An image-based measurement system for the characterisation of automotive gaskets

合集下载

基于数字图像相关的旋转叶片全场测量

基于数字图像相关的旋转叶片全场测量

第51卷第7期2020年7月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.51No.7Jul.2020基于数字图像相关的旋转叶片全场测量叶美图,梁晋,千勃兴,宗玉龙,龚春园(西安交通大学机械工程学院机械制造系统工程国家重点实验室,陕西西安,710049)摘要:为了解决使用相关算法难以匹配变形前后叶片大角度旋转的问题,基于数字图像相关,提出一种稳定的用于旋转叶片全场变形的测量方法。

首先,针对图像序列中参考图像与变形图像的相关匹配,使用SURF 算法得到被测表面旋转前后的特征点对。

然后,利用特征点对将变形图像反向旋转变换后得到校正图像。

接着,对校正图像和参考图像使用数字图像相关进行匹配。

最后,将匹配得到的校正图像上的目标节点再进行正向旋转变换,即可得到原变形图像上的对应节点坐标。

对旋转匹配策略进行数值模拟验证,并对高速旋转下的换气扇叶片位移场和应变场进行测量。

研究结果表明:所提旋转匹配策略的校正精度为±0.0075像素,结合数字图像相关法能够进行旋转运动的位移和应变的全场、精确测量。

关键词:数字图像相关;旋转叶片;SURF 算法;反向旋转;全场测量中图分类号:TH741文献标志码:A开放科学(资源服务)标识码(OSID)文章编号:1672-7207(2020)07-1757-10Full-field measurement of rotating blades based on digital imagecorrelationYE Meitu,LIANG Jin,QIAN Boxing,ZONG Yulong,GONG Chunyuan(State Key Laboratory for Manufacturing Systems Engineering,School of Mechanical Engineering,Xi'an JiaotongUniversity,Xi'an 710049,China)Abstract:To solve the difficulty to match the images before and after deformation by digital image correlation (DIC)in the measurement of rotating blade,based on digital image correlation,a stable method for measuring the full-field deformation of rotating blades was presented.Firstly,for the correlation matching between the reference image and the deformed image in the left image sequence,SURF algorithm was used to obtain the feature point pairs before and after the rotation of the measured surface.Secondly,the corrected image was obtained by the inverse rotation to the deformed image according to feature points pairs.Thirdly,the corrected image with the reference image was matched by DIC.Finally,the coordinates of the corresponding nodes in the original deformed image was obtained by positive rotation of the matched target nodes on the corrected image.The proposed rotation matching strategy was verified by numerical simulation,and the measurement of displacement and strain fields of the ventilator blades during high-speed rotation were carried out.The results show that the correction accuracy of the proposed rotation matching strategy is up to ±0.0075pixel,which is satisfied with the full-field and accurateDOI:10.11817/j.issn.1672-7207.2020.07.002收稿日期:2019−09−08;修回日期:2019−12−30基金项目(Foundation item):国家自然科学基金资助项目(51675404;51421004)(Projects(51675404;51421004)supported by theNational Natural Science Foundation of China)通信作者:梁晋,博士,教授,从事机器视觉及三维全场测量研究;E-mail :******************第51卷中南大学学报(自然科学版)measurement of rotation displacements and strains combined with digital image correlation.Key words:digital image correlation;rotating blade;SURF algorithm;inverse rotation;full-field measurement旋转叶片的运动跟踪与变形测量是一个值得关注的问题[1−6],在风力叶片[2−3]或直升机桨叶[4−5]等旋转机械寿命预测中,对大扭矩、高速运动下叶片材料性能的判断有重要意义。

测绘专业英语翻译27单元

测绘专业英语翻译27单元

unit 27 Developments of Photogrammetry摄影测量的发展Photogrammetry can be defined as the art, science, and technology of obtaining reliable information about physical objects and the environment by recording,measuring and interpreting photographic images (American Society for Photogrammetry and Remote Sensing 1987).(摄影测量可以定义为通过记录、量测和解读相片来获取关于物理实体及环境的可靠信息的科学和技艺。

)Photogrammetry is the technique of measuring objects (2D or 3D) from photographs, but it may be also imagery stored electronically on tape or disk taken by video or CCD cameras or radiation sensors such as scanners.(摄影测量是在相片上量测物体(二维或三维),但也可能是通过电子手段【electronically】存储在磁带上或摄像机、CCD相机或像扫描仪一样的辐射传感器自带的盘上的图像。

)The most important feature of photogrammetry is that the objects are measured without being touched.(摄影测量最重要的特征是物体不经过接触就可量测。

)Although the term Photogrammetry can apply to measurements from ground photographs, modern photogrammetric techniques are most often applied to aerial and satellite images.(尽管摄影测量这个词能应用于对地面相片的量测,现代摄影测量技术更常常用于航空和卫星图像。

基于菲涅尔衍射的圆孔直径测量

基于菲涅尔衍射的圆孔直径测量

基于菲涅尔衍射的圆孔直径测量罗晓贺;惠梅【摘要】本文提出一种新的圆孔直径测量的方法.平行光照射下,圆孔直径和菲涅尔衍射光强分布中峰值轮廓直径存在一定的关系,根据该关系可以实现圆孔直径的测量.仿真和实验数据证明,该方法对于直径5 ~10 mm的圆孔可以达到亚微米级的测量精度.%A new diameter measurering method of circular aperture based on Fresnel diffraction is proposed.Under the irradiation of parallellight,there is a special relationship between the diameter of peak contour in Fresnel diffraction light intensity distribution and the diameter of circular aperture to be measured,and then the diameter of the circular aperture can be measured according to the relationship.Simulations and experiments show that the accuracy of this method can reach up to submicro order for the measurement of the circular apertures with diameter of 5 ~10 mm.【期刊名称】《激光与红外》【年(卷),期】2018(048)003【总页数】5页(P379-383)【关键词】直径测量;菲涅尔衍射;峰值轮廓;边缘轮廓【作者】罗晓贺;惠梅【作者单位】北京理工大学光电学院,北京100081;北京理工大学光电学院,北京100081【正文语种】中文【中图分类】TH741 引言现有圆孔直径的高精度测量方法有很多,比较成熟的有采用工具显微镜和孔径干涉测量仪进行测量。

基于多通道图像深度学习的恶意代码检测

基于多通道图像深度学习的恶意代码检测

2021⁃04⁃10计算机应用,Journal of Computer Applications2021,41(4):1142-1147ISSN 1001⁃9081CODEN JYIIDU http ://基于多通道图像深度学习的恶意代码检测蒋考林,白玮,张磊,陈军,潘志松*,郭世泽(陆军工程大学指挥控制工程学院,南京210007)(∗通信作者电子邮箱hotpzs@ )摘要:现有基于深度学习的恶意代码检测方法存在深层次特征提取能力偏弱、模型相对复杂、模型泛化能力不足等问题。

同时,代码复用现象在同一类恶意样本中大量存在,而代码复用会导致代码的视觉特征相似,这种相似性可以被用来进行恶意代码检测。

因此,提出一种基于多通道图像视觉特征和AlexNet 神经网络的恶意代码检测方法。

该方法首先将待检测的代码转化为多通道图像,然后利用AlexNet 神经网络提取其彩色纹理特征并对这些特征进行分类从而检测出可能的恶意代码;同时通过综合运用多通道图像特征提取、局部响应归一化(LRN )等技术,在有效降低模型复杂度的基础上提升了模型的泛化能力。

利用均衡处理后的Malimg 数据集进行测试,结果显示该方法的平均分类准确率达到97.8%;相较于VGGNet 方法在准确率上提升了1.8%,在检测效率上提升了60.2%。

实验结果表明,多通道图像彩色纹理特征能较好地反映恶意代码的类别信息,AlexNet 神经网络相对简单的结构能有效地提升检测效率,而局部响应归一化能提升模型的泛化能力与检测效果。

关键词:多通道图像;彩色纹理特征;恶意代码;深度学习;局部响应归一化中图分类号:TP309文献标志码:AMalicious code detection based on multi -channel image deep learningJIANG Kaolin ,BAI Wei ,ZHANG Lei ,CHEN Jun ,PAN Zhisong *,GUO Shize(Command and Control Engineering College ,Army Engineering University Nanjing Jiangsu 210007,China )Abstract:Existing deep learning -based malicious code detection methods have problems such as weak deep -level feature extraction capability ,relatively complex model and insufficient model generalization capability.At the same time ,code reuse phenomenon occurred in large number of malicious samples of the same type ,resulting in similar visual features of the code.This similarity can be used for malicious code detection.Therefore ,a malicious code detection method based on multi -channel image visual features and AlexNet was proposed.In the method ,the codes to be detected were converted into multi -channel images at first.After that ,AlexNet was used to extract and classify the color texture features of the images ,so as to detect the possible malicious codes.Meanwhile ,the multi -channel image feature extraction ,the Local Response Normalization (LRN )and other technologies were used comprehensively ,which effectively improved the generalization ability of the model with effective reduction of the complexity of the model.The Malimg dataset after equalization was used for testing ,the results showed that the average classification accuracy of the proposed method was 97.8%,and the method had the accuracy increased by 1.8%and the detection efficiency increased by 60.2%compared with the VGGNet method.Experimental results show that the color texture features of multi -channel images can better reflect the type information of malicious codes ,the simple network structure of AlexNet can effectively improve the detection efficiency ,and the local response normalization can improve the generalization ability and detection effect of the model.Key words:multi -channel image;color texture feature;malicious code;deep learning;Local Response Normalization (LRN)引言恶意代码已经成为网络空间的主要威胁来源之一。

自动化外文参考文献(精选120个最新)

自动化外文参考文献(精选120个最新)

自动化外文参考文献(精选120个最新)自动化外文参考文献(精选120个最新)本文关键词:外文,参考文献,自动化,精选,最新自动化外文参考文献(精选120个最新)本文简介:自动化(Automation)是指机器设备、系统或过程(生产、管理过程)在没有人或较少人的直接参与下,按照人的要求,经过自动检测、信息处理、分析判断、操纵控制,实现业绩预期的目标的过程。

下面是搜索整理的关于自动化参考文献,欢迎借鉴参考。

自动化外文释义一:[1]NazriNasir,Sha自动化外文参考文献(精选120个最新)本文内容:自动化(Automation)是指机器设备、系统或过程(生产、管理过程)在没有人或较少人的直接参与下,按照人的要求,经过自动检测、信息处理、分析判断、操纵控制,实现预期的目标的过程。

下面是搜索整理的关于自动化后面外文参考文献,欢迎借鉴参考。

自动化外文引文一:[1]Nazri Nasir,Shabudin Mat. An automated visual tracking measurement for quantifying wing and body motion of free-flying houseflies[J]. Measurement,2021,143.[2]Rishikesh Kulkarni,Earu Banoth,Parama Pal. Automated surface feature detection using fringe projection: An autoregressive modeling-based approach[J]. Optics and Lasers in Engineering,2021,121.[3]Tengyue Fang,Peicong Li,Kunning Lin,NengwangChen,Yiyong Jiang,Jixin Chen,Dongxing Yuan,Jian Ma. Simultaneous underway analysis of nitrate and nitrite inestuarine and coastal waters using an automated integrated syringe-pump-based environmental-water analyzer[J]. Analytica Chimica Acta,2021,1076.[4]Shengfeng Chen,Jian Liu,Xiaosong Zhang,XinyuSuo,Enhui Lu,Jilong Guo,Jianxun Xi. Development ofpositioning system for Nuclear-fuel rod automated assembly[J]. Robotics and Computer Integrated Manufacturing,2021,61.[5]Cheng-Ta Lee,Yu-Ching Lee,Albert Y. Chen. In-building automated external defibrillator location planning and assessment through building information models[J]. Automation in Construction,2021,106.[6]Torgeir Aleti,Jason I. Pallant,Annamaria Tuan,Tom van Laer. Tweeting with the Stars: Automated Text Analysis of the Effect of Celebrity Social Media ications on ConsumerWord of Mouth[J]. Journal of Interactive Marketing,2021,48.[7]Daniel Bacioiu,Geoff Melton,MayorkinosPapaelias,Rob Shaw. Automated defect classification of SS304 TIG welding process using visible spectrum camera and machine learning[J]. NDT and E International,2021,107.[8]Marcus von der Au,Max Schwinn,KatharinaKuhlmeier,Claudia Büchel,Bj?rn Meermann. Development of an automated on-line purification HPLC single cell-ICP-MS approach for fast diatom analysis[J]. Analytica ChimicaActa,2021,1077.[9]Jitendra Mehar,Ajam Shekh,Nethravathy M. U.,R. Sarada,Vikas Singh Chauhan,Sandeep Mudliar. Automation ofpilot-scale open raceway pond: A case study of CO 2 -fed pHcontrol on Spirulina biomass, protein and phycocyanin production[J]. Journal of CO2 Utilization,2021,33.[10]John T. Sloop,Henry J.B. Bonilla,TinaHarville,Bradley T. Jones,George L. Donati. Automated matrix-matching calibration using standard dilution analysis withtwo internal standards and a simple three-port mixing chamber[J]. Talanta,2021,205.[11]Daniel J. Spade,Cathy Yue Bai,ChristyLambright,Justin M. Conley,Kim Boekelheide,L. Earl Gray. Corrigendum to “Validation of an automated counting procedure for phthalate-induced testicular multinucleated germ cells” [Toxicol. Lett. 290 (2021) 55–61][J]. Toxicology Letters,2021,313.[12]Christian P. Janssen,Shamsi T. Iqbal,Andrew L. Kun,Stella F. Donker. Interrupted by my car? Implications of interruption and interleaving research for automatedvehicles[J]. International Journal of Human - Computer Studies,2021,130.[13]Seunguk Lee,Si Kuan Thio,Sung-Yong Park,Sungwoo Bae. An automated 3D-printed smartphone platform integrated with optoelectrowetting (OEW) microfluidic chip for on-site monitoring of viable algae in water[J]. Harmful Algae,2021,88.[14]Yuxia Duan,Shicai Liu,Caiqi Hu,Junqi Hu,Hai Zhang,Yiqian Yan,Ning Tao,Cunlin Zhang,Xavier Maldague,Qiang Fang,Clemente Ibarra-Castanedo,Dapeng Chen,Xiaoli Li,Jianqiao Meng. Automated defect classification in infrared thermography based on a neural network[J]. NDT and E International,2021,107.[15]Alex M. Pagnozzi,Jurgen Fripp,Stephen E. Rose. Quantifying deep grey matter atrophy using automated segmentation approaches: A systematic review of structural MRI studies[J]. NeuroImage,2021,201.[16]Jin Ye,Zhihong Xuan,Bing Zhang,Yu Wu,LiLi,Songshan Wang,Gang Xie,Songxue Wang. Automated analysis of ochratoxin A in cereals and oil by iaffinity magnetic beads coupled to UPLC-FLD[J]. Food Control,2021,104.[17]Anne Bech Risum,Rasmus Bro. Using deep learning to evaluate peaks in chromatographic data[J].Talanta,2021,204.[18]Faris Elghaish,Sepehr Abrishami,M. Reza Hosseini,Soliman Abu-Samra,Mark Gaterell. Integrated project delivery with BIM: An automated EVM-based approach[J]. Automation in Construction,2021,106.[19]Carl J. Pearson,Michael Geden,Christopher B. Mayhorn. Who's the real expert here? Pedigree's unique bias on trust between human and automated advisers[J]. Applied Ergonomics,2021,81.[20]Vibhas Mishra,Dani?l M.J. Peeters,Mostafa M. Abdalla. Stiffness and buckling analysis of variablestiffness laminates including the effect of automated fibre placement defects[J]. Composite Structures,2021,226.[21]Jenny S. Wesche,Andreas Sonderegger. When computers take the lead: The automation of leadership[J]. Computers in Human Behavior,2021,101.[22]Murat Ayaz,Hüseyin Yüksel. Design of a new cost-efficient automation system for gas leak detection in industrial buildings[J]. Energy & Buildings,2021,200.[23]Stefan A. Mann,Juliane Heide,Thomas Knott,Razvan Airini,Florin Bogdan Epureanu,Alexandru-FlorianDeftu,Antonia-Teona Deftu,Beatrice Mihaela Radu,Bogdan Amuzescu. Recording of multiple ion current components and action potentials in human induced pluripotent stem cell-derived cardiomyocytes via automated patch-clamp[J]. Journal of Pharmacological and Toxicological Methods,2021,100.[24]Rhar? de Almeida Cardoso,Alexandre Cury,Flavio Barbosa. Automated real-time damage detection strategy using raw dynamic measurements[J]. Engineering Structures,2021,196.[25]Mengmeng Zhong,Tielong Wang,Chengdu Qi,Guilong Peng,Meiling Lu,Jun Huang,Lee Blaney,Gang Yu. Automated online solid-phase extraction liquid chromatography tandem mass spectrometry investigation for simultaneous quantification of per- and polyfluoroalkyl substances, pharmaceuticals and personal care products, and organophosphorus flame retardants in environmental waters[J]. Journal of Chromatography A,2021,1602.[26]Pau Climent-Pér ez,Susanna Spinsante,Alex Mihailidis,Francisco Florez-Revuelta. A review on video-based active and assisted living technologies for automated lifelogging[J]. Expert Systems With Applications,2021,139.[27]William Snyder,Marisa Patti,Vanessa Troiani. An evaluation of automated tracing for orbitofrontal cortexsulcogyral pattern typing[J]. Journal of Neuroscience Methods,2021,326.[28]Juan Manuel Davila Delgado,LukumonOyedele,Anuoluwapo Ajayi,Lukman Akanbi,OlugbengaAkinade,Muhammad Bilal,Hakeem Owolabi. Robotics and automated systems in construction: Understanding industry-specific challenges for adoption[J]. Journal of Building Engineering,2021,26.[29]Mohamed Taher Alrefaie,Stever Summerskill,Thomas W Jackon. In a heart beat: Using driver’s physiological changes to determine the quality of a takeover in highly automated vehicles[J]. Accident Analysis andPrevention,2021,131.[30]Tawseef Ayoub Shaikh,Rashid Ali. Automated atrophy assessment for Alzheimer's disease diagnosis from brain MRI images[J]. Magnetic Resonance Imaging,2021,62.自动化外文参考文献二:[31]Vaanathi Sundaresan,Giovanna Zamboni,Campbell Le Heron,Peter M. Rothwell,Masud Husain,Marco Battaglini,Nicola De Stefano,Mark Jenkinson,Ludovica Griffanti. Automatedlesion segmentation with BIANCA: Impact of population-level features, classification algorithm and locally adaptive thresholding[J]. NeuroImage,2021,202.[32]Ho-Jun Suk,Edward S. Boyden,Ingrid van Welie. Advances in the automation of whole-cell patch clamp technology[J]. Journal of Neuroscience Methods,2021,326.[33]Ivana Duznovic,Mathias Diefenbach,Mubarak Ali,Tom Stein,Markus Biesalski,Wolfgang Ensinger. Automated measuring of mass transport through synthetic nanochannels functionalized with polyelectrolyte porous networks[J]. Journal of Membrane Science,2021,591.[34]James A.D. Cameron,Patrick Savoie,Mary E.Kaye,Erik J. Scheme. Design considerations for the processing system of a CNN-based automated surveillance system[J]. Expert Systems With Applications,2021,136.[35]Ebrahim Azadniya,Gertrud E. Morlock. Automated piezoelectric spraying of biological and enzymatic assays for effect-directed analysis of planar chromatograms[J]. Journal of Chromatography A,2021,1602.[36]Lilla Z?llei,Camilo Jaimes,Elie Saliba,P. Ellen Grant,Anastasia Yendiki. TRActs constrained by UnderLying INfant anatomy (TRACULInA): An automated probabilistic tractography tool with anatomical priors for use in the newborn brain[J]. NeuroImage,2021,199.[37]Kate?ina Fikarová,David J. Cocovi-Solberg,María Rosende,Burkhard Horstkotte,Hana Sklená?ová,Manuel Miró. A flow-based platform hyphenated to on-line liquid chromatography for automatic leaching tests of chemical additives from microplastics into seawater[J]. Journal of Chromatography A,2021,1602.[38]Darko ?tern,Christian Payer,Martin Urschler. Automated age estimation from MRI volumes of the hand[J]. Medical Image Analysis,2021,58.[39]Jacques Blum,Holger Heumann,Eric Nardon,Xiao Song. Automating the design of tokamak experiment scenarios[J]. Journal of Computational Physics,2021,394.[40]Elton F. de S. Soares,Carlos Alberto V.Campos,Sidney C. de Lucena. Online travel mode detection method using automated machine learning and feature engineering[J]. Future Generation Computer Systems,2021,101.[41]M. Marouli,S. Pommé. Autom ated optical distance measurements for counting at a defined solid angle[J].Applied Radiation and Isotopes,2021,153.[42]Yi Dai,Zhen-Hua Yu,Jian-Bo Zhan,Bao-Shan Yue,Jiao Xie,Hao Wang,Xin-Sheng Chai. Determination of starch gelatinization temperatures by an automated headspace gas chromatography[J]. Journal of Chromatography A,2021,1602.[43]Marius Tarp?,Tobias Friis,Peter Olsen,MartinJuul,Christos Georgakis,Rune Brincker. Automated reduction of statistical errors in the estimated correlation functionmatrix for operational modal analysis[J]. Mechanical Systems and Signal Processing,2021,132.[44]Wenxia Dai,Bisheng Yang,Xinlian Liang,ZhenDong,Ronggang Huang,Yunsheng Wang,Wuyan Li. Automated fusionof forest airborne and terrestrial point clouds throughcanopy density analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2021,156.[45]Jyh-Haur Woo,Marcus Ang,Hla Myint Htoon,Donald Tan. Descemet Membrane Endothelial Keratoplasty Versus Descemet Stripping Automated Endothelial Keratoplasty andPenetrating Keratoplasty[J]. American Journal of Ophthalmology,2021,207.[46]F. Wilde,S. Marsen,T. Stange,D. Moseev,J.W. Oosterbeek,H.P. Laqua,R.C. Wolf,K. Avramidis,G.Gantenbein,I.Gr. Pagonakis,S. Illy,J. Jelonnek,M.K. Thumm,W7-X team. Automated mode recovery for gyrotrons demonstrated at Wendelstein 7-X[J]. Fusion Engineering and Design,2021,148.[47]Andrew Kozbial,Lekhana Bhandary,Shashi K. Murthy. Effect of yte seeding density on dendritic cell generation in an automated perfusion-based culture system[J]. Biochemical Engineering Journal,2021,150.[48]Wen-Hao Su,Steven A. Fennimore,David C. Slaughter. Fluorescence imaging for rapid monitoring of translocation behaviour of systemic markers in snap beans for automatedcrop/weed discrimination[J]. Biosystems Engineering,2021,186.[49]Ki-Taek Lim,Dinesh K. Patel,Hoon Se,JanghoKim,Jong Hoon Chung. A fully automated bioreactor system for precise control of stem cell proliferation anddifferentiation[J]. Biochemical Engineering Journal,2021,150.[50]Mitchell L. Cunningham,Michael A. Regan,Timothy Horberry,Kamal Weeratunga,Vinayak Dixit. Public opinion about automated vehicles in Australia: Results from a large-scale national survey[J]. Transportation Research Part A,2021,129.[51]Yi Xie,Qiaobei You,Pingyang Dai,Shuyi Wang,Peiyi Hong,Guokun Liu,Jun Yu,Xilong Sun,Yongming Zeng. How to achieve auto-identification in Raman analysis by spectral feature extraction & Adaptive Hypergraph[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2021,222.[52]Ozal Yildirim,Muhammed Talo,Betul Ay,Ulas Baran Baloglu,Galip Aydin,U. Rajendra Acharya. Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart ratesignals[J]. Computers in Biology and Medicine,2021,113.[53]Marius Kern,Laura Tusa,Thomas Lei?ner,Karl Gerald van den Boogaart,Jens Gutzmer. Optimal sensor selection for sensor-based sorting based on automated mineralogy data[J]. Journal of Cleaner Production,2021,234.[54]Karim Keddadouche,Régis Braucher,Didier L.Bourlès,Mélanie Baroni,Valéry Guillou,La?titia Léanni,Georges Auma?tre. Design and performance of an automated chemical extraction bench for the preparation of 10 Be and 26 Al targets to be analyzed by accelerator mass spectrometry[J]. Nuclear Inst. and Methods in Physics Research, B,2021,456.[55]Christian P. Janssen,Stella F. Donker,Duncan P. Brumby,Andrew L. Kun. History and future of human-automation interaction[J]. International Journal of Human - Computer Studies,2021,131.[56]Victoriya Orlovskaya,Olga Fedorova,Michail Nadporojskii,Raisa Krasikova. A fully automated azeotropic drying free synthesis of O -(2-[ 18 F]fluoroethyl)- l -tyrosine ([ 18 F]FET) using tetrabutylammonium tosylate[J]. Applied Radiation and Isotopes,2021,152.[57]Dinesh Krishnamoorthy,Kjetil Fjalestad,Sigurd Skogestad. Optimal operation of oil and gas production usingsimple feedback control structures[J]. Control Engineering Practice,2021,91.[58]Nick Oliver,Thomas Calvard,Kristina Poto?nik. Safe limits, mindful organizing and loss of control in commercial aviation[J]. Safety Science,2021,120.[59]Bo Sui,Nils Lubbe,Jonas B?rgman. A clustering approach to developing car-to-two-wheeler test scenarios for the assessment of Automated Emergency Braking in China using in-depth Chinese crash data[J]. Accident Analysis and Prevention,2021,132.[60]Ji-Seok Yoon,Eun Young Choi,Maliazurina Saad,Tae-Sun Choi. Automated integrated system for stained neuron detection: An end-to-end framework with a high negative predictive rate[J]. Computer Methods and Programs in Biomedicine,2021,180.自动化外文参考文献八:[61]Min Wang,Barbara E. Glick-Wilson,Qi-Huang Zheng. Facile fully automated radiosynthesis and quality control of O -(2-[ 18 F]fluoroethyl)- l -tyrosine ([ 18 F]FET) for human brain tumor imaging[J]. Applied Radiation andIsotopes,2021,154.[62]Fabian Pütz,Finbarr Murphy,Martin Mullins,LisaO'Malley. Connected automated vehicles and insurance: Analysing future market-structure from a business ecosystem perspective[J]. Technology in Society,2021,59.[63]Victoria A. Banks,Neville A. Stanton,Katherine L. Plant. Who is responsible for automated driving? A macro-level insight into automated driving in the United Kingdom using the Risk Management Framework and Social NetworkAnalysis[J]. Applied Ergonomics,2021,81.[64]Yingjun Ye,Xiaohui Zhang,Jian Sun. Automated vehicle’s behavior decision making using deep reinforcement learning and high-fidelity simulation environment[J]. Transportation Research Part C,2021,107.[65]Hasan Alkaf,Jameleddine Hassine,TahaBinalialhag,Daniel Amyot. An automated change impact analysis approach for User Requirements Notation models[J]. TheJournal of Systems & Software,2021,157.[66]Zonghua Luo,Jiwei Gu,Robert C. Dennett,Gregory G. Gaehle,Joel S. Perlmutter,Delphine L. Chen,Tammie L.S. Benzinger,Zhude Tu. Automated production of a sphingosine-1 phosphate receptor 1 (S1P1) PET radiopharmaceutical [ 11C]CS1P1 for human use[J]. Applied Radiation andIsotopes,2021,152.[67]Sarfraz Qureshi,Wu Jiacheng,Jeroen Anton van Kan. Automated alignment and focusing system for nuclear microprobes[J]. Nuclear Inst. and Methods in Physics Research, B,2021,456.[68]Srikanth Sagar Bangaru,Chao Wang,MarwaHassan,Hyun Woo Jeon,Tarun Ayiluri. Estimation of the degreeof hydration of concrete through automated machine learning based microstructure analysis – A study on effect of image magnification[J]. Advanced Engineering Informatics,2021,42.[69]Fang Tengyue,Li Peicong,Lin Kunning,Chen Nengwang,Jiang Yiyong,Chen Jixin,Yuan Dongxing,Ma Jian. Simultaneous underway analysis of nitrate and nitrite in estuarine and coastal waters using an automated integrated syringe-pump-based environmental-water analyzer.[J]. Analytica chimica acta,2021,1076.[70]Ramos Inês I,Carl Peter,Schneider RudolfJ,Segundo Marcela A. Automated lab-on-valve sequential injection ELISA for determination of carbamazepine.[J]. Analytica chimica acta,2021,1076.[71]Au Marcus von der,Schwinn Max,Kuhlmeier Katharina,Büchel Claudia,Meermann Bj?rn. Development of an automated on-line purification HPLC single cell-ICP-MS approach for fast diatom analysis.[J]. Analytica chimica acta,2021,1077.[72]Risum Anne Bech,Bro Rasmus. Using deep learning to evaluate peaks in chromatographic data.[J].Talanta,2021,204.[73]Spade Daniel J,Bai Cathy Yue,LambrightChristy,Conley Justin M,Boekelheide Kim,Gray L Earl. Corrigendum to "Validation of an automated counting procedure for phthalate-induced testicular multinucleated germ cells" [Toxicol. Lett. 290 (2021) 55-61].[J]. Toxicologyletters,2021,313.[74]Zhong Mengmeng,Wang Tielong,Qi Chengdu,Peng Guilong,Lu Meiling,Huang Jun,Blaney Lee,Yu Gang. Automated online solid-phase extraction liquid chromatography tandem mass spectrometry investigation for simultaneousquantification of per- and polyfluoroalkyl substances, pharmaceuticals and personal care products, and organophosphorus flame retardants in environmental waters.[J]. Journal of chromatography. A,2021,1602.[75]Stein Christopher J,Reiher Markus. autoCAS: A Program for Fully Automated MulticonfigurationalCalculations.[J]. Journal of computationalchemistry,2021,40(25).[76]Alrefaie Mohamed Taher,Summerskill Stever,Jackon Thomas W. In a heart beat: Using driver's physiological changes to determine the quality of a takeover in highly automated vehicles.[J]. Accident; analysis andprevention,2021,131.[77]Shaikh Tawseef Ayoub,Ali Rashid. Automatedatrophy assessment for Alzheimer's disease diagnosis frombrain MRI images.[J]. Magnetic resonance imaging,2021,62.[78]Xie Yi,You Qiaobei,Dai Pingyang,Wang Shuyi,Hong Peiyi,Liu Guokun,Yu Jun,Sun Xilong,Zeng Yongming. How to achieve auto-identification in Raman analysis by spectral feature extraction & Adaptive Hypergraph.[J]. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,2021,222.[79]Azadniya Ebrahim,Morlock Gertrud E. Automated piezoelectric spraying of biological and enzymatic assays for effect-directed analysis of planar chromatograms.[J]. Journal of chromatography. A,2021,1602.[80]Fikarová Kate?ina,Cocovi-Solberg David J,Rosende María,Horstkotte Burkhard,Sklená?ová Hana,Miró Manuel. Aflow-based platform hyphenated to on-line liquid chromatography for automatic leaching tests of chemical additives from microplastics into seawater.[J]. Journal of chromatography. A,2021,1602.[81]Moitra Dipanjan,Mandal Rakesh Kr. Automated AJCC (7th edition) staging of non-small cell lung cancer (NSCLC) using deep convolutional neural network (CNN) and recurrent neural network (RNN).[J]. Health information science and systems,2021,7(1).[82]Ramos-Payán María. Liquid - Phase microextraction and electromembrane extraction in millifluidic devices:A tutorial.[J]. Analytica chimica acta,2021,1080.[83]Z?llei Lilla,Jaimes Camilo,Saliba Elie,Grant P Ellen,Yendiki Anastasia. TRActs constrained by UnderLying INfant anatomy (TRACULInA): An automated probabilistic tractography tool with anatomical priors for use in the newborn brain.[J]. NeuroImage,2021,199.[84]Sedghi Gamechi Zahra,Bons Lidia R,Giordano Marco,Bos Daniel,Budde Ricardo P J,Kofoed Klaus F,Pedersen Jesper Holst,Roos-Hesselink Jolien W,de Bruijne Marleen. Automated 3D segmentation and diameter measurement of the thoracic aorta on non-contrast enhanced CT.[J]. European radiology,2021,29(9).[85]Smith Claire,Galland Barbara C,de Bruin Willemijn E,Taylor Rachael W. Feasibility of Automated Cameras to Measure Screen Use in Adolescents.[J]. American journal of preventive medicine,2021,57(3).[86]Lambert Marie-?ve,Arsenault Julie,AudetPascal,Delisle Benjamin,D'Allaire Sylvie. Evaluating an automated clustering approach in a perspective of ongoing surveillance of porcine reproductive and respiratory syndrome virus (PRRSV) field strains.[J]. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases,2021,73.[87]Slanetz Priscilla J. Does Computer-aided Detection Help in Interpretation of Automated Breast US?[J]. Radiology,2021,292(3).[88]Sander Laura,Pezold Simon,Andermatt Simon,Amann Michael,Meier Dominik,Wendebourg Maria J,Sinnecker Tim,Radue Ernst-Wilhelm,Naegelin Yvonne,Granziera Cristina,Kappos Ludwig,Wuerfel Jens,Cattin Philippe,Schlaeger Regina. Accurate, rapid and reliable, fully automated MRI brainstem segmentation for application in multiple sclerosis and neurodegenerative diseases.[J]. Human brainmapping,2021,40(14).[89]Pajkossy Péter,Sz?ll?si ?gnes,Racsmány Mihály. Retrieval practice decreases processing load of recall: Evidence revealed by pupillometry.[J]. International journal of psychophysiology : official journal of the International Organization of Psychophysiology,2021,143.[90]Kaiser Eric A,Igdalova Aleksandra,Aguirre Geoffrey K,Cucchiara Brett. A web-based, branching logic questionnaire for the automated classification ofmigraine.[J]. Cephalalgia : an international journal of headache,2021,39(10).自动化外文参考文献四:[91]Kim Jin Ju,Park Younhee,Choi Dasom,Kim Hyon Suk. Performance Evaluation of a New Automated Chemiluminescent Ianalyzer-Based Interferon-Gamma Releasing Assay AdvanSure I3 in Comparison With the QuantiFERON-TB Gold In-Tube Assay.[J]. Annals of laboratory medicine,2021,40(1).[92]Yang Shanling,Gao Xican,Liu Liwen,Shu Rui,Yan Jingru,Zhang Ge,Xiao Yao,Ju Yan,Zhao Ni,Song Hongping. Performance and Reading Time of Automated Breast US with or without Computer-aided Detection.[J]. Radiology,2021,292(3).[93]Hung Andrew J,Chen Jian,Ghodoussipour Saum,OhPaul J,Liu Zequn,Nguyen Jessica,Purushotham Sanjay,Gill Inderbir S,Liu Yan. A deep-learning model using automated performance metrics and clinical features to predict urinary continence recovery after robot-assisted radical prostatectomy.[J]. BJU international,2021,124(3).[94]Kim Ryan S,Kim Gene. Double Descemet Stripping Automated Endothelial Keratoplasty (DSAEK): Secondary DSAEK Without Removal of the Failed Primary DSAEK Graft.[J]. Ophthalmology,2021,126(9).[95]Sargent Alexandra,Theofanous Ioannis,Ferris Sarah. Improving laboratory workflow through automated pre-processing of SurePath specimens for human papillomavirus testing with the Abbott RealTime assay.[J]. Cytopathology : official journal of the British Society for Clinical Cytology,2021,30(5).[96]Saba Tanzila. Automated lung nodule detection and classification based on multiple classifiers voting.[J]. Microscopy research and technique,2021,82(9).[97]Ivan D. Welsh,Jane R. Allison. Automated simultaneous assignment of bond orders and formal charges[J]. Journal of Cheminformatics,2021,11(1).[98]Willem Jespers,MauricioEsguerra,Johan ?qvist,Hugo Gutiérrez-de-Terán. QligFEP: an automated workflow for small molecule free energycalculations in Q[J]. Journal of Cheminformatics,2021,11(1).[99]Manav Raj,Robert Seamans. Primer on artificial intelligence and robotics[J]. Journal of OrganizationDesign,2021,8(1).[100]Yvette Pronk,Peter Pilot,Justus M.Brinkman,Ronald J. Heerwaarden,Walter Weegen. Response rate and costs for automated patient-reported outcomes collection alone compared to combined automated and manual collection[J]. Journal of Patient-Reported Outcomes,2021,3(1).[101]Tristan Martin,Ana?s Moyon,Cyril Fersing,Evan Terrier,Aude Gouillet,Fabienne Giraud,BenjaminGuillet,Philippe Garrigue. Have you looked for “stranger things” in your automated PET dose dispensing system? A process and operators qualification scheme[J]. EJNMMI Radiopharmacy and Chemistry,2021,4(1).[102]Manuel Peuster,Michael Marchetti,Ger ardo García de Blas,Holger Karl. Automated testing of NFV orchestrators against carrier-grade multi-PoP scenarios using emulation-based smoke testing[J]. EURASIP Journal on Wireless ications and Networking,2021,2021(1).[103]R. Ferrús,O. Sallent,J. Pérez-Romero,R. Agustí. On the automation of RAN slicing provisioning: solution framework and applicability examples[J]. EURASIP Journal on Wireless ications and Networking,2021,2021(1).[104]Duo Li,Peter Wagner. Impacts of gradual automated vehicle penetration on motorway operation: a comprehensive evaluation[J]. European Transport Research Review,2021,11(1).[105]Abel Gómez,Ricardo J. Rodríguez,María-Emilia Cambronero,Valentín Valero. Profiling the publish/subscribe paradigm for automated analysis using colored Petri nets[J]. Software & Systems Modeling,2021,18(5).[106]Dipanjan Moitra,Rakesh Kr. Mandal. Automated AJCC (7th edition) staging of non-small cell lung cancer (NSCLC) using deep convolutional neural network (CNN) and recurrent neural network (RNN)[J]. Health Information Science and Systems,2021,7(1).[107]Marta D’Alonzo,Laura Martincich,Agnese Fenoglio,Valentina Giannini,Lisa Cellini,ViolaLiberale,Nicoletta Biglia. Nipple-sparing mastectomy: external validation of a three-dimensional automated method to predict nipple occult tumour involvement on preoperative breast MRI[J]. European Radiology Experimental,2021,3(1).[108]N. V. Dozmorov,A. S. Bogomolov,A. V. Baklanov. An Automated Apparatus for Measuring Spectral Dependences ofthe Mass Spectra and Velocity Map Images of Photofragments[J]. Instruments and Experimental Techniques,2021,62(4).[109]Zhiqiang Sun,Bingzhao Gao,Jiaqi Jin,Kazushi Sanada. Modelling, Analysis and Simulation of a Novel Automated Manual Transmission with Gearshift Assistant Mechanism[J]. International Journal of Automotive Technology,2021,20(5).[110]Andrés Vega,Mariano Córdoba,Mauricio Castro-Franco,Mónica Balzarini. Protocol for automating errorremoval from yield maps[J]. Precision Agriculture,2021,20(5).[111]Bethany L. Lussier,DaiWai M. Olson,Venkatesh Aiyagari. Automated Pupillometry in Neurocritical Care: Research and Practice[J]. Current Neurology and Neuroscience Reports,2021,19(10).[112] B. Haskali,Peter D. Roselt,David Binns,Amit Hetsron,Stan Poniger,Craig A. Hutton,Rodney J. Hicks. Automated preparation of clinical grade [ 68 Ga]Ga-DOTA-CP04, a cholecystokinin-2 receptor agonist, using iPHASE MultiSyn synthesis platform[J]. EJNMMI Radiopharmacy andChemistry,2021,4(1).[113]Ju Hyun Ahn,Minho Na,Sungkwan Koo,HyunsooChun,Inhwan Kim,Jong Won Hur,Jae Hyuk Lee,Jong G. Ok. Development of a fully automated desktop chemical vapor deposition system for programmable and controlled carbon nanotube growth[J]. Micro and Nano Systems Letters,2021,7(1).[114]Kamellia Shahi,Brenda Y. McCabe,Arash Shahi. Framework for Automated Model-Based e-Permitting System forMunicipal Jurisdictions[J]. Journal of Management in Engineering,2021,35(6).[115]Ahmed Khalafallah,Yasmin Shalaby. Change Orders: Automating Comparative Data Analysis and Controlling Impacts in Public Projects[J]. Journal of Construction Engineering and Management,2021,145(11).[116]José ?. Martínez-Huertas,OlgaJastrzebska,Ricardo Olmos,José A. León. Automated summary evaluation with inbuilt rubric method: An alternative to constructed responses and multiple-choice testsassessments[J]. Assessment & Evaluation in Higher Education,2021,44(7).[117]Samsonov,Koshel,Walther,Jenny. Automated placement of supplementary contour lines[J]. International Journal of Geographical Information Science,2021,33(10).[118]Veronika V. Odintsova,Peter J. Roetman,Hill F. Ip,René Pool,Camiel M. Van der Laan,Klodiana-DaphneTona,Robert R.J.M. Vermeiren,Dorret I. Boomsma. Genomics of human aggression: current state of genome-wide studies and an automated systematic review tool[J]. PsychiatricGenetics,2021,29(5).[119]Sebastian Eggert,Dietmar W Hutmacher. In vitro disease models 4.0 via automation and high-throughput processing[J]. Biofabrication,2021,11(4).[120]Asad Mahmood,Faizan Ahmad,Zubair Shafiq,Padmini Srinivasan,Fareed Zaffar. A Girl Has No Name: Automated Authorship Obfuscation using Mutant-X[J]. Proceedings on Privacy Enhancing Technologies,2021,2021(4).。

英文-无人机的基于视觉的实时指导

英文-无人机的基于视觉的实时指导

II.
VISION BASED ESTIMATOR
I.
INTRODUCTION
This The automation of unmanned aerial vehicles (UAVs) for civilian and military applications has been an active research area in recent years. The development of sensors, such as cameras and GPS made a large contribution. In most cases, UAV automated flight control has been achieved by using multi- sensor fusion to estimate vehicle states accurately. However, because this becomes a complex and expensive system and not suitable for small UAVs, there is a need to make an autonomous flight system which is simpler and less expensive.This paper presents an integrated tracking algorithm, consists of a vision-based estimator and a Lyapunov vector field-based guidance law. The performance of the proposed tracking algorithm is demonstrated through computer simulations. A possible target tracking scenario is to direct a single UAV to fly a circular orbit around a moving target. Recently, the Lyapunov guidance vector field approach is proposed to generate the tracking commands [1], [2], [3]. This approach guarantees that the tracking trajectory converges to a circular orbit around the moving target with

基于图像分析的螺纹钢尺寸测量方法

基于图像分析的螺纹钢尺寸测量方法

第34卷第3期传感技术学报Vol.34No.3Mar.20212021年3月CHINESE JOURNAL OF SENSORS AND ACTUATORSDimensions Measurement Algorithm of Rebar Based on Image Analysis*CHEN Yajun^.DING Yuanyuan,FAN Caixia.KANG Xiaobing{Department of Information Science,XVan University erf Technology,X i an Shaanxi710048,China)Abstract:Aiming at the difficult problem of automatic measurement for complex shape dimension of rebar,a rebar dimension measurement algorithm based on image analysis is proposed.Firstly,the rebar images from multiple view angles are acquired based on a CCD camera.Secondly,a series of preprocessing such as graying,image enhance­ment,and image segmentation are performed on the obtained rebar images.Then,a common edge detection method is implemented,and a sub-pixel edge detection algorithm is proposed for extracting high-precision rebar image edges.On this basis,three rebar dimension measurement methods based on common edge detection,sub-pixel edge detection accuracy and image projection method are proposed.The dimension parameters such as inner diameter, outer diameter,transverse rib spacing of rebar and the angle between the transverse rib and the axis can be meas­ured based on proposed image processing algorithm.Finally,based on the calibration using checkerboard calibration target to complete unit conversion,the actual physical dimension is achieved.The experimental results show that the proposed method can realize the visual measurement of multiple main dimensions of rebar,achieve sub-pixel preci­sion and good effect,and lay a good foundation for realizing on-line detection system of rebar dimensions based on machine vision technology.Key words:rebar;image analysis;dimensional measurement;sub-pixel;edge detectionEEACC:7320;7210doi:10.3969/j.issn,1004-1699.2021.03.005基于图像分析的螺纹钢尺寸测量方法*陈亚军*,丁圆圆,范彩霞,康晓兵(西安理工大学信息科学系,陕西西安710048)摘要:针对螺纹钢复杂形状尺寸的测量难题,提出了基于图像分析的螺纹钢尺寸测量算法。

宫颈癌后装腔内照射施源器放置技术与剂量分布对疗效及不良反应的影响

宫颈癌后装腔内照射施源器放置技术与剂量分布对疗效及不良反应的影响

宫颈癌后装腔内照射施源器放置技术与剂量分布对疗效及不良反应的影响白冬梅;赵红;杨卫卫;白胜江;曹彩萍【摘要】目的探讨宫颈癌后装腔内照射施源器放置技术与剂量分布对其疗效的影响.方法选择Ⅱb期后的宫颈鳞癌患者80例作为研究对象,根据放疗方法的不同分为观察组与对照组,各40例,两组放疗都采用6mV X线行四野盒式照射,在腔内后装施源器中,观察组采用扁平固定三管施源器,对照组采用单管施源器,两组都放疗观察8周.结果治疗后观察组与对照组有效率分别为77.5%和70.0%,两组有效率相比无显著性差异(P>0.05).观察组治疗期间膀胱、肠道反应发生率分别为5.0%和7.5%,对照组为22.5%和27.5%,观察组明显低于对照组(P<0.05).随访至今,观察组的总生存时间与无瘤生存时间为(34.23±4.11)个月与(23.14±3.78)个月,对照组分别为(29.12±4.09)个月与(19.10±4.13)个月,观察组均优于对照组(P<0.05).结论单管施源器和三管施源器放射治疗宫颈癌的疗效相当,但是放置技术与剂量分布合理的三管施源器可以减少膀胱、肠道反应发生率,延长患者的生存时间,有很好的应用效果.【期刊名称】《实用癌症杂志》【年(卷),期】2018(033)006【总页数】4页(P1024-1027)【关键词】宫颈癌;施源器;腔内照射;剂量;疗效【作者】白冬梅;赵红;杨卫卫;白胜江;曹彩萍【作者单位】716000 延安大学附属医院;716000 延安大学附属医院;716000 延安大学附属医院;716000 延安大学附属医院;716000 延安大学附属医院【正文语种】中文【中图分类】R737.33宫颈癌是是世界范围内继乳腺癌之后的第二大女性恶性肿瘤,目前国内发病率约10/10万,死亡率约3.3/10万,且年轻患者发病率呈上升趋势[1-2]。

宫颈癌的治疗方法包括手术、放疗、化疗、免疫治疗、生物治疗等,但是很多患者在入院时已为晚期,已经失去了手术治疗的指征[3-4]。

激光基准桥梁挠度成像检测系统

激光基准桥梁挠度成像检测系统

Measurementofbridgedeflectiononlaserdatum andvisionimaging
ZHAOHongwei1,SongYunfeng1,WANGHuiFeng2,3, HENana2,HUANGHe2,3,GUANLimin2,3,MUKenan2,3
(1WeiNanTrafficEngineeringQualitySupervisionStation,Wei′nan714000,China; 2SchoolofElectronic& ControlEngineering,Chang′anUniversity,Xi′an710064,China; 3RoadTrafficIntelligentInspectionandEquipmentEngineeringTechnologyResearchCenter,Xi′an710064,China)
激 光 与 红 外 No.3 2019 赵宏伟等 激光基准桥梁挠度成像检测系统
283
进行评估,指导桥梁的维护和维修工作,并且在桥梁 的健康监测、温度效应、应力损失上也得到了极为广 泛的应用[1]。 激 光 准 直 技 术 是 精 确 测 量 大 跨 径 桥 梁挠度变化的一种有效方法,其广泛应用在直线度、 同 轴 度、平 面 度、平 行 度 等 形 位 误 差 的 测 量 方 面 [2-3]。因此,有必 要 利 用 激 光 准 直 技 术 对 桥 梁 挠 度进行长期监测,确保桥梁结构服役可靠性实时可 控,提升其安全保障能力[4]。
赵宏伟1,宋云峰1,王会峰2,3,何娜娜2,黄 鹤2,3,关丽敏2,3,穆柯楠2,3
(1渭南市交通工程质量监督站,陕西 渭南 714000;2长安大学电子与控制工程学院,陕西 西安 710064; 3陕西省道路交通智能检测与装备工程技术研究中心,陕西 西安 710064)

Levenberg-Marquardt

Levenberg-Marquardt

4
Neural Network Calibration Model
The neural network trained in this study is a three-layer, feed-forward neural network (2–15–2 NN). Input data are the image points p u,v obtained from the extraction of the corner points. The target data are the corner points P X,Y from the cali-bration plane.
Input Layer Hidding Layer Output Layer
. . . P(u,v)
P(X,Y)
5
Neural Network Calibration Model
The neural network training algorithm used was a backpropagation function, which updates the weight and bias values according to Levenberg-Marquardt optimization method. The hidden layer maps from input vector to a vector of output n3=2 by a tangent sigmoid transfer function tansig
10
Comparison with Others
Comparison with the linear and second-order polynomial calibration algorithms

双目视觉无人机图像测量系统设计与实现

双目视觉无人机图像测量系统设计与实现

DOI:10.16185/j.jxatu.edu.cn.2020.05.009http://xb.xatu.edu.cn双目视觉无人机图像测量系统设计与实现王浩同,刘智平,石 俊,刘白林,王鹏瑞(西安工业大学计算机科学与工程学院,西安710021)摘 要: 为了解决“低慢小”目标低空检测效率低与空间定位难的问题,文中结合双目立体视觉深度测量的优点,设计并实现了一种无人机图像测量系统。

用三帧差法检测低空非合作目标,根据几何不变矩原理实现目标轮廓特征匹配识别。

通过建立双目视觉测量数学模型,利用最小二乘法求解目标空间三维坐标,并建立实验分析测量误差。

实验结果表明:保证双目相机帧率至少在15fps前提下,通过多线程改进匹配算法,提高系统效率15%左右;同时在双目相机20m深度感知范围内,目标空间三维坐标测量误差均值近0.2m,满足系统实时性和精度的要求。

关键词: 无人机;三帧差法;模板匹配;双目视觉测量中图号: TP301 文献标志码: A文章编号: 1673 9965(2020)05 0541 08犇犲狊犻犵狀犪狀犱犐犿狆犾犲犿犲狀狋犪狋犻狅狀狅犳犅犻狀狅犮狌犾犪狉犞犻狊犻狅狀犝犃犞犐犿犪犵犲犕犲犪狊狌狉犲犿犲狀狋犛狔狊狋犲犿犠犃犖犌犎犪狅狋狅狀犵,犔犐犝犣犺犻狆犻狀犵,犛犎犐犑狌狀,犔犐犝犅犪犻犾犻狀,犠犃犖犌犘犲狀犵狉狌犻(SchoolofComputerScienceandEngineering,Xi’anTechnologicalUniversity,Xi’an710021,China)犃犫狊狋狉犪犮狋: Withtheadvantagesofthebinocularstereovisiondepthmeasurement,aUAVimagemeasurementsystemisdesignedandimplementedforthelow?altitudedetectionandspatialpositioningof“low,slowandsmall”targets.Thethree?framedifferencemethodisusedtodetectlow?altitudenon?cooperativetargets,andthetargetcontourfeaturematchingrecognitionisrealizedaccordingtotheprincipleofgeometricinvariantmoments.Amathematicalmodelofthebinocularvisionmeasurementisbuilt,andtheleastsquaremethodisusedtosolvethethree?dimensionalcoordinatesofthetargetspace.Anexperimentisconductedtoanalyzethemeasurementerrors.Experimentalresultsshowthatunderthepremisethattheframerateofthebinocularcameraisatleast15fps,thematchingalgorithmisimprovedbymulti?threadingandthesystemefficiencyisimprovedby15%orso.And,withinthe20mdepthperceptionrangeofthebinocularcamera,theaverageerrorof3Dcoordinatemeasurementofthetargetspaceisclose第40卷第5期2020年10月 西 安 工 业 大 学 学 报JournalofXi’anTechnologicalUniversity Vol.40No.5Oct.2020 收稿日期:2020 04 06基金资助:陕西省工业领域重点项目(2016KTZDGY4 09)。

Mitutoyo QV Active Vision测量系统说明书

Mitutoyo QV Active Vision测量系统说明书

V i s i o n M e a s u r i n g S y s t e mA fully featured, automated vision measurement system featuring a space saving ergonomic designHigh SpeedHigh AccuracyHigh ThroughputAim Higher with Mitutoyo's QV ActiveVision Measurement SystemsHigh EfficiencyAutomatic edge detectionThe "automatic edge detection" function provides superiorreproducibility of measurements regardless of the skill level ofthe operator.Image auto focusMultiple methods of "image auto focus" allows high-speed /high-accuracy height measurements of 3D featuresPattern searchThe "pattern search" function automatically recognizes imagepatterns to create part alignment and feature measurement.Manual toolBy applying a"manual tool" sequence to a CNC measurementroutine, automatic measurement sequencing can be performed.This "One-Click" method reduces the need for fixtures as thezero point is created anywhere on the part, fixture or stage.Easy to use measurement for multiplework p ieces and repetitive feature arraysAutomatic measurement routines areavailable with either a click of a button orwith image recognitionBox tool Circle tool Arc toolSurface focus tool Multipoint auto focus toolNormal position Position is automatically compensated Intelligent and Automated FeatureProcess i ng Tools allow unattendedinspectionSuperior Flexibility with Color Zoom Optical System Interchangeable objective lens zoom unitThe newly designed 7:1 ratio zoom unit and interchangeable objectives provide 13x – 183x on-screen optical magnification.From wide field of view measurement to micro-measurement0.5X2X3.5X0.75X3X5.25X1X4X7XObjective 1X(option)Objective 1.5X(Standard accessory)Objective 2X(option)Exceptional objective working distance handlesthe tallest part measurement requirementsBest in class working distanceA working distance of 74mm* reduces the risk of damaging the objectiveor workpiece by accidental collision.* Using the 1X objective.Z-objective 1.5xZ-objective 2xMaster ball (option)MCR20 (option)One-click tool for feature measurementsSelect the element type, and with just one click on an edge, a high-accuracy measurement is taken regardless of the proficiency level of the operator. The embedded outlier removal filter automatically excludes bad data caused by burrs and dust.QVNavigatorALL skill levels can easily run and repeat identical measurement routines. An image or diagram of the workpiece can be registered as an icon in an automatic measurement program, enabling the tar g et program to be quickly executed. QVEasyEditorA teaching method is adopted in which programs are automatically recorded while measurement is performed. The insertion, revision, addition, and deletion of the part program can be performed easily using the tree-structure display. Also, execution of only a certain portion of the program after editing can be performed for the purpose of confirmation. Power-user-oriented QVBasicEditor is also available.QVGraphicsA simple operation, just clicking a measurement graphic element shown in the graphic window, enables coordinate creation/ change, combination arithmetic operations, and geometric deviation illustration of roundness, flatness, and more.A useful function is automatic creation of a measurement program just by dragging a pitch measurement element.Easy-to-operate across all skill levels Easily created measuring macros with walk through vitalization The embedded intelligence of Easy Editor makes programing and editing simplerFull featured 2D and 3D graphical results moduleallows the operator to perform visual analysisUser-specific macro creation functionRegistration example of an automaticmeasurement programMove the mouse to the edge and click once.Geometric deviation of a plane surfaceMeasurement result graphicGeometric deviation of a circular featureEasy-to-read tree-structure viewExecutes high-accuracy multi-point measurementand removes the outlierSoftware that is simple to use, yet advanced when you need itZoom lensUsing Mitutoyo's proprietary high-quality zoom system andobjective lenses the feature field of view is expanded. Multipleobjectives allow increased operator image viewing flexibility. High-definition color cameraMeasurement and observation is performed using high-qualityand high-definition images which prevents operator fatigueeven over long periods of observation.Superior Lighting with automated feature illuminationTransmitted, co-axial and 4-quadrant ring lighting is provided soworkpiece illumination can be set independently from thefront, rear, right and left directions. This enables more reliablemeasurement by enhancing the sharpness of the edge of thefeature to be measured.Wide Field of view allows more imageview, ensuring easier feature locating Large screen format with high-definitioncolor images reduces eye fatigueClear edges ensure reliable measurementStandard layout Manual-measurement-preferential layoutMagnification of 0.5x10.8mmOptional Software Tools2D Profile Analysis Software FORMTRACEPAK-APThis is contour analysis software that can perform sophisticated analyses such as design value verification (Toleranced Data Sets from Feature Creation) and shape analysis (2-D Profile) with data obtained via QVPAK measurement tools.Contour tolerancing functionShape analysis• Creating design dataCAD data conversion, master work conversion, function assignment, text file conversion, creating spherical surface design data • Verification of design dataVerification of normal line direction, axial direction, and best fit• Result displayResult list, error diagram, error development diagram, error coordinatevalues, analysis results• Analysis items: Point measurement, line measurement, circle measure-ment, distance measurement, intersection point measurement, angle measurement, origin point setting, axis rotation• Arithmetic operation items: Maximum value, minimum value, mean value, standard deviation, areaReport creation functionOther functions• Measurement results, error diagram, error development diagram• Record/execution of analysis procedure• CSV format output, text output, DXF/IGES format output • Fairing• Quadratic curve approximating function • Pseudo roughness analysis functionExample of design value verificationMeasurement example of lines, space, and thick-ness of conductive portion on PCBTwo-dimensional CAD drawings (DXF or IGES format) can be imported to QV Graphics.The measurement results can also be converted to CAD drawings. The design value of each measurement item will be automatically entered. Because the current position can be easily found using graphics, the stage can be quickly moved to an arbitrary position on a CAD drawing which results in im-proving operability during the measurement. (Refer to QV Graphics on P6.)CAD Program Software Modules QV-CAD I/F, EASYPAG, QV 3DCAD onlineWorkpieces aligned on a jig.QV Parts manager windowIt is possible to measure It is possible to measure various types of Part Program Management Software QVPartManagerQV PartManager is part program execution management software for multiple workpieces arranged on the measuring stage. A part program can be executed and managed for various kinds of workpieces and workpieces not arranged in an orderly manner.Integrated solutions modules QVEioQVEio is a client application software for external control. It provides three functions: QVEio-PLC, QVEio-PC, and QVEio-Signal. QVEio-PLC is a software package that can inform a user of the state of an external execution command via a PLC. As an example, this can be used to control robots. QVEio-PC allows control of the Quick Vision machine though an external PC connected via RS-232C, and it also exports results and error states. QVEio-Signal outputs the operating status of the Quick Vision machine. This is best suited for displaying the operating status to a signal tower, for example.Data collection/statistics MeasurLink ®This is a process management program that can perform statistical processing control (SPC) based on measurement results.Display of the control chart in real time enables early detection of machining abnormality which is effective in preventing the generation of defective products.*2 Does not apply for unbalanced or concentrated loads.each magnification, and correct optical axis offset.External dimensionsQuick Vision Active 202Unit: Inch(mm)Unit: Inch(mm)30.19”(767)12%space savingspace saving30%Quick Vision Active 202Our conventional model (ELF )Quick Vision Active 404Our conventional model (QV404)World's top level of global networkExcellent reliabilityMitutoyo has expanded its market all over the world since the establishment of the first overseas sales company, MTI Corporation (currently Mitutoyo America Corporation) in the USA in 1963.At present, we have R&D, manufacturing, sales, and technical service bases in 29 countries with an agency network connecting over 80 countries.Mitutoyo Europe GmbH Mitutoyo (UK) L.td.Mitutoyo France S.A.R.L Mitutoyo Italiana S.R.L.Mitutoyo Asia Pacific Pte.Ltd. Regional Headquarters Mitutoyo Measuring Instru-ments (Suzhou) Co., Ltd.Mitutoyo America Corpo-ration Head OfficeMITUTOYO SUL AMERICANALtda. Factory (Suzano)Headquarters■Local Sales Office■Research andCompany Headquartersin Kawasaki, Japan National Institute ofStandards and Technology(NIST)Working standardSecondary standardSecondary standardPrimary National StandardMitutoyo America CorporationA2LA AccreditedScope of Accreditation to ISO/IEC17025:2005 & ANSI/NCSL Z540-1-1994 &ANSI/NCSL Z540.3-2006Mitutoyo Utsunomiya Measurement StandardsCalibration Center633nm Practical Stabilized He-Ne LaserInterferometer (for standard scale)Vision Measuring System (measuring accuracy)Mitutoyo Kawasaki plantWorking standardSensor Systems Test Equipmentand Seismometers Digital Scale and DRO SystemsSmall Tool Instrumentsand Data Managementbasis.Mitutoyo America CorporationOne Number to Serve You Better1-888-MITUTOYO (1-888-648-8869)M3 Solution Centers:Aurora, Illinois (Headquarters)Boston, MassachusettsCharlotte, North CarolinaCincinnati, OhioDetroit, MichiganLos Angeles, CaliforniaBirmingham, AlabamaSeattle, WashingtonHouston, Texas5M 0418-02 • Printed in USA • April 2018©218MitutoyoAmericaCorporationFind additional product literatureand our product catalogNote: All inform ation regarding our products, and in particular the illustrations, drawings, dim ensional and performancedata contained in this printed matter as well as other technical data are to be regarded as approximate average values. Wetherefore reserve the right to make changes to the corresponding designs. The stated standards, similar technical regulations,descriptions and illustrations of the products were valid at the time of printing. In addition, the latest applicable version of ourGeneral Trading Conditions will apply. Only quotations submitted by ourselves may be regarded as definitive. Specificationsare subject to change without notice.Mitutoyo products are subject to US Export Administration Regulations (EAR). Re-export or relocation of our products mayrequire prior approval by an appropriate governing authority.Trademarks and RegistrationsDesignations used by companies to distinguish their products are often claimed as trademarks. In all instances where MitutoyoAm erica Corporation is aware of a claim, the product nam es appear in initial capital or all capital letters. The appropriatecompanies should be contacted for more complete trademark and registration information.。

大型河工模型分布式表面流场测量系统研制及应用

大型河工模型分布式表面流场测量系统研制及应用

DOI:10.16198/j.cnki.1009-640X.2018.01.003陈诚,夏云峰,黄海龙,等.大型河工模型分布式表面流场测量系统研制及应用[J].水利水运工程学报,2018(1):17-22.(CHENCheng,XIAYunfeng,HUANGHailong,etal.Developmentandapplicationofmeasurementsystemforsurfaceflowfieldinlarge⁃scalerivermodeltest[J].Hydro⁃ScienceandEngineering,2018(1):17-22.(inChinese))㊀第1期2018年2月水利水运工程学报HYDRO⁃SCIENCEANDENGINEERINGNo.1Feb.2018㊀㊀收稿日期:2017-03-16㊀㊀基金项目:国家重大科学仪器设备开发专项(2011YQ070055);国家重点研发计划项目(2017YFC0405703);国家自然科学基金资助项目(51309159);中央级公益性科研院所基本科研业务费专项资金(Y216004,Y215006,Y214002,Y212009)㊀㊀作者简介:陈㊀诚(1982 ),男,贵州贵阳人,高级工程师,博士,主要从事水力学及河流动力学研究㊂E⁃mail:cchen@nhri.cn大型河工模型分布式表面流场测量系统研制及应用陈㊀诚,夏云峰,黄海龙,王㊀驰,金㊀捷,周良平(南京水利科学研究院水文水资源及水利工程科学国家重点实验室,江苏南京㊀210029)摘要:在河工模型试验中,粒子图像表面流场测量方法得到了广泛应用㊂研制了一种新型分布式表面流场测量系统,该系统采用局域网组网与光纤传输相结合,通过POE千兆交换机与高清智能一体化工业摄像机相连,显著降低了布线复杂度,具有系统传输距离远㊁布设简单㊁集成度高㊁可扩展性强等优点㊂系统具备可视化全自动采集㊁可视化错误矢量剔除㊁导出多种数据格式,生成流场等值线图㊁流线等功能㊂在系统研制基础上,提出了一种对粒子图像表面流场测量系统进行精度检测的新方法,通过精确控制匀速旋转平台模拟水流运动,将表面流场测量系统实测数据与旋转平台上各点精确数据进行对比检测,检测结果表明,研制的表面流场测量系统测量误差小于5%,已在长江河口模型等多个大型河工模型中得到成功应用㊂关㊀键㊀词:模型试验;流场测量;粒子图像;检测方法中图分类号:TV83㊀㊀㊀文献标志码:A㊀㊀㊀㊀文章编号:1009-640X(2018)01-0017-06在河工模型试验中,采用粒子图像测速技术(PIV,ParticleImageVelocimetry)测量表面流场,可以获取河流泥沙工程中的流速分布信息,从而对河流水动力结构进行研究,为工程方案提供科学依据,该技术已广泛应用于河工及港工模型大范围瞬时表面流场的测量[1-4]㊂河工模型试验中的PIV技术与水槽试验中的常规PIV技术的区别主要在于:①测量区域比常规PIV大得多,通常摄像头架设的位置离测量区域较远,为了满足图像处理的要求,所采用的示踪粒子粒径较大;②照明系统通常采用普通光源(甚至可以是自然光)照明,而常规PIV需要专门的激光片光源进行照明㊂目前表面流场测量系统能够多次自动测量大范围的表面流场,较好地解决模型试验的流场测量问题,但也存在需要进一步改进的地方:如安装及标定过程较复杂;布线麻烦;测量过程中需对每个通道的图像进行手动阈值调整;流场错误矢量剔除费时费力㊂为了解决上述难题,本文研制了一种新型分布式表面流场测量系统,并成功应用于模型试验研究㊂为了分析研究模型试验中的粒子图像测速技术,便于不断完善和提升表面流场测量系统的各项性能指标,从而促进河流泥沙科学研究水平不断提高,有必要研究表面流场测量系统测量精度的检测方法㊂示踪粒子跟随性㊁摄像机分辨率㊁镜头畸变㊁安装高度㊁图像采集时间控制精度及流场提取算法等都直接影响系统测量精度,在流场系统实际使用过程中,粒子图像跟踪算法(PTV,ParticleTrackingVelocimetry)中粒子图像阈值及PIV互相关算法中相关窗口大小的确定也会直接导致测量误差[5-9]㊂目前常用的检测方法主要是在模型试验中使用常用的流速仪包括旋桨流速仪㊁ADV声学多普勒流速仪等进行对比测量,但这些流速仪都需. All Rights Reserved.水利水运工程学报2018年2月要放置于一定水深才能测量,无法直接测出表面流速,会直接影响检测结果㊂为了解决上述问题,提出了一种对模型试验中粒子图像表面流场测量系统进行精度检测的新方法㊂1㊀分布式表面流场测量系统研制1 1㊀研制原理基于粒子图像测速技术(PIV)研制大范围表面流场测量系统㊂采用千万像素高清智能一体化工业摄像机,通过无线网络与电脑连接,采用互相关算法[10-11]进行粒子图像匹配来计算表面流场,应用粒子图像跟踪算法(PTV)[12-13]测量粒子迹线并生成动态可视化流迹线,结合流体力学连续性原理对流场中错误矢量进行剔除㊂系统可同步测量大范围多通道的表面流场及流迹线,具有较高的测量效率和精度,适用于大型物理模型试验表面流速分布的测量㊂图1㊀系统组网示意Fig 1Schematicdiagramofsystemnetworking1 2㊀硬件系统组成系统采用局域网组网与光纤传输相结合,如图1所示,通过POE(PowerOverEthernet)千兆交换机与高清智能一体化工业摄像机相连,供电同时传输图像,完成摄像机局域网组网后,通过光纤收发器进行长距离图像传输,满足远距离㊁高速㊁高宽带的快速以太网工作的需要,达到长距离的高速远程互连㊂然后通过交换机与无线路由器传输,实现计算机终端的无线连接㊂由于采用了POE供电,显著降低了布线复杂度,系统传输距离远,布设简单,集成度高,可扩展性强㊂采用1200万像素高分辨率智能一体化工业摄像机,图像分辨率4000ˑ3000像素,配置红外自动增益,自适应光线调节,自动变焦(2 8 12mm),安装高度12m,终端拍摄范围为20mˑ18m㊂可实时拍摄彩色高清照片,配置红外自动增益,自适应光线调节,背光补偿,数字宽动态,特别适用于大型河工模型长时间测量,自动消除光线变化影响㊂标准型工作温度-30ħ 60ħ,一体化IP67防护等级护罩,有效解决模型试验中温度㊁湿度等问题,保证系统长期稳定运行㊂另外,支持智能化嵌入图像处理算法,显著提高图像处理速度,可保证多通道瞬时同步采集㊂智能一体化工业摄像机具有千兆网接口,并采用POE供电,通过POE千兆网交换机,仅用一根网线便可同时完成图像传输和摄像机供电,无须另外再配供电线路,显著降低了布线的复杂度,扩展简单,节能环保㊂另外,在摄像机上设置了水准气泡,在安装过程中可以方便㊁快速准确地将摄像机调成水平,在标定过程中每个摄像机拍摄范围内只需要选择2个标定点即可完成图像坐标与模型坐标的转换㊂图2㊀可视化全自动采集Fig 2Visualandautomaticacquisition1 3㊀软件系统功能软件系统基于VisualStudio平台,结合数字图像处理技术与河流动力学理论,主要包括图像采集模块㊁图像处理模块及流场数据后处理模块㊂主要功能如下:(1)可视化全自动采集:无需手动设置图像阈值等进行粒子识别,采集时可实时监控多通道粒子分布情况㊂采用互相关算法与流体力学基本理论相结合,自动进行粒子匹配,同步采集大范围多通道的流场数据,如图2所示㊂(2)采用可视化错误矢量剔除方法:基于流体连续性原理,选择局部流场区域,通过滑动条控件调整流速大小及方向阈值,超过此范围的流速矢量自动差别为错误矢量,进行实时突出显示后可直接剔除,处理速度快㊂并可进行网格插值㊁断面流速插值㊁定点插值等,81. All Rights Reserved.㊀第1期陈㊀诚,等:大型河工模型分布式表面流场测量系统研制及应用图3㊀迹线可视化Fig 3Streamlinevisualization数据后处理快速方便㊂(3)流场数据可直接导出为TXT,CAD,TECPLOT和BMP等多种格式,可生成流场等值线图㊁流线等㊂(4)采用粒子跟踪图像处理算法,识别并提取粒子图像,动态地叠加到背景图像,生成动态可视化流迹线图像及视频,如图3所示㊂2㊀系统精度检测方法模型试验中水流运动通常较为复杂,在边界突变等情况下容易产生旋转流等,为了尽量接近模型试验中真实流动情况,同时便于提取对比测量数据,设计匀速旋转平台来模拟水流运动㊂用计算机精确生成随机粒子图像(粒子大小与分布可调),然后打印固定在旋转平台上,以恒定的角速度ω旋转来模拟模型试验中表面流场的粒子运动㊂由于旋转平台上的粒子是由计算机精确生成,在平台的坐标位置可以精确测定㊂将表面流场测量系统摄像机拍摄的平台中心与平台中心精确对应,旋转平台上任意位置的速度大小可通过v=ωr精确测定,速度方向为该点的切线方向㊂将表面流场测量系统实测流场数据与旋转平台精确值进行对比,便可直接测出系统测量误差㊂图4㊀检测装置组成Fig 4Compositionofdetectiondevice检测装置主要包括:圆形旋转平台㊁步进电机㊁控制器㊁传动机构等(见图4)㊂圆形旋转平台为直径30cm的光滑平整铝制转盘㊂步进电机分辨率为0 001ʎ,最大转速可达50ʎ/s㊂驱动模式采用蜗轮蜗杆结构,传动比为90:1㊂旋转轴系采用多道工艺精密加工而成,配合精度高㊂转盘刻度圈是激光刻划标尺,方便初始定位和读数,采用精密研配的蜗轮蜗杆结构,可以任意正向和反向旋转且空回极小㊂步进电机和蜗杆通过弹性联轴节连接,传动同步,消偏性能好,大大降低了偏心扰动且噪音小㊂控制器总是工作在4种状态之一:自动状态㊁手动状态㊁程序编辑状态㊁参数设定状态㊂控制器通电后,控制器处于手动状态且坐标值自动清零,可进行手动/自动模式切换,设置旋转速度㊁旋转时间㊁旋转方向等参数㊂系统检测时,将旋转平台旋转在拍摄图像中心位置,分别设置旋转平台旋转速度为1,5,10,20和30ʎ/s,在平台平稳运行过程中使用表面流场系统进行测量,保存测量数据;为了检测系统的畸变校正性能,可在拍摄图像中心位置与图像边缘间分别放置旋转平台进行检测㊂为了检测系统在不同高度的测量性能,可变换安装高度进行检测㊂经过多次检测,研制的表面流场测量系统测量误差小于5%㊂3㊀系统应用将研制的分布式表面流场测量系统应用在长江河口段模型中,用于常熟港区规划模型试验研究,系统安装了30个高清智能一体化摄像机,其布置见图5㊂图6为测得的工程河段流场㊂由图6可见,流场图反映了工程河段的落急流场情况,以及该工程河段滩槽的流态分布规律㊂根据系统测得的粒子数据计算工程河段指定点的表面流速过程线,进而可分析工程实施前后流速过程变化㊁涨落急流速或平均流速的变化,模型验证时则可以用来验证模型测点与原型实测测点的流速相似性㊂在试验过程中,选取了6个流速测点进行了对比验证,由图7可见,系统测得的流速数据,与原型实测数据相比,各流速测点的流速过程线模型与天然吻合程度较好,既表明表面流场测量系统测量流速具有较高精确性,又表明了模型与原型有较好相似性㊂91. All Rights Reserved.水利水运工程学报2018年2月图5㊀长江河口段模型中摄像机布置Fig 5CameraplacedinYangtzeRiverestuarymodel图6㊀表面流场测量系统测得的工程河段流场Fig 6Flowfieldofengineeringreachmeasuredbysurfaceflowmeasurementsystem图7㊀模型试验流速验证Fig 7Flowvelocityverificationinmodeltests4㊀结㊀语(1)本文研制了一种分布式表面流场测量系统,该系统采用局域网组网与光纤传输相结合,通过POE千兆交换机与高清智能一体化工业摄像机相连,显著降低了布线复杂度,系统传输距离远,布设简单,集成度高,可扩展性强,并在长江河口段模型等多个大型河工模型中得到了成功应用㊂(2)设计制作了一种对模型试验中粒子图像表面流场测量系统进行精度检测的检测装置,通过精确控制匀速旋转平台模拟水流运动,可将流场测量系统实测数据与旋转平台上各点精确数据进行对比检测,通过多次检测,研制的表面流场测量系统测量误差小于5%㊂(3)该系统精度检测方法是基于示踪粒子完全跟随水流运动的情况下进行检测的,没有考虑示踪粒子跟随性对系统测量误差的影响,在今后的工作中需进一步补充完善㊂参㊀考㊀文㊀献:[1]唐洪武.复杂水流模拟问题及图像测速技术的研究[D].南京:河海大学,1996.(TANGHongwu.Researchoncomplexflowsimulationandimagevelocimetry[D].Nanjing:HohaiUniversity,1996.(inChinese))02. All Rights Reserved.㊀第1期陈㊀诚,等:大型河工模型分布式表面流场测量系统研制及应用 [2]王兴奎,庞东明,王桂仙,等.图像处理技术在河工模型试验流场量测中的应用[J].泥沙研究,1996(4):21⁃26.(WANGXingkui,PANGDongming,WANGGuixian,etal.Applicationofimageprocessingtechnicstovelocityfieldmeasurementinphysicalmodel[J].JournalofSedimentResearch,1996(4):21⁃26.(inChinese))[3]田晓东,陈嘉范,李云生,等.DPIV技术及其应用于潮汐流动表面流速的测量[J].清华大学学报(自然科学版),1998,38(1):103⁃106.(TIANXiaodong,CHENJiafan,LIYunsheng,etal.DPIVtechniqueanditsapplicationofvelocitymeasuringtidalflow[J].JournalofTsinghuaUniversity(SciencesTechnological),1998,38(1):103⁃106.(inChinese))[4]唐洪武,陈诚,陈红,等.实体模型表面流场㊁河势测量中图像技术应用研究进展[J].河海大学学报(自然科学版),2007,35(5):567⁃572.(TANGHongwu,CHENCheng,CHENHong,etal.Reviewofimageprocessingtechniqueappliedtomeasurementofsurfaceflowfieldandriverregimeofphysicalmodel[J].JournalofHohaiUniversity(NaturalSciences),2007,35(5):567⁃572.(inChinese))[5]吴龙华,严忠民,唐洪武.DPIV相关分析中相关窗口大小的确定[J].水科学进展,2002,13(5):594⁃598.(WULonghua,YANZhongmin,TANGHongwu.DeterminationofthecorrelationwindowsizesincorrelationanalysisofDPIV[J].AdvancesinWaterSicence,2002,13(5):594⁃598.(inChinese))[6]SUTARTOTE.Applicationoflargescaleparticleimagevelocimetry(LSPIV)toidentifyflowpatterninachannel[J].ProcediaEngineering,2015,125:213⁃219.[7]KANTOUSHSA,SCHLEISSAJ.Large⁃ScalePIVSurfaceFlowMeasurementsinShallowBasinswithDifferentGeometries[J].JournalofVisualization,2009,12(4):361⁃373.[8]FOXJF,PATRICKA.Large⁃scaleeddiesmeasuredwithlargescaleparticleimagevelocimetry[J].FlowMeasurementandInstrumentation,2008,19(5):283⁃291.[9]FUJITAI,KUNITAY.ApplicationofaerialLSPIVtothe2002floodoftheYodoRiverusingahelicoptermountedhighdensityvideocamera[J].JournalofHydro⁃EnvironmentResearch,2011,5(4):323⁃331.[10]SHIS,CHEND.ThedevelopmentofanautomatedPIVimageprocessingsoftware SmartPIV[J].FlowMeasurementandInstrumentation,2011,22(3):181⁃189.[11]CHIND,SANGJL.EvaluationofrecursivePIValgorithmwithcorrelationbasedcorrectionmethodusingvariousflowimages[J].KSMEInternationalJournal,2003,17(3):409⁃421.[12]TANGHW,CHENC,CHENH,etal.AnimprovedPTVsystemforlarge⁃scalephysicalrivermodel[J].JournalofHydraulics,2008,20(6):669⁃678.[13]NEZUI,SANJOUM.PIVandPTVmeasurementsinhydro⁃scienceswithfocusonturbulentopen⁃channelflows[J].JournalofHydro⁃environmentResearch,2011,5(4):215⁃230.12. All Rights Reserved.水利水运工程学报2018年2月Developmentandapplicationofmeasurementsystemforsurfaceflowfieldinlarge⁃scalerivermodeltestCHENCheng,XIAYunfeng,HUANGHailong,WANGChi,JINJie,ZHOULiangping(StateKeyLaboratoryofHydrology⁃WaterResourcesandHydraulicEngineering,NanjingHydraulicResearchInstitute,Nanjing㊀210029,China)Abstract:Forrivermodeltests,theparticleimagemeasurementmethodsforthesurfaceflowfieldhavebeenappliedwidely.Anewtypeofdistributedmeasurementsystemforthesurfaceflowfieldwasdevelopedforlarge⁃scalerivermodeltests.Million⁃pixelhigh⁃definitionintelligentintegratedindustrialcameraswereusedinthissystemandconnectedwithacomputerwithwirelessnetwork.ThereisagigabitPOE(PowerOverEthernet)interfaceinthecamera.TheimagetransmissionandcamerapowersupplycanbecompletedatthesametimebyonlyacablewithagigabitPOEswitch.Thecomplexityofwiringcanbesignificantlyreducedsothatthecamerascanbeeasilyaddedintothesystem.Thesystemhasfunctionssuchasvisualandautomaticacquisition,visualeliminationforerrorvector,dataexportwithavarietyofdataformats,generationofflowcontoursandstreamlines;Anewdetectionmethodforthemeasurementsystemoftheparticleimagesurfaceflowfieldisintroducedinthisstudy.Waterflowcanbesimulatedbytheaccuratecontroloftheuniformrotationoftheplatform.Themeasureddatafromtheflowfieldmeasurementsystemandtheaccuratedataoftherotatingplatformarecompared.Theaccuracyofthetimeoftheimageacquisitioncontrol,calibrationofimagedistortionandflowextractionalgorithmcanbedetected.Themodeltestresultsshowthatthemeasurementerrorsofthemeasurementsystemforthesurfaceflowfieldarelessthan5%.ThesystemhasbeensuccessfullyappliedintheYangtzeRiverestuarymodeltestsandotherlargerivermodelstests.Keywords:modeltest;flowmeasurement;particleimage;detectionmethod22. All Rights Reserved.。

卡尔蔡司 笔试题Qualifikationstest

卡尔蔡司 笔试题Qualifikationstest

ROM
Microprocessor
Data bus
RAM
I/O module
Page 2
5. Which memory can not be cleared (erased) electrically? (0181 Tech. Part 3)
RAM VRAM EEPROM EPROM 7. Which of the following memory chips requires
Control knob 12 was turned clockwise
Control knob 12 was turned counter-clockwise
Page 8
34. The drawing below shows the scale of a measuring instrument. The selector is set to resistance measurement X10 ohms. What is the actual value of the measurement? (0587 Tech. Part 1)
The circuit has a low output impedance
The circuit has an amplification A > 100
The circuit causes a phase angle rotation of 180 degrees between U1 and U2
1000 1001 1011 1101
3. A D/A converter generates an output voltage of 1mV if the bit pattern 0000 0001 is applied at its data inputs. Which output voltage occurs with a bit pattern of 0010 0001? (0163 Tech. Part 3)

图像之星HR精确多功能MTF测量设备说明书

图像之星HR精确多功能MTF测量设备说明书

ImageMaster® HR Ultra-accurate, Multi-functional MTF Test StationOutstanding Level of Accuracy and Flexibility The ImageMaster® HR is a fully equipped R&D quality test station for medium sized sample lenses. Its modular and upgradeable design enables the measurement of the image qual-ity (MTF) and a wide range of other optical pa-rameters for today and future needs. The in-strument is used in the R&D laboratory as well as in the quality assurance or in production.The unique vertical setup of the ImageMaster®HR is space saving and ensures the most con-venient and accurate positioning of the sam-ple lens mounts. For the majority of lenses this vertical measurement with the gravitational force along the optical axis is advantageous and easy to handle. With the collimator on the precise swinging arm an ultra-wide field angle up to ±105° can be measured for infinity conjugate samples. An upgrade for finite testing can easily be adapt-ed to the system with an additional motorized stage and object generator.For the whole product only high quality com-ponents are used to ensure the most accurate measurements for MTF testing on the market.Measurement Parameter• MTF on-axis and off-axis• Effective Focal Length (EFL)• Distortion• Field Curvature• Lateral and longitudinal chromaticaberrations• Astigmatism• Relative Transmission• Relative Illumination• Field of View• Chief Ray Angle• Depth of focus, etc.• F-Number• Relative Flange Focal Length• Veiling GlareOff-axis measurement with the precise swinging armMotorized object generator for finite conjugate systems2Options and UpgradesTRIOPTICS continuously improves theImageMaster ® HR and offers a wide range of possible options and upgrades:• Motorized high precision sample holder • Motorized reticle and filter changer • Motorized finite conjugate stage withmanual or motorized object generator • Various different collimators• Extensions for the spectral ranges NUV, NIR (MWIR, LWIR)• Additional filters and reticles • Extensions of nearly all stages etc.SoftwareTRIOPTICS has developed a new forward-look -ing software package called MTF-Lab. Sever -al useful functions are integrated which help the user in scanning and perceiving the cor-rect image position of the sample under test. Changing the measurement mode is easy and time-saving. All important measurements for the imaging properties have been revised and are quickly accessible. The script lan-guage for advanced measurements was im-proved and extended including a simple pro-gramming function for stage controlling, data manipulation, loops and variables. The data export is possible to a variety of file formats. For creating certificates the hypertext languageprotocol (HTML) is used.Simultaneous MTF measurement in the sagittal and tangential planes with a crosshair target3Specification ImageMaster® HRTRIOPTICS GmbH . Optische InstrumenteHafenstrasse 35-39 . 22880 Wedel / GermanyPhone: +49-4103-18006-0Fax: +49-4103-18006-20E-mail:******************. © 2016 TRIOPTICS GmbH . All rights reserved。

医用加速器光子线射野输出因子的自动化测量

医用加速器光子线射野输出因子的自动化测量

医用加速器光子线射野输出因子的自动化测量李金凯;孙新臣;周苏民;孙向东;马建新;刘海;吴扬【摘要】目的实现加速器光子线射野输出因子的自动化测量.方法将射野输出因子测量序列导入MosaiQ系统,用它控制加速器的出束,PC Electrometer参考级剂量仪同步开启自动测量程序,测量完毕导出测量结果,利用公式完成OUF的自动测量.结果射野输出因子的数据采集实现了自动化测量,测量耗时较手动测量减少了约46%,自动测量与手动测量的结果差异无统计学意义(P>0.05).结论射野输出因子的自动化测量可以在保证准确性的前提下,减少加速器测量耗时,值得临床广泛推广.%Objective To develop the methods of measuring photon beam output factor for medical accelerator automatically. Methods The measuring sequence of beam output factor was imported to MosaiQ system, which managed the state of the accelerator"beam on" or "beam off". The PC Electrometer reference dosimeter was turn on synchronously when the accelerator beam on, and the results were exported in excel format after the measurement. At last, the photon beam output factor was worked out using formula. Results The accelerator data collection of beam output factor was measured automatically, gainning time about 46%, and the comparison of measuring result between manual set and automatic set had no statistical significance (P>0.05). Conclusion Automatic measurement of beam output factor could ensure quality and save time, which is worth to be popularized in clinical practice.【期刊名称】《中国医疗设备》【年(卷),期】2018(033)001【总页数】4页(P93-95,107)【关键词】加速器;治疗计划系统;射野输出因子;自动化;数据采集【作者】李金凯;孙新臣;周苏民;孙向东;马建新;刘海;吴扬【作者单位】南京医科大学第一附属医院放疗科,江苏南京 210029;南京医科大学第一附属医院放疗科,江苏南京 210029;内布拉斯加大学医学中心肿瘤放疗科,美国奥马哈 NE68198;南京中医药大学附属八一医院放疗科,江苏南京 210002;连云港市东方医院放疗科,江苏连云港 222042;南京中医药大学附属八一医院放疗科,江苏南京 210002;连云港市东方医院放疗科,江苏连云港 222042【正文语种】中文【中图分类】R197.39引言随着精确放疗概念的提出和发展,目前三维治疗计划系统(Three-Dimensional Treatment Planning System,3D TPS)已成为精确放疗的必备工具之一[1-2]。

人眼角膜曲率参数亚像素测量系统的设计

人眼角膜曲率参数亚像素测量系统的设计

2011年第32卷第3期中北大学学报(自然科学版)Vol.32No.32011.137)(总第137期) ﹢ ﹨ ﹪ ﹫ ﹦ ﹫ ﹨﹤﹪﹫ ﹢( ﹢ ﹢ ﹤﹫﹦ ﹤﹦﹦﹥﹫ ﹫ )(SumNo文章编号:1673 3193(2011)03 0362 05人眼角膜曲率参数亚像素测量系统的设计赵俊奇1,段培华2,郭智勇1,刘海峰1(1.中北大学光电厂,山西太原030051;2.中北大学信息与通信工程学院,山西太原030051)摘要:为了提高人眼角膜曲率参数的测量精度,设计了一套角膜测量系统.利用红外光将标准的靶环投影到人眼角膜上,反射后形成带有眼角膜参数特性的虚物,该物再经光学系统成像在CCD图像传感器上.然后通过高速DSPTMS320F2812进行图像二值化处理,最后采用插值方法计算角膜曲率参数.实验用标准角膜模拟眼进行了测试,结果同日本TPCONKR 8100角膜燉验光仪比对,结果表明:计算结果达到亚像素精度,二者测量误差小于国家计量规定的检查最小误差±0.02mm.关键词:角膜曲率参数测量;插值方法;亚像素测量中图分类号:R318文献标识码:A ┄ :10.3969燉j.issn.1673 3193.2011.03.022﹥ ┈ ┃┄ ┊ ┅ ┍ ━﹢━ ┄┇ ┉ │┄ ﹥ ┄┅┉┇┇ │ ┉ ┇ ┈┊┇ │ ┃┉ ┎┈┉ │ ┄┇﹦┎ ﹤┄┇┃ZHAOJun qi1,DUANPei hua2,GUOZhi yong1,LIUHai feng1(1.OptoelectricInstrumentCompany,NorthUniversityofChina,Taiyuan030051,China;2.SchoolofInformationandCommunicationEngineering,NorthUniversityofChina,Taiyuan030051,China)﹢ ┈┉┇ ┉:Measurementsystemofcorneaweredesignedtoimprovediopterparametermeasurementprecisionofeyecornea.Standardringwasprojectedontoaneyecorneawithinfrared,afterreflectingfromeyecornea,thevirtualobjectwitheyecorneaparameterwasformedandimagedintheCCDimagesensorthroughopticalsystemprocessing.BinaryimagewasdividedupbyDSPTMS320F2812,anddiopterparameterofeyecorneawascalculatedwithinterpolationalgorithm.Theexperimentwascarriedthroughbyusingtheeyeanaloguewithstandardcornea,andcomparisontorefractorwithmodelnumberTPCONKR 8100madeinJapan,resultsshowbothmeasurementerrorislessthan±0.02mmwhichisminimumerrorofdiopterprescribedbynationalmetrologybureau,andmeasurementprecisionattainsubpixel.┎┌┄┇ ┈:dioptricmeasurementofcornea;interpolationalgorithm;subpixelmeasurement0引言角膜是眼球前面一层透明组织,是眼屈光系统中最大的折射面和重要的屈光装置,具有光滑、无血收稿日期:2010 09 30基金项目:太原市科技创业种子基金资助项目(082114)作者简介:赵俊奇(1969 ),男,高级工程师,硕士.主要从事光电检测技术、图像处理、智能仪器设计方面的研究.管等特性.但角膜出现病变时,屈光率就会发生变化,出现散光等现象[1 2].因此,人眼角膜曲率参数的精确测量在医学上有重要意义.测量人眼曲率半径和角膜散光的轴向及光焦度的仪器称角膜曲率仪.角膜曲率仪分为光机式和全自动光机电测量式(简称自动式),我国传统中使用的是光机式角膜曲率仪,它具有结构简单,通过光学对准,人眼观测,刻度读数,测量速度慢,测量人为因素大,依赖操作经验强等特点.近年来,随着光电技术的发展,国外研制出来自动光机电测量式角膜曲率仪,能够快速、准确、客观地自动测量人眼角膜屈光参数.它完全排除了操作者的主观因素,更准确、快速地反映了人眼的光学特性,已成为验光技术发展的方向,对图像的处理方法如拓普康采用二值化后直接扫描的重心法,这种方法对图像成像质量要求高[3 5];国内薛烽等采用曲波变换提高图像计算精度[6],这种方法降低了对光学成像质量要求,但算法繁琐,不易实际使用;还有基于空间距的细分算法等亚像素算法[7],这些算法都比较复杂,不易在嵌入式系统使用,本文在研究国内外该技术发展的基础上,采用插值处理方法,既降低了对光学成像质量的要求,又简化了算法,具有实际意义.1光学测量原理角膜中央表面好像是一个凸面镜,人眼角膜曲率参数测量就是利用人眼的这一光学特点,将一束圆环投射到人眼角膜表面,反射后经光学系统成像在CCD上.由于眼角膜的屈光状态不一致,测量圆环在图1光学测量原理图﹨ .1OpticalschematicdiagramCCD上成像的大小、形状也不一样.如果是单纯近视或远视眼,在CCD上成大小一定的清晰的圆环,而若是散光眼,则成清晰的椭圆.通过DSP电子系统对其处理便可算出人眼角膜的曲率参数.图1是角膜测量光学原理图.由发光二极管照亮角膜测量目标圆环,角膜测量目标圆环投射到人眼角膜上,经人眼角膜前表面反射,经角膜摄像透镜组和小孔光阑,在角膜测量CCD上得到清晰的角膜反射圆环(或椭圆环)图像,CCD和眼角膜处于共轭位置.通过对圆环(或椭圆环)图像的处理、分析计算得出角膜曲率半径及角膜屈光度值.2角膜曲率参数的处理方法人眼角膜屈光参数测量的电路采集处理的作用就是将在CCD上成的模拟图像信号经二值化电路转换为数字信号存入SRAM,由CPU对存入SRAM的图像进行插值计算,从而得出被检眼的屈光度值[8 10].2.1角膜曲率参数的计算原理图2,图3就是人眼角膜反射环的图像,如果角膜没有散光就成像为图2的标准圆环,如果角膜有散光就成像为图3的椭圆环.通过计算圆环的半径或椭圆环的长、短轴就可计算出角膜的曲率半径.爲1=牑1 牓1,(1)爲2=牑1 牓2,(2)爛=犤,(3)式中:爲1为角膜水平方向曲率半径,mm;牓1为角膜水平方向曲率半径,像数;爲2为角膜垂直方向曲率半径,mm;牓2为角膜垂直方向曲率半径,像数;爛为散光光轴;牑1为系数;犤为363(总第137期)人眼角膜曲率参数亚像素测量系统的设计(赵俊奇等)椭圆的长轴或短轴角度.式(4)是角膜曲率半径与屈光度值的转化公式爟=1000(牕-1)燉牜,(4)式中:爟为角膜屈光度值;牕为角膜折射率(一般为1.3375);牜为角膜曲率半径.将爲1,爲2代入式(4)就可算出角膜水平方向屈光度爟1和角膜垂直方向屈光度爟2,角膜的散光用爞表示.散光的角度还是爛.爞=爟1-爟2.(5)行业中角膜曲率半径的精度为±0.02mm,对应的像数就是0.2个像数要求.2.2插值圆环(或椭圆环)质心计算方法[11 12]质心坐标计算公式牨 =∑牕牏=1牨牏牘(牨牏,牪牏)∑牕牏=1牘(牨牏,牪牏),牪=∑牕牏=1牪牏牘(牨牏,牪牏)∑牕牏=1牪牘(牨牏,牪牏),(6)图4插值原理图﹨ .4Interpolationalgorithmprinciple其中:牨 ,牪 为质心坐标;牕为图像占有的像数个数;(牨牏,牪牏)为第牏个像数的坐标;牘(牨牏,牪牏)为第牏个像数的灰度值.质心算法特别适合于对称图形的中心计算,算法的优点在于充分利用了每一点的灰度值,具有较高的精度.但角膜环的边缘为阶跃边缘,在实际选取阈值截取图像时会将图像边缘不均匀的分布点截取,这会对质心坐标的精度产生影响.为了进一步提高质心坐标的计算精度和稳定性,在此提出了利用插值,增加计算点数的方法计算质心坐标.随着插值原理中牕的增大,质心计算精度不断提高,这样就可减小图像边缘分布对计算中心的影响,这里不再推导论证.这种线性插值的原理如图4中牊(牣,牤)在牊(牏,牐),牊(牏+1,牐),牊(牏,牐-1),牊(牏+1,牐-1)之间插值.牊(牣,牤)=牊(牏,牐)(1-犜)(1-犝)+牊(牏+1,牐)犜(1-犝)+(牏,牐-1)(1-犜)犝+牊(牏+1,牐-1)犜犝,(7)式中:牏=[牣],牐=[牤],牏,牐是不超过牣,牤的最大整数;犜=牣-[牣],犝=牤-[牤].由此可得出插值后的质心坐标计算公式牨=∑牕牏=1牨牏牘(牨牏,牪牏)+∑牔牏=1牨牏牊(牣牏,牤牏)∑牕牏=1牘(牨牏,牪牏)+∑牔牏=1牊(牣牏,牤牏),牪=∑牕牏=1牪牏牘(牨牏,牪牏)+∑牔牏=1牪牏牊(牣牏,牤牏)∑牕牏=1牘(牨牏,牪牏)+∑牔牏=1牊(牣牏,牤牏),(8)式中:牔为插值点数.尤其注意的是必须对称插值才能提高计算精度.2.3插值法计算角膜曲率半径[13]由于角膜反射环的质量不错,在计算中心坐标时增加了插值坐标,在计算圆环(或椭圆)半径时继续使用插值法.计算公式为爲牑=∑牕牏=1牜牏+∑牔牐=1牜牔牕+牔,(9)式中:爲牑为圆环(或椭圆)上以2°为一档,从0°~180°扫描求得的半径;牜牏和牜牔分别是坐标点和插值点在某一角度区域的半径.最大值和最小值分别就是爲爧和爲爳[3].463中北大学学报(自然科学版)2011年第3期3实验结果本系统中选用高速DSPTMS320F2812可以方便地实现插值,为了提高计算速度,角膜成像仅在中央区域,可以在一定范围内进行这两项运算.本系统每0.2个像素表示0.02mm的曲率半径精度,因此中心坐标和曲率半径不能超过0.2像素.实验用曲率半径是7.00mm的标准模拟眼比较了在不用插值方法(用A表示)、使用插值方法(用B表示)质心坐标计算和曲率半径计算的情况.3.1质心坐标计算结果分析表1给出了在上述两种情况下10组数据的中心坐标牀,牁的结果表1质心坐标计算结果.1Calculationresultsofcentroidcoordinate12345678910A牨283.16283.11283.39283.11283.02283.33283.09283.22283.14283.23牪182.50182.65182.42182.55182.40182.60182.70182.58182.48182.55B牨283.24283.29283.20283.22283.18283.30283.24283.22283.27283.23牪182.51182.55182.54182.60182.55182.54182.50182.57182.56182.58牨的平均值为牨=∑牕牏=1牨牏牕,牪的平均值为牪=∑牕牏=1牪牏牕,标准方差为犲2(牀)=∑10牏=1(牨牏-牨 )2燉(10-1).不用插值方法(情况A)时,牨 =283.18,牪=182.543,犲(牀)=0.1136,犲(牁)=0.0802;使用插值方法(情况B)时,牨 =283.237,牪 =182.55,犲(牀)=0.038,犲(牁)=0.031.通过分析可以看出对图像进行插值方法,可以使计算精度达到0.2像素以下,实现细分.3.2曲率半径计算结果分析表2给出了在上述两种情况下10组数据的椭圆长、短轴爲L,爲S数据.由于用曲率半径是7.00mm的标准模拟眼实验,因此结果应该是爲L,爲S基本相等,误差在0.1个像数以内.表2曲率半径计算结果.2Calculationresultsofcurratureradius12345678910A爲L234.46234.51234.49234.35234.30234.58283.48234.51234.52234.41爲S234.15234.28234.12234.31234.13234.05234.18234.22234.08234.28C爲L234.36234.39234.31234.29234.38234.33234.34234.36234.32234.35爲S234.28234.29234.21234.22234.28234.26234.25234.29234.24234.26不用插值方法(情况A)时,爲L=234.461,爲S=234.18,犲(爲L)=0.089,犲(爲S)=0.0894;使用插值方法(情况B)时,爲L=234.343,爲S=234.258,犲(爲L)=0.031,犲(爲S)=0.028.4结论本文从精确测量眼角膜的曲率半径和屈光度出发,设计了一套角膜光学测量系统.利用红外圆形靶环投射到眼睛,经投影镜组成像在CCD上,提高了系统的抗杂散光干扰能力,采用插值算法增加了系统的测量数据,保证了中心和半径的计算精度,使系统能实现0.2个像素级测量.563(总第137期)人眼角膜曲率参数亚像素测量系统的设计(赵俊奇等)参考文献:[1]HowlandHC,BradfordH.Photorefraction:atechniqueforstudyofrefractivestateatadistance[J].Opt.Soc.Am(S0740 3232),1974,64(2):240 249.[2]ChoiM,WeissS,Schaeffel,etal.Laboratory,clinical,andkindergartentestofaneweccentricinfraredphotorefractor(powerrefractor)[J].OptometryandVisionScience(S1040 5488),2000(19):2363 2373.[3]赵俊奇.人眼屈光度客观式测量的图像采集处理研究[J].光学技术,2002,28(4):293 295.ZhaoJunqi.Astudyonacquisitionandprocessingforobjectivedioptericmeasurementofeye[J].OpticalTechnique,2002,28(4):293 295.(inChinese)[4]赵俊奇,陈安世,郭智勇,等.边缘检测眼底图像屈光度测量的研究[J].计算机工程与应用,2011,47(9):204 206.ZhaoJunqi,ChenAnshi,Guozhiyong,etal.Researchondioptermeasurementofdetectingedgeofeyeretinaimage[J].ComputerEngineeringandApplications,2011,47(9):204 206.(inChinese)[5]赵俊奇,陈安世,郭智勇,等.基于图像处理的眼屈光度客观测量系统[J].中国组织工程研究与临床康复,2010,14(48):9020 9023.ZhaoJunqi,ChenAnshi,GuoZhiyong,etal.Objectivemeasurementsystemofeyediopterbasedonimageprocessing[J].JournalofClinicalRehabilitativeTissueEngineeringResearch,2010,14(48):9020 9023.(inChinese)[6]薛烽,李相宁.一种基于图像处理的屈光度测量方法[J].光电工程,2009,36(8):62 66.XueFeng,LiXiangning.Dioptermeasurementbasedonpupilimagesprocessing[J].Opto electronicEngineering,2009,36(8):62 66.(inChinese)[7]欧阳高飞,邝泳聪,谢宏威.基于亚像素定位的贴装元件精确取像技术[J].光电工程,2010,37(6):16 21.OuyangGaofei,KuangYongcong,XieHongwei.Accurateimagecaptureforsurfacemountingcomponentbasedonsubpixellocation[J].Opto electronicEngineering,2010,37(6):16 21.(inChinese)[8]张虎,达鹏飞,李青,等.椭圆目标的亚像素边缘定位方法研究[J].光学技术,2010,36(1):66 74.ZhangHu,DaPengfei,LiQing,etal.Methodsofsub pixelegdelocationforellipse[J].OpticalTechnique,2010,36(1):66 74.(inChinese)[9]戴百川,刘成.椭圆物体位置与形状参数求解[J].中国新通信,2009(12):79 81.DaiBaichuan,LiuCheng.Solvingthelocationandshapeofoval shapedobjects[J].ChinaNewTelecommunications,2009(12):79 81.(inChinese)[10]马文科,王玲,何浩.一种纸纹图像的局部阈值分割方法[J].计算机工程与应用,2009,45(34):177 179.MaWenke,WangLing,HeHao.Localthresholdsegmentationalgorithmforfingerprintimages[J].ComputerEngineerandApplications,2009,45(34):177 179.(inChinese)[11]张之江,车仁生,黄庆成.测头成像视觉坐标测量系统中特征点成像中心获取[J].光学精密工程,1998,10(5):12 17.ZhangZhijiang,CheRensheng,HuangQingcheng.Centroidofcharacteristicpointimageobtaininprobeimagingvisioncoordinatemeasuringsystem[J].OpticsandPrecisionEngineering,1998,10(5):12 17.(inChinese)[12]侯成刚,杨文献,屈梁生.一种检查快速检测圆心的抗噪声亚像素算法[J].光学学报,1998,4(4):481 485.HouChenggang,YangWenxian,QuLiangsheng.Arobustsubpixelalgorithmforthecenterofcircledetecting[J].ActaOpticaSinica,1998,4(4):481 485.(inChinese)[13]屈玉福,浦昭邦,王亚爱.视觉检测系统中亚像数边缘检测技术的对比研究[J].仪器仪表学报,2003,8(8):460 462.QuYufu,PuZhaobang,WangYaai.Contraststudyofsubpixeledgedetectionsinvisionmeasuringsystem[J].ChineseJournalofScienticInstrument,2003,8(8):460 462.(inChinese)663中北大学学报(自然科学版)2011年第3期。

单目视觉测量系统质心定位算法

单目视觉测量系统质心定位算法
S = R1 t ,即可得到 t 中的各个值 , 在解出向量 t 后 , 从中可以得到以下高斯函数的参数 :
x0
=-
t2 ; 2 t4
y0
=-
t3 . 2 t5
式中 : ( x0 , y0 ) 为特征点的定位中心 。
2 双三次插值算法
根据前面的讨论分析可知 , 特征点的成像中心 是通过约束最小二乘法来确定 ,因此 ,双三次插值算 法通过在特征点成像区域内利用内插方法增加有效 像素点个数消除误差影响 , 从而改善特征点成像中 心的定位精度 ,如图 1 所示 。
图 1 双三次插值
插值点 ( u , v) 的灰度值 f ( u , v) 可以利用与其相
邻的 16 个已知灰度值的像素点进行插值 。规定
[ u] 、[ v ]表示其值不超过 u、v 的最大整数值 , 并且
i = [ u] , j = [ v ] 。此时采用双三次插值得到的灰度
值为
f ( u , v) = [ a0 ( u) a1 ( u) a2 ( u) a3 ( u) ] ×
式中 : S 为一个五维列向量 , T 为一个 N - 五维列向
量 , R1 为一个 5 ×5 上三角方阵 。 由式 (8) 和式 (9) 可得 min = ‖r ‖22 = ‖S - R1 t ‖22 + ‖T ‖22 . (10) 若 S = R1 t 时 , 式 ( 10) 误差最小 。所以只求解
其中
A a0 ( v)
a1 ( v)
a2 ( v)
a3 ( v) T ,
a0 ( u)
= (1 -
3 u + 3 u2 6
u3 )
,
a1 ( u)
=
(4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Measurement 25(1999)169–181An image-based measurement system for the characterisation ofautomotive gasketsa a ,a b*L.Angrisani ,P.Daponte ,A.Pietrosanto ,C.Liguori a `Dip .di Ing .dell ’Informazione ed Ing .Elettrica ,Universitadi Salerno ,Via Ponte don Melillo 1,84084Fisciano (SA ),Italy b `Dip .di Ing .Industriale ,Universitadi Cassino ,Via G .Di Biasio 43,03043Cassino (FR ),Italy Received 15June 1998;received in revised form 23November 1998;accepted 30November 1998AbstractThe paper describes an automatic measurement system for the estimation both of geometrical and physical parameters of automotive gaskets.The hardware of the system consists of a general purpose computer and a camera;the software implements an original measurement procedure able to characterise the gasket under test from its digitised image.The whole system is first described focusing the attention on the measurement procedure.Then,the results of the metrological characterisation of the proposed system are given along with those obtained from experiments on different automotive gaskets.©1999Elsevier Science Ltd.All rights reserved.Keywords :Image processing;Contour detection and extraction;Automatic measurement system;Automotive gasket1.Introductionmainly,of the scraps on the global cost is remarkable for this type of production [1–4].The increasing internationalisation of economicalThe in-process quality control of such production exchanges forces automotive component manufactur-cycles is generally carried out according to the ers to be more and more competitive in a more andfollowing procedure,still based on manual inspec-more selective market.In this context,the survival oftions:(i)accurate cutting of a very thin sample of the manufacturers is conditioned by pursuing the maxi-gasket (length:2–3mm),(ii)comparison between mum quality at minimum costs.This goal can onlythe sample and a reference drawing of the transversal be achieved by means of an industrial managementsection of the gasket by means of a magnifying lens,policy fully oriented to quality and based on in-and (iii)measurement of some geometrical parame-dustrial process integration.ters of the sample by means of a drawing rule.These These requirements are more pressing in theoperations must continuously be repeated at the production of automotive gaskets where automationbeginning of the extrusion process until the gasket and integration seems to be still difficult.Further-has the required characteristics,and periodically more,the incidence of the quality control and,during steady-state conditions.They take experts more than 6–7min during which the production cycle is running;about 80–100m of scraps (taking into account typical extrusion speed)are produced *Corresponding author.Tel.:139-89-964248;fax:139-89-964218;e-mail:daponte@unina.it when the gasket does not match quality 0263-2241/99/$–see front matter ©1999Elsevier Science Ltd.All rights reserved.PII:S0263-2241(98)00076-1170L.Angrisani et al./Measurement25(1999)169–181requirements.Furthermore,relative percentage un-of a CCD camera underexposed.The underexposed certainties on measured values never smaller than image is characterised by high contrast between the 5%are reached and,as for gasket sponginess estima-gasket transversal section and the overexposed en-tion,more complex operations are required.vironment thus allowing easy contour extraction.A Automatic in-process quality controls could allow further image with overhead illumination shows a lower percentage of scraps thus reducing the non-itself suitable for an accurate analysis of the micro-quality costs related to the storage and shipping of scale bubble structure of the transversal section. defective products,and increasing customer trust.The paper proposes an automatic system for themeasurement both of geometrical and physical pa- 3.The hardwarerameters of automotive gaskets,which is able toreduce both the time required by gasket quality To reduce costs and make successive additions of control and measurement uncertainty.The system,computational and image digitising blocks very easy, based on a general purpose camera interfaced to a general purpose hardware is usually adopted in this PC,executes an original image-based measurement kind of applications[5–8].The proposed measure-procedure;this procedure is implemented by a series ment system(Fig.2)adopts a commercial CCD of software modules able to characterise the gasket camera which is connected to a DSP-based frame from its digitised image[5].The software modules,grabber hosted by a personal computer(PC).TheE(i)localise the contours of the gasket transversal CCD camera is the TM526A by Current Technolo-section in the digitised image,(ii)measure both gy Inc.,whose horizontal resolution is more than450 geometrical dimensions and physical parameters of rows and has a vertical resolution of more than350Ethis section,and(iii)verify that quality requirements columns.The frame grabber is the FF1by Current are satisfied.Technology Inc.,whose input section consists of an Both reliability and effectiveness of the measure-A/D converter capable of digitising data at10MHz ment procedure are assessed by analysing the results with8bits of resolution.of the metrological characterisation of the proposed The gasket sample is placed on an opaque glass measurement system.The results obtained from the sheet,as shown in Fig.3.Somefluorescent lamps application of the measurement system to an actual are suitably positioned below the glass sheet in order production cycle arefinally given.to provide maximum uniformity of illumination.Thelighting system includes also a3000lumen circularlamp placed over the gasket sample at the height of 2.The basic idea of the measurement system the camera lens.The two lighting sources aremutually excluding;thefluorescent lamps are The goal of the measurement system is the switched on for contour extraction,the circular lamp, automatic evaluation of some geometrical(height,on the contrary,for sponginess evaluation. width,thickness)and physical(sponginess)parame-The hardware is completed by a network link ters of the transversal section of automotive gaskets.between the Quality Control Laboratory and the For the sake of clarity,Fig.1shows a typical automatic measurement system[7].location of an automotive gasket in a car,a gasketpiece(gasket length ranges within3–5m),a gasketsample like those required by the measurement 4.The measurement proceduresystem,and some results of this proposed system(inner and outer contours of the transversal section The measurement procedure is described with of the gasket sample,and its geometrical parame-references to its software implementation.In par-ters).ticular,object-oriented programming(OOP)has The basic idea of the measurement system is that been adopted in order to realise aflexible and illumination from below(Fig.2)can have the modular software structure.OOP ensures exploita-transversal section of a gasket sample placed in front tion of the fundamental issues of modularity,L.Angrisani et al./Measurement25(1999)169–181171 Fig.1.Typical location of an automotive gasket;gasket piece;sample cut from the gasket under test;final results of the measurement system giving the height H,the width L and the inner and outer contours of the gasket sample.Fig.2.Block diagram of the measurement system.172L.Angrisani et al./Measurement25(1999)169–181Fig.3.Measurement system(upper);detail of the lighting system(lower).L.Angrisani et al./Measurement25(1999)169–181173 reusability and extendibility for measurement soft- 4.1.Graphical user interfaceware[9].This is particularly important for industrialapplications the evolution of which has to be pursued This module allows the inputting of data,the at limited cost.selection of the type of gasket to be analysed and the The OOP-based software structure for the pro-outputting of measurement results[9,10].posed measurement procedure is sketched in Fig.4.The software core is the Supervisor which manages 4.2.Image acquisitionboth the execution and data exchange of the follow-ing software modules:(i)Graphical User Interface A suitable module has been set up for capturing [9,10],(ii)Image Acquisition,(iii)Image Process-two images of the gasket sample sequentially. ing,(iv)Gasket Geometrical and Physical Parameter Thefirst image,underexposed,is acquired after Evaluation,and(v)Network Interface for the Quality switching on thefluorescent lamps below the opaque Control Laboratory.glass sheet.An example is given in Fig.5a;it is In the following,the most significant features and worth noting the high contrast between the transver-functionalities of all modules are described;the sal section of the gasket sample and the overexposed description order reflects the execution order.The environment.attention is principally paid to the Image Processing The second image is acquired with only overhead module;it allows both detection and extraction of the illumination thus enhancing the vision of the micro-inner and outer contours of the gasket transversal scale bubble structure of the transversal section of section from the digitised image of a gasket sample.the gasket sample.Fig.4.OOP-based software structure for the measurement system.174L.Angrisani et al./Measurement25(1999)169–181transversal section of the gasket sample.The task isaccomplished by applying a sequence of suitablealgorithms;all of them are original but Snakealgorithm,a well-known edge detector[11].Thefollowing steps can be distinguished.4.3.1.Threshold algorithmDue both to the not negligible height(2–3cm)ofthe gasket sample and theflexibility of the rubber,the digitised image includes some lateral(externaland/or internal)surfaces of the gasket sample(Fig.5a)in addition to its transversal section.Moreover,illumination from below has lateral surfaces betterlighted than the transversal section.As a conse-quence,the grey tone histogram of the whole imageis always bimodal(Fig.6):its right peak(lighterpixels)is related to the background,its left peak(darker pixels)is related to the transversal section,and the grey levels between the two peaks are relatedto noise,shadows,and lateral surfaces.Both loca-tions and heights of the two peaks change both withsample dimensions and lighting conditions thusmaking it difficult to establish afixed,optimalthreshold value.For this reason,an adaptive thres-hold is adopted(a new value is established for eachacquired image).The Threshold algorithm analyses the grey tonehistogram of the digitised image and computes thethreshold as weighted average of the level of the leftpeak and those of the contiguous grey tones.Itproduces a binary(two colours)image;any pixelcharacterised by a grey tone greater than the thres-hold is set to white(255),otherwise is set to blackFig.5.(a)Underexposed image:the arrows indicate the lateralsurfaces of the gasket sample which make difficult contourdetection and extraction process;(b)threshold algorithm results;(c)closing algorithm results;(d)tracking algorithm results;(e)snake algorithm results.4.3.Image processingThis module receives as input the aforementionedunderexposed image.It is mandated to the detectionand extraction of the inner and outer contours of the Fig.6.Grey tone histogram of the image shown in Fig.5a.176L.Angrisani et al./Measurement25(1999)169–181and its width along the horizontal one as shown in values of which are strongly related to the value of the samefigure;the section area considered is the‘empty-to-filled’ratio[20,21].bounded by the inner contour;thickness is thedistance between inner and outer contour.Finally, work interface for the quality control sponginess is defined as the percentage‘empty-to-laboratoryfilled’ratio characterising the spongy part of thetransversal section.Its value,which ranges within This module establishes a dynamic data exchange 0–100%,has to be assigned to one of the following between the measurement system and the data base five classes:0–20%,20–40%,40–60%,60–80%,on quality trend of the factory.As a result,(i)a and80–100%.quality check on gasket production,providing the With regard to height and width,their values are customer(automotive producer)with more accurate obtained by circumscribing the outer contour with a information about gasket characteristics,and(ii)a rectangle,the sides of which are parallel to the axes better correlation between the used compound and of the coordinate system adopted.Thickness is gasket features are possible.The last information measured for each point of the outer contour as the helps the compound designer in choosing both the length of the shortest path between it and a point of best elements for the compound and the optimal ratio the inner contour(Fig.8).The value of the section between them.area is established by dividing it into triangles withthe same vertex(the centre of the section),the basesof which are consecutive chords of the inner contour. 5.Experimental resultsAs for sponginess evaluation,the second acquiredimage(the sharper one)is needed.By superimposing A prototype of the proposed measurement system the effective contours,extracted by the Snake algo-was arranged and tested at the Laboratories of the rithm,on this image,the pixels belonging to the area University of Salerno.An industrial version of the included by the two contours are selected and its system was then installed at the BTR SAIAG Sealing grey tone histogram is evaluated.Sponginess class is Systems S.p.A.factory in Battipaglia,Italy,in order established on the basis of the chief parameters of to measure the characteristics of three different types the histogram(mean,mode,standard deviation),the(A,B,C)of automotive gaskets(Fig.9).Fig.8.Thickness measurement.A part of the transversal section of the gasket sample is shown:for each point of the outer contour,P theiE procedure searches the minimum path,th between P and any point P,of the inner contour.i iE jIL.Angrisani et al./Measurement25(1999)169–181177During the former stage,both the calibration andmetrological characterisation of the measurementsystem were carried out[22–24].The calibrationaimed at,(i)tuning both the characteristics of thelighting system and distance between the camera andthe gasket sample,(ii)evaluating the numericalconstants needed for the conversion of the measure-ment results from pixels to millimetres,and(iii)establishing the relationship between the sponginessclasses and the statistical parameters of the grey tonehistogram.In particular:1.The characteristics of the lighting system and thedistance between the camera and the gasketsample had to satisfy two opposite needs:(a)improving image definition and resolution,and(b)allowing the visualisation of the whole trans-versal section even when its dimensions are largerthan the nominal ones2.The pixel-to-millimetre conversion factor wasevaluated by measuring(in pixels)the knowndimensions of the transversal section of an ironparallelepiped3.For each gasket,thefive sponginess classes wereassociated to the corresponding values(intervals)of the statistical parameters of the grey tonehistogram by means of several tests on gasketscharacterised by known sponginessA further experimental tuning has been conductedon the parameters characterising the Image Process-ing Module in order to make measurement resultsindependent from any environmental change in thefactory.With regard to the metrological characterisation,three reference iron targets with the same nominalshapes of the three aforementioned gaskets wereused.In particular,200observations were carried outfor each target.A statistical analysis was thenperformed in order to evaluate,(i)the systematicerror of the measurement system,and(ii)thestandard uncertainty[25].The systematic error oneach parameter of the transversal section was givenby the difference between the mean value of200measurements and the corresponding known value ofthe iron target.The maximum systematic error(20.92mm)resulted in area measurements due to the Fig.9.Gaskets analysed by the measurement system:type A(upper),type B(middle)and type C(lower).triangular approximation.All errors were then intro-178L.Angrisani et al./Measurement25(1999)169–181duced in the Gasket Geometrical and Physical Pa-ment,the grey tone histogram depicted in the right rameter Evaluation module as corrections.As for side of the same Fig.10singles out the class that the (ii),the total standard uncertainty(u)was given by gasket sample belongs to.For the sake of clarity, the experimental standard deviation(s)resulting Fig.12shows the results related to two different negligible the uncertainty in systematic error estima-gasket samples belonging to an acceptable(Fig.12a) tions.For each gasket,the total uncertainties on and unacceptable(Fig.12b)sponginess class,respec-height and width measurements were not greater than tively.Finally,Table2gives some values measured 0.2mm,which is lower than the manufacturing on samples taken during a production period of10h tolerance(1mm).These uncertainties were also and transmitted,via the factory network,to the confirmed by the tests carried out directly on samples Quality Control Laboratory.In the specific case,the of the rubber gaskets.The results of all tests are numerical values refer to data concerning the type A collected in Table1.gasket.Typical video results provided by the industrialversion of the measurement system are shown in Fig.10.The inner and outer contours of the transversal 6.Conclusionssection of the gasket sample and the values of thegeometrical parameters can be noticed.Only the The paper has presented an automatic image-based most significant thickness measurements,according measurement system whose image-processing pro-to the type of gasket,are displayed.The whole cedure allows the characterisation of automotive thickness trend is saved into an externalfile that can gaskets.Such a measurement system has proved to be shown off-line at operator’s request and looks like be very effective,especially with veryflexible that in Fig.11;the dashed boundary limits stand for objects.In these cases,all the traditional techniques, manufacturing tolerance.As for sponginess measure-based on contact measurement devices,fail because Table1Systematic errors and standard deviations on height(H),width(L),thickness(d1,d2,d3),and area(A)measurements,evaluated by analysing the results of200tests both on iron targets and rubber gasketsGasket type Nominal value Systematic error s(iron target)s(rubber gasket) AH(mm)15.64220.220.0400.029L(mm)15.56320.260.0570.049d1(mm) 2.710.000.0560.063d2(mm) 2.870.000.0980.089d3(mm) 3.010.000.110.070 2A(mm)86.510.610.320.40BH(mm)20.66320.240.0850.060L(mm)19.23420.310.0570.061d1(mm) 3.250.000.0940.093d2(mm) 4.280.000.0660.036d3(mm) 2.690.000.130.11 2A(mm)155.080.830.450.22CH(mm)19.84020.160.0640.059L(mm)17.29220.290.0390.030d1(mm) 2.080.000.0530.040d2(mm) 5.470.000.0770.057d3(mm) 2.190.000.0340.049 2A(mm)145.770.890.450.42180L.Angrisani et al./Measurement25(1999)169–181Fig.12.Sponginess measurements.Sponginess value belonging to an,(a)acceptable class,and(b)unacceptable class.Appendix1where l[[0,1]are the regularisation parametersithat significantly influence the solution to Eq.(A1) Snakes is an active edge model for representing[17].Setting l4(12l)emphasises regularisation, deformable contours in noisy images,proposed in yielding strongly model-driven solutions which are[18].A snake is an ordered set of points V5[v,robust to noise.In contrast,small values of l enable1v,...,v],where each snaxel v is defined on the the snake to effectively capture boundary discon-2n ifinite grid:v[E5h(x,y):x,y51,2,...,M j.tinuities,but they also render the solutions very iContour extraction by means of a snake model sensitive to noise.involves two energy functionals E,and E[17].From amongst the proposals for snake im-int extWhile the internal energy E imposes continuity and plementation,a modified version of the algorithm intsmoothness constraints,the external energy E given in[17]has been used in this paper.It includesextattracts the snake to salient image features.The a formulation of energy functionals in order to snake turns boundary extraction into an energy incorporate the gradient direction and an automatic minimisation problem.Under this framework,one and implicit selection of local regularisation parame-seeks to obtain V satisfying ters.The algorithm is mainly based on an active Lcontour model which adapts an invariant matrix to V5argmin O[l E(v)L L i i int i the rigid displacements,while control of the con-1(12l)E(v)]i51,...,n(A1)tour’s local characteristics is given to a Markoviani ext iL.Angrisani et al./Measurement25(1999)169–181181 Table2[8]F.van der Heijden,Image-Based Measurement Systems, Values measured on gasket samples taken during a production Wiley,New York,1994.period of10h and transmitted,via the factory network,to the[9]P.Daponte,L.Nigro,F.Tisato,Object-oriented design of Quality Control Laboratory measurement systems,IEEE Trans.Instrum.Meas.41(6)(1992)874–880.N H L d1d2d3A[10]P.Daponte,L.Nigro,F.Tisato,Integrating the user-interface2(mm)(mm)(mm)(mm)(mm)(mm)in an object-oriented measurement system,Measurement15 115.1815.17 2.71 2.87 2.9485.34(2)(1995)91–101.215.6015.49 2.78 2.90 3.0189.66[11]i,Deformable contours:modeling,extraction,de-315.9615.45 2.77 2.80 2.8785.48tection and classification,PhD.Thesis,University of Wis-415.9315.38 2.81 2.94 3.1188.97consin,Madison,1994.515.3815.21 2.81 2.88 2.9689.68[12]D.H.Ballard,C.M.Brown,Computer Vision,Prentice-Hall, 614.9515.09 2.79 3.09 2.8482.33Englewood Cliffs,NJ,1982.715.5715.52 2.58 2.90 3.0292.41[13]D.Geiger, A.Gupta,L.A.Costa,J.Vlontzos,Dynamic 815.1415.02 2.63 2.77 3.1389.22programming for detecting,tracking,and matching deform-915.3315.28 2.76 2.90 3.0188.61able contours,IEEE Trans.Pattern Analysis and Machine 1014.9115.17 2.63 2.91 3.0284.98Intelligence17(3)(1995)294–302.1115.2115.21 2.66 2.83 3.0185.99[14]H.Li,B.S.Anjunath,S.K.Mitra,A contour-based approach 1215.3615.00 2.76 2.89 3.0283.77to multisensor image registration,IEEE Trans.Image Proc.4 1315.2315.08 2.71 2.82 3.0883.97(1995)320–334.1414.8514.91 2.80 2.87 3.0284.72[15]F.Leymarie,M.D.Levine,Tracking deformable objects in 1515.3114.62 2.60 2.90 3.0787.69the plane using an active contour model,IEEE Trans.Pattern 1614.8614.86 2.75 2.97 3.0590.20Analysis and Machine Intelligence15(6)(1993)617–633. 1714.6314.82 2.58 2.93 3.0289.21[16]m,H.Yan,Fast greedy algorithm for active con-1814.7815.14 2.59 2.66 3.0385.53tours,Electron.Lett.30(1)(1994)21–23.1915.3815.50 2.73 2.89 2.9382.15[17]B.Su, A.Nabout,H.A.N.Eldin,Measurement of ring-2015.4515.59 2.70 2.94 2.9386.98shaped and toothed mechanical parts through image process-ing,in:Proc.1990IEEE Ind.Appl.Soc.Annu.Meeting,Seattle,WA,USA,7–12October,1990,pp.396–401. operator.Furthermore,an original procedure for the[18]M.Kass,A.Witkin,D.Terzopoulos,Snakes:active contourmodels,in:Proc.1st puter Vision,1987,pp. snaxel initialisation has been proposed(Section4).259–269.[19]S.Harrington,Computer Graphics,McGraw Hill,New York,1987.References[20]C.W.Moon,Error analysis for dimensional measurementusing computer vision techniques,in:Proc.IEEE Instrum.Meas.Tech.Conf.,San Diego,CA,USA,20–22,April, [1]G.Stella,New structures and technologies EPDM for1988,pp.372–376.automotive gaskets,in:Proc.PLAST-RUBBER1991,Milan,[21]M.A.Coulthard,Image processing for automatic surfaceItaly,May9,1991.defect detection,in:Proc.3rd IEE Int.Conf.on Image Proc.[2]H.Focht,International Polymer Science and Technology7and its Applications,Warwick,UK,18–20July,1989,pp.(T/65)(1980).192–196.[3]V.L.Lue,Rubber World26(1980).[22]M.A.Sid-Ahmed,M.T.Boraie,Dual camera calibration for [4]R.Tessieri,D.Piccinini,L’evoluzione e le prospettive dei3-D machine vision metrology,IEEE Trans.Instrum.Meas.profilati per tenuta di vetri e portiere di autoveicoli,Macplas39(3)(1990)512–516.176(March)(1996)99.[23]J.J.Aguilar,F.Torres,M.A.Lope,Stereo vision for3D [5]E.Harms,Machine vision:what can it do for you,in:Proc.measurement:accuracy analysis,calibration and industrial IEEE45th Conf.Electr.Eng.Problems in the Rubber andapplications,Measurement18(4)(1996)193–200.Plastic Industries,Akron,OH,USA,13–14April,1992,pp.[24]Y.S.Li,T.Y.Young,J.A.Magerl,Subpixel edge detection30–34.and estimation with a microprocessor-controlled line scan [6]R.L.Horst,M.Negin,Vision system for high-resolutioncamera,IEEE Trans.Ind.Electron.35(1)(1988)105–112.dimensional measurements and on-line SPC:web process[25]Guide to the expression of uncertainty in measurement,1stapplication,IEEE Trans.Ind.Appl.28(4)(1992)993–997.ed.,BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,1993, [7]Z.Bien,S.R.Oh,J.Won, B.J.You, D.Han,J.O.Kim,ISBN92-67-10188-9.Development of a well-structured industrial vision system,in:Proc.16th Annu.Conf.of IEEE Ind.Electron.Soc.,Pacific Grove,CA,USA,27–30November,1990,pp.501–506.。

相关文档
最新文档