(部编本人教版)最新高考数学二轮复习 专题五 函数与导数 第2讲 函数与方程学案【经典练习】

合集下载

最新人教版高二数学选择性必修第二册第五章 5.2.2导数的四则运算法则5.2.3简单复合函数的导数

最新人教版高二数学选择性必修第二册第五章  5.2.2导数的四则运算法则5.2.3简单复合函数的导数

所以f′(2)=a+b4 =47 .②
4a-b=1, 由①②得
4a+b=7,
a=1, 解得
b=3.
故f(x)=x-x3
.
(2)设P(x0,y0)为曲线上任一点,由f′(x)=1+
3 x2
知,曲线在点P(x0,y0)处的切线
方程为y-y0=1+x320
(x-x0),
即y-x0-x30
=1+x320
【拓展延伸】导数运算法则的推广 (1)导数的和(差)运算法则对三个或三个以上的函数求导数仍然成立.两个函数和 (差)的导数运算法则可以推广到有限个函数的情况,即[f1(x)±f2(x)±f3(x)±…±fn(x)]′ =f1′(x)±f2′(x)±f3′(x)±…±fn′(x). (2)积的导数公式的拓展,若 y=f1(x)f2(x)…fn(x),则有 y′=f1′(x)f2(x)…fn(x)+ f1(x)f2′(x)…fn(x)+…+f1(x)f2(x)…fn′(x).
y′x=y′u·u′x=eu·(-ax2+bx)′ =eu·(-2ax+b)=(-2ax+b)·e-ax2+bx .
(2)①f(x)+f′(x)=cos ( 3 x+φ)-sin ( 3 x+φ)( 3 x+φ)′
=cos (
3 x+φ)-
3 sin (
3
x+φ)=2sin
3x+φ+56π .
因为 0<φ<π,f(x)+f′(x)是奇函数,所以 φ=π6 .
′=
(1-x)2
cos x-sin x+x sin x

(1-x)2
.
【补偿训练】
x2+a2 当函数y= x (a>0)在x=x0处的导数为0时,那么x0等于( )
A.a

人教版高中总复习一轮数学精品课件 第2章 函数 2.8 函数与方程

人教版高中总复习一轮数学精品课件 第2章 函数 2.8 函数与方程
内必有零点,若没有,则不一定有零点
通过画函数的图象,观察图象与x轴在给定区间上是否有公共
点来判断
对点训练1
(1)函数f(x)=πx+log2x的零点所在的区间为( A )
1 1
A. 4 , 2
1 1
B. 8 , 4
1
C. 0, 8
1
D. 2 ,1
因为函数f(x)在定义域上是增函数,所以f(x)至多存在一个零点.
数f(x)的零点个数;或将函数f(x)拆分成函数h(x)和g(x)的差,根据
f(x)=0⇔h(x)=g(x),则函数f(x)的零点个数就是函数y=h(x)和
y=g(x)的图象的公共点个数
若能确定函数的单调性,则其零点个数不难得到;若所考查的函
数是周期函数,则只需求出在一个周期内的零点个数,根据周期
性则可得函数的零点个数
e
解题心得判断函数y=f(x)在某个区间上是否存在零点的方法
解方程法
利用函数
零点存在
定理
图象法
当对应方程易解时,可通过解方程,观察方程是否有根落在给
定区间上
首先看函数y=f(x)在区间[a,b]上的图象是否是一条连续不断
的曲线,然后看是否有f(a)f(b)<0.若有,则函数y=f(x)在区间(a,b)
点的横坐标.
1
2.并不是所有的函数都有零点,如函数 y= 就没有零点.
3.当函数y=f(x)的图象在区间[a,b]上是连续的曲线,但是不满足f(a)·
f(b)<0
时,函数y=f(x)在区间(a,b)内可能存在零点,也可能不存在零点.
2.二次函数y=ax2+bx+c(a>0)的图象与函数零点的关系

年高考数学二轮复习 专题二 函数与导数 第2讲 函数的应用课件 理.pptx

年高考数学二轮复习 专题二 函数与导数 第2讲 函数的应用课件 理.pptx
fx -loga(x+2)有3个零点,则实数a的取值范围是_(_3_,5_)__. 思维升华 方程f(x)=g(x)根的个数即为函数y=f(x)和y=g(x)图象交点的 个数.
思维升华 解析 11 答案
(2)已知实数f(x)=ex,x≥0, 若关于x的方程f 2(x)+f(x)+t=0有三个 lg-x,x<0,
-k=0有唯一一个实数根,则实数k的取值范围是_______________.
解析 17 答案
(2)(2017·全国Ⅲ)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零点,则a 等于
A.-12
1 B.3
√C.12
D.1
解析 19 答案
热点三 函数的实际应用问题 解决函数模型的实际应用问题,首先考虑题目考查的函数模型,并要注 意定义域.其解题步骤是:(1)阅读理解,审清题意:分析出已知什么, 求什么,从中提炼出相应的数学问题.(2)数学建模:弄清题目中的已知 条件和数量关系,建立函数关系式.(3)解函数模型:利用数学方法得出 函数模型的数学结果.(4)实际问题作答:将数学问题的结果转化成实际 问题作出解答.
解析 8 答案
(2)(2017届甘肃高台县一中检测)已知函数f(x)满足:①定义域为R;② ∀x∈R,都有f(x+2)=f(x);③当x∈[-1,1]时,f(x)=-|x|+1,则12 方程f(x) = log2|x|在区间[-3,5]内解的个数是
√A.5
B.6
C.7
D.8
解析 画出函数图象如图所示,由图可知,共有5个解.
间(π,2π)内没有零点,则ω的取值范围是______________.
解析 9 答案
热点二 函数的零点与参数的范围 解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函 数方程思想或数形结合思想,构建关于参数的方程或不等式求解.

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。

高考数学二轮复习7大专题汇总

高考数学二轮复习7大专题汇总

高考数学二轮复习7 大专题汇总专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:侧重掌握函数的单一性,奇偶性,周期性,对称性。

这些性质往常会综合起来一同观察,而且有时会观察详细函数的这些性质,有时会观察抽象函数的这些性质。

一元二次函数:一元二次函数是贯串中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了认识,高中阶段更多的是将它与导数进行连接,依据抛物线的张口方向,与x 轴的交点地点,进而议论与定义域在x 轴上的摆放次序,这样能够判断导数的正负,最后达到求出单一区间的目的,求出极值及最值。

不等式:这一类问题经常出此刻恒成立,或存在性问题中,其本质是求函数的最值。

自然对于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的联合问题,掌握几种不等式的放缩技巧是特别必需的。

专题二:数列。

以等差等比数列为载体,观察等差等比数列的通项公式,乞降公式,通项公式和乞降公式的关系,求通项公式的几种常用方法,求前 n 项和的几种常用方法,这些知识点需要掌握。

专题三:三角函数,平面向量,解三角形。

三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有波及,有时观察三角函数的公式之间的相互转变,从而求单一区间或值域 ; 有时观察三角函数与解三角形,向量的综合性问题,自然正弦,余弦定理是很好的工具。

向量能够很好得实现数与形的转变,是一个很重要的知识连接点,它还能够和数学的一大难点分析几何整合。

专题四:立体几何。

立体几何中,三视图是每年必考点,主要出此刻选择,填空题中。

大题中的立体几何主要观察成立空间直角坐标系,经过向量这一手段求空间距离,线面角,二面角等。

此外,需要掌握棱锥,棱柱的性质,在棱锥中,侧重掌握三棱锥,四棱锥,棱柱中,应当掌握三棱柱,长方体。

空间直线与平面的地点关系应以证明垂直为要点,自然常观察的方法为间接证明。

专题五:分析几何。

高考数学大二轮复习专题二函数与导数第2讲基本初等函数函数与方程课件理

高考数学大二轮复习专题二函数与导数第2讲基本初等函数函数与方程课件理

条件.
◎通关题组
1 1 1.(2018· 天津)已知 a=log2e,b=ln 2,c=log , 23 则 a,b,c 的大小关系为 A.a>b>c C.c>b>a B.b>a>c D.c>a>b
解析
1 因为 a=log2e>1,b=ln 2∈(0,1),c=log1 = 3
2
log23>log2e>1,所以 c>a>b,故选 D.
=8(升),则C错;
对于选项D:当行驶速度小于80 km/h时,在相同条
件下,丙车的燃油效率高于乙车,则在该市用丙车比
用乙车更省油,则D对.综上,选D.
答案
D
4 . (2018·浙 江 ) 已 知 λ∈R , 函 数 f(x) =
x-4,x≥λ , 2 x -4x+3,x<λ
.
当 λ=2 时,不等式 f(x)<0 的解集是
命题点 1
确定函数零点个数或其存在区间
例1
1 (1)(2018· 聊城三模)函数 f(x)=lg x- 的零点所 x
在的区间是 A.(0,1) C.(2,3) B.(1,2) D.(3,10)
(2)函数 f(x)=2x|log0.5x|-1 的零点个数为 A.1 B.2 C.3 D.4
1 1 【解析】 (1)∵f(2)=lg 2- <0, f(3)=lg 3- >0, 2 3 ∴f(2)f(3)<0,故 f(x)的零点在区间(2,3)内. (2)函数 f(x)=2x|log0.5x|-1 的零点即 2x|log0.5x|-1 =0
(2)D
热点三
函数的实际应用(深研提能)

高考数学新课标全国二轮复习课件2.函数与导数2

高考数学新课标全国二轮复习课件2.函数与导数2
第二讲
导数
导数及其应用 (1)导数概念及其几何意义
①了解导数概念的实际背景. ②理解导数的几何意义.
(2)导数的运算
①能根据导数定义求函数y=C(C为常数),
y=x,y=x2,y=x3,y=������ ,y= ������的导数.
②能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单
������ ������
过点 P(2,-5),且该曲线在点 P 处的切线与直线 7x+2y+3=0 平行,则 a+b 的值是 . 解析:由曲线 y=ax2+������ 过点 P(2,-5), 得 4a+2 =-5. 又 y'=2ax-������ 2 ,
������ ������ ������

调区间(其中多项式函数一般不超过三次).
②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、
极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值
(其中多项式函数一般不超过三次). (4)生活中的优化问题 会利用导数解决某些实际问题.
1.导数的几何意义 (1)函数y=f(x)在x=x0处的导数f'(x0)等于曲线y=f(x)在点(x0,f(x0))处的切线的斜率, 即k= f'(x0). (2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)= f'(x0)(x-x0). (3)导数的物理意义:s'(t)=v(t),v'(t)=a(t).
在点
π 2
,2 处的切线与直线 x+ay+1=0 垂直,则
(2-cos ������ )'sin ������ -(2-cos ������ )(sin ������ )' 1-2cos ������ si n 2 ������ π 2

高考总复习二轮数学精品课件 专题1 函数与导数 第2讲 基本初等函数、函数的应用

高考总复习二轮数学精品课件 专题1 函数与导数 第2讲 基本初等函数、函数的应用

3.函数的零点问题
(1)函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与
函数y=g(x)的图象交点的横坐标.
(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③
数形结合,利用两个函数图象的交点求解.
温馨提示函数的零点是一个实数,而不是几何图形.
质与相关函数的性质之间的关系进行判断.
对点练2
9 0.1
(1)(2023·广东湛江一模)已知 a=(11) ,b=log910,c=lg
A.b>c>a
B.c>b>a
C.b>a>c
D.c>a>b
11,则( A )
解析 根据指数函数和对数函数的性质,
可得
9 0.1
9 0
a=(11) < 11 =1,b=log910>log99=1,c=lg
1 1
B. - 2 , 2
1
C. 0, 2
1
1
D. - 2 ,0 ∪ 0, 2
(3)换底公式:logaN= log (a,b>0,且 a,b≠1,N>0).

(4)对数值符号规律:已知a>0,且a≠1,b>0,则logab>0⇔(a-1)(b-1)>0,
logab<0⇔(a-1)(b-1)<0.
1
温馨提示对数的倒数法则:logab= log

(a,b>0,且a,b≠1).
11>lg 10=1,
又由 2=lg 100>lg 99=lg 9+lg 11>2 lg9 × lg11,所以 1>lg

高考数学二轮复习 专题2 函数与导数 教案 文

高考数学二轮复习 专题2 函数与导数 教案 文

高考数学二轮复习 专题2 函数与导数 教案 文专题二 函数与导数【重点知识回顾】1.函数是高考数学的重点内容之一,函数的观点和思想方法是高中数学的一条重要的主线,选择、填空、解答三种题型每年都有,函数题的身影频现,而且常考常新.以基本函数为背景的综合题和应用题是近几年的高考命题的新趋势.函数的图象也是高考命题的热点之一.近几年来考查导数的综合题基本已经定位到压轴题的位置了.2.对于函数部分考查的重点为:函数的定义域、值域、单调性、奇偶性、周期性对称性和函数的图象;指数函数、对数函数的概念、图象和性质;应用函数知识解决一些实际问题;导数的基本公式,复合函数的求导法则;可导函数的单调性与其导数的关系,求一些实际问题(一般指单峰函数)的最大值和最小值.【典型例题】 1.函数的性质与图象函数的性质是高考考查的重点内容.根据函数单调性和奇偶性的定义,能判断函数的奇偶性,以及函数在某一区间的单调性,从数形结合的角度认识函数的单调性和奇偶性,掌握求函数最大值和最小值的常用方法.函数的图象是函数性质的直观载体,能够利用函数的图象归纳函数的性质.对于抽象函数一类,也要尽量画出函数的大致图象,利用数形结合讨论函数的性质.例1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用S1、S2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )答案:BA B C D解析:在选项B 中,乌龟到达终点时,兔子在同一时间的路程比乌龟短.点评:函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力,在复习时应引起重视.例2.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=答案:-8解析:因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<,由对称性知1212x x +=-,344x x +=.所以12341248x x x x +++=-+=-.点评:本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.2.函数与解方程、不等式的综合问题函数与方程、不等式、数列是密切相关的几个部分,通过建立函数模型来解决有关他们的综合问题是高考的考查方向之一,解决该类问题要善于运用转化的思想方法,将问题进行不断转化,构建模型来解决问题.例2.x 为何值时,不等式()23log log 2-<x x m m 成立.解析:当1>m 时,212132023023022<<⇔⎪⎪⎩⎪⎪⎨⎧<<>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x . 当10<<m 时,21322132023023022><<⇔⎪⎪⎩⎪⎪⎨⎧><>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x x x 或或. 故1>m 时,21<<x .10<<m 时,2132><<x x 或为所求.点评:该题考查了对数不等式的解法,其基本的解题思路为将对数不等式转化为普通不等式,需要注意转化之后x 的范围发生了变化,因此最后要检验,或者转化时将限制条件联立.3.函数的实际应用函数的实际运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.掌握有关函数知识是运用函数思想的前提,考生应具备用初等数学思想方法研究函数的能力,运用函数思想解决有关数学问题的意识是运用函数思想的关键.例3.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的 平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=建筑总面积购地总费用)解析:设楼房每平方米的平均综合费为y 元,依题意得:*21601000010800(56048)56048(10,)2000y x x x x N x x⨯=++=++≥∈.则21080048y x '=-,令0y '=,即210800480x -=,解得15x =. 当15x >时,0y '>;当015x <<时,0y '<, 因此,当15x =时,y 取得最小值,min 2000y =元.答:为了使楼房每平方米的平均综合费最少,该楼房应建为15层.点评:这是一题应用题,利用函数与导数的知识来解决问题.利用导数,求函数的单调性、求函数值域或最值是一种常用的方法.4.导数与单调性、极(最)值问题.导数作为工具来研究三次函数、指数函数、对数函数的单调性,极值、最值时,具有其独特的优越性,要理解导数的几何意义,熟练导数的运算公式,善于借助导数解决有关的问题.例4.已知函数321()33f x ax bx x =+++,其中0a ≠. (1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a ,且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围. 解析: (1)由已知得2'()21f x ax bx =++,令0)('=x f ,得2210ax bx ++=,)(x f 要取得极值,方程2210ax bx ++=必须有解,所以△2440b a =->,即2b a >, 此时方程2210ax bx ++=的根为:122b b x a a ---==,222b b x a a--+==,所以12'()()()f x a x x x x =-- 当0>a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 当0<a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 综上,当b a ,满足2b a >时,)(x f 取得极值.(2)要使)(x f 在区间(0,1]上单调递增,需使2'()210f x ax bx =++≥在(0,1]上恒成立.即1,(0,1]22ax b x x ≥--∈恒成立,所以max 1()22ax b x≥--, 设1()22ax g x x =--,2221()1'()222a x a a g x x x -=-+=, 令'()0g x =得x =或x =舍去),当1>a 时,101a <<,当x ∈时'()0g x >,1()22ax g x x =--单调增函数;当x ∈时'()0g x<,1()22ax g x x =--单调减函数,所以当x =()g x取得最大,最大值为g = 所以b ≥ 当01a <≤1≥,此时'()0g x ≥在区间(0,1]恒成立, 所以1()22ax g x x=--在区间(0,1]上单调递增,当1x =时()g x 最大,最大值为1(1)2a g +=-,所以12a b +≥-.综上,当1>a 时, b ≥01a <≤时, 12a b +≥-.点评:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.【模拟演练】1.函数22log 2xy x-=+的图象( ) A . 关于原点对称 B .关于主线y x =-对称 C . 关于y 轴对称 D .关于直线y x =对称 2. 定义在R 上的偶函数()f x 的部分图象如右图所示,则在()2,0-上,下列函数中与()f x 的单调性不同的是( )A .21y x =+ B . ||1y x =+C . 321,01,0x x y x x +≥⎧=⎨+<⎩D .,,0x x e x oy e x -⎧≥⎪=⎨<⎪⎩3.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( )A .(25)(11)(80)f f f -<<B . (80)(11)(25)f f f <<-C . (11)(80)(25)f f f <<-D . (25)(80)(11)f f f -<<4. 定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为 .5. 已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 .6.已知函数321(),3f x x ax bx =++且'(1)0f -= (I )试用含a 的代数式表示b ; (Ⅱ)求()f x 的单调区间;(Ⅲ)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点1122(,()),(,())M x f x N x f x ,证明:线段MN 与曲线()f x 存在异于M 、N 的公共点.7.已知函数32()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-. (I )求函数()f x 的解析式;(II )设函数1()()3g x f x mx =+,若()g x 的极值存在,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.【参考答案】 1.答案:A解析:由于定义域为(-2,2)关于原点对称,又f(-x)=-f(x),故函数为奇函数,图象关于原点对称,选A . 2.答案:C解析:根据偶函数在关于原点对称的区间上单调性相反,故可知求在()2,0-上单调递减,注意到要与()f x 的单调性不同,故所求的函数在()2,0-上应单调递增.而函数21y x =+在(],1-∞上递减;函数1y x =+在(],0-∞时单调递减;函数321,01,0x x y x x +>⎧=⎨+<⎩在(,0]-∞上单调递减,理由如下y '=3x 2>0(x<0),故函数单调递增,显然符合题意;而函数,0,0x x e x y e x -⎧≥⎪=⎨<⎪⎩,有y '=-x e -<0(x<0),故其在(,0]-∞上单调递减,不符合题意,综上选C . 3. 答案:D解析:因为)(x f 满足(4)()f x f x -=-,所以(8)()f x f x -=,所以函数是以8为周期的周期函数,则)1()25(-=-f f ,)0()80(f f =,)3()11(f f =,又因为)(x f 在R 上是奇函数, (0)0f =,得0)0()80(==f f ,)1()1()25(f f f -=-=-,而由(4)()f x f x -=-得)1()41()3()3()11(f f f f f =--=--==,又因为)(x f 在区间[0,2]上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,即(25)(80)(11)f f f -<<,故选D . 4.答案:1解析:由已知得2(1)log 21f -==,(0)0f =,(1)(0)(1)1f f f =--=-,(2)(1)(0)1f f f =-=-,(3)(2)(1)1(1)0f f f =-=---=,(4)(3)(2)0(1)1f f f =-=--=,(5)(4)(3)1f f f =-=,(6)(5)(4)0f f f =-=, 所以函数f(x)的值以6为周期重复性出现.,所以f (2009)= f (5)=1. 5.答案:21y x =-解析:由2()2(2)88f x f x x x =--+-得:2(2)2()(2)8(2)8f x f x x x -=--+--,即22()(2)44f x f x x x --=+-,∴2()f x x =∴/()2f x x =, ∴切线方程为12(1)y x -=-,即210x y --=. 6.解析:(I )依题意,得2'()2f x x ax b =++, 由'(1)120f a b -=-+=得21b a =-. (Ⅱ)由(I )得321()(21)3f x x ax a x =++-, 故2'()221(1)(21)f x x ax a x x a =++-=++-, 令'()0f x =,则1x =-或12x a =-, ①当1a >时,121a -<-,当x 变化时,'()f x 与()f x 的变化情况如下表:由此得,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --. ②由1a =时,121a -=-,此时,'()0f x ≥恒成立,且仅在1x =-处'()0f x =,故函数()f x 的单调区间为R ;③当1a <时,121a ->-,同理可得函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --.综上:当1a >时,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --;当1a =时,函数()f x 的单调增区间为R ;当1a <时,函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --(Ⅲ)当1a =-时,得321()33f x x x x x=--,由2'()230f x x x =--=,得121,3x x =-=.由(Ⅱ)得()f x 的单调增区间为(,1)-∞-和(3,)+∞,单调减区间为(1,3)-,所以函数()f x 在121,3x x =-=处取得极值,故5(1,),(3,9)3M N --,所以直线MN 的方程为813y x =--,由32133813y x x x y x ⎧=--⎪⎪⎨⎪=--⎪⎩得32330x x x --+= 解得1231, 1.3x x x =-==,1233121135119,,33x x x y y y =-=⎧⎧=⎧⎪⎪∴⎨⎨⎨=-==-⎩⎪⎪⎩⎩, 所以线段MN 与曲线()f x 有异于,M N 的公共点11(1,)3-. 7.解析:(I )由已知,切点为(2,0),故有(2)0f =,即430b c ++=……① 又2()34f x x bx c '=++,由已知(2)1285f b c '=++=得870b c ++=……② 联立①②,解得1,1b c =-=.所以函数的解析式为32()22f x x x x =-+-.(II )因为321()223g x x x x mx =-+-+.令21()34103g x x x m '=-++=.当函数有极值时,则0∆≥,方程2134103x x m -++=有实数解, 由4(1)0m ∆=-≥,得1m ≤. ①当1m =时,()0g x '=有实数23x =,在23x =左右两侧均有()0g x '>,故函数()g x 无极值; ②当1m <时,()0g x '=有两个实数根1211(2(2x x =-=+(),()g x g x '情况如下表:所以在(,1)∈-∞m 时,函数()g x 有极值;当1(23=-x 时,()g x 有极大值;当1(23=x 时,()g x 有极小值..精品资料。

高三数学第二轮重点复习内容

高三数学第二轮重点复习内容

高三数学第二轮重点复习内容高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。

这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。

一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。

不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。

当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。

专题二:数列。

以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。

专题三:三角函数,平面向量,解三角形。

三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。

向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。

专题四:立体几何。

立体几何中,三视图是每年必考点,主要出现在选择,填空题中。

大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。

另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。

空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。

专题五:解析几何。

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

第5讲 基本初等函数、函数与方程[考情分析] 1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0)(1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22 (1)定义域为R :当a >0时,值域为),44[2+∞-a b ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下. (3)当a >0时,]2,(a b --∞是减区间,),2[+∞-ab是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间. (4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x(a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y =log a x (a >0且a ≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根. 负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a nn|,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aanm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b=N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a aa a a log log log ;log log )(log -=+=; M M a a log log αα=; bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.函数的图象 在函数图象上,定义域、值域、对应关系、单调性、奇偶性和周期性一览无遗.因此,快速准确地作出函数图象成为学习函数的一项基本功,而读图也从“形”的角度成为解决函数问题及其他相关问题的一种重要方法.【知识要点】作函数图象最基本的方法是列表描点作图法.常用的函数图象变换有:1.平移变换y=f(x+a):将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位可得.y=f(x)+a:将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位可得.2.对称变换y=-f(x):作y=f(x)关于x轴的对称图形可得.y=f(-x):作y=f(x)关于y轴的对称图形可得.3.翻折变换y=|f(x)|:将y=f(x)的图象在x轴下方的部分沿x轴翻折到x轴的上方,其他部分不变即得.y=f(|x|):此偶函数的图象关于y轴对称,且当x≥0时图象与y=f(x)的图象重合.【复习要求】1.能够在对函数性质作一定的讨论之后,用描点法作出函数的图象.2.能够对已知函数y=f(x)的图象,经过适当的图象变换得到预期函数的图象.3.通过读图能够分析出图形语言所表达的相关信息(包括函数性质及实际意义),运用数形结合的思想解决一些与函数有关的问题.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【例题分析】1.=()A.2B.C.D.﹣2【考点】有理数指数幂及根式.【专题】转化思想;定义法;函数的性质及应用;数学运算.【答案】B【分析】利用根式与有理指数幂的互化以及有理指数幂的运算性质求解即可.【解答】解:原式=.故选:B.【点评】本题考查了有理数指数幂及根式的运算,主要考查了有理指数幂的互化以及有理指数幂的运算性质,属于基础题.2.函数y=2x(x≤0)的值域是()A.(0,1)B.(﹣∞,1)C.(0,1]D.[0,1)【考点】指数函数的定义、解析式、定义域和值域.【专题】函数思想;转化法;函数的性质及应用.【答案】C【分析】本题可利用指数函数的值域.【解答】解:∵y=2x(x≤0)为增函数,且2x>0,∴20=1,∴0<y≤1.∴函数的值域为(0,1].故选:C.【点评】本题考查的是函数值域的求法,关键是要熟悉指数函数的单调性,本题计算量极小,属于容易题.3.如果函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,则()A.b<﹣1B.﹣1<b<0C.0<b<1D.b>1【考点】指数函数的图象与性质.【专题】计算题;函数思想;转化法;函数的性质及应用;数学运算.【答案】B【分析】利用函数图象的平移变换,得到关于b的不等式,再求出b的范围.【解答】解:∵函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,∴函数f(x)=3x+b是由函数f(x)=3x的图象向下平移|b|个单位长度得到,且|b|<1,又∵图象向下平移,∴b<0,∴﹣1<b<0,故选:B.【点评】本题主要考查了函数图象的平移变换,是基础题.函数的最值最大值与最小值是研究变量问题时常需要考虑的问题,也是高中数学中最重要的问题之一.函数的最大值、最小值问题常与实际问题联系在一起.函数的最值与值域在概念上是完全不同的,但对于一些简单函数,其求法是相通的. 【知识要点】本节主要讨论两类常见的函数最值的解决方法及其应用.1.基本初等函数在特定区间上的最值(或值域)问题.解决这类问题的方法是:作出函数图象,观察单调性,求出最值(或值域).2.一些简单的复合函数的最值问题.解决这类问题的方法通常有: (1)通过作出函数图象变成第1类问题; (2)通过换元法转化成第1类问题; (3)利用平均值定理求最值;(4)通过对函数单调性进行讨论进而求出最值.其中讨论单调性的方法可以用单调性定义或导数的知识(导数的方法在后面相应章节复习); (5)转化成几何问题来求解,如线性规划问题等. 【复习要求】从整体上把握求函数最值的方法,明确求最值的一般思路.函数与方程【知识要点】1.如果函数y =f (x )在实数a 处的值等于零,即f (a )=0,则a 叫做这个函数的零点. 函数零点的几何意义:如果a 是函数y =f (x )的零点,则点(a ,0)一定在这个函数的函数图象上,即这个函数与x 轴的交点为(a ,0). 2.零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是不间断的,而且f (a )f (b ),则这个函数在区间[a ,b ]上至少有一个零点.这也是二分法的依据.注意:上述判定零点的方法只是判断零点存在的充分条件.这种判定零点方法主要适用于在无法对函数进行作图而且也不易对函数所对应的方程求根的情况下.如果可以画出函数的图象(这时判断函数零点的方法将是非常直观的),如果函数所对应的方程可以求根,那么就可以用“作图”和“求根”的方法判断零点. 3.用二分法求函数y =f (x ),x ∈D 零点的一般步骤为:第一步、确定初始区间,即在D 内取一个闭区间[a ,b ],使得f (a )f (b )<0; 第二步、求中点及其对应的函数值,即求)(21b a x +=<0以及f (x )的值,如果f (x )=0,则计算终止,否则进一步确定零点所在的区间;第三步、计算精确度,即计算区间的两个端点按给定的精确度取近似值时是否相等,若相等,则计算终止,否则重复第二步.【复习要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2、能够用二分法求相应方程的近似解.考点二函数的零点核心提炼判断函数零点个数的方法:(1)利用零点存在性定理判断法.(2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y=f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.规律方法利用函数零点的情况求参数值(或取值范围)的三种方法【例题分析】1.函数f(x)=﹣lnx的零点所在的大致区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)【考点】函数的零点.【专题】函数的性质及应用.【答案】B【分析】由函数的解析式可得f(2)•f(3)<0,再利用函数的零点的判定定理可得函数的零点所在的大致区间.【解答】解:∵函数满足f(2)=>0,f(3)=1﹣ln3<0,∴f (2)•f(3)<0,根据函数的零点的判定定理可得函数的零点所在的大致区间是(2,3),故选:B .【点评】本题主要考查函数的零点的判定定理的应用,属于基础题. 2.已知函数f (x )=﹣log 2x ,在下列区间中,函数f (x )有零点的是( ) A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【考点】函数的零点.【专题】计算题;函数思想;试验法;函数的性质及应用. 【答案】B【分析】首先判断函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续;从而由零点的判定定理判断即可.【解答】解:易知函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续; f (1)=1﹣0=1>0,f (2)=﹣1=﹣<0; 故函数f (x )有零点的区间是(1,2); 故选:B .【点评】本题考查了函数的性质的判断与应用及零点的判定定理的应用,注意掌握基本初等函数的性质.3.函数24,0()(),0x x f x g x x ⎧->=⎨<⎩是奇函数,则函数()f x 的零点是 2± .【答案】2±.【考点】函数的零点;函数奇偶性的性质与判断【专题】整体思想;综合法;函数的性质及应用;数学运算 【分析】由已知函数解析式及奇函数的对称性即可求解. 【解答】解:当0x >时,()240x f x =-=, 解得,2x =,根据奇函数的对称性可知,2x =-也是函数()f x 的零点, 故答案为:2±.【点评】本题主要考查了函数零点的求解,属于基础题.考点3 函数零点的判定定理 【例题分析】1.在下列区间中,存在函数3()2f x lnx x =-+的零点的是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】AD【考点】函数零点的判定定理【专题】计算题;方程思想;转化思想;综合法;函数的性质及应用;数学运算【分析】根据题意,求出函数的导数,分析()f x 的单调区间,由函数零点判断定理依次分析选项,综合即可得答案.【解答】解:根据题意,3()2f x lnx x =-+,其定义域为(0,)+∞,其导数11()1xf x x x -'=-=,在区间(0,1)上,()0f x '>,()f x 为增函数, 在区间(1,)+∞上,()0f x '<,()f x 为减函数, 依次分析选项:对于A ,()f x 在1(0,)2上递增,2222111311()022f ln e e e e =-+=--<,1113()12022222ef ln ln ln =-+=-=>,在()f x 在1(0,)2上存在零点,A 正确,对于B ,()f x 在1(2,1)上递增,1()1202f ln =->,f (1)3111022ln =-+=>,在()f x 在1(2,1)上不存在零点,B 错误,对于C ,()f x 在(1,2)上递减,f (1)102=>,f (2)31222022ln ln =-+=->, 在()f x 在(1,2)上不存在零点,C 错误, 对于D ,()f x 在(2,3)上递减,f (2)1202ln =->,f (3)33333022ln ln =-+=-<, 在()f x 在(2,3)上存在零点,D 正确, 故选:AD .【点评】本题考查函数的零点判断定理,解题的关键是确定区间端点对应的函数值异号,属于基础题.2.函数2()2log f x x x =-+的零点所在的一个区间是( ) A .(4,5) B .(3,4)C .(2,3)D .(1,2)【答案】D【考点】函数零点的判定定理【专题】转化思想;定义法;函数的性质及应用;逻辑推理【分析】由函数解析式,判断f (1)f (2)0<,由零点的存在性定理进行分析求解即可. 【解答】解:因为2()2log f x x x =-+, 所以f (1)212log 110=-+=-<, f (2)222log 210=-+=>,所以f (1)f (2)0<,由零点的存在性定理可得,函数2()2log f x x x =-+的零点所在的一个区间是(1,2). 故选:D .【点评】本题考查了函数零点的问题,主要考查了函数零点的存在性定理的应用,属于基础题.3.利用二分法求方程20lnx x +-=的近似解,已求得()2f x lnx x =+-的部分函数值的数据如表:A .1.55B .1.62C .1.71D .1.76【答案】A【考点】函数零点的判定定理【专题】函数思想;定义法;函数的性质及应用;逻辑推理【分析】利用表格中的数据,在结合零点的存在性定理进行分析求解即可. 【解答】解:根据表中的数据可得,(1.5)0.0945f =-,(1.5625)0.0088f =, 故函数()f x 的零点在区间(1.5,1.5625)之间, 只有1.55符合要求. 故选:A .【点评】本题考查了函数零点的求解,涉及了零点存在性定理的应用,解题的关键是熟练掌握函数零点的存在性定理,属于基础题. 函数零点与方程根的关系 【例题分析】1.已知函数2,12()1,21log x x f x x x <⎧⎪=⎨>⎪-⎩,若方程()0f x a -=至少有两个实数根,则实数a 的取值范围为( ) A .(0,1)B .(0,1]C .[0,2)D .[0,2]【答案】A【考点】函数的零点与方程根的关系【专题】计算题;数形结合;转化思想;演绎法;函数的性质及应用;逻辑推理;数学运算【分析】首先将问题转化为两个函数交点个数的问题,然后数形结合即可确定实数a的取值范围.【解答】解:原问题等价于函数y a与函数()f x至少有两个交点,绘制函数图象如图所示,观察可得,实数a的取值范围是(0,1).故选:A.【点评】本题主要考查由函数的零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于基础题.2.若方程|2x﹣2|=b有一个零点,则实数b的取值范围是.【考点】函数的零点;函数的零点与方程根的关系.【专题】数形结合;数形结合法;函数的性质及应用;逻辑推理.【答案】(2,+∞)∪{0}..【分析】根据函数与方程之间的关系,作出两个函数的图象,利用数形结合进行求解即可.【解答】解:作出函数y=|2x﹣2|的图象如图:要使方程|2x﹣2|=b有一个零点,则函数y=|2x﹣2|与y=b有一个交点,则b>2或b=0,故实数b的取值范围是b>2或b=0,即(2,+∞)∪{0}.故答案为:(2,+∞)∪{0}.【点评】本题主要考查函数与方程的应用,作出函数图象,利用数形结合是解决本题的关键,是基础题.3.已知关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =,则实数a 的值是() A .5 B .6 C .7 D .15【答案】B【考点】函数的零点与方程根的关系【专题】方程思想;转化法;高考数学专题;函数的性质及应用;数学运算【分析】根据条件可得3log (10)(010)x a a =±<<,然后由212x x =,得到33log (10)2log (10)a a +=-或33log (10)2log (10)a a -=+,再求出a 的值.【解答】解:关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,∴由|310|x a -=,可知010a <<,3log (10)(010)x a a ∴=±<<,关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =, 33log (10)2log (10)a a ∴+=-或33log (10)2log (10)a a -=+ 210(10)a a ∴+=-或210(10)a a -=+,6a ∴=±或15a =±,又010a <<, 6a ∴=.故选:B .【点评】本题考查了函数的零点与方程根的关系,考查了方程思想和转化思想,属基础题.。

高考第二轮复习数学全国理科专题二 函数与导数第2讲 函数与方程及函数的应用.pdf

高考第二轮复习数学全国理科专题二 函数与导数第2讲 函数与方程及函数的应用.pdf

专题二 函数与导数第2讲 函数与方程及函数的应用 真题试做 1.(2012·安徽高考,理2)下列函数中,不满足f(2x)=2f(x)的是( ). A.f(x)=|x| B.f(x)=x-|x| C.f(x)=x+1 D.f(x)=-x 2.(2012·天津高考,理4)函数f(x)=2x+x3-2在区间(0,1)内的零点个数是( ). A.0 B.1 C.2 D.3 3.(2012·江西高考,理3)若函数f(x)=则f(f(10))=( ). A.lg 101 B.2 C.1 D.0 4.(2012·辽宁高考,理11)设函数f(x)(x∈R)满足f(-x)=f(x),f(x)=f(2-x),且当x∈[0,1]时,f(x)=x3.又函数g(x)=|xcos(πx)|,则函数h(x)=g(x)-f(x)在上的零点个数为( ). A.5 B.6 C.7 D.8 5.(2012·江苏高考,17)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1 km,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程; (2)设在第一象限有一飞行物(忽略其大小),其飞行高度 为3.2 km,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由. 考向分析 通过分析近三年的高考试题可以看到,对函数与方程的考查主要体现在以下几个方面:一、结合函数与方程的关系,求函数的零点;二、结合根的存在性定理或函数的图象,对函数是否存在零点(方程是否存在实根)进行判断;三、利用零点(方程实根)的存在求相关参数的值或范围.对函数的实际应用问题的考查,题目大多以社会实际生活为背景,设问新颖、灵活,而解决这些问题所涉及的数学知识、数学思想和方法又都是高中教材和课标中所要求掌握的概念、公式、法则、定理等基础知识和方法. 热点例析 热点一 确定函数的零点 设函数f(x)=x-ln x(x>0),则y=f(x)( ). A.在区间,(1,e)内均有零点 B.在区间,(1,e)内均无零点 C.在区间内有零点,在区间(1,e)内无零点 D.在区间内无零点,在区间(1,e)内有零点 规律方法 确定函数零点的常用方法: (1)解方程判定法,若方程易解时用此法. (2)利用零点存在的判定定理. (3)利用数形结合,尤其是那些方程两端对应的函数类型不同时多以数形结合法求解. 变式训练1 方程|x|=cos x在(-∞,+∞)内( ). A.没有根 B.有且仅有一个根 C.有且仅有两个根 D.有无穷多个根 热点二 函数零点的应用 (1)m为何值时,f(x)=x2+2mx+3m+4 ①有且仅有一个零点? ②有两个零点且均比-1大? (2)若函数F(x)=|4x-x2|+a有4个零点,求实数a的取值范围. 规律方法 解决由函数零点(方程根)的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.对于存在零点求参数范围问题,可通过分离参数,从而转化为求函数值域问题. 变式训练2 已知函数f(x)=若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是__________. 热点三 函数的实际应用 【例3】某企业拟建造如图所示的容器(不计厚度,长度单位:m),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为m3,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元. (1)写出y关于r的函数表达式,并求该函数的定义域; (2)求该容器的建造费用最小时的r. 规律方法 应用函数知识解应用题的步骤: (1)正确地将实际问题转化为函数模型,这是解应用题的关键.转化来源于对已知条件的综合分析、归纳与抽象,并与熟知的函数模型相比较,以确定函数模型的种类. (2)用相关的函数知识,进行合理设计,确定最佳解题方案,进行数学上的计算求解. (3)把计算获得的结果代回到实际问题中去解释实际问题,即对实际问题进行总结作答. 变式训练3 某种产品每件成本为6元,每件售价为x元(x>6),年销量为u万件,若已知-u与成正比,且售价为10元时,年销量为28万件. (1)求年销售利润y关于x的函数关系式; (2)求售价为多少时,年利润最大,并求出最大年利润. 思想渗透 函数与方程思想的含义 (1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题. (2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程(方程组)或者构造方程,通过解方程(方程组)或者运用方程的性质去分析、转化问题,使问题获得解决.方程的思想是对方程概念的本质认识,用于指导解题就是善于利用方程(方程组)的观点观察、处理问题. (3)方程的思想与函数的思想密切相关:方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标;函数y=f(x)也可以看作二元方程f(x)-y=0,方程f(x)=a有 解,当且仅当a属于函数f(x)的值域;函数与方程的这种相互转化关系十分重要. 如图所示,长方体物体E在雨中沿面P(面积为S)的垂直方向做匀速移动,速度为v(v>0),雨速沿E移动方向的分速度为c(c∈R).E移动时单位时间内的淋雨量包括两部分:①P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与|v-c|×S成正比,比例系数为;②其他面的淋雨量之和,其值为.记y为E移动过程中的总淋雨量.当移动距离d=100,面积时, (1)写出y的表达式; (2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少. 解:(1)由题意知,E移动时单位时间内的淋雨量为, 故. (2)由(1)知, 当0<v≤c时,y=(3c-3v+10)=-15; 当c<v≤10时,y=(3v-3c+10)=+15. 故y= ①当0<c≤时,y是关于v的减函数.故当v=10时,ymin=20-. ②当<c≤5时,在(0,c]上,y是关于v的减函数;在(c,10]上,y是关于v的增函数. 故当v=c时,ymin=. 1.已知f(x)=-3-(x-a)(x-b),并且m,n是方程f(x)=0的两个根,则实数a,b,m,n的大小关系可能正确的是( ). A.m<a<b<n B.a<m<b<n C.a<m<n<b D.m<a<n<b 2.(2012·山东潍坊一模,12)若直角坐标平面内的两点P,Q满足条件: ①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称. 则称点对[P,Q]是函数y=f(x)的一对“友好点对”(点对[P,Q]与[Q,P]看作同一对“友好点对”). 已知函数f(x)=则此函数的“友好点对”有( ). A.0对 B.1对 C.2对 D.3对 3.函数f(x)=xcos x2在区间[0,4]上的零点个数为( ). A.4 B.5 C.6 D.7 4.设方程,的根分别为x1,x2,则( ). A.0<x1x2<1 B.x1x2=1 C.1<x1x2<2 D.x1x2≥2 5.(2012·江苏高考,10)设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)=其中a,b∈R.若f=f,则a+3b的值为______. 6.(2012·北京高考,理14)已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件: ①x∈R,f(x)<0或g(x)<0; ②x∈(-∞,-4),f(x)g(x)<0. 则m的取值范围是__________. 7.(2012·北京高考,文12)已知函数f(x)=lg x,若f(ab)=1,则f(a2)+f(b2)=__________. 8.某市郊有一块大约500 m×500 m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其总面积为3 000 m2,其中场地四周(阴影部分)为通道,通道宽度均为2 m,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S m2. (1)分别写出用x表示y和S的函数关系式(写出函数定义域); (2)怎样设计能使S取得最大值,最大值为多少? 命题调研·明晰考向 真题试做 1.C 2.B 3.B 4.B 5.解:(1)令y=0,得kx-(1+k2)x2=0,由实际意义和题设条件知x>0,k>0, 故x==≤=10,当且仅当k=1时,取等号. 所以炮的最大射程为10千米. (2)因为a>0,所以炮弹可击中目标?存在k>0,使3.2=ka-(1+k2)a2成立?关于k的方程a2k2-20ak+a2+64=0有正根?判别式Δ=(-20a)2-4a2(a2+64)≥0?a≤6. 所以当a不超过6(千米)时,可击中目标. 精要例析·聚焦热点 热点例析 【例1】D 解析:解法一:∵f=·-ln =+1>0,f(1)=-ln 1=>0,f(e)=-ln e=-1<0, ∴f·f(1)>0,f(1)·f(e)<0,故y=f(x)在区间内无零点,在区间(1,e)内有零点. 解法二:在同一坐标系中分别画出y=x与y=ln x的图象.如图所示. 由图象知零点存在于区间(1,e)内. 【变式训练1】C 【例2】解:(1)①若函数f(x)=x2+2mx+3m+4有且仅有一个零点,则等价于Δ=4m2-4(3m+4)=0, 即4m2-12m-16=0,即m2-3m-4=0,解得m=4或m=-1. ②设两零点分别为x1,x2,且x1>-1,x2>-1,x1≠x2. 则x1+x2=-2m,x1·x2=3m+4, 故只需? 故m的取值范围是{m|-5<m<-1}. (2)若F(x)=|4x-x2|+a有4个零点,即|4x-x2|+a=0有四个根,即|4x-x2|=-a有四个根. 令g(x)=|4x-x2|,h(x)=-a.则作出g(x)的图象, 由图象可知要使|4x-x2|=-a有四个根,则需g(x)的图象与h(x)的图象有四个交点,故0<-a<4,即-4<a<0. 【变式训练2】(0,1) 【例3】解:(1)设容器的容积为V, 由题意知V=πr2l+πr3, 又V=,故. 由于l≥2r,因此0<r≤2. 所以建造费用y=2πrl×3+4πr2c=2πr××3+4πr2c. 因此y=4π(c-2)r2+,0<r≤2. (2)由(1)得y′=8π(c-2)r- =,0<r<2. 由于c>3,所以c-2>0. 当r3-=0时,r=. 令=m,得m>0, 所以y′=(r-m)(r2+rm+m2). ①当0<m<2即c>时, 当r=m时,y′=0; 当r∈(0,m)时,y′<0; 当r∈(m,2)时,y′>0. 所以r=m是函数y的极小值点,也是最小值点. ②当m≥2即3<c≤时, 当r∈(0,2)时,y′<0,函数单调递减. 所以r=2是函数y的最小值点. 综上所述,当3<c≤时,建造费用最小时r=2;当c>时,建造费用最小时r=. 【变式训练3】解:(1)设-u=, ∵售价为10元时,年销量为28万件, ∴-28=,解得k=2. ∴+=-2x2+21x+18. 即y=(-2x2+21x+18)(x-6)=-2x3+33x2-108x-108. (2)由(1)得y′=-6x2+66x-108=-6(x2-11x+18)=-6(x-2)(x-9), 令y′=0,得x=2(∵x>6,舍去)或x=9. 显然,当x∈(6,9)时,y′>0,当x∈(9,+∞)时,y′<0. ∴函数y=-2x3+33x2-108x-108在(6,9)上是关于x的增函数, 在(9,+∞)上是关于x的减函数. ∴当x=9时,y取最大值,且ymax=135. ∴售价为9元时,年利润最大,最大年利润为135万元. 创新模拟·预测演练 1.C 2.C 3.C 4.A 5.-10 6.m∈(-4,-2) 7.2 8.解:(1)由已知xy=3 000,2a+6=y, 则y=(6<x≤500), S=(x-4)a+(x-6)a =(2x-10)a =(2x-10)·=(x-5)(y-6) =3 030-6x-(6<x≤500). (2)S=3 030- ≤3 030-2 =3 030-2×300=2 430, 当且仅当6x=,即x=50时,等号成立,此时x=50,y=60,Smax=2 430(m2). 即设计x=50,y=60时,运动场地面积最大,最大值为2 430 m2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 函数与方程[考情考向分析] 求函数零点所在区间、零点个数及参数的取值范围是高考的常见题型,主要以选择题、填空题的形式出现.热点一 函数的零点 1.零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b )使得f (c )=0,这个c 也就是方程f (x )=0的根.2.函数的零点与方程根的关系函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.例1 (1)已知f (x )=2|x |x +x -2x,则y =f (x )的零点个数是( )A .4B .3C .2D .1 答案 C解析 令2|x |x +x -2x=0,化简得2|x |=2-x 2,画出y 1=2|x |,y 2=2-x 2的图象,由图可知,图象有两个交点,即函数f (x )有两个零点.(2)关于x 的方程(x 2-2x )2e 2x-(t +1)(x 2-2x )e x-4=0(t ∈R )的不等实根的个数为( ) A .1 B .3 C .5 D .1或5 答案 B解析 设f (x )=(x 2-2x )e x ,则f ′(x )=(x +2)(x -2)e x,所以函数f (x )在(-∞,-2),(2,+∞)上单调递增,在(-2,2)上单调递减,且当x →-∞时,f (x )→0,f (-2)=(2+22)e f (0)=0,f (2)=(2-22)当x →+∞,f (x )→+∞,由此画出函数y =f (x )的草图,如图所示.关于x 的方程(x 2-2x )2e 2x-(t +1)(x 2-2x )e x-4=0,令u =f (x ),则u 2-(t +1)u -4=0,Δ=(t +1)2+16>0,故有两个不同的解u 1,u 2, 又u 1u 2=f (-2)f (2)=-4, 所以不等实根的个数为3.思维升华 函数零点(即方程的根)的确定问题,常见的有 (1)函数零点大致存在区间的确定. (2)零点个数的确定.(3)两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合法求解.跟踪演练1 (1)定义在R 上的函数f (x ),满足f (x )=⎩⎪⎨⎪⎧x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),且f (x +1)=f (x -1),若g (x )=3-log 2x ,则函数F (x )=f (x )-g (x )在(0,+∞)内的零点有( ) A .3个 B .2个 C .1个 D .0个 答案 B解析 由f (x +1)=f (x -1)得f (x )的周期为2,作函数f (x )和g (x )的图象,图中,g (3)=3-log 23>1=f (3),g (5)=3-log 25<1=f (5),可得有两个交点,所以选B.(2)已知函数f (x )满足:①定义域为R ;②∀x ∈R ,都有f (x +2)=f (x );③当x ∈[-1,1]时,f (x )=-|x |+1,则方程f (x )=12log 2|x |在区间[-3,5]内解的个数是( )A .5B .6C .7D .8 答案 A解析 画出函数图象如图所示,由图可知,共有5个解.热点二 函数的零点与参数的范围解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数与方程思想或数形结合思想,构建关于参数的方程或不等式求解.例2 (1)(2018·浙江省重点中学联考)已知a ∈R ,函数f (x )=⎩⎪⎨⎪⎧a +1x,x >0,e -x ,x <0,若存在三个互不相等的实数x 1,x 2,x 3,使得f (x 1)x 1=f (x 2)x 2=f (x 3)x 3=-e 成立,则a 的取值范围是________. 答案 (-∞,-2e) 解析f (x 1)x 1=f (x 2)x 2=f (x 3)x 3=-e 成立,等价于方程f (x )=-e x 有三个互不相等的实数根x 1,x 2,x 3,即函数y =f (x )的图象与直线y =-e x 有三个不同的交点,易知直线y =-e x 与y =e -x的图象相切,已有一个交点,只需直线y =-e x 与曲线y =a +1x(x >0)有两个不同的交点即可,由-e x =a +1x,得e x 2+ax +1=0,∴Δ=a 2-4e>0,解得a >2e 或a <-2e ,又方程的两个根之和为正数,故-ae>0,∴a <0.综上所述,a <-2 e.(2)(2018·全国Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( ) A .[-1,0) B .[0,+∞) C .[-1,+∞) D .[1,+∞)答案 C解析 令h (x )=-x -a , 则g (x )=f (x )-h (x ).在同一坐标系中画出y =f (x ),y =h (x )图象的示意图,如图所示.若g (x )存在2个零点,则y =f (x )的图象与y =h (x )的图象有2个交点,平移y =h (x )的图象可知,当直线y =-x -a 过点(0,1)时,有2个交点, 此时1=-0-a ,a =-1.当y =-x -a 在y =-x +1上方,即a <-1时,仅有1个交点,不符合题意; 当y =-x -a 在y =-x +1下方,即a >-1时,有2个交点,符合题意. 综上,a 的取值范围为[-1,+∞). 故选C.思维升华 (1)方程f (x )=g (x )根的个数即为函数y =f (x )和y =g (x )图象交点的个数. (2)关于x 的方程f (x )-m =0有解,m 的范围就是函数y =f (x )的值域.跟踪演练2 (1)已知函数f (x )=⎩⎪⎨⎪⎧2x-a ,x ≤0,3x -a ,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,1)∪(1,2) D .(-∞,1)答案 A解析 ∵函数f (x )=⎩⎪⎨⎪⎧2x-a ,x ≤0,3x -a ,x >0(a ∈R )在R 上有两个零点,且x =a3是函数f (x )的一个零点,∴方程2x-a =0在(-∞,0]上有一个解,再根据当x ∈(-∞,0]时,0<2x≤20=1,可得0<a ≤1. 故选A.(2)函数f (x )=|x |e x ,方程[f (x )]2-(m +1)f (x )+1-m =0有4个不相等实根,则m 的取值范围是( )A.⎝ ⎛⎭⎪⎫e 2-e e 2+e ,1 B.⎝ ⎛⎭⎪⎫e 2-e +1e 2+e ,+∞C.⎝ ⎛⎭⎪⎫e 2-e +1e 2+e ,1 D.⎝ ⎛⎭⎪⎫e 2-e e 2+e ,+∞ 答案 C解析 根据题意画出函数f (x )的图象.当x >0时,f (x )=x e x ,则f ′(x )=1-xex (x >0),故f (1)=1e为f (x )在(0,+∞)上的最大值.设t =f (x ),t 2-(m +1)t +1-m =0 有两个根t 1,t 2, 由图可知,对应两个x 值的t 值只有一个, 故可设t 1对应一个x 值,t 2对应3个x 值.情况为⎩⎪⎨⎪⎧t 1=0,t 2∈⎝ ⎛⎭⎪⎫0,1e 或⎩⎪⎨⎪⎧t 1>1e ,t 2∈⎝ ⎛⎭⎪⎫0,1e ,当属于第一种情况时,将0代入方程得m =1,此时二次方程t 2-(m +1)t +1-m =0的根是确定的,一个为0,一个为2>1e ,不符合第一种情况的要求;当属于第二种情况时,⎩⎪⎨⎪⎧1e2-m +1e +1-m <0,1-m >0,即e 2-e +1e 2+e<m <1.真题体验1.(2016·天津改编)已知函数f (x )=sin2ωx 2+12sin ωx -12(ω>0,x ∈R ).若f (x )在区间(π,2π)内没有零点,则ω的取值范围是______________.答案 ⎝⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤14,58解析 f (x )=1-cos ωx 2+12sin ωx -12=12(sin ωx -cos ωx )=22sin ⎝ ⎛⎭⎪⎫ωx -π4.因为函数f (x )在区间(π,2π)内没有零点,所以T 2>2π-π,所以πω>π,所以0<ω<1.当x ∈(π,2π)时,ωx -π4∈⎝⎛⎭⎪⎫ωπ-π4,2ωπ-π4,若函数f (x )在区间(π,2π)内有零点,则ωπ-π4<k π<2ωπ-π4(k ∈Z ),即k 2+18<ω<k +14(k ∈Z ). 当k =0时,18<ω<14;当k =1时,58<ω<54.所以函数f (x )在区间(π,2π)内没有零点时, 0<ω≤18或14≤ω≤58.2.(2017·山东改编)已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是______________. 答案 (0,1]∪[3,+∞)解析 设f (x )=(mx -1)2,g (x )=x +m ,在同一直角坐标系中,分别作出函数f (x )=(mx -1)2=m 2⎝ ⎛⎭⎪⎫x -1m 2与g (x )=x +m 的大致图象.分两种情形:(1)当0<m ≤1时,1m≥1,如图①,当x ∈[0,1]时,f (x )与g (x )的图象有一个交点,符合题意.(2)当m >1时,0<1m<1,如图②,要使f (x )与g (x )的图象在[0,1]上只有一个交点, 只需g (1)≤f (1),即1+m ≤(m -1)2, 解得m ≥3或m ≤0(舍去). 综上所述,m ∈(0,1]∪[3,+∞).3.(2017·江苏)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________. 答案 8解析 由于f (x )∈[0,1),则只需考虑1≤x <10的情况,在此范围内,当x ∈Q ,且x ∉Z 时,设x =q p,p ,q ∈N *,p ≥2且p ,q 互质.若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =n m,m ,n ∈N *,m ≥2且m ,n 互质.因此10n m=qp,则10n=⎝ ⎛⎭⎪⎫q p m ,此时左边为整数,右边为非整数,矛盾.因此lg x ∉Q ,因此lg x 不可能与每个周期内x ∈D 对应的部分相等,只需考虑lg x 与每个周期内x ∉D 部分的交点,画出函数草图.图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期内x ∉D 部分,且x =1处(lg x )′=1x ln 10=1ln 10<1,则在x =1附近仅有1个交点,因此方程解的个数为8.押题预测1.f (x )=2sin πx -x +1的零点个数为( ) A .4 B .5 C .6D .7押题依据 函数的零点是高考的一个热点,利用函数图象的交点确定零点个数是一种常用方法. 答案 B解析 令2sin πx -x +1=0,则2sin πx =x -1,令h (x )=2sin πx ,g (x )=x -1,则f (x )=2sin πx -x +1的零点个数问题就转化为两个函数h (x )与g (x )图象的交点个数问题.h (x )=2sin πx 的最小正周期为T =2ππ=2,画出两个函数的图象,如图所示,因为h (1)=g (1),h ⎝ ⎛⎭⎪⎫52>g ⎝ ⎛⎭⎪⎫52,g (4)=3>2,g (-1)=-2,所以两个函数图象的交点一共有5个,所以f (x )=2sin πx -x +1的零点个数为5.2.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,若函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A .[-1,1)B .[0,2]C .(-2,2]D .[-1,2)押题依据 利用函数零点个数可以得到函数图象的交点个数,进而确定参数范围,较好地体现了数形结合思想. 答案 D解析 g (x )=f (x )-2x =⎩⎪⎨⎪⎧-x +2,x >a ,x 2+3x +2,x ≤a ,要使函数g (x )恰有三个不同的零点,只需g (x )=0恰有三个不同的实数根,所以⎩⎪⎨⎪⎧x >a ,-x +2=0或⎩⎪⎨⎪⎧x ≤a ,x 2+3x +2=0,所以g (x )=0的三个不同的实数根为x =2(x >a ),x =-1(x ≤a ),x =-2(x ≤a ).再借助数轴,可得-1≤a <2.所以实数a 的取值范围是[-1,2),故选D.3.已知定义在R 上的偶函数f (x )满足f (x +4)=f (x ),且当0≤x ≤2时,f (x )=min{-x 2+2x,2-x },若方程f (x )-mx =0恰有两个实根,则m 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞B.⎝ ⎛⎦⎥⎤-∞,-13∪⎣⎢⎡⎭⎪⎫13,+∞C.⎝⎛⎭⎪⎫-2,-13∪⎝ ⎛⎭⎪⎫13,2 D.⎣⎢⎡⎭⎪⎫-2,-13∪⎝ ⎛⎦⎥⎤13,2 押题依据 在同一平面直角坐标系中画出函数的图象,先研究特殊位置,结合函数的性质,利用数形结合法,构建关于参数的不等式(组)求解. 答案 C解析 当0≤x <1时,-x 2+2x <2-x ,当1≤x ≤2时,-x 2+2x ≥2-x ,所以f (x )=⎩⎪⎨⎪⎧-x 2+2x ,0≤x <1,2-x ,1≤x ≤2,又因为f (x )是偶函数,且是以4为周期的周期函数,作出函数f (x )的图象(图略),直线y =mx 与y =-x 2+2x 的图象相切时,m =2,直线y =mx 经过点(3,1)时,与函数f (x )的图象有三个交点,此时m =13,故x ≥0时,要使方程f (x )-mx =0恰有两个实根,则13<m <2,由对称性知x <0时,要使方程f (x )-mx =0恰有两个实根,则-2<m <-13.A 组 专题通关1.已知函数f (x )=⎝ ⎛⎭⎪⎫12x-13x ,则在下列区间中含有函数f (x )零点的是( )A.⎝ ⎛⎭⎪⎫0,13B.⎝ ⎛⎭⎪⎫13,12C.⎝ ⎛⎭⎪⎫12,23 D.⎝ ⎛⎭⎪⎫23,1 答案 B解析 f (0)=1>0,f ⎝ ⎛⎭⎪⎫13=1312⎛⎫ ⎪⎝⎭-1313⎛⎫ ⎪⎝⎭>0,f⎝ ⎛⎭⎪⎫12=1212⎛⎫ ⎪⎝⎭-1312⎛⎫ ⎪⎝⎭<0,f⎝ ⎛⎭⎪⎫13f⎝ ⎛⎭⎪⎫12<0, 所以函数f (x )在区间⎝ ⎛⎭⎪⎫13,12内必有零点,故选B. 2.(2018·绍兴市柯桥区模拟)已知x 0是函数f (x )=e -x+1x -2的零点,若x 1∈(0,x 0),x 2∈(x 0,2),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0 答案 C解析 函数f (x )的定义域为{x |x ≠2},又e -x>0,且x <2时,1x -2<0,故f (x )的零点x 0∈(-∞,2),求导得f ′(x )=-e -x-1(x -2)2<0,则函数f (x )在区间(-∞,2),(2,+∞)上单调递减,由0<x 1<x 0<x 2<2,得f (x 1)>f (x 0)>f (x 2),即f (x 1)>0,f (x 2)<0,故选C.3.已知定义在R 上的奇函数f (x )满足当x >0时,f (x )=2x+2x -4,则f (x )的零点个数是( )A .2B .3C .4D .5 答案 B解析 由于函数f (x )是定义在R 上的奇函数, 故f (0)=0.由于f ⎝ ⎛⎭⎪⎫12·f (2)<0, 而函数f (x )在(0,+∞)上单调递增,故当x >0时有1个零点,根据奇函数的对称性可知, 当x <0时,也有1个零点.故一共有3个零点.4.已知函数f (x )=x 2+2x -12(x <0)与g (x )=x 2+log 2(x +a )的图象上存在关于y 轴对称的点,则a 的取值范围是( ) A .(-∞,-2) B .(-∞,2) C.()-∞,22 D.⎝ ⎛⎭⎪⎫-22,22 答案 B解析 f (x )=x 2+2x-12(x <0),当x >0时,-x <0,f (-x )=x 2+2-x-12(x >0),所以f (x )关于y 轴对称的函数为h (x )=f (-x )=x 2+2-x-12(x >0),由题意得x 2+2-x -12=x 2+log 2(x +a )在x >0时有解,作出函数的图象如图所示,当a ≤0时,函数y =2-x-12与y =log 2(x +a )的图象在(0,+∞)上必有交点,符合题意,若a >0,若两函数在(0,+∞)上有交点,则log 2a <12,解得0<a <2,综上可知,实数a 的取值范围是(-∞,2).5.(2018·湖州、衢州、丽水三地市模拟)已知函数f (x )=|x -1|+|x |+|x +1|,则方程f (2x -1)=f (x )所有根的和是( ) A.13 B .1 C.43 D .2 答案 C解析 由题意得f (2x -1)=|2x -2|+|2x -1|+|2x |,f (2x -1)=f (x )⇔|2x -2|+|2x -1|+|2x |=|x -1|+|x |+|x +1|,即|x -1|+|x |+|2x -1|-|x +1|=0,设g (x )=|x -1|+|x |+|2x -1|-|x +1|,则g (x )=⎩⎪⎨⎪⎧-3x +3,x <-1,-5x +1,-1≤x <0,-3x +1,0≤x <12,x -1,12≤x <1,3x -3,x ≥1,令g (x )=0,解得x=13或x =1, 所以方程f (2x -1)=f (x )所有根的和是13+1=43,故选C.6.已知函数f (x )=⎩⎪⎨⎪⎧|ln (x -1)|,x >1,2x -1+1,x ≤1,则方程f (f (x ))-2⎣⎢⎡⎦⎥⎤f (x )+34=0的实根个数为( )A .6B .5C .4D .3 答案 C解析 令t =f (x ),则方程f (f (x ))-2⎣⎢⎡⎦⎥⎤f (x )+34=0等价于f (t )-2t -32=0,在同一平面直角坐标系中作出f (x )与直线y =2x +32的图象,由图象可得有两个交点,且f (t )-2t -32=0的两根分别为t 1=0和1<t 2<2,当t 1=f (x )=0时,解得x =2,当t 2=f (x )∈(1,2)时,f (x )有3个不等实根,综上所述,方程f (f (x ))-2⎣⎢⎡⎦⎥⎤f (x )+34=0的实根个数为4. 7.定义在R 上的函数f (x )满足f (x )+f (x +5)=16,当x ∈(-1,4]时,f (x )=x 2-2x,则函数f (x )在区间[0,2 019]上的零点个数是________. 答案 605解析 因为f (x )+f (x +5)=16, 所以f (x +5)+f (x +10)=16, 所以f (x )=f (x +10),所以该函数的周期是T =10.由于函数y =f (x )在(-1,4]上有3个零点, 因此在区间(-1,9]上只有3个零点,且在(-1,0)上有1个零点,在[0,9]上有2个零点且不在区间端点处.而2 019=201×10+9,故在区间[0,2 019]上共有201×3+2=605(个)零点.8.已知函数f (x )=⎩⎨⎧x sin x ,0<x <π,x ,x ≥π,g (x )=f (x )-kx (k ∈R ).①当k =1时,函数g (x )有________个零点;②若函数g (x )有3个零点,则k 的取值范围是________. 答案 1 ⎝ ⎛⎦⎥⎤0,ππ 解析 ①当k =1时,g (x )=0,即f (x )=x ,当0<x <π时,x sin x =x ,即sin x =1,解得x =π2,当x ≥π时,x =x ,解得x =0(舍去)或1(舍去), 综上,g (x )的零点个数为1. ②若函数g (x )有3个零点,则k ≠0. 当x ≥π时,x =kx (k >0),最多有1个解, 即有x =1k 2≥π,解得0<k ≤ππ,又0<x <π时,x sin x =kx ,即为sin x =k 有2个解, 则0<k <1, 综上可得0<k ≤ππ. 9.对于函数f (x )与g (x ),若存在λ∈{x ∈R |f (x )=0},μ∈{x ∈R |g (x )=0},使得|λ-μ|≤1,则称函数f (x )与g (x )互为“零点密切函数”,现已知函数f (x )=ex -2+x -3与g (x )=x 2-ax -x +4互为“零点密切函数”,则实数a 的取值范围是________. 答案 [3,4]解析 由题意知,函数f (x )的零点为x =2, 设g (x )满足|2-μ|≤1的零点为μ, 因为|2-μ|≤1,解得1≤μ≤3. 因为函数g (x )的图象开口向上,所以要使g (x )的一个零点落在区间[1,3]上,则需满足g (1)g (3)≤0或⎩⎪⎨⎪⎧g (1)>0,g (3)>0,Δ≥0,1<a +12<3,解得103≤a ≤4或3≤a <103,得3≤a ≤4.故实数a 的取值范围为[3,4].10.(2018·浙江)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值范围是________. 答案 (1,4) (1,3]∪(4,+∞) 解析 当λ=2时,f (x )=⎩⎪⎨⎪⎧x -4,x ≥2,x 2-4x +3,x <2,其图象如图(1).由图知f (x )<0的解集为(1,4).f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ恰有2个零点有两种情况:①二次函数有两个零点,一次函数无零点;②二次函数与一次函数各有一个零点.在同一平面直角坐标系中画出y 1=x -4与y 2=x 2-4x +3的图象,如图(2),平移直线x =λ,可得λ∈(1,3]∪(4,+∞).B 组 能力提高11.定义在R 上的奇函数f (x ),当x ≥0时,f (x )=⎩⎪⎨⎪⎧12log (x +1),0≤x <1,1-|x -3|,x ≥1,若关于x的方程f (x )-a =0(0<a <1)所有根之和为1-2,则实数a 的值为( ) A.22 B.12 C.23 D.14答案 B解析 因为函数f (x )为奇函数,所以当x ∈(-1,0]时,f (x )=-f (-x )=-12log (-x +1)=log 2(1-x );当x ∈(-∞,-1]时,f (x )=-f (-x )=-(1-|-x -3|)=|x +3|-1,所以函数f (x )的图象如图所示,令g (x )=f (x )-a ,函数g (x )的零点即为函数y =f (x )与y =a 的交点,如图所示,共5个.当x ∈(-∞,-1]时,令|x +3|-1=a ,解得x 1=-4-a ,x 2=a -2,当x ∈(-1,0)时,令log 2(1-x )=a ,解得x 3=1-2a;当x ∈[1,+∞)时,令1-|x -3|=a ,解得x 4=4-a ,x 5=a +2,所以所有零点之和为x 1+x 2+x 3+x 4+x 5=-4-a +a -2+1-2a +4-a+a +2=1-2a=1-2,∴a =12.12.若函数f (x )=ax +ln x -x 2x -ln x有3个不同的零点,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫1,e e -1-1eB.⎣⎢⎡⎦⎥⎤1,e e -1-1eC.⎝ ⎛⎭⎪⎫1e -e e -1,-1D.⎣⎢⎡⎦⎥⎤1e -e e -1,-1 答案 A解析 函数f (x )=ax +ln x -x 2x -ln x有3个不同的零点,等价于a =x x -ln x-ln xx,x ∈(0,+∞)有3个不同解,令g (x )=xx -ln x-ln x x,x ∈(0,+∞),则g ′(x )=1-ln x ()x -ln x 2-1-ln xx 2=ln x ()1-ln x ()2x -ln x x 2(x -ln x )2,当x ∈(0,+∞)时,令y =2x -ln x , 则y ′=2-1x =2x -1x,当x ∈⎝ ⎛⎭⎪⎫0,12时,y ′<0,y 单调递减;当x ∈⎝ ⎛⎭⎪⎫12,+∞时,y ′>0,y 单调递增,则y min =1-ln 12=1+ln 2>0,则当x ∈(0,+∞)时,恒有2x -ln x >0, 令g ′(x )=0,得x =1或x =e ,且x ∈(0,1)时,g ′(x )<0,g (x )单调递减;x ∈()1,e 时,g ′(x )>0,g (x )单调递增; x ∈()e ,+∞时,g ′(x )<0,g (x )单调递减,则g (x )的极小值为g (1)=1,g (x )的极大值为g (e)=e e -1-1e, 当x →0时,g (x )→+∞, 当x →+∞时,g (x )→1. 结合函数图象(图略)可得, 当1<a <e e -1-1e时,y =a 与g (x )=xx -ln x-ln x x的图象有3个不同的交点,即方程a =xx -ln x-ln x x,x ∈(0,+∞)有3个不同解,即函数f (x )=ax +ln x -x 2x -ln x有3个不同的零点,所以a 的取值范围是⎝ ⎛⎭⎪⎫1,e e -1-1e . 13.已知函数f (x )=|x |(2-x ),关于x 的方程f (x )=m (m ∈R )有三个不同的实数解x 1,x 2,x 3,则x 1x 2x 3的取值范围为________.答案 (1-2,0)解析 f (x )=|x |(2-x )=⎩⎪⎨⎪⎧x 2-2x ,x <0,2x -x 2,x ≥0,如图所示,关于x 的方程f (x )=m 恰有三个互不相等的实根x 1,x 2,x 3,即函数y =f (x )的图象与直线y =m 有三个不同的交点,则0<m <1,不妨设从左向右的交点的横坐标分别为x 1,x 2,x 3.当x >0时,由对称性知,x 2+x 3=2,0<x 2x 3<⎝⎛⎭⎪⎫x 2+x 322=1;当x <0时,由x 2-2x =1,得x =1-2, 所以1-2<x 1<0,即0<-x 1<2-1, 所以0<-x 1x 2x 3<2-1,即1-2<x 1x 2x 3<0.14.已知函数f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,e f (|x |+1),x <1(e 为自然对数的底数),则f (e)=________,函数y=f (f (x ))-1的零点有________个.(用数字作答) 答案 1 3解析 f (e)=ln e =1.函数y =f (f (x ))-1的零点个数为方程f (f (x ))=1的根的个数,则①由ln x =1(x ≥1),得x =e ,于是f (x )=e ,则由ln x =e(x ≥1),得x =e e ;由e f (|x |+1)=e(x <1),得f (|x |+1)=1,所以ln(|x |+1)=1,解得x =e -1(舍去)或x =1-e ;②由e f (|x |+1)=1(x <1),得f (|x |+1)=0,所以ln(|x |+1)=0,解得x =0,所以f (x )=0,只有ln x =0(x ≥1),解得x =1.综上可知,函数y =f (f (x ))-1有x =e e ,1-e,1,共3个零点.。

相关文档
最新文档