b )x+ab x =x+ ab x-(a+b ),所以关于x 的方程x+ ab x =a+b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x+ 8x =6有两个解,分别为x 1=___ ,x 2=___ .(2)关于x 的方程x+ m−n mnx = m+4mn−n 2mn 的两个解分别为x 1,x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1=___ ,x 2=___ ;(3)关于x 的方程2x+ n 2−n 2x−1 =2n 的两个解分别为x 1,x 2(x 1<x 2),求 2x 1−12x 2的值.26.(问答题,5分)对于平面直角坐标系xOy 中的点P 和图形W ,给出如下定义:图形W 关于经过点(m ,0)且垂直于x 轴的直线的对称图形为W',若点P 恰好在图形W'上,则称点P 是图形W 关于点(m ,0)的“关联点”.(1)若点P 是点Q (3,2)关于原点的“关联点”,则点P 的坐标为 ___ ;(2)如图,△ABC 中,A (1,1),B (6,0),C (4,-2).① 点C 关于x 轴的对称点为C',将线段BC'沿x 轴向左平移d (d >0)个单位长度得到线段EF (E 、F 分别是点B 、C'的对应点),若线段EF 上存在两个△ABC 关于点(1,0)的“关联点”,则d 的取值范围是 ___ ;② 已知点M (m+1,0)和点N (m+3,0),若线段MN 上存在△ABC 关于点(m ,0)的“关联点”,则m 的取值范围是 ___ .。
北师大版八年级数学上册 第1章 勾股定理 章节测试卷 (含解析)
第1章《勾股定理》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.古希腊哲学家柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17…若此类勾股数的勾为2m(m≥3,m为正整数),则其弦(结果用含m的式子表示)是( )A.4m2−1B.4m2+1C.m2−1D.m2+12.如图,五个正方形放在直线MN上,正方形A、C、E的面积依次为3、5、4,则正方形B、D 的面积之和为()A.11B.14C.17D.203.观察下列各方格图中阴影部分所示的图形(每个方格的边长为1),如果将它们沿方格边线或对角线剪开后无缝拼接,不能拼成正方形的是()A.B.C.D.4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A.2.2米B.2.3米C.2.4米D.2.5米5.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()A.2B.52C.5D.2546.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为92,则BD2的值为()A.13B.12C.11D.107.图中不能证明勾股定理的是()A. B.C.D.8.如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点A表示的数是-2,AC=BC=BD=1,若以点A为圆心,AD的长为半径画弧,与数轴交于点E(点E位于点A右侧),则点E表示的数为()A.3B.−2+3C.−1+3D.−39.如图,一个底面周长为24cm,高为5cm的圆柱体,一只蚂蚁沿侧表面从点A到点B所经过的最短路线长为()A.12cm B.13cm C.25cm D.26cm10.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用下图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI 的面积为S1,正方形BCGF的面积为S2,矩形AKJD的面积为S3,矩形KJEB的面积为S4,下列结论中:①BI⊥CD;②S1∶S△ACD=2∶1;③S1-S4=S3-S2;④S1S4=S3S2,正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.小明将4个全等的直角三角形拼成如图所示的五边形,添加适当的辅助线后,用等面积法建立等式证明勾股定理.小明在证题中用两种方法表示五边形的面积,分别是S1= ,S2= .12.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离 km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使CD=13,则AD 的长为 km.13.如图,图1是第七届国际数学教育大会(ICME−7)会徽图案、它是由一串有公共顶点O的直角三角形(如图2)演化而成的.如果图2中的OA1=A1A2=A2A3=⋅⋅⋅=A7A8=1,若S1代表△A1OA2的面积,S2代表△A2OA3的面积,以此类推,则S10的值为.14.把由5个小正方形组成的十字形纸板(如图1)剪开,以下剪法中能够将剪成的若干块拼成一个大正方形的有(填写序号).15.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点E是BC的中点,动点P从A 点出发以每秒1cm的速度沿A→C→B运动,设点P运动的时间是t秒,那么当t=,△APE的面积等于12.16.已知△ABC中,AC=8,AB=41,BC边上的高AG=5,D为线段AC上的动点,在BC上截取CE=AD,连接AE,BD,则AE+BD的最小值为.三.解答题(共7小题,满分52分)17.(6分)如图,在△ABC中,AD为BC边上的中线,AB=3,AC=5,AD=2,求证:AD⊥AB.18.(6分)如图,∠AOB=90°,OA=8m,OB=3m,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的路程与机器人行走的路程相等,那么机器人行走的路程BC是多少?19.(8分)以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(5,12,13),(7,24,25)等.(1)根据上述三组勾股数的规律,写出第四组勾股数组;(2)用含n(n为正整数)的数学等式描述上述勾股数组的规律,并证明.20.(8分)现有一个长、宽、高分别为5dm、4dm、3dm的无盖长方体木箱(如图,AB=5dm,BC=4dm,AE=3dm).(1) 求线段BG的长;(2) 现在箱外的点A处有一只蜘蛛,箱内的点C处有一只小虫正在午睡,保持不动.请你为蜘蛛设计一种捕虫方案,使得蜘蛛能以最短的路程捕捉到小虫.(木板的厚度忽略不计)21.(8分)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图(1),把△ABC沿直线DE折叠,使点A与点B重合,求BE的长;(2)如图(2),把△ABC沿直线AF折叠,使点C落在AB边上G点处,请直接写出BF的长.22.(8分)如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形如图2.(1)你能在3×3方格图(图3)中,连接四个格点(网格线的交点)组成面积为5的正方形吗?若能,请用虚线画出.(2)你能把十个小正方形组成的图形纸(图4),剪开并拼成正方形吗?若能,请仿照图2的形式把它重新拼成一个正方形.(3)如图,是由两个边长不等的正方形纸片组成的一个图形,要将其剪拼成一个既不重叠也无空隙的大正方形,则剪出的块数最少为________块.请你在图中画出裁剪线,并说明拼接方法.23.(8分)公元3世纪初,我国学家赵爽证明勾定理的图形称为“弦图”.1876年美国总统Garfeild用图1(点C、点B、点C′三点共线)进行了勾股定理的证明.△ACB与△BC′B′是一样的直角三角板,两直角边长为a,b,斜边是c.请用此图1证明勾股定理.拓展应用l:如图2,以△ABC的边AB和边AC为边长分别向外作正方形ABFH和正方形ACED,过点F、E分别作BC的垂线段FM、EN,则FM、EN、BC的数量关系是怎样?直接写出结论 .拓展应用2:如图3,在两平行线m、n之间有一正方形ABCD,已知点A和点C分别在直线m、n 上,过点D作直线l∥n∥m,已知l、n之间距离为1,l、m之间距离为2.则正方形的面积是 .答案解析一.选择题1.D【分析】根据题意得2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.【详解】解:∵m为正整数,∴2m为偶数,设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2−1,∴弦是a+2=m2−1+2=m2+1,故选:D.2.C【分析】如图:由题意可得∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AAC=CE,再根据全等三角形和勾股定理可得S B=S C+S A=5+3=8,同理可得S D=S C+ S E=5+4=9,最后求正方形B、D的面积之和即可.【详解】解:如图:由题意可得:∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AC=CEA∴∠BAC+∠ACB=90°,∠DCE+∠ACB=90°,∴∠BAC=∠DCE,∴△ABC≅△CDE,∴DE=BC,∵∠ABC=90°,∴AC2=BC2+AB2,∴AC2=DE2+AB2,即S B=S C+S A=5+3=8,同理:S=S C+S E=5+4=9;D∴S+S B=8+9=17.D故选C.3.C【分析】根据网格的特点分别计算阴影部分的面积即可求得拼接后的正方形的边长,根据网格的特点能否找到构成边长的格点即可求解.【详解】解:A. 阴影部分面积为4,则正方形的边长为2,故能拼成正方形,不符合题意;B.阴影部分面积为10,则正方形的边长为10,∵12+32=10,故能拼成正方形,不符合题意;C.阴影部分面积为11,则正方形的边长为11,根据网格的特点不能构造出11的边,故不能拼成正方形,符合题意D. 阴影部分面积为13,则正方形的边长为13,∵22+32=13,故能拼成正方形,不符合题意;故选C.4.A【分析】将梯子斜靠在墙上时,形成的图形看做直角三角形,根据勾股定理,直角边的平方和等于斜边的平方,可以求出梯子的长度,再次利用勾股定理即可求出梯子底端到右墙的距离,从而得出答案.【详解】如图,在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,AB2=AC2+BC2∴AB2=0.72+ 2.42= 6.25在Rt△A‘BD中,∵∠A’BD=90°,A’D=2米,BD2+A'D2=A'B2∴BD2+22= 6.25∴BD2= 2.25∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米即小巷的宽度为2.2米,故答案选A5.B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE中,勾股定理列出方程,解方程即可求解.【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=AC2−A B2=52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.6.A【分析】首先根据SAS证明△BAF≌△EAF可得AF⊥BE,根据三角形的面积公式求出AD,根据勾股定理求出BD即可.【详解】解:由折叠得,AB=AE,∠BAF=∠EAF,在△BAF和△EAF中,{AB=AE∠BAF=∠EAFAF=AF,∴△BAF≌△EAF(SAS),∴BF=EF,∴AF⊥BE,又∵AF=4,AB=5,∴BF=AB2−A F2=3,在△ADE中,EF⊥AD,DG=EG,设DE边上的高线长为h,∴S△ADE =12AD⋅EF=12DG⋅h+12EG⋅h,即S△ADG +S△AEG=12AD⋅EF,∵S△AEG =12⋅GE⋅h=92,S△ADG=S△AEG,∴S△ADG +S△AEG=92+92=9,∴9=12AD⋅3,∴AD=6,∴FD=AD−AF=6−4=2,在Rt△BDF中,BF=3,FD=2,∴BD2=BF2+FD2=32+22=13,故选:A.7.A【分析】根据各个图象,利用面积的不同表示方法,列式证明结论a2+b2=c2,找出不能证明的那个选项.【详解】解:A选项不能证明勾股定理;B选项,通过大正方形面积的不同表示方法,可以列式(a+b)2=4×12ab+c2,可得a2+b2 =c2;C选项,通过梯形的面积的不同表示方法,可以列式(a+b)22=2×12ab+12c2,可得a2+b2=c2;D选项,通过这个不规则图象的面积的不同表示方法,可以列式c2+2×12ab=a2+b2+2×12ab,可得a2+b2=c2.故选:A.8.B【详解】根据勾股定理得:AB=2,AD=3,∴AE=3,∴OE=2−3,∴点E表示的数为−2+3.故答案为:B.9.B【分析】先将圆柱圆的侧面沿着点A所在的棱线剪开,得到长方形,得到AC=5cm,BC=242=12 cm,由此即可以利用勾股定理求出蚂蚁爬行的最短路线AB的长.【详解】如图,沿着点A所在的棱线剪开,此时AC=5cm,BC=242=12cm,∴蚂蚁爬行的最短路线AB=AC2+BC2=52+122=13cm,故选:B.10.D【分析】利用正方形的性质证明△ABI≌△ADC,得出∠AIB=∠ACD,即可得出∠CNI=∠NAI,即可判断①,利用△ABI≌△ADC,即可求出△ABI的面积,即可判断②,由勾股定理和S3+S4=S▱ABED,即可判断③,由③S1-S4=S3-S2,两边平方,根据勾股定理可得AC2−B C2=AK2−B K2,然后计算S12+S42−(S22+S32)=0,即可判断④.【详解】解:∵四边形ACHI和四边形ABED为正方形,∴AI=AC,AD=AB,∠CAI=∠BAD=90°,∵∠BAI=∠BAC+∠CAI,∠DAC=∠BAC+∠BAD,∴∠BAI=∠DAC,∴△ABI≌△ADC(SAS),∴∠AIB=∠ACD,∵∠CNI=∠CAI=90°,∴BI⊥CD,故①正确;∵S△ACD=S△AIB=12×AI×AC,S正方形ACHI=S1=AI×AC,∴S1:S△ACD=2:1,故②正确;∵S1=AC2,S2=BC2,S3+S4=S正方形ADEB=AB2,AC2+BC2=AB2,∴S1+S2=S3+S4,∴S1-S4=S3-S2,故③正确;∵ S1-S4=S3-S2,∴S12+S42−2S1S4=S22+S32−2S2S3,∵S1=AC2,S2=BC2,S3=AK•KJ= AK•AB,S4=BK•KJ=BK•AB,∴S12+S42=AC4+AB2BK2,S22+S32=BC4+AK2AB2,∵AB2=AC2+ BC2,AC2=AK2+CK2,BC2=BK2+CK2,∴AC2−A K2=BC2−B K2,即AC2−B C2=AK2−B K2,∴S12+S42−(S22+S32)=AC4+AB2BK2−(BC4+AK2AB2)=AC4−B C4+AB2(BK2−A K2)=(AC2+BC2)(AC2−B C2)−A B2(AC2−B C2) =AB2(AC2−B C2)−AB2(AC2−B C2)=0,∴S1•S4=S2•S3,故④正确,二.填空题11.c2+ab a2+b2+ab【详解】解:如图所示:S1=c2+12ab×2=c2+ab,S2=a2+b2+12ab×2=a2+b2+ab.故答案为c2+ab,a2+b2+ab.12. 20 13【分析】(1)根据两点的纵坐标相同即可得出AB的长度;(2)过C作AB的垂线交AB于点E,连接AD,构造方程解出即可.【详解】(1)根据A、B两点的纵坐标相同,得AB=12−(−8)=20故答案为:20(2)如图:设AD=a,根据点A、B的纵坐标相同,则AE=12,CE=1−(−17)=18由ΔADE是直角三角形,得:(CE−CD)2+AE2=a2∴52+122=a2故答案为:13 13.102【分析】利用勾股定理依次计算出OA2=2,OA3=3,OA4=4=2,.. OA n=n,然后依据计算出前几个三角形的面积,然后依据规律解答求得S10即可.【详解】由题意得:OA2=OA12+A1A22=12+12=2,OA3=OA22+A2A32=12+(2)2=3,OA4=OA32+A3A42=12+(3)2=4=2,∴OAn=n,∴OA10=10,∴S10=12OA10⋅A10A11=12×10×1=102,故答案为:102.14.①③【分析】设小正方形的边长为1,则5个小正方形的面积为5,进而可知拼成的大正方形的边长为5,再根据所画虚线逐项进行拼接,看哪种剪法能拼成边长为5的正方形即可.【详解】解:按照①中剪法,在外围四个小正方形上分别剪一刀然后放到相邻的空处,可拼接成边长为5的正方形,符合题意;如下图所示,按照③中剪法,通过拼接也可以得到边长为5的正方形,符合题意;按照②中剪法,无法拼接成边长为5的正方形,不符合题意;故选①③.故答案为:①③.15.3或18或22【分析】分当点P在线段AB上运动时,当点P在线段BC上运动且在点E的右边时和当点P在线段BC上运动且在点E的左边时三种情况讨论,即可求出t的值.【详解】解:∵∠C=90°,BC=16cm,AC=12cm,∴AB=AC2+BC2=162+122=20,∵点E是BC的中点,∴CE=BE=12BC=8cm,S△ACE=S△ABE=12S△ABC=12×12×12×16=48cm2.当点P在线段AC上运动时,∵△APE的面积等于12,即S△APE =14S△ACE,∴AP=14AC=3,∴t=3÷1=3秒;当点P在线段BC运动时上且在点E的右边时,,如图2所示,同理可知BP=14BE=2cm,∴t=(12+8+2)÷1=22秒;当点P在线段BC上运动且在点E的左边时,如图3所示,同理可知CP=12CE=2cm,∴t=(12+8−2)÷1=18秒;故答案为∶3或18或22.16.13【分析】通过过点A 作GC 的平行线AN ,并在AN 上截取AH =AC ,构造全等三角形,得到当B ,D ,H 三点共线时,可求得AE +BD 的最小值;再作垂线构造矩形,利用勾股定理求解即可.【详解】如图,过点A 作GC 的平行线AF ,并在AF 上截取AH =AC ,连接DH ,BH .则∠HAD =∠C .在△ADH 和△CEA 中,{AD =CE ,∠HAD =∠C ,AH =CA ,∴△ADH≌△CEA(SAS),∴DH =AE ,∴AE +BD =DH +BD ,∴当B ,D ,H 三点共线时,DH +BD 的值最小,即AE +BD 的值最小,为BH 的长.∵AG ⊥BG ,AB =41,AG =5,∴在Rt △ABG 中,由勾股定理,得BG =AB 2−A G 2=(41)2−52=4.如图,过点H 作HM ⊥GC ,交GC 的延长线于点M ,则四边形AGMH 为长方形,∴HM =AG =5,GM =AH =AC =8,∴在Rt △BMH 中,由勾股定理,得BH =BM 2+HM 2=(4+8)2+52=13.∴AE+BD的最小值为13.故答案为:13.三.解答题17.证明:如图,延长AD至点E,使得AD=DE,连接CE,∵AD为BC边上的中线,∴BD=DC,又∵AD=DE,∠ADB=∠EDC,∴△ABD≌△ECD,∴AB=EC=3,∠BAD=∠E,又∵AE=2AD=4,AC=5,∴AC2=AE2+CE2,∴∠E=90°∴∠BAD=∠E=90°∴AD⊥AB.18.解:∵小球滚动的速度与机器人行走的速度相等,∴BC=AC,设BC=AC=x m,则OC=(8-x)m,在Rt△BOC中,∵OB2+OC2=BC2,.∴32+(8-x)2=x2,解得x=7316∴机器人行走的路程BC为73m.1619.(1)解:第一组勾股数的第一个数为3=2×1+1,第二个数为4=2×1×(1+1),第三个数为4=2×(1+1)+1,第二组勾股数的第一个数为5=2×2+1,第二个数为12=2×2×(2+1),第三个数为12=2×2×(2+1)+1,第三组勾股数的第一个数为7=2×3+1,第二个数为24=2×3×(3+1),第三个数为25=2×3×(3+1)+1,所以第四组勾股数组的第一个数为2×4+1=9,第二个数为2×4×(4+1)=40,第三个数为2×4×(4+1)+1=41,∴第四组勾股数组为(9,40,41);(2)解:由(1)可知:第n组勾股数为(2n+1,2n2+2n,2n2+2n+1),证明:∵(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,(2n2+2n+1)2=(2n2+2n+1)(2n2+2n+1)=4n4+4n3+2n2+4n3+4n2+2n+2n2+2n+1=4n4+8n3+8n2+4n+1∴(2n+1)2+(2n2+2n)2=(2n2+2n+1)220.解:(1)如图,连接BG.在直角△BCG中,由勾股定理得到:BG=BC2+GC2=42+32=5(dm),即线段BG的长度为5dm;(2)①把ADEH展开,如图此时总路程为(3+3+5)2+42=137②把ABEF展开,如图此时的总路程为(3+3+4)2+52=125=55③如图所示,把BCFGF展开,此时的总路程为(3+3)2+(5+4)2=117由于117<125<137,所以第三种方案路程更短,最短路程为117.21.(1)解:∵直线DE是对称轴,∴AE=BE,∵AC=6,BC=8,设AE=BE=x,则CE=8−x在Rt△ACE中,∠C=90°,∴AC2+CE2=AE2,∴62+(8−x)2=x2,,解得x=254∴BE=254(2)解:∵直线AF是对称轴,∴AC=AG,CF=CG,∵AC=6,BC=8,设CF=CG=x,则BF=8−x,∴在Rt△ACB中,∠C=90°,AB=AC2+BC2=62+82=10,∴BG=AB−AG=4,在Rt△BGF中,∠BGF=90°,∴GF2+BG2=BF2,∴x2+42=(8−x)2,解得x=3,∴BF=8−3=5.22.解:(1)能,如图所示,正方形ABCD即为所求;(2)能,如图所示,正方形ABCD即为所求;(3)如图所示,在AB上截取AM=BE,连接DM、MF,DM、FM即为裁剪线,将△DAM拼接△DCH处,使DA与DC重合,将△MEF拼接至△HGF处,使ME和HG重合,EF与FG 重合,得到正方形DMFH,∴剪出的块数最少为5块,故答案为:5.23.如图:∵点C、点B、点B′三点共线,∠C=∠C′=90°,∴四边形ACC′B′是直角梯形,∵△ACB与△BC′B′是一样的直角三角板,∴Rt△ACB≌Rt△BC′B′,∴∠CAB=∠C′BB′,AB=BB′,∴∠CBA+∠C′BB’=90°∴△ABB′是等腰直角三角形,,所以S梯形ACC′B′=(AC+B′C′)•CC′÷2=(a+b)22S △ACB =12AC ⋅BC =12ab ,S △BC ′B ′=12ab ,S △ABB ′=12c 2,所以(a +b)22=12ab +12ab +12c 2,a 2+2ab+b 2=ab+ab+c 2,∴a 2+b 2=c 2;拓展1.过A 作AP ⊥BC 于点P ,如图2,则∠BMF =∠APB =90°,∵∠ABF =90°,∴∠BFM+∠MBF =∠MBF+∠ABP ,∴∠BFM =∠ABP ,在△BMF 和△ABP 中,{∠BFM =∠ABP ∠BMF =∠APB =900BF =AB,∴△BMF ≌△ABP (AAS ),∴FM =BP ,同理,EN =CP ,∴FM+EN =BP+CP ,即FM+EN =BC ,故答案为FM+EN =BC ;拓展2.过点D 作PQ ⊥m ,分别交m 于点P ,交n 于点Q ,如图3,则∠APD =∠ADC =∠CQD =90°,∴∠ADP+∠DAP =∠ADP+∠CDQ =90°,∴∠DAP =∠CDQ ,在△APD 和△DQC 中,{∠DAP =∠CDQ ∠APD =∠DQC AD =DC,∴△APD ≌△DQC (AAS ),∴AP =DQ =2,∵PD =1,∴AD 2=22+12=5,∴正方形的面积为 5,故答案为5.。
八年级数学上册期末练习卷
八年级数学上册期末练习卷(1)姓名:一、单项选择题(每小题3分,共30分)1.(3分)下列各数是无理数的是()A.﹣B.﹣1C.﹣D.02.(3分)在平面直角坐标系中,点M(﹣3,6)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列各组数中,不能作为直角三角形的三边的是()A.3,4,5B.2,3,C.8,15,17D.32,42,524.(3分)一次函数y=x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)下列计算中,正确的是()A.+=B.3+2=5C.×=3D.2﹣2=6.(3分)我校八年级“汉字听写大会”比赛中,各班代表队得分(单位:分)如下:9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分7.(3分)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是()A.∠3=∠5B.∠1=∠5C.∠4+∠5=180°D.∠2=∠48.(3分)把1~9这九个数填入3×3方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则x y的值为()A.9B.1C.8D.﹣89.(3分)下列命题正确的是()A.数轴上的每一个点都表示一个有理数B.三角形的一个外角大于任意一个内角C.甲、乙两人五次考试平均成绩相同,且S甲2=0.9,S乙2=1.2,则乙的成绩更稳定D.在平面直角坐标系中,点(4,﹣2)与点(4,2)关于x轴对称10.(3分)如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,点E(1,0),D为线段BC的中点,P为y轴上的一个动点,连接PD、PE,当△PED的周长最小时,点P的坐标为()A.(0,)B.(0,1)C.(1,0)D.(0,)二、填空题(每小题3分,共24分)11.(3分)9的算术平方根是.12.(3分)某跳远队甲、乙两名运动员最近20次跳远成绩的平均数均为600cm,若甲跳远成绩的方差为S甲2=284,2=65.则成绩比较稳定的是.(填“甲”或“乙“)乙跳远成绩的方差为S乙13.(3分)以方程组的解为坐标的点(x,y)在第象限.14.(3分)如图,若一次函数y=kx+3与正比例函数y=2x的图象交于点(1,m),则方程组的解为.15.(3分)生活中常见的探照灯、汽车大灯等灯具都是凹面镜.如图,从光源P点照射到凹面镜上的光线PA、PB 等反射以后沿着与直线PF平行的方向射出,若∠CAP=36°,∠DBP=58°,则∠APB的度数为.16.(3分)如图,已知正方形ABCD的面积为4,正方形FHIJ的面积为3,点D、C、G、J、I在同一水平面上,则正方形BEFG的面积为.17.(3分)对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=,如:3⊕2==,那么12⊕4=.18.(3分)如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…则点A2022的坐标是.三、解答题(7道小题,共46分)19.(5分)计算:.20.(5分)解方程组:.21.(7分)已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).(1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC;(2)作△ABC关于x轴对称的△DEF,其中点A,B,C的对应点分别为点D,E,F;(3)连接CE,CF,请直接写出△CEF的面积.22.(6分)深圳市教育局印发的《深圳市义务教育阶段学校课后服务实施意见》明确中小学课后延时服务从2021年3月5日开始实施.某校积极开展课后延时服务活动,提供了“有趣的生物实验、经典影视欣赏、虚拟机器人竞赛、趣味篮球训练、国际象棋大赛……”等课程供学生自由选择.一个学期后,该校现为了解学生对课后延时服务的满意情况,随机对部分学生进行问卷调查,并将调查结果按照“A.非常满意;B.比较满意;C.基本满意;D.不满意”四个等级绘制成了如图所示的两幅不完整的统计图:请你根据图中信息,解答下列问题:(1)该校抽样调查的学生人数为人,请补全条形统计图;(2)样本中,学生对课后延时服务满意情况的“中位数”所在等级为,“众数”所在等级为;(填“A、B、C或D”)(3)若该校共有学生2100人,据此调查估计全校学生对延时服务满意(包含A、B、C三个等级)的学生有人.23.(7分)列方程组解应用题.全自动红外体温检测仪是一种非接触式人体测温系统,通过人体温度补偿、温度自动校正等技术实现准确、快速的测温工作,具备人体非接触测温、高温报警等功能.为了提高体温检测效率,某医院引进了一批全自动红外体温检测仪.通过一段时间使用发现,全自动红外体温检测仪的平均测温用时比人工测温快2秒,全自动红外体温检测仪检测60个人的体温的时间比人工检测40个人的体温的时间还少50秒,请计算全自动红外体温检测仪和人工测量测温的平均时间分别是多少秒?(1)函数图象与坐标轴围成的三角形的面积是.(2)观察图象,当x>2时,y的取值范围是.(3)将直线y=2x﹣4平移后经过点(﹣3,1),求平移后的直线的函数表达式.25.(9分)如图(1),AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF的度数.小明想到了以下方法:解:如图(1),过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等)∵AB∥CD(已知)∴PM∥CD(平行于同一条直线的两直线平行)∴∠2+∠PFD=180°(两直线平行,同旁内角互补)∵∠PFD=130°(已知)∴∠2=180°﹣130°=50°∴∠EPF=∠1+∠2=40°+50°=90°即∠EPF=90°【探究】如图(2),AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.【应用】如图(3),在【探究】的条件下,∠PEA的平分线和∠PFC的平分线交于点G,求∠G的度数.八年级数学上册期末练习卷(2)姓名:一、选择题(每小题3分,共30分)1.16)A.4B.4± C.2D.2±2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A.1、2、3B.2、3、4C.3、4、5D.4、5、63.把△ABC 各点的横坐标都乘以-1,纵坐标都乘以-1,符合上述要求的图是()A.B.C.D.4.下列命题中,为真命题的是【】A.对顶角相等B.同位角相等C.若22a b =,则=a bD.若a b >,则22a b->-5.(2011贵州安顺)我市某一周的最高气温统计如下表:则这组数据的中位数与众数分别是()A.27,28B.27.5,28C.28,27D.26.5,276.下列计算正确的是()A.2ab ab ab ⋅=B.33(2)2a a =C.33(0)a a a =≥D.0,0)a b ab a b =≥≥7.若函数y =(2m +1)x 2+(1﹣2m )x (m 为常数)是正比例函数,则m 的值为()A.m >12B.m =12C.m <12D.m =-128.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是()A.∠3=∠4B.∠A +∠ADC =180°C.∠1=∠2D.∠A =∠59.如图,将△ABC 绕点C 顺时针方向旋转40°得△A’CB’,若AC ⊥A’B’,则∠BAC 等于()A.50°B.60°C.70°D.80°10.在平面直角坐标系中,把直线y =x 向左平移一个单位长度后,所得直线的解析式为()A .y =x +1B.y =x -1C.y =xD.y =x -2二、填空题(每小题3分,共30分)11.若三元一次方程组512x y x z y z +=⎧⎪+=-⎨⎪+=-⎩的解使20ax y z +-=,则a 的值是__________.最高气温(℃)25262728天数112312.平面直角坐标系中,过点()2,3-的直线l 经过第一、二、三象限,若点()0,a ,()1,b -,(),1c -都在直线l上,则下列判断正确的是__________.①a b<②3a <③3b <④2c <-13.已知点(3,1)P -关于y 轴的对称点Q 的坐标是(,1)a b b +-,则a b 的值为___.14.木工做一个长方形桌面,量得桌面的长为60cm ,宽为32cm ,对角线为68cm ,这个桌面_____(填”合格”或”不合格”).15.某中学举行广播操比赛,六名评委对某班打分如下:7.5分,8.2分,7.8分,9.0分,8.1分,7.9分,则去掉一个最高分和一个最低分后的平均分是__________分.16.如果一次函数y =x +b 经过点A (0,3),那么b =_______.17.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是_________.18.-x x 1x +=__________.19.如图,已知直线DE 经过点A 且1B ∠=∠,260∠=︒,则3∠=__________度.20.如图,点B 、C 分别在两条直线2y x =和y kx =上,点A 、D 是x 轴上两点,已知四边形ABCD 是正方形,则k 值为______.三、解答题(60分)21.计算:(118232;(2)(232.21.解方程组:(1)21y x x y =⎧⎨-=⎩(2)421x y x y +=⎧⎨-=-⎩.23.在一分钟投篮测试中,甲、乙两组同学的一次测试成绩如下:成绩(分)456789甲组(人)124215乙组(人)113523(1)求甲、乙两组一分钟投篮测试成绩的平均数和方差;(2)从统计学的角度看,你认为哪组同学的测试成绩较好?为什么?24.如图,已知射线CB∥OA,∠C=∠OAB=100°,点E,F 在CB 上,且满足∠FOB=∠AOB,OE 平分∠COF.(1)求∠EOB 的度数;(2)若向右平移AB,其他条件都不变,那么∠OBC∶∠OFC 的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值.25.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如,图中过点P 分别作x 轴,y 轴的垂线.与坐标轴围成矩形OAPB 的周长的数值与面积的数值相等,则点P 是和谐点.(1)判断点()1,2M ,()4,4N 是否为和谐点,并说明理由;(2)若和谐点()(),30P a a >在直线y x b =-+(b 为常数)上,求,a b 的值.26.为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y (元)与用电量x (度)间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:(2)小明家某月用电120度,需交电费元(3)求第二档每月电费y (元)与用电量x (度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m 元,小刚家某月用电290度,交电费153元,求m 的值.档次第一档第二档第三档每月用电量x (度)0<x≤140八年级数学上册期末练习卷(3)姓名:一、单选题(共42分,1~10题每题3分,11~16每题2分)1.下列实数中,无理数是()A. 3.14- B.21C.7D.492.下列运算中,正确的是()A.2462= B.255=± C.225= D.532=3.已知点()1P a -,和点()6Q b ,关于y 轴对称,则 a b +的值为()A.-5B.5C.-7D.74.下列说法正确的是()A.2xB.立方根等于它本身的数是1-和1C.648± D.81算术平方根是9-5.如图,两个较大正方形的面积分别为576、625,则字母A 所代表的正方形的边长为()A.1B.49C.16D.76.为庆祝世界杯夺冠,学校开展球赛知识抢答活动.经过几轮筛选,八(1)班决定从甲、乙、丙、丁四名同学中选择一名同学代表班级参加比赛,经过统计,四名同学成绩的平均数(单位:分)及方差(单位:分2)如表所示:如果要选出一名成绩好且状态稳定的同学,那么应该选择()A.甲B.乙C.丙D.丁7.下列命题中的真命题是()A.相等的角是对顶角B.若两个角的和为180°,则这两个角互补C .若实数a ,b 满足22 a b =,则a b =D.同位角相等8.在ABC 中,A ∠,B ∠, C ∠的对边分别记为a ,b ,c ,下列结论中不正确的是()A.如果222a b c =-,那么ABC 是直角三角形且90B ∠=︒B.如果345A B C ∠∠∠=∶∶∶∶,那么ABC 是直角三角形C.如果222 91625a b c =∶∶∶∶,那么ABC 是直角三角形D.如果A B C ∠-∠=∠,那么 ABC 是直角三角形9.183-的值在()A.3到4之间B.4到5之间C.1到2之间D.2到3之间甲乙丙丁平均数99969799方差 1.20.60.60.810.已知点()3,2M 与点(),N a b 在同一条平行于x 轴的直线上,且N 到y 轴的距离是4,则点N 的坐标是()A.()4,2或()4,2-B.()4,2-或()1,2--C.()4,2-或()4,2--D.()4,2-或()5,2--11.今年9月22日是第三个中国农民丰收节,小彬用3D 打印机制作了一个底面周长为20cm ,高为10cm 的圆柱粮仓模型.如图BC 是底面直径,AB 是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A ,C 两点(接头不计),则装饰带的长度最短为()A.20cmπ B.40cmπ C.102cmD.202cm12.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,本长几何?”意思是:用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺.向木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为()A. 4.5112y x y x =+⎧⎪⎨=-⎪⎩ B. 4.521y x y x =+⎧⎨=-⎩ C. 4.5112y x y x =-⎧⎪⎨=+⎪⎩ D. 4.521y x y x =-⎧⎨=+⎩13.如图,直线CE DF ∥,135CAB ∠=︒,85ABD ∠=︒,则12∠+∠=()A.30°B.35°C.36°D.40°14.一次函数1y ax b =+与2y bx a =+在同一坐标系的图象正确的是()A.B.C.D.15.如图,Rt ABC △中,90B ∠=,4AB =,8BC =,将Rt ABC △折叠,使点C 与AB 的中点D 重合,折痕交 AC 于点M ,交BC 于点N ,则线段BN 的长为().A.73B.154C.4D.10316.甲乙两车从A 城出发匀速驶向B 城,在整个行驶过程中,两车离开A 城的距离()km y 与甲车行驶的时间()h t 之间的函数关系如图,则下列结论错误的是()①A 、B 两城相距300千米②甲车比乙车早出发1小时,却晚到1小时③相遇时乙车行驶了2.5小时④当甲乙两车相距50千米时,t 的或54或56或156或254A .①②B.②③C.①④D.③④第II 卷(非选择题)二、填空题(共10分,17、18每题3分,19题共4分,每空2分)17.2(11)-的平方根是____________.18.用一组a ,b 的值说明“若a b <,则22a b <”是假命题,若小明取 2a =-,则b =__________.19.如图,在平面直角坐标系中,点()1A 1,1在直线=图象上,过1A 点作y 轴平行线,交直线y x =-于点1B ,以线段11A B 为边在右侧作第一个正方形111111A B C D C D ,所在的直线交y x =的图象于点2A ,交y x =-的图象于点2B ,再以线段22A B 为边在右侧作第二个正方形2222A B C D …依此类推,按照图中反映的规律,第3个正方形的边长是______;第100个正方形的边长是______.三、解答题(共68分)20.计算(写出详细的计算过程)(1(0382515342--+-⨯+-(2((27532323÷--+21.如图,在ABC 中,CG AB ⊥,垂足为G ,点F 在BC 上,EF AB ⊥,垂足为E .(1)GC 与EF 平行吗?为什么?(2)如果12∠=∠,且360∠=︒,求ACB ∠的度数.22.北京冬奥会的成功举办掀起了全民“冬奥热”,某校组织全校七、八年级学生举行了“冬奥知识”竞赛,现分别在七、八两个年级中各随机抽取10名学生,统计这部分学生的竞赛成绩,相关数据统计整理如下:【收集数据】七年级10名同学测试成绩统计如下:85788679729179726989,,,,,,,,,八年级10名同学测试成绩统计如下:85807684807292747582,,,,,,,,,【整理数据】两组数据各分数段,如下表所示:成绩6070x ≤<7080x ≤<8090x ≤<90100x ≤<七年级1531八年级451【分析数据】两组数据的平均数、中位数、众数、方差如下表:平均数中位数众数方差七年级80ab 2S 八年级c808033【问题解决】根据以上信息,解答下列问题:(1)填空:=a ,b =,c =;(2)求七年级同学成绩的方差,试估计哪个年级的竞赛成绩更整齐?(3)按照比赛规定90分及其以上为优秀,若该校七年级学生共1500人,八年级学生共1200人,请估计这两个年级竞赛成绩达到优秀学生的总人数.(4)该校想让一半以上的学生得到80分及以上,你认为该校七、八年级中哪个年级学生知识竞赛成绩更好?请说明理由23.共享电动车是一种新理念下的交通工具:主要面向310km ~的出行市场,现有A 、B 两种品牌的共享电动车,收费与骑行时间之间的函数关系如图所示,其中A 品牌收费方式对应1y ,B 品牌的收费方式对应2y .(1)B 品牌10分钟后,每分钟收费元;(2)写出B 品牌的函数关系式;(3)如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为20km/h ,小明家到工厂的距离为9km ,那么小明选择哪个品牌的共享电动车更省钱呢?(4)直接写出两种收费相差2元时x 的值是.24.如图所示,在平面直角坐标系xOy 中,ABC 的三个顶点坐标分别为()()()122441A B C ,,,,,.(1)如果ABC 关于y 轴对称的图形是111A B C △,则111A B C △的顶点坐标为1A (,),1B (,),1C (,);(2)若()224B -,与点B 关于一条直线成轴对称,则这条对称轴是,此时A 点关于这条直线的对称点2A 的坐标为;(3)ABC 的面积为;(4)若点P 在x 轴上,求出PA PC +的最小值.(注:不需要作图)25.防疫期间,某药店销售一批外科口罩,如果一次性购买40个以上的外科口罩,超过40个部分按优惠价出售.上个月小王家一次性买了外科口罩90个,花了65元;小李家一次性买了外科口罩120个,花了80元.(1)求销售一个外科口罩的原价和优惠价分别是多少?(2)设一次性购买外科口罩x 个,花费y 元,写出y 与x 之间的函数关系式.(3)这个月学校一次性购买该外科口罩1080个,花了多少钱?26.如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P )始终以3km/min 的速度在离地面5km 高的上空匀速向右飞行,2号试飞机(看成点Q )一直保持在1号机P 的正下方.2号机从原点O 处爬升到(4,4)A 处便立刻转为水平飞行,再过1min 到达B 处开始沿直线BC 降落,要求1min 后到达()10,1C 处.(1)求OA 的h 关于s 的函数解析式,并直接写出2号机的爬升速度;(2)求BC 的h 关于s 的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ 不超过2km 的时长是多少?八年级数学上册期末练习卷(4)姓名:一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是符合题意的)1.点P (1,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.估计25-).A.0和1之间B.1和2之间C.0和1-之间D.1-和2-之间3.以下命题的逆命题为真命题的是().A.对顶角相等B.同旁内角互补,两直线平行C.若a=b ,则a 2=b 2D.若a >0,b >0,则a 2+b 2>04.如图,直线AE BF ∥,BC 平分ABF ∠,AC BC ⊥,140∠=︒,则2∠的度为()A.20︒B.40︒C.70︒D.140︒5.某班有50人,一次数学测试后,老师对测试成绩进行了统计.由于小颖没有参加此次集体测试,因此计算其他49人的平均分为92分,方差s 2=23.后来小颖进行了补测,成绩是92分,关于该班50人的数学测试成绩,下列说法正确的是()A.平均分不变,方差变小B.平均分不变,方差变大C.平均分和方差都不变D.平均分和方差都改变6.直线y kx b =+经过第二、三、四象限,则直线y bx k =+的图象可能是图中的().A. B. C. D.7.若关于x ,y 的二元一次方程组59x y kx y k +=⎧⎨-=⎩的解也是二元一次方程2x +3y =6的解,则k 的值为()A.﹣34B.34C.43 D.﹣438.如图,在ABC ∆中,6045C B AD BC EF ∠︒∠︒⊥=,=,,垂直平分AC 交AD 于点E ,交AC 于点F ,8=AB ,则EF 的长为().A.324B.364C.423D.4639.如图,在平面直角坐标系中,点A 的坐标是(3,0)-,点B 的坐标是(0,4),点C 是OB 上一点,将ABC 沿AC 折叠,点B 恰好落在x 轴上的点B '处,则点C 的坐标为()A.3,02⎛⎫ ⎪⎝⎭B.30,2⎛⎫ ⎪⎝⎭C.5,02⎛⎫⎪⎝⎭D.50,2⎛⎫⎪⎝⎭10.如图,90MON ∠=︒,在直角三角形ABD 中,90BAD ∠=︒,顶点A ,B 分别在边OM ON ,上,当B 在边ON 上运动时,点A 随之在边OM 上运动,直角三角形ABD 的形状保持不变,其中21AB AD ==,.运动过程中,点D 到点O 的最大距离为().A.21+ B.5C.1455D.52二、填空题(本大题共7小题,每小题3分,共21分)11.16的平方根是___________.12.若230a b ++-=,则点(),P a b 关于x 轴对称的点的坐标为______.13.如图,直线:AB y kx b =+与直线:CD y mx n =+交于点E (3,1),则关于x ,y 的二元一次方程组y kx by mx n=+⎧⎨=+⎩的解为___.14.如图是叠放在一起的两张长方形卡片,则1∠,2∠,3∠中一定相等的两个角是__________.15.自然数4,5,5,x ,y 从小到大排列后,其中位数是4,如果这组数据唯一的众数是5,那么所有满足条件的x ,y 中,x y +的最大值是_____.16.关于x ,y 的方程组10210x ay bx y ++=⎧⎨++=⎩有无数组解,则a b +的值为_____17.如图,△ABC 中,AC =DC =3,BD 垂直∠BAC 的角平分线于D ,E 为AC 的中点,则图中两个阴影部分面积之差的最大值为________.三、解答题(本大题共8小题,共69分.解答应写出过程)18.(1)计算:(1125282-⎛⎫-+-+- ⎪⎝⎭(2)解方程组:1434123x y x y ⎧⎛⎫-- ⎪⎪⎪⎝⎭⎨⎪-⎪⎩=19.如图,已知△ABC ,请用尺规过点A 作一条直线,使其将△ABC 分成面积相等的两部分,(保留作图痕迹,不写作法)20.如图,∠A=∠BCD,CA=CD,点E在BC上,且DE∥AB,求证:AB=EC.22.I号无人机从海拔10m处出发,以10m/min的速度匀速上升,II号无人机从海拔30m处同时出发,以a(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m).无人机海拔高度y(m)与时间x(min)的关系如图.两架无人机都上升了15min。
人教版八年级上册数学第十一章《三角形》测试卷(一)(含答案)
人教版八年级上册第十一章《三角形》测试卷(含答案)时间:12分钟总分120分一、选择题(每小题3分,共36分)1.如果三角形的两边长分别为2和7,其周长为偶数,则第三边长为 ( )A. 3B. 6C. 7D. 82.下列说法:①△ABC的顶点A就是∠A;②三角形一边的对角也是另外两边的夹角;③角形的中线就是一顶点与它对边中点连接的线段;④三角形的角平分线就是三角形内角的平分线,其中正确的说法是 ( )A.①②③④B.②③④C.②③D.②④3.一个三角形的三边分别为3,5,x,则x的取值范围是 ( )A. x>2B. x<5C. 3<x<5D. 2<x<84.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A.锐角三角形B.钝角三角形C.直角三角形D,都有可能5.如图所示,∠B+∠C=90°,则△ABC的形状是 ( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形6.如图所示,AD是∠CAE的平分线,∠B=35°,∠DAC=65°,则∠ACD的度数为( )A. 25°B. 85°C. 60°D. 95°第5题图第6题图第7题图第8题图7.如图所示,AB∥CD、AD和BC相交于点O,∠A=35°,∠AOB = 75°,则∠C的度数为 ( )A.35°B. 40°C. 70°D. 80°8.如图所示,△ABC中,∠B= 50°,∠C= 60°,点D是BC边上的任意一点,DE⊥AB 于E, DF丄AC于F,则∠EDF的度数为 ( )A. 80°B. 110°C. 130°D. 140°9.若一个多边形的内角和是1080°,则这个多边形的边数为()A. 6B. 7C. 8D. 1010.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边形、正六边形,那么另外一个为()A.正三角形B.正四边形C.正五边形D.正六边形11.已知一个三角形的三条边长均为正整数.若其中仅有一条边长为5,且它又不是最短边,则满足条件的三角形个数为()A. 4B. 6C. 8D. 1012.如图,过正五边形ABCDE的顶点B作直线l∥AC,则∠1的度数为()A. 36°B. 45°C. 55°D. 60°二、填空题(每空2分.共16分)1.如图,DE//BC, CD是∠ACB的平分线,∠ACB = 50°,则∠EDC的度数为.2.如图,AD,AE分别是△ABC的中线和高,BD=3cm, AE=4cm,则△ABC的面积为______.3.如图所示,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C = .4.如图所示,在四边形ABCD中,若∠A=∠C=90°, ∠B=62°,则∠D的度数为_______.5.一个多边形的每个外角都相等,且比它的内角小140°,则这个多边形是_____ 边形.6.如图所示,BE, CD为两条角平分线,∠ABC=∠ACB,图中与∠1相等的角有______个.7.如图所示,直角△ABC中,∠ABC=90°, AB=5cm, BC=12cm, AC=13cm,若BD是AC边上的高,则BD的长为_________cm.8.如果一个正多边形的一个外角是36°,那么该正多边形的边数为_________.三、作图题(共12分)画出图中的每个多边形的所有对角线.四、解答题(共56分)1.(6分)小颖要制作一个三角形木架,现有两根长度为8cm和5cm的木棒,如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?2.(6分)如图所示,AF,AD分别是△ABC的高和角平分线,且∠B = 36°,∠C= 76°,求,∠DAF的度数.3.(6分)如图所示,AD是△ABC的边BC的中线,已知AB=5cm,AC=3cm,求△ABD和△ACD的周长之差.4.(6分)如图所示,AD是△ABC的角平分线,E是BC延长线上一点,∠EAC=∠B.∠ADE与∠DAE相等吗?为什么?5.(6分)如图所示,已知在△ABC 中,∠ABC 和∠ACB 的平分BD 和CE 相交于点I ,且∠A = 70°.求∠BIC 的度数.6.(6分)如图所示,O 在五边形 ABCDE 的边AB 上,连接OC ,OD ,OE ,可以得到几个三角形?它与边数有何关系?7.(6分)如果一个多边形的每个内角都相等,它的一个外角等于一个内角的32,求这个多边形的边数.8.(6分)如图,在四边形ABCD 中,∠1=∠2,∠3=∠4,且∠D +∠C =220°,求∠AOB 的度数.9.(8分)如图所示,AD 是△ABC 的中线,DE 是△ADC 的中线,EF 是△DEC 的中线,FG 是△EFC 的中线.(1)△ABD 与△ADC 的面积有何关系?请说明理由. (2)若△GFC 的面积S △GFC =1cm 2,求△ABC 的面积.参考答案:。
八年级上册数学单元测试卷-第1章 三角形的初步知识-浙教版(含答案)
八年级上册数学单元测试卷-第1章三角形的初步知识-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.150°B.120°C.90°D.60°2、如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.3对B.4对C.2对D.5对3、下列说法正确的是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等边三角形都全等4、如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.65、如图,△ABC≌△ADE,∠C=40°,则∠E的度数为()A.80°B.75°C.40°D.70°6、如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD 为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有()A.1个B.2个C.3个D.4个7、如图,平分交于点,平分交于点,若,,则的度数为()A. B. C. D.8、已知△ABC中,AB=8,BC=15,AC=17,则下列结论无法判断的是( )A.△ABC是直角三角形,且AC为斜边B.△ABC是直角三角形,且∠ABC=90° C.△ABC的面积为60 D.△ABC是直角三角形,且∠A=60°9、如图所示图案是我国汉代数学家赵爽在注解《周懈算经》时给出的,人们称它为“赵爽弦图”.已知AE=4,BE=3,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD 内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为:()A. B. C. D.10、如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D;若DC=3,AB=8则△ABD的面积是( )A.8B.24C.12D.1611、如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形12、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里13、如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD=BC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是()A.①②B.①③④C.①②④D.①②③④14、如图,在四边形ABCD中,CD∥AB,AC⊥BC,若∠B=50°,则∠DCA等于()A.30°B.35°C.40°D.45°15、如图,己知直线y= x-3与x轴、y轴分别交于A,B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA,PB,则△PAB面积的最大值是( )A.8B.12C.D.二、填空题(共10题,共计30分)16、人站在晃动的公共汽车上.若你分开两腿站立,则需伸出一只手去抓栏杆才能站稳,这是利用了________ .17、己知,在△ABC中,AD是BC边上的高线,且,,则________.18、如图,在△ABC中,高AD和BE交于点H,且BH=AC,则∠ABC=________.19、如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将沿EF对折后,点B落在点P处,则点P到点D的最短距为________.20、如图,矩形OABC的顶点A、C的坐标分别为(4,0)、(0,2),对角线的交点为P,反比例函数y= (k>0)的图象经过点P,与边BA、BC分别交于点D、E,连接OD、OE、DE,则△ODE的面积为________.21、如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠ACP=∠PBC,则∠BPC=________.22、在中,若对角线AC=6,BD=8,AB=a,则a的取值范围是________.23、一副三角板如图放置,若∠1=90°,则∠2的度数为________.24、“等角对等边”的逆命题是________25、如图,等腰中,,的垂直平分线交边于点,且,则的度数是________.三、解答题(共5题,共计25分)26、如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=30°,∠E=20°,求∠ACE和∠BAC的度数.27、如图四边形ABCD和四边形OEFG都是正方形,点O是正方形ABCD两对角线的交点,已知AB=2,EF=3,正方形OEFG绕点O转动,OE交BC上一点N,OG交CD上一点M.求四边形OMCN的面积.28、如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,求∠BAC的度数.29、如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?30、如图,DC⊥CA,EA⊥CA,CD=AB,CB=AE.求证:△BCD≌△EAB.参考答案一、单选题(共15题,共计45分)1、B2、A3、4、A5、C6、C7、A8、D10、C11、A12、C13、D14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上数学练习卷(1)
班级 姓名 座号
一.填空题
1 、 如图1:ΔABE ≌ΔACD ,AB=8cm ,AD=5cm ,∠A=60°,
∠B=40°,则AE=_______,∠C=_____。
2 、 已知,如图2:∠ABC=∠DEF ,AB=DE ,要说明ΔABC ≌ΔDEF
(1) 若以“SAS ”为依据,还要添加的条件为______________; (2) 若以“ASA ”为依据,还要添加的条件为______________;
C
图2
B
F
E C D
E
3.如图3所示:要测量河岸相对的两点A 、B 之间的距离,先从B 处出发与AB
成90°角方向,向前走50米到C 处立一根标杆,然后方向不变继续朝前走50米到D 处,在D 处转90°沿DE 方向再走17米,到达E 处,使A 、C 与E 在同一直线上,那么测得A 、B 的距离为_____米。
4.如图4,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____. 二、选择题
1. 两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( ) A. 两角和一边 B. 两边及夹角 C. 三个角
2.下列各图中,不一定全等的是( )
A .有一个角是45°腰长相等的两个等腰三角形 B. 周长相等的两个等边三角形
C. 有一个角是100
D. 3、如图在△ABD 和△ACE 都是等边三角形,
则ΔADC ≌ΔABE 的根据是( ) A. SSS B. SAS C. ASA D. AAS 三. 解答题: 1. 已知:如图,AB =AD ,AC =AE ,∠BAD =求证: BC =DE.
E
图4
D
C
B A O 1 2 3
4
2、 已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF.
求证: ΔABC ≌ΔDEF
3. 如图,已知A B
D C A C D B
==,.求证:12∠=∠.
4. 如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.
求证:(1)△ABC ≌△ADC ;(2)BO =DO .
5、如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE
BF
=.
求证:(1)A F C E =;(2)AB C D ∥.
A D
B C O 12
A
D
E
C
B
F。