2019年中考数学真题分类解析汇编(43)阅读理解、图表信息
2019年全国各地中考数学试题分类汇编专题41 阅读理解、图表信息(含解析)
阅读理解、图表信息(包括新定义,新运算)一.选择题1. (2019•甘肃省庆阳市•3分)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP 的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A.3 B.4 C.5 D.6【分析】当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP 面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•BC=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.【点评】本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.二.填空题1. (2019•浙江湖州•4分)七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图2所示的“拼搏兔”造型(其中点Q、R分别与图2中的点E、G重合,点P在边EH上),则“拼搏兔”所在正方形EFGH的边长是4.【分析】如图2中,连接EG,GM⊥EN交EN的延长线于M,利用勾股定理解决问题即可.【解答】解:如图2中,连接EG,作GM⊥EN交EN的延长线于M.在Rt△EMG中,∵GM=4,EM=2+2+4+4=12,∴EG===4,∴EH==4,故答案为4.【点评】本题考查正方形的性质,七巧板,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.2. (2019•甘肃省庆阳市•3分)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP 的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A.3 B.4 C.5 D.6【分析】当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP 面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•BC=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.【点评】本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.1. 3. (2019•广西北部湾经济区•3分)如图,AB为⊙O的直径,BC.CD是⊙O的切线,切点分别为点B.D,点E为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A. B. C. D.【答案】A【解析】解:延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,则OC⊥BD,OC=,∵OB•BC=OC•BG,∴,∴BD=2BG=,∵OD2-OH2=DH2=BD2-BH2,∴,∴BH=,∴,∵DH∥BF,∴,∴,故选:A.延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,先求得BG,再求BH,进而DH,运用相似三角形得,便可得解.本题是圆的综合题,主要考查了切线长定理,切线的性质,相似三角形的性质与判定,勾股定理,将军饮马问题,问题较复杂,作的辅助线较多,正确作辅助线是解决问题的关键.三.解答题1. (2 019·江苏盐城·12分)【生活观察】甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如:(1)完成上表;(2)计算甲两次买菜的均价和乙两次买菜的均价.(均价=总金额÷总质量)【数学思考】设甲每次买质量为m 千克的菜,乙每次买金额为n 元的菜,两次的单价分别是a 元/千克、b 元/千克,用含有m 、n 、a 、b 的式子,分别表示出甲、乙两次买菜的均价错误!不能通过编辑域代码创建对象。
2019-中考数学试题分类汇编解析阅读理解、图表信息题
2019-2020 年中考数学试题分类汇编解析阅读理解、图表信息题一、选择题1. ( 2014?山东潍坊,第 12 题 3 分)如图,已知正方形ABCD ,极点 A(1 ,3)、B(1,1)、C(3,1).规定“把正方形A BCD 先沿 x 轴翻折,再向左平移 1 个单位”为一次变换.这样这样,连续经过2014 次变换后,正方形ABCD 的对角线交点M 的坐标变为 ()A . (— 2012,2)B.(一 2012,一 2) C. (— 2013,— 2) D. ( — 2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.解析:第一求出正方形对角线交点坐标分别是( 2, 2),尔后依照题意求得第 1 次、 2 次、 3 次变换后的点 M 的对应点的坐标,即可得规律.解答:∵正方形 ABCD ,点 A(1, 3)、 B(1,1)、 C(3,1).∴ M 的坐标变为 (2,2) ∴依照题意得:第 1 次变换后的点 M 的对应点的坐标为( 2- 1,-2),即( 1,-2),第2 次变换后的点 M 的对应点的坐标为:( 2-2,2),即( 0, 2),第3 次变换后的点 M 的对应点的坐标为( 2- 3,-2),即(-1,-2),第 2014 次变换后的点 M 的对应点的为坐标为(2-2014 , 2),即(-2012, 2)故答案为A.谈论:此题观察了对称与平移的性质.此题难度较大,属于规律性题目,注意获取规律:第n 次变换后的点M 的对应点的坐标为:当n 为奇数时为(2- n,- 2),当 n 为偶数时为( 2-n, 2)是解此题的要点.2.( 2014 山东济南,第14 题, 3 分)现定义一种变换:关于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可获取一个新序列.比方序列S0:(4,2,3,4, 2),经过变换可获取新序列S1:(2,2,1,2,2).若 S0能够为任意序列,则下面的序列能够作为 S1的是A.( 1, 2, 1, 2, 2)B.( 2,2, 2, 3,3)C.( 1,1, 2, 2, 3)D.( 1,2, 1, 1, 2)【解析】由于序列S0含5个数,于是新序列中不能够有 3 个 2,因此 A , B 中所给序列不能够作为 S1;又若是S1中有3,则S1中应有3个3,因此C中所给序列也不能够作为S1,应选D.二、填空题1.( 2014?四川宜宾,第16 题, 3 分)规定: sin(﹣ x)=﹣ sinx,cos(﹣ x)=cosx,sin( x+y)=sinx?cosy+cosx?siny.据此判断以低等式建立的是②③④(写出所有正确的序号)①cos(﹣ 60°)=﹣;② sin75°=;③sin2x=2 sinx?cosx;④sin( x﹣ y) =sinx?cosy﹣ cosx?siny.考点:锐角三角函数的定义;特别角的三角函数值.专题:新定义.解析:依照已知中的定义以及特别角的三角函数值即可判断.解答:解:① cos(﹣ 60°) =cos60°=,命题错误;② sin75°=sin( 30°+45°)=sin30°?cos45°+cos30°?sin45°=× + × =+ =,命题正确;③ sin2x=sinx?cosx+cosx?sinx═2sinx?cosx,故命题正确;④ sin( x﹣ y)=sinx?cos(﹣ y)+cosx?sin(﹣ y)=sinx?cosy﹣ cosx?siny,命题正确.故答案是:②③④.谈论:此题观察锐角三角函数以及特别角的三角函数值,正确理解题目中的定义是关键.三、解答题1. ( 2014?四川巴中,第 22 题 5 分)定义新运算:关于任意实数a,b 都有 a△ b=ab﹣ a﹣b+1,等式右边是平时的加法、减法及乘法运算,比方: 2△4=2×4﹣ 2﹣ 4+1=8 ﹣6+1=3 ,请依照上述知识解决问题:若 3△ x 的值大于 5 而小于 9,求 x 的取值范围.考点:新定义.解析:第一依照运算的定义化简3△x,则能够获取关于x 的不等式组,即可求解.解答: 3△ x=3 x﹣ 3﹣ x+1=2 x﹣ 2,依照题意得:,解得:<x<.谈论:此题观察了一元一次不等式组的解法,正确理解运算的定义是要点.2.( 2014?湖南张家界,第 23 题, 8 分)阅读资料:解分式不等式< 0解:依照实数的除法法规:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转变为:①或②解①得:无解,解②得:﹣ 2< x < 1 因此原不等式的解集是﹣2< x < 1请模拟上述方法解以下分式不等式:( 1)≤0( 2)> 0.考点:一元一次不等式组的应用. 专题:新定义.解析:先把不等式转变为不等式组,尔后经过解不等式组来求分式不等式.解答:解:( 1)依照实数的除法法规:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转变为:①或②解①得:无解, 解②得:﹣< x ≤4因此原不等式的解集是:﹣< x ≤4;( 2)依照实数的除法法规:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转变为: ①或②解①得: x > 3, 解②得: x <﹣ 2. 因此原不等式的解集是:x > 3 或 x <﹣ 2.谈论:此题观察了一元一次不等式组的应用.此题经过资料解析,先求出不等式组中每个不等式的解集,再求其公共部分即可.3. (2014?江西抚州,第 24 题, 10 分)【试题背景】已知:∥m ∥ n ∥,平行线与 m 、 m 与 n 、 n 与之间的距离分别为 d 1、 d 2、d ,且 d1 = d 3= 1 , d2= 2 . 我们把四个极点分别在、m 、 n 、这四条平行线上的四边3形称为“格线四边形”.【研究 1】⑴如图 1,正方形ABCD为“格线四边形” ,BE l 于点E,BE的反向延长线交直线于点 F .求正方形ABCD 的边长.【研究 2】⑵矩形ABCD为“格线四边形” ,其长:宽= 2:1,则矩形ABCD的宽为37或 13 . (直接写出结果即可) 2【研究3】⑶ 如图2ABCD为“格线四边形”且∠ADC =60°,△ AEF 是等边,菱形三角形, AE k于点E ,∠ AFD =90°,直线 DF 分别交直线、于点G、M .求证: EC DF .【拓展】⑷如图 3,∥,等边三角形ABC的极点A、B分别落在直线、上,AB k 于点 B ,且 AB =4,∠ACD=90°,直线CD分别交直线、于点G、 M ,点 D 、 E 分别是线段GM、 BM 上的动点,且向来保持AD = AE ,DH l 于点H.猜想: DH 在什么范围内,BC∥ DE ?并说明此时BC ∥DE的原由.解析: (1)如图1,∵ BE⊥l , l ∥k,∴∠ AEB=∠ BFC=90° ,又四边形 ABCD是正方形,∴∠ 1+∠ 2=90°,AB=BC,∵∠2+∠3=90° , ∴ ∠ 1=∠3,∴⊿ ABE≌⊿ BCF(AAS),1222∴ AE=BF=1 , ∵ BE=d+d =3 ,∴ AB= 3110 ,∴正方形的边长是10 .(2)如图 2,3 ,⊿ABE∽⊿ BCF,BF BC2∴AB1或AEBF BC1AE AB2∵ BF=d3=1 ,1或 AE2∴ AE=2∴ AB=321237或22AB=322213∴矩形 ABCD的宽为3713 .或2(注意:要分 2 种情况谈论)(3)如图4,连接 AC,∵四边形ABCD是菱形,∴AD=DC,又∠ ADC=60° ,∴⊿ ADC是等边三角形,∴ AD=AC,∵ AE⊥ k ,∠AFD=90°,∴∠ AEC=∠ AFD=90°,∵⊿ AEF是等边三角形,∴AF=AE,∴⊿ AFD≌⊿ AEC(HL),∴EC=DF.(4)如图5,当2< DH< 4 时, BC∥ DE .原由以下:连接 AM,∵ AB⊥k , ∠ACD=90°,∴∠ ABE=∠ ACD=90° ,∵⊿ ABC是等边三角形,∴AB=AC ,已知 AE=AD,∴⊿ ABE≌⊿ ACD(HL),∴ BE=CD;在Rt ⊿ABM和 Rt⊿ ACM中,AB AC,∴ Rt ⊿ ABM≌ Rt ⊿ ACM(HL),AM AM∴BM=CM ;∴ME=MD,ME MD∴MB MC,∴ ED∥BC.4. ( 2014?浙江杭州,第23 题, 12 分)复习课中,教师给出关于x 的函数y=2kx 2﹣( 4kx+1 )x﹣ k+1 (k 是实数).教师:请独立思虑,并把研究发现的与该函数有关的结论(性质)写到黑板上.学生思虑后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1, 0)点;② 函数图象与坐标轴总有三个不同样的交点;③当 x>1 时,不是y 随 x 的增大而增大就是y 随 x 的增大而减小;④ 若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出原由.最后简单写出解决问题时所用的数学方法.考点 :二次函数 合解析: ① 将( 1,0)点代入函数,解出k 的 即可作出判断;② 第一考 ,函数 一次函数的情况,从而可判断 假; ③ 依照二次函数的增减性,即可作出判断;④ 当 k=0 ,函数 一次函数,无最大之和最小 ,当 k ≠0 ,函数 抛物 ,求出点的 坐 表达式,即可作出判断.解答:解: ① 真,将( 1,0)代入可得:2k ( 4k+1 ) k+1=0 ,解得: k=0. 运用方程思想;② 假,反例: k=0 ,只有两个交点.运用 反例的方法;③ 假,如 k=1 ,=,当 x > 1 ,先减后增;运用 反例的方法;④ 真,当 k=0 ,函数无最大、最小 ;k ≠0 , y 最 ==,∴ 当 k >0 ,有最小 ,最小 ;当 k < 0 ,有最大 ,最大 正.运用分 思想.点 :本 考 了二次函数的 合,立意新 , 合观察了数学解 程中 常用到的几种解 方法,同学 注意思虑、理解, 度一般.5. ( ( 2014 年河南 )21.10 分)某商店 售 10 台 A 型和 20 台 B 型 的利4000 元,售 20 台 A 型和 10 台 B 型 的利 3500 元.( 1)求每台 A 型 和 B 型 的 售利 ;( 2) 商店 划一次 两种型号的 共100 台,其中 B 型 的 量不超A 型的 2 倍。
2019年广东省深圳市中考数学试题(解析版)
2019年深圳市初中毕业升学考试数学一、选择题(每小题3分,共12小题,满分36分) 1.51-的绝对值是( ) A. -5 B.51 C. 5 D.51-【答案】B【解析】考点绝对值.2.下列图形是轴对称图形的是( )【答案】A【考点】轴对称图形与中心对称图形3.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A.4.6×109 B.46×107 C.4.6×108 D.0.46×109 【答案】C【考点】科学计数法4.下列哪个图形是正方体的展开图( )【答案】B【考点】立体图形的展开.5.这组数据20,21,22,23,23的中位数和众数分别是( ) A.20,23 B.21,23 C.21,22 D.22,23 【答案】D【解析】中位数:先把数据按从小到大排列顺序20,21,22,23,23,则中间的那一个就是中位数.众数是出现次数最多的那个数就是众数,即是23.故选D 6.下列运算正确的是( )A.422a a a =+B.1243a a a =⋅ C.1243)(a a = D.22)(ab ab =【答案】C【解析】整式运算,A.2222a a a =+; B 743a a a =⋅ ;D 222)(b a ab =.故选C7.如图,已知AB l =1,AC 为角平分线,下列说法错误的是( ) A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【答案】B【解析】两直线平行,同位角相等,即∠2=∠3.故选B. 8.如图,已知AB=AC ,AB=5,BC=3,以AB 两点为圆心,大于21AB 的长为半径画圆,两弧相交于点M,N ,连接MN 与AC 相较于点D ,则△BDC 的周长为( ) A.8 B.10 C.11 D.13【答案】A【解析】尺规作图,因为MN 是线段AB 的垂直平分线,则AD=BD ,又因为AB=AC=5,BC=3,所以△BDC 的周长为8.9.已知)0(2≠++=a c bx ax y 的图象如图,则b ax y +=和xcy =的图象为( )【答案】C【解析】根据)0(2≠++=a c bx ax y 的图象可知抛物线开口向下,则0<a ,抛物线与y 轴交点在负半轴,故c <0,对称轴在y 轴的右边,则b >0. 10.下列命题正确的是( ) A.矩形对角线互相垂直 B.方程x x 142=的解为14=x C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等 【答案】D【解析】矩形的对角线互相平分且相等,故A 错;方程x x 142=的解为14=x 或0=x ,故B 错;六边形内角和为720°,故C 错.故选D 11.定义一种新运算:⎰-=⋅-abn n n b a dx x n 1,例如:⎰-=⋅k hh k xdx 222,若⎰-=--m522mdx x ,则m=( )A. -2B. 52-C. 2D.52 【答案】B 【解析】⎰-=-=-=----m51122511)5(mm m m m dx x ,则m=52-,故选B. 12.已知菱形ABCD ,E,F 是动点,边长为4,BE=AF ,∠BAD=120°,则下列结论正确的有几个( ) ①△BEC ≌△AFC ; ②△ECF 为等边三角形 ③∠AGE=∠AFC ④若AF=1,则31=GE GF A. 1 B. 2 C. 3 D. 4【答案】D【解析】在四边形ABCD 是菱形,因为∠BAD=120°,则∠B=∠DAC=60°,则AC=BC ,且BE=AF ,故可得△BEC ≌△AFC ;因为△BEC ≌△AFC ,所以FC=EC ,∠FCA=∠ECB ,所以△ECF 为等边三角形;因为∠AGE=180°-∠BAC-∠AEG ;∠AFC=180°-∠FAC-∠ACF ,则根据等式性质可得∠AGE=∠AFC ;因为AF=1,则AE=3,所以根据相似可得31=GE GF . 二、填空题(每小题3分,共4小题,满分12分) 13.分解因式:=-a ab 2. 【答案】)1)(1(-+b b a【解析】)1)(1()1(22-+=-=-b b a b a a ab14.现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字2的卡片的概率是 . 【答案】83 【解析】全部共有8张卡片,标有数字2的卡片有3张,随机抽取一张,故抽到2概率为83. 15.如图在正方形ABCD 中,BE=1,将BC 沿CE 翻折,使点B 对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使点D 对应点落在对角线AC 上,求EF= .【答案】6 【解析】16.如图,在Rt △ABC 中,∠ABC=90°,C (0,-3),CD=3AD,点A 在xky =上,且y 轴平分脚ACB ,求k= 。
新课标版2019年全国各地中考真题分类详解 - ——相似、位似及其应用
新课标版2019年全国各地中考真题分类详解相似、位似及其应用一、选择题 10.(2019·苏州)如图,在△ABC 中,点D 为BC 边上的一点.且AD =AB =2,AD ⊥AB ,过点D 作DE ⊥AD ,DE 交AC 于点F .若DE =1,则△ABC 的面积为 ( )A .B .4C .D .8第10题图【答案】B【解析】∵AB ⊥AD ,AD ⊥DE ,∴∠BAD =∠ADE =90°,∴DE ∥AB ,∴∠CED =∠CAB ,∵∠C =∠C ,∴△CED ∽△CAB ,∵DE =1,AB =2,即DE ∶AB =1∶2,∴S △DEC ∶S △ACB =1∶4,∴S 四边形ABDE ∶S △ACB =3∶4,∵S 四边形ABDE =S △ABD +S △ADE 12=⨯2×212+⨯2×1=2+1=3,∴S △ACB=4,故选B .10.(2019·绍兴 )如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为 ( ) A.524 B.532C.173412D.173420【答案】A【解析】如图所示:设DM =x ,则CM =8﹣x , 根据题意得:(8﹣x +8)×3×3=3×3×5, 解得:x =4,∴DM =6,∵∠D =90°,由勾股定理得:BM==5, 过点B 作BH ⊥AH ,∵∠HBA+∠ABM =∠ABM+∠ABM =90°, ∴∠HBA+=∠ABM ,所以Rt △ABH ∽△MBD , ∴BH BD AB BM =,即385BH =,解得BH =524,即水面高度为524. 6.(2019·杭州)如图,在△ABC 中,点D ,E 分别在AB 和AC 边上,DE ∥BC ,M 为BC 边上一点(不与点B ,C 重合)连接AM 交DE 干点N ,则 ( ) A.AD AN AN AE = B. BD MN MN CE = C. DN NE BM MC = D. DN NEMC BM=【答案】C【解析】根据DE ∥BC ,可得△ADN ∽△ABM 与△ANE ∽△AMC ,再应用相似三角形的性质可得结论.∵DN ∥BM ,∴△ADN ∽△ABM ,∴DN ANBM AM=,∵NE ∥MC ,∴△ANE ∽△AMC ,∴NE AN MC AM =,∴DN NEBM MC=.故选C . 7.(2019·常德)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形的面积为1,△ABC 的面积为42,则四边形DBCE 的面积是( ) A .20 B .22 C .24 D .26B【答案】D【解析】∵图中所有三角形均相似,其中最小的三角形的面积为1,△ABC 的面积为42,∴最小的三角形与△ABCADE ∽△ABC ,∴ADE ABCSS =2DE BC ⎛⎫⎪⎝⎭,∵DE BC =4ADE ABCSS=1642=821, ∴S △ADE =821×42=16,∴四边形DBCE 的面积=S △ABC -S △ADE =26,故选项D 正确. 5.(2019·陇南)如图,将图形用放大镜放大,应该属于( )A .平移变换B .相似变换C .旋转变换D .对称变换【答案】B【解析】由图可知,放大前与放大后图形是相似的,故选:B .1. (2019·枣庄)如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为16,阴影部分三角形的面积为9,若AA'=1,则A'D 等于A.2B.3C.4D.32【答案】B【解析】由平移可得,△ABC ∽△A'MN,设相似比为k,∵S △ABC =16,S △A'MN =9,∴k 2=16:9,∴k =4:3,因为AD 和A'D 分别为两个三角形的中线,∴AD:A'D =k =4:3,∵AD =AA'+A'D,∴AA':A'D =1:3,∵AA'=1,则A'D =3,故选B.2.(2019·淄博)如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B. 若△ADC 的面积为a ,则△ABD 的面积为()A .2aB .52a C .3a D .72a 【答案】C .【解析】在△BAC 和△ADC 中,∵∠C 是公共角,∠CAD =∠B.,∴△BAC ∽△ADC ,∴2BCAC=, ∴2AB DA =()4C CS BC SAC=,又∵△ADC 的面积为a ,∴△ABC 的面积为4a ,∴△ABD 的面积为3a .3. (2019· 巴中)如图,ABCD,F 为BC 中点,延长AD 至E,使DE:AD =1:3,连接EF 交DC 于点G,则S △DEG :S △CFG =( )A.2:3B.3:2C.9:4D.4:9【答案】D【解析】因为DE:AD =1:3,F 为BC 中点,所以DE:CF =2:3,ABCD 中,DE ∥CF,所以△DEG ∽△CFG,相似比为2:3,所以S △DEG :S △CFG =4:9.故选D.4.(2019·乐山)把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为( ) A .61 B .31C .51D .41B【答案】A第8题答图【解析】∵四边形ABCD 与四边形CEFG 都是正方形,∴AD =DC =1,CE =2,AD ∥CE ,∴△ADH∽△ECF ,∴A D D HC E C H=,∴121DH DH =-,解得DH =13,∴阴影部分面积为12×13×1=16,故选A.5.(2019·乐山)如图,在边长为3的菱形ABCD 中,︒=∠30B ,过点A 作BC AE ⊥于点E ,现将△ABE 沿直线AE 翻折至△AFE 的位置,AF 与CD 交于点G .则CG 等于( ) A .13-B .1C .21D .23第9题图【答案】A【解析】∵BC AE ⊥,∴∠AEB=90°,菱形ABCD 的边长为3,︒=∠30B ,∴AE=12AB=12,BF=3,CF=BF -BC=3,∵AD ∥CF ,∴△AGD ∽△FGC ,∴D G A DC G C F=,=,解得CG1-,故选A. 6.(2019·凉山)如图,在△ABC 中,D 在AC 边上,AD ∶DC = 1∶2,O 是BD 的中点,连接A 0并延长交BC 于 E ,则BE ∶EC =( ▲ ) A. 1∶2 B . 1∶3 C . 1∶4 D . 2∶3【答案】B【解析】过点D 作DF ∥AE ,则1==OD BO EF BE ,21==CD AD FC EF ,∴BE ∶EF ∶FC =1∶1∶2,∴BE ∶EC =1∶3.故选B .7.(2019·眉山)如图,一束光线从点A (4,4)出发,经y 轴上的点C 反射后,经过点B (1,0),则点C 的坐标是A .(0,12)B .(0,45)C .(0,1)D .(0,2)【答案】B【解析】解:过点A 作AD ⊥y 轴于点D ,∵∠ADC=∠COB=90°,∠ACD=∠BCO ,∴△OBA∽△DAC ,∴OC DC OB AD =,∴414OC OC -=,解得:OC=45,∴点C (0,45),故选B.8.(2019·眉山)如图,在菱形ABCD 中已知AB =4,∠ABC =60°,∠EAF =60°,点E 在CB 的延长线上,点F 在DC 的延长线上,有下列结论:①BE =CF ,②∠EAB =∠CEF ;③△ABE ∽△EFC ,④若∠BAE =15°,则点F 到BC 的距离为2,则其中正确结论的个数是A .1个B . 2个C .3个D . 4个【答案】B 【解析】连接AC ,在菱形ABCD 中,AB=BC ,∠ABC=60°,∴△ABC 是等边三角形,∴AB=AC ,∠BAC=60°,∵∠EAF=60°,∴∠EAB+∠BAF=∠CAF+∠BAF=60°,即∠EAB=∠CAF ,∵∠ABE=∠ACF=120°,∴△ABE ≌△ACF ,∴BE=CF ,故①正确;由△ABE ≌△ACF ,可得AE=AF ,∵∠EAF=60°,∴△AEF 是等边三角形,∴∠AEF=60°,∴∠AEB+∠CEF=60°,∵∠AEB+∠EAB=60°,∴∠CEF=∠EAB ,故②正确;在△ABE 中,∠AEB <60°,∠ECF=60°,∴③错误;过点A 作AG ⊥BC 于点G ,过点F 作FH ⊥EC 于点H ,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在Rt △AGB 中,∵∠ABC=60°,AB=4,∴BG=12AB=2,,在Rt △AEG 中,∵∠AEG=∠EAG=45°,∴AG=GE=,∴EB=EG-BG=,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF ,∵∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°在△AEB 和△AFC 中,⎧⎪⎨⎪⎩∠∠∠∠︒EAB FAC AB AC ABE ACF 120====,∴△AEB ≌△AFC ,∴AE=AF ,EB=CF=,在Rt △CHF 中,∵∠HCF=180°-∠BCD=60°,CF=,∴FH=CF •sin60°=(-2∴点F到BC 的距离为故④错误.故选B.9.(2019·重庆B 卷)下列命题是真命题的是( )A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个全角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:9 【答案】B【解析】如果两个三角形相似,那么这两个三角形的周长比等于相似比,面积比是相似比的平方.即如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9;面积比是相似比的平方,即16:81.故选B.10.(2019·重庆A卷)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.5【答案】C.【解析】∵△ABO∽△CDO,∴AB BOCD DO=.∵BO=6,DO=3,CD=2,∴623AB=.∴AB=4.故选C.二、填空题16.(2019·滨州)在平面直角坐标系中,△ABO三个顶点的坐标分别为A(-2,4),B(-4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的12,得到△CDO,则点A的对应点C的坐标是________________________.【答案】(-1,2)或(1,-2)【解析】点A的对应点C的坐标是(-2×12,4×12)或(-2×(-12),4×(-12)),即(-1,2)或(1,-2).2.(2019·滨州)如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=:7;④FB2=OF•DF.其中正确的结论有____________.(填写所有正确结论的序号)【答案】①③④【解析】在Y ABCD中,AB∥DC,∠ABC=60°,∴∠BCD=120°.∵CE平分∠BCD,∴∠BCE=60°,∴△BCE是等边三角形,∴BE=BC=CE,∠BEC=60°.∵AB=2BC,∴AE=BE=CE,∴∠EAC=∠ACE=30°,∴∠ACB=90°.在Y ABCD中,AO=CO,BO=DO,∴OE是△ACB的中位线,∴OE ∥BC ,∴OE ⊥AC ,故①正确;∵OE 是△ACB 的中位线,∴OE=12BC ,∵OE ∥BC ,∴△OEF ∽△BCF ,∴OF :BF=OE :BC=1:2,∴S △AOD =S △BOC =3S △OCF ,故②错误;在Rt △ABC 中,∵AB=2BC ,∴,∴OC=2BC .在Rt △BCO 中,2BC ,∴BC ,∴AC ::7,故③正确;∵OF :BF=1:2,∴BF=2OF ,OB=3OF ,∵OD=OB ,∴DF=4OF ,∴BF 2=(2OF )2=4OF 2,OF ·DF=OF ·4OF=4OF 2,∴BF 2=OF ·DF ,故④正确.3.(2019·凉山)在□ABCD 中,E 是AD 上一点,且点E 将AD 分为2∶3的两部分, 连接BE 、AC 相交于F ,则S △AEF ∶S △CBF 是▲. 【答案】4:25或9∶25【解析】在□ABCD 中,∵AD ∥BC ,∴△AEF ∽△CBF .如答图1,当AE ∶DE =2∶3时,AE ∶AD =2∶5,∵AD =BC ,∴AE ∶BC =2∶5,∴S △AEF ∶S △CBF =4∶25;如答图2,当AE ∶DE =3∶2时,AE ∶AD =3∶5,∵AD =BC ,∴AE ∶BC =3∶5,∴S △AEF ∶S △CBF =9∶25.故答案为4∶25或9∶25.(第16题图答图1) (第16题图答图2)4. (2019·自贡)如图,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,CD ∥AB ,∠ABC 的平分线BD 交AC 于点E ,DE =.【答案】.【解析】∵BD 平分∠ABC , ∴∠ABD =∠CBD , ∵AB ∥CD , ∴∠D =∠ABD , ∴∠CBD =∠D ,∴CD=BD=6.在Rt△ABC中,AC==8.∵AB∥CD,∴△ABE∽△DCE,∴,∴CE=AE,DE=BE.即CE=AC=×8=3.在Rt△BCE中,BE=.∴DE=BE=×3=.5.(2019·衢州)如图,由两个长为2,宽为1的长方形组成“7”字图形。
2019年全国中考数学试题分类解析汇编(159套63专题)3
2019年全国中考数学试题分类解析汇编(159套63专题)专题19:反比例函数的应用一、选择题1. (2019福建福州4分)如图,过点C(1,2)分别作x 轴、y 轴的平行线,交直线y =-x+6于A 、B两点,若反比例函数y =kx(x >0)的图像与△ABC 有公共点,则k 的取值范围是【 】A .2≤k≤9 B.2≤k≤8 C.2≤k≤5 D.5≤k≤8 【答案】A 。
【考点】反比例函数综合题,曲线上点的坐标与方程的关系,二次函数的性质。
【分析】∵ 点C(1,2),BC∥y 轴,AC∥x 轴,∴ 当x =1时,y =-1+6=5;当y =2时,-x +6=2,解得x =4。
∴ 点A 、B 的坐标分别为A(4,2),B(1,5)。
根据反比例函数系数的几何意义,当反比例函数与点C 相交时,k =1×2=2最小。
设与线段AB 相交于点(x ,-x +6)时k 值最大, 则k =x(-x +6)=-x 2+6x =-(x -3)2+9。
∵ 1≤x≤4,∴ 当x =3时,k 值最大,此时交点坐标为(3,3)。
因此,k 的取值范围是2≤k≤9。
故选A 。
2. (2019湖北黄石3分)如图所示,已知A 11(,y )2,B 2(2,y )为反比例函数1y x=图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是【 】A. 1(,0)2B. (1,0)C. 3(,0)2D. 5(,0)2【答案】D 。
【考点】反比例函数综合题,待定系数法,曲线上点的坐标与方程的关系,三角形三边关系。
【分析】∵把A 11(,y )2,B 2(2,y )分别代入反比例函数1y x =得:y 1=2,y 2=12, ∴A(12 ,2),B (2,12)。
∵在△ABP 中,由三角形的三边关系定理得:|AP -BP|<AB ,∴延长AB 交x 轴于P′,当P 在P′点时,PA -PB=AB , 即此时线段AP 与线段BP 之差达到最大。
2019年全国中考试题解析版分类汇编-列举法、树形图法求所有等可能事件
2019年全国中考试题解析版分类汇编-列举法、树形图法求所有等可能事件注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!1.〔2017内蒙古呼和浩特,6,3〕经过某十字路口的汽车,它可能继续直行,也可能向左或向右转、假设这三种可能性大小相同,那么两辆汽车经过该十字路口全部继续直行的概率为〔〕A.1B.2C.1D.1 解答:解:列表得:点评:此题主要考查用列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比、2.〔2017山东日照,8,3分〕两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,那么着地的面所得的点数之和等于5的概率为〔〕A 、41B 、163C 、43D 、83考点:列表法与树状图法。
分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率、 解答:解:列表得:∴一共有16种情况,着地的面所得的点数之和等于5的有4种, ∴着地的面所得的点数之和等于5的概率为164=41、应选A 、点评:此题考查的是用列表法或画树状图法求概率、列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件、用到的知识点为:概率=所求情况数与总情况数之比、3.〔2017•台湾23,4分〕一签筒内有四支签,分别标记号码1,2,3,4、小武以每次取一支且取后不放回的方式,取两支签,假设每一种结果发生的机会都相同,那么这两支签的号码数总和是奇数的机率为〔〕A 、43B 、32C 、21D 、31考点:列表法与树状图法。
分析:先利用树状图展示所有12种的等可能的结果数,然后找出和为奇数的结果数,最后利用概率的概念求解即可、 解答:解:根据题意列树状图:共有12种等可能的结果,其中和是奇数的有8种, 所以这两支签的号码数总和是奇数的机率=128=32、应选B 、 点评:此题考查了利用树状图求事件概率的方法:先利用树状图展示所有等可能的结果数n ,再找出某事件所占的结果数m ,然后根据P=nm 计算即可、4.〔2017,台湾省,24,5分〕如图,甲袋内的4张牌分别标记数字1、2、3、4;乙袋内的3张牌分别标记数字2、3、4、假设甲袋中每张牌被取出的机会相等,且乙袋中每张牌被取出的机会相等,那么小白自两袋中各取出一张牌后,其数字和大于6的机率为何?〔〕A 、B 、C 、D 、考点:列表法与树状图法。
2019年全国各地中考数学试题分类汇编(第三期)专题41阅读理解、图表信息(含解析)
阅读理解、图表信息(包含新定义 ,新运算 ) 一.选择题1. ( 2019?河北省 ?2 分)对于题目:“如图 1,平面上,正方形内有一长为12、宽为 6 的矩形,它能够在正方形的内部及界限经过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自以为边长最小的正方形,先求出该边长 x,再取最小整数 n.甲:如图2,思路是当 x 为矩形对角线长时便可移转过去;结果取n= 13.乙:如图3,思路是当 x 为矩形外接圆直径长时便可移转过去;结果取n= 14.丙:如图4,思路是当 x 为矩形的长与宽之和的倍时便可移转过去;结果取n= 13.以下正确的选项是()A .甲的思路错,他的n 值对B .乙的思路和他的n 值都对C.甲和丙的n 值都对D.甲、乙的思路都错,而丙的思路对B.【解答】解:甲的思路正确,长方形对角线最长,只需对角线能经过就能够,可是计算错误,应为n= 14;乙的思路与计算都正确;乙的思路与计算都错误,图示状况不是最长;2.( 2019?河北省 ?3 分)小明总结了以下结论:①a( b+c)= ab+ac;②a( b﹣ c)= ab﹣ ac;③( b﹣ c)÷a=b÷a﹣ c÷a( a≠0);④a÷( b+c)= a÷b+a÷c( a≠0)此中必定建立的个数是()A .1B.2C.3D.4C.【解答】解:①a( b+c)= ab+ac,正确;② a ( b ﹣ c )= ab ﹣ ac ,正确;③( b ﹣ c ) ÷a =b ÷a ﹣ c ÷a ( a ≠0),正确;④a ÷( b+c )= a ÷b+a ÷c ( a ≠0),错误,没法分解计算. 3.3.(2019?湖北宜昌 ?3 分 )古希腊几何学家海伦和我国宋朝数学家秦九韶都曾提出利用三角形的三边求面积的公式, 称为海伦﹣秦九韶公式: 假如一个三角形的三边长分别是a ,b ,c ,记 p =,那么三角形的面积为S =.如图,在 △ABC 中,∠ A ,∠ B ,∠ C 所对的边分别记为a ,b ,c ,若 a = 5,b = 6,c = 7,则△ ABC的面积为()A .6B .6C . 18D .【评论】 阅读理解:二次根式的化简.【剖析】 利用阅读资料,先计算出p 的值,而后依据海伦公式计算△ ABC 的面积.【解答】 解: ∵a = 7, b =5, c = 6,∴ p == 9,∴△ABC 的面积 S ==6 .应选 A .【评论】 考察了二次根式的化简,解题的重点是代入后正确的运算,难度不大.二 .填空题1.2019 湖南常德 3 分)规定:假如一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.依据规定判断下边四个结论:① 正方形和菱形都是广义菱形;② 平行四边形是广义菱形; ③ 对角线相互垂直,且两组邻边分别相等的四边形是广义菱形;④若 M 、 N 的坐标分别为( 0, 1),(0,﹣ 1), P 是二次函数y =x 2 的图象上在第一象限内的随意一点, PQ 垂直直线 y =﹣ 1 于点 Q ,则四边形 PMNQ 是广义菱形.此中正确的是 ①④ .(填序号)【剖析】 ① 依据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等, ①正确;② 平行四边形有一组对边平行,没有一组邻边相等,②错误;③ 由给出条件没法获得一组对边平行,③ 错误;④设点 P (m , m 2),则 Q (m ,﹣ 1),由股沟定理可得 PQ = MP = +1, MP = PQ和 MN ∥ PQ ,因此四边形 PMNQ 是广义菱形. ④ 正确;【解答】解: ①依据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,① 正确;② 平行四边形有一组对边平行,没有一组邻边相等,②错误;③ 由给出条件没法获得一组对边平行,③ 错误;④ 设点 P ( m , m 2),则 Q ( m ,﹣ 1),∴MP == ,PQ = +1,∵ 点 P 在第一象限,∴ m > 0, ∴ MP =+1,∴ MP =PQ ,又∵MN ∥PQ ,∴ 四边形 PMNQ 是广义菱形.④ 正确;故答案为 ①④ ;【评论】本题考察新定义,二次函数的性质,特别四边形的性质;娴熟掌握平行四边形,菱形,二次函数的图象及性质,将广义菱形的性质转变为已学知识是求解的重点.2.( 2019?山东临沂 ?3 分)一般地,假如 x 4= a ( a ≥0),则称 x 为 a 的四次方根,一个正数 a的四次方根有两个.它们互为相反数,记为 ± ,若=10,则 m = ±10 .【剖析】 利用题中四次方根的定义求解.【解答】 解: ∵ = 10,∴ m 4= 104,∴ m = ±10. 故答案为: ±10【评论】 本题考察了方根的定义.重点是求四次方根时,注意正数的四次方根有 2 个.3. (2019?河北省 ?4分)如图,商定: 上方相邻两数之和等于这两数下方箭头共同指向的数.示例: 即 4+3= 7则( 1)用含 x 的式子表示 m =( 2)当 y =﹣ 2 时, n 的值为;.1.【解答】解: ( 1)依据商定的方法可得:m =x+2x = 3x ;故答案为: 3x ;( 2)依据商定的方法即可求出nx+2 x+2x+3= m+n = y .当 y =﹣ 2 时, 5x+3=﹣ 2.解得 x =﹣ 1.∴ n = 2x+3=﹣ 2+3 = 1. 4.4. (2019?湖南常德 ?3 分)规定:假如一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.依据规定判断下边四个结论:① 正方形和菱形都是广义菱形;行四边形是广义菱形;③ 对角线相互垂直,且两组邻边分别相等的四边形是广义菱形;② 平④ 若M 、 N的坐标分别为(0, 1), (0,- 1),P是二次函数y =1 x2 的图象上在第一象限 4内的随意一点, PQ 垂直直线 y =- 1 于点 Q ,则四边形PMNQ 是广义菱形.此中正确的是. (填序号 )【考点】 阅读理解:几何新定义.【剖析】 ① 依据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,正确;② 平行四边形有一组对边平行,没有一组邻边相等,②错误;③ 由给出条件没法获得一组对边平行,③ 错误;①2④ 设点 P(m , m ),则 Q(m ,- 1),由勾股定理可得PQ = MP = +1 , MP =PQ 和MN ∥PQ ,因此四边形 PMNQ 是广义菱形. ④ 正确;【解答】 解: ①依据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,① 正确;② 平行四边形有一组对边平行,没有一组邻边相等, ②错误;③ 由给出条件没法获得一组对边平行,③ 错误;④ 设点 P(m ,m 2),则 Q(m ,- 1),∴MP ==,PQ =+1,∵ 点 P 在第一象限,∴ m > 0, ∴ MP =+1,∴ MP =PQ ,又∵MN ∥PQ ,∴ 四边形 PMNQ 是广义菱形.④ 正确.故答案为 ①④ .【评论】 本题考察新定义,二次函数的性质,特别四边形的性质;娴熟掌握平行四边形,菱形,二次函数的图象及性质,将广义菱形的性质转变为已学知识是求解的重点.三.解答题1. ( 2019 ·贵州安顺 ·10 分)阅读以下资料:对数的首创人是苏格兰数学家纳皮尔( J .Nplcr , 1550﹣ 1617 年),纳皮尔发明对数是在指数书写方式以前,直到 18 世纪瑞士数学家欧拉( Evlcr , 1707 ﹣1783 年)才发现指数与对数之间的联系.对数的定义:一般地,若xa = N ( a > 0 且 a ≠1),那么 x 叫做以 a 为底 N 的对数,记作 x= log a N ,比方指数式 4=16 能够转变为对数式 4= log 216,对数式 2= log 525,能够转变2 2为指数式 5 = 25.我们依据对数的定义可获得对数的一个性质:log a ( M?N )= log a M+log a N ( a > 0,a ≠1, M > 0, N > 0),原因以下:设 log a M = m , log a N =n ,则 M = a m , N = a n ,∴ M?N = a m ?a n = a m+n,由对数的定义得 m+n = log a (M ?N )又 ∵ m+n = log a M+log a N∴ log a ( M?N )= log a M+log a N依据阅读资料,解决以下问题:( 1)将指数式 4= 81 转变为对数式 ;3(2)求证: log a= log a M ﹣log a N( a>0, a≠1, M> 0, N> 0)( 3)拓展运用:计算log69+log 68﹣ log62=.【解答】解:( 1) 4= log 381(或 log381= 4),故答案为: 4= log 381;m n(2)证明:设 log a M= m, log a N= n,则 M= a ,N= a ,∴==a m﹣n,由对数的定义得m﹣n=log a,又∵ m﹣ n=log a M﹣ log a N,∴ log a=log a M﹣log a N;(3) log69+log6 8﹣ log 62= log6( 9 ×8 ÷2)= log 636= 2.故答案为: 2.2.( 2019?山东青岛 ?10 分)问题提出:如图,图①是一张由三个边长为 1 的小正方形构成的“L”形纸片,图② 是一张a×b的方格纸( a×b 的方格纸指边长分别为a, b 的矩形,被分红a×b 个边长为1 的小正方形,此中a≥2,b≥2,且 a, b 为正整数).把图①搁置在图②中,使它恰巧遮住图②中的三个小正方形,共有多少种不一样的搁置方法?问题研究:为研究规律,我们采纳一般问题特别化的策略,先从最简单的情况下手,再逐次递进,最后得出一般性的结论.研究一:把图①搁置在2×2 的方格纸中,使它恰巧遮住此中的三个小正方形,共有多少种不一样的搁置方法?如图③,对于2×2 的方格纸,要用图①遮住此中的三个小正方形,明显有4 种不一样的放置方法.研究二:把图①搁置在3×2 的方格纸中,使它恰巧遮住此中的三个小正方形,共有多少种不一样的搁置方法?如图④,在 3×2 的方格纸中,共能够找到 2 个地点不一样的2 2 ×方格,依照研究一的结论可知,把图①搁置在 3×2 的方格纸中,使它恰巧遮住此中的三个小正方形,共有2×4= 8种不一样的搁置方法.研究三:把图①搁置在 a×2 的方格纸中,使它恰巧遮住此中的三个小正方形,共有多少种不一样的搁置方法?如图⑤,在 a×2 的方格纸中,共能够找到(a﹣1)个地点不一样的2×2 方格,依照探究一的结论可知,把图①搁置在a×2 的方格纸中,使它恰巧遮住此中的三个小正方形,共有( 4a﹣ 4)种不一样的搁置方法.研究四:把图①搁置在 a×3 的方格纸中,使它恰巧遮住此中的三个小正方形,共有多少种不一样的搁置方法?如图⑥,在 a×3 的方格纸中,共能够找到(2a﹣2)个地点不一样的2×2 方格,依照探究一的结论可知,把图①搁置在a×3 的方格纸中,使它恰巧遮住此中的三个小正方形,共有( 8a﹣ 8)种不一样的搁置方法.问题解决:把图①搁置在a×b 的方格纸中,使它恰巧遮住此中的三个小正方形,共有多少种不一样的搁置方法?(模仿前方的研究方法,写出解答过程,不需绘图.)问题拓展:如图,图⑦是一个由 4 个棱长为 1 的小立方体构成的几何体,图⑧ 是一个长、宽、高分别为 a, b, c(a≥2, b≥2, c≥2,且 a, b, c 是正整数)的长方体,被分红了a×b×c 个棱长为 1 的小立方体.在图⑧ 的不一样地点共能够找到8( a﹣ 1)( b﹣ 1)( c﹣ 1)个图⑦这样的几何体.【剖析】对于图形的变化类的规律题,第一应找出图形哪些部散发生了变化,是依照什么规律变化的,经过剖析找到各部分的变化规律后直接利用规律求解.探访规律要认真察看、认真思虑,善用联想来解决这种问题.【解答】解:研究三:依据研究二,a×2 的方格纸中,共能够找到(a﹣ 1)个地点不一样的依据研究一结论可知,每个2×2 方格中有4 种搁置方法,因此在2×2 方格,a×2 的方格纸中,共可以找到( a﹣ 1)×4=( 4a﹣ 4)种不一样的搁置方法;故答案为a﹣ 1,4a﹣ 4;研究四:与研究三对比,本题矩形的宽改变了,能够沿用上一问的思路:边长为a,有( a﹣ 1)条边长为 2 的线段,同理,边长为3,则有 3﹣1= 2 条边长为 2 的线段,因此在 a×3 的方格中,能够找到2(a﹣ 1)=( 2a﹣ 2)个地点不一样的2×2 方格,依据研究一,在在a×3 的方格纸中,使它恰巧遮住此中的三个小正方形,共有(2a﹣ 2)×4=( 8a﹣ 8)种不一样的搁置方法.故答案为2a﹣ 2, 8a﹣ 8;问题解决:在 a×b 的方格纸中,共能够找到(a﹣ 1)( b﹣1)个地点不一样的2×2 方格,依照研究一的结论可知,把图①搁置在 a×b 的方格纸中,使它恰巧遮住此中的三个小正方形,共有 4( a﹣ 1)( b﹣ 1)种不一样的搁置方法;问题拓展:发现图⑦示是棱长为 2 的正方体中的一部分,利用前方的思路,这个长方体的长宽高分别为 a、 b、c,则分别能够找到( a﹣ 1)、( b﹣ 1)、( c﹣ 1)条边长为 2 的线段,因此在 a×b×c 的长方体共能够找到( a﹣1)(b﹣ 1)( c﹣ 1)地点不一样的 2×2×2 的正方体,再依据研究一类比发现,每个 2×2×2 的正方体有 8 种搁置方法,因此在 a×b×c 的长方体中共能够找到 8( a﹣ 1)( b﹣ 1)(c﹣ 1)个图⑦这样的几何体;故答案为 8( a﹣1)( b﹣1)( c﹣ 1).【评论】本题考察了平面图形的有规律变化,要修业生经过察看图形,剖析、概括并发现此中的规律,并应用规律解决问题是解题的重点.2.( 2019?山东威海 ?8 分)( 1)阅读理解如图,点 A,B 在反比率函数y=的图象上,连结AB,取线段AB 的中点 C.分别过点A,C,B 作 x 轴的垂线,垂足为E,F, G,CF 交反比率函数y=的图象于点D.点 E,F ,G 的横坐标分别为n﹣ 1,n, n+1(n> 1).小红经过察看反比率函数y=的图象,并运用几何知识得出结论:AE+BG= 2CF , CF> DF由此得出一个对于,,,之间数目关系的命题:若 n>1,则+>.(2)证明命题小东以为:能够经过“若小晴以为:能够经过“若请你选择一种方法证明(a﹣ b≥0,则 a≥b”的思路证明上述命题.a> 0, b> 0,且 a÷b≥1,则 a≥b”的思路证明上述命题.1)中的命题.【剖析】( 1)求出 AE, BG, DF ,利用 AE+BG= 2CF ,可得( 2)方法一利用求差法比较大小,方法二:利用求商法比较大小.【解答】解:( 1)∵ AE+BG= 2CF ,CF >DF , AE=,BG=∴+>.故答案为:+>.+ >., DF=,(2)方法一:∵+﹣==,∵n> 1,∴n( n﹣ 1)( n+1)> 0,∴+﹣>0,∴+>.方法二:∵=>1,∴+>.【评论】本题考察反比率函数图形上的点的坐标特点,反比率函数的图象等知识,解题的重点是理解题意,灵巧运用所学知识解决问题.。
2019全国中考数学真题分类汇编:反比例函数图象、性质及其应用
2019全国中考数学真题分类汇编:反比例函数图象、性质及其应用-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、选择题1.(2019·温州)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据A .y x =B .100y =C .y x =D .400y =【答案】A【解析】从表格中的近视眼镜的度数y (度)与镜片焦距x (米)的对应数据可以知道,它们满足xy=100,因此,y 关于x 的函数表达式为100y x =.故选A.2.(2019·株洲)如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则( )A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 32第9题【答案】B【解析】由题意知S 1=2k ,S △BOE =S △COF =2k,因为S 2=S △BOE -S △OME ,S 3=S △COF -S △OME ,所以S 2=S 3 ,所以选B 。
3.(2019·娄底)将1y x=的图象向右平移1个单位长度,再向上平移1个单位长度所得图象如图(3).则所得图象的解析式为( )A. 111y x =++ B . 111y x =-+ C . 111y x =+- D . 111y x =-- 【答案】C .【解析】二次函数平移的规律“左加右减,上加下减”对所有函数的图象平移均适合.∵将1y x =的图象向右平移1个单位长度后所得函数关系式为11y x =-,∴将1y x =的图象向右平移1个单位长度,再向上平移1个单位长度所得图象的解析式为111y x =+-.故选C .4.(2019·娄底)如图(1),⊙O 的半径为2,双曲线的解析式分别为1y x =和1y x=-,则阴影部分的面积为( )A . 4πB . 3πC . 2πD . π 【答案】C【解析】根据反比例函数1y x =,1y x =-及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积.∴21222S ππ=⨯=阴影.故选C .5.(2019·衡阳)如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx(m 为常数且m ≠0)的图象,都经过A (-1,2),B (2,-1),结合图象,则不等式kx +b >mx的解集是( ).A. x <-1B. -1<x <0C. x <-1或0<x <2D.-1<x <0或x >2【答案】C .【解析】由图象得,不等式kx +b >mx的解集是x <-1或0<x <2,故选C . 6. (2019·滨州)如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴的正半轴上,反比例函数y =kx(x >0)的图象经过对角线OB 的中点D 和顶点C .若菱形OABC 的面积为12,则k的值为( )A .6B .5C .4D .3【答案】C【解析】如图,连接AC ,∵四边形OABC 是菱形,∴AC 经过点D ,且D 是AC 的中点.设点A的坐标为(a ,0),点C 坐标为(b ,c ),则点D 坐标为(2a b,2c).∵点C 和点D 都在反比例函数y=k x 的图象上,∴bc=2a b ×2c,∴a=3b ;∵菱形的面积为12,∴ac=12,∴3bc=12,bc=4,即k=4.故选C .法2:设点A 的坐标为(a ,0),点C 的坐标为(c ,),则,点D 的坐标为(),∴,解得,k =4,故选C .7. (2019·无锡)如图,已知A 为反比例函数kyx(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为( ) A.2B. -2C. 4D.-4【答案】D 【解析】如图,∵AB ⊥y 轴, S △OAB =2,而S △OAB 12|k |,∴12|k |=2,∵k <0,∴k =﹣4.故选D .8. (2019·济宁)如图,点A 的坐标是(-2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到△A 'BC '.若反比例函数y =kx的图象恰好经过A 'B 的中点D ,则k的值是( )xy-6OA.9 B.12 C.15 D.18【答案】C【解析】取AB的中点(-1,3),旋转后D(3,5)∴k=3×5=15,故选C.9. (2019·枣庄) 如图,在平面直角坐标系中等腰直角三角形ABC的顶点A,B分别在x轴,y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数kyx(x>0)的图象上,若AB=1,则k的值为A.1D.2 【答案】A【解析】在等腰直角三角形ABC中,AB=1,∴AC∵CA⊥x轴,∴y C,Rt△ABC中,∠BAC=45°,CA⊥x轴,∴∠BAO=45°,∴∠ABO=45°,∴△ABO是等腰直角三角形,∴OA,∴x C=,k=x C`y C=1,故选A10. (2019·淄博)如图,11122233,,,OA B A A B A A B ∆∆∆…是分别以123,,,A A A …为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点111222333(,),(,),(,),C x y C x y C x y …均在反比例函数4y x=(x >0)的图象上,则12100y y y +++的值为( )A .210B .6C .42D .27【答案】20【解析】如图,过点C 1作C 1M ⊥x 轴,∵△OC 1A 1是等腰直角三角形,∴C 1M =OM =MA 1,设C 1的坐标是(a ,a )(a >0),,把(a ,a )代入解析式4y x=(a >0)中,得a =2, ∴y 1=2,∴A 1的坐标是(4,0), 又∵△C 2A 1A 2是等腰直角三角形,∴设C 2的纵坐标是b (b >0),则C 2的横坐标是4+b , 把(4+b ,b )代入函数解析式得b =44b+,解得b =2﹣2, ∴y 2=2﹣2,∴A 2的坐标是(2,0),设C 3的纵坐标是c (c >0),则C 3横坐标为2+c ,把(2+c ,c )代入函数解析式得c =42c+解得c =32,∴y 3=23﹣22.∵y 1=21﹣20,y 2=22﹣21,y 3=23﹣22,… ∴y 100=2100﹣299,∴y 1+y 2+y 3+…+y 100=2+22﹣2+2﹣22+…+2100﹣299=2100=20.11.(2019·凉山)如图,正比例函数y =kx 与反比例函数y =x4的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于( ) A.8 B.6 C.4 D .2【答案】C【解析】设A 点的坐标为(m ,4m),则C 点的坐标为(-m ,-4m),∴1414422ABC OBC OAB S S S m m m m∆∆∆=+=⨯+-⨯-=,故选C.12. (2019·天津) 若点A(-3,y 1),B(-2,y 2),C(1,y 3)都在反比例函数xy 12-=的图像上,则y 1,y 2,y 3的大小关系是A. y 2<y 1<y 3B. y 3 <y 1 <y 2C. y 1 <y 2<y 3D. y 3 <y 2<y 1 【答案】B【解析】因为反比例函数x y 12-=的图像在二四象限, 将A,B,C 三点在图像上表示,答案为B13. (2019·台州)已知某函数的图象C 与函数3y x=的图象关于直线y =2对称.下列命题:①图象C 与函数3y x=的图象交于点(32,2);②点(12,-2)在图象C 上;③图象C 上的点的纵坐标都小于4;④A(x 1,y 1),B(x 2,y 2)是图象C 上任意两点,若x 1>x 2,则y 1>y 2.其中真命题是( )A.①②B.①③④C.②③④D.①②③④【答案】A【解析】令y =2,得x =32,这个点在直线y =2上,∴也在图象C 上,故①正确;令x =12,得y =6,点(12,6)关于直线y =2的对称点为(12,-2),∴点(12,-2)在图象C 上,②正确;经过对称变换,图象C 也是类似双曲线的形状,没有最大值和最小值,故③错误;在同一支上,满足x 1>x 2,则y 1>y 2,但是没有限制时,不能保证上述结论正确,故④错误.综上所述,选A.【知识点】反比例函数图象的性质,对称变换,交点坐标,增减性14.(2019·重庆B 卷)如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,点A (10,0),sin ∠COA =45.若反比例函数y =kx(k ﹥0,x ﹥0)经过点C ,则k 的值等于( )【答案】C【解析】过C 作CD ⊥OA 交x 轴于D ∵OABC 为菱形,A (10,0)∴OC=OA =10.9题图∵sin ∠COA =45∴CD OC =45 即10CD =45∴CD =8, ∴OC =6, ∴C (6,8) ∵反比例函数y =kx(k ﹥0,x ﹥0)经过点C , k =6×8=48. 故选C.15. (2019·重庆A 卷)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数y =kx(k >0,x >0)的图象经过矩形对角线的交点E .若点A (2,0),D (0,4),则k 的值为 ( )A .16B .20C .32D .40【答案】B .【解析】如图,过点B 作BF ⊥x 轴于点F ,则∠AFB =∠DOA =90°.∵四边形ABCD 是矩形, ∴ED =EB ,∠DAB =90°.∴∠OAD +∠BAF =∠BAF +∠ABF =90°. ∴∠OAD =∠FBA . ∴△AOD ∽△BFA .∴OA ODBF AF=. ∵BD ∥x 轴,A (2,0),D (0,4), ∴OA =2,OD =4=BF . ∴244AF=. ∴AF =8.∴OF =10,E (5,4). ∵双曲线y =kx过点E , ∴k =5×4=20. 故选B .二、填空题 1.(2019·威海)如图,在平面直角坐标系中,点A ,B 在反比例函数()0ky k x=≠的图像上运动,且始终保持线段AB =M 为线段AB 的中点,连接OM .则线段OM 的长度的最小值是(用含k 的代数式表示).【解析】过点A作x轴⊥AC,过点B作y轴⊥BD,垂足为C,D,AC与BD相交于点F,连接OF.当点O、F、M在同一直线上时OM最短.即OM垂直平分AB.设点A坐标为(a,a+4),则点B坐标为(a+4,a),点F坐标为(a,a).由题意可知△AFB为等腰直角三角形,∵AB=∴AF=BF=4,∵点A在反比例函数y=的图像上,∴a (a+4)=k,解得a=2,在RT△OCF中,OFa=2)=∴OM=OF+FM=2.(2019·山西)如图,在平面直角坐标系中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A的坐标为(-4,0),点D的坐标为(-1,4),反比例函数y=kx(x>0)的图象恰好经过点C,则k的值为________.第14题图【答案】16【解析】分别过点D,C作x轴的垂线,垂足为E,F,则AD=5,∴AB=CB=5,∴B(1,0),由△DAE≌△CBF,可得BF=AE=3,CF=DE=4,∴C(4,4),∴k=xy=16.第14题答图3.(2019·黄冈)如图,一直线经过原点0,且与反比例函数y=kx(k>0)相交于点A,点B,过点A作AC⊥y轴,垂足为C.连接B C.若△ABC的面积为8,则k= .【答案】8【解析】因为反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=8÷2=4,又∵A是反比例函数y=kx图象上的点,且AC⊥y轴于点C,∴△AOC 的面积=12|k |,∴12|k |=2,∵k >0,∴k =8.4.(2019·益阳)反比例函数xky =的图象上有一点P(2,n),将点P 向右平移1个单位,再向下平移1个单位得到点Q.若点Q 也在该函数的图象上,则k = . 【答案】6【解析】∵P(2,n)向右平移1个单位,再向下平移1个单位得到点Q (3,n-1),且点P 、Q 均在反比例函数x k y =的图象上,∴⎪⎪⎩⎪⎪⎨⎧=-=312kn k n ,∴312k k =-,解得k=6.5. (2019·潍坊)如图,Rt △AOB 中,∠AOB =90°,顶点A ,B 分别在反比例函数1(0)y x x=>与5(0)y x x-=<的图象上.则tan ∠BAO 的值为 .【解析】分别过点A 、B 作x 轴的垂线AC 和BD ,垂足为C 、D .则△BDO ∽△OCA ,∴2S =()SBDO OCABD OA∵S △BDO =52,S △ACO =12,∴2()=5BD OA, ∴tan∠BAO =BDOA=6. (2019·巴中)如图,反比例函数kyx(x>0)经过A,B 两点,过点A 作AC ⊥y 轴于点C,过点B 作BD ⊥y 轴于点D,过点B 作BE ⊥x 轴于点E,连接AD,已知AC =1,BE =1,S 矩形BDOE =4,则S △ACD =________.【答案】32【解析】连接AO,由反比例函数k 的几何意义可知,S △AOC =12S 矩形BDOE =2,因为AC =1,所以CO =4,因为DO =BE =1,所以CD =3,所以S △ACD =32.7. (2019·达州) 如图,A 、B 两点在反比例函数xk y 1=的图像上,C 、D 两点在反比例函数xk y 2=的图像上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC=2,BD=4,EF=3,则12k k -=___________..〈【答案】4 【解析】设A (m ,m k 1) B (m ,m k 2) C (n ,n k 1) D (n ,n k 2) 由题意得:m-n=3 ,212=-m k k ,421=-n kk , 联立三个式子,解得:412=-k k . 8.(2019·长沙)如图,函数ky x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM 于点M ,则∠MBA=30°;③若M 点的横坐标为1,△OAM 为等边三角形,则k =2;④若MF=25MB ,则MD=2MA .其中正确的结论的序号是 .【答案】①③④9. (2019·眉山)如图,反比例函数()0k y x x=>的图像经过矩形OABC 对角线的交点M ,分别交AB 、BC 于点D 、E ,若四边形ODBE 的面积为12,则k 的值为 .【答案】4【解析】由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =12|k|,S △OAD =12|k|,过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S 矩形ONMG =|k|,又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S 矩形ONMG =4|k|,由于函数图象在第一象限,∴k >0,则12422k k k ++=,∴k=4.故选:B.10. (2019·湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x -1分别交x 轴、y 轴于点A 和点B ,分别交反比例函数y 1=k x (k >0,x >0),y 2=2k x(x <0)的图像于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是 .【答案】2.【解析】如答图,过点D作DF⊥y轴于点F,则由CE⊥x轴于点E可知:S△OCE=k,S△ODF=2k.∵△COE的面积与△DOB的面积相等,∴S△OBD=S△FBD.易知A(2,0),B(0,-1),从而OB=BF=1,OF=2.令D(m,-2),则由D点在直线y=12x-1上,得-2=12m-1,解得m=-2,故D(-2,-2),从而2k=(-2)×(-2),解得k=2.11.(2019·宁波)如图,过原点的直线与反比例函数kyx(k>0)的图象交于A,B两点,点A在第一象限,点C在x轴正半轴上,连接AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE 的垂线,垂足为E,连接DE,若AC=3DC,△ADE的面积为8,则k的值为________.【答案】6【解析】连接OE,在Rt△ABE中,点O是AB的中点,∴OE=12AB=OA,∴∠OAE=∠OEA,∵AE 为∠BAC的平分线,∴∠OAE=∠DAE,∴∠OEA=∠DAE,∴AD∥OE,∴S△ADE=S△ADO,过点A 作AM⊥x轴于点M,过点D作DN⊥x轴于点N,易得S梯AMND=S△ADO,∵△CAM∽△CDN,CD:CA=1:3,∴S△CAM=9,延长CA交y轴于点P,易得△CAM∽△CPO,可知DC=AP,∴CM:MO=CA:AP=3:1,∴S△CAM:S△AMO=3:1,∴S△AMO=3,∵反比例函数图象在一,三象限,∴k=6.12. (2019·衢州)如图,在平面直角坐标系中,O为坐标原点,口ABCD的边AB在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处,点B恰好为OE的中点,DE与BC交于点F.若y=kx(k≠0)图象经过点C.且S△BEF=1,则k的值为 .【答案】24【解析】连接OC ,作FM ⊥AB 于M ,延长MF 交CD 于N ,设BE = a ,FM =b ,由题意知OB=BE=a ,OA =2a ,DC =3a ,因为四这形ABCD 为平行四边形,所以DC ∥AB ,所以△BEF ∽△CDF ,所以BE :CD =EF :DF =1:3,所以NF =3b ,OD =FM +FN =4b ,因为S △BEF =1,即12ab =1,S △CDO =12CD ·OD =123a ×4b =6ab =12,所以k =xy =2S △CDO =24.三、解答题1.(2019浙江省杭州市,20,10分)(本题满分10分)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速股为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1) 求v 关于t 的函数表达式.(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地.求小汽车行驶速度v 的范围.②方方能否在当天11点30分前到达B 地?说明理由.【解题过程】(1)∵ vt=480,且全程速度限定为不超过120千米/小时,∴ v 关于t 的函数表达式为:v=480t(0≤t ≤4); FNF(2)① 8点至12点48分时间长为245小时,8点至14点时间长为6小时, 将t=6代入v=480t 得v=80;将t=245代入v=480t得v=100.∴ 小汽车行驶速度v 的范围为:80≤v ≤100. ② 方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t=72代入v=480t 得v=9607>120千米/小时,超速了.故方方不能在当天11点30分前到达B 地.2.(2019·苏州,25,8)如图,A 为反比例函数y =k x(其中k >0)图像上的一点,在上轴正半轴上有一点B ,OB =4连接OA ,A B .且OA =AB =2(1)求K 的值;(2)过点B 作BC ⊥ OB ,交反比例函数y =k x(其中k >0)的图像于点C ,连接OC 交AB 于点D ,求ADDB的值.第25题图【解题过程】解:(1)过点A 作AE ⊥OB 于E .∵ OA =AB OB =4,∴ OE =BE =12OB =2, 在Rt △OAE 中,AE 6,∴点A 坐标为(2,6), ∵点A 是反比倒函数k y x=图像上的点,∴ 6=2k ,解得k =12.第25题答图(2)记AE 与OC 的交点为F .∵OB =4且BC ⊥OB ,点C 的横坐标为4,又∵点C 为反比例函数y =12x图像上的点,∴点C 的坐标为(4,3),∴BC =3. 设直线OC 的表达式y =mx ,将C (4,3)代入可得m =34,∴直线OC 的表达式y =34x ,∵AE ⊥OB ,OE =2,∴点F 的横坐标为2.将x =2代入y =34x 可得y =32,即EF =32;∴AF =A E -EF =6 -32=92.∵AE ,BC 都与x 轴垂直,∴AE ∥BC ,∴△ADF ∽△BD C .∴32AD AF EB BC ==. 3.(2019山东威海,21,8分) (1)阅读理解如图,点A ,B 在反比例函数的图象上,连接AB ,取线段AB 的中点C ,分别过点A ,C ,B 作x 轴的垂线,垂足为E ,F ,G ,CF 交反比例函数的图象于点D ,点E ,F ,G 的横坐标分别为n -1,n ,n +1(n >1). 小红通过观察反比例的图象,并运用几何知识得到结论: AE +BG =2CF ,CF >DF . 由此得出一个关于之间数量关系的命题: 若n >1,则1y x=1y x=1y x=112,,11n n n-+(2)证明命题小东认为:可以通过“若≥0,则≥”的思路证明上述命题.小晴认为:可以通过“若>0,>0,且≥1,则≥”的思路证明上述命题. 请你选择一种方法证明(1)中的命题. 【解题过程】(1)∵A ,D ,B 都在反比例的图象上,且点E ,F ,G 的横坐标分别为n -1,n ,n +1(n >1), ∴AE =BG =DF =. 又∵AE +BG =2CF ,∴CF = 又∵CF >DF ,n >1,∴>,即>.故答案为>. (2)选择选择小东的思路证明结论>, ∵n >1,a b -a b a b a b ÷a b 1y x=1,1n -1,1n +1n111(),211n n +-+111()211n n +-+1n 1111n n +-+2n 1111n n +-+2n1111n n +-+2n∴>0, ∴>. 4、(2019江苏盐城卷,19,8) 如图,一次函数y =x +1的图像交y 轴于点A ,与反比例函数xky =(x >0)图像交于点B (m ,2). (1)求反比例函数的表达式. (2)求△AOB 的面积.【思路分析】(1)根据已知条件,可以求出点A 的坐标,在根据一次函数与反比例函数交于点B ,就可以求出点B 点的横坐标m ,则点B 的坐标就有了,所以就可以求出反比例函数的表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阅读理解、图表信息一、选择题1. (2019•广西贺州,第12题3分)张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(0>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A.2B.1C.6D.10考点:分式的混合运算;完全平方公式.专题:计算题.分析:根据题意求出所求式子的最小值即可.解答:解:得到x>0,得到=x+≥2=6,则原式的最小值为6.故选C点评:此题考查了分式的混合运算,弄清题意是解本题的关键.2. (2019•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是(),,(、底边上的高是=二.填空题三.解答题1. (2019•安徽省,第22题12分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.菁优网专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键.2. (2019•珠海,第20题9分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∵y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是1<x+y<5.(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示).3.(2019•四川自贡,第23题12分)阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD 的边AB上的“强相似点”.解决问题:(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.==.4.(2019·浙江金华,第22题10分)(1)阅读合作学习内容,请解答其中的问题.(2)小亮进一步研究四边形的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE 能否全等?能否相似?”针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由. 【答案】(1)①()6y x >0x=;②()3,2 ;(2)这两个矩形不能全等,这两个矩形的相似比为56. 【解析】∴6n mm 23n⎧=⎪⎨⎪-=-⎩,解得m 3n 2=⎧⎨=⎩或m 2n 3=⎧⎨=⎩. ∴点F 的坐标为()3,2 .(2)这两个矩形不能全等,理由如下:设点F 的坐标为()m,n ,则AE m 2,AF 3n =-=- ,考点:1. 阅读理解型问题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.正方形的和矩形性质;5.全等、相似多边形的判定和性质;6.反证法的应用.5. (2019年江苏南京,第27题)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(第1题图)【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.考点:全等三角形的判定与性质分析:(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.解答:(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE 的延长线于H,∵∠B=∠E,且∠B、∠E都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.点评:本题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.6. (2019•扬州,第26题,10分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==B.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?==1,;<≤,2≤<﹣=,.7.(2019•济宁第21题9分)阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=(a+b+c)r.∴r=.(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求的值.++=.==20=126===.。