高中数学必修四第一节 任意角
高一必修四任意角知识点
高一必修四任意角知识点高一必修四任意角知识点一、定义任意角是指角的大小可以是大于0°小于360°的角。
任意角可以用弧度或度数表示。
二、角的转角1. 角的正向转角:角按照逆时针方向转动,转角为正。
2. 角的负向转角:角按照顺时针方向转动,转角为负。
三、角的初边和终边1. 初边:与x轴正半轴重合的射线。
2. 终边:从初边出发,按照逆时针方向旋转得到的射线。
四、角的度数和弧度的转换1. 角度到弧度的转换公式:弧度 = 角度× π / 1802. 弧度到角度的转换公式:角度 = 弧度× 180 / π五、角的相关概念1. 相互对立角:两条射线共享一个起点,但是方向相反的角。
它们的度数和为180°。
2. 余角:与给定角相加得到90°的角。
3. 补角:与给定角相加得到180°的角。
六、三角函数与任意角1. 正弦函数(sin):在平面直角坐标系中,对于一个给定角,其正弦值等于该角对应终边上的y坐标值与终边长的比值。
2. 余弦函数(cos):在平面直角坐标系中,对于一个给定角,其余弦值等于该角对应终边上的x坐标值与终边长的比值。
3. 正切函数(tan):在平面直角坐标系中,对于一个给定角,其正切值等于该角的正弦值与余弦值的比值。
七、任意角的三角函数值的四象限规定1. 第一象限:角的终边位于x轴的正半轴。
2. 第二象限:角的终边位于y轴的正半轴。
3. 第三象限:角的终边位于x轴的负半轴。
4. 第四象限:角的终边位于y轴的负半轴。
八、反三角函数与任意角的关系1. 反正弦函数(arcsin):给定一个比值,反三角函数可以求出对应的角度。
其定义域为[-1, 1],值域为[-π/2, π/2]。
2. 反余弦函数(arccos):给定一个比值,反三角函数可以求出对应的角度。
其定义域为[-1, 1],值域为[0, π]。
3. 反正切函数(arctan):给定一个比值,反三角函数可以求出对应的角度。
高中数学必修四任意角与弧度制知识点汇总
任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。
注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。
例1、若13590<<<αβ,求βα-和βα+的范围。
(0,45) (180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。
可以将角分为正角、零角和负角。
正角:按照逆时针方向转定的角。
零角:没有发生任何旋转的角。
负角:按照顺时针方向旋转的角。
例2、(1)时针走过2小时40分,则分针转过的角度是 -960(2)将分针拨快10分钟,则分针转过的弧度数是 3π .3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。
角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。
例1、30? ;390? ;?330?是第 象限角 300? ; ?60?是第 象限角585? ; 1180?是第 象限角 ?2000?是第 象限角。
例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C例3、写出各个象限角的集合:例4、若α是第二象限的角,试分别确定2α,2α 的终边所在位置.解 ∵α是第二象限的角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).(1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2α<k ·180°+90°(k ∈Z ), 当k=2n (n ∈Z )时, n ·360°+45°<2α<n ·360°+90°; 当k=2n+1(n ∈Z )时, n ·360°+225°<2α<n ·360°+270°. ∴2α是第一或第三象限的角. 拓展:已知α是第三象限角,问3α是哪个象限的角∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°<3α<90°+k ·120°. ①当k=3m(m ∈Z )时,可得 60°+m ·360°<3α<90°+m ·360°(m ∈Z ). 故3α的终边在第一象限. ②当k=3m+1 (m ∈Z )时,可得 180°+m ·360°<3α<210°+m ·360°(m ∈Z ). 故3α的终边在第三象限. ③当k=3m+2 (m ∈Z )时,可得 300°+m ·360°<3α<330°+m ·360°(m ∈Z ).故3α的终边在第四象限. 综上可知,3α是第一、第三或第四象限的角. 4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。
高中数学必修四:1.1.1《任意角》 PPT课件 图文
精讲领学
例题1 写出与下列各角终边相同的角的集合S,并把S中在 360~720范围的角写出来.
( 1 ) 6 0 ;( 2 ) 2 1 ;( 3 ) 3 6 3 1 4
解: ( 1 ) S {| k 3 6 0 6 0 , k Z }300,60,420
( 2 ) S {| k 3 6 0 2 1 , k Z }21,339,699
2、下列角中终边与330°相同的角是( ) A.30° B.-30° C.630° D.-630°
3、把-1485°转化为α+k·360° (0°≤α<360°, k∈Z)的形式是( ) A.45°-4×360° B.-45°-4×360° C.-45°-5×360° D.315°-5×360°
反馈固学
1.1.1 任意角
第一课时
(1)推广角的概念;理解并掌握正角、负角、零角的定义; (2)理解任意角以及象限角的概念; (3)掌握所有与角终边相同的角(包括角)的表示方法; (4)树立运动变化观点,深刻理解推广后的角的概念;
思考:那么工人在拧紧或拧松螺丝时,转动的角度 如何表示才比较合适?
逆时 针
4、下列结论中正确的是( ) A.小于90°的角是锐角 B.第二象限的角是钝角 C.相等的角终边一定相同 D.终边相同的角一定相等
5:任意两个角的数量大小可以相加、相减.
例如50°+80°=130°, 50°-80°=-30°, 你能解释一下这两个式子的几何意义吗?
130°是以50°角的终边为始边,逆时针旋转80°所成的角. -30°是以50°角的终边为始边,顺时针旋转80°所成的角.
注3:(1) 为任意角 (2) k Z这一条件必不可少;
(3) 终边相同的角不一定相等, 终边相等的角有无数多个,它们相差3600的整数倍.
数学必修四目录
数学必修四目录
第一章三角函数
第一节任意角与弧度制
任意角的概念与表示弧度制的引入与意义角度制与弧度制的换算终边相同的角的集合
第二节任意角三角函数
三角函数的定义三角函数在各象限的符号三角函数线及其性质三角函数的基本关系式
第三节诱导公式与图象
诱导公式的推导与应用三角函数的图象及其性质利用图象求解三角不等式
第四节三角函数的性质
三角函数的周期性三角函数的奇偶性三角函数的单调性三角函数的最值与零点
第五节函数模型应用
三角函数在实际问题中的应用三角函数模型的建立与求解
第二章平面向量
第一节平面向量概念
向量的定义与表示向量的模与方向共线向量与共面向量
第二节向量的线性运算
向量的加法与减法向量的数乘向量共线的充要条件
第三节向量的基本定理
平面向量基本定理的表述平面向量基本定理的应用
第四节平面向量数量积
向量数量积的定义与性质向量数量积的运算律向量夹角与垂直的判定
第五节平面向量应用
向量在几何问题中的应用向量在物理问题中的应用
第三章三角恒等变换
第一节两角和差公式
两角和差公式的推导两角和差公式的应用
第二节恒等变换应用
利用恒等变换化简三角式利用恒等变换证明三角恒等式恒等变换在解决实际问题中的应用
本目录涵盖了数学必修四的主要内容,包括三角函数、平面向量以及三角恒等变换等知识点。
通过学习这些内容,同学们可以进一步加深对三角函数和平面向量的理解,提高解决实际问题的能力。
在学习过程中,应注重理解概念和性质,掌握运算技巧和方法,并通过大量的练习来巩固和提高学习效果。
高中数学1.1.1任意角讲义苏教版必修4
1.1.1 任意角一、任意角的概念1.角的概念:一个角可以看做平面内一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形.2.角的分类:按旋转方向可将角分为如下三类:[提示]不一定,若角的终边未作旋转,则这个角是零角.若角的终边作了旋转,则这个角就不是零角.二、象限角与轴线角1.象限角:以角的顶点为坐标原点,角的始边为x轴正半轴建立平面直角坐标系.这样,角的终边(除端点外)在第几象限,就说这个角是第几象限角.2.轴线角:终边在坐标轴上的角.三、终边相同的角与角α终边相同的角的集合为{β|β=k·360°+α,k∈Z}.思考2:终边相同的角一定相等吗?其表示法唯一吗?[提示]终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角的表示方法不唯一.1.思考辨析(1)180°是第二象限角.( )(2)-30°是第四象限角.( )(3)第一象限内的角都小于第二象限内的角.( )[解析](1)×.180°是轴线角.(2)√.(3)×.如375°>120°,而375°和120°分别是第一、二象限内的角.[答案](1)×(2)√(3)×2.如图,则α=________,β=________.240°-120°[α是按逆时针方向旋转的,为240°,β是按顺时针方向旋转的,为-120°.]3.与-215°角终边相同的角的集合可表示为________.{β|β=k·360°-215°,k∈Z}[由终边相同角的表示可知与-215°角终边相同的角的集合是{β|β=k·360°-215°,k∈Z}.]4.将-885°化成k·360°+α(0°≤α<360°,k∈Z)的形式是________.(-3)×360°+195°[设-885°=k·360°+α,易得-885°=(-3)×360°+195°.]角的概念辨析【例1】(1)下列结论:①第一象限角是锐角;②锐角是第一象限角;③始边和终边重合的角是零角;④钝角是第二象限角;⑤小于90°的角是锐角;⑥第一象限角一定不是负角.其中正确的结论是________(填序号).(2)将35°角的终边按顺时针方向旋转60°所得的角度数为________,将35°角的终边按逆时针方向旋转一周后的角度数为________.思路点拨:(1)根据任意角、象限角的概念进行判断,正确区分第一象限角、锐角和小于90°的角.(2)由正负角的概念可得角的大小.(1)②④(2)-25°395°[(1)①400°角是第一象限角,但不是锐角,故①不正确;②锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,②正确;③不正确,因为360°角的始边和终边也重合;④钝角是大于90°且小于180°的角,终边落在第二象限,故是第二象限角,④正确;⑤0°角是小于90°的角,但不是锐角,故⑤不正确;⑥-300°角是第一象限角,但-300°角是负角,故⑥不正确.(2)由角的定义可知,将35°角的终边按顺时针方向旋转60°所得的角度数为35°-60°=-25°,将35°角的终边按逆时针方向旋转一周后的角度数为35°+360°=395°.]1.解决此类问题的关键在于正确理解象限角与锐角、直角、钝角、平角、周角等概念,严格辨析它们之间的联系与区别.2.判断结论正确与否时,若结论正确,需要严格的推理论证,若要说明结论错误,只需举出反例即可.1.时钟走了3小时20分,则时针所转过的角的度数为________,分针转过的角的度数为________.-100° -1 200° [时针每小时转30°,分针每小时转360°,由于旋转方向均为顺时针方向,故转过的角度均为负值,又3小时20分等于313小时,故时针转过的角度为-313×30°=-100°;分针转过的角度为-313×360°=-1 200°.]终边相同的角与象限角【例2】 已知α=-1 910°.(1)把α写成β+k ·360°(k ∈Z,0°≤β<360°)的形式,并指出它是第几象限的角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.思路点拨:(1)把α写成β+k ·360°(k ∈Z,0°≤β<360°)的形式后,判断β所在的象限即可.(2)将θ写成θ=β+k ·360°(k ∈Z,0°≤β<360°)的形式,用观察法验证k 的不同取值即可.[解] (1)法一:∵-1 910°=-6×360°+250°,∴-1 910°角与250°角终边相同,∴α=-6×360°+250°,它是第三象限的角.法二:设α=β+k ·360°(k ∈Z ),则β=-1 910°-k ·360°(k ∈Z ).令-1 910°-k ·360°≥0,解得k ≤-1 910360=-51136. k 的最大整数解为k =-6,相应的β=250°,于是α=250°-6×360°,它是第三象限的角.(2)由(1)知令θ=250°+k ·360°(k ∈Z ),取k =-1,-2就得到符合-720°≤θ<0°的角:250°-360°=-110°,250°-720°=-470°.故θ=-110°或-470°.1.把任意角化为k·360°+α(k∈Z且0°≤α<360°)的形式,关键是确定k,可以用观察法(α的绝对值较小),也可用除法.2.要求适合某种条件且与已知角终边相同的角时,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k的值.3.终边相同的角常用的三个结论:(1)终边相同的角之间相差360°的整数倍.(2)终边在同一直线上的角之间相差180°的整数倍.(3)终边在相互垂直的两直线上的角之间相差90°的整数倍.提醒:k∈Z,即k为整数这一条件不可少.2.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.[解](1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.区域角的表示[探究问题]1.第一象限内的角的集合能否用{α|0°<α<90°}表示?为什么?提示:不能,第一象限内的角未必是(0°,90°)的角,也可能是负角,也可能是大于360°的角,其表示为{α|k·360°<α<90°+k·360°,k∈Z}.2.终边落在x轴上的角如何表示?提示:{α|α=k·180°,k∈Z}.3.若角α,β满足β=α+k·180°,k∈Z,则角α,β的终边存在怎样的关系?提示:角α,β的终边落在同一条直线上.【例3】写出终边落在如图所示阴影部分的角的集合.思路点拨:法一:先写出与30°及105°终边相同角的集合,再写出其对称区域内角的集合,最后合并便可.法二:分别写出与30°及105°的终边在同一直线上的角的集合,合并求解便可.[解]法一:设终边落在阴影部分的角为α,角α的集合由两部分组成:①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z},∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.法二:与30°角终边在同一条直线上的角的集合为{α|α=k·180°+30°,k∈Z}.与180°-75°=105°角终边在同一条直线上的角的集合为{α|α=k·180°+105°,k∈Z},结合图形可知,阴影部分的角的集合为{α|k·180°+30°≤α<k·180°+105°,k∈Z}.解答此类题目应先在0°~360°上写出角的集合,再利用终边相同的角写出符合条件的所有角的集合,如果集合能化简的还要化成最简形式.提醒:求解这类问题要注意实线边界与虚线边界的差异.教师独具1.本节课的重点是象限角的判断、终边相同角及区域角的表示,难点是n α及αn所在象限的判定.2.本节课要重点掌握以下规律方法(1)求终边相同的角及区域角的表示.(2)象限角及n α、αn所在象限的判断. 3.本节课的易错点有以下几点(1)对于角的理解,要明确该角是按顺时针方向还是逆时针方向旋转形成的,按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角.(2)把任意角化为α+k ·360°(k ∈Z ,且0°≤α<360°)的形式,关键是确定k ,可以用观察法(α的绝对值较小),也可以用除法.(3)已知角的终边范围,求角的集合时,先写出边界对应的角,再写出0°~360°内符合条件的角的范围,最后都加上k ·360°,得到所求.1.-210°角的终边所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限B [-210°=(-1)×360°+150°,∵150°是第二象限角,∴-210°也是第二象限角.]2.已知-990°<α<-630°,且角α与120°角的终边相同,则α=________. -960° [∵角α与120°角的终边相同,∴α=k ·360°+120°,k ∈Z .又∵-990°<α<-630°,∴-990°<k ·360°+120°<-630°,k ∈Z ,即-1110°<k ·360°<-750°,k ∈Z ,∴k =-3.当k =-3时,α=(-3)×360°+120°=-960°.]3.如图,射线OA 先绕端点O 逆时针方向旋转60°到OB 处,再按顺时针方向旋转820°至OC 处,则β=________.-40° [∠AOC =60°+(-820°)=-760°,β=-(760°-720°)=-40°.]4.已知角β的终边在直线3x -y =0上.(1)写出角β的集合S ;(2)写出S 中适合不等式-360°≤β<720°的元素.[解] (1)如图,直线3x -y =0过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA 上的角是60°,终边落在射线OB 上的角是240°,所以以射线OA ,OB 为终边的角的集合为:S 1={β|β=k ·360°+60°,k ∈Z },S 2={β|β=k ·360°+240°,k ∈Z },所以,角β的集合S =S 1∪S 2={β|β=k ·360°+60°,k ∈Z }∪{β|β=60°+180°+k ·360°,k ∈Z }={β|β=2k ·180°+60°,k ∈Z }∪{β|β=(2k +1)·180°+60°,k ∈Z }={β|β=n ·180°+60°,n ∈Z }.(2)由于-360°≤β<720°,即-360°≤60°+n ·180°<720°,n ∈Z ,解得-73≤n <113,n ∈Z , 所以n =-2,-1,0,1,2,3.所以S 中适合不等式-360°≤β<720°的元素为:-2×180°+60°=-300°;-1×180°+60°=-120°;0×180°+60°=60°;1×180°+60°=240°;2×180°+60°=420°;3×180°+60°=600°.。
高中数学 必修四 1.1.1任意角和弧度制
又k∈Z,故所求的最大负角为β=-50°. (2)由360°≤10 030°+k·360°<720°, 得-9670°≤k·360°<-9310°,又k∈Z,解得k=-26. 故所求的角为β=670°.
【方法技巧】 1.在0°到360°范围内找与给定角终边相同的角的方法 (1)一般地,可以将所给的角α 化成k·360°+β 的形式(其中 0°≤β <360°,k∈Z),其中的β 就是所求的角. (2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所 给角是负角时,采用连续加360°的方式;当所给角是正角时,采用 连续减360°的方式,直到所得结果达到要求为止.
4.将35°角的终边按顺时针方向旋转60°所得的角度数为_______, 将35°角的终边按逆时针方向旋转两周后的角度数________. 【解析】将35°角的终边按顺时针方向旋转60°所得的角为35°60°=-25°,将35°角的终边按逆时针方向旋转两周后的角为 35°+2×360°=755°. 答案:-25° 755°
【解析】(1)错误.终边与始边重合的角是k·360°(k∈Z),不一定 是零角. (2)错误.如-10°与350°终边相同,但是不相等. (3)错误.如-330°角是第一象限角,但它是负角. (4)错误.终边在x轴上的角不属于任何象限. 答案:(1)× (2)× (3)× (4)×
2.下列各组角中,终边不相同的是( )
2.判断角的概念问题的关键与技巧 (1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念. (2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举 出反例即可.
【变式训练】射线OA绕端点O顺时针旋转80°到OB位置,接着逆时针 旋转250°到OC位置,然后再顺时针旋转270°到OD位置,则 ∠AOD=________.
最新人教版高中数学必修4第一章《第一章任意角和弧度制》示范教案(第2课时)
第一章第一节任意角和弧度制第二课时作者:房增凤整体设计教学分析在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要.现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小可以用度为单位进行度量,并且一度的角等于周角的1360,记作1°.通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法.在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性.这样可以尽量自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定基础.通过探究讨论,关键弄清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点的目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但却是互相联系、辩证统一的.进一步加强对辩证统一思想的理解,渗透数学中普遍存在、相互联系、相互转化的观点.三维目标1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.2.通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣.重点难点教学重点:理解弧度制的意义,并能进行角度和弧度的换算.教学难点:弧度的概念及其与角度的关系.课时安排1课时教学过程导入新课思路 1.(类比导入)测量人的身高常用米、厘米为单位进行度量,这两种度量单位是怎样换算的?家庭购买水果常用千克、斤为单位进行度量,这两种度量单位是怎样换算的?度量角的大小除了以度为单位度量外,还可采用哪种度量角的单位制?它们是怎样换算的?思路2.(情境导入)利用古代度量时间的一种仪器——日晷,或者利用普遍使用的钟表.实际上我们使用的钟表是用时针、分针和秒针角度的变化来确定时间的.无论采用哪一种方法,度量一个确定的量所得到的量数必须是唯一确定的.在初中,已学过利用角度来度量角的大小,现在来学习角的另一种度量方法——弧度制.要使学生真正了解弧度制,首先要弄清1弧度的含义,并能进行弧度与角度换算的关键.在引入弧度制后,可以引导学生建立弧与圆心角的联系——弧的度数等于圆心角的度数.随着角的概念的推广,圆心角和弧的概念也随之推广:从“形”上说,圆心角有正角、零角、负角,相应的,弧也就有正弧、零弧、负弧;从“数”上讲,圆心角与弧的度数有正数、0、负数.圆心角和弧的正负实际上表示了“角的不同方向”,就像三角函数值的正负可以用三角函数线(有向线段)的方向来表示一样.每一个圆心角都有一条弧与它对应,并且不同的圆心角对应着不同的弧,反之亦然.推进新课新知探究提出问题问题①:在初中几何里,我们学习过角的度量,1°的角是怎样定义的呢?问题②:我们从度量长度和重量上知道,不同的单位制能给我们解决问题带来方便.那么角的度量是否也能用不同的单位制呢?活动:教师先让学生思考或讨论问题,并让学生回忆初中有关角度的知识,提出这是认识弧度制的关键,为更好地理解角度弧度的关系奠定基础.讨论后教师提问学生,并对回答好的学生及时表扬,对回答不准确的学生提示引导考虑问题的关键.教师板书弧度制的定义:规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.以弧度为单位来度量角的制度叫做弧度制;在弧度制下,1弧度记作1 rad.如图1中,的长等于半径r ,AB 所对的圆心角∠AOB 就是1弧度的角,即l r=1.图1讨论结果:①1°的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1°.它是一个定值,与所取圆的半径大小无关.②能,用弧度制.提出问题问题①:作半径不等的甲、乙两圆,在每个圆上作出等于其半径的弧长,连接圆心与弧的两个端点,得到两个角,将乙图移到甲图上,两个角有什么样的关系?问题②:如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么α的弧度数是多少?既然角度制、弧度制都是角的度量制,那么它们之间如何换算?活动:教师引导学生学会总结和归纳角度制和弧度制的关系,提问学生归纳的情况,让学生找出区别和联系.教师给予补充和提示,对表现好的学生进行表扬,对回答不准确的学生提示和鼓励.引入弧度之后,应与角度进行对比,使学生明确:第一,弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制;第二,1弧度是等于半径长的弧所对的圆心角(或这条弧)的大小,而1°的角是周角的1360;第三,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值.教师要强调为了让学生习惯使用弧度制,本教科书在后续的内容中尽量采用弧度制.讨论结果:①完全重合,因为都是1弧度的角.②α=l r ;将角度化为弧度:360°=2π rad,1°=π180rad ≈0.017 45 rad ,将弧度化为角度:2π rad =360°,1 rad =(180π)°≈57.30°=57°18′.弧度制与角度制的换算公式:设一个角的弧度数为α rad =(180απ)°,n °=n π180(rad). 提出问题问题①:引入弧度之后,在平面直角坐标系中,终边相同的角应该怎么用弧度来表示?扇形的面积与弧长公式用弧度怎么表示?问题②:填写下列的表格,找出某种规律.的长对一些特殊角填表,然后概括出一般情况.教师让学生互动起来,讨论并总结出规律,提问学生的总结情况,让学生板书,教师对做正确的学生给予表扬,对没有总结完全的学生进行简单的提示.检查完毕后,教师做个总结.由上表可知,如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么α的弧度数的绝对值是l α.这里,应当注意从数学思想的高度引导学生认识“换算”问题,即角度制、弧度制都是角的度量制,那么它们一定可以换算.推而广之,同一个数学对象用不同方式表示时,它们之间一定有内在联系,认识这种联系性也是数学研究的重要内容之一.教师给学生指出,角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.值得注意的是:今后在表示与角α终边相同的角时,有弧度制与角度制两种单位制,要根据角α的单位来决定另一项的单位,即两项所用的单位制必须一致,绝对不能出现k ·360°+π3或者2k π+60°一类的写法.在弧度制中,与角α终边相同的角,连同角α在内,可以写成β=α+2k π(k ∈Z )的形式.如图2为角的集合与实数集R 之间的一一对应关系.图2讨论结果:①与角α终边相同的角,连同角α在内,可以写成β=α+2k π(k ∈Z )的形式.弧度制下关于扇形的公式为l =αR ,S =12αR 2,S =12lR . 的长例1下列命题中,真命题是( )A .一弧度是一度的圆心角所对的弧B .一弧度是长度为半径的弧C .一弧度是一度的弧与一度的角之和D .一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位活动:本例目的是让学生在教师的指导下理解弧度制与角度制的联系与区别,以达到熟练掌握定义.从实际教学上看,弧度制不难理解,学生结合角度制很容易记住.根据弧度制的定义:我们把长度等于半径长的弧和所对的圆心角叫做一弧度的角.对照各项,可知D 为真命题.答案:D例2象限:①-15π4;②32π3;③-20;④-2 3. 活动:本题的目的是让学生理解什么是终边相同的角,教师给予指导并讨论归纳出一般规律.即终边在x 轴、y 轴上的角的集合分别是:{β|β=k π,k ∈Z },{β|β=π2+k π,k ∈Z }.第一、二、三、四象限角的集合分别为:{β|2k π<β<2k π+π2,k ∈Z }, {β|2k π+π2<β<2k π+π,k ∈Z }, {β|2k π+π<β<2k π+3π2,k ∈Z }, {β|2k π+3π2<β<2k π+2π,k ∈Z }. 解:①-15π4=-4π+π4,是第一象限角. ②32π3=10π+2π3,是第二象限角. ③-20=-3×6.28-1.16,是第四象限角.④-23≈-3.464,是第二象限角.点评:在这类题中对于含有π的弧度数表示的角,我们先将它化为2k π+α(k ∈Z ,α∈[0,2π))的形式,再根据α角终边所在的位置进行判断,对于不含有π的弧度数表示的角,取π=3.14,化为k ×6.28+α,k ∈Z ,|α|∈[0,6.28)的形式,通过α与π2,π,3π2比较大小,估计出角所在的象限活动:本例目的是让学生在教师的指导下会用弧度制求终边相同的角,并通过独立完成课后练习真正领悟弧度制的要领,最终达到熟练掌握.从实际教学来看,用弧度制解决角的问题很容易但却难掌握,很有可能记错或者混淆或者化简错误,学生需多做些这方面的题来练基本功.可先让学生多做相应的随堂练习,在黑板上当场演练,教师给予批改指导,对易出错的地方特别强调.对学生出现的种种失误,教师不要着急,在学生的练习操作中一一纠正,这对以后学习大有好处.解:由已知,得7θ=2k π+θ,k ∈Z ,即6θ=2k π.∴θ=k 3π. 又∵0<θ<2π,∴0<k 3π<2π.∵k ∈Z ,当k =1、2、3、4、5时,θ=π3、2π3、π、4π3、5π3. 点评:本题是在一定的约束条件下,求与角α终边相同的角,一般地,首先将这样的角表示为2k π+α(k ∈Z ,α∈[0,2π))的形式,然后在约束条件下确定k 的值,进而求适合条件的角.例4已知一个扇形的周长为a ,求当扇形的圆心角多大时,扇形的面积最大,并求这个最大值.活动:这是一道应用题,并且考查了函数思想,教师提示学生回顾一下用函数法求最值的思路与步骤,教师提问学生对已学知识的掌握和巩固,并对回答好的学生进行表扬,对回答不全面的学生给予一定的提示和鼓励.教师补充,函数法求最值所包括的五个基本环节:(1)选取自变量;(2)建立目标函数;(3)指出函数的定义域;(4)求函数的最值;(5)作出相应结论.其中自变量的选取不唯一,建立目标函数结合有关公式进行,函数定义域要根据题意确定,有些函数是结构确定求最值的方法,并确保在定义域内能取到最值.解:设扇形的弧长为l ,半径为r ,圆心角为α,面积为S .由已知,2r +l =a ,即l =a -2r .∴S =12l ·r =12(a -2r )·r =-r 2+a 2r =-(r -a 4)2+a 216. ∵r >0,l =a -2r >0,∴0<r <a 2. ∴当r =a 4时,S max =a 216.此时,l =a -2·a 4=a 2,∴α=l r=2. 故当扇形的圆心角为2 rad 时,扇形的面积取最大值a 216. 点评:这是一个最大值问题,可用函数法求解,即将扇形的面积S 表示成某个变量的函课本本节练习.解答:1.(1)π8;(2)-7π6;(3)20π3. 点评:能进行角度与弧度的换算.2.(1)15°;(2)-240°;(3)54°.点评:能进行弧度与角度的换算.3.(1){α|α=k π,k ∈Z };(2){α|α=π2+k π,k ∈Z }.点评:用弧度制表示终边分别在x 轴和y 轴上的角的集合.4.(1)cos0.75°>cos0.75;(2)tan1.2°<tan1.2.点评:体会同数值不同单位的角对应的三角函数值可能不同,并进一步认识两种单位制.注意在用计算器求三角函数值之前,要先对计算器中角的模式进行设置.如求cos0.75°之前,要将角模式设置为DEG(角度制);求cos0.75之前,要将角模式设置为RAD(弧度制).5.π3m. 点评:通过分别运用角度制和弧度制下的弧长公式,体会引入弧度制的必要性.6.弧度数为1.2.点评:进一步认识弧度数的绝对值公式.课堂小结由学生总结弧度制的定义,角度与弧度的换算公式与方法.教师强调角度制与弧度制是度量角的两种不同的单位制,它们是互相联系的,辩证统一的;角度与弧度的换算,关键要理解并牢记180°=π rad 这一关系式,由此可以很方便地进行角度与弧度的换算;三个注意的问题,同学们要切记;特殊角的弧度数,同学们要熟记.重要的一点是,同学们自己找到了角的集合与实数集R 的一一对应关系,对弧度制下的弧长公式、扇形面积公式有了深刻的理解,要把这两个公式记下来,并在解决实际问题中灵活运用,表扬学生能总结出引入弧度制的好处,这种不断总结,不断归纳,梳理知识,编织知识的网络,特别是同学们善于联想、积极探索的学习品质,会使我们终生受用,这样持之以恒地坚持下去,你会发现数学王国的许多宝藏,以服务于社会,造福于人类.作业①课本习题1.1 A 组6、8、10.②课后探究训练:课本习题1.1 B 组题.设计感想本节课的设计思想是:在学生的探究活动中通过类比引入弧度制这个概念并突破这个难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么以后有些题怎么做就怎么难受.通过探究让学生明确知识依附于问题而存在,方法为解决问题的需要而产生.将弧度制的概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更宽的广度.本节设计的特点是由特殊到一般、由易到难,这符合学生的认知规律;让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启迪.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续总结归纳用弧度来计量角的好处并为后续三角函数的学习奠定基础.根据本节特点可考虑分层推进、照顾全体.对优等生,重在引导他们变式思维的训练,培养他们求同思维、求异思维的能力,以及思维的灵活性、深刻性与创造性.鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.备课资料一、密位制度量角度量角的单位制,除了角度制、弧度制外,军事上还常用密位制.密位制的单位是“密位”.1密位就是圆的16 000所对的圆心角(或这条弧)的大小.因为360°=6 000密位,所以 1°=6 000密位360≈16.7密位,1密位=360°6 000=0.06°=3.6′≈216″. 密位的写法是在百位上的数与十位上的数之间画一条短线,例如7密位写成0—07,读作“零,零七”,478密位写成4—78,读作“四,七八”.二、备用习题1.一条弦的长度等于圆的半径,则这条弦所对的圆心角的弧度数是( )A.π3B.π6C .1D .π 答案:A2.圆的半径变为原来的2倍,而弧长也增大到原来的2倍,则( )A .扇形的面积不变B .扇形的圆心角不变C .扇形的面积增大到原来的2倍D .扇形的圆心角增大到原来的2倍答案:B3.下列表示的为终边相同的角的是( )A .k π+π4与2k π+π4(k ∈Z ) B.k π2与k π+π2(k ∈Z ) C .k π-2π3与k π+π3(k ∈Z ) D .(2k +1)π与3k π(k ∈Z ) 答案:C三、钟表的分针与时针的重合问题弧度制、角度制以及有关弧度的概念,在日常生活中有着广泛的应用,我们平时所见到的时钟上的时针、分针的转动,其实质都反映了角的变化.时间的度量单位时、分、秒分别与角2π(rad),π30(rad),π1 800(rad)相对应,只是出于方便的原因,才用时、分、秒.时钟上的数学问题比较丰富,下面我们就时针与分针重合的问题加以研讨.例题 在一般的时钟上,自零时开始到分针与时针再一次重合,分针所转过的角的弧度数是多少(在不考虑角度方向的情况下)?甲生:自零时(此时时针与分针重合,均指向12)开始到分针与时针再一次重合,设时针转过了x 弧度,则分针转过了2π+x 弧度,而时针走1弧度相当于经过6π h =360πmin ,分针走1弧度相当于经过30π min ,故有360πx =30π(2π+x ),得x =2π11, ∴到分针与时针再一次重合时,分针转过的弧度数是2π11+2π=24π11(rad). 乙生:设再一次重合时,分针转过弧度数为α,则α=12(α-2π)(因为再一次重合时,时针比分针少转了一周,且分针的旋转速度是时针的12倍),得α=24π11, ∴到分针与时针再一次重合时,分针转过的弧度数是24π11(rad). 点评:两名同学得出的结果相同,其解答过程都是正确的,只不过解题的角度不同而已.甲同学是从时针与分针所走的时间相等方面列出方程求解,而乙同学则从时针与分针所转过的弧度数入手,当分针与时针再次重合时,分针所转过的弧度数α-2π与时针所转过的弧度数相等,利用弧度数之间的关系列出方程求解.。
北师大版高中数学必修4第一章《三角函数》任意角的三角函数及其诱导公式
1 1
0 1 0 1 0 1 0 0 0
6
2)同终边角的同名三角函数值相等. Sin(2kπ+α)= Sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα 2kπ是三角函数的周期 诱导公式1
7
练习:确定下列函数值的符号
1)sin1900的符号是——?
2)cos(-3920)的符号是——?
16
Sin(π/2+α)=cosα cos(π/2+α)= -Sinα Sin(π/2-α)=cosα cos(π/2-α)= Sinα
=> tan(π/2+α)= -cotα => tan(π/2-α)=cotα
17
常用的正弦、余弦、正切诱导公式 1、同终边诱导公式 Sin(2kπ+α)=sin α cos(2kπ+α)=cosα tan(2kπ+α)=tan α 2、负角诱导公式 Sin(-α)=- sin α cos(-α)=cos α tan(-α)= - tan α 3、四象限诱导公式 Sin(2π-α)=-sin α cos(2π-α)=cos α tan(2π-α)= - tan α
y
P(a,b)
x
y
x
P(a,b)பைடு நூலகம்
Sin(2kπ+α)= Sinα
-π/4
-9π/4
4
小结:正弦函数是周期函数,周期是 2k 其中最小正周期为 2
余弦函数是周期函数,周期是 2k 其中最小正周期为 2
5
你记住了吗?
度 弧 度
0 0 300 450 600 900 1200 1350 1500 1800 2700 3600
高中数学必修四 第一章三角函数 1.2.1.1 三角函数的定义
解析:角
α
的终边在
y
轴的非负半轴上,则
α=2kπ+
π 2
(������∈Z),所以
tan α 无意义.
答案:A
【做一做 1-2】 若角 α 的终边与单位圆相交于点
2 2
,-
2 2
,
则 sin ������的值为( )
A.
2 2
B.
−
2 2
C.
1 2
D.
−1
解析:x=
2 2
,
������
=
−
2 2
,
则sin
题型一 题型二 题型三 题型四
解:(1)∵-670°=-2×360°+50°,
∴-670°是第一象限角,
∴sin(-670°)>0.
又1 230°=3×360°+150°,
∴1 230°是第二象限角,
∴cos 1 230°<0,
∴sin(-670°)cos 1 230°<0.
(2)∵
5π 2
<
8
<
(2)∵
5π 4
是第三象限角,
4π 5
是第二象限角,
11π 6
是第四象限角,∴
sin
5π 4
<
0,
cos
4π 5
<
0,
tan
11π 6
<
0,
∴sin
54π·cos
45π·tan
11π 6
<
0,
式子符号为负.
(3)∵191°角为第三象限角,∴tan 191°>0,cos 191°<0,
高中数学必修四 第一章三角函数 1.1.1 任意角
2.角α,β的终边相同,α与β不一定相等 剖析因为角α,β的终边相同,所以将角α终边旋转(逆时针或顺时 针)k(k∈Z)周可得角β,所以角α,β的数量关系为β=k·360°+α(k∈Z), 即角α,β的大小相差360°的k(k∈Z)倍,因此α与β不一定相等.
3.锐角、0°~90°的角、小于90°的角、第一象限的角的区别 剖析:受初中所学角的影响,往往在解决问题时,考虑的角仅仅停 留在锐角、直角、钝角上.将角扩展到任意角后,可用集合的观点 来区别上述各类角. 锐角的集合可表示为{α|0°<α<90°}; 0°~90°的角的集合可表示为{α|0°≤α<90°}; 小于90°的角的集合可表示为{α|α<90°},其中包括锐角和零角 以及所有的负角; 第一象限的角的集合可表示为 {α|k·360°<α<k·360°+90°,k∈Z},其中有正角,也有负角.
0°<α<90°
第一象限
90°
y 轴非负半轴
90°<α<180°
第二象限
180°
x 轴非正半轴
α 的范围 180°<α<270°
α 终边的位置 第三象限
270°
y 轴非正半轴
270°<α<360°
第四象限
(2)当α<0°或α≥360°时,将α化为 k·360°+β(k∈Z,0°≤β<360°),转化为判断角β的终边所在的位置.
名师点拨要正确区分易混的概念,如锐角一定是第一象限的角,而 第一象限的角不全是锐角,如-350°,730°都是第一象限角,但它们 都不是锐角.
典型例题
题型一
判断象限角
【例1】 在0°~360°之间,求出一个与下列各角终边相同的角,
苏教版高中数学必修4第1章 三角函数任意角、弧度
正角
负角 零角
按 逆时针 方向旋转形成的角
按 顺时针 方向旋转形成的角 零角 一条射线没有作任何旋转,称它形成了一个_____
知识点二
象限角
思考
把角的顶点放在平面直角坐标系的原点,角的始边与x轴的非
负半轴重合,旋转该角,则其终边 ( 除端点外 ) 可能落在什么
位置? 答案 终边可能落在坐标轴上或四个象限内.
D.{α|α=k· 360°-263°,k∈Z}
解析 -457°=-2×360°+263°,故选C.
1
2
3
4
5
解析
答案
3.2 017°是第 三 象限角.
解析 因为2 017°=5×360°+217°,故2 017°是第三象限角.
1
2
3
4
5
解析
答案
4.与-1 692°终边相同的最大负角是 -252°.
跟踪训练 2
下列各角分别是第几象限角?请写出与下列各角终边相同
的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来. (1)60°; 解 60°角是第一象限角,所有与60°角终边相同的角的集合S={β|β=
60°+k· 360°,k∈Z},
S中适合-360°≤β<720°的元素是60°+(-1)×360°=-300°,
当k=4时,β=4×360°-1 910°=-470°; 当k=5时,β=5×360°-1 910°=-110°; 当k=6时,β=6×360°-1 910°=250°.
解答
命题角度2 求终边在给定直线上的角的集合
- 3x 上的角的集合. 例4 写出终边在直线y=
解
终边在 y=- 3x(x<0)上的角的集合是 S1={α|α=120° +k· 360° , k∈Z};
必修四第一章第一节任意角
y
328° o
-392°
328°= ﹣32° +360°
﹣392°= ﹣32° -360°
x
-32°
思考2:与-32°角终边相同的角有多少个?
这些角与-32°角在数量上相差多少?
k·360°(k∈Z)
思考3:所有与-32°角终边相同的角,连同- 32°角在内,可构成一个集合S,你能用描述法 表示集合S吗?
2、与-1778°的终边相同且绝对值最小的角是 ____2_2_°_____ 。
3、A={小于90°的角},B={第一象限的角}
则A∩B等于 ( D)
A.{锐角}
B.{小于90°的角}
C.{第一象限的角} D.以上说法都不对
小结 1.角的推广: 正角, 负角,零角;任 意大小 2.象限角:角的终边在第几象限就是第 几象限角,角的终边在坐标 轴上时,为非象限角
角可以大于360度,也可 以小于0度
思考3:如何确定一个角呢?
有方向:顺时针、逆时针 有大小:任意大小
知识探究(二):象限角
思考1:为了进一步研究角的需要,我们常在直角坐标 系内讨论角,并使角的顶点与原点重合,角的始边与x轴 的非负半轴重合,那么对一个任意角,角的终边可能落 在哪些位置?
终边落在第几象限就是第几象限角 (角的终边在坐标轴上时,称为非y 象限角)
知识回顾
想一想,初中时我们是怎么定义角 的?角的取值范围如何?
定义:角是由平面内一点引出的两条 射线所组成的图形。 范围:0o≤α≤360o
知识探究(一):角的概念的推广
思考1:如图,一条射线的端点是O,它从起始 位置OA旋转到终止位置OB,形成了一个角α, 其中点O,射线OA、OB分别叫什么名称?
高中数学必修四课件:《任意角的概念》课件
任意角的度数和弧度
我们将学习如何用度数和弧 度来衡量一个任意角。
任意角的四象限定义
我们将描述任意角在坐标系 中四个象限的定义和特点。
任意角的三角函数
我们将学习 sine, cosine 和 tangent 等三角函数,并如 何用这些函数来表示任意角。
任意角的三角函数
三角函数的基本定义
三角函数的计算方法 三角函数的性质
我们将学习三角函数的基本概念,包括 sine、cosine 和 tangent 等函数。
我们将讨论如何计算三角函数的值。
我们将介绍三角函数的重要性质,并讨论 如何利用这些性质来解决各种问题。
任意角的辅助角
1
什么是辅助角?
我们将学习什么是辅助角,以及它在三角函数计算中的应用。
2
辅助角的求法
我们将深入了解如何求解辅助角。
3
辅助角在三角函数计算中的应用
我们将学习如何使用辅助角来简化三角函数的计算意角的应用,例如如 何用三角函数计算日落时间。
作业
我们将通过作业深入理解任意角,并加深对 其概念和应用的记忆。
总结回顾
1 本节课学到了什
么?
我们将回顾本节课所 讲解的内容,深度认 识任意角的概念和应 用。
2 对数学的认识和
体会
我们将讨论数学在现 实世界中的应用,以 及数学对我们的重要 性。
3 学习必须要具备
的素质和方法
我们将谈论如何更好 地学习数学,包括思 考、实践和分析等方 法。
拓展阅读
相关著作
我们将推荐一些关于任意角 概念和应用的书籍和文章, 以便进一步了解这个主题。
工具和技巧
我们将介绍一些有效的数学 工具和技巧来帮助更好地理 解任意角概念。
高中数学必修四主要内容
第一章 三角函数1.1 任意角和弧度制角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.角的分类:象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360 ,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略.弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:2360p =?;180p =?;1801()57.305718rad p¢=盎??;180( )nn p =?.弧长公式l l r ra a =??弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角1.2 任意角的三角函数三角函数的定义: 诱导公式)Z (tan )2tan()Z (cos )2cos()Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ有向线段:坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。
规定:与坐标轴方向一致时为正,与坐标方向相反时为负。
必修四1-1-1三角函数的任意角
课前探究学习
课堂讲练互动
活页规范训练
(4)终边相同的角不一定相等,但相等的角终边一定相同,终边 相同的角有无数个,它们相差周角的整数倍. 提醒 一般地,终边相同的角的表达式形式不唯一,可利用图 形来验证, 如 α=90° + k· 180° 与 β=-90° +k· 180° (k∈Z)都表示 终边在 y 轴上的角.
课前探究学习 课堂讲练互动 活页规范训练
规律方法
解决此类问题的关键在于正确理解象限角与锐角、
直角、钝角、平角、周角等概念.另外需要掌握判断命题真假 的技巧,判断命题为真需要证明,而判断命题为假只要举出反 例即可.
课前探究学习
课堂讲练互动
活页规范训练
Байду номын сангаас
名师点睛 1.准确理解任意角的概念 掌握角的概念应注意角的三个要素:顶点、始边、终边.角可以是 任意大小的. (1)用旋转的观点来定义角,就可以把角的概念推广至任意角,包括 任意大小的正角、负角以及零角. (2)对角概念的理解关键是抓住“旋转”二字:①要明确旋转方向; ②要明确旋转的大小;③要明确射线未作任何旋转时的位置. 提醒 从现在开始,对角的认识不能仅仅局限于 0° ~360° 的范围.
课前探究学习
课堂讲练互动
活页规范训练
3.终边相同的角 所有与角 α 终边相同的角,连同角 α 在内,
360°,k∈Z} 可构成一个集合 S= {β|β=α+k·
即任一与角 α 终边相同的角,都可以表示成角
,
α 与整数个周角的和.如图所示,角 α1、α2、α3 为终边相同的 角. 想一想:终边相同的角是相等的角吗? 提示 不一定,相等的角的终边一定相同;终边相同的角不一 定相等.终边相同的角有无数个,它们相差 360° 的整数倍.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在0 - 360 范围内,各象限角的范 围如下:
象限 一
0 0
0
0
二0 0三0 0 Nhomakorabea四
0 0
0
180 180 , 270 270 , 360 0 , 90 90 ,
0
在0 - 360 范围内,各轴线角的范 围如下:
终边
00
X轴正半轴
9 00
y轴正半轴
1800
X轴负半轴
2700
y轴负半轴
判断正误
(1)179 角是第二象限角。 (2) 90 是第三象限角。
0
0
(3)小于90 的角是锐角。 (4)钝角一定是第二象限角 。
0
(5)第一象限角一定为正角 。 (6)终边在x轴下方的角是第三或第 四象限角。
4.终边相同的角
思考1:30°,390°,-330°是第几象限的角? 这些角有什么内在联系? 思考2:与30角的终边相同的角怎么表示? {β| β=30º +k· 360º , k∈Z} 思考3:与任意角的终边相同的角怎么表示?
339º+ 1×360º =699º ;
339º-1×360º =-21º . (3) S={β| β= 3º14’ +k· 360º, k∈Z } S中在-360º ~720º 间的角是 3º14’ + 0×360º = 3º14’; 3º14’ + 1×360º = 363º14’; 3º14’ -1×360º =-356º46’.
思考:终边相同的角和等角有什么关系?
即:[00,3600)
例1. 在0º ~360º 范围内,找出与下列各角终边 相同的角,并判断它是哪个象限的角.
(1) -120º ;(2) 640º ;(3) -950º 12′.
解:⑴∵-120º =240º +(-1)×360º , ∴ -120º 的角与 240º 的角终边相同, 它是第三象限角. ⑵ ∵640º =280º +1 × 360º , ∴ 640º 的角与 280º 的角终边相同, 它是第四象限角.
1.问题:角有几种分类方法? 正角
旋转方向
负角 零角
任意角 第一象限角 坐标系 象限角 轴线角
第二象限角
第三象限角 第四象限角
2.终边相同的角 {β| β=α+k·360º , k∈Z}
作业:
课本:P5 1.1A组:1,3.
思考: 终边在y=x上的角的集合S怎么表示? 终边在坐标轴上的角的集合怎么表示?
y x
(2)210
y
0
x o
0
o
(3) 240
y
(4) 450
y x o
0
x o 240°
-450°
3.象限角
(1)角的顶点重合于坐标原点 (2)角的始边重合于x轴的非负半轴
y
o
x
角的终边落在第几象限,我们就说这个角是第几象限 的角。(角的终边落在坐标轴上,则此角不属于任何 一个象限此时这种角称为:轴线角)
问题:生活中的角是不是都在 0 ,360 范围内 呢?
0
0
生活中的例子: (1)钟表慢了5分钟,想将它校准,分针 应该旋转多少度? (2)钟表快了2.5小时,想将它校准,分 针应该旋转多少度?
1.任意角的定义
按逆时针方向旋转所形成的角叫做正角, 按顺时针方向旋转所形成的角叫做负角, 当一条射线没有作任何旋转时,这个角叫做零角 即零度角(0º ).
结论: 所有与终边相同的角连同在内可以构 成一个集合:{β| β=α+k· 360º , k∈Z} 即:任何一个与角终边相同的角,都可 以表示成角与整数个周角的和。
注意以下三点: ① k ∈ Z, K > 0,表示逆时针旋转,K < 0,表示顺时针旋转. ② 是任意角;
③ k· 360º 与之间是“+”号,如k· 360º -30º ,应看 成(-30º )+ k· 360º ;
课外活动:
举出一些日常生活中的“大于3600的角和负 角”的例子,与同桌交流,并熟练掌握它们 的表示。
角的记法:角α或可以简记成∠α,或简记为: α. α=210°,β=-150°,γ=-660°
思考下面的角度如何表示?
(1)你的手表慢了5分钟,想将它校准,分针应该 旋转多少度?
-30°
(2)假如你的手表快了2.5小时,想将它校准,分针应 该旋转多少度?
900°
2.任意角的作图 0 (1) 60
1.1.1 任意角
安阳市第二中学
张向敬
1、角的概念
初中是如何定义角的?
①从一个点出发引出的两条射线构成的
几何图形。
②角也可以看成是由一条射线绕着它的
端点旋转而成的。B
终边 O
B α O 顶点
始边 A A
初中学过的角:
1 钝角 4
2
直角 5
3 锐角
平角
·
·
周角
初中学过的角的范围是:0º 至 360º 。
S中在-360º ~720º 间的角是
60º +0×360º =60º ; 60º -1×360º =-300º ;
60º +1×360º =420º .
方法总结:先在0º ~360º 之间找到与之终边相同的 角,再让k取特殊值。
(2) S={β| β= 339º+k· 360º ,k∈Z }
S中在-360º ~720º 间的角是 339º + 0×360º=339º ;
⑶ ∵-950º12’=129º48’ +(-3)×360º , ∴- 950º12’的角与 129º48’的角终边相同,它是第二象限角.
例2. 写出与下列各角终边相同的角的集合S,
并把S中在-360º ~720º 间的角写出来:
(1) 60º ;(2) -21º ;(3) 363º 14′.
解:(1) S={β| β=60º +k· 360º,k∈Z },