HZS90拌合站混凝土拌合站基础计算书
拌和站基础计算书
拌和站基础计算书1. 拌合站概况某搅拌站共有6个水泥罐,单个罐满载时单个支腿受力35t,罐宽3m,罐身高14m,支腿长7m,罐车基础采用C25砼扩大基础,长22m,宽5m,深1.5m,地基承载力180kPa,基底土摩擦系数0.25。
搅拌站地区最大风速21.3m/s。
主楼采用回字形基础,外环7*7m,内环3*3m,深0.9m。
主楼轮廓高8m,宽12m,单腿支撑12t。
2. 拌合站储料罐基础计算2.1 储料罐概况储料罐基础采用砼扩大基础,材料为C25砼,长22m,宽为5m,浇注深度为1.5m,基础底面积A=22×5=110m2 。
2.2 荷载计算储料罐重量通过基础作用于土层上,单个罐满载时每个支腿为35t,共6个罐,每个罐4个支腿,总重集中力P=6×4×10×35=8400kN,基础自重G=25×22×5×1.5=4125kN,承载力计算示意见下图本拌和站地区,最大风速v=21.3m/s,储料罐罐身长14m,6个罐基本并排竖立,单个罐宽3m,总受风面积Af=6×3×14=252m2 。
整体受风荷载等效成水平集中力,如下图所示:风荷载强度计算式为:W=K1 K2K3W其中:W ——风荷载强度 Pa;W0——基本风压值 Pa,可按W=V21.6计算;K1——风载体型系数,圆形取0.8;K2——风压高度变化系数,按30m高考虑为1.13;K3——地形地理条件系数,按山岭峡谷考虑,取1.2; V- 风速 m/s;本拌和站地区,最大风速21.3m/s,则:W0 =V21.6=21.321.6=283.6PaW=K1 K2K3W=0.8×1.13×1.2×283.6=307.6Pa单个罐宽3m,高14m,总受风面积A=252m2 ,风荷载等效成水平集中力P=A·W=252×307.6×10-3=77.5kN2.3储料罐地基承载力计算其中:P- 储蓄罐重量(kN),为8400kN;G-基础砼自重(kN),为4125kN;A- 基础作用于地基上有效面积(m2 ),为110m2 ;M- 由风荷载引起基础的弯矩(kN·m);M=P·h风=77.5×(7+7)=1085kN·m;W=bh26=22×526=91.7m3 。
拌合站基础计算
拌合站拌合楼基础承载力计算书德商TJ-4标拌和站,配备HZS90拌和机,设有3个储料罐,单个罐在装满材料时均按照100吨计算。
拌合站在X103县道右侧,对应新建线路里程桩号k16+800。
经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土。
1.计算公式1.1 .地基承载力P/A=σ≤σ0P—储蓄罐重量 KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力 MPaσ0—土基容许的应力 MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.109 Mpa。
2.风荷载强度W=K1K2K3W0= K1K2K31/1.6v2W —风荷载强度 PaW0—基本风压值 PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0v—风速 m/s,取17m/sσ—土基受到的压应力 MPaσ0—土基容许的应力 MPa3.基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M1—抵抗弯距 KN•MM2—抵抗弯距 KN•MP1—储蓄罐与基础自重 KNP2—风荷载 KN4.基础抗滑稳定性验算K0= P1×f/ P2≥1.3 即满足要求P1—储蓄罐与基础自重 KNP2—风荷载 KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量 KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力 MPaσ0—砼容许的应力 MPa2、储料罐基础验算2.1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:输料管储料罐主机楼房地基开挖尺寸为半径为10.0m圆的1/4的范围,宽5.0m,浇筑深度为1.4m。
2.2.计算方案开挖深度少于3米,根据规范,不考虑摩擦力的影响,计算时只考虑单个储蓄罐重量通过基础作用于土层上,集中力P=1000KN,单个水泥罐基础受力面积为2.8m×5m,承载力计算示意见下图粉质粘土本储料罐根据历年气象资料,考虑最大风力为17m/s,储蓄罐顶至地表面距离为21米,罐身长14m,3个罐基本并排竖立,受风面120m2,整体受风力抵抗风载,在最不利风力下计算基础的抗倾覆性。
拌合站拌合楼基础承载力、储料罐基础验算、拌合楼基础验算计算书
拌合站拌合楼基础承载力、储料罐基础验算、拌合楼基础验算计算书目录一.计算公式 (3)1.地基承载力 (3)2.风荷载强度 (3)3.基础抗倾覆计算 (3)4.基础抗滑稳定性验算 (4)5.基础承载力 (4)二、储料罐基础验算 (4)1.储料罐地基开挖及浇筑 (4)2.计算方案 (4)3.储料罐基础验算过程 (5)3.1 地基承载力 (5)3.2 基础抗倾覆 (5)3.3 基础滑动稳定性 (6)3.4 储蓄罐支腿处混凝土承压性 (6)三、拌合楼基础验算 (6)1.拌合楼地基开挖及浇筑 (6)2.计算方案 (7)3.拌合楼基础验算过程 (7)3.1 地基承载力 (7)3.2 基础抗倾覆 (8)3.3 基础滑动稳定性 (8)3.4 储蓄罐支腿处混凝土承压性 (8)拌合站拌合楼基础承载力计算书3号拌合站为先锋村拌和站,配备HZS90拌和机,设有4个储料罐,单个罐在装满材料时均按照100吨计算。
拌合楼处于先锋村内,在103国道右侧180m ,对应新建线路里程桩号DK208+100。
经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土,1.5米以下为卵石土。
一.计算公式1 .地基承载力P/A=σ≤σ0P — 储蓄罐重量 KNA — 基础作用于地基上有效面积mm2σ— 土基受到的压应力 MPaσ0— 土基容许的应力 MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.108 Mpa (雨天实测允许应力)2.风荷载强度W=K 1K 2K 3W0= K 1K 2K 31/1.6v2W — 风荷载强度 PaW0— 基本风压值 PaK 1、K 2、K 3—风荷载系数,查表分别取0.8、1.13、1.0v— 风速 m/s,取17m/sσ— 土基受到的压应力 MPaσ0— 土基容许的应力 MPa3.基础抗倾覆计算K c =M 1/ M 2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M 1— 抵抗弯距 KN •MM 2— 抵抗弯距 KN •MP1—储蓄罐与基础自重 KNP2—风荷载 KN4.基础抗滑稳定性验算= P1×f/ P2≥1.3 即满足要求KP1—储蓄罐与基础自重 KNP2—风荷载 KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量 KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力 MPaσ0—砼容许的应力 MPa二、储料罐基础验算1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为半径为10.0m圆的1/4的范围,宽5.0m,浇筑深度为1.4m。
HZS90混凝土搅拌站配置说明
HZS90混凝土搅拌站配置(pèizhì)说明HZS90是我公司综合近年来国内外多种机型的优点和先进技术,结合本公司多年生产混凝土搅拌设备(shèbèi)的经验而开发的系列混凝土搅拌站。
该系列混凝土搅拌站是制备新鲜混凝土的成套专用设备,适用于各类大中型建筑施工,如水电、公路、港口(gǎngkǒu)、桥梁、机场、大中型预制件厂和商品混凝土生产厂等。
HZS90配有我公司自行研制的计算机管理系统和自动控制系统,操作简单、方便(fāngbiàn)。
采用Windows2000操作系统,全中文菜单显示,各设备状态(zhuàngtài)全过程模拟显示并配有声光报警。
在搅拌站工作时,只需操作少量的按钮后,整个工作过程就全部转交计算机控制。
搅拌主机选用SICOMA双卧轴强制式搅拌主机,主要电气元件采用进口产品。
使HZS90系列搅拌站的配置具有:搅拌性能优良、计量精确稳定、可靠性高、保养维修方便、高环保性能、模块化程度高等特点。
是混凝土施工及商品混凝土生产的理想和首选设备。
一、技术参数1、生产能力:90 m3/h;2、搅拌主机:MAO2250/1500SDYHO仕高玛双卧轴搅拌主机;3、密实混凝土出料:1500L;4、骨料粒径:≤80mm;5、出料高度:≥4m;6、配料机:料仓容积16m3,秤斗容积1.4m3,共3个仓,单独计量;7、计量范围(fànwéi)及精度:骨料(ɡǔ liào): 0~2000Kg±2%水泥(shuǐní): 0~800Kg±1%粉煤灰: 0~400Kg±1%水: 0~350Kg±1%外加剂(液):0~20Kg±1%说明(shuōmíng):在动态(dòngtài)时,以上各种配料精度为计量范围从等于或大于满量程30%到满量程以内。
HZS90拌合站混凝土拌合站基础计算书
HZS90拌合站混凝土拌合站基础计算书一、拌和站罐基础设计概括计划投入两套HZS90拌合站,单套HZS90拌合站投入2个150t 型水泥罐(装满材料后),根据公司以往拌合站施工经验,结合现场地质条件以及基础受力验算,水泥罐采用砼扩大基础,基础顶预埋地脚钢板与水泥罐支腿满焊。
二、基本参数1、风荷载参数:查询公路桥涵设计通用规范得知:本工程相邻地区宁国市10年一遇基本风速:s m V /3.2010=;2、仓体自重:150t 罐体自重约15t ,装满材料后总重为150t ;3、扩大基础置于粉质黏土上,地基承载力基本容许值[]Kpa f a 1800=,采用碎石换填进行地基压实处理后,碎石换填地基承载力基本容许值[]Kpa f a 5000=;4、当采用两个水泥罐基础共同放置在一个扩大基础上时,扩大基础尺寸为9m ×4m ×1.5m (长×宽×高);当采用单个水泥罐基础放置在一个扩大基础上,扩大基础尺寸为4m ×4m ×1.5m (长×宽×高);三、空仓时整体抗倾覆稳定性稳定性计算1、受力计算模型(按最不利150吨罐体计算),空仓时受十年一遇风荷载,得计算模型如下所示:F 1图3-1 空仓时整体抗倾覆稳定性稳定性计算模型2、风荷载计算根据《公路桥涵设计通用规范》可知,风荷载标准值按下式计算:gV W d k 22γ=;查《公路桥涵设计通用规范》得各参数取值如下:空气重力密度:01199899.0012017.00001.0==-Z e γ;地面风速统一偏安全按离地20m 取:s m V k k V /4.31105220==; 其中:12.12=k ,38.15=k ,s m V /3.2010=;代入各分项数据得:222/60.08.924.3101199899.02m KN g V W d k =⨯⨯==γ单个水泥罐所受风力计算: ①、迎风面积:218.12.15.1m A =⨯= 作用力:8KN 0.18.16.01=⨯=F 作用高度:m H 35.181= ②、迎风面积:223.36113.3m A =⨯= 作用力:KN 78.213.366.02=⨯=F 作用高度:m H 1.122=③、迎风面积:23125.42/5.23.3m A =⨯= 作用力:KN 475.2125.46.03=⨯=F 作用高度:m H 475.53= 2、单个水泥罐倾覆力矩计算m KN h F M i i ⋅=⨯+⨯+⨯=⨯=∑91.296475.5475.21.1278.2135.1808.131倾3、稳定力矩及稳定系数计算假定筒仓绕单边两支腿轴线倾覆,稳定力矩由两部分组成,一部分是仓体自重稳定力矩1稳M ,另一部分是扩大基础自重产生的稳定力矩2稳M 。
HZS90混凝土拌和站使用说明书
H Z S 90 混凝土搅拌站
使 用 说 明 书
方 圆 集 团 有 限 公 司
FANGYUAN GROUP CO., LTD.
方圆集团有限公司
HZS90型混凝土搅拌站说明书
前
尊敬的客户 :
言
方圆集团有限公司作为中国著名的搅拌站生产商之一 ,由衷的 感谢阁下选用我公司的产品 。为了维护您的利益 ,保障阁下的搅拌 站更好的运行并发挥最佳性能 ,延长使用寿命 。籍此 ,请从事设备 操作及维护人员仔细阅读《 》,并按照说明书中 管理 、 操作及维护人员仔细阅读 《 使用说明书 》, 并按照说明书中 所述事项 , 认真执行 。 另外 ,该说明书的说明不能取代顾客得到制造商或经销商的培 训或工程技术人员及有经验的操作人员的技术指导和警告 。 《 使用说明书 》 作为向用户交付产品的组成部分 , 它将向用户 介绍产品的特点 、 用途 、 结构 、 维护保养及故障处理 , 并特别强调 了保护操作者的诸多安全措施 。
1 概述 1.1产品简介 1.1 产品简介
HZS90混 凝 土 搅 拌 站 是 由 骨 料 、 水 泥 、 粉 煤 灰 、 水 、 液 体 外 加 剂的储存、输送、计量,搅拌系统,气路系统,电气控制系统,除 尘系统及钢结构等部分组成的全自动混凝土搅拌成套设备,适用于 大型商品混凝土生产厂使用。
图 1 混凝土搅拌工艺流程
骨料配料机 配料种数 储料斗容积 水平输送胶带机 输送功率 输送带速 输送带宽 大倾角输送胶带机 输送倾角 输送功率 输送带速 输送带宽 水泥仓(2台) 容量 直径 高度 水泥螺旋输送机(2台) 型号 输送倾角 LSY200-9 32° JS1500 2400L 1500L 80(mm) 45kW
(完整版)拌合站、水泥罐、搅拌站地基计算
目录一.计算公式 (2)1.地基承载力 (2)2.风荷载强度 (2)3.基础抗倾覆计算 (2)4.基础抗滑稳定性验算 (3)5.基础承载力 (3)二、储料罐基础验算 (3)1.储料罐地基开挖及浇筑 (3)2.计算方案 (3)3.储料罐基础验算过程 (4)3.1 地基承载力 (4)3.2 基础抗倾覆 (4)3.3 基础滑动稳定性 (5)3.4 储蓄罐支腿处混凝土承压性 (5)三、拌合楼基础验算 (5)1.拌合楼地基开挖及浇筑 (5)2.计算方案 (6)3.拌合楼基础验算过程 (6)3.1 地基承载力 (6)3.2 基础抗倾覆 (7)3.3 基础滑动稳定性 (7)3.4 储蓄罐支腿处混凝土承压性 (7)拌合站拌合楼基础承载力计算书1号拌合站为华阳村拌和站,配备HZS90拌和机,设有4个储料罐,单个罐在装满材料时均按照100吨计算。
拌合楼处于华阳村内,在78省道右侧30m,对应新建线路里程桩号DK208+100。
经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土,1.5米以下为卵石土。
一.计算公式1 .地基承载力P/A=σ≤σ0P—储蓄罐重量KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力MPaσ0—土基容许的应力MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.108 Mpa(雨天实测允许应力)2.风荷载强度W=K1K2K3W0= K1K2K31/1.6v2W —风荷载强度PaW0—基本风压值PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0v—风速m/s,取17m/sσ—土基受到的压应力MPaσ0—土基容许的应力MPa3.基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M1—抵抗弯距KN•MM2—抵抗弯距KN•MP1—储蓄罐与基础自重KNP2—风荷载KN4.基础抗滑稳定性验算K0= P1×f/ P2≥1.3 即满足要求P1—储蓄罐与基础自重KNP2—风荷载KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力MPaσ0—砼容许的应力MPa二、储料罐基础验算1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为半径为10.0m圆的1/4的范围,宽5.0m,浇筑深度为1.4m。
拌合站拌合楼基础承载力、储料罐基础验算、拌合楼基础验算计算书
拌合站拌合楼基础承载力、储料罐基础验算、拌合楼基础验算计算书目录一.计算公式 (3)1.地基承载力 (3)2.风荷载强度 (3)3.基础抗倾覆计算 (3)4.基础抗滑稳定性验算 (4)5.基础承载力 (4)二、储料罐基础验算 (4)1.储料罐地基开挖及浇筑 (4)2.计算方案 (4)3.储料罐基础验算过程 (5)3.1 地基承载力 (5)3.2 基础抗倾覆 (5)3.3 基础滑动稳定性 (6)3.4 储蓄罐支腿处混凝土承压性 (6)三、拌合楼基础验算 (6)1.拌合楼地基开挖及浇筑 (6)2.计算方案 (7)3.拌合楼基础验算过程 (7)3.1 地基承载力 (7)3.2 基础抗倾覆 (8)3.3 基础滑动稳定性 (8)3.4 储蓄罐支腿处混凝土承压性 (8)拌合站拌合楼基础承载力计算书3号拌合站为先锋村拌和站,配备HZS90拌和机,设有4个储料罐,单个罐在装满材料时均按照100吨计算。
拌合楼处于先锋村内,在103国道右侧180m ,对应新建线路里程桩号DK208+100。
经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土,1.5米以下为卵石土。
一.计算公式1 .地基承载力P/A=σ≤σ0P — 储蓄罐重量 KNA — 基础作用于地基上有效面积mm2σ— 土基受到的压应力 MPaσ0— 土基容许的应力 MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.108 Mpa (雨天实测允许应力)2.风荷载强度W=K 1K 2K 3W0= K 1K 2K 31/1.6v2W — 风荷载强度 PaW0— 基本风压值 PaK 1、K 2、K 3—风荷载系数,查表分别取0.8、1.13、1.0v— 风速 m/s,取17m/sσ— 土基受到的压应力 MPaσ0— 土基容许的应力 MPa3.基础抗倾覆计算K c =M 1/ M 2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M 1— 抵抗弯距 KN •MM 2— 抵抗弯距 KN •MP1—储蓄罐与基础自重 KNP2—风荷载 KN4.基础抗滑稳定性验算= P1×f/ P2≥1.3 即满足要求KP1—储蓄罐与基础自重 KNP2—风荷载 KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量 KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力 MPaσ0—砼容许的应力 MPa二、储料罐基础验算1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为半径为10.0m圆的1/4的范围,宽5.0m,浇筑深度为1.4m。
HZS90混凝土搅拌站技术参数
HZS90混凝土搅拌站技术参数1.生产能力:HZS90混凝土搅拌站的生产能力为90立方米/小时。
这意味着该设备每小时能够生产90立方米的混凝土。
2.混凝土配料机:HZS90混凝土搅拌站配备了一个配料机,用于将不同种类和比例的骨料、水泥、粉煤灰和掺合料按照一定的比例混合。
该配料机的配料准确性高,可以保证混凝土的质量。
3.水泥称重系统:HZS90混凝土搅拌站配备了水泥称重系统,用于准确地秤出所需的水泥重量,保证混凝土的配比准确性。
4.骨料称重系统:HZS90混凝土搅拌站配备了骨料称重系统,用于准确地秤出不同种类和比例的骨料的重量。
骨料称重系统可以根据需要进行调整,以满足不同配比的要求。
5.控制系统:HZS90混凝土搅拌站配备了先进的电气控制系统,可以实现全自动、半自动和手动控制模式。
控制系统具有显示和记录功能,可以监测和记录搅拌站的各项参数,包括生产能力、配料比例、混凝土质量等。
6.混凝土搅拌机:HZS90混凝土搅拌站配备了一台大型的混凝土搅拌机,用于将配料机配料好的材料进行搅拌。
混凝土搅拌机具有高效、均匀的搅拌能力,可以确保混凝土的质量。
7.控制室:HZS90混凝土搅拌站配备了一个设备控制室,用于监控和控制搅拌站的运行状态。
控制室是一个密封的空间,内部设有仪表、按钮和显示屏,操作人员可以通过控制室对搅拌站进行各种操作和监测。
8.输送系统:HZS90混凝土搅拌站配备了输送系统,用于将混凝土输送到施工现场。
输送系统包括输送管道、输送泵和输送机等设备,可以根据需要进行调整。
总的来说,HZS90混凝土搅拌站具有高生产能力、精确的配料系统、可靠的控制系统、高效的搅拌机和稳定的输送系统等优点。
它广泛应用于大型工程项目和混凝土生产企业中,为工程建设提供了可靠的混凝土供应。
HZS90混凝土搅拌站技术参数
播放服务器
HZS90砼搅拌站
HZS90混凝土搅拌站是由供料、配料、搅拌、电器控制等部分组成的全自动混凝土搅拌成套设备,适用于中等规模以上的建筑工程、预制构件厂和商品混凝土生产厂.主要特点如下: 整套设备采用组合式结构,整机安装、搬迁十分方便.该套搅拌站主机采用JS1500强制式双卧轴搅拌机,搅拌质量好、效率高; 骨料配料采用PLD2400混凝土配料机,装载机上料,电子称计量计量精确,骨料采用斜皮带机上料,搅拌罐上方有一骨料贮存斗,可存一罐骨料备用;水泥(或粉煤灰等粉料)由水泥仓贮存,螺旋输送机输送,水泥称计量;水由水箱或蓄水池贮存,水泵供水,水称计量;液体外加剂在外加剂贮液罐中贮存经搅拌均匀后,泵送至外加剂称计
量. 整个配料、搅拌、卸料过程由电控系统全自动控制完成,控制系统具有:配料过程的自动、半自动和手动控制及这三种工作方式之间的无扰动切换;自动去皮、自动落差补偿;报表打印;开机自检和报警功能;控制参数的操作权限管理;配方、合同、原料、车辆和司机的电脑管理;电视监控;简单直观的动态流程显示等一系列国内领先的技术优势.控制系统采用施耐德元件,工作安全可靠,控制室保温隔音效果好,有空调,整套站性价比高.
准。
页脚内容。
拌和站基础计算
拌和站料仓计算拌和站基础采用整体基础,基础顶面埋深900mm,基础为C30混凝土,厚度800m,下设300mm厚级配碎石垫层如图1所示图1 储料罐基础图1)荷载分析计算时根据储料罐存料情况分为空仓和满仓两种情况。
空罐时,荷载包括基础自重、上覆土重、储料罐自重(10t)及储料罐所受风荷载。
满仓时,荷载包括基础自重、上覆土重、储料罐自重(10t)、料的重量(大罐150t,)及储料罐所受风荷载。
其中基础自重按2.5t/m3计算,上覆土按γh=18 kN/m2计算(γ=20kN/m3,h=0.9m)。
风荷载按最大风压W0=1000Pa计算。
W=K1K2K3W0式中W——风荷载强度(Pa);W0——基本风压(Pa)K1——风荷载体型系数;圆形截面取0.8K2——风压高度变化系数,根据分类高度≦20m时取1.0K3——地形地理条件系数;按山岭地区考虑取最大值1.3所以有:W=K1K2K3W0=0.8×1.0×1.3×1000=1040 Pa 灌仓为SC150仓高23m,仓体直径3.2m卸料高度约为2m。
所以SC150迎风面积A1=(23-2)×3.2=67.2㎡。
所以灌仓所受风载大小为:N风=1040×67.2=69888 N2)空仓情况计算对于空仓情况,因竖向荷载相对较小,水平风载较大,所以该工况仅做抗倾覆分析。
为便于计算仅考虑一个罐体的情况,并假定支腿范围内混凝土基础与周围基础独立,基础宽4.94m,如图2所示:图2单罐体基础图假定倾覆时沿背风侧基础边倾倒,以此验算倾覆问题。
此时基础底面所承受的荷载为:SC150:罐体自重:G1=10t,基础混凝土自重:G2=(3.55×4.94×0.8+0.7×0.7×1.5×4)×2.5=42.42t上覆土重量:G3=(3.55×4.94×0.9-0.7×0.7×0.9×4)×2.0=28t即:G150= G1+ G2+ G3=80.46 t对于灌仓SC150倾覆力矩为:M倾= N风×((23-2)/2+2+1.5)= 69888×14=978432 N·m抗倾覆力矩为:M抗= G150×4.940/2×104= 80.46×2.47×104=1987327 N·m因M抗> M倾,所以灌仓SC150不会发生倾覆问题安全系数为:k= M抗/ M倾=2.033)满仓情况计算基础承载力计算料仓基础采用CFG桩基础,桩长8m,桩间距1.65m,桩直径为400mm。
拌合站拌合楼基础承载力、储料罐基础验算、拌合楼基础验算计算书
拌合站拌合楼基础承载力、储料罐基础验算、拌合楼基础验算计算书目录一.计算公式 (3)1.地基承载力 (3)2.风荷载强度 (3)3.基础抗倾覆计算 (3)4.基础抗滑稳定性验算 (4)5.基础承载力 (4)二、储料罐基础验算 (4)1.储料罐地基开挖及浇筑 (4)2.计算方案 (4)3.储料罐基础验算过程 (5)3.1 地基承载力 (5)3.2 基础抗倾覆 (5)3.3 基础滑动稳定性 (6)3.4 储蓄罐支腿处混凝土承压性 (6)三、拌合楼基础验算 (6)1.拌合楼地基开挖及浇筑 (6)2.计算方案 (7)3.拌合楼基础验算过程 (7)3.1 地基承载力 (7)3.2 基础抗倾覆 (8)3.3 基础滑动稳定性 (8)3.4 储蓄罐支腿处混凝土承压性 (8)拌合站拌合楼基础承载力计算书3号拌合站为先锋村拌和站,配备HZS90拌和机,设有4个储料罐,单个罐在装满材料时均按照100吨计算。
拌合楼处于先锋村内,在103国道右侧180m ,对应新建线路里程桩号DK208+100。
经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土,1.5米以下为卵石土。
一.计算公式1 .地基承载力P/A=σ≤σ0P — 储蓄罐重量 KNA — 基础作用于地基上有效面积mm2σ— 土基受到的压应力 MPaσ0— 土基容许的应力 MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.108 Mpa (雨天实测允许应力)2.风荷载强度W=K 1K 2K 3W0= K 1K 2K 31/1.6v2W — 风荷载强度 PaW0— 基本风压值 PaK 1、K 2、K 3—风荷载系数,查表分别取0.8、1.13、1.0v— 风速 m/s,取17m/sσ— 土基受到的压应力 MPaσ0— 土基容许的应力 MPa3.基础抗倾覆计算K c =M 1/ M 2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M 1— 抵抗弯距 KN •MM 2— 抵抗弯距 KN •MP1—储蓄罐与基础自重 KNP2—风荷载 KN4.基础抗滑稳定性验算= P1×f/ P2≥1.3 即满足要求KP1—储蓄罐与基础自重 KNP2—风荷载 KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量 KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力 MPaσ0—砼容许的应力 MPa二、储料罐基础验算1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为半径为10.0m圆的1/4的范围,宽5.0m,浇筑深度为1.4m。
拌和站基础验算
XXX至XXX标轨铁路项目拌和站基础验算编制:审核:审批:工程部二零一四年八月目录XXX拌和站基础验算XXX拌和站,配备HZS90JZ拌和机1套,拌合站设4个储料罐,其中1个粉煤灰罐和3个水泥罐容量均为150t,空罐按15t计;基础采用混凝土基础,其施工工艺按照水泥罐罐体提供厂家三一汽车制造有限公司提供的基础图制作;拌合站设置在XXX地内,对应新建线路里程桩号DKXXX+XXX;经过现场开挖检查,在清理地表杂草后~米范围内为深灰色、灰褐色、粉质粘土,地表往下~米均为黄褐色、灰白色、硬塑粘土;单个罐体基础为4m×4m×高C25混凝土;1.计算公式地基承载力P/A=σ≤σ0P—储蓄罐重量 KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力 MPaσ0—土基容许的应力 MPa通过地质触探,计算得出地基应力σ0=;风荷载强度W=K1K2K3W0= K1K2K31/v2W —风荷载强度 PaW0—基本风压值 PaK1、K2、K3—风荷载系数,查表分别取、、v—风速 m/s,按照最不利大风考虑,取sσ—土基受到的压应力 MPaσ0—土基容许的应力 MPa基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×7+7≥即满足要求M1—抵抗弯距 KNMM2—抵抗弯距 KNMP1—储蓄罐与基础自重 KNP2—风荷载 KN基础抗滑稳定性验算K0= P1×f/ P2≥即满足要求P1—储蓄罐与基础自重 KNP2—风荷载 KNf-----基底摩擦系数,查表得;基础承载力P/A=σ≤σ0P—储蓄罐单腿重量 KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力 MPaσ0—砼容许的应力 MPa2.储料罐基础验算储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为每个罐基础长,宽,浇筑深度为;计算方案根据规范,不考虑摩擦力的影响,计算时只考虑单个储蓄罐重量通过基础作用于土层上,集中力P=1650KN,单个水泥罐基础受力面积为×,承载力计算示意见下图P=1650KN本储料罐,考虑最大风力为s,储蓄罐顶至地表面距离为21米,罐身长14m,4个罐基本并排竖立,受风面120m2,整体受风力抵抗风载,在最不利风力下计算基础的抗倾覆性;计算示意图如下2罐与基础自重P1基础采用的是商品混凝土C25,储料罐支腿受力最为集中,混凝土受压面积为300mm×300mm,等同于试块受压应力低于25MPa即为满足要求;储料罐基础验算过程地基承载力根据上面的1力学公式,已知P=1650KN,计算面积A=16×106mm2,P1/A=1650KN+×4×4×24KN/16×106mm2=≤σ0=地基承载力满足承载要求;基础抗倾覆根据上面的3力学公式:K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×7+7=1650+4×4×××10××4/×120×14=≥满足抗倾覆要求其中 W=K1K2K3W0= K1K2K31/v2=×××1/×=为了提高储料罐的抗倾覆能力,在储蓄罐三面拉设缆风的措施; 基础滑动稳定性根据上面的4力学公式,K0= P1×f/ P2=1650+4×4×××10××120=≥满足基础滑动稳定性要求;储蓄罐支腿处混凝土承压性根据5力学计算公式,已知165T的储存罐,单腿受力P=,承压面积为300mm×300mmP/A=300mm×300mm=≤25MPa满足受压要求;经过验算,储料罐基础满足承载力和稳定性要求;3.拌合楼基础验算拌合站基础拌合楼地基开挖及浇筑,根据厂家提供的拌和站安装施工图,基础为正方形,尺寸为边长4m×4m的正方形,浇筑深度为;计算方案根据规范,不考虑摩擦力的影响,计算时考虑四个支腿重量通过基础作用于土层上,集中力P=200×4=800KN,基础受力面积为4m×4m=16m2,承载力计算示意见下图P=800KN本拌合楼考虑最大风力为s,楼顶至地表面距离为15米,受风面80m2,整体受风力抵抗风载,在最不利风力下计算基础的抗倾覆性;计算示意图如下拌合楼风力P2P1基础采用的是商品混凝土C25,拌合楼支腿受力最为集中,混凝土受压面积为400mm×400mm,等同于试块受压应力低于25MPa即为满足要求;拌合楼基础验算过程地基承载力根据上面的1力学公式,已知静荷载P=800KN,取动荷载系数为,动荷载P1=1120KN,计算面积A=16×106mm2,P1/A=800+1120×/16×106 mm2= ≤σ0=地基承载力满足承载要求;基础抗倾覆根据上面的3力学公式:K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×8=800+1120×××4/×80×8=≥满足抗倾覆要求其中 W=K1K2K3W0= K1K2K31/v2=×××1/×=基础滑动稳定性根据上面的4力学公式,K0= P1×f/ P2=800+1120×××80=≥满足基础滑动稳定性要求;储蓄罐支腿处混凝土承压性根据5力学计算公式,已知拌合楼单腿受力P=200KN,承压面积为400mm×400mmP/A=200 KN×400mm×400mm= MPa≤25MPa满足受压要求;经过验算,拌合楼基础满足承载力和稳定性要求;结论,经过计算,拌合楼和储料罐的基础满足受力要求;。
2HZS90混凝土搅拌站配置介绍
一.用途及特点江苏易初重工机械生产的混凝土搅拌站是生产新鲜混凝土的大型成套设备,能生产出符合国家标准要求的塑性、半干硬性、干硬性混凝土,普遍应用于城市商砼、道路、桥梁、大坝、机场、码头等大中型基础设施的施工现场。
该搅拌站是在吸收国内外先进搅拌站搅拌技术及操纵技术的基础上,结合国内混凝土搅拌设备利用的实际情形而开发的一种具有高生产率、高智能化、高靠得住性、高环保性、高度模块化等特点的搅拌设备。
整套设备由骨料仓、骨料皮带输送机、粉料仓、螺旋输送机、搅拌机、计量系统、供水系统、气路系统、操纵系统、主体框架等组成,均为独立模块结构,具有以下特点:一、搅拌性能优良搅拌主机为行业内第一的珠海仕高玛搅拌机,其数十年的研制体会使其具有超级高的靠得住性;高压清洗装置,实现每盘自动清洗,双开门排料迅速、顺畅,无残留料搅拌臂流线设计,阻力小寿命长,具有搅拌能力强,搅拌质量好,生产率高,靠得住性高等特点,对符合国家标准要求塑性、半干硬性、干硬性等各类混凝土均能完成良好的搅拌。
本设备有以下显著的优势:■配有多重轴端密封爱惜装置及风压密封装置,有效杜绝漏浆现象的发生;■特有的搅拌机监控系统可随时监控减速箱,卸料泵电动润滑油的工作状态;■新型专用润滑油泵可提供强劲动力,可向轴头提供更高品级的油脂,提高密封件的利用寿命,不需清理分派阀;■重型设计运行稳固■多搅拌刀头设计,有45°,60°,90°,多臂型可供选择;■可选配搅拌机称重爱惜装置;■超强的搅拌能力,在很短的搅拌时刻里可使混凝土达到均匀的搅拌成效,适合不同的搅拌场合利用2.操作简捷明了操纵系统采纳香港志美的工控机+PLC的合理操纵方式,既可自动也可手动操作,操作简单,易于把握,具有良好的人机交流界面,动态面板显示,能清楚了解各部件的运行情形,在混凝土卸料斗处装有监视仪,对混凝土搅拌输送车的进出一目了然。
而且对混凝土的生产记录能够进行存储、打印,还可依照用户的要求,支持联网功能。
拌合站基础计算书
面 10m 计算。 由上计算知,基础承受总重量为: G = G1 + G2 = 360 + 1600 = 1960KN 3、荷载及配筋计算 (1)桩承载力计算 单个水泥仓由 2 根灌装桩承载,计算时只考虑由桩基承载。 单根桩需承载F = (G1 + G2)/2 = 980KN 本次设计区域为堆场区域,灌注桩暂时仅考虑轴向承载力,根据《港口工程桩基规范》 4.2.4.3 计算。根据地质资料按粉细砂考虑,标准贯入击数按 25 考虑,其中,桩侧摩阻力标准 值取为 50kPa,桩端阻力标准值取为 700kPa。 3.14 ∗ 0.7 ∗ 12 ∗ 50 + 3.14 ∗ 0.352 ∗ 700 1588 Qd = = = 992KN>F = 980KN 1.6 1.6 桩顶承压σ = 3.14 ∗0.35 ∗0.35 = 2.55MPa<35MPa。 由以上计算可知,设计桩承载力满足要求。 (2)承台受力计算 承台实际整体浇筑, 按三跨连续梁计算, 集中荷载为 400KN, 共计 6 处, 均布荷载 42.4KN, 如下图所示。
拌合站基础计算书 一、水泥仓基础计算 1、水泥仓基础设计 桩基(灌注桩) : 直径 0.7m 灌注桩 6 根,桩长 12m。 配筋按 《港口工程桩基规范》 7.3 构造要求, 配置主筋 (HRB400) 直径 16mm, 间距 100mm; 箍筋 (HPB300) 直径 12mm, 间距 300mm, 采用螺旋式, 桩顶 3.5m 范围加密, 间距 200mm。 混凝土强度 C35,保护层 50mm。 承台: 三个水泥仓基础为整体混凝土承台,水泥仓支腿间距 2.24m,设计承台宽度 4.24m,长度 按两侧水泥仓支腿外各加 1m 计。承台厚度 80cm。 配筋为板顶、板底双向配筋,主筋(HRB400)直径 16mm,间距 200mm。 混凝土强度 C35,保护层 50mm。 2、荷载分析 本次设计拌合站区域为一年内填料区,积水较多,地基承载力较低,首先将表面积水清 理干净后挖除表面浮泥,然后填筑 30cm 山皮石。考虑地基承载力较低,水泥仓基础采用灌 注桩加整体承台形式。 主要考虑的荷载有:承台自重、水泥仓满罐重量及空罐重量、风荷载。其中考虑风荷载 计算时按不利计算,即整体基础的宽度方向计算。 (1) 承台自重: 按单个基础计算,尺寸为 4.24*4.24*0.8m G1 = 4.24 ∗ 4.24 ∗ 0.8m ∗ 25 = 360KN (2)水泥仓满罐重量: 水泥仓采用 100t 水泥仓,满罐重量按支腿承载力 400KN 考虑,总重量为G2 = 400 ∗ 4 = 1600KN。 (3)水泥仓空罐重量: 罐体直径 3.2m,高度按 10m 计,整体高度按 15m 计。水泥仓自重按 55KN 考虑。 (4)风荷载: 风荷载取为 1KPa(相当于风速 40m/s,蒲式风级 13 级)。 水泥和粉煤灰料仓型号为 100t,直径为 3.2m,则料仓的迎风面积为 A = 3.2 ∗ 10 = 32m2 ,则最大风荷载为 F1 = 32 ∗ 1 = 32KN ,受力作用点按照距离基准
HZS系列混凝土搅拌站技术参数(精)
HZS系列混凝土搅拌站技术参数号技术参数HZS90 / 2HZS90 / 2×HZS90HZS120 / 2HZS120 / 2×HZS120HZS180 /2HZS180 / 2×HZS180理论生产率(m3/h)90 / 2⨯90 / 2⨯90 120 / 2⨯120 / 2⨯120180 / 2⨯180 /2⨯180卸料高度(m)444搅拌主机型号MAO2250/1500H MAO3000/2000H MAO4500/3000AH 搅拌功率(kW)2×302×372×55生产周期(s)606060进料容量(L)225030004500出料容量(L)150020003000骨料粒径(mm)≤80≤80≤80骨料仓容量(m3)(可选)16⨯3 25⨯4 30⨯4粉料仓容量(t)(可选)150×2+100×1 200×4 200×4配料站配料能力(L/罐)240032004800斜皮带机输送能力(t/h)600900900螺旋输送机生产率(t/h)9090110装机容量(kW)145 / 290 / 290210 / 420 / 420260 / 520 / 520外型尺寸(长×宽)(m)51×18 / 45×34/ 45×3053×26 / 53×41 / 53×3753×26 / 53×41/ 53×37砂、石计量范围及精度(kg)(0~2000)±2%(0~3000)±2%(0~4500)±2%水泥计量范围及精度(kg)(0~800)±1%(0~1000)±1%(0~1500)±1%粉煤灰计量范围及精度(kg)(0~400)±1%(0~500)±1%(0~700)±1%水计量范围及精度(kg)(0~350)±1%(0~500)±1%(0~700)±1%外加剂计量范围及精度(kg)(0~30)±1%(0~30)±1%(0~50)±1%粉料供给系统1、称量系统包括骨料称量、校验系统,粉料称量系统、水称量系统、外加剂称量系统。
拌和站基础验算
XXX至XXX标轨铁路项目拌和站基础验算编制:审核:审批:工程部二零一四年八月目录XXX拌和站基础验算XXX拌和站,配备HZS90JZ拌和机1套,拌合站设4个储料罐,其中1个粉煤灰罐和3个水泥罐容量均为150t,空罐按15t计。
基础采用混凝土基础,其施工工艺按照水泥罐罐体提供厂家三一汽车制造有限公司提供的基础图制作。
拌合站设置在XXX地内,对应新建线路里程桩号DKXXX+XXX。
经过现场开挖检查,在清理地表杂草后~米范围内为深灰色、灰褐色、粉质粘土,地表往下~米均为黄褐色、灰白色、硬塑粘土。
单个罐体基础为4m×4m×(高)C25混凝土。
1.计算公式地基承载力P/A=σ≤σ0P—储蓄罐重量 KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力 MPaσ0—土基容许的应力 MPa通过地质触探,计算得出地基应力σ0=。
风荷载强度W=K1K2K3W0= K1K2K31/v2W —风荷载强度 PaW0—基本风压值 PaK1、K2、K3—风荷载系数,查表分别取、、v—风速 m/s,按照最不利大风考虑,取sσ—土基受到的压应力 MPaσ0—土基容许的应力 MPa基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+7)≥即满足要求M1—抵抗弯距 KN?MM2—抵抗弯距 KN?MP1—储蓄罐与基础自重 KNP2—风荷载 KN基础抗滑稳定性验算K0= P1×f/ P2≥即满足要求P1—储蓄罐与基础自重 KNP2—风荷载 KNf-----基底摩擦系数,查表得;基础承载力P/A=σ≤σ0P—储蓄罐单腿重量 KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力 MPaσ0—砼容许的应力 MPa2.储料罐基础验算储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为每个罐基础长,宽,浇筑深度为。
拌和站基础验算
XXX至XXX标轨铁路项目拌和站基础验算编制:审核:审批:工程部二零一四年八月目录XXX拌和站基础验算XXX拌和站,配备HZS90JZ拌和机1套,拌合站设4个储料罐,其中1个粉煤灰罐和3个水泥罐容量均为150t,空罐按15t计。
基础采用混凝土基础,其施工工艺按照水泥罐罐体提供厂家三一汽车制造有限公司提供的基础图制作。
拌合站设置在XXX地内,对应新建线路里程桩号DKXXX+XXX。
经过现场开挖检查,在清理地表杂草后~米范围内为深灰色、灰褐色、粉质粘土,地表往下~米均为黄褐色、灰白色、硬塑粘土。
单个罐体基础为4m×4m×(高)C25混凝土。
1.计算公式地基承载力P/A=σ≤σ0P—储蓄罐重量 KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力 MPaσ0—土基容许的应力 MPa通过地质触探,计算得出地基应力σ0=。
风荷载强度W=K1K2K3W0= K1K2K31/v2W —风荷载强度 PaW0—基本风压值 PaK1、K2、K3—风荷载系数,查表分别取、、v—风速 m/s,按照最不利大风考虑,取sσ—土基受到的压应力 MPaσ0—土基容许的应力 MPa基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+7)≥即满足要求M1—抵抗弯距 KN?MM2—抵抗弯距 KN?MP1—储蓄罐与基础自重 KNP2—风荷载 KN基础抗滑稳定性验算K0= P1×f/ P2≥即满足要求P1—储蓄罐与基础自重 KNP2—风荷载 KNf-----基底摩擦系数,查表得;基础承载力P/A=σ≤σ0P—储蓄罐单腿重量 KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力 MPaσ0—砼容许的应力 MPa2.储料罐基础验算储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为每个罐基础长,宽,浇筑深度为。
(完整版)拌合站、水泥罐、搅拌站地基计算
目录一.计算公式 (2)1.地基承载力 (2)2.风荷载强度 (2)3.基础抗倾覆计算 (2)4.基础抗滑稳定性验算 (3)5.基础承载力 (3)二、储料罐基础验算 (3)1.储料罐地基开挖及浇筑 (3)2.计算方案 (3)3.储料罐基础验算过程 (4)3.1 地基承载力 (4)3.2 基础抗倾覆 (4)3.3 基础滑动稳定性 (5)3.4 储蓄罐支腿处混凝土承压性 (5)三、拌合楼基础验算 (5)1.拌合楼地基开挖及浇筑 (5)2.计算方案 (6)3.拌合楼基础验算过程 (6)3.1 地基承载力 (6)3.2 基础抗倾覆 (7)3.3 基础滑动稳定性 (7)3.4 储蓄罐支腿处混凝土承压性 (7)拌合站拌合楼基础承载力计算书1号拌合站为华阳村拌和站,配备HZS90拌和机,设有4个储料罐,单个罐在装满材料时均按照100吨计算。
拌合楼处于华阳村内,在78省道右侧30m,对应新建线路里程桩号DK208+100。
经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土,1.5米以下为卵石土。
一.计算公式1 .地基承载力P/A=σ≤σ0P—储蓄罐重量KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力MPaσ0—土基容许的应力MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.108 Mpa(雨天实测允许应力)2.风荷载强度W=K1K2K3W0= K1K2K31/1.6v2W —风荷载强度PaW0—基本风压值PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0v—风速m/s,取17m/sσ—土基受到的压应力MPaσ0—土基容许的应力MPa3.基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M1—抵抗弯距KN•MM2—抵抗弯距KN•MP1—储蓄罐与基础自重KNP2—风荷载KN4.基础抗滑稳定性验算K0= P1×f/ P2≥1.3 即满足要求P1—储蓄罐与基础自重KNP2—风荷载KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力MPaσ0—砼容许的应力MPa二、储料罐基础验算1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为半径为10.0m圆的1/4的范围,宽5.0m,浇筑深度为1.4m。
搅拌站基础承载力及罐仓抗风计算书
XX 铁路XX 标第X 搅拌站罐仓基础承载力及罐仓抗风计算书计算:复核:中铁X 局集团XX 铁路项目经理部2010 年12 月、工程概况中铁X局XX铁路六标第X搅拌站,配备HZS90搅拌机、HZS120 搅拌机各一台,每台搅拌机设有6个100吨级储料罐仓。
根据厂家提供的拌和站安装施工图,确定罐仓基础呈扇型布置,尺寸如下:21.5m根据现场地质情况,基础浇筑厚度为 1.5m,混凝土强度等级为C30。
二、基础承载力检算1、相关计算公式根据《建筑地基基础设计规范》GB50007-2002 ,fa=fak+ n Y b-3)+ n d f n(d-0.5)式中fa--修正后的地基承载力特征值fak--地基承载力特征值n、M--基础宽度和埋深的地基承载力修正系数Y-基础底面以下土的重度,地下水位以下取浮重度;b--基础底面宽度(m) ,当基宽小于3m 按3m 取值,大于6m 按6m 取值;Y m--基础底面以上土的加权平均重度,地下水位以下取浮重度;d--基础埋置深度(m) 。
2、承载力检算不考虑摩擦力的影响,罐仓与基础自重P1=1100kN*6+ 基础自身重量,基础自身重量=95m 3*24kN/m 3=2280kN则P1=1100kN*6+95 m 3*24kN/ m 3=6600+2280=8880kN 最大应力f K=8880/64=139Kpa修正后地基承载力特征值:fa=120+0*(6-3)+2280/64=155KPa( 根据现场地质情况地基承载力特征值fak取120 Kpa)计算结果f K=139KPa v fa=155KPa 承载力满足要求三、罐仓抗风检算1 、相关计算公式根据《建筑结构荷载规范》GB50009-2001 ,风荷载强度:W=K1K2K3W0= K1K2K3V2/1.6W —风荷载强度PaW o —基本风压值PaK i、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0V —风速m/s,本次按照XX地区最大风速20.7m/s检算抗倾覆计算:K c =M i / M 2=[(P i *0.5*基础宽)/(14*P 2*受风面)]K c >1.5即满足抗倾覆要求M i — 抵抗弯距kN?mM 2—抵抗弯距kN?mP i —储蓄罐与基础自重kNP 2—风荷载kN2、抗倾覆检算W 二K1K2K3W0二K1K2K3V 2/1.6=0.8*1.13*1.0*20.7 2/1.6=242.1paP2=W/1000=0.2421kN罐仓顶至地表面距离为15米,罐身长12m,6个罐基本并排竖立, 受风面210m2,整体受风力抵抗风载,在最不利风力下计算基础的 抗倾覆性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HZS90拌合站混凝土拌合站基础计算书
一、拌和站罐基础设计概括
计划投入两套HZS90拌合站,单套HZS90拌合站投入2个150t 型水泥罐(装满材料后),根据公司以往拌合站施工经验,结合现场地质条件以及基础受力验算,水泥罐采用砼扩大基础,基础顶预埋地脚钢板与水泥罐支腿满焊。
二、基本参数
1、风荷载参数:查询公路桥涵设计通用规范得知:本工程相邻地区宁国市10年一遇基本风速:s m V /3.2010=;
2、仓体自重:150t 罐体自重约15t ,装满材料后总重为150t ;
3、扩大基础置于粉质黏土上,地基承载力基本容许值[]
Kpa f a 1800=,采用碎石换填进行地基压实处理后,碎石换填地基承载力基本容许值[]
Kpa f a 5000=;
4、当采用两个水泥罐基础共同放置在一个扩大基础上时,扩大基础尺寸为9m ×4m ×1.5m (长×宽×高);当采用单个水泥罐基础放置在一个扩大基础上,扩大基础尺寸为4m ×4m ×1.5m (长×宽×高);
三、空仓时整体抗倾覆稳定性稳定性计算
1、受力计算模型(按最不利150吨罐体计算),空仓时受十年一遇风荷载,得计算模型如下所示:
F1
F2
F3
图3-1 空仓时整体抗倾覆稳定性稳定性计算模型
2、风荷载计算
根据《公路桥涵设计通用规范》可知,风荷载标准值按下式计算:g
V W d k 22
γ=;
查《公路桥涵设计通用规范》得各参数取值如下:
空气重力密度:01199899.0012017.00001.0==-Z
e
γ; 地面风速统一偏安全按离地20m 取:s m V k k V /4.31105220==; 其中:12.12=k ,38.15=k ,s m V /3.2010=;
代入各分项数据得:22
2
/60.08.924.3101199899.02m KN g V W d k =⨯⨯==γ
单个水泥罐所受风力计算: ①、迎风面积:218.12.15.1m A =⨯= 作用力:8KN 0.18.16.01=⨯=F 作用高度:m H 35.181= ②、迎风面积:223.36113.3m A =⨯= 作用力:KN 78.213.366.02=⨯=F 作用高度:m H 1.122=
③、迎风面积:23125.42/5.23.3m A =⨯= 作用力:KN 475.2125.46.03=⨯=F 作用高度:m H 475.53= 2、单个水泥罐倾覆力矩计算
m KN h F M i i ⋅=⨯+⨯+⨯=⨯=∑91.296475.5475.21.1278.2135.1808.13
1倾
3、稳定力矩及稳定系数计算
假定筒仓绕单边两支腿轴线倾覆,稳定力矩由两部分组成,一部分是仓体自重稳定力矩1稳M ,另一部分是扩大基础自重产生的稳定力矩2稳M 。
①、但水泥罐扩大基础分开时,稳定力矩计算如下所示:
()m KN M ⋅=⨯⨯=625.1702/275.210151稳; m KN M ⋅=⨯⨯⨯⨯=2.6552/275.2245.1442稳;
稳定系数:
5.178.291.2962
.655625.170>倾稳=+=M M ,抗倾覆满足要求,同时罐体设置抗风绳可以提高安全系数。
②、但两个水泥罐共用一个扩大基础时,稳定力矩计算如下所示:
()m KN M ⋅=⨯⨯⨯=25.34122/275.210151稳; m KN M ⋅=⨯⨯⨯⨯=2.14742/275.2245.1492稳;
稳定系数:
5.10
6.3291.2962
.147425.341>倾稳=⨯+=M M ,抗倾覆满足要求,同时罐体设置抗风绳可以提高安全系数。
四、水泥罐基础承载力计算
1、但水泥罐扩大基础分开时,水泥罐基础承载力计算如下所示: 水泥罐基础采用4m ×4m ×1.5m 的砼扩大基础形式,基础采用预埋地脚钢板与水泥罐支腿满焊。
①、水泥罐装满时,其自重大小为:KN N 1500101501=⨯=; ②、扩大基础自重为:KN N 576245.1442=⨯⨯⨯=; ③、扩大基础与底部地基接触面积为:21644m A =⨯=; ④、基础承受最大倾覆力矩为:m KN M ⋅=91.296倾;
⑤、基础抗弯截面系数为:325.15.1461
m W =⨯⨯=;
⑥、基础底部应力最大为:
Kpa Kpa W M A N p 50069.3275
.191.296162076max <=+=+=
,得扩大基础承载能力满足要求!
2、但两个水泥罐共用一个扩大基础时,水泥罐基础承载力计算如下所示:
水泥罐基础采用9m ×4m ×1.5m 的砼扩大基础形式,基础采用预埋地脚钢板与水泥罐支腿满焊。
①、水泥罐装满时,其自重大小为:KN N 30002101501=⨯⨯=; ②、扩大基础自重为:KN N 1296245.1492=⨯⨯⨯=; ③、扩大基础与底部地基接触面积为:23649m A =⨯=; ④、基础承受最大倾覆力矩为:m KN M ⋅=82.593倾;
⑤、基础抗弯截面系数为:32375.35.1961
m W =⨯⨯=;
⑥、基础底部应力最大为:
Kpa Kpa W M A N p 50028.295375
.382.593364296max <=+=+=
,得扩大基础承载能力满足要求!
五、扩大基础砼局部承压计算
扩大基础上设60×60cm 的15mm 厚钢板与水泥罐支腿焊接传递压应力,得扩大基础砼局部承压验算如下所示:
局部承压面积:2360000600600mm A l =⨯=;
局部承压计算底面积:264000010026001002600(mm A b =⨯+⨯⨯+=)()
(钢板边缘距扩大基础边缘距离最小为10cm );
砼局部承压强度提高系数:33.1360000
640000
===
l b A A β; 得水泥罐支腿传递的最大轴向力为()KN 5.5625.14/1500=⨯;
有KN A f KN l cd 58.49553600005.1133.19.09.05.562=⨯⨯⨯=β<(扩大基础采用C25砼,混凝土轴心抗压强度设计值MPa f cd 5.11=);
得砼局部承压满足要求!
六、扩大基础抗滑移验算
1、但水泥罐扩大基础分开时,扩大基础抗滑移验算如下所示: 基础所受水平力大小为:KN T 335.25475.278.2108.1=++=;
基础底部摩擦系数:3.0=f ;
基础所受最小轴向力:KN N 726576150=+=; 基础抗滑移稳定系数为:5.160.8335
.257263.0>=⨯==T fN K c ,得扩大基础抗滑移验算满足要求;
2、但两个水泥罐扩大基础共用时,扩大基础抗滑移验算如下所示: 基础所受水平力大小为:()KN T 67.502475.278.2108.1=⨯++=; 基础底部摩擦系数:3.0=f ;
基础所受最小轴向力:KN N 159********=+=; 基础抗滑移稳定系数为:5.150.9335
.2515963.0>=⨯==T fN K c ,得扩大基础抗滑移验算满足要求;
七、换土垫层计算
1、换土垫层厚度计算
换土垫层的厚度定为100cm ,换土垫层的厚度应满足以下要求:
[]a R gk ok f p p γ≤+
()()
θθtan 2tan 2)
''(z l z b p p bl p gk ok ok ++-=
式中:)KPa p ok (垫层底面处的附加应力-;
KPa KPa p gk 551195.124)=⨯+⨯-,取力(垫层底面处的自重压应;
;抗力提高系数,取25.1-R γ
[];载力容许值为地质报告得粉质粘土承地基承载力容许值,查KPa f a 180-
m b 4基础宽度,取-; m l 4基础长度,取-;
KPa p ok 69.327'基础底面压应力,取-;
KPa p gk 365.124'=⨯-,取基础底面处自重压应力;
m 1垫层厚度,取-z ;
045压力扩散角,取为-θ; 代入相关数据得:
KPa p p gk ok 64.18455)
45tan 124)(45tan 124()
3669.327(440
0=+⨯⨯+⨯⨯+-⨯⨯=
+; 得KPa KPa p p gk ok 22518025.164.184=⨯=+<,换填100cm 厚碎石垫层,满足承载力要求;
2、垫层宽度计算
垫层底面宽度应满足压力扩散的需求,得垫层宽度为
m z b b 0.645tan 124tan 201=⨯⨯+=+=θ;
实际布置时,垫层底面分别距基础底面宽度为150cm ,满足要求。
八、施工建议
①、施工期间加强对地基基础承载力的检验,基坑开挖完成后,检测地基承载力满足要求后,方能进行下一步施工;
②、基础底部应力水平相对较小,不会造成扩大基础混凝土开裂,但为满足结构构造性要求,建议在扩大基础顶面和底面各设置一层直径不小于Φ16的15cm ×15cm 的钢筋网片;
③、施工期间为加强水泥罐整体稳定性,对两个罐子之间可采用钢管或型钢焊接为一个整体;。