材料力学第五版(刘鸿文_主编)课后习题答案 (1)
刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-能量方法(圣才出品)
=
EA( l )2 2l
线弹性范围内,纯剪切的应变能密度为:v ε
=
1 2
τγ
=
τ2 2G
杆件总的应变能为:Vε
=
v dV
Vε
(3)扭转
在扭矩 T 作用下,杆件总的应变能为:
(4)弯曲
线弹性范围内,全梁的应变能为:
2.普遍表达式
V ε
=
1Fδ 2
式中, δ 为 F 作用点沿 F 方向因 F 作用而引起的位移。
图 13-7 解:设左、右两支座为 A、B,则由静力平衡条件得 A、B 的支反力分别为:
合力为: 因此,轴的应变能:
,方向均向上。
13.5 (1)在外伸梁的自由端作用力偶矩 M e ,试用互等定理,并借助于教材表 6.1,求 跨度中点 C 的挠度△c。
(2)用互等定理求解题 13.6、13.7 和 13.8。
后引起的 C 点挠度的叠加。
查教材表
6.1
可知在
F
作用下,悬臂梁
C
点的挠度 1
=
Fa3 3EI
故
。
(2)用互等定理求题 13.7
①将均布载荷作用力看做是第一组力,其在 B 点产生的挠度为 ,在 B 点的角位移为
θB。
a.求 B 截面挠度
取第二组力,在 B 点作用一竖直向下的单位力 F,在 F 力作用下,梁的挠曲线方程为:
根据互等定理有:
8 / 52
圣才电子书
2 / 52
圣才电子书
2.位移的互等定理
十万种考研考证电子书、题库视频学习平台
F1 作用点沿 F1 方向因作用 F3 而引起的位移,等于 F3 作用点沿 F3 方向因作用 F1 而引起
材料力学第五版课后习题答案
材料力学第五版课后习题答案1. 弹性力学基本概念。
1.1 什么是应力?什么是应变?应力是单位面积上的内力,是描述物体内部受力情况的物理量;而应变则是物体单位长度的形变量,描述了物体在受力作用下的形变情况。
1.2 什么是胡克定律?胡克定律是描述弹性体在弹性变形范围内应力与应变成正比的关系,即应力与应变成线性关系。
1.3 什么是弹性模量?弹性模量是描述物体在受力作用下的变形程度的物理量,通常用E表示,单位是帕斯卡(Pa)。
2. 线弹性力学。
2.1 什么是轴向力?什么是轴向变形?轴向力是指作用在物体轴向的力,轴向变形是指物体在受到轴向力作用下的形变情况。
2.2 什么是泊松比?泊松比是描述物体在轴向受力作用下,横向变形与轴向变形之间的比值,通常用ν表示。
2.3 什么是弯曲应力?什么是弯曲变形?弯曲应力是指物体在受到弯矩作用下的内部应力情况,弯曲变形是指物体在受到弯矩作用下的形变情况。
3. 弹性力学的能量法。
3.1 什么是弹性势能?弹性势能是指物体在受力变形后,能够恢复原状时所具有的能量,通常用U表示。
3.2 什么是弹性线性势能?弹性线性势能是指物体在弹性变形范围内,弹性势能与形变量成线性关系的势能。
3.3 什么是弹性势能密度?弹性势能密度是指单位体积或单位质量物体所具有的弹性势能,通常用u表示。
4. 弹塑性力学。
4.1 什么是屈服点?屈服点是指物体在受力作用下,开始出现塑性变形的临界点。
4.2 什么是屈服应力?屈服应力是指物体在受力作用下开始发生塑性变形时所具有的应力大小。
4.3 什么是塑性势能?塑性势能是指物体在受到超过屈服应力的作用下,发生塑性变形所具有的能量。
5. 薄壁压力容器。
5.1 什么是薄壁压力容器?薄壁压力容器是指壁厚相对于容器直径而言很小的压力容器。
5.2 薄壁压力容器的内、外压力对容器的影响有哪些?内压力会使容器产生膨胀变形,而外压力会使容器产生收缩变形。
5.3 薄壁压力容器的应力分布情况是怎样的?薄壁压力容器内外表面的应力分布情况是不均匀的,通常集中在壁厚的两侧。
刘鸿文《材料力学》(第5版)(上册)-课后习题-第1~3章【圣才出品】
第1章 绪 论1.1 对图1-1所示钻床,试求n-n 截面上的内力。
图1-1解:应用截面法,沿n-n 截面将钻床分成两部分,取n-n 截面右半部分进行受力分析,如图1-2所示。
由平衡条件可得:0,0y S F F F =-=∑;0,0C M Fb M =-=∑则n-n 截面内力为:S F F =,M Fb =。
图1-21.2 试求图1-3所示结构m-m 和n-n 两截面上的内力,并指出AB 和BC 两杆的变形属于何类基本变形。
图1-3解:(1)应用截面法,取n-n 截面以下部分进行受力分析,如图1-4(a )所示。
由平衡条件可得:0,3320A N M F =⨯-⨯=∑则截面内为:2N F kN =BC 杆属于拉伸变形。
(2)应用截面法,取m-m 截面右侧部分及n-n 截面以下部分进行受力分析,如图1-4(b )所示。
由平衡条件可得:0,3310O N M F M =⨯-⨯-=∑;0,30y S N F F F =+-=∑则截面内为:1S F kN =,1M kN m =⋅AB 杆属于弯曲变形。
图1-41.3 在图1-5所示简易吊车的横梁上,F 力可以左右移动。
试求截面1-1和2-2上的内力及其最大值。
图1-5解:(1)应用截面法,取1-1截面以下部分进行受力分析,如图1-6(a )所示。
由平衡条件可得:10,sin 0A N M F l Fx α=-=∑解得:1sin N Fx F l α= 故当x l =时,1-1截面内力有最大值:1max sin N F F α=。
(2)应用截面法,取1-1截面以下,2-2截面右侧部分进行受力分析,如图1-6(b )所示。
由平衡条件可得:210,cos 0x N N F F F α=-=∑210,sin 0y S N F F F F α=--=∑()120,sin 0O N M F l x M α=--=∑解得2-2截面内力:2cot N Fx F l α=,21S x F F l ⎛⎫=- ⎪⎝⎭,()2x l x M F l -= 综上可知,当x l =时,2N F 有最大值,且2max cot N F F α=;当0x =时,2S F 有最大值,且2max S F F =;当2l x =时,弯矩2M 有最大值,且2max 4Fl M =。
刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-平面曲杆(圣才出品)
在 y 轴两侧对称位置,各取一微面积 dA ,两部分 y 坐标相同,z 坐标数值相等但符号
相反,因而两个微面积与 y、z 和 1 的乘积数值相等但符号相反,积分为 0。故微面积与坐
标 y、z 以及 1
的乘积都两两抵消,则有 A
yzdA
=
0 ,命题得证。
图 15-3
15.5 横截面为梯形的吊钩,起重量为 F=100 kN。吊钩的尺寸是:R1 =20 cm,R 2 =8 cm, b1 =3 cm, b2 =8 cm。试计算危险截面 mm 上的最大拉应力。
15.3 作用于开口圆环外周上的均布压力 p=4 MPa,圆环的尺寸为 R1 =4 cm,R 2 =1 cm,b=0.5 cm。试求最大正应力。
解:根据题意,矩形截面的
轴线曲率半径:
则
,
中性层曲率半径:
故截面对中性轴的静矩:
图 15-2 ,为大曲率杆。
在均布压力作用下的合力:
作用在横截面上的弯矩: 最大拉应力发生在离曲率中心最近的内侧边缘上,因此:
15.7 T 形截面的曲杆如图 15-6 所示。设 F=450 N,l=70 cm,R=20 cm。试绘出 截面 m-m 上的应力分布图。
图 15-6 解:截面形心到截面内侧边缘的距离:
则 T 截面可看作是两个矩形组成的截面,其上纤维的曲率半径分别为:
轴线曲率半径:
则
6 / 19
圣才电子书
十万种考研考证电子书、题库视频学习平台
图 15-4
解:根据题意,梯形截面的
轴
线
曲
率
半
径
:
则
,
中性层曲率半径:
,为大曲率杆。
故截面对中性轴的静矩为: m-m 截面离曲率中心最近的内侧边缘拉应力最大,值为:
材料力学第五版(刘鸿文主编)课后答案解析
幻灯片296
幻灯片297
幻灯片298
幻灯片299
幻灯片300
幻灯片301
幻灯片302
幻灯片303
幻灯片304
幻灯片305
幻灯片306
幻灯片307
幻灯片308
幻灯片309
幻灯片310
幻灯片311
幻灯片312
幻灯片313
幻灯片314
幻灯片315
幻灯片316
幻灯片317
幻灯片318
幻灯片319
幻灯片93
幻灯片94
幻灯片95
幻灯片96
幻灯片97
幻灯片98
幻灯片99
幻灯片100
幻灯片101
幻灯片102
幻灯片103
幻灯片104
幻灯片105
幻灯片106
幻灯片107
幻灯片108
幻灯片109
幻灯片110
幻灯片111
幻灯片112
幻灯片113
幻灯片114
幻灯片115
幻灯片116
幻灯片117
幻灯片118
幻灯片119
幻灯片220
幻灯片221
幻灯片222
幻灯片223
幻灯片224
幻灯片225
幻灯片226
幻灯片227
幻灯片228
幻灯片229
幻灯片230
幻灯片231
幻灯片232
幻灯片233
幻灯片234
幻灯片235
幻灯片236
幻灯片237
幻灯片238
幻灯片239
幻灯片240
幻灯片241
幻灯片242
幻灯片243
幻灯片244
幻灯片145
幻灯片146
幻灯片147
刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-压杆稳定(圣才出品)
支 承
两端铰接 情 况 失 稳 时 挠 曲 线 的 形 状 欧 拉 公 式
表 9-2
一端固定一段 铰接
两端固定
一 端 固 定 一 端 两端固定但可沿
自由
横截面相对移动
3 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)柔度或长细比 临界应力可表示为
4 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台
式中,λ 为柔度或长细比,
,集中反应了压杆的长度、约束条件、截面尺寸
和形状等因素对临界应力 σcr 的影响。λ 越大,相应的 σcr 越小,压杆越容易失稳。 注意:若压杆在不同平面内失稳时的支承约束条件不同,应分别计算在各平面内失稳时
杆端在各个方向的约束情况相同(如球形铰等),则 I 应取最小的形心主惯性矩;杆端
在各个方向的约束情况不同(如柱形铰),应分别计算杆在不同方向失稳时的临界压力,I 为
其相应中性轴的惯性矩。
三、欧拉公式的适用范围及临界应力总图 1.相关概念 (1)临界应力:与临界压力 Fcr 对应的应力,用 σcr 表示,即
2.提高压杆稳定性的措施
影响压杆稳定的因素包括压杆的截面形状、长度和约束条件、材料的性质等。因而,提
6 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台
高压杆稳定性的措施主要包括以下三个方面: (1)选择合理的截面形状 截面的惯性矩 I 越大,或惯性半径 i 越大,稳定性越好。 ①在截面积相等的情况下,尽可能将材料放在离截面形心较远处,使 I 或 i 较大,如图
应力
达到限值
小于限值
材料力学第五版刘鸿文主编课后问题详解
幻灯片171
幻灯片172
幻灯片173
幻灯片174
幻灯片175
幻灯片176
幻灯片177
幻灯片178
幻灯片179
幻灯片180
幻灯片181
幻灯片182
幻灯片183
幻灯片184
幻灯片185
幻灯片186
幻灯片187
幻灯片188
幻灯片189
幻灯片190
幻灯片191
幻灯片192
幻灯片193
幻灯片194
幻灯片220
幻灯片221
幻灯片222
幻灯片223
幻灯片224
幻灯片225
幻灯片226
幻灯片227
幻灯片228
幻灯片229
幻灯片230
幻灯片231
幻灯片232
幻灯片233
幻灯片234
幻灯片235
幻灯片236
幻灯片237
幻灯片238
幻灯片239
幻灯片240
幻灯片241
幻灯片242
幻灯片243
幻灯片244
幻灯片63
幻灯片64
幻灯片65
幻灯片66
幻灯片67
幻灯片68
幻灯片69
幻灯片70
幻灯片71
幻灯片72
幻灯片73
幻灯片74
幻灯片75
幻灯片76
幻灯片77
幻灯片78
幻灯片79
幻灯片80
幻灯片81
幻灯片82
幻灯片83
幻灯片84
幻灯片85
幻灯片86
幻灯片87
幻灯片88
幻灯片89
幻灯片90
幻灯片91
幻灯片92
幻灯片33
幻灯片34
刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-第1~3章【圣才出品】
4.弯曲 叐力特征:叐垂直于杆件轴线的横向力,或由作用于包含杆轴的纵向平面内的一对大小 相等、方向相反的力偶; 发形特征:杆件轴线由直线发为曲线。
1.2 课后习题详解
1.1 对图 1-1 所示钻床,试求 n-n 截面上的内力。
4 / 137
圣才电子书
十万种考研考证电子书、题库视频学习平台
1.3 在图 1-5 所示简易吊车的横梁上,F 力可以左右秱劢。试求截面 1-1 和 2-2 上的 内力及其最大值。
图 1-5
解:(1)应用截面法,叏 1-1 截面以下部分迚行叐力分枂,如图 1-6(a)所示。
由平衡条件可得: M A 0, FN1l sin Fx 0
解得:
FN1
l
Fx sin
图 1-1
解:应用截面法,沿 n-n 截面将钻床分成两部分,叏 n-n 截面右半部分迚行叐力分枂,
如图 1-2 所示。
由平衡条件可得: Fy 0, F FS 0 ; MC 0, Fb M 0
则 n-n 截面内力为: FS F , M Fb 。
图 1-2
1.2 试求图 1-3 所示结极 m-m 和 n-n 两截面上的内力,并挃出 AB 和 BC 两杆的发 形属于何类基本发形。
5 / 137
圣才电子书
(b)所示。
十万种考研考证电子书、题库视频学习平台
由平衡条件可得:
MO 0, FN 3 31 M 0 ; Fy 0, FS FN 3 0
则截面内为: FS 1kN , M 1kN m AB 杆属于弯曲发形。
图 1-4
= lim s x0 x
微体相邻棱边所夹直角改发量,称为切应发,用 表示,单位为 rad,若 用表示发形
刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-应力和应变分析强度理论(圣才出品)
OA1
= OC + CA1
= x
+ y 2
+
(
x
− y )2 2
+
2 xy
= max = 1
OB1
= OC − CB1
=
x
+ 2
y
−
(
x
− 2
y
)2
+
2 xy
= min
=2
b.确定主平面方位的方法
如图 7-3(b)(c)所示,将半径 CD 旋转 20 到 CA1 处,单元体 x 轴沿 20 旋转方向
图 7-2 应力圆 (2)应力圆的应用 ①应力圆与单元体应力间的关系 点面之间的对应关系:单元体某一面上的应力,必对应于应力圆上某一点的坐标; 夹角关系:圆周上任意两点所引半径的夹角等于单元体上对应两截面夹角的两倍,且两 者的转向一致。 ②求单元体上任一截面上的应力 从应力圆的半径 CD 按方位角 α 的转向转动 2α 得到半径 CE,圆周上 E 点的坐标就是
任意两个互相垂直的截面上的正应力之和为常数,即 + +90 = x + y 。
③最大切应力和最小切应力 切应力的大小
max min
=
x
− y 2
2
+ 2xy
=
1 2
(max
− min )
切应力极值所在截面方位角
tan
21
=
x − y 2 xy
最大和最小切应力所在平面与主平面的夹角为 45°,即1 = 0 + 45。
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 7 章 应力和应变分析强度理论
刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-动载荷(圣才出品)
4 / 30
圣才电子书
十万种考研考证电子书、题库视频学习平台
图 10-6
解:物体突然停止时,产生的向心加速度为:
由此产生的与加速度方向相反的惯性力为:
吊索内最大应力增量为:
1
=
Fa A
=
1275.5 5104
= 2.55MPa
梁内最大弯矩的增加量为:
查型钢表得 14 号工字钢W = 102cm3 ,则梁内最大应力增加量为:
Kd =1+
1+ 2h Δst
其中,对于突然加载的情况,相当于物体自由下落高度 h=0 的情况,此时动荷因数
Kd = 2 ,即杆件的应力和变形均为静载时的 2 倍。 (2)水平冲击
图 10-2 如图 10-2 所示,设冲击物与杆件接触时的速度为 v,此时求解动载荷问题时的动荷因
2 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台
σ (2)按静载荷求解应力 st 、变形 Δst 等;
(3)将所得结果乘以动荷系数 Kd 可得动载荷作用下的动应力和变形分别为:
σd = Kdσst , Δd = KdΔst 。
二、杆件受冲击时的应力和变形
1 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台
故由圆孔引起的最大正应力:
。
10.6 在直径为 100 mm 的轴上装有转动惯量 I=0.5 kN•m•s2 的飞轮,轴的转速为 300 r/min。制动器开始作用后,在 20 转内将飞轮刹停。试求轴内最大切应力。设在制动 器作用前,轴已与驱动装置脱开,且轴承内的摩擦力可以不计。
图 10-9
解:刹车前,飞轮的角速度为: 0
。