反激变压器的设计
不同模式下反激变压器的设计原则
不同模式下反激变压器的设计原则反激变压器是开关电源中常用的一种拓扑结构,具有简单、高效、低成本等优点。
在不同的工作模式下,反激变压器的设计原则也会有所不同。
以下将从不同模式下反激变压器的设计原则进行详细阐述。
一、引言随着电力电子技术的快速发展,开关电源作为一种高效、节能的电源供应方式,在各个领域得到了广泛应用。
反激变压器作为开关电源中的核心部件,其设计的好坏直接影响到开关电源的性能和稳定性。
因此,掌握不同模式下反激变压器的设计原则对于提高开关电源的性能具有重要意义。
二、连续模式(CCM)下反激变压器的设计原则1. 输入电压范围在设计连续模式下的反激变压器时,首先需要确定输入电压的范围。
输入电压的变化将直接影响到变压器的匝数比和磁通密度等参数。
为了保证变压器的正常工作,需要合理选择变压器的匝数比和磁芯尺寸,以适应输入电压的变化。
2. 输出功率和效率输出功率和效率是开关电源的重要性能指标。
在设计连续模式下的反激变压器时,需要根据输出功率和效率的要求,合理选择变压器的导线截面积、匝数比和磁芯材料等参数。
同时,还需要优化变压器的磁路设计和散热设计,以降低磁芯损耗和线圈损耗,提高变压器的效率。
3. 绝缘和耐压绝缘和耐压是开关电源安全性的重要保障。
在设计连续模式下的反激变压器时,需要考虑变压器原副边之间的绝缘距离和耐压等级。
为了保证变压器的绝缘性能,需要采用合适的绝缘材料和工艺,确保变压器在高压下的安全运行。
三、断续模式(DCM)下反激变压器的设计原则1. 输入电压和输出电压范围在断续模式下,反激变压器的输入电压和输出电压范围对变压器的设计具有重要影响。
为了保证变压器的正常工作,需要合理选择变压器的匝数比和磁芯尺寸,以适应输入电压和输出电压的变化。
同时,还需要考虑输出电压的纹波和稳定性要求,选择合适的滤波电容和电感等元件。
2. 峰值电流和平均电流在断续模式下,反激变压器的峰值电流和平均电流是设计的关键参数。
反激式开关电源变压器设计步骤(重要)
反激式开关电源变压器设计反激式变压器是反激式开关电源的核心,它决定了反激式变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。
这样可以让其发热量尽量小,对器件的磨损也尽量小。
同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源性能会有很大的下降,如损耗会加大,最大输出功率会下降.设计变压器,就是要先选定一个工作点,在这个点就是最低的交流输入电压,对应于最大的输出功率。
第一步,选定原边感应电压V OR 。
这个值是有自己来设定的,这个值就决定了电源的占空比.可能朋友们不理解什么是原边感应电压。
我们分析一个工作原理图。
当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性上升:I 升=Vs*Ton/L 。
这三项分别是原边输入电压,开关开通时间和原边电感量。
在开关管关断的时候,原边电感放电,电感电流会下降,此时有下降了的电流:I 降=V OR *T OFF /L 。
这三项分别是原边感应电压(即放电电压)、开关管管段时间和电感量。
经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以有:Vs *T ON /L=V OR *T OFF /L 。
即上升了的等于下降了的。
上式中用D 来代替T ON ,用(1-D )来代替T OFF .移项可得:D=V OR /(V OR +Vs)。
这就是最大占空比了.比如说我设计的这个变压器,我选定电感电压V OR =20V ,则Vs 为24V ,D=20/(20+24)=0。
455。
第二步,确定原边电流波形的参数原边电流波形有三个参数,平均电流,有效值电流,峰值电流,首先要知道原边电流的波形,原边电流的波形如下。
这是一个梯形波横向表示时间,总想表示电流大小,这个波形有三个值,一个是平均值I 平均,二是有效值I ,三是峰值Ip 。
首先要确定平均值I 平均:I 平均=Po/(η*Vs )。
反激变压器设计(标准格式)
副边有效值电流:
根据所选线径计算副边电流容量:
自供电绕组线径:由于自供电绕组的电流非常小只有5mA,因此对线径要求并不是很严格,在这里主要考虑为便于与次级更好的耦合及机械强度,因此也采用裸线径为0.35mm的漆包线进行绕置,使其刚好一层绕下,减小与次级之间的漏感,保证短路时使自供电电压降低。
7、计算变压器损耗和温升
变压器的损耗主要由线圈损耗及磁芯损耗两部分组成,下面分别计算:
1)线圈损耗:
原边直流电阻:
为100℃铜的电阻率为2.3×10-6( ·cm); 为原边绕组的线圈长度,实测为360cm;A为原边0.23mm漆包线的截面积。
原边直流损耗:
原边导线厚度与集肤深度的比值:
d为原边漆包线直径0.23mm,s为导线中心距0.27mm, 为集肤深度0.31mm。
根据所选线径计算原边绕组的电流密度:
计算副边绕组导线允许的最大直径(漆包线):
根据上述计算数据可采用裸线径DIASS=0.72mm的漆包线绕置,但由于在温度100℃、工作频率为60KHz时铜线的集肤深度: ,而0.72mm大于了2倍的集肤深度,使铜线的利用率降低,故采用两根0.35mm的漆包线并绕。
《参考文献》
1、《现代高频开关电源实用技术》 刘胜利 编著 电子工业出版社 2001年
2、《开关电源中磁性元器件》 赵修科 主编南京航空航天大学自动学院2004年
3、《TDK磁材手册》 日本TDK公司 2005年
5、计算变压器匝数、有效气隙电感系数及气隙长度。
6、选择绕组线圈线径。
7、计算变压器损耗和温升。
下面就按上述步骤进行变压器的设计。
二、设计过程:
1、电源参数:(有些参数为指标给定,有些参数从资料查得)
反激变压器的设计
反激变压器的设计//========================================================反激变压器设计最简单的方法我自己综合了一下众多高手的方法,自认为是比较简单的方法了!如下: 1,VDC min =VAC min * 1.2VDC max =VAC max * 1.42,输出功率Po=P1+P2+Pn......上式中P1=(Vo1+Vf)*I1 、P2 =(Vo2+Vf)*I2上式中Vo为输出电压,Vf为整流管压降3,输入功率Pin=(Po/η)*1.2(此处1.2为输入整流损耗)4,输入平均电流:Iav = Pin/VDC min5,初级峰值电流:Ip = 2*Iav/Dmax6,初级电感量:Lp=Vdc min *Dmax /(Ip*fs) fs为开关频率7,初级匝数:Np=VDC min * Dmax /(ΔB*Ae*fs)上式中ΔB推荐取值0.2 Ae为磁芯横截面积,查规格资料可得!8,次级匝数:NS =(Vout+Vd)*(1-Dmax)*Np / Vin min*Dmax至此变压器参数基本完成!另就是线径,可根据具体情况调整!宗旨就是在既定的BOBINN上以合适的线径,绕线平整、饱满!///================================反激式变压器设计原理(Flyback Transformer Design Theory)第一节. 概述.反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图.一、反激式转换器的优点有:1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求.2. 转换效率高,损失小.3. 变压器匝数比值较小.4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在85~265V间.无需切换而达到稳定输出的要求.二、反激式转换器的缺点有:1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下.2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大.3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂.第二节. 工作原理在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下:当开关晶体管Tr ton时,变压器初级Np有电流Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns 极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律: (e =-N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2.由图可知,导通时间ton的大小将决定Ip、Vce的幅值:Vce max = VIN / 1-DmaxVIN: 输入直流电压; Dmax : 最大工作周期Dmax = ton / T由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN.开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比n的大小即决定了Ic的大小,上式是按功率守恒原则,原副边安匝数相等NpIp = NsIs而导出. Ip亦可用下列方法表示:Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率公式导出如下:输出功率: Po = LIp2η / 2T输入电压: VIN = Ldi / dt设di = Ip,且 1 / dt = f / Dmax,则:VIN = LIpf / Dmax 或Lp = VIN*Dmax / Ipf则Po又可表示为:Po = ηVINf DmaxIp2 / 2f Ip = 1/2ηVINDmaxIp∴Ip = 2Po / ηVINDmax上列公式中:VIN : 最小直流输入电压(V)Dmax : 最大导通占空比Lp : 变压器初级电感(mH)Ip : 变压器原边峰值电流(A)f : 转换频率(KHZ)//========================================你看的书就会把你给绕进去...绕半天却找不到自己了。
反激变压器的设计
反激变压器的设计————————————————————————————————作者: ————————————————————————————————日期:反激变压器的设计//========================================================反激变压器设计最简单的方法ﻫ我自己综合了一下众多高手的方法,自认为是比较简单的方法了!如下: ﻫ1,VDC min=VAC min * 1.2VDC max=VAC max* 1.42,输出功率Po=P1+P2+Pn......ﻫ上式中P1=(Vo1+Vf)*I1 、P2 =(Vo2+Vf)*I2上式中Vo为输出电压,Vf为整流管压降ﻫ3,输入功率Pin=(Po/η)*1.2(此处1.2为输入整流损耗) ﻫ4,输入平均电流:Iav = Pin/VDCminﻫ5,初级峰值电流:Ip = 2*Iav/Dmax6,初级电感量:Lp=Vdc min *Dmax/(Ip*fs) fs为开关频率ﻫ7,初级匝数:Np=VDC min *Dmax /(ΔB*Ae*fs) ﻫ上式中ΔB推荐取值0.2 Ae为磁芯横截面积,查规格资料可得!8,次级匝数:NS =(Vout+Vd)*(1-Dmax)*Np / Vin min*Dmax至此变压器参数基本完成!另就是线径,可根据具体情况调整!宗旨就是在既定的BOBINN上以合适的线径,绕线平整、饱满!///================================反激式变压器设计原理(FlybackTransformer Design Theory)第一节. 概述.反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图.一、反激式转换器的优点有:2.转换效率高,损失小.1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求.ﻫ4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实3. 变压器匝数比值较小. ﻫ现交流输入在85~265V间.无需切换而达到稳定输出的要求.二、反激式转换器的缺点有:1.输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下.2.转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大.3. 变压器有直流电流成份,且同时会工作于CCM/ DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂.ﻫ第二节. 工作原理ﻫ在图1所示隔离反驰式转换器(The isolatedflybackconverter)中, 变压器" T"有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下:ﻫ当开关晶体管Tr ton时,变压器初级Np有电流Ip,并将能量储存于其中(E = LpIp/ 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律: (e=-N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2.ﻫ由图可知,导通时间ton的大小将决定Ip、Vce的幅值:Vce max = VIN/1-Dmax ﻫVIN:输入直流电压;Dmax: 最大工作周期Dmax = ton/ Tﻫ由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax= 0.4,以限制Vcemax≦ 2.2VIN.开关管Tron时的集电极工作电流Ie,也就是原边峰值电流Ip为: Ic = Ip =IL /n.因IL = Io,故当Io一定时,匝比n的大小即决定了Ic的大小,上式是按功率守恒原则,原副边安匝数相等NpIp= NsIs而导出. Ip亦可用下列方法表示:Ic=Ip= 2Po/ (η*VIN*Dmax)η: 转换器的效率公式导出如下:输出功率:Po= LIp2η/ 2T输入电压:VIN = Ldi /dt设di = Ip,且1/ dt = f /Dmax,则:VIN = LIpf/ Dmax或Lp= VIN*Dmax / Ipf则Po又可表示为: ﻫPo= ηVINf DmaxIp2/2f Ip= 1/2ηVINDmaxIp∴Ip=2Po/ηVINDmax上列公式中:ﻫVIN:最小直流输入电压(V)ﻫDmax:最大导通占空比ﻫLp: 变压器初级电感(mH)ﻫIp :变压器原边峰值电流(A)f:转换频率(KHZ)//========================================你看的书就会把你给绕进去...绕半天却找不到自己了。
反激式变压器的设计
反激式变压器的设计(共7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--反激式变压器的设计反激式变压器的工作与正激式变压器不同。
正激式变压器两边的绕组是同时流过电流的,而反激式变压器先是通过一次绕组把能量存储在磁心材料中,一次侧关断后再把能量传到二次回路。
因此,典型的变压器阻抗折算和一次、二次绕组匝数比关系不能在这里直接使用。
这里的主要物理量是电压、时间、能量。
在进行设计时,在黑箱估计阶段,应先估计出电流的峰值。
磁心尺寸和磁心材料也要选好。
这时,为了变压器能可靠工作,就需要有气隙。
刚开始,在开关管导通时把一次绕组看作是一个电感器件,并满足式(24)。
(24)把 Lpri移到左边,用Ton=Dmax/f 代到上式中,用已知的电源工作参数,通过式(25)就可以算出一次最大电感——最大占空比(通常为50%或。
(25)这个电感值是在输入最小工作电压时,电源输出仍能达到额定输出电压所允许选择的最大电感值。
在开关管导通的每个周期中,存储在磁心的能量为:(26)要验证变压器最大连续输出的功率能否满足负载所需的最大功率,可以使用下式:(27)所有磁心工作在单象限的场合,都要加气隙。
气隙的长度(cm)可以用下式近似(CGS制(美国)):(28a)式中Ac——有效磁心面积,单位为;Bmax——最大磁通密度,单位为G(Wb/cm )。
在MKS系统(欧洲)中气隙的长度(m)为(28b)式中Ac——有效磁心面积,单位为;Bmax——最大磁通密度,单位为T(Wb/m )。
这只是估算的气隙长度,设计者应该选择具有最接近气隙长度的标准磁心型号。
磁心制造厂商为气隙长度提供了一个A L的参数。
这参数是电感磁心绕上1000匝后的数据(美国)。
根据设计好的电感值,绕线的匝数可以用式(29)计算确定。
(29)式中 Lpri——一次电感量,单位为mH。
如果有些特殊的带有气隙的磁心材料没有提供A L。
反激电源变压器设计
反激电源变压器设计一、变压器参数的选择反激电源变压器的核心参数包括输入电压、输出电压、输出功率和工作频率。
在设计反激电源变压器时,首先要确定输入电压和输出电压的数值,通常可以根据电子设备的需求进行选择。
然后,根据输出功率计算变压器的功率大小,一般情况下可以按照变压器的负载能力来选择。
最后,确定工作频率,一般常用的工作频率有50Hz和60Hz两种,可以根据具体的应用需求来选择。
二、绕线的计算1.确定绕组的匝数比反激电源变压器通常是多绕组变压器,其中包括输入绕组、输出绕组和反馈绕组。
输入绕组的匝数Np从输入电压和功率的关系中可以计算得到,公式为Np = Vin * Iin / P,其中Vin表示输入电压,Iin表示输入电流,P表示输出功率。
输出绕组的匝数Ns可以由输出电压和功率的关系计算得到,公式为Ns = Vout * Iout / P,其中Vout表示输出电压,Iout表示输出电流,P表示输出功率。
反馈绕组的匝数Nf可以根据设计需求确定,通常取决于反馈网络的设计。
2.计算绕组的截面积绕制反激电源变压器时需要考虑绕组的电流和电阻损耗。
根据电流密度J,可以计算出绕组的截面积A,公式为A=I/J,其中I为电流密度,J为截面积。
电流密度的取值可以根据设计经验或者具体的应用需求来确定。
另外,要考虑绕组的电阻损耗,可以通过计算电阻来确定。
3.确定绕组的材料反激电源变压器的绕组通常采用铜导线,因为铜导线有较好的导电性能和热稳定性。
在选择铜导线时,要考虑导线的直径、长度和截面积等参数,同时还要根据绕组的电流来选择合适的导线规格,以保证导线能够承受相应的电流负荷。
三、设计注意事项1.绕制绕组时要注意匝数的计算和绕线的排列方式,以保证绕组的结构紧凑和电感性能的稳定。
2.反激电源变压器中会产生电磁干扰,因此在设计时要合理布局绕组,减小磁感应强度的泄漏。
3.反激电源变压器的绕组要用绝缘材料进行绝缘处理,以避免电气短路和绝缘击穿现象的发生。
反激变压器设计步骤及变压器匝数计算
反激变压器设计步骤及变压器匝数计算
一、反激变压器设计步骤
1、确定变压器的参数:反激变压器的主要参数包括输入电压V1,输
出电压V0,额定电流I0,额定损耗PX,以及工作频率f;
2、确定变压器的技术形式:确定变压器的形式,包括结构、安装形
式和外形尺寸;
3、确定变压器的铁芯:根据变压器的输入电压、输出电压、额定功
率和工作频率确定变压器的铁芯型号;
4、确定电缆及配件:根据变压器的类型和参数确定变压器的绕组铜
芯和绝缘材料,以及配件;
5、测试与验收:即电气性能检验,检查外观美观度、尺寸尺寸精度、温度等;
6、求解变压器匝数:可以使用等比法求求解变压器的匝数。
1、等比法:等比法即可求得变压器的匝数,具体步骤如下:
(1)计算输入绕组和输出绕组的有效感抗;
(2)计算输入绕组和输出绕组的匝数;
(3)根据变压器匝数的计算结果调整变压器的匝数;
(4)根据调整后的匝数计算变压器的有效感抗;
(5)如果有效感抗和设计值相符,则变压器的匝数就是最终的匝数;
(6)如果不相符,则根据计算结果再次调整变压器的匝数。
高频变压器应用技术-第7章
1 2 Pin 2 LI PK di I Vin L L dt DT I 2 K rf I ds
其中,Krf为电流纹波系数,取0.3~0.5之间
7.4 CCM反激变压器的设计
4、因此原边所需电感量为:
(VDC min Dmax )2 Lm 2 Pin f s K rf
7.2 反激变压器的一般考虑
四、漏感
7.2 反激变压器的一般考虑
7.3 DCM反激变压器的设计
反激变压器的本质是一个耦合电感,所以应该从 电感的本质出发对反激变压器进行设计。 1,选取合适的磁芯, 可通过查表或者AP法计算得到 磁芯尺寸。
Lm I I 10 AP 450 0.2 B
3,由此可以得出原边电感为:
I pk 2 Po max Vin min D max
Vin min Dmax Lp I PK f
7.3 DCM反激变压器的设计
4,当开关管关断时,变压器原边电压反向,开关管 上承受的电压为Vin Vfl ,其中 V fl 为副边折射回原 边的反射电压。实际设计过程中应考虑开关管电压的 选取。 通常将断续模式的反激设计在最小输入电压,满载时 为临界连续模式。因此由伏秒积平衡可以计算出反射 电压为: Dmax V fl Vin min 1 Dmax
7.5 反激设计的若干问题
RCD电路
7.5 反激设计的若干问题
RCD电路工作原理 当开关管关断时,RCD电路中的二极管D导通,C吸 收漏感能量,当开关管开通后,电容中的能量通过 电阻释放。
7.5 反激设计的若干问题
2、原边峰值电流 对于DCM反激,原边峰值电流只与负载有关, 与输入电压无关。 对于始终工作在CCM的反激,同样负载下, 低压输入时的峰值电流大于高压输入时的峰值电 流。 对于相同负载及相同输入电压的反激,DCM 反激的峰值电流大于CCM反激的峰值电流。
反激式变压器的设计
反激式变压器的设计反激式变压器(Flyback Transformer)是一种常见的开关电源变压器,具有简单的结构、低成本和高效率等优点,被广泛应用于各种电子设备中。
在进行反激式变压器的设计时,需要确定变压器的参数,包括输入输出电压、功率容量、工作频率等。
本文将详细介绍反激式变压器设计的步骤和注意事项。
设计步骤如下:1.确定输入输出电压:根据电子设备的要求和规格,确定变压器的输入和输出电压。
输入电压一般为交流电压,输出电压可以是直流电压或交流电压。
2.确定功率容量:根据电子设备的功率需求,确定变压器的功率容量。
功率容量是指变压器能够输出的最大功率,它与变压器的尺寸和导线截面积有关。
3.确定工作频率:反激式变压器通常工作在几十千赫兹到数百千赫兹的频率范围内。
选择合适的工作频率可以提高变压器的效率和稳定性。
4.计算变比:根据输入输出电压的比例关系,计算变压器的变比。
变比是指变压器的一次匝数与二次匝数之间的比例关系,它决定了输入输出电压的变换比例。
5.选择磁芯材料:磁芯是变压器的重要组成部分,它决定了变压器的性能和效率。
选择合适的磁芯材料可以提高变压器的磁耦合效果和磁导率。
6.计算匝数:根据输入输出电压的变比和磁芯的尺寸,计算一次匝数和二次匝数。
匝数决定了变压器的输入输出电压和电流。
7.计算绕线参数:根据匝数和导线截面积,计算变压器的绕线电阻和电感。
绕线电阻决定了变压器的功率损耗和温升,电感决定了变压器的高频特性和耦合效果。
8.确定绝缘等级:根据输入输出电压的大小和工作环境的要求,确定变压器的绝缘等级。
绝缘等级决定了变压器的安全性和可靠性。
9.进行结构设计:根据变压器的参数和要求,进行变压器的结构设计。
包括磁芯的形状、绕线的布局和绝缘的设计等。
10.进行实验验证:根据设计的参数和要求,制作样品变压器进行实验验证。
通过实验数据的分析和比较,优化设计参数和结构,最终得到满足要求的变压器。
设计反激式变压器时需要注意以下几点:1.磁芯损耗:磁芯材料有磁滞损耗和涡流损耗,在高频工作下会产生较大的损耗。
反激变压器设计详解
注意事项
• 选择合适的磁芯材料和绕组结构 • 遵循设计规范和行业标准
CREATE TOGETHER
谢谢观看
THANK YOU FOR WATCHING
反激变压器的分类与特点
反激变压器的分类
• 单端反激变压器:输入输出共用一个绕组 • 双端反激变压器:输入输出各有独立的绕组
反激变压器的特点
• 结构简单,易于集成 • 效率高,损耗较低 • 输出电压稳定,易于调节
反激变压器的主要应用场景
开关电源
• 直流电源转换为稳定直流 • 适用于电子设备、通信设备等
绕组损耗计算
• 根据绕组电阻、绕组电感和工作频率计算绕组损耗 • 考虑绕组绝缘材料和温度影响
反激变压器的效率计算与优化
效率计算
• 根据输入功率、输出功率和损耗计算效率 • 考虑效率计算精度和温度影响
优化方法
• 优化磁芯材料和绕组结构降低损耗 • 提高开关频率和输出电压提高效率
影响反激变压器效率的因素与改进措施
输出电压调整
• 通过改变开关频率或调整输出整流器实现输出电压调整 • 考虑输出电压稳定性和调节精度
输出电流调整
• 通过改变输出滤波器或调整负载实现输出电流调整 • 考虑输出电流稳定性和调节精度
03
反激变压器的损耗与效率计算
磁芯损耗与绕组损耗的计算方法
磁芯损耗计算
• 根据磁通密度、磁芯材料和工作频率计算磁芯损耗 • 考虑磁芯损耗系数和温度影响
• 根据输入电压、输出电压和开关频率计算磁通密度 • 考虑磁芯体积和磁通密度利用率
绕组的结构与匝数设计
绕组结构
• 选择合适的绕组形式,如单层绕组、双层绕组等 • 考虑绕组间距、绕组绝缘和绕组屏蔽
反激变压器设计过程
反激变压器设计过程反激变压器设计是电力电子领域中重要的设计工作之一,其主要应用于电源供电系统中的低功率电子设备。
反激变压器通过将输入电能进行储能,然后经过开关管的开关转换,输出所需电能,以达到升、降压的目的,同时实现电能的传输和转换。
第一步:确定设计参数:在设计反激变压器之前,首先需要明确设计要求和参数。
包括输入电压、输出电压、输出功率、工作频率等。
这些参数决定了反激变压器的尺寸、绕组参数和开关器件的选择。
第二步:计算变压器参数:根据设计要求和参数,计算出所需的变压器参数。
包括输入输出电压比、绕组匝数、绕组电流、铁芯面积等。
这些参数可以通过经验公式和设计手册进行计算,也可以通过电磁场仿真软件进行计算。
第三步:选择合适的铁芯材料:根据计算得到的铁芯面积和设计要求,选择合适的铁芯材料。
铁芯材料的选择需要考虑材料的磁导率、饱和磁感应强度、损耗等参数。
常用的铁芯材料有软磁合金、铁氧体等。
第四步:设计绕组参数:根据计算得到的绕组匝数和绕组电流,设计绕组的结构和参数。
包括导线截面积、绕组层数、绕组间隔、绕组材料等。
绕组的设计需要考虑到绝缘和散热等问题,确保绕组的安全和性能。
第五步:选择合适的开关管:根据设计要求,选择合适的开关管。
开关管的选择需要考虑到工作电压和电流、开关速度、导通压降、损耗等参数。
常用的开关管有IGBT、MOSFET等。
第六步:设计反激变压器的控制电路:设计反激变压器的控制电路,包括开关管的驱动电路和保护电路。
开关管的驱动电路需要保证开关管能够正确地切换和控制,保护电路需要保证开关管和变压器的安全和稳定工作。
第七步:进行电磁兼容性设计:在设计反激变压器时,需要考虑电磁兼容性问题。
包括电磁辐射和电磁干扰等问题。
通过合理的布局、绕组屏蔽和滤波设计,可以降低电磁辐射和电磁干扰。
第八步:进行样机制作和测试:根据设计结果制作样机,并进行测试。
通过测试得到的结果,可以对设计进行修正和优化,以进一步提高反激变压器的性能和可靠性。
反激变压器设计
反激变压器设计
反激变压器,也称为反激式开关电源,是一种非绝缘式开关电源拓扑结构。
反激变压器通过在主馈线上产生高频脉冲,经过变压器进行转换,从而实现电能的转换和传递。
反激变压器设计的关键要点包括输入滤波、开关电源控制电路、反激变压器设计等。
首先,输入滤波是为了将输入的交流电源进行滤波处理,阻止高频干扰信号进入开关电源。
一般采用电感和电容的组合进行滤波。
其次,开关电源控制电路是用来控制反激变压器的开关器件(一般为MOS场效应管或IGBT管)的开关频率和占空比。
通过合理的控制开关频率和占空比,可以实现对输出电压的控制。
最关键的是反激变压器的设计。
它包括步进变换器的变形设计、主变压器的设计、辅助电源的设计以及反压电路的设计等。
在设计过程中,需要根据输出电压和输出功率的要求确定变压器的参数,如匝数、电感值和绕组等。
在设计过程中,还需要考虑电路的稳定性和效率。
稳定性包括抗干扰能力和输出电压的稳定性,效率则涉及损耗和转化效率的优化。
总的来说,反激变压器的设计需要综合考虑输入滤波、开关电源控制电路和反激变压器的设计等要素,以实现稳定的电压输出和高效的能量转换。
反激变压器设计(独家教程)
反激式SMPS设计——变压器设计Flock fai liu2012-02-23学习除了努力,还需要方法!一、电流纹波率在设计之前,先引入SMPS最基本也是影响最广的一个设计参数——电流纹波率(K RP)。
它的设定非常重要,一旦设定好了它,几乎所有参数都已确定。
它会影响功率器件(开关管、输出整流二极管),输出滤波电容的电流应力和损耗,变压器几何尺寸。
所以不了解它,就无法开展变压器的设计。
电流纹波率定义初级纹波电流(△I)与电流有效值(I P)的比值。
即:K RP=△II P ; △I=V DCmin∗T ONL p; I p=I O∗1n1−D MaxK RP的有效范围为0—2,CCM<1,DCM=1,BCM=2 (电感电流的三种工作模式,自参阅书籍),若将它设为0,△I必为0,根据电感方程V=L*△I△t表明此时电感量为无穷大,所以实际中不可能。
从铜损跟铁损的折中考虑、变压器的几何尺寸以及EMI等综合折中;根据输出功率或特性的不同,将K RP设定在0.4—1之间进行调整,低压大电流和大功率输出选择偏低;高压小电流和小功率输出选择偏大。
当V INmin增加时,K RP相对应偏大。
当然任何情况下如果将K RP设定偏小,允许选择更大的磁蕊,效果是非常好的。
但从商业角度来说,控制成本,体积等原因,大多情况下只是空谈吧了。
不过认识这一点是很有帮助的。
当然有时也会有,这时可相对应偏小。
我们必须要深刻了解K RP的设定给设计结果带来的影响。
设置过小,会增大变压器尺寸以及高频铜损问题,当然会减小峰值电流、功率器件、电容的损耗。
CCM模式会使输出整流二极管发热增加。
然而设置过大自然与上述相反了,它还会影响EMI。
然而我们从低压时设计的CCM并不意味着它会一直工作在CCM模式。
它会随着电压的升高或负载的减小,使K RP=1后进入DCM模式,此时在输出整流二极管反向恢复之前电感电流刚好为0,给DIODE提供一个很好的工作条件,但此时再次提醒,K RP越大的缺点。
反激电源变压器的设计计算
反激电源变压器的设计计算设计计算步骤如下:1.确定输出功率输出功率是变压器设计中最基本的参数之一,通常由应用需求决定。
假设需要设计一个输出功率为P的反激电源变压器。
2.确定输入电压和输出电压输入电压和输出电压决定了变压器的变比。
输入电压一般由市电电压决定,而输出电压则由应用需求决定。
根据这两个电压的比值即可确定变压器的变比。
3.计算变压器变比变压器变比计算公式为:变比=输出电压/输入电压4.选择变压器铁芯选择合适的变压器铁芯非常重要,它直接关系到整个系统的效率和功率损耗。
铁芯的材料、截面积、磁导率等都需要进行合理选择,以满足设计要求。
常见的变压器铁芯材料有硅钢片和铁氧体材料。
5.确定变压器的耦合系数耦合系数是变压器设计中一个重要的参数,其表示输入线圈和输出线圈之间的耦合程度。
耦合系数越高,能量传输效率越高。
6.计算变压器线圈的参数根据输入电压、输出电压、输出功率和变压器变比,可以计算出变压器的线圈参数,包括匝数、导线直径、线圈长度等。
7.计算变压器的磁芯参数根据变压器输入电压、输出电压、输出功率、变压器变比和耦合系数等参数,可以计算出变压器的磁芯参数,包括磁芯直径、磁芯长度、铁芯损耗等。
8.进行电磁设计验证通过电磁仿真软件对设计的变压器进行验证,检查电磁参数是否满足设计要求。
如果不满足,需要进行适当的调整和优化。
9.进行热设计验证通过热仿真软件对变压器进行热设计验证,确保变压器在工作过程中能够正常散热,不产生过热现象。
10.制作和测试样品根据设计结果制作变压器样品,并进行测试验证。
根据测试结果,如果有需要,可以对变压器进行进一步的优化和调整。
在设计计算过程中,还需要考虑一些其他因素,如绝缘材料、输出功率的稳定性等。
同时还需要考虑应用场景,有时还需要进行EMC设计,以确保变压器在工作中不会产生干扰。
因此,反激电源变压器的设计计算是一个复杂且需要综合考虑众多因素的工作。
反激式变压器设计
变压器电路形式 单端反激式;工作频率f 100KHZ (工作周期T=10us ); 最高输入电压max ,in U 60V ;最低输入电压min ,in U 40V ;开关管最大导通时间max ,on T 4.5us ;开关管导通时压降 1V ;整流二极管正向电压降 0.4V ;输出电压o U 15V ;输出电流o I 3A ;最高工作环境温度 +45℃;最高允许温升 不大于60K ;计算步骤如下:1、 变压器初、次级电压计算① 计算初级电压取线路压降和变压器初级绕组铜阻压降为输入电压的2%,则初级电压为:;V U P 8.571%)21(60max ,1=--⨯=;V U P 2.381%)21(40min ,1=--⨯=② 计算次级电压;V U P 7.154.0%)21(152=++⨯= 2、 计算变压器工作比① 最大工作比%45%100105.4max ,max =⨯==∂T T on ② 电压变化系数 51.12.388.57min ,1max ,1===P P V U U K ③ 最小工作比 %35%10045.051.1)45.01(45.0)1(max max max min =⨯+⨯-=∂+∂-∂=∂V K3、 计算匝数比0.27.152.3845.0145.0max 1max 2min ,1=⨯-=∙∂-∂=P P U U n 4、 计算初级电感① 临界电感 uH P T U L P 4.311037.1521045.02.3810262260max 2min ,12min =⨯⨯⨯⨯⨯=⨯∂=-- ② 取电感uH L P 351=5、 计算初级峰值电流A T U T P I on P P 48.55.42.381037.1522max ,min ,101=⨯⨯⨯⨯== 6、 各绕组有效电流① 初级绕组有效电流A I I P 13.2345.048.53max 11=⨯=∂= ② 次级绕组有效电流A nI I 26.413.2212=⨯==7、 确定磁芯尺寸计算面积乘积取mT B 250=∆,2/5mm A J = (2/53mm A J -=),选用PC40磁芯4204.0525.048.5103550050026121=⨯⨯⨯⨯=∆=-BJ I L A P P P 按Ap 选择磁芯,查表取EE25X25X7,并查得有关参数为:4466.0cm Ap =,mm le 0.58=,28.51mm Ae =,33000mm Ve =,290.0cm S M = W K R T /40=∆8、 计算空气气隙长度cm B Ae I L P P 041.025.0108.5148.5103514.34.04.0lg 22262121=⨯⨯⨯⨯⨯⨯=∆=--π 9、 绕组匝数计算① 初级绕组匝数匝151048.514.34.0041.025.0104.0lg 4411=⨯⨯⨯⨯=⨯∆=P I B N π② 次级绕组匝数53.745.045.012.387.1515max max 1min ,1212=-⨯⨯=∂∂-∙∙=P P U U N N 匝 故取匝82=N修正匝16221==N N10、确定导线规格 mm J I d 738.0513.213.113.111=⨯== mm J I d 04.1526.413.113.122=⨯== 当时:KHZ f 100=mm f 2089.01.66==∆当导线直径大于2倍穿透深度时,应尽可能采用多股线。
第9章_反激式变压器的设计
选择最小的变压器尺寸
变压器的尺寸为: AP=Ae×Ac=(Pt×106)/ (2×η×f×Bmax×d×Km×Kc) 这里的, Pt:输入及输出功率的平均值,W; Bmax:Bmax=Bsat/2; d:d=4~5A/mm2; Km:窗口的铜填充系数,0.4; Kc:铁氧体的磁心系数,1。 小功率Ae的估算经验公式在第五章有说明。
变压器的原理图
变压器制作工艺
变压器其他参数设定
1、选用新康达EF20磁芯;选用鑫雄辉EF20的10脚(脚间距为 3.75±0.3mm,两排之间的跨距为 15.5±0.5mm)卧式标准 骨架(长*宽*高为:22*22*18.5mm); 初级的电感量(1-4脚)为1.3mH;漏感LK≤30uH; 高压测试时, AC 3500V,60 秒状态下, N1/N3 与 N2/N5 之间 的电流小于5mA(“ / ”表示测试时相互短接); 绕 组 之 间 的 绝 缘 电 阻 ≥ 1 0 0 MΩ;N1/N3 与 N4 之 间 耐 压 ≥AC500V;变压器的底部要用绝缘胶布缠绕,防止漏电; 按顺序绕制,先绕 N1(40TS),再绕 N2/N5(6TS)(注意 这里的 N2 和 N5 是同时并绕的),再绕 N3(40TS),最后绕 N4(10TS); 侧面贴标签,并标注生产日期;随样品提供确认书及测试报告;
计算变压器的次级匝数
其次级匝数为: Ns=(Np*(Vout+Vd)×(1Dmax))/(Vinmin×Dmax)
计算变压器的线径
变压器的线径计算是有规定的,特别是 反激式电源变压器更应该注意?
自然冷却时d=1.5~4A/mm2,强迫冷 风时3~5A/mm2。 在不同的频率下选取d也是不同的,在 200KHz以下时,一般为4~5A/mm2, 在200KHz以上时,一般为 2~3A/mm2。
实用反激变压器的设计
第3章主电路参数的计算3.1 反激变压器的设计反激变压器是反激变换器中的重要部件,它的好处将在很大程度上决定开关电源质量的高低,反激变压器兼有储能,平滑滤波,能量传递,减少纹波系数,抑制尖峰电流和电压,限流隔离等作用,可与电路电容构成谐振产生交流电压,电流,因此设计反激变压器十分重要。
其设计要求有:(1)一、二次绕组电压的变比应满足要求值.当输入电压降至规范允许的最低电压时,输出电压仍能满足规定的额定值.(2)当输入电压及占空比最大时,变压器磁芯不允许出现饱和.(3)当输出功率最大时,变压器温升应在规范要求之内.(4)应满足一、二次侧铜耗相等、铜损耗与铁损耗相等的原则,以使总损耗最低,获得较高效率。
[]133.1.1 变压器磁芯的选择反激式变换器一般功率比较小,通常采用铁氧体磁芯作为变压器的磁芯,本次设计选PC40材料,在100C o下,剩余磁密Br =0.055T,饱和磁密BS=0.39T。
其功率容量AP为:AP=Ae Aw=USm4TKJfB10P⨯⨯⨯⨯(3-1)式中:PT--变压器的视在功率,W;Ae--磁芯有效截面积, mm2;AW--磁芯窗口面积,mm2;Ku --窗口的铜填充系数,取Ku=0.4;Bm--变压器磁芯工作磁感应强度, T;为避免磁饱和,应留一定裕量,取Bm =0.6(BS-Br) =0.23T;J--电流密度,A/cm2;fS--开关频率,Hz;经计算有:P T =7085.070+=152.35W 代入式(3-1)得4.0450*******.01035.152AP 34⨯⨯⨯⨯⨯==0.3066cm 4 根据所得AP 值,并留有一定余量,所选磁芯型号为EE2329S ,其AP=0.4368cm 4磁芯有效面积为A e =35.8mm 2,窗口面积为A W =122mm 2。
3.1.2 反激变压器参数的计算1.原边绕组电流峰值设反激变压器在最小输入电压及额定负载的情况下工作在临界连续模式,可知其他情况,变压器均工作在断续模式,最大占空比为D max ,设为D max =0.43,由于原边平均电流I P =I In ,则有: In(min)ON In ppk max ηV P I T Ti D 21== (3-2) 由式(3-2)得:原边电流峰值:I ppk =2640.850.43702ηV D 2P In(min)max ON ⨯⨯⨯==1.451A 2.原边电感量由于变压器工作在临界模式,则有: T D i L V max ppk P In(min)= (3-3)由式(3-3)得:L P =ppk maxIn(min)fI D V =451.11018043.02643⨯⨯⨯=434.6uH 。
反激电源变压器设计技术
反激电源变压器设计模块摘要在功率转换装置中,变压器一般都作为体积、重量最大的组件出现。
同样,对于电力电子系统的整体性能、效率乃至成本而言,变压器也起着至关重要的作用。
在变压器设计的过程中,由于变压器各参数之间的相互依存和影响,全局的考虑和方方面面权衡折中是实现设计优化的关键。
在DC/DC模块中,反激电路作为输出隔离的电源产品常用主电路拓扑,其变压器是实现隔离、功率传递的核心之一。
在下文中,将以这种电路的变压器设计为主要内容,阐述设计要点和一般步骤。
关键词变压器反激电感气隙匝比磁芯材料本模块起草人:赵瑞杰专业术语主要参数:1.来源反激变换器XJ104E-1335的主功率变压器为例2.适用范围反激变压器的一般设计。
3.满足技术指标4.详细电路图反激变换器的电路原理图5.变压器工作原理简述反激电路的工作原理以及变压器的工作特性。
反激电路工作原理以及变压器的工作特性如下:当主开关管Q1导通时,变压器初级电压近似为电源电压,其极性为上正下负,与之对应的变压器次级电压为上负下正,此时整流二极管D1反向截止,负载的能量由输出电容提供。
与此同时,流过变压器初级电感和Q1的电流逐渐上升,此时变压器相当于一个储能电感,在开关管导通期间储存能量。
当主开关管Q1截止时,D1正向导通,变压器将储存的能量通过整流二极管提供给负载和输出电容。
此时流过D1的电流逐渐下降,假设变压器工作在能量完全传递工作模式(DCM模式),则流过整流二极管的电流会一直下降到零。
即每个工作周期变压器初级电感储存的能量被完全传递到变压器的次级侧。
对于能量不完全传递工作模式(CCM模式),电压和电流的波形会有所差别,其工作原理和能量完全传递工作模式类似。
6.变压器设计6.0变压器概述在对任何变压器的设计过程中,都会遇到以下的种种限制。
首先是功率传输(工作电压乘以最大电流)方面,变压器次级绕组必须在限定的调整率(一般定义为空载输出电压与额定负载输出电压的差的绝对值除以额定负载输出电压所得到的百分比)下有足够的能力将能量传至负载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反激变压器的设计基本步骤:
1、确定Dmax和V or。
2、求匝比n。
3、求初级电感量Lp。
4、选择磁芯。
5、求最小初级匝数。
6、初级、次级和反馈绕组匝数关系。
7、选择线经,确定初级、次级和反馈绕组匝数。
8、做样品、调整参数。
9、参考例子。
原理:
一、确定Dmax和Vor
当开关管Q闭合时,初级线圈电压为:Vin(当输入为265V时,达到375V),如果变压器初级线圈为:Np;次级线圈为:Ns。
匝比:
n=Np/Ns。
则:次级线圈的电压为:Vin/n。
由于次级二极管D3反向,没有形成回路,所以线圈没有电流流经负载。
而二极管的反向耐压:
VDf=Vin/n+Vo,
Vo为输出电压。
当开关管Q关断时,变压器中储存的能量向负载释放。
次级线圈的电压VS=Vo+Vd,
Vd为整流二极管D3正向压降。
初级线圈的电压为:
VP=n*VS+Vleg。
Vleg为变压器漏感产生的尖锋电压;与输入电压反向。
设定Vor=n*VS,为反射电压。
则开关管承受的电压
Vds=Vinmax+Vor+Vleg。
实际选择开关管是必须留20~50V的余量。
所以:
Vor=VDS-(Vinmax+Vleg+余量)=600-(375+120+20~50)=55~85V VDS:开关管的额定耐压,600V
Vin:在265V输入时,375V
Vleg:一般在120V
余量:20V~50V
根据伏秒法则:Vin*Ton=Vor*Toff
Ton:为开关管闭合时间。
Toff:为开关管关断时间。
占空比:D=Ton/(Ton+Toff),Ton+Toff为周期T。
Ton=T*D
Toff=T*(1-D)
所以: Vin*D=Vor*(1-D)
D=Vor/(Vin+Vor)
Dmax=Vor/(Vinmin+Vor)建议设置在0.3~0.5 当输入电压最小时取得最大占空比。
二、求匝比n
n =Vor/(Vo+Vd)
三、求初级电感量Lp。
计算电感量:DCM时,
有电感、电压、电流和时间的关系:
L=V*t/Ipp t:为时间。
Ipp:电流的变化量。
初级电感量:Lp=Vinmin*Tonmax/Ipp
DCM时,Ipp=2*Pin/ (Vinmin* Dmax)
Tonmax=T*Dmax=Dmax/fs fs:为工作频率。
所以:Lp=Vinmin*Tonmax/Ipp=Vinmin*Vinmin*Dmax*Dmax/(2*Pin*fs)对于CCM模式:由于电流并没有下降到0,所以Ippccm=K*IppBCM,K小于1。
所以:Lp=Vinmin*Tonmax/Ipp=Vinmin*Vinmin*Dmax*Dmax/(2*Pin*fs*K)
当输入为窄电压时:K取0.6~0.8
当输入为宽电压时:K取0.4~0.6
实际应用时,取值在以上的基础上乘以1.1倍,再以10%的误差制作。
四、选择磁芯
Ap = AwAe = (Pt*10000) / 2ΔB*f *J*Ku
式中 Pt = Po /η +Po 传输功率
J : 电流密度 A / cm2 (300~500)
Ku: 绕組系数 0.2 ~ 0.5 .
五、求最小初级匝数。
Np=Lp*Ipp/(Bm*Ae)= Vinmin*Tonmax/(Bm*Ae)= Vinmin* Dmax/(fs*Bm*Ae)
此处求得的是最小匝数。
六、初级、次级和反馈绕组匝数关系
有n=Np/Ns,可以得到:
Ns=Np/n
令反馈绕组为Na,电压为Va由于反馈绕组与次级绕组同名端同向,所以,反馈绕组电压与次级绕组电压成比例,即:
Ns/Na=(Vo+Vd)/(Va+Vd1)=na
Vd:次级整流二极管正向压降
Vd1:反馈绕组整流二极管D2正向压降
na:匝比
Na= Np/(n* na)
七、选择线经,确定初级、次级和反馈绕组匝数。
线经的选择按每平方mm传递4~6A平均电流来计算。
根据铜窗折中选择线经和匝数。
尽量使Np、Ns和Na的取值接近整数。
八、做样品、调整参数。
按照相关的法律法规来制作样品,必须满足产品市场的法律法规。
包括温升、绝缘等级、安规、EMI、EMC等。
电磁屏蔽(法拉利屏蔽),绕组之间的屏蔽不能形成回路,一端悬空,一端连接初级或次级的冷地(没有电压突变的点)。
最外层的(磁芯外屏蔽)屏蔽必须形成回路,并将节点连接到初级或次级的冷地。
绕制变压器时做到:热节点(指电压或电流突变的节点)放置在底层。
九、参考例子:
用FSEZ1317设计一款宽电压(85~265Vac)输入,输出DC16.5V-0.35A,效率为:0.76。
查看FSEZ1317的DATESHEET,可知:其工作与DCM,在这里K值取1.5,工作频率为:50kHz.内置1A/650V MOS管,VCC电压:16.5V。
1、确定Dmax和Vor。
假设次级二极管正向压降Vd=0.7V,则:
VS=Vo+Vd=16.5+0.7=17.2V
Vor取80V,Vinmin=(1-a)*85*1.414 a:为线电压整流后的纹波因子,与所用的滤波电容的大小直接相关,电容量越大,a越小。
一般电容量
按每瓦2~3uF,来选择。
假设a=0.3,则:
Vinmin=85*1.414*0.7=84V
这里a的选择必须注意了,如果选择比实际的小了,那么实际的将大于设计的占空比,若IC有限制的话,将导致工作异常。
Dmax= Vor/(Vin+Vor)=80/(80+84)=0.488
IC内部设计的最大占空比为0.6,所以仅从占空比的角度来看是满足要求了。
验证Vor的合理性。
已知MOS的VDS=650V,最大直流电压Vinmax=265*1.414=375,假设Vleg=120V,则
余量Vy=650-375-80-120=75V
余量一般有30V就可以了,因此在设计RCD吸收电路时,可以将Vleg 的电压设置在155V,这样可以减少RCD吸收回路的功耗,从而提升效率。
2、求匝比n。
n =Vor/(Vo+Vd)=80/17.2=4.65
3、求初级电感量Lp。
Lp=Vinmin*Tonmax/Ipp=Vinmin*Vinmin*Dmax*Dmax/(2*Pin*fs*K)
=84*84*0.488*0.488/(50*1.5*2*17.2*0.35/0.76)
=1.414mH
所以Lp=1.414*1.1=1.55mH。
4、选择磁芯。
Ap = AwAe = (Pt*10000) / 2ΔB*f *J*Ku=[(17.2*0.35/0.76+17.2*0.35)*10000]/(2*0.25*50000*400*0.
2 )=0.0768平方厘米
式中 Pt = Po /η +Po 传输功率
J : 电流密度 A / cm2 (300~500)
Ku: 绕組系数 0.2 ~ 0.5 .
查磁芯手册可知,EE16 AP=0.0765 比较接近。
故选择EE16. 5、求最小初级匝数。
EE16的Ae=19.2平方毫米
Ippmax=2*17.2*0.35/(0.76*84*0.488)=0.38647A
Np=Lp*Ipp/(Bm*Ae)=1550*0.38647/(0.25*19.2)=125T
注意了:Lp的单位是:uH, Ipp的单位是:安培 Ae的单位是:平方毫米。
Bm的取值一般:0.2~0.3,单位:特斯拉。
6、初级、次级和反馈绕组匝数关系。
n=4.65 NS=125/4.65=26.88,在这里不能为小数,取29圈。
na=VS/VA=17.2/(16.5+0.7)=1
NA=NS=29圈
NP=4.65*29=134.85 取135圈.
7、选择线经,确定初级、次级和反馈绕组匝数。
初级次级平均电流最大值0.0943A,若按6A/mmmm,则Ds=0.1415mm 取0.15mm-2UEW铜线。
反馈绕组,由于电流较小,考虑到容易绕线,取0.13mm-2UEW铜线。
次级平均电流0.35A,若按6A/mmmm,则Ds=0.2726mm,次级铜线如果用的
是2UEW线的话,电流密度取:4~6A/mmmm;若用的是TEX(三层绝缘线)线的话电流密度最大可取到10A/mmmm.
8、做样品、调整参数。
根据第7步计算的方法来调整线经,使其可方便制样。
绕法略……。