高一数学等比数列的前n项和练习

合集下载

等比数列的前n项和公式专题练习(解析版)

等比数列的前n项和公式专题练习(解析版)

等比数列的前n 项和公式一、单选题 1.(2021·内蒙古宁城·高三月考(文))已知{}n a 是等比数列,若12a =,528a a =,数列{}n a 的前n 项和为n S ,则n S 为( ) A .22n - B .121n +- C .122n +- D .21n -【答案】C 【分析】设公比为q ,根据528a a =求得公比,再利用等比数列前n 项和的公式即可得出答案. 【详解】 解:设公比为q ,因为528a a =,所以3528a q a ==,所以2q ,所以()12122212nn n S +⨯-==--.故选:C.2.(2021·河北·高三月考)已知正项等比数列{}n a 的前n 项和为n S ,42S =,810S =,则{}n a 的公比为( ) A.1 B C .2 D .4【答案】B 【分析】利用等比数列的性质求解即可. 【详解】因为42S =,810S =,{}n a 为正项等比数列,所以4845678412344S S a a a a q S a a a a -+++===+++,解得q 故选:B .3.(2021·西藏·拉萨那曲第二高级中学高三月考(文))记等比数列{}n a 的前n 项和为n S ,若214a =,378S =,则公比q = ( ) A .12-B .12C .2D .12或2【答案】D 【分析】根据等比数列的性质可得2132116a a a ==,再由378S =,可得1358a a +=,分别求出13,a a ,即可得出答案. 【详解】解:在等比数列{}n a 中,若214a =,则2132116a a a ==,312378S a a a =++=,所以1358a a +=, 由13116a a =,1358a a +=,解得131218a a ⎧=⎪⎪⎨⎪=⎪⎩,或131812a a ⎧=⎪⎪⎨⎪=⎪⎩,当131218a a ⎧=⎪⎪⎨⎪=⎪⎩时,2112a a q ==, 当131812a a ⎧=⎪⎪⎨⎪=⎪⎩时,212a q a ==, 所以q =12或2.故选:D.4.(2021·全国·高二单元测试)设n S 为数列{}n a 的前n 项和,()112322n n n a a n ---=⋅≥,且1232a a =.记n T 为数列1nn a S ⎧⎫⎨⎬+⎩⎭的前n 项和,若对任意*n ∈N ,n T m <,则m 的最小值为( ) A .3 B .13C .2D .12【答案】B 【分析】 由已知得()111112242n n n n a a n --⎛⎫-=-≥ ⎪⎝⎭.再求得13a =,从而有数列12n n a ⎧⎫-⎨⎬⎩⎭是以12为首项,14为公比的等比数列,由等比数列的通项公式求得n a ,再利用分组求和的方法,以及等比数列求和公式求得n S ,从而求得n T 得答案. 【详解】解:由()112322n n n a a n ---=⋅≥,得()111322424n n n n a a n --=⋅+≥,∴()111112242n n n n a a n --⎛⎫-=-≥ ⎪⎝⎭. 又由()112322n n n a a n ---=⋅≥,得2126a a -=,又1232a a =,∴13a =.所以111122a -=,∴数列12n n a ⎧⎫-⎨⎬⎩⎭是以12为首项,14为公比的等比数列,则12111112242n n n na --⎛⎫⎛⎫-=⋅= ⎪ ⎪⎝⎭⎝⎭,∴()12122122n n n nn a --=+=+,∴()()231111212112122222221221212nn n n n n n S --⎛⎫- ⎪-⎛⎫⎝⎭=++⋅⋅⋅+++++⋅⋅⋅+=+=⋅- ⎪-⎝⎭-,∴111112222232n n n n nn n a S --==+++⋅-⋅.∴+12111111111122113222332312n n n n T ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=++⋅⋅⋅+=⨯=-< ⎪ ⎪⎝⎭⎝⎭-. ∵对任意*n ∈N ,n T m <,∴m 的最小值为13.故选:B.5.(2021·江苏省苏州第十中学校高二月考)已知等比数列{a n }的首项为1,公比为2,则a 12+a 22+⋯+a n 2=( ) A .(2n ﹣1)2 B .()1213n- C .4n ﹣1 D .()1413n- 【答案】D 【分析】根据等比数列定义,求出214n n n b a -==,可证明{}n b 是以1为首项,4为公比的等比数列,利用等比数列的求和公式,可得解 【详解】由等比数列的定义,11122n n n a --=⋅=故222124n n n n b a --=== 由于112144,104n n n n b b b ---===≠ 故{}n b 是以1为首项,4为公比的等比数列 a 12+a 22+⋯+a n 2=1(14)41143n n ⋅--=- 故选:D6.(2021·河南郑州·高二期中(理))设n A ,n B 分别为等比数列{}n a ,{}n b 的前n 项和.若23n n n n A aB b+=+(a ,b 为常数),则74a b =( )A .12881B .12780C .3227D .2726【答案】C 【分析】设(2),(3)n nn n A a m B b m =+=+,项和转换776a A A =-,443b B B =-求解即可【详解】由题意,23n n n n A a B b+=+ 设(2),(3)n nn n A a m B b m =+=+则76776[(2)(2)]64a A A a a m m =-=+-+=()()434433354b B B b b m m ⎡⎤=-=+-+=⎣⎦7464325427a mb m ∴== 故选:C7.(2021·河南郑州·高二期中(理))设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列.已知数列{}n n a b +的前n 项和()2*51N n n S n n =+-∈,则d q -=( )A .3-B .1-C .2D .4【答案】A 【分析】设数列{}n a 和{}n b 的前n 项和分别为,n n A B ,然后利用分求出,n n A B ,再利用n n n S A B =+列方程,由对应项的系数相等可求出结果 【详解】设数列{}n a 和{}n b 的前n 项和分别为,n n A B ,则 ()()1211111,222111n n n n b q n n db d d q A a n a n n B q q q --⎛⎫=+=-+==-⎪---⎝⎭(1q ≠), 若1q =,则1n B nb =,则2211()5122n nn n d d S A n B a n n nb =+==+++--,显然没有出现5n ,所以1q ≠,所以21121221511n n b n b q d d a n n q q ⎛⎫-++-+= ⎪--⎝-⎭, 由两边的对应项相等可得110,1,5,1221b d da q q-====--, 解得111,2,5,4a d q b ====, 所以3d q -=-.8.(2021·福建·泉州科技中学高三月考)我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列233464510105,,,,,,,,,,,则此数列的前35项和为( )A .994B .995C .1003D .1004【答案】B 【分析】没有去掉“1”之前,可得每一行数字和为首项为1,公比为2的等比数列,可求出其前n 项和为21n n S =-,每一行的个数构成一个首项为1,公差为1的等差数列,从而可求出前n 项总个数为(1)2n n n T +=,由此可计算出第10行去掉“1”后的最后一个数为第36个数,从而可求出前35项和。

人教版高中数学选择性必修第二册4.3.2等比数列的前n项和公式(2课时)

人教版高中数学选择性必修第二册4.3.2等比数列的前n项和公式(2课时)

请做:课时作业(十三)
4.等比数列{an}的前 n 项和为 Sn,已知 S1,2S2,3S3 成等 1
差数列,则{an}的公比为___3_____.
解析 由题意得 2(2S2)=S1+3S3,即 4S2=S1+3S3,很明显公 比 q≠1,则 4·a1(11--qq2)=a1+3·a1(11--qq3),解得 q=13.
列的公比,即SS偶奇=q. (3)若一个非常数列{an}的前 n 项和 Sn=Aqn-A(A≠0,q≠0,
n∈N*),则数列{an}为等比数列,即 Sn=Aqn-A⇔数列{an}为等 比数列.
(4)若数列{an}是公比为 q 的等比数列,则 Sn+m=Sn+qn·Sm.
思考题 1 已知等比数列{an},an>0,S3=6,a7+a8+a9=
A.X+Z=2Y C.Y2=XZ
B.Y(Y-X)=Z(Z-X) D.Y(Y-X)=X(Z-X)
解析 根据等比数列的性质:若{an}是等比数列, 则 Sn,S2n-Sn,S3n-S2n 也成等比数列. 据此 X,Y-X,Z-Y 成等比数列. 故(Y-X)2=X(Z-Y),整理得 Y(Y-X)=X(Z-X).故选 D.
解得ad1==31,,或da1==-8,4. 因此 Sn=12n(3n-1)或 Sn=2n(5-n).
探究 2 在等差数列{an}中,通常把首项 a1 和公差 d 作为基 本量,在等比数列{bn}中,通常把首项 b1 和公比 q 作为基本量, 列关于基本量的方程(组)是解决等差数列和等比数列问题的常用 方法.
探究 3 在弄不清一个等比数列的公比是不是等于 1 时,要 分两种情况讨论.(这种情况经常发生在公比 q 用字母表示时)
q=1 时,不能用公式 Sn=a1(11--qqn)及 Sn=a11--aqnq求和; q≠1 时,也不能用公式 Sn=na1 求和.

高中数学第1章数列 等比数列前n项和的性质及应用同步练习湘教版选择性必修第一册

高中数学第1章数列 等比数列前n项和的性质及应用同步练习湘教版选择性必修第一册

第2课时等比数列前n项和的性质及应用A级必备知识基础练1.(2022河南南阳高二期中)已知等比数列{a n}的前n项和为S n=4n+a,则实数a的值等于()A.-4B.-1C.0D.12.已知在等比数列{a n}中,a1=1,a1+a3+…+a2k+1=85,a2+a4+…+a2k=42,则k=()A.2B.3C.4D.53.已知{a n}是各项都为正数的等比数列,S n是它的前n项和,若S4=6,S8=18,则S16=()A.48B.54C.72D.904.(2022天津河西高二期末)已知等比数列的首项为-1,前n项和为S n,若,则公比q=()A.2B.-2C.D.-5.已知在等比数列{a n}中,a1=1,且=8,那么数列的公比为,S5= .6.已知正项等比数列{a n}共有2n项,它的所有项的和是奇数项的和的3倍,则公比q= .7.(2022安徽宣城高二期末)已知等比数列{a n}为递增数列,且前n项和为S n,S3=,a3a4=a5.(1)求数列{a n}的通项公式;(2)若4a n=3S n,求正整数n的值.B级关键能力提升练8.已知等比数列{a n}的前n项和为S n,若a1+a3=5,S4=20,则=()A.9B.10C.12D.179.(2022河南新乡高二期中)已知等比数列{a n}的前n项和为S n,若,则数列{a n}的公比q=()A.2B.-2C. D.-10.某工厂购买一台价格为a万元的机器,实行分期付款,每期付款b万元,每期为一个月,共付12次,如果月利率为5‰,每月复利一次,则a,b满足()A.b=B.b=C.b=D.<b<11.已知等比数列{a n}的公比q>0,前n项和为S n,则的大小为()A.B.C.D.12.(多选题)(2022江苏常州高二期中)记数列{a n}的前n项和为S n,则下列四个说法错误的有()A.若对于∀n∈N+,=a n a n+2,则数列{a n}为等比数列B.若S n=Aq n+B(非零常数q,A,B满足q≠1,A+B=0),则数列{a n}为等比数列C.若数列{a n}为等比数列,则S n,S2n-S n,S3n-S2n,…仍为等比数列D.设数列{a n}是等比数列,若a1<a2<a3,则{a n}为递增数列13.某市共有1万辆燃油型公交车.有关部门计划于2022年投入128辆电力型公交车,以后电力型公交车每年投入的辆数比上一年增加50%.(1)求该市在2028年应该投入多少辆电力型公交车;(2)求到哪一年底,电力型公交车的数量开始超过公交车总量的.(已知37=2 187,38=6 561)C级学科素养创新练14.某市为鼓励全民健身,从2021年7月起向全市投放A,B两种型号的健身器材.已知2021年7月投放A型健身器材300台,B型健身器材64台,自8月起,A型健身器材每月的投放量均为a 台,B型健身器材每月的投放量比上一月多50%.若2021年12月底该市A,B两种健身器材投放总量不少于2 000台,则a的最小值为()A.243B.172C.122D.7415.设S n是等比数列{a n}的前n项和,若,求的值.参考答案第2课时等比数列前n项和的性质及应用1.B根据题意,等比数列{a n}的前n项和为S n=4n+a,则a1=41+a=4+a,a2=S2-S1=(42+a)-(4+a)=12,a3=S3-S2=(43+a)-(42+a)=48,则有(4+a)×48=144,解得a=-1.故选B.2.B设等比数列{a n}的公比为q,则a1+a3+…+a2k+1=a1+a2q+…+a2k q=85,即q(a2+…+a2k)=85-1=84.因为a2+a4+…+a2k=42,所以q=2.则a1+a2+a3+…+a2k+a2k+1=85+42=127=,即128=22k+1,解得k=3,故选B.3.D因为{a n}是各项都为正数的等比数列,S n是它的前n项和,且由题意可知q≠-1,所以S4,S8-S4,S12-S8,S16-S12也成等比数列,且公比为=2.所以S12-S8=2(S8-S4)=24,所以S12=42,因此S16-S12=2(S12-S8)=48,所以S16=90.故选D.4.D(方法1)当q=1时,=2,不满足题意;当q≠1时,S10=,S5=,则=q5+1=,解得q=-.故选D.(方法2)设S10=31k,S5=32k(k∈R,且k≠0),则由S10=S5+q5S5可知31k=S5(1+q5)=32k(1+q5),解得q=-.故选D.5.831设公比为q,∵=8,a1=1,∴=q3=8,∴q=2.∴S5==31.6.2设等比数列{a n}的奇数项之和为S奇,偶数项之和为S偶,前2n项之和为S2n,则S偶=a2+a4+…+a2n=a1q+a3q+…+a2n-1q=q(a1+a3+…+a2n-1)=qS奇.由S2n=3S奇,得(1+q)S奇=3S奇.因为a n>0,所以S奇>0,所以1+q=3,q=2.7.解(1)设公比为q,由a3a4=a5,可得q5=a1q4,故a1q=1.因为S3=a1+a2+a3=,所以+1+q=,解得q=3或q=.故可得a1>0,又因为{a n}为递增数列,所以q=3.故a n=a2q n-2=.(2)由(1)可得,S n=,若4a n=3S n,则4×3n-2=(3n-1),解得n=2.8.B设等比数列{a n}的公比为q,因为S4=a1+a2+a3+a4=a1+a3+a2+a4=a1+a3+q(a1+a3)=(1+q)(a1+a3)=5(1+q)=20,所以q=3,则=q2+1=10.故选B.9.C由已知q≠1,则解得10.D因为b(1+1.005+1.0052+…+1.00511)=a(1+0.005)12,所以12b<a(1+0.005)12,所以b<.显然12b>a,即<b<.11.C+1,+1.因为q>0,所以+1>0,即.12.AC若a n=0,满足对于∀n∈N+,=a n a n+2,但数列{a n}不是等比数列,故A错误.当n≥2时,a n=S n-S n-1=Aq n+B-(Aq n-1+B)=Aq n-1(q-1)且q≠1;当n=1时,a1=S1=Aq+B=A(q-1)符合上式.故数列{a n}是首项为A(q-1),公比为q的等比数列,故B正确.若数列{a n}为等比数列,当公比q=-1,且n为偶数时,此时S n,S2n-S n,S3n-S2n,…均为0,不是等比数列,故C错误.设数列{a n}是等比数列,且公比为q,若a1<a2<a3,即a1<a1q<a1q2,若a1>0,可得1<q<q2,即q>1,则{a n}为递增数列;若a1<0,可得1>q>q2,即0<q<1,则{a n}为递增数列.故D正确.13.解(1)依题意可知,从2022年起每年投入的电力型公交车的辆数可构成等比数列{a n},其中a1=128,q=,则a7=a1q6=128×6=1458.故2028年应投入电力型公交车1458辆.(2)设{a n}的前n项和为S n,则S n==256n-1.由S n>(10000+S n)×,得S n>5000,即256n-1>5000,即n>,又n∈N+,∴n≥8.故到2029年底电力型公交车的数量开始超过该市公交车总量的.14.D设B型健身器材这6个月投放量构成数列{b n},则b n是以b1=64为首项,以q=为公比的等比数列,∴其前6项和为S6==1330.则令5a+300+1330≥2000,解得a≥74,故选D.15.解(方法1)设等比数列{a n}的公比为q,由题意可知q≠1,则S n=.∵,∴,即1+q5=3,∴q5=2,∴.(方法2)设S5=k,S10=3k(k∈R,且k≠0),由题意可得q≠-1,则S5,S10-S5,S15-S10,S20-S15成等比数列,则S15-S10=4k,S20-S15=8k,可得S15=7k,S20=15k,故.。

等比数列的前n项和练习含答案

等比数列的前n项和练习含答案

课 时 作 业 1 1 等 比 数 列 的 前 n 项 和课堂训练10项和为 ( )B .2-29C .2-210答案】2.已知数列 {a n }的前 n 项和 S n =2n -1,则此数列奇数项的前 n项和为 ( )(2n +1-1)(22n -1)答案】 C解析】 由 S n =2n -1 知{a n }是首项 a 1=1,公比 q =2 的等比 数列.所以奇数项构成的数列是首项为 1,公比为 4 的等比数列. 所以此数列奇数项的前 n 项和为 31(22n -1).3.等比数列 {a n }中, a 1= 1, a n =- 512,S n =- 341,则时间:45 分钟 满分: 100分1.在等比数列 { a n }( n ∈ N +)中,若 a 1=1, a 4= 18,则该数列的前 A . 2-28D .2-211解析】 由 a 4= a 1q 3= q 3= 1= 2,所以110 21 0= 1= 2-291- 1-(2n +1-2)(22n -2)公比qn=【答案】- 2 10 a1-a n q 1+512q【解析】由S n=得=-341?q=-2,1-q 1-q再由a n=a1·q n-1?n=10.4.已知{ a n}是公差不为零的等差数列,a1=1,且a1,a3,a9 成等比数列.(1)求数列{a n}的通项;(2)求数列{2 a n}的前n项和S n.【解析】本题考查等差与等比数列的基本性质,第一问只需设出公差d,从而得到关于 d 的方程式求解,第二问直接利用等比数列前n 项和公式即可求得.1+2d 解:(1)由题设知公差d≠0,由a1=1,a1,a3,a9 成等比数列得11+8d=,解得d=1,d=0(舍去),故{ a n}的通项a n=1+(n-1)×1 1+2d=n.(2)由(1)知2a n=2n,由等比数列前n 项和公式得n S n=2+22+23+⋯+2n==2n2 1-2+1-2.1-2课后作业一、选择题(每小题 5 分,共40分)1.已知等比数列的公比为2,且前 5 项和为1,那么前10 项和2.设 f(n)=2+24+27+210+⋯+23n +1(n ∈N +),则 f(n)等于( ) (8n - 1) (8n +1-1)(8n +3- 1)(8n +4-1)答案】 B解析】 依题意, f(n)是首项为 2,公比为 8 的等比数列的前 n +1 项和,根据等比数列的求和公式可得.3.已知等比数列的前 n 项和 S n =4n +a ,则 a 的值等于 ( )A .-4B .-1C .0D .1【答案】 B【解析】 ∵S n =4n + a ,∴a n =S n -S n -1(n ≥2)=4n +a -(4n -1+a)等于 ( )A .31 C .35【答案】 B B .33 D .37解析】S5=a 1 1-q 5 =a 1 1-25 =1 1- q 1-2a 11. 31.a 1∴S 10= 1-q 101-q1 31 1-210 1-2=33,故选 B.=3C .S n =4-3a n【答案】 D D .S n =3-2a n=3·4n -1(n ≥2).当 n =1 时, a 1=S 1=4+a , 又∵{ a n }为等比数列,∴3×41-1=4+a ,解得 a =-1.4.设 S n 为等比数列 {a n }的前 n 项和,8a 2+a 5=0,则S S 5=( ) A .11 C .- 8【答案】 DB .5 D .-11解析】 设数列的公比为 q ,则 8a 1q +a 1q 4=0,解得 q =-2, a 1 1-q 5S 5= 1-qS2 a 1 1-q 21-q52=- 11,故选D. 1-q 21-q25.(2013 ·新课标Ⅰ文 )设首项为 1,公比为 3的等比数列 {a n }的前n 项和为 S n ,则 ( )A . S n = 2a n -1B .S n =3a n -2 解析】 由题意得,an=2 2 21-n1-n-12 n-11-3 1- 3 3(3)n-1,S n=21-3=3- 2a n ,选 D.6.在等比数列 {a n } 中, a 9+a 10=a(a ≠0),a 19+ a 20=b ,则 a 99+ a 100 等于 ( )B .(b a )9 D .(b a )10【答案】 A【解析】 由等比数列的性质知a 9+a 10,a 19+ a 20, ⋯,a 99+a 100 成等比数列.且首项为 a(a ≠0),公比为 a b .a7.某商品零售价 2008年比 2006年上涨 25%,欲控制 2009年比 2006年上涨 10%,则 2009年应比 2008年降价( )A .15%B .12%C . 10%D .5%【答案】 B【解析】 设 2006年售价为 a 元.则 2008年售价为 a(1+25%)元, 2009 年售价为 a(1+10%)元.则 2009 年应比 2008 年降价:a 1+25% -a 1+ 10%a 1+ 25%∴a 99+a 100=a(ba )10-1b 9=a 8.∴应降低12%,选 B.8.等比数列 {a n }共有 2n +1 项,奇数项之积为 100,偶数项之积 为 120,则 a n +1= ( )C . 20D .110【答案】 B【解析】 设公比为 q ,由题知: S 奇=a 1·a 3·⋯·a 2n +1=100,S 偶 = a 2·a 4·⋯·a 2n = 120,二、填空题 (每小题 10分,共 20 分)9.设等比数列 { a n }的公比 q =1 2 32,前 n 项和为 S n ,则a S4=_________________________________________________________【答案】 15解析】 因为数列 { a n }是公比为 q 的等比数列,且 S 4=a 1+a 2a 4 a 4 a 4S 4 1 1 1+a 3+a 4=q 34+q 24+q 4+a 4,所以a44=q 3+q 2+q +1=15.110.在等比数列 { a n }中, a 1=14,在前 2n 项中,奇数项的和为,偶数项的和为时, n 的值为 ____ .【答案】 5S 奇 a 3·a 5·a 7·⋯ ·a 2n + 1 S 偶 a 2·a 4·a 6·⋯·a 2n5=n∴a 1q56, 5即 a n +1= 6,故选 B.解析】 S 偶由 q =S 奇,得 q =2.当 q ≠1 时,由通项公式及前 n 项和公式得规律方法】 解决此类问题,要抓住两个方面,一是注意对公 比 q 的取值进行分类讨论; 二是要准确利用相关公式把已知条件转化 为关于 a 1 与 q 的方程或方程组求解.12.(2013 ·湖南文,19)设 S n 为数列{a n }的前 n 项和,已知 a 1≠0,2a n -a 1= S 1·S n ,n ∈N +.(1)求 a 1,a 2,并求数列 {a n } 的通项公式; (2)求数列{ na n }的前 n 项和.1n1-4n 4 1- 4341又 S = = ,∴n = 5.=4,三、解答题 (每小题 20 分,共 40 分.解答应写出必要的文字说 明、证明过程或演算步骤 )3911.在等比数列 { a n }中,已知 a 3=2,S 3=2,求 a 1与分析】 先检验 q =1 是否满足;然后列出关于 a 1,q 的方程 组进行求解.解析】 ∵a 3=32,S 3=92,当 q =1 时,a 1=a 3=32,S 3=3a 1=3×32 9 9∴适合题意;=2,a 1q 2=32, a 1 1-q 3 91-q=2,a 1=6,1 q =-2.综上知 a 1=32,q =1或 a 1=6,q =- 2.【分析】(1)用赋值法求出a1、a2,再用a n=S n-S n-1(n≥2),求出a n;(2)用错位相减法可求出{ na n}的前n 项和.【解析】(1)令n=1,得2a1-a1=a21,即a1=a12,因为a1≠ 0,所以a1=1,令n=2,得2a2-1=S2=1+a2,解得a2=2.当n≥2 时,由2a n-1=S n,2a n-1-1=S n-1 两式相减得2a n-2a n -1=a n,即a n=2a n-1,于是数列{ a n}是首项为1,公比为 2 的等比数列,因此,a n=2n-1.所以数列{a n} 的通项公式为a n=2n-1.(2)由(1)知,na n=n·2n-1.记数列{n·2n-1}的前n 项和为B n,于是B n=1+2×2+3×22+⋯+n×2n-1,① 2B n=1×2+2×22+3×23+⋯+n×2n.②①-②得-B n=1+2+22+⋯+2n-1-n·2n=2n-1-n·2n.从而B n=1+(n-1) 2·n.【规律方法】本题主要考查了由递推公式求通项式,由a n=S n -S n-1(n≥2),求通项及错位相减法.在运用a n=S n-S n-1(n≥2)时,一定别忘记“ n≥2”这一条件.在用错位相减法时别忘记把S n 的系数化为 1.。

2022版人教A版高中数学选择性必修第二册练习题--等比数列前n项和及其应用

2022版人教A版高中数学选择性必修第二册练习题--等比数列前n项和及其应用

2022版人教A 版高中数学选择性必修第二册--4.3.2 等比数列的前n 项和公式第1课时 等比数列前n 项和及其应用基础过关练题组一 求等比数列的前n 项和 1.在等比数列{a n }中,a 1=2,a 2=1,则S 100等于 ( ) A.4-2100 B.4+2100 C.4-2-98 D.4-2-1002.(2021湖北荆州沙市中学高二上期末)若a ,4,3a 为等差数列的连续三项,则a 0+a 1+a 2+…+a 9的值为 ( )A.2 047B.1 062C.1 023D.5313.(2021江苏无锡一中高二上期中)等比数列{a n }的各项均为正实数,其前n 项和为S n ,若a 3=4,a 2·a 6=64,则S 5= ( ) A.32 B.31 C.64 D.634.等比数列1,x ,x 2,x 3,…的前n 项和S n = ( )A.1-x n 1-xB.1-x n -11-xC.{1-x n1-x,x≠1且x ≠0n ,x =1D.{1-x n -11-x ,x≠1且x ≠0n ,x =15.(2020天津津南高三上期末)在数列{a n }中,a 1=1,2a n +1=a n (n ∈N *),记{a n }的前n 项和为S n ,则 ( )A.S n =2a n -1B.S n =1-2a nC.S n =a n -2D.S n =2-a n6.(2020广西柳州高二上期末)在等比数列{a n }中,公比q =12,a 2a 4=2a 5,则数列{a n }的前5项和S 5= .7.在等比数列{a n}中,a2-a1=2,且2a2为3a1和a3的等差中项,求数列{a n}的首项、公比及其前n项和.8.(2021河南焦作高二上期末)已知等比数列{a n}的公比q=-2,且a3,-a4,a5-4成等差数列.(1)求{a n}的通项公式;(2)设b n=a2n-1,求数列{b n}的前n项和S n.题组二等比数列前n项和的应用9.设正项等比数列{a n}的前n项和为S n,且S20=(210+1)S10,则数列{a n}的公比为()A.4B.2C.1D.1210.(2021江苏江阴一中高二上期中)等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1= ()A.19B.-19C.13D.-1311.(2020广东中山高二上期末)各项均为正数的等比数列{a n}的前n项和为S n,若a2=2,S6-S4=6a4,则a5= ()A.4B.10C.16D.3212.(2021天津一中高二上期末)记S n为递增等比数列{a n}的前n项和,若S1=1,S4=5S2,则a n=.13.(2020天津耀华中学高二上期中)等比数列{a n}中,S n为其前n项和,若S n=3×2n+a,则a=.14.(2020山东临沂高二上期末)记S n为等比数列{a n}的前n项和.若a1=1,S3=34,则S4=.15.(2021山东菏泽郓城一中高二上期末)已知等差数列{a n}满足a3=7,a2+a6=20.(1)求{a n}的通项公式;(2)若等比数列{b n}的前n项和为S n,且b1=a1,b32=a6,b n+1>b n,求满足S n≤2 021的n 的最大值.能力提升练题组一 求等比数列的前n 项和 1.(2020辽宁省实验中学高二上期中,)已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n+1b n=2(n ∈N *),则数列{b a n }的前n 项和为 ( )A.43(4n -1-1)B.43(4n -1)C.13(4n -1-1) D.13(4n -1) 2.(2020湖南师大附中高二期末,)已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1= ( )A.16(1-4-n )B.16(1-2-n )C.323(1-4-n )D.323(1-2-n ) 3.(2020天津滨海新区高二上期末,)数列1,1+2,1+2+22,…,1+2+22+…+2n -1,…的前n 项和为T n ,则T n = ( )A.2n +1-nB.2n +1-n -2C.2n -nD.2n 4.(2020辽宁鞍山一中高二期中,)设f (n )=2+23+25+27+…+22n +7(n ∈N *),则f (n )=( )A.23(4n -1) B.23(4n +1-1)C.23(4n +3-1)D.23(4n +4-1) 5.()已知{a n }为等差数列,各项均为正数的等比数列{b n }的前n 项和为S n ,且2a 1=b 1=2,a 2+a 8=10, .在①λS n =b n -1(λ∈R);②a 4=S 3-2S 2+S 1;③b n =2λa n (λ∈R)这三个条件中任选一个,补充在上面的横线上,并完成下面的问题. (1)求数列{a n }和{b n }的通项公式;(2)求数列{a n+b n}的前n项和T n.题组二等比数列前n项和的应用6.(2021湖南岳阳平江一中高二上期末,)记S n为等比数列{a n}的前n项和.若a5-a3=12,a6-a4=24,则S na n=()A.2n-1B.2-21-nC.2-2n-1D.21-n-17.(2021湖北荆州中学高二上期末,)设等比数列{a n}的前n项和为S n,若S10S5=1 2 ,则S15S5= ()A.12B.13C.23D.348.(多选)()已知等比数列{a n}是递增数列,其公比为q,前n项和为S n,若a1a4=32,a2+a3=12,则下列说法正确的是()A.q=2B.数列{S n+2}是等比数列C.S8=510D.数列{lg a n}是公差为2的等差数列9.(多选)()已知等比数列{a n}的公比为q,首项为a,前n项和为S n,则下列结论错误的是 ()A.若a>0,则a n S n>0B.若q>0,则a n S n>0C.若a<0,则a n S n<0D.若q<0,则a n S n<010.(2020浙江温州新力量联盟高一下期末联考,)已知数列{a n}满足:a1=1且a n+1=2a n+1.(1)证明:数列{a n+1}为等比数列;}的前n项和为T n,证明:T n<2.(2)记数列{1a n答案全解全析基础过关练1.C 设等比数列{a n }的公比为q ,则q =a 2a 1=12.因此,S 100=a 1(1-q 100)1-q =2×[1-(12)100]1-12=4(1-2-100)=4-2-98.故选C .2.C ∵a ,4,3a 为等差数列的连续三项, ∴a +3a =2×4,解得a =2. 故a 0+a 1+a 2+…+a 9=20+21+22+…+29=1-2101-2=1 023.故选C .3.B 设数列{a n }的公比为q , 则{ a 1·q 2=4,a 1q ·a 1q 5=64,a 1>0,q >0,解得{a 1=1,q =2, 所以S 5=1×(1-25)1-2=31.故选B .4.C 易知x ≠0,当x =1时,S n =n ;当x ≠1时,S n =1-x n 1-x.∴S n ={1-x n1-x ,x≠1且x ≠0,n ,x =1.5.D ∵2a n +1=a n (n ∈N *),∴a n +1=12a n , 又a 1=1,∴数列{a n }是以1为首项,12为公比的等比数列,∴a n =(12)n -1,∴S n =1-12n 1-12=2-12n -1=2-a n .故选D.6.答案318解析 由a 2a 4=2a 5,得a 12q 4=2a 1q 4,又q =12,a 1≠0,∴a 1=2,∴S 5=a 1(1-q 5)1-q =2×[1-(12)5]1-12=4×(1-132)=318.7.解析 设等比数列{a n }的公比为q ,前n 项和为S n . 由已知可得{a 2-a 1=2,4a 2=3a 1+a 3,即{a 1q -a 1=2,4a 1q =3a 1+a 1q 2,解得{a 1=1,q =3. 则S n =a 1(1-q n )1-q =1×(1-3n )1-3=3n -12.故数列{a n }的首项为1,公比为3,前n项和为3n -12.8.解析 (1)因为a 3,-a 4,a 5-4成等差数列, 所以a 3+a 5-4=-2a 4,又{a n }是公比为-2的等比数列, 所以4a 1+16a 1-4=-2×(-8)×a 1, 解得a 1=1,所以a n =a 1q n -1=(-2)n -1. (2)由(1)可得b n =(-2)2n -2=4n -1,所以数列{b n }是首项为b 1=40=1,公比为4的等比数列, 所以S n =1×(1-4n )1-4=4n -13.9.B 设等比数列{a n }的公比为q ,由题得q >0且q ≠1,所以a 1(1-q 20)1-q =(210+1)×a 1(1-q 10)1-q,所以1-q 20=(210+1)×(1-q 10),所以1+q 10=210+1,解得q =2或q =-2(舍去),故选B.10.A 设{a n }的公比为q ,则a 1+a 1q +a 1q 2=a 1q +10a 1,∴q 2=9.又∵a 5=a 1q 4=9,∴a 1=19.故选A .11.C 设等比数列{a n }的公比为q ,则q >0.由S 6-S 4=6a 4得,a 6+a 5=6a 4,又a 4≠0,∴q 2+q -6=0,解得q =2或q =-3(舍去),∴a 5=a 2q 3=2×23=16.故选C . 12.答案 2n -1解析 设数列{a n }的公比为q ,则q >0且q ≠1. ∵S 1=1,S 4=5S 2,∴{a 1=S 1=1,a 1(1-q 4)1-q=5×a 1(1-q 2)1-q,∴a 1=1,q =2, ∴a n =2n -1. 13.答案 -3解析 解法一:∵S n =3×2n +a , ∴当n =1时,a 1=S 1=6+a ;当n ≥2时,a n =S n -S n -1=(3×2n +a )-(3×2n -1+a )=3×2n -1,∴a 2=6,a 3=12.又{a n }是等比数列,∴a 22=a 1a 3,∴62=(6+a )×12,解得a =-3.此时a 1=3,符合a n =3×2n -1,且{a n }是等比数列.∴a =-3. 解法二:设等比数列{a n }的公比为q ,易知q ≠1,由S n =a 1(1-q n )1-q ,设a11-q =A ,则S n =-Aq n +A , 又S n =3×2n +a ,∴a =-3. 14.答案 58解析 设等比数列{a n }的公比为q ,由已知得S 3=a 1+a 1q +a 1q 2=1+q +q 2=34, 即q 2+q +14=0,解得q =-12, 所以S 4=a 1(1-q 4)1-q =1-(-12)41-(-12)=58.15.解析 (1)设等差数列{a n }的公差为d ,则a 3=a 1+2d =7,a 2+a 6=2a 1+6d =20, 解得a 1=1,d =3,所以a n =1+3(n -1)=3n -2.(2)设等比数列{b n }的公比为q.易得b 1=a 1=3×1-2=1,b 32=a 6=3×6-2=16.因为b 32=(b 1q 2)2,所以q =2或q =-2,又b n +1>b n ,所以q =2,所以S n =1×(1-2n )1-2=2n-1.令2n -1≤2 021,得2n ≤2 022,又210<2 022<211,所以n 的最大值为10.能力提升练1.D 依题意得{a n }是以1为首项,2为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,∴a n =1+2(n -1)=2n -1,b n =1×2n -1=2n -1, ∴b a n =b 2n -1=22n -2=4n -1.∴{b a n }是以1为首项,4为公比的等比数列, 设其前n 项和为S n , 则S n =1×(1-4n )1-4=13(4n-1),故选D .2.C 设等比数列{a n }的公比为q. 解法一:∵a 2=2,a 5=14, ∴{a 1q =2,a 1q 4=14,∴{a 1=4,q =12,∴a 1a 2+a 2a 3+…+a n a n +1=a 12q +a 12q 3+…+a 12q 2n -1=a 12(q +q 3+…+q 2n -1)=323(1-4-n ).解法二:同解法一得a 1=4,q =12,∴a 1a 2=4×2=8,∴数列{a n a n +1}是首项为8,公比为14的等比数列,∴a 1a 2+a 2a 3+…+a n a n +1=8[1-(14)n]1-14=323(1-4-n). 3.B 设该数列为{a n },由已知得数列的通项公式为a n =1-2n 1-2=2n-1,则T n =a 1+a 2+…+a n =(2-1)+(22-1)+…+(2n -1)=2+22+…+2n-n =2(1-2n )1-2-n =2n +1-n -2.4.D 易知1,3,5,7,…是首项为1,公差为2的等差数列,设该数列为{a m },则a m =2m -1,设a n =2n +7,即2m -1=2n +7,∴m =n +4,∴f (n )是以2为首项,22=4为公比的等比数列的前(n +4)项的和,∴f (n )=2(1-4n+4)1-4=23(4n +4-1),故选D .易错警示数列求和时要弄清数列的特征,特别要注意数列的项数,如本题中求的不是前n 项和,而是前(n +4)项的和,解题时要防止项数弄错导致解题错误.5.解析 (1)设等差数列{a n }的公差为d ,∵2a 1=2,∴a 1=1.∵a 2+a 8=2a 1+8d =10,∴d =1,∴a n =1+(n -1)×1=n.选择①.由b 1=2,λS n =b n -1,可得λS 1=λb 1=b 1-1,即2λ=2-1,解得λ=12,∴S n =2(b n -1). 当n ≥2时,b n =S n -S n -1=2(b n -1)-2(b n -1-1),即b n =2b n -1,所以{b n }是以2为首项,2为公比的等比数列,∴b n =2×2n -1=2n .选择②.设等比数列{b n }的公比为q ,则q >0.依题意得a 4=(S 3-S 2)-(S 2-S 1)=b 3-b 2=b 1·(q 2-q )=4,∵b 1=2,∴2(q 2-q )=4,解得q =2或q =-1(舍去),∴b n =2n .选择③.∵b n =2λa n (λ∈R),2a 1=b 1=2,∴b 1=2λa 1,即2=2λ,∴λ=1,∴b n =2a n .∵a n =n ,∴b n =2n .(2)由(1)知a n +b n =n +2n ,∴T n =(1+2+3+…+n )+(2+22+23+…+2n )=n (n+1)2+2(1-2n )1-2=2n +1-2+n (n+1)2. 6.B 设等比数列{a n }的公比为q ,∵a 5-a 3=12,a 6-a 4=q (a 5-a 3)=24,∴q =2,又a 5-a 3=a 1q 4-a 1q 2=12,∴12a 1=12,∴a 1=1,∴S n =1-2n 1-2=2n -1,a n =2n -1, ∴S n a n =2n -12n -1=2-21-n ,故选B . 7.D ∵{a n }是等比数列,∴S 5,S 10-S 5,S 15-S 10也成等比数列.由S 10S 5=12,可设S 5=2k ,S 10=k (k ≠0),则S 10-S 5=-k ,∴S 15-S 10=k 2,则S 15=3k 2,∴S 15S 5=3k 22k =34,故选D .8.ABC 易知a 2a 3=a 1a 4=32,联立{a 2a 3=32,a 2+a 3=12,解得{a 2=4,a 3=8或{a 2=8,a 3=4,∵{a n }为递增数列,∴{a 2=4,a 3=8,∴q =a 3a 2=2,∴a 1=a 2q =2, ∴a n =2n ,S n =2×(1-2n )1-2=2n +1-2, ∴S 8=29-2=510,S n +2=2n +1,∴数列{S n +2}是等比数列,故A 、B 、C 正确.∵lg a n =lg 2n =n ·lg 2,∴数列{lg a n }是公差为lg 2的等差数列,故D 错误.故选ABC .9.ACD 因为{a n }为等比数列,所以a ≠0.当q =1时,a n =a ,S n =na ,故a n S n =na 2>0,当q ≠1时,a n =aq n -1,S n =a (1-q n )1-q ,故a n S n =a 2q n -1(1-q n )1-q, 若q >1,则q n -1>0,1-q n <0,1-q <0,故a n S n >0,若0<q <1,则q n -1>0,1-q n >0,1-q >0,故a n S n >0,若q <0,则a n S n =a 2q n (1-q n )q (1-q ),其中q (1-q )<0,取-1<q <0,则当n 为偶数时,a 2q n (1-q n )>0,即a n S n <0,当n 为奇数时,a 2q n (1-q n )<0,即a n S n >0,故B 中结论正确,A 、C 、D 中结论错误.故选ACD .10.证明 (1)由a n +1=2a n +1,得a n +1+1=2(a n +1),又a 1+1=2,所以{a n +1}是首项为2,公比为2的等比数列.(2)由(1)可得a n +1=2×2n -1=2n ,所以a n =2n -1,所以1a n =12n -1. 所以T n =121-1+122-1+123-1+…+12n -1. 因为12n -1<12n -1(n ≥2), 所以当n ≥2时,T n =121-1+122-1+123-1+…+12n -1<1+12+122+…+12n -1=1×(1-12n )1-12=2-12n -1<2, 又当n =1时,T 1=121-1<2,所以T n <2.解题模板证明与数列的前n 项和有关的不等式时,如果数列不能直接求和,如本题中的数列{1a n },不能直接求和,可考虑对通项公式进行放缩,利用12n <12n -1<12n -1(n ≥2),将数列放缩为等比数列,利用等比数列求和证明不等式,选用不等式可结合不等号方向选用12n -1<12n -1(n ≥2).。

等比数列的前n项和 (1)

等比数列的前n项和 (1)
等比数列
第四课时
例1(A)已知数列n a
范例讲解
的通项公式
an 3 2n 为
,这个数列是等比数列吗?
分析:用定义法证明
等比数列的例题
例2 已知 a n , bn 是项数相同的等比数列, 证明:设数列 an 首项为a1,公比为q1 n 首项为b1,公比为q 2 ;b 那么数列 an bn 的第n项与第n+1项 分别为:
课堂小结
a1 (1 q n ) (q 1) Sn 1 q 或S n na (q 1) 1
减)并能应用.

a1 an q (q 1) 1 q . na (q 1) 1
.理解等比数列的推导过程(错位相
Sn .an ,q , a1 , n 知三而可 求二 .
公式应用:
例1:求等比数列
1 1 1 , , , 的前8项的和。 2 4 8
1 1 1 1 解:由 a1 , q , n 8 ,得 2 4 2 2
1 1 8 [1 ( ) ] 2 2 255 Sn 1 256 1 2
公式应用:
例2 已知等比数列 an ,
课堂总结
1.等比数列的前 n 项和公式分两类,一类是当 公比 q=1 时,其公式为 Sn=na1;另一类是当 q≠1 a11-qn a1-anq 时,Sn= = 1-q 1-q
复习:
等差数列 等比数列
定义
通项公式
an1 an d
an a1 (n 1)d
an am (n m)d
错解:Sn=a1+a2+…+an =(a2+a4+…+a2n)-(a+a2+…+an) a21-a2n a1-an = . 2 - 1-a 1-a

等比数列的前n项和典型例题含解答

等比数列的前n项和典型例题含解答

=7×(1+3)=28.
∴S4=28.
-
法二:∵{an}为等比数列, ∴S2,S4-S2,S6-S4 也为等比数列, 即 7,S4-7,91-S4 成等比数列, ∴(S4-7)2=7(91-S4).解得 S4=28 或-21. ∵S4=a1+a2+a3+a4=a1+a2+a1q2+a2q2 =(a1+a2)(1+q2)=S2(1+q2)>S2, ∴S4=28.
-
变式训练 21:等比数列{an}中,若 S2=7,S6=91,求 S4.
解:法一:∵S2=7,S6=91,易知 q≠1,
由SS26= =791
a11+q=7, 知a111--qq6=91,
∴a11+q1-1-qq1+q2+q4=91,
∴q4+q2-12=0,
∴q2=3, ∴S4=a111--qq4=a1(1+q)(1+q2)
(2)在使用等比数列的前 n 项和公式时,要注意公比 q=1 和 q≠1 两种情况的区别.
-
变式训练 11:数列{an}为等比数列,各项均大于 0,它的前 n 项和为 80,其中数值最大 的项为 54,前 2n 项的和为 6560,试求此数列的首项 a1 和公比 q.
解:∵S2n>2Sn,∴q≠1.
第 1 年旅游业收入为 400 万元,第 2 年旅游业收入为 400×(1+41)万元,…,第 n 年旅 游业收入为 400×(1+14)n-1 万元.所以,n 年内的总收入 Tn=400+400×(1+14)+…+400×(1 +14)n-1=1600×[(45)n-1].
(2)设至少经过 n 年旅游业的总收入才能超过总投入,因此 Tn-Sn>0,即 1600×[(54)n-1]-4000×[1-(45)n]>0,化简得 5×(45)n+2×(54)n-7>0, 即(45)n<25,(45)n>7(舍去). 因为 n∈N*,所以 n≥5,可得 n=5. 所以,第 5 年旅游业的总收入才能首次超过总投入.

高中数学等比数列练习题百度文库

高中数学等比数列练习题百度文库

一、等比数列选择题1.设数列{}n a 的前n 项和为n S ,且()*2n n S a n n N =+∈,则3a=( )A .7-B .3-C .3D .7 2.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( ) A .6B .16C .32D .643.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )A .-3+(n +1)×2nB .3+(n +1)×2nC .1+(n +1)×2nD .1+(n -1)×2n4.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>05.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里B .86里C .90里D .96里6.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-B .3-C .3D .87.在等比数列{}n a 中,11a =,427a =,则352a a +=( ) A .45B .54C .99D .818.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40B .81C .121D .2429.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S =B .723S =C .7623S =D .71273S =10.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑.其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”.注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为( )A .3B .12C .24D .4811.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12612.已知等比数列{}n a 中,n S 是其前n 项和,且5312a a a +=,则42S S =( ) A .76B .32C .2132D .1413.已知数列{}n a ,{}n b 满足12a =,10.2b =,111233n n n a b a ++=+,11344n n n b a b +=+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5B .7C .9D .1114.在各项均为正数的等比数列{}n a 中,226598225a a a a ++=,则113a a 的最大值是( ) A .25B .254C .5D .2515.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .716.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 17.在等比数列{}n a 中,12345634159,88a a a a a a a a +++++==-,则123456111111a a a a a a +++++=( )A .35B .35C .53D .53-18.已知数列{}n a 是等比数列,n S 为其前n 项和,若364,12S S ==,则12S =( ) A .50B .60C .70D .8019.已知等比数列{}n a ,7a =8,11a =32,则9a =( ) A .16B .16-C .20D .16或16-20.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )A .15B .10C .5D .3二、多选题21.题目文件丢失!22.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1423.已知数列{}n a 是公比为q 的等比数列,4n n b a =+,若数列{}n b 有连续4项在集合{-50,-20,22,40,85}中,则公比q 的值可以是( ) A .34-B .23-C .43-D .32-24.已知集合{}*21,A x x n n N==-∈,{}*2,nB x x n N ==∈将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25 B .26C .27D .2825.在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( )A .8B .12C .-8D .-1226.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}n a 是等比数列 B .数列{}1n n a a +是等比数列 C .数列{}2lg n a 是等比数列 D .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列 27.设数列{}n a 满足*12335(21)2(),n a a a n a n n ++++-=∈N 记数列{}21na n +的前n 项和为,n S 则( ) A .12a =B .221n a n =- C .21n nS n =+ D .1n n S na +=28.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .954S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 29.已知数列{}n a 满足11a =,()*123nn na a n N a +=∈+,则下列结论正确的有( ) A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列 B .{}n a 的通项公式为1123n n a +=-C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=--30.数列{}n a 为等比数列( ). A .{}1n n a a ++为等比数列 B .{}1n n a a +为等比数列 C .{}221n n a a ++为等比数列D .{}n S 不为等比数列(n S 为数列{}n a 的前n 项)31.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a >,87101a a -<-.则下列结论正确的是( ) A .01q <<B .791a a <C .n T 的最大值为7TD .n S 的最大值为7S32.已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设n n b c a =,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8B .9C .10D .1133.已知等比数列{a n }的公比23q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0B .a 9>a 10C .b 10>0D .b 9>b 1034.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,99100101a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于19835.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”,在数列{}n a 中,若98n a n n =+-,下面哪些数不能作为数列{}n a 的“谷值点”?( ) A .3B .2C .7D .5【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.A 【分析】先求出1a ,再当2n ≥时,由()*2n n S a n n N=+∈得1121n n Sa n --=+-,两式相减后化简得,121n n a a -=-,则112(1)n n a a --=-,从而得数列{}1n a -为等比数列,进而求出n a ,可求得3a 的值【详解】解:当1n =时,1121S a =+,得11a =-, 当2n ≥时,由()*2n n S a n n N=+∈得1121n n Sa n --=+-,两式相减得1221n n n a a a -=-+,即121n n a a -=-,所以112(1)n n a a --=-,所以数列{}1n a -是以2-为首项,2为公比的等比数列,所以1122n n a --=-⨯,所以1221n n a -=-⨯+,所以232217a =-⨯+=-,故选:A 2.C【分析】根据等比数列的通项公式求出公比2q,再根据等比数列的通项公式可求得结果.【详解】设等比数列{}n a 的公比为q ,则234123()2a a a a a a q ++=++=,又1231a a a ++=,所以2q,所以55678123()1232a a a a a a q ++=++⋅=⨯=.故选:C . 3.D 【分析】利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】设等比数列{a n }的公比为q ,易知q ≠1,所以由题设得()()3136161711631a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,两式作差得-T n =1+2+22+…+2n -1-n ×2n=1212n---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 4.A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 5.D 【分析】由题意得每天行走的路程成等比数列{}n a 、且公比为12,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】由题意可知此人每天走的步数构成12为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]2378112a -=-, 解得1192a =,∴此人第二天走1192962⨯=里, ∴第二天走了96里,故选:D . 6.A 【分析】根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 7.C【分析】利用等比数列的通项与基本性质,列方程求解即可 【详解】设数列{}n a 的公比为q ,因为341a a q =,所以3q =,所以24352299a a q q +=+=.故选C 8.C 【分析】根据已知条件先计算出等比数列的首项和公比,然后根据等比数列的前n 项和公式求解出5S 的结果.【详解】因为12234,12a a a a +=+=,所以23123a a q a a +==+,所以1134a a +=,所以11a =, 所以()5515113121113a q S q--===--, 故选:C. 9.D 【分析】利用等比数列前n 项和公式列出方程组,求出首项和公比,由此能求出这个数列的前7项和. 【详解】n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,∴21410(1)11(1)51q a q qa q q ⎧⎪>⎪⎪-⎪=⎨-⎪⎪-⎪=-⎪⎩,解得113a =,2q ,771(12)1273123S -∴==-.故选:D . 10.C 【分析】题意说明从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,由系数前n 项和公式求得1a ,再由通项公式计算出中间项. 【详解】根据题意,可知从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,则有()7171238112a S ⋅-==-,解得13a =,中间层灯盏数34124a a q ==,故选:C. 11.D 【分析】根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=. ∴2260q q --=,∴2q 或32q =-(舍去),∵416a =,∴4132a a q ==, ∴6616(1)2(12)126112a q S q --===--, 故选:D. 12.B 【分析】由5312a a a +=,解得q ,然后由414242212(1)111(1)11a q S q q q a q S q q---===+---求解. 【详解】在等比数列{}n a 中,5312a a a +=, 所以421112a q a q a +=,即42210q q +-=, 解得212q =所以414242212(1)1311(1)121a q S q q q a q S q q---===+=---, 故选:B 【点睛】本题主要考查等比数列通项公式和前n 项和公式的基本运算,属于基础题, 13.C 【分析】令n n n c a b =-,由111233n n n a b a ++=+,11344n n n b a b +=+可知数列{}n c 是首项为1.8,公比为12的等比数列,即11.812n n c -⎛⎫ ⎪⎝⎭=⨯,则110.0121.8n -⎛⎫< ⎪⎝⎭⨯,解不等式可得n 的最小值. 【详解】令n n n c a b =-,则11120.2 1.8c a b =-=-=111113131344444121233343n n n n n n n n n n nn c a b a b a b b a a a b ++++⎛⎫=-=+--=+-- ⎪⎝+⎭111222n n n a b c -== 所以数列{}n c 是首项为1.8,公比为12的等比数列,所以11.812n n c -⎛⎫ ⎪⎝⎭=⨯由0.01n n a b -<,即110.0121.8n -⎛⎫< ⎪⎝⎭⨯,整理得12180n ->由72128=,82256=,所以18n -=,即9n =故选:C. 【点睛】本题考查了等比数列及等比数列的通项公式,解题的关键是根据已知的数列递推关系式,利用等比数列的定义,得到数列{}n c 为等比数列,考查了学生的分析问题能力能力与运算求解能力,属于中档题. 14.B 【分析】由等比数列的性质,求得685a a +=,再结合基本不等式,即可求得113a a 的最大值,得到答案. 【详解】由等比数列的性质,可得()2222265986688682225a a a a a a a a a a ++=++=+=,又因为0n a >,所以685a a +=,所以268113682524a a a a a a +⎛⎫=≤=⎪⎝⎭, 当且仅当6852a a ==时取等号. 故选:B . 15.C 【分析】依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;…第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为1122213933nn n n S -⎛⎫=++⋅⋅⋅+=- ⎪⎝⎭, 由题意,902131n⎛⎫-≥ ⎪⎝⎭,即21lg lg1031n ≤=-,即()lg3lg21n -≥,解得:115.679lg3lg 20.47710.3010n ≥=≈--,又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题. 16.D 【分析】由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}2n a 也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;当2n ≥时,()()111222nn n n n n a S S a a ---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =,所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-. 故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法; (5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可. 17.D 【分析】利用等比数列下标和相等的性质有162534a a a a a a ==,而目标式可化为162534162534a a a a a a a a a a a a +++++结合已知条件即可求值. 【详解】162534123456162534111111a a a a a a a a a a a a a a a a a a ++++++++=++, ∵等比数列{}n a 中3498a a =-,而162534a a a a a a ==, ∴123456111111a a a a a a +++++=12345685()93a a a a a a -+++++=-, 故选:D 18.B【分析】由等比数列前n 项和的性质即可求得12S . 【详解】 解:数列{}n a 是等比数列,3S ∴,63S S -,96S S -,129S S -也成等比数列,即4,8,96S S -,129S S -也成等比数列, 易知公比2q,9616S S ∴-=,12932S S -=,121299663332168460S S S S S S S S =-+-+-+=+++=.故选:B. 19.A 【分析】根据等比数列的通项公式得出618a q =,10132a q=且10a >,再由819a a q ==.【详解】设等比数列{}n a 的公比为q ,则618a q =,10132a q=且10a >则81916a q a ====故选:A 20.A 【分析】根据等比数列的性质,由对数的运算,即可得出结果. 【详解】 因为478a a ⋅=, 则()()52212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+⋅++=()2475log 15a a =⋅=.故选:A.二、多选题 21.无22.BD 【分析】设设等比数列{}n a 的公比为q ,则0q >,由已知得1112114a a ++=,解方程计算即可得答案. 【详解】解:设等比数列{}n a 的公比为q ,则0q >,因为21531a a a ==,2311a a q == , 所以51115135151511111112111114a a a a a a a a a a a a a ++=++=++=+=+++=, 解得1412a q =⎧⎪⎨=⎪⎩或1142.a q ⎧=⎪⎨⎪=⎩, 当14a =,12q =时,551413121412S ⎛⎫- ⎪⎝⎭==-,数列{}n a 是递减数列;当114a =,2q 时,5314S =,数列{}n a 是递增数列; 综上,5314S =. 故选:BD. 【点睛】本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为1112114a a ++=,进而解方程计算. 23.BD 【分析】先分析得到数列{}n a 有连续四项在集合{54-,24-,18,36,81}中,再求等比数列的公比. 【详解】 4n n b a =+4n n a b ∴=-数列{}n b 有连续四项在集合{-50,-20,22,40,85}中∴数列{}n a 有连续四项在集合{54-,24-,18,36,81}中又数列{}n a 是公比为q 的等比数列,∴在集合{54-,24-,18,36,81}中,数列{}n a 的连续四项只能是:24-,36,54-,81或81,54-,36,24-.∴363242q ==--或243236q -==-. 故选:BD 24.CD由题意得到数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,结合等差数列以及等比数列的求和公式,验证即可求解. 【详解】由题意,数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,可得当25n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,2,4,8,16,32,可得52520(139)2(12)40062462212S ⨯+-=+=+=-,2641a =,所以2612492a =,不满足112n n S a +>; 当26n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,2,4,8,16,32,可得52621(141)2(12)44162503212S ⨯+-=+=+=-,2743a =,所以2612526a =,不满足112n n S a +>; 当27n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,2,4,8,16,32,可得52722(143)2(12)48462546212S ⨯+-=+=+=-,2845a =,所以2712540a =,满足112n n S a +>; 当28n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,45,2,4,8,16,32,可得52823(145)2(12)52962591212S ⨯+-=+=+=-,2947a =,所以2812564a =,满足112n n S a +>,所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 25.AC 【分析】求出等比数列的公比2q =±,再利用通项公式即可得答案;5721624a q q a ==⇒=±, 当2q时,65428a a q ==⨯=,当2q =-时,654(2)8a a q ==⨯-=-, 故选:AC. 【点睛】本题考查等比数列通项公式的运算,考查运算求解能力,属于基础题. 26.ABD 【分析】分别按定义计算每个数列的后项与前项的比值,即可判断. 【详解】根据题意,数列{}n a 是等比数列,设其公比为q ,则1n na q a +=, 对于A ,对于数列{}n a ,则有1||n na q a ,{}n a 为等比数列,A 正确; 对于B ,对于数列{}1n n a a +,有211n n n na a q a a +-=,{}1n n a a +为等比数列,B 正确; 对于C ,对于数列{}2lg n a ,若1n a =,数列{}n a 是等比数列,但数列{}2lg n a 不是等比数列,C 错误;对于D ,对于数列1n a ⎧⎫⎨⎬⎩⎭,有11111n n n n a a a q a --==,1n a ⎧⎫⎨⎬⎩⎭为等比数列,D 正确. 故选:ABD . 【点睛】本题考查用定义判断一个数列是否是等比数列,属于基础题. 27.ABD 【分析】由已知关系式可求1a 、n a ,进而求得{}21na n +的通项公式以及前n 项和,n S 即可知正确选项. 【详解】由已知得:12a =,令12335...(21)2n n T a a a n a n =++++-=, 则当2n ≥时,1(21)2n n n T T n a --=-=,即221n a n =-,而122211a ==⨯-也成立,∴221n a n =-,*n N ∈,故数列{}21n a n +通项公式为211(21)(21)2121n n n n =-+--+,∴111111111121 (133557232121212121)n nS n n n n n n =-+-+-++-+-=-=---+++,即有1n n S na +=, 故选:ABD 【点睛】关键点点睛:由已知12335...(21)2n n T a a a n a n =++++-=求1a 、n a ,注意验证1a 是否符合n a 通项,并由此得到{}21na n +的通项公式,利用裂项法求前n 项和n S . 28.ACD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=,故C正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-,可得22212201920202019201920202019a a a a a a a a+++==,故D 正确;故选:ACD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题. 29.ABD 【分析】 由()*123nn na a n N a +=∈+两边取倒数,可求出{}n a 的通项公式,再逐一对四个选项进行判断,即可得答案. 【详解】因为112323n nn n a a a a ++==+,所以11132(3)n n a a ++=+,又11340a +=≠, 所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2位公比的等比数列,11342n n a -+=⨯即1123n n a +=-,故选项A 、B 正确. 由{}n a 的通项公式为1123n n a +=-知,{}n a 为递减数列,选项C 不正确.因为1231n na +=-,所以 1n a ⎧⎫⎨⎬⎩⎭的前n 项和23112(23)(23)(23)2(222)3n n n T n +=-+-++-=+++-22(12)2312234n n n n +-⨯-=⨯-=--.选项D 正确,故选:ABD 【点睛】本题考查由递推公式判断数列为等比数列,等比数列的通项公式及前n 项和,分组求和法,属于中档题. 30.BCD 【分析】举反例,反证,或按照等比数列的定义逐项判断即可. 【详解】解:设{}n a 的公比为q ,A. 设()1nn a =-,则10n n a a ++=,显然{}1n n a a ++不是等比数列.B.2211n n n n a a q a a +++=,所以{}1n n a a +为等比数列. C. ()()24222221222211n n n n n n a q q a a q a a a q +++++==++,所以{}221n n a a ++为等比数列. D. 当1q =时,n S np =,{}n S 显然不是等比数列; 当1q ≠时,若{}n S 为等比数列,则()222112n n n S S n S -+=≥,即()()()211111111111n n n a q a q a q q q q-+⎛⎫⎛⎫⎛⎫---⎪⎪⎪= ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭,所以1q =,与1q ≠矛盾,综上,{}n S 不是等比数列. 故选:BCD. 【点睛】考查等比数列的辨析,基础题.31.ABC 【分析】由11a >,781a a >,87101a a -<-,可得71a >,81a <.由等比数列的定义即可判断A ;运用等比数列的性质可判断B ;由正数相乘,若乘以大于1的数变大,乘以小于1的数变小,可判断C; 因为71a >,801a <<,可以判断D. 【详解】11a >,781a a >,87101a a -<-, 71a ∴>,801a <<,∴A.01q <<,故正确;B.27981a a a =<,故正确; C.7T 是数列{}n T 中的最大项,故正确.D. 因为71a >,801a <<,n S 的最大值不是7S ,故不正确. 故选:ABC . 【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题. 32.AB 【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{c n }的通项公式,利用数列的分组求和法可得数列{c n }的前n 项和T n ,验证得答案. 【详解】由题意,a n =1+2(n ﹣1)=2n ﹣1,12n n b -=,n n b c a ==2•2n ﹣1﹣1=2n ﹣1,则数列{c n }为递增数列,其前n 项和T n =(21﹣1)+(22﹣1)+(23﹣1)+…+(2n ﹣1) =(21+22+ (2))﹣n ()21212n n -=-=-2n +1﹣2﹣n .当n =9时,T n =1013<2019; 当n =10时,T n =2036>2019. ∴n 的取值可以是8,9. 故选:AB 【点睛】本题考查了分组求和,考查了等差等比数列的通项公式、求和公式,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 33.AD 【分析】设等差数列的公差为d ,运用等差数列和等比数列的通项公式分析A 正确,B 与C 不正确,结合条件判断等差数列为递减数列,即可得到D 正确. 【详解】数列{a n }是公比q 为23-的等比数列,{b n }是首项为12,公差设为d 的等差数列, 则8912()3a a =-,91012()3a a =-, ∴a 9•a 1021712()3a =-<0,故A 正确; ∵a 1正负不确定,故B 错误;∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误; 由a 9>b 9且a 10>b 10,则a 1(23-)8>12+8d ,a 1(23-)9>12+9d , 由于910,a a 异号,因此90a <或100a <故 90b <或100b <,且b 1=12可得等差数列{b n }一定是递减数列,即d <0, 即有a 9>b 9>b 10,故D 正确. 故选:AD 【点睛】本题考查了等差等比数列的综合应用,考查了等比数列的通项公式、求和公式和等差数列的单调性,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 34.ABD 【分析】由已知9910010a a ->,得0q >,再由99100101a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.【详解】对于A ,9910010a a ->,21971·1a q ∴>,()2981··1a q q ∴>.11a >,0q ∴>.又99100101a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;对于B ,299101100100·01a a a a ⎧=⎨<<⎩,991010?1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·T T a =,而10001a <<,故有10099T T <,故C 错误;对于D ,()()()()19812198119821979910099100·····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确. ∴不正确的是C .故选:ABD .【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.AD【分析】计算到12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =,根据“谷值点”的定义依次判断每个选项得到答案.【详解】 98n a n n =+-,故12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =. 故23a a <,3不是“谷值点”;12a a >,32a a >,故2是“谷值点”; 67a a >,87a a >,故7是“谷值点”;65a a <,5不是“谷值点”. 故选:AD .【点睛】本题考查了数列的新定义问题,意在考查学生的计算能力和应用能力.。

等比数列及其前n项和练习题

等比数列及其前n项和练习题

,该数列的前 15 项的和
15.等比数列{an}的公比 q>0,已知 a2=1,an+2+an+1=6an,则{an}的前 4 项和 S4=

16、已知等比数列{ an }中, a1 =2, a4 =54,则该等比数列的通项公式 an = 17、 等比数列的公比为 2, 且前 4 项之和等于 30, 那么前 8 项之和等于 18、数列 1 , 2 , 3 , … , n
21. 在等比数列 {an }中,a1 an 66,a2 an1 128 ,前n项和S n 126 ,求n及公比q.
22.在数列{an}中,Sn+1=4an+2,a1=1.设 bn=an+1-2an,求证数列{bn}是等比数列;
23、已知等比数列 {a n }前n项和为 S n,若 a 2 a3 2a1,且 a 4 与2a7的等差中项为
1 1 1 ,求 Tn . S1 S 2 Sn
2
等比数列及其前 n 项和测试题
一、选择题 1.设 Sn 是等比数列{an}的前 n 项和,若 3 A.10 1 B.3
S S3 1 =3,则 6 =( S12 S6
C.
1 5
).
1
D.
15
2、在等比数列 {an } 中, a1 16, a4 8, 则 a7 ( A 4 B 4 C 2
D.a3+a9 与 b4+b10 的大小不确定
9.在等比数列 a n 中,若公比 q=4 ,且前 3 项之和等于 21,则该数列的通项公式 an 10.设等比数列{an}的公比为 q,前 n 项和为 Sn,若 Sn+1,Sn,Sn+2 成等差数列,则 q 的值为 11.设{an}是公比为 q 的等比数列,Sn 是它的前 n 项和,若{Sn}是等差数列,则 q=_____. 12.已知数列{an}中,an= 为 Sn,则 S9=

等差等比数列前N项和练习答案

等差等比数列前N项和练习答案

等差数列前N 项和(第一课时) 一、选择题1.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .2[答案] A[解析] 本题考查数列的基础知识和运算能力.⎩⎪⎨⎪⎧ S 3=4a 3a 7=-2⇒⎩⎪⎨⎪⎧ 3a 1+3d =4a 1+8d a 1+6d =-2⇒⎩⎪⎨⎪⎧a 1=10d =-2. ∴a 9=a 1+8d =-6.2.四个数成等差数列,S 4=32,a 2a 3=13,则公差d 等于( )A .8B .16C .4D .0[答案] A [解析] ∵a 2a 3=13,∴a 1+da 1+2d =13,∴d =-2a 1.又S 4=4a 1+4×32d =-8a 1=32,∴a 1=-4,∴d =8.3.等差数列{a n }中,a 3+a 7-a 10=8,a 11-a 4=14.记S n =a 1+a 2+a 3+…+a n ,则S 13=( )A .168B .156C .152D .286[答案] D[解析] ∵⎩⎪⎨⎪⎧ a 3+a 7-a 10=8a 11-a 4=14,∴⎩⎪⎨⎪⎧a 1-d =87d =14,∴⎩⎪⎨⎪⎧d =2a 1=10,∴S 13=13a 1+13×122d =286.4.在等差数列{a n }和{b n }中,a 1=25,b 1=15,a 100+b 100=139,则数列{a n +b n }的前100项的和为( )A .0B .4475C .8950D .10 000[答案] C[解析] 设c n =a n +b n ,则c 1=a 1+b 1=40,c 100=a 100+b 100=139,{c n }是等差数列,∴前100项和S 100=100(c 1+c 100)2=100×(40+139)2=8950.5.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( ) A .5 B .4 C .3 D .2[答案] C[解析] 设等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧a 1+a 3+a 5+a 7+a 9=15a 2+a 4+a 6+a 8+a 10=30, ∴5d =15,∴d =3.6.设S n 是等差数列{a n }的前n 项和,若a 7a 5=913,则S 13S 9=( ) A .1 B .-1 C .2 D .12[答案] A [解析]S 13S 9=13a 79a 5=139×913=1,故选A . 二、填空题7.已知数列{a n }的通项公式a n =-5n +2,则其前n 项和S n =________. [答案] -5n 2+n2[解析] ∵a n =-5n +2, ∴a n -1=-5n +7(n ≥2),∴a n -a n -1=-5n +2-(-5n +7)=-5(n ≥2). ∴数列{a n }是首项为-3,公差为-5的等差数列. ∴S n =n (a 1+a n )2=n (-5n -1)2=-5n 2+n 2.8.设等差数列{a n }的前n 项和为S n ,若S 9=72,则a 2+a 4+a 9=________. [答案] 24[解析] ∵S 9=9·(a 1+a 9)2=72,∴a 1+a 9=16,即a 1+a 1+8d =16, ∴a 1+4d =8,又a 2+a 4+a 9=a 1+d +a 1+3d +a 1+8d =3(a 1+4d )=3×8=24. 三、解答题9.已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求n 和d ;(2)a 1=4,S 8=172,求a 8和d . [解析] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n (n -1)2·d =-5,解得n =15,n =-4(舍).(2)由已知,得S 8=8(a 1+a 8)2=8(4+a 8)2,解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5.等差数列前N 项和(第二课时) 一、选择题1.记等差数列{a n }的前n 项和为S n .若d =3,S 4=20,则S 6=( ) A .16 B .24 C .36 D .48[答案] D[解析] 由S 4=20,4a 1+6d =20,解得a 1=12⇒S 6=6a 1+6×52×3=48.2.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,S n 是等差数列{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18[答案] B[解析] 由题设求得:a 3=35,a 4=33,∴d =-2,a 1=39,∴a n =41-2n ,a 20=1,a 21=-1,所以当n =20时S n 最大.故选B .3.13×5+15×7+17×9+…+113×15=( ) A .415B .215C .1415D .715[答案] B[解析] 原式=12(13-15)+12(15-17)+…+12(113-115)=12(13-115)=215,故选B .4.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A .100101B .99101C .99100D .101100[答案] A[解析] 本小题主要考查等差数列的通项公式和前n 项和公式的运用,以及裂项求和的综合应用.∵a 5=5,S 5=15 ∴5(a 1+5)2=15,∴a 1=1.∴d =a 5-a 15-1=1,∴a n =n .∴1a n a n +1=1n (n +1)=1n -1n +1. 则数列{1a n a n +1}的前100项的和为:T 100=(1-12)+(12-13)+…+(1100-1101)=1-1101=100101. 故选A .5.设等差数列{a n }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为( )A .5B .6C .7D .8[答案] B[解析] 解法一:∵a 1>0,S 4=S 8,∴d <0,且a 1=112d ,∴a n =-112d +(n -1)d =nd -132d ,由⎩⎨⎧a n ≥0a n +1<0,得⎩⎨⎧nd -132d ≥0(n +1)d -132d <0,∴512<n ≤612,∴n =6,解法二:∵a 1>0,S 4=S 8, ∴d <0且a 5+a 6+a 7+a 8=0, ∴a 6+a 7=0,∴a 6>0,a 7<0, ∴前六项之和S 6取最大值.6.设{a n }是等差数列,S n 为其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值[答案] C[解析] 由S 5<S 6知a 6>0,由S 6=S 7知a 7=0,由S 7>S 8知a 8<0,C 选项S 9>S 5即a 6+a 7+a 8+a 9>0,∴a 7+a 8>0,显然错误. 二、填空题7.设S n 是等差数列{a n }(n ∈N *)的前n 项和,且a 1=1,a 4=7,则S 5=________. [答案] 25[解析] 由⎩⎪⎨⎪⎧ a 1=1a 4=7得⎩⎪⎨⎪⎧a 1=1d =2,∴S 5=5a 1+5×42×d =25.8.(2014·北京理,12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.[答案] 8[解析] 本题考查了等差数列的性质与前n 项和.由等差数列的性质,a 7+a 8+a 9=3a 8,a 7+a 10=a 8+a 9,于是有a 8>0,a 8+a 9<0,故a 9<0,故S 8>S 7,S 9<S 8,S 8为{a n }的前n 项和S n 中的最大值,等差数列{a n }中首项a 1>0公差d <0,{a n }是一个递减的等差数列,前n 项和有最大值,a 1<0,公差d >0,{a n }是一个递增的等差数列,前n 项和有最小值.三、解答题9.设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 取最大值的n 的值.[解析] (1)设公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+2d =5a 1+9d =-9,解得⎩⎪⎨⎪⎧a 1=9d =-2.∴a n =a 1+(n -1)d =-2n +11.(2)由(1)知S n =na 1+n (n -1)2d =10n -n 2=-(n -5)2+25,∴当n =5时,S n 取得最大值.等比数列前N 项和综合练习1.(2013·新课标全国Ⅰ)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n答案 D解析 S n =a 1(1-q n )1-q =a 1-a n q 1-q =1-23a n1-23=3-2a n ,故选D 项. 2.等比数列{a n }各项都是正数,若a 1=81,a 5=16,则它的前5项和是( )A .179B .211C .248D .275答案 B解析 ∵a 5=a 1q 4,∴16=81q 4.∴q =±23.又数列{a n }的各项都是正数,∴q =23. ∴S 5=a 1(1-q 5)1-q =81[1-(23)5]1-23=211. 3.在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于( )A .3B .-3C .-1D .1答案 A解析 思路一:列方程求出首项和公比,过程略; 思路二:两等式相减得a 4-a 3=2a 3,从而求得a 4a 3=3=q .4.在公比为正数的等比数列中,a 1+a 2=2,a 3+a 4=8,则S 8等于( )A .21B .42C .135D .170 答案 D 解析5.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( )A.152B.314C.334D.172答案 B解析 显然公比q ≠1,由题意,得⎩⎨⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q=7,解得⎩⎪⎨⎪⎧a 1=4,q =12,∴S 5=a 1(1-q 5)1-q =4(1-125)1-12=314. 6.在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数( )A .4B .5C .6D .7答案 B解析 ∵q ≠1(14≠78),∴Sn =a 1-anq 1-q.∴778=14-78q 1-q ,解得q =-12,78=14×(-12)n +2-1.∴n =3,故该数列共5项.7.等比数列{an }的首项为1,公比为q ,前n 项和为S ,则数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为( ) A.1S B .S C .Sq 1-n D .S -1q 1-n答案 C解析 q ≠1时,S =1-q n 1-q ,⎩⎨⎧⎭⎬⎫1a n 的前n 项和为1(1-1q n )1-1q =q 1-n ·1-q n1-q =q 1-n ·S .当q =1时,q 1-n ·S =S .8.在等比数列{a n }中,公比q =-2,S 5=44,则a 1的值为( ) A .4 B .-4 C .-2 D .2答案 A 解析9.数列{a n }的前n 项和为S n =4n +b (b 是常数,n ∈N *),若这个数列是等比数列,则b 等于( )A .-1B .0C .1D .4答案 A 解析10.(2013·北京)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.答案 2 2n +1-2解析 由题意知q =a 3+a 5a 2+a 4=2.由a 2+a 4=a 2(1+q 2)=a 1q (1+q 2)=20, ∴a 1=2,∴S n =2(1-2n )1-2=2n +1-2.11.(2012·新课标全国)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.答案 -2解析 由S 3=-2S 2,可得a 1+a 2+a 3=-3(a 1+a 2),即a 1(1+q +q 2)=-3a 1(1+q ),化简整理得q 2+4q +4=0,解得q =-2.12.若等比数列{a n }中,a 1=1,a n =-512,前n 项和为S n =-341,则n 的值是________.答案 1013.(2012·浙江)设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.答案 32解析 由已知S 4-S 2=3a 4-3a 2,即a 4+a 3=3a 4-3a 2,即2a 4-a 3-3a 2=0,两边同除以a 2,得2q 2-q -3=0,即q =32或q =-1(舍).答案 3n -1,或(-3)n -14解析答案24解析16.等比数列{a n}的公比q>0,已知a2=1,a n+2+a n+1=6a n,则{a n}的前4项和S4=________.答案 152解析 由条件a n +2+a n +1=a n q 2+a n q =6a n ,q >0,得q =2,又a 2=1,所以a 1=12,S 4=152.17.一个等比数列的首项为1,项数为偶数,其中奇数项的和为85,偶数项的和为170,求该数列的公比和项数.答案 该数列的公比为2,项数为8解析18.设等比数列{a n }的公比q <1,前n 项和为S n ,已知a 3=2,S 4=5S 2,求{a n }的通项公式.解析 由题设知a 1≠0,S n =a 1(1-q n )1-q,则⎩⎨⎧ a 1q 2=2,a 1(1-q 4)1-q =5×a 1(1-q 2)1-q , ①② 由②得1-q 4=5(1-q 2),(q 2-4)(q 2-1)=0. (q -2)(q +2)(q -1)(q +1)=0,因为q <1,解得q =-1或q =-2. 当q =-1时,代入①得a 1=2,a n =2×(-1)n -1;当q =-2时,代入①得a 1=12,a n =12×(-2)n -1.综上,当q =-1时,a n =2×(-1)n -1;当q =-2时,a n =12×(-2)n -1.。

高中数学-等比数列的前n项和练习

高中数学-等比数列的前n项和练习

高中数学-等比数列的前n 项和练习[A 基础达标]1.等比数列1,a ,a 2,a 3,…的前n 项和为( )A .1+a (1-a n -1)1-11aB .1-a n1-aC.a n +1-1a -1D .以上皆错解析:选D.当a =1时,S n =n ,故选D.2.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15D .16解析:选C.设{a n }的公比为q , 因为4a 1,2a 2,a 3成等差数列, 所以4a 2=4a 1+a 3,即4a 1q =4a 1+a 1q 2, 即q 2-4q +4=0,所以q =2, 又a 1=1,所以S 4=1-241-2=15,故选C.3.已知等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =( ) A .-2 B .2 C .3D .-3解析:选A.因为S 3+3S 2=0,所以a 1(1-q 3)1-q +3a 1(1-q 2)1-q=0,即(1-q )(q 2+4q +4)=0.解得q =-2或q =1(舍去).4.设等比数列{a n }的前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9=( ) A.18 B .-18C.578D .558解析:选A.法一:由等比数列前n 项和的性质知S 3,S 6-S 3,S 9-S 6成等比数列,又a 7+a 8+a 9=S 9-S 6,则S 3,S 6-S 3,a 7+a 8+a 9成等比数列,从而a 7+a 8+a 9=(S 6-S 3)2S 3=18.故选A.法二:因为S 6=S 3+S 3q 3,所以q 3=S 6-S 3S 3=-18,所以a 7+a 8+a 9=S 9-S 6=S 3q 6=8× ⎝ ⎛⎭⎪⎫-182=18.故选A. 5.在等比数列{a n }中,已知S 30=13S 10,S 10+S 30=140,则S 20等于( ) A .90 B .70 C .40D .30解析:选C.因为S 30≠3S 10,所以q ≠1.由⎩⎪⎨⎪⎧S 30=13S 10,S 10+S 30=140得⎩⎪⎨⎪⎧S 10=10,S 30=130,所以⎩⎪⎨⎪⎧a 1(1-q 10)1-q=10,a 1(1-q30)1-q=130,所以q 20+q 10-12=0.所以q 10=3,所以S 20=a 1(1-q 20)1-q=S 10(1+q 10)=10×(1+3)=40.6.在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________.解析:因为在等比数列{a n }中,前3项之和等于21, 所以a 1(1-43)1-4=21,所以a 1=1.所以a n =4n -1.答案:4n -17.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=1,a n +1-a n =2n,则数列{a n }的前n 项和S n =________.解析:因为a n +1-a n =2n ,应用累加法可得a n =2n-1.所以S n =a 1+a 2+…+a n =2+22+ (2)-n =2(1-2n)1-2-n =2n +1-n -2.答案:2n +1-n -28.在等比数列{a n }中,已知a 1+a 2+a 3=1,a 4+a 5+a 6=-2,则该数列的前15项和S 15=________.解析:设数列{a n }的公比为q ,则由已知,得q 3=-2. 又a 1+a 2+a 3=a 11-q(1-q 3)=1,所以a 11-q =13,所以S 15=a 11-q (1-q 15)=a 11-q [1-(q 3)5]=13×[1-(-2)5]=11.答案:119.记S n 为等比数列{a n }的前n 项和,已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n.(2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n·2n +3-2n +23=2[-23+(-1)n 2n +13]=2S n ,故S n +1,S n ,S n +2成等差数列.10.数列{a n }是首项为1的等差数列,且公差不为零,而等比数列{b n }的前三项分别是a 1,a 2,a 6.(1)求数列{a n }的通项公式;(2)若b 1+b 2+…+b k =85,求正整数k 的值. 解:(1)设数列{a n }的公差为d , 因为a 1,a 2,a 6成等比数列, 所以a 22=a 1·a 6,所以(1+d )2=1×(1+5d ), 所以d 2=3d , 因为d ≠0, 所以d =3,所以a n =1+(n -1)×3=3n -2.(2)数列{b n }的首项为1,公比为q =a 2a 1=4, 故b 1+b 2+…+b k =1-4k1-4=4k-13.令4k-13=85,即4k=256,解得k =4.故正整数k 的值为4.[B 能力提升]11.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项解析:选B.设该数列的前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1qn -2,a 1qn -1.所以前三项之积a 31q 3=2,后三项之积a 31q3n -6=4.所以两式相乘,得a 61q3(n -1)=8,即a 21qn -1=2,又a 1·a 1q ·a 1q 2·…·a 1q n -1=64,所以a n1·q n (n -1)2=64,即(a 21q n -1)n =642,即2n =642,所以n =12.12.已知等比数列{a n }的前10项中,所有奇数项之和S 奇为8514,所有偶数项之和S 偶为17012,则S =a 3+a 6+a 9+a 12的值为________. 解析:设公比为q ,由⎩⎪⎨⎪⎧S 偶S 奇=q =2,S奇=a 1[1-(q 2)5]1-q2=8514,得⎩⎪⎨⎪⎧a 1=14,q =2. 所以S =a 3+a 6+a 9+a 12=a 3(1+q 3+q 6+q 9) =a 1q 2·1-q121-q3=585.答案:58513.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以c (c >0)为公比的等比数列. (1)求数列{a n }的通项公式; (2)求a 2+a 4+…+a 2n . 解:由条件知S 1=a 1=1.(1)①当c =1时,a n =⎩⎪⎨⎪⎧1,n =1,S n -S n -1,n ≥2⇒a n =⎩⎪⎨⎪⎧1,n =1,0,n ≥2.②当c ≠1时,a n =⎩⎪⎨⎪⎧1,n =1,(c -1)c n -2,n ≥2. (2)①当c =1时,a 2+a 4+…+a 2n =0;②当c ≠1时,数列是以a 2为首项,c 2为公比的等比数列,所以a 2+a 4+…+a 2n =(c -1)(1-c 2n)1-c 2=c 2n-11+c. 14.(选做题)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少,从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%. (1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a nn,若A n 大于80万元,则M 继续使用,否则须在第n 年初对M 更新,证明:须在第9年初对M 更新.解:(1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列.a n =120-10(n -1)=130-10n ;当n ≥7时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,所以a n =70×⎝ ⎛⎭⎪⎫34n -6;因此,第n 年初,M 的价值a n 的表达式为a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,70×⎝ ⎛⎭⎪⎫34n -6,n ≥7. (2)证明:设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得 当1≤n ≤6时,S n =120n -5n (n -1),A n =120-5(n -1)=125-5n ;当n ≥7时,S n =S 6+(a 7+a 8+…+a n ) =570+70×34×4×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫34n -6=780-210×⎝ ⎛⎭⎪⎫34n -6,A n =780-210×⎝ ⎛⎭⎪⎫34n -6n,因为{a n }是递减数列,所以{A n }是递减数列,又 A 8=780-210×(34)8-68=824764>80,A 9=780-210×(34)9-69=767996<80,所以须在第9年初对M 更新.。

人教版高中数学选择性必修第二册 等比数列的前n项和公式(第2课时) 分层作业(含解析)

人教版高中数学选择性必修第二册 等比数列的前n项和公式(第2课时) 分层作业(含解析)

人教版高中数学选择性必修第二册等比数列的前n 项和公式(第2课时)分层作业(原卷版)(50分钟100分)基础对点练基础考点分组训练知识点1等比数列前n 项和的性质1.(5分)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则()A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n2.(5分)在等比数列{a n }中,若a 1+a 2+a 3+a 4=158,a 2a 3=-98,则1a 1+1a 2+1a 3+1a 4等于()A .35B .53C .-35D .-533.(5分)等比数列{a n }共有2n 项,它的全部项的和是奇数项的和的3倍,则公比q =________.4.(5分)在等比数列{a n }中,已知a 1+a 2+a 3=1,a 4+a 5+a 6=-2,则该数列的前15项的和S 15=________.知识点2分组求和5.(5分)数列12,12+14,12+14+18,…,12+14+…+12n 的前n 项和为()A .n +12nB .n -1+12nC .n -1+12n +1D .n +12n-16.(5分)设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若数列{c n }是1,1,2,…,则数列{c n }的前10项和为()A .978B .557C .467D .979知识点3等差数列与等比数列的综合问题7.(5分)已知数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=()A .1033B .1034C .2057D .20588.(5分)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a1=()A.2B.-2C.12D.-129.(5分)(多选)已知{a n}为等比数列,S n是其前n项和.若a2a3=8a1,且a4与2a5的等差中项为20,则()A.a1=-1B.公比q=-2C.a4=8D.S5=31能力提升练能力考点拓展提升10.(5分)等比数列{a n}的前n项和为S n,若S3=2,S6=18,则S10S5等于()A.-3B.5C.-31D.3311.(5分)设等比数列的前n项和、前2n项和、前3n项和分别为A,B,C,则() A.A+B=C B.B2=ACC.A+B-C=B2D.A2+B2=A(B+C)12.(5分)已知等比数列{a n}的前n项和S n=2n-1,则数列{log2a n}的前12项和等于() A.66B.55C.45D.613.(5分)已知{a n}是等比数列,若a1=1,a6=8a3,n项和为T n,则T5=() A.3116B.31C.158D.15414.(5分)在等比数列{a n}中,公比q=2,前n项和为S n,若S5=1,则S10=________.15.(5分)若等比数列{a n}的前n项和S n=2×3n+r,则r=________.16.(12分)已知等差数列{a n}(n∈N*)的前n项和为S n,且a3=5,S3=9.(1)求数列{a n}的通项公式;(2)等比数列{b n}(n∈N*),若b2=a2,b3=a5,求数列{a n+b n}的前n项和T n.17.(13分)已知数列{a n}是等比数列,S n是其前n项的和,a1,a7,a4成等差数列,求证:2S3,S6,S12-S6成等比数列.人教版高中数学选择性必修第二册等比数列的前n 项和公式(第2课时)分层作业(解析版)(50分钟100分)基础对点练基础考点分组训练知识点1等比数列前n 项和的性质1.(5分)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则()A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a nD解析:在等比数列{a n }中,S n =a 1-a n q 1-q =1-a n ×231-23=3-2a n .2.(5分)在等比数列{a n }中,若a 1+a 2+a 3+a 4=158,a 2a 3=-98,则1a 1+1a 2+1a 3+1a 4等于()A .35B .53C .-35D .-53D解析:设等比数列{a n }的公比为q ,则a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=158,a 2a 3=a 21q 3=-98,∴1a 1+1a 2+1a 3+1a 4=+1q +1q 2+=q 3+q 2+q +1a 1q 3=a 1(q 3+q 2+q +1)a 21q3=158-98=-53.3.(5分)等比数列{a n }共有2n 项,它的全部项的和是奇数项的和的3倍,则公比q =________.2解析:设{a n }的公比为q ,由已知可得q ≠1,则奇数项也构成等比数列,其公比为q 2,首项为a 1,S 2n =a 1(1-q 2n )1-q ,S 奇=a 1[1-(q 2)n ]1-q2.由题意得a 1(1-q 2n )1-q =3a 1(1-q 2n )1-q 2,∴1+q =3,∴q =2.4.(5分)在等比数列{a n }中,已知a 1+a 2+a 3=1,a 4+a 5+a 6=-2,则该数列的前15项的和S 15=________.11解析:∵S 3=1,S 6-S 3=-2,∴S 9-S 6=4,S 12-S 9=-8,S 15-S 12=16,∴S 15=S 3+S 6-S 3+S 9-S 6+S 12-S 9+S 15-S 12=1-2+4-8+16=11.知识点2分组求和5.(5分)数列12,12+14,12+14+18,…,12+14+…+12n 的前n 项和为()A .n +12nB .n -1+12nC .n -1+12n +1D .n +12n -1B解析:∵数列的通项a n =12+14+…+12n =21-12=1-12n ,∴前n 项和S n…=n +14+…=n -1+12n .6.(5分)设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若数列{c n }是1,1,2,…,则数列{c n }的前10项和为()A .978B .557C .467D .979A解析:设等比数列{a n }的公比为q ,等差数列{b n }的公差为d .∵c n =a n +bn 1+b 1=1,2+b 2=1,3+b 3=2,1=1,=-1,=2.∴c n =2n -1+(1-n ).∴{c n }的前10项和为1-2101-2+10×(0-9)2=978.知识点3等差数列与等比数列的综合问题7.(5分)已知数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=()A .1033B .1034C .2057D .2058A解析:∵a n =n +1,b n =2n -1,∴ab 1+ab 2+…+ab 10=a 1+a 2+a 4+…+a 29=(1+1)+(2+1)+(22+1)+…+(29+1)=10+(1+2+22+…+29)=10+1-2101-2=1033.8.(5分)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=()A .2B .-2C .12D .-12D解析:∵S 1,S 2,S 4成等比数列,∴S 22=S 1·S 4,∴(2a 1-1)2=a 1·(4a 1-6),∴a 1=-12.9.(5分)(多选)已知{a n }为等比数列,S n 是其前n 项和.若a 2a 3=8a 1,且a 4与2a 5的等差中项为20,则()A .a 1=-1B .公比q =-2C .a 4=8D .S 5=31CD解析:∵a 2a 3=8a 1,∴a 1q 3=8,即a 4=8.∵a 4+2a 5=40,∴a 4(1+2q )=40,∴q =2,a 1=1.∴S 5=1-251-2=31.能力提升练能力考点拓展提升10.(5分)等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于()A .-3B .5C .-31D .33D解析:设{a n }的公比为q ,∵S 3=a 1·(1-q 3)1-q =2,S 6=a 1·(1-q 6)1-q =18,∴1+q 3=9,∴q =2,∴S 10S 5=1-q 101-q5=1+q 5=33.11.(5分)设等比数列的前n 项和、前2n 项和、前3n 项和分别为A ,B ,C ,则()A .A +B =C B .B 2=ACC .A +B -C =B 2D .A 2+B 2=A(B +C)D解析:∵S n ,S 2n -S n ,S 3n -S 2n 成等比数列,∴(S 2n -S n )2=S n (S 3n -S 2n ),即(B -A)2=A(C -B),∴A 2+B 2=A(B +C).12.(5分)已知等比数列{a n }的前n 项和S n =2n -1,则数列{log 2a n }的前12项和等于()A .66B .55C .45D .6A解析:∵S n =2n -1,∴S n -1=2n -1-1(n ≥2),两式相减得a n =2n -1(n ≥2).又a 1=S 1=1,∴a n =2n -1.∴log 2a n =n -1.∴{log 2a n }是等差数列,首项为0,公差为1.∴前12项和为66.13.(5分)已知{a n }是等比数列,若a 1=1,a 6=8a 3,n 项和为T n ,则T 5=()A .3116B .31C .158D .154A解析:∵a 1=1,a 6=8a 3,∴q =2.1,公比为12,∴T 51-12=3116.14.(5分)在等比数列{a n }中,公比q =2,前n 项和为S n ,若S 5=1,则S 10=________.33解析:∵S 5=a 1(1-25)1-2=1,∴a 1=131.∴S 10=a 1(1-210)1-2=131×1023=33.15.(5分)若等比数列{a n }的前n 项和S n =2×3n +r ,则r =________.-2解析:∵S n =2×3n +r ,∴当n ≥2时,a n =S n -S n -1=2×3n -2×3n -1=4×3n -1.当n =1时,a 1=S 1=6+r .∵{a n }为等比数列,∴6+r =4.∴r =- 2.16.(12分)已知等差数列{a n }(n ∈N *)的前n 项和为S n ,且a 3=5,S 3=9.(1)求数列{a n }的通项公式;(2)等比数列{b n }(n ∈N *),若b 2=a 2,b 3=a 5,求数列{a n +b n }的前n 项和T n .解:(1)由S 3=9,得3a 2=9,所以a 2=3.又因为a 3=5,所以公差d =2.从而a n =a 2+(n -2)d =2n -1.(2)由(1)可得b 2=a 2=3,b 3=a 5=9,所以公比q =3.从而b n =b 2q n -2=3n -1,则a n +b n =(2n -1)+3n -1,分组求和可得T n =n 2+12(3n -1).17.(13分)已知数列{a n }是等比数列,S n 是其前n 项的和,a 1,a 7,a 4成等差数列,求证:2S 3,S 6,S 12-S 6成等比数列.证明:∵a 1,a 7,a 4成等差数列,∴2a 7=a 1+a 4,∴2q 6=1+q 3,∴q 3=-12或q 3=1.若q 3=1,则2S 3=6a 1,S 6=6a 1,S 12-S 6=6a 1.∴2S 3,S 6,S 12-S 6成等比数列.若q 3=-12,则2S 3=3a 11-q ,S 6=34a 11-q ,S 12-S 6=316a 11-q .34a 11-q 2=3a 11-q ·316a 11-q ,即S 26=2S 3·(S 12-S 6),∴2S 3,S 6,S 12-S 6成等比数列.。

新教材高考数学第二课时等比数列前n项和的性质及应用练习含解析选修2

新教材高考数学第二课时等比数列前n项和的性质及应用练习含解析选修2

第二课时 等比数列前n 项和的性质及应用课标要求素养要求1.熟练应用等比数列前n 项和公式的性质解题.2.能在具体的问题情境中,发现数列的等比关系,并解决相应的问题.通过利用等比数列的前n 项和公式解决实际应用问题,提升学生的数学建模和数学运算素养.新知探究一位中国老太太与一位美国老太太在路上相遇.美国老太太说,她住了一辈子的宽敞房子,也辛苦了一辈子,昨天刚还清了银行的住房贷款,而中国老太太却叹息地说,她三代同堂一辈子,昨天刚把买房的钱攒足.我国现代都市人的消费观念正在改变——花明天的钱圆今天的梦对我们已不再陌生,贷款购物,分期付款已深入我们的生活.但是面对商家和银行提供的各种分期付款服务,究竟选择什么样的方式好呢?让我们一起进入今天的学习吧!等比数列前n 项和的性质(1)数列{a n }为公比不为-1的等比数列(或公比为-1,且n 不是偶数),S n 为其前n 项和,则S n ,S 2n -S n ,S 3n -S 2n 仍构成等比数列.(2)若{a n }是公比为q 的等比数列,则S n +m =S n +q nS m (n ,m ∈N *).(3)若{a n }是公比为q 的等比数列,S 偶,S 奇分别是数列的偶数项和与奇数项和,则:①在其前2n 项中,S 偶S 奇=q ; ②在其前2n +1项中,S 奇-S 偶=a 1-a 2+a 3-a 4+…-a 2n +a 2n +1=a 1+a 2n +1q 1-(-q )=a 1+a 2n +21+q(q ≠-1).拓展深化[微判断]1.等比数列{a n }的前n 项和S n 不可能等于2n.(√) 2.若{a n }的公比为q ,则{a 2n }的公比为q 2.(√)3.若{a n }的公比为q ,则a 1+a 2+a 3,a 2+a 3+a 4,a 3+a 4+a 5的公比也为q .(√)4.等比数列{a n }是递增数列,前n 项和为S n ,则{S n }也是递增数列.(×)提示 反例:等比数列{a n }为-4,-2,-1,-12,…,则S 1=-4,S 2=-6,S 3=-7,…,逐渐减小,则{S n }不是递增数列.5.对于公比q ≠1的等比数列{a n }的前n 项和公式,其q n的系数与常数项互为相反数.(√) [微训练]1.等比数列{a n }的前m 项和为4,前2m 项和为12,则它的前3m 项和是________. 解析 易知S m =4,S 2m -S m =8, ∴S 3m -S 2m =16, ∴S 3m =12+16=28. 答案 282.已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.解析 由题意得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,∴S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2.答案 2 [微思考]当等比数列{a n }的公比q =-1时,若k 是偶数,S k ,S 2k -S k ,S 3k -S 2k 是等比数列吗? 提示 不是.如数列1,-1,1,-1,…是公比为-1的等比数列,S 2=S 4-S 2=S 6-S 4=…=0,不是等比数列.题型一 等比数列的连续n 项之和的性质【例1】 在等比数列{a n }中,已知S n =48,S 2n =60,求S 3n . 解 法一 ∵S 2n ≠2S n ,∴q ≠1,由已知得⎩⎪⎨⎪⎧a 1(1-q n )1-q=48,a 1(1-q2n)1-q=60,①②②÷①得1+q n=54,即q n=14,③③代入①得a 11-q=64, ∴S 3n =a 1(1-q 3n )1-q =64⎝ ⎛⎭⎪⎫1-143=63.法二 ∵{a n }为等比数列,显然公比不等于-1, ∴S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, ∴(S 2n -S n )2=S n (S 3n -S 2n ),∴S 3n =(S 2n -S n )2S n +S 2n =(60-48)248+60=63.规律方法 处理等比数列前n 项和有关问题的常用方法(1)运用等比数列的前n 项和公式,要注意公比q =1和q ≠1两种情形,在解有关的方程(组)时,通常用约分或两式相除的方法进行消元. (2)灵活运用等比数列前n 项和的有关性质.【训练1】 设等比数列{a n }前n 项和为S n ,若S 3=8,S 6=24,则a 10+a 11+a 12=( ) A.32 B.64 C.72D.216解析 由于S 3、S 6-S 3、S 9-S 6,S 12-S 9成等比数列,S 3=8,S 6-S 3=16,故其比为2,所以S 9-S 6=32,a 10+a 11+a 12=S 12-S 9=64.答案 B题型二 等比数列的不连续n 项和的性质【例2】 一个项数为偶数的等比数列,全部项之和为偶数项之和的4倍,前3项之积为64,求该等比数列的通项公式.解 设数列{a n }的首项为a 1,公比为q ,全部奇数项、偶数项之和分别记为S 奇,S 偶,由题意,知S 奇+S 偶=4S 偶,即S 奇=3S 偶. ∵数列{a n }的项数为偶数,∴q =S 偶S 奇=13. 又a 1·a 1q ·a 1q 2=64,∴a 31·q 3=64,即a 1=12.故所求通项公式为a n =12×⎝ ⎛⎭⎪⎫13n -1,n ∈N *.规律方法 (1)在等比数列{a n }中若项数为偶数,则有S 偶=qS 奇,且S n =S 偶+S 奇. (2)解题时要注意观察序号之间的联系,发现解题契机,注意应用整体的思想.【训练2】 一个等比数列的首项是1,项数是偶数,其奇数项的和为85,偶数项的和为170,求此数列的公比和项数.解 法一 设原等比数列的公比为q ,项数为2n (n ∈N *). 由已知a 1=1,q ≠1,有⎩⎪⎨⎪⎧1-q2n1-q2=85,q (1-q 2n )1-q2=170.①②由②÷①,得q =2,∴1-4n1-4=85,4n =256,∴n =4. 故公比为2,项数为8.法二 ∵S 偶=a 2+a 4+…+a 2n =a 1q +a 3q +…+a 2n -1q =(a 1+a 3+…+a 2n -1)q =S 奇·q ,∴q =S 偶S 奇=17085=2. 又S n =85+170=255,据S n =a 1(1-q n )1-q ,得1-2n1-2=255,∴2n=256,∴n =8.即公比q =2,项数n =8. 题型三 等比数列前n 项和的实际应用【例3】 小华准备购买一部售价为5 000元的手机,采用分期付款方式,并在一年内将款全部付清.商家提出的付款方式为:购买2个月后第1次付款,再过2个月后第2次付款,…,购买12个月后第6次付款,每次付款金额相同,约定月利率为0.8%,每月利息按复利计算,求小华每期付款金额是多少.(参考数据:1.00812≈1.10)解 法一 设小华每期付款x 元,第k 个月末付款后的欠款本利为A k 元,则:A 2=5 000×(1+0.008)2-x =5 000×1.0082-x , A 4=A 2(1+0.008)2-x =5 000×1.0084-1.0082x -x ,…,A 12=5 000×1.00812-(1.00810+1.0088+…+1.0082+1)x =0,解得x = 5 000×1.008121+1.0082+1.0084+…+1.00810=5 000×1.008121-(1.0082)61-1.0082≈883.5. 故小华每期付款金额约为883.5元.法二 设小华每期付款x 元,到第k 个月时已付款及利息为A k 元,则:A 2=x ;A 4=A 2(1+0.008)2+x =x (1+1.0082); A 6=A 4(1+0.008)2+x =x (1+1.0082+1.0084);…A 12=x (1+1.0082+1.0084+1.0086+1.0088+1.00810).∵年底付清欠款,∴A 12=5 000×1.00812,即5 000×1.00812=x (1+1.0082+1.0084+…+1.00810), ∴x = 5 000×1.008121+1.0082+1.0084+…+1.00810≈883.5.故小华每期付款金额约为883.5元.规律方法 (1)实际生活中的增长率问题,分期付款问题等都是等比数列问题; (2)解决此类问题的关键是由实际情况抽象出数列模型,利用数列知识求解.【训练3】 一个热气球在第一分钟上升了25 m 的高度,在以后的每一分钟内,它上升的高度都是它在前一分钟内上升高度的80%.这个热气球上升的高度能超过125 m 吗? 解 用a n 表示热气球在第n 分钟内上升的高度, 由题意,得a n +1=45a n ;因此,数列{a n }是首项a 1=25,公比q =45的等比数列.热气球在前n 分钟内上升的总高度S n =a 1+a 2+…+a n =a 1(1-q n )1-q=25⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n 1-45=125×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n <125,即这个热气球上升的高度不可能超过125 m.一、素养落地1.通过学习等比数列前n 项和性质的应用,提升数学运算素养,通过利用等比数列前n 项和公式解决实际问题,提升数学建模素养.2.应用等比数列前n 项和的性质要注意使用整体的思想,即常把q n、S n 等看作一个整体. 3.解决实际应用问题的关键是构建数学模型. 二、素养训练1.已知等比数列{a n }的公比为2,且其前5项和为1,那么{a n }的前10项和等于( ) A.31 B.33 C.35D.37解析 设{a n }的公比为q ,由题意,q =2,a 1+a 2+a 3+a 4+a 5=1,则a 6+a 7+a 8+a 9+a 10=q 5(a 1+a 2+a 3+a 4+a 5)=q 5=25=32,∴S 10=1+32=33.答案 B2.数列{a n }中,已知对任意正整数n ,有a 1+a 2+a 3+…+a n =3n -1,则a 31+a 32+…+a 3n =( ) A.(3n-1)2B.413(27n-1) C.113(3n-1) D.27n-1解析 设S n =a 1+a 2+a 3+…+a n =3n-1,则当n ≥2时,S n -1=3n -1-1,故a n =S n -S n -1=2×3n -1,又a 1=2,所以a n =2×3n -1,所以a 31+a 32+…+a 3n =8×(1-33n)1-33=4(27n-1)13. 答案 B3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地……”,则该人最后一天走的路程为( ) A.24里 B.12里 C.6里D.3里解析 由题知,设该人每天行走的里数构成一个等比数列{a n }(n ∈N *),公比q =12,S 6=a 1⎝⎛⎭⎪⎫1-1261-12=378,∴a 1=192,∴a 6=192×125=6.故该人最后一天走的路程为6里. 答案 C4.设等比数列{a n }中,a 1+a 2+a 3=3,a 4+a 5+a 6=81,则数列{a n }的公比为________. 解析 易得a 4+a 5+a 6=q 3(a 1+a 2+a 3), 故q 3=27,则q =3.答案 35.设等比数列{a n }的前n 项和为S n ,且S 4=1,S 8=7,求S 12. 解 因为S 4,S 8-S 4,S 12-S 8成等比数列. 所以(S 8-S 4)2=S 4(S 12-S 8),即(7-1)2=1·(S 12-7),解得S 12=43.基础达标一、选择题1.等比数列{a n }的首项为1,公比为q ,前n 项的和为S ,由原数列各项的倒数组成一个新数列⎩⎨⎧⎭⎬⎫1a n ,则数列⎩⎨⎧⎭⎬⎫1a n 的前n 项的和是( ) A.1SB.Sqn -1C.Sq1-nD.q n S解析 易知数列⎩⎨⎧⎭⎬⎫1a n 也是等比数列,首项为1,公比为1q,则数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为1-⎝ ⎛⎭⎪⎫1q n1-1q=q (1-q n )(1-q )q n =1-q n 1-q ·1q n -1=S qn -1=S ·q 1-n. 答案 C2.我国数学巨著《九章算术》中,有如下问题:今有女子善织,日自倍,五日织五尺.问日织几何?其大意为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布3531尺,则这位女子织布的天数是( ) A.2 B.3 C.4D.1解析 依题意,每天的织布数构成一个公比q =2的等比数列{a n },其前n 项和为S n ,则S 5=5,S m =3531,∵S 5=a 1(1-25)1-2=5,解得a 1=531.∴S m =531(1-2m )1-2=3531,解得m =3.故选B. 答案 B3.设等比数列{a n }的前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )A.18B.-18C.578D.558解析 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18,所以a 7+a 8+a 9=18.答案 A4.设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4的值为( ) A.12 B.2 C.1716 D.17解析 a 5a 2=q 3=18,∴q =12. ∴S 8S 4=S 4+(S 8-S 4)S 4=1+S 8-S 4S 4=1+q 4=1716.答案 C5.某市利用省运会的契机,鼓励全民健身,从2018年7月起向全市投放A ,B 两种型号的健身器材.已知7月投放A 型健身器材300台,B 型健身器材64台,计划8月起,A 型健身器材每月的投放量均为a 台,B 型健身器材每月的投放量比上一月多50%,若12月底该市A ,B 两种健身器材投放总量不少于2 000台,则a 的最小值为( ) A.243 B.172 C.122D.74解析 设B 型健身器材这6个月投放量构成数列{b n },则{b n }是b 1=64,q =32的等比数列,其前6项和S 6=64×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫3261-32=1 330,∴5a +300+1 330≥2 000,解得a ≥74,故选D.答案 D 二、填空题6.正项等比数列{a n }的前n 项和为S n ,S 30=13S 10,S 10+S 30=140,则S 20等于________.解析 由S 30=13S 10,知q ≠1,由⎩⎪⎨⎪⎧S 30=13S 10,S 10+S 30=140,得⎩⎪⎨⎪⎧S 10=10,S 30=130,由等比数列的前n 项和的性质得S 10,S 20-S 10,S 30-S 20成等比数列,则(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(130-S 20),解得S 20=40或S 20=-30(舍去).答案 407.一个球从256米的高处自由落下,每次着地后又跳回到原来高度的一半,当它第6次着地时,共经过的路程是________米.解析 设小球每次着地后跳回的高度构成数列{a n },则数列{a n }为等比数列,a 1=128,q =12,S 5=128×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=248,共经过的路程为256+2S 5=752(米). 答案 7528.设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0,则公比q=________.解析 由210S 30-(210+1)S 20+S 10=0, 得210(S 30-S 20)=S 20-S 10.又S 10,S 20-S 10,S 30-S 20成等比数列,∴S 30-S 20S 20-S 10=q 10=⎝ ⎛⎭⎪⎫1210. 又{a n }为正项等比数列,∴q =12.答案 12三、解答题9.(1)设数列{x n }满足log 2x n +1=1+log 2x n (n ∈N *),且x 1+x 2+…+x 10=10,记{x n }的前n 项和为S n ,求S 20.(2)设数列{a n }是以2为首项,1为公差的等差数列;数列{b n }是以1为首项,2为公比的等比数列,求ba 1+ba 2+ba 3+…+ba 6. 解 (1)∵log 2x n +1=1+log 2x n =log 2(2x n ), ∴x n +1=2x n ,且x n >0,∴{x n }为等比数列,且公比q =2, ∴S 20=S 10+q 10S 10=10+210×10=10 250. (2)设数列{b n }的公比为q ,则q =2,∵ba n +1ba n =b 1·qa n +1-1b 1·qa n -1=qa n +1-a n =2, ∴{ba n }是首项为b 2,公比为2的等比数列. ∴ba 1+ba 2+…+ba 6=b 2(1-26)1-2=126.10.已知等比数列前n 项,前2n 项,前3n 项的和分别为S n ,S 2n ,S 3n ,求证:S 2n +S 22n =S n (S 2n +S 3n ).证明 法一 设此等比数列的公比为q ,首项为a 1, 当q =1时,S n =na 1,S 2n =2na 1,S 3n =3na 1, ∴S 2n +S 22n =n 2a 21+4n 2a 21=5n 2a 21,S n (S 2n +S 3n )=na 1(2na 1+3na 1)=5n 2a 21,∴S 2n +S 22n =S n (S 2n +S 3n ). 当q ≠1时,S n =a 11-q(1-q n),S 2n =a 11-q (1-q 2n),S 3n =a 11-q(1-q 3n), ∴S 2n +S 22n=⎝ ⎛⎭⎪⎫a 11-q 2·[(1-q n )2+(1-q 2n )2]=⎝ ⎛⎭⎪⎫a 11-q 2·(1-q n )2·(2+2q n +q 2n ). 又S n (S 2n +S 3n )=⎝ ⎛⎭⎪⎫a 11-q 2(1-q n )(2-q 2n -q 3n )=⎝ ⎛⎭⎪⎫a 11-q 2·(1-q n )2·(2+2q n +q 2n ),∴S 2n +S 22n =S n (S 2n +S 3n ). 法二 根据等比数列的性质有S 2n =S n +q n S n =S n (1+q n ),S 3n =S n +q n S n +q 2n S n ,∴S 2n +S 22n =S 2n +[S n (1+q n )]2=S 2n (2+2q n +q 2n),S n (S 2n +S 3n )=S 2n (2+2q n +q 2n). ∴S 2n +S 22n =S n (S 2n +S 3n ).能力提升11.设f (x )是定义在R 上的恒不为零的函数,且对任意的实数x ,y ,都有f (x )·f (y )=f (x +y ).若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n =________.解析 令x =n ,y =1,则f (n )·f (1)=f (n +1), 又a n =f (n ),∴a n +1a n =f (n +1)f (n )=f (1)=a 1=12,∴数列{a n }是以12为首项,12为公比的等比数列, ∴S n =12⎝ ⎛⎭⎪⎫1-12n 1-12=1-12n . 答案 1-12n 12.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增长14.设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式.解 第1年投入800万元,第2年投入800×⎝ ⎛⎭⎪⎫1-15万元,…,第n 年投入800×⎝ ⎛⎭⎪⎫1-15n -1万元, 所以总投入a n =800+800×⎝ ⎛⎭⎪⎫1-15+…+800× ⎝ ⎛⎭⎪⎫1-15n -1=4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n (万元). 同理,第1年收入400万元,第2年收入400×⎝ ⎛⎭⎪⎫1+14万元,…,第n 年收入400×⎝ ⎛⎭⎪⎫1+14n -1万元.所以总收入b n =400+400×⎝ ⎛⎭⎪⎫1+14+…+400× ⎝ ⎛⎭⎪⎫1+14n -1=1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1. 综上,a n =4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n , b n =1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1. 创新猜想13.(多选题)如果有穷数列a 1,a 2,a 3,…,a m (m 为正整数)满足a 1=a m ,a 2=a m -1,…,即a i =a m -i +1(i =1,2,…,m ),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.设{b n }是项数为2m (m >1,m ∈N *)的“对称数列”,且1,2,22,23,…,2m -1依次为该数列中连续的前m 项,则数列{b n }的前100项和S 100可能的取值为( )A.2100-1B.251-2C.226-4D.2m +1-22m -100-1 解析 由题意知数列{b n }为1,2,22,23,…,2m -1,2m -1,…,23,22,2,1. 若m =50,则S 100=2×1×(1-250)1-2=251-2,B 正确; 若51≤m <100,则S 100=2×1×(1-2m )1-2-1×(1-22m -100)1-2=2m +1-22m -100-1,故D 正确.若m ≥100,则S 100=1×(1-2100)1-2=2100-1,故A 正确. 答案 ABD14.(多空题)已知集合P ={x |x =2n ,n ∈N *},Q ={x |x =2n -1,n ∈N *},将P ∪Q 的所有元素从小到大依次排列构成一个数列{a n },记S n 为数列{a n }的前n 项和,则a 29=________,使得S n <1 000成立的n 的最大值为________.解析 数列{a n }的前n 项依次为1,2,3,22,5,7,23,….利用列举法可得,当n =35时,P ∪Q 的所有元素从小到大依次排列,构成一个数列{a n }, 所以数列{a n }的前35项分别为1,3,5,7,9,11,13,15,17,19,21,23,25,…,57,59,2,4,8,16,32,故a 29=47.S 35=30+30×(30-1)2×2+2×(25-1)2-1=302+26-2=962<1 000. 因为26=64>61,所以S 36=S 35+61=1 023>1 000,所以n 的最大值为35.答案 47 35。

等比数列及其前n项和专题练习(含参考答案)

等比数列及其前n项和专题练习(含参考答案)

数学 等比数列及其前n 项和一、选择题1.在等比数列{a n }中,a 1=12,q =12,a n =132,则项数n 为( )A .3B .4C .5D .62.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( ) A .32B .23C .-23D .23或-233.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯塔的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4.已知各项均为正数的等比数列{a n }的前n 项和为S n ,且S 3=14,a 3=8,则a 6=( ) A .16 B .32 C .64D .1285.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则实数a 的值为( )A .-13B .13C .-12D .126.设等比数列{a n }的公比为q >0,且q ≠1,S n 为数列{a n }前n 项和,记T n =a nS n ,则( )A .T 3≤T 6B .T 3<T 6C .T 3≥T 6D .T 3>T 67.已知{a n }是首项为1的等比数列,若S n 是数列{a n }的前n 项和,且28S 3=S 6,则数列{1a n}的前4项和为( ) A .158或4B .4027或4C .4027D .1588.已知数列{a n }是递减的等比数列,S n 是{a n }的前n 项和,若a 2+a 5=18,a 3a 4=32,则S 5的值是( )A .62B .48C .36D .31二、填空题9.数列{a n }满足:log 2a n +1=1+log 2a n ,若a 3=10,则a 8=_____.10.已知数列{a n }是等比数列,a 2=2,a 5=14,则a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2= .11.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=_____.12. 已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是_____. 三、解答题13.等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .14. (2018·安徽联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4. (1)证明:{S n -n +2}为等比数列. (2)求数列{S n }的前n 项和T n .1.已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值是( )A .52或-52B .-52C .52D .122.等比数列{a n }共有奇数项,所有奇数项的和S 奇=255,所有偶数项的和S 偶=-126,末项是192,则首项a 1等于( )A .1B .2C .3D .43.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n =( ) A .80 B .30 C .26D .164.在等比数列{a n }中,a 1+a n =82,a 3·a n -2=81,且前n 项和S n =121,则此数列的项数n 等于( )A .4B .5C .6D .75. 已知等比数列{a n }满足条件a 2+a 4=3(a 1+a 3),a 2n =3a 2n ,n ∈N *,数列{b n }满足b 1=1,b n -b n -1=2n -1(n ≥2,n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)若数列{c n }满足c 1a 1+c 2a 2+c 3a 3+…+c na n=b n ,n ∈N *,求{c n }的前n 项和T n .【参考答案】一、选择题1.在等比数列{a n }中,a 1=12,q =12,a n =132,则项数n 为( C )A .3B .4C .5D .62.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( C ) A .32B .23C .-23D .23或-23[解析] 由⎩⎪⎨⎪⎧a 1q =18,a 1q 3=8解得⎩⎪⎨⎪⎧a 1=27,q =23或⎩⎪⎨⎪⎧a 1=-27,q =-23,又a 1<0,因此q =-23.故选C .3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯塔的2倍,则塔的顶层共有灯( B )A .1盏B .3盏C .5盏D .9盏[解析] 设塔的顶层共有灯x 盏,则各层的灯数构成一个公比为2的等比数列,由x (1-27)1-2=381可得x =3.4.已知各项均为正数的等比数列{a n }的前n 项和为S n ,且S 3=14,a 3=8,则a 6=( C ) A .16 B .32 C .64D .128[解析] 由题意得,等比数列的公比为q ,由S 3=14,a 3=8,则⎩⎪⎨⎪⎧a 1(1+q +q 2)=14,a 3=a 1q 2=8,,解得a 1=2,q =2,所以a 6=a 1q 5=2×25=64,故选C .5.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则实数a 的值为( A )A .-13B .13C .-12D .12[解析] 当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,又因为{a n }是等比数列,所以a +16=a 2,所以a =-13.6.设等比数列{a n }的公比为q >0,且q ≠1,S n 为数列{a n }前n 项和,记T n =a nS n ,则( D )A .T 3≤T 6B .T 3<T 6C .T 3≥T 6D .T 3>T 6[解析] T 6-T 3=a 6(1-q )a 1(1-q 6)-a 3(1-q )a 1(1-q 3)=q 5(1-q )1-q 6-q 2(1-q )1-q 3=-q 2(1-q )1-q 6,由于q >0且q ≠1,所以1-q 与1-q 6同号,所以T 6-T 3<0,∴T 6<T 3,故选D .7.已知{a n }是首项为1的等比数列,若S n 是数列{a n }的前n 项和,且28S 3=S 6,则数列{1a n}的前4项和为( C ) A .158或4B .4027或4C .4027D .158[解析] 设数列{a n }的公比为q .当q =1时,由a 1=1,得28S 3=28×3=84.S 6=6,两者不相等,因此不合题意. 当q ≠1时,由28S 3=S 6及首项为1,得28(1-q 3)1-q =1-q 61-q ,解得q =3.所以数列{a n }的通项公式为a n =3n -1.所以数列{1a n }的前4项和为1+13+19+127=4027.8.已知数列{a n }是递减的等比数列,S n 是{a n }的前n 项和,若a 2+a 5=18,a 3a 4=32,则S 5的值是( A )A .62B .48C .36D .31[解析] 由a 2+a 5=18,a 3a 4=32,得a 2=16,a 5=2或a 2=2,a 5=16(不符合题意,舍去),设数列{a n }的公比为q ,则a 1=32,q =12,所以S 5=32[1-(12)5]1-12=62,选A .二、填空题9.数列{a n }满足:log 2a n +1=1+log 2a n ,若a 3=10,则a 8=__320___.[解析] 由题意知log 2a n +1=log 22a n ,∴a n +1=2a n ,∴{a n }是公比为2的等比数列,又a 3=10,∴a 8=a 3·25=320.10.已知数列{a n }是等比数列,a 2=2,a 5=14,则a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2=647(1-2-3n) .[解析] 设数列{a n }的公比为q ,则q 3=a 5a 2=18,解得q =12,a 1=a 2q=4.易知数列{a n a n +1a n+2}是首项为a 1a 2a 3=4×2×1=8,公比为q 3=18的等比数列,所以a 1a 2a 3+a 2a 3a 4+…+a n a n+1a n +2=8(1-18n )1-18=647(1-2-3n ). 11.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=__32___.[解析] 由题意知S 3=a 1+a 2+a 3=74,a 4+a 5+a 6=S 6-S 3=634-74=14=74·q 3,∴q =2.又a 1+2a 1+4a 1=74,∴a 1=14,∴a 8=14×27=32.12. 已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是__(-∞,-1]∪[3,+∞)___.[解析] 设等比数列的公比为q ,则S 3=1q +q +1∵|1q +q |=1|q |+|q |≥2(当且仅当|q |=1时取等号) ∴1q +q ≥2或1q+q ≤-2∴S 3≥3或S 3≤-1,∴S 3的取值范围是(-∞,-1]∪[3,+∞). 三、解答题13.等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .[分析] 本题考查等比数列的通项公式、前n 项和公式. (1)根据已知,建立含有q 的方程→求得q 并加以检验→代入等比数列的通项公式(2)利用等比数列前n 项和公式与已知建立等量关系即可求解. [解析] (1)设{a n }的公比为q ,由题设得a n =q n -1.由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2.故a n =(-2)n -1或a n =2n -1. (2)若a n =(-2)n -1,则S n =1-(-2)n 3.由S m =63得(-2)m =-188,此方程没有正整数解.若a n =2n -1,则S n =2n -1.由S m =63得2m =64,解得m =6.综上,m =6. [解后反思] 等比数列基本量运算问题的常见类型及解题策略: (1)求通项.求出等比数列的两个基本量a 1和q 后,通项便可求出. (2)求特定项.利用通项公式或者等比数列的性质求解. (3)求公比.利用等比数列的定义和性质建立方程(组)求解.(4)求前n 项和.直接将基本量代入等比数列的前n 项和公式求解或利用等比数列的性质求解.[易错警示] 解方程时,注意对根的检验.求解等比数列的公比时,要结合题意进行讨论、取值,避免错解.14. (2018·安徽联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4. (1)证明:{S n -n +2}为等比数列. (2)求数列{S n }的前n 项和T n .[解析] (1)证明:由题意知S n -2(S n -S n -1)=n -4(n ≥2), 即S n =2S n -1-n +4,所以S n -n +2=2[S n -1-(n -1)+2], 又易知a 1=3,所以S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2的等比数列. (2)由(1)知S n -n +2=2n +1, 所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =4(1-2n )1-2+n (n +1)2-2n =2n +3+n 2-3n -82.1.已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值是( C )A .52或-52B .-52C .52D .12[解析] 由题意得a 1+a 2=5,b 22=4,又b 2与第一项的符号相同,所以b 2=2.所以a 1+a 2b 2=52.故选C . [技巧点拨] (1)在等差(比)数列的基本运算中要注意数列性质的运用,利用性质解题可简化运算,提高运算的速度.(2)根据等比中项的定义可得,在等比数列中,下标为奇数的项的符号相同,下标为偶数的项的符号相同,在求等比数列的项时要注意这一性质的运用,避免出现符号上的错误.2.等比数列{a n }共有奇数项,所有奇数项的和S 奇=255,所有偶数项的和S 偶=-126,末项是192,则首项a 1等于( C )A .1B .2C .3D .4[解析] ∵a n =192, ∴q =S 偶S 奇-a n =-12663=-2.又S n =a 1-a n q1-q=S 奇+S 偶,∴a 1-192×(-2)1-(-2)=255+(-126),解得a 1=3,故选C .3.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n =( B ) A .80 B .30 C .26D .16[解析] 由等比数列的性质知S n 、S 2n -S n 、S 3n -S 2n 成等比数列,∴(S 2n -2)2=2(14-S 2n ),∴S 2n =6或-4(舍去),又S 2n -S n 、S 3n -S 2n 、S 4n -S 3n 成等比数列,∴82=4(S 4n -14),∴S 4n =30.故选B .另解:(特殊化)不妨令n =1,则a 1=S 1=2,S 3=2(1-q 3)1-q =14,∴q 2+q -6=0,∴q =2或-3(舍去)∴S 4=2(1-q 4)1-q=30.故选B .4.在等比数列{a n }中,a 1+a n =82,a 3·a n -2=81,且前n 项和S n =121,则此数列的项数n 等于( B )A .4B .5C .6D .7[解析] 在等比数列{a n }中,a 3·a n -2=a 1·a n =81,又a 1+a n =82,所以⎩⎪⎨⎪⎧a 1=1,a n =81或⎩⎪⎨⎪⎧a 1=81,a n =1.当a 1=1,a n =81时,S n =1-81q1-q =121,解得q =3.由a n =a 1q n -1得81=3n -1,解得n =5. 同理可得当a 1=81,a n =1时,n =5.故选B .5. 已知等比数列{a n }满足条件a 2+a 4=3(a 1+a 3),a 2n =3a 2n ,n ∈N *,数列{b n }满足b 1=1,b n -b n -1=2n -1(n ≥2,n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)若数列{c n }满足c 1a 1+c 2a 2+c 3a 3+…+c na n =b n ,n ∈N *,求{c n }的前n 项和T n .[解析] (1)设{a n }的通项公式为a n =a 1q n -1,n ∈N *,由已知a 2+a 4=3(a 1+a 3),a 1q +a 1q 3=3(a 1+a 1q 2),得q =3,由已知a 2n =3a 2n ,即a 1q 2n -1=3a 21q 2n -2, 解得q =3a 1,a 1=1,所以{a n }的通项公式为a n =3n -1.因为b 1=1,b n -b n -1=2n -1(n ≥2,n ∈N *), 可得b 2-b 1=3,b 3-b 2=5,…,b n -b n -1=2n -1, 累加可得b n =n 2.(2)当n =1时,c 1a 1=1,c 1=1,当n ≥2时,c 1a 1+c 2a 2+c 3a 3+…+c na n =n 2①c 1a 1+c 2a 2+c 3a 3+…+c n -1a n -1=(n -1)2② 由①-②得到c na n =2n -1,c n =(2n -1)·3n -1,n ≥2,综上,c n =(2n -1)·3n -1,n ∈N *.T n =1×30+3×31+…+(2n -3)×3n -2+(2n -1)×3n -1③ 3T n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ④ 由③-④得到-2T n =1×30+2×(31+32+…+3n -1)-(2n -1)×3n =1×30+2×3(3n -1-1)3-1-(2n -1)×3n .所以T n =1+(n -1)×3n .。

等比数列的前n项和练习题

等比数列的前n项和练习题

等比数列的前n项和练习1、设Sn 是数列{an}(n∈N*)的前n项和,已知a1=4,an+1=Sn+3n,设bn=Sn﹣3n.(Ⅰ)证明:数列{bn }是等比数列,并求数列{bn}的通项公式;(Ⅱ)令cn =2log2bn﹣+2,求数列{cn}的前n项和Tn.2、已知数列{an }的前n项和Sn=,且a1=1.(1)求数列{an}的通项公式;(2)令bn =lnan,是否存在k(k≥2,k∈N*),使得bk、bk+1、bk+2成等比数列.若存在,求出所有符合条件的k值;若不存在,请说明理由.3、数列{an }满足a1=1,a2=r(r>0),令bn=an•an+1,{bn}是公比为q(q≠0,q≠﹣1)的等比数列,设cn =a2n﹣1+a2n.(1)求证:cn=(1+r)•q n﹣1;(2)设{cn }的前n项和为Sn,求的值;(3)设{cn }前n项积为Tn,当q=﹣时,Tn的最大值在n=8和n=9的时候取到,求n为何值时,Tn取到最小值.4、已知等比数列{an }的公比为q,a1=,其前n项和为Sn(n∈N*),且S2,S 4,S3成等差数列.(I)求数列{an}的通项公式;(Ⅱ)设bn=Sn﹣(n∈N*),求bn的最大值与最小值.5、等比数列{}的前n 项和为,已知,,成等差数列(1)求{}的公比q;(2)若-=3,求。

6、对于一组向量(),令,如果存在(),使得,那么称是该向量组的“向量”.(1)设(),若是向量组的“向量”,数的取值围;(2)若(),向量组是否存在“向量”?给出你的结论并说明理由;(3)已知均是向量组的“向量”,其中,.设在平面直角坐标系中有一点列满足:为坐标原点,为的位置向量的终点,且与关于点对称,与()关于点对称,求的最小值.7、已知数列为等比数列,其前项和为,已知,且对于任意的有,,成等差数列.求数列的通项公式;已知(),记,若对于恒成立,数的围.8、已知各项都为正数的等比数列的前n项和,数列的通项公式,若是与的等比中项。

高中数学《等比数列前n项和公式》知识点讲解及重点练习

高中数学《等比数列前n项和公式》知识点讲解及重点练习

4.3.2 等比数列的前n 项和公式 第1课时 等比数列前n 项和公式学习目标 1.掌握等比数列的前n 项和公式及公式证明思路.2.会用等比数列的前n 项和公式解决有关等比数列的一些简单问题.知识点一 等比数列的前n 项和公式已知量首项、公比与项数 首项、公比与末项求和公式S n =⎩⎪⎨⎪⎧a 1(1-q n)1-q (q ≠1),na 1(q =1)S n =⎩⎪⎨⎪⎧a 1-a n q 1-q (q ≠1),na 1(q =1)知识点二 等比数列前n 项和的性质1.数列{a n }为公比不为-1的等比数列(或公比为-1,且n 不是偶数),S n 为其前n 项和,则S n ,S 2n -S n ,S 3n -S 2n 仍构成等比数列.2.若{a n }是公比为q 的等比数列,则S n +m =S n +q n S m (n ,m ∈N *).3.若{a n }是公比为q 的等比数列,S 偶,S 奇分别是数列的偶数项和与奇数项和,则:①在其前2n 项中,S 偶S 奇=q ;②在其前2n +1项中,S 奇-S 偶=a 1-a 2+a 3-a 4+…-a 2n +a 2n +1=a 1+a 2n +1q 1-(-q )=a 1+a 2n +21+q (q ≠-1).1.等比数列前n 项和S n 不可能为0.( × )2.若首项为a 的数列既是等比数列又是等差数列,则其前n 项和等于na .( √ ) 3.若a ∈R ,则1+a +a 2+…+a n -1=1-a n1-a.( × )4.若某数列的前n 项和公式为S n =-aq n +a (a ≠0,q ≠0且q ≠1,n ∈N *),则此数列一定是等比数列.( √ )一、等比数列前n 项和公式的基本运算 例1 在等比数列{a n }中, (1)S 2=30,S 3=155,求S n ; (2)a 1+a 3=10,a 4+a 6=54,求S 5;(3)a 1+a n =66,a 2a n -1=128,S n =126,求公比q .解 (1)由题意知⎩⎪⎨⎪⎧a 1(1+q )=30,a 1(1+q +q 2)=155,解得⎩⎪⎨⎪⎧a 1=5,q =5或⎩⎪⎨⎪⎧a 1=180,q =-56.从而S n =14×5n +1-54或S n =1 080×⎣⎡⎦⎤1-⎝⎛⎭⎫-56n 11.(2)方法一 由题意知⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q 3+a 1q 5=54,解得⎩⎪⎨⎪⎧a 1=8,q =12,从而S 5=a 1(1-q 5)1-q =312.方法二 由(a 1+a 3)q 3=a 4+a 6, 得q 3=18,从而q =12.又a 1+a 3=a 1(1+q 2)=10, 所以a 1=8,从而S 5=a 1(1-q 5)1-q =312.(3)因为a 2a n -1=a 1a n =128,所以a 1,a n 是方程x 2-66x +128=0的两个根.从而⎩⎪⎨⎪⎧ a 1=2,a n =64或⎩⎪⎨⎪⎧a n =2,a 1=64.又S n =a 1-a n q 1-q =126,所以q =2或12.反思感悟 等比数列前n 项和运算的技巧(1)在等比数列的通项公式和前n 项和公式中,共涉及五个量:a 1,a n ,n ,q ,S n ,其中首项a 1和公比q 为基本量,且“知三求二”,常常列方程组来解答.(2)对于基本量的计算,列方程组求解是基本方法,通常用约分或两式相除的方法进行消元,有时会用到整体代换,如q n ,a 11-q都可看作一个整体.(3)在解决与前n 项和有关的问题时,首先要对公比q =1或q ≠1进行判断,若两种情况都有可能,则要分类讨论.跟踪训练1 在等比数列{a n }中.(1)若a 1=2,a n =162,S n =112,求n 和q ; (2)已知S 4=1,S 8=17,求a n .解 (1)由S n =a 1-a n q 1-q 得,112=2-162q1-q ,∴q =-2,又由a n =a 1q n -1得,162=2(-2)n -1, ∴n =5.(2)若q =1,则S 8=2S 4,不符合题意, ∴q ≠1,∴S 4=a 1(1-q 4)1-q =1,S 8=a 1(1-q 8)1-q=17,两式相除得1-q 81-q 4=17=1+q 4, ∴q =2或q =-2, ∴a 1=115或a 1=-15,∴a n =115·2n -1或-15·(-2)n -1.二、利用错位相减法求数列的前n 项和例2 求数列⎩⎨⎧⎭⎬⎫n 2n 的前n 项和.解 设S n =12+222+323+…+n2n ,则有12S n =122+223+…+n -12n +n2n +1,两式相减,得S n -12S n =12+122+123+…+12n -n 2n +1,即12S n =12⎝⎛⎭⎫1-12n 1-12-n 2n +1=1-12n -n2n +1. ∴S n =2-12n -1-n2n =2-n +22n (n ∈N *).反思感悟 错位相减法的适用范围及注意事项(1)适用范围:它主要适用于{a n }是等差数列,{b n }是等比数列,求数列{a n b n }的前n 项和. (2)注意事项:①利用“错位相减法”时,在写出S n 与qS n 的表达式时,应注意使两式交错对齐,以便于作差,正确写出(1-q )S n 的表达式.②利用此法时要注意讨论公比q 是否等于1的情况.跟踪训练2 已知等比数列{a n }满足:a 1=12,a 1,a 2,a 3-18成等差数列,公比q ∈(0,1).(1)求数列{a n }的通项公式;(2)设b n =(2n -1)a n ,求数列{b n }的前n 项和S n . 解 (1)设等比数列{a n }的公比为q ,a 1=12,因为a 1,a 2,a 3-18成等差数列,所以2a 2=a 1+a 3-18,即得4q 2-8q +3=0, 解得q =12或q =32,又因为q ∈(0,1),所以q =12,所以a n =12·⎝⎛⎭⎫12n -1=12n .(2)根据题意得S n =1×12+3×122+…+(2n -1)×12n ,12S n =1×122+3×123+…+(2n -3)×12n +(2n -1)×12n +1, 两式相减得12S n =1×12+2×122+…+2×12n -(2n -1)×12n +1 =12+12×1-12n -11-12-(2n -1)×12n +1 =32-12n -1-2n -12n +1, 所以S n =3-42n -2n -12n =3-2n +32n ,n ∈N *.三、等比数列前n 项和的性质例3 (1)在等比数列{a n }中,若S 2=7,S 6=91,则S 4=________.(2)已知等比数列{a n }共有2n 项,其和为-240,且(a 1+a 3+…+a 2n -1)-(a 2+a 4+…+a 2n )=80,则公比q =________.(3)若数列{a n }是等比数列,且其前n 项和为S n =3n +1-2k ,则实数k =________. 答案 (1)28 (2)2 (3)32解析 (1)∵数列{a n }是等比数列,且易知公比q ≠-1,∴S 2,S 4-S 2,S 6-S 4也构成等比数列,即7,S 4-7,91-S 4构成等比数列,∴(S 4-7)2=7(91-S 4),解得S 4=28或S 4=-21.又S 4=a 1+a 2+a 3+a 4=a 1+a 2+a 1q 2+a 2q 2=(a 1+a 2)(1+q 2)=S 2·(1+q 2)>0,∴S 4=28. (2)由题意知S 奇+S 偶=-240,S 奇-S 偶=80, ∴S 奇=-80,S 偶=-160,∴q =S 偶S 奇=2.(3)∵S n =3n +1-2k =3·3n -2k ,且{a n }为等比数列, ∴3-2k =0,即k =32.延伸探究本例(3)中,若将条件改为“若数列{a n }是等比数列,且其前n 项和为S n =a ·⎝⎛⎭⎫13n -1+5”,再求实数a 的值.解 由S n =a ·⎝⎛⎭⎫13n -1+5,可得S n=3a ·⎝⎛⎭⎫13n +5,依题意有3a +5=0,故a =-53. 反思感悟 处理等比数列前n 项和有关问题的常用方法(1)运用等比数列的前n 项和公式,要注意公比q =1和q ≠1两种情形,在解有关的方程(组)时,通常用约分或两式相除的方法进行消元. (2)灵活运用等比数列前n 项和的有关性质.跟踪训练3 (1)已知等比数列{a n }的前n 项和为S n ,S 4=1,S 8=3,则a 9+a 10+a 11+a 12等于( )A .8B .6C .4D .2 答案 C解析 S 4,S 8-S 4,S 12-S 8成等比数列. 即1,2,a 9+a 10+a 11+a 12成等比数列. ∴a 9+a 10+a 11+a 12=4.(2)一个项数为偶数的等比数列{a n },全部各项之和为偶数项之和的4倍,前3项之积为64,求数列的通项公式.解 设数列{a n }的首项为a 1,公比为q ,所有奇数项、偶数项之和分别记作S 奇,S 偶,由题意可知,S 奇+S 偶=4S 偶,即S 奇=3S 偶. 因为数列{a n }的项数为偶数, 所以有q =S 偶S 奇=13.又因为a 1·a 1q ·a 1q 2=64,所以a 31·q 3=64,即a 1=12,故所求通项公式为a n =12×⎝⎛⎭⎫13n -1,n ∈N *.1.在数列{a n }中,已知a n +1=2a n ,且a 1=1,则数列{a n }的前5项的和等于( ) A .-25 B .25 C .-31 D .31 答案 D解析 因为a n +1=2a n ,且a 1=1,所以数列{a n }是首项为1,公比为2的等比数列, 所以数列{a n }的前5项的和为25-12-1=31.2.等比数列1,x ,x 2,x 3,…的前n 项和S n 等于( ) A.1-x n 1-xB.1-x n -11-xC.⎩⎪⎨⎪⎧1-x n1-x ,x ≠1且x ≠0n ,x =1 D.⎩⎪⎨⎪⎧1-x n -11-x ,x ≠1且x ≠0n ,x =1答案 C解析 当x =1时,S n =n ; 当x ≠1且x ≠0时,S n =1-x n 1-x.3.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5等于( ) A .3∶4 B .2∶3 C .1∶2D .1∶3答案 A解析 在等比数列{a n }中,S 5,S 10-S 5,S 15-S 10,…成等比数列,因为S 10∶S 5=1∶2,所以S 5=2S 10,S 15=34S 5,得S 15∶S 5=3∶4,故选A.4.已知在等比数列{a n }中,a 3=32,S 3=92,则a 1=________.答案 32或6解析 方法一 当q =1时,a 1=a 2=a 3=32,满足S 3=92.当q ≠1时,依题意,得⎩⎪⎨⎪⎧a 1q 2=32,a 1(1-q 3)1-q =92.解得⎩⎪⎨⎪⎧a 1=6,q =-12.综上可得a 1=32或a 1=6.方法二 ⎩⎨⎧S 3=a 1+a 2+a 3=92,a 3=32.所以a 1+a 2=3, 所以a 1+a 2a 3=1+qq 2=2,所以q =1或q =-12.所以a 1=32或a 1=6.5.若等比数列{a n }的公比为13,且a 1+a 3+…+a 99=60,则{a n }的前100项和为________.答案 80解析 令X =a 1+a 3+…+a 99=60, Y =a 2+a 4+…+a 100,则S 100=X +Y ,由等比数列前n 项和性质知Y X =q =13,所以Y =20,即S 100=X +Y =80.1.知识清单:(1)等比数列前n 项和公式.(2)利用错位相减法求数列的前n 项和. (3)等比数列前n 项和的性质.2.方法归纳:错位相减法、方程(组)思想、分类讨论. 3.常见误区:(1)忽略q =1的情况而致错. (2)错位相减法中粗心出错. (3)忽略对参数的讨论.1.在等比数列{a n }中,a 1=2,a 2=1,则S 100等于( ) A .4-2100 B .4+2100 C .4-2-98D .4-2-100答案 C 解析 q =a 2a 1=12.S 100=a 1(1-q 100)1-q=2⎣⎡⎦⎤1-⎝⎛⎭⎫121001-12=4(1-2-100)=4-2-98.2.设等比数列{a n }的前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18 C.578 D.558 答案 A解析 易知q ≠-1,因为a 7+a 8+a 9=S 9-S 6, 且S 3,S 6-S 3,S 9-S 6也成等比数列, 即8,-1,S 9-S 6成等比数列, 所以8(S 9-S 6)=1,即S 9-S 6=18,所以a 7+a 8+a 9=18.3.若等比数列{a n }的前n 项和S n =2n -1+a ,则a 3a 5等于( ) A .4 B .8 C .16 D .32 答案 C解析 等比数列{a n }的前n 项和S n =2n -1+a , n ≥2时,a n =S n -S n -1=2n -1+a -(2n -2+a ), 化简得a n =2n -2. 则a 3a 5=2×23=16.4.设S n 为等比数列{a n }的前n 项和,若27a 4+a 7=0,则S 4S 2等于( )A .10B .9C .-8D .-5 答案 A解析 设数列{a n }的公比为q , 由27a 4+a 7=0, 得a 4(27+q 3)=0, 因为a 4≠0,所以27+q 3=0,则q =-3,故S 4S 2=1-q 41-q 2=10. 5.已知{a n }是首项为1的等比数列,S n 是其前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和等于( ) A.158或5 B.3116或5 C.3116 D.158答案 C解析 设数列{a n }的公比为q ,显然q ≠1,由已知得9(1-q 3)1-q =1-q 61-q, 解得q =2,∴数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列, 前5项和为1×⎣⎡⎦⎤1-⎝⎛⎭⎫1251-12=3116. 6.若等比数列{a n }的前n 项和S n =2·3n +r ,则r =________. 答案 -2解析 S n =2·3n +r ,由等比数列前n 项和的性质得r =-2.7.已知S n 为等比数列{a n }的前n 项和,S n =93,a n =48,公比q =2,则项数n =________,a 1=________.答案 5 3解析 由S n =93,a n =48,公比q =2,得⎩⎪⎨⎪⎧ a 1(2n -1)=93,a 1·2n -1=48,解得⎩⎪⎨⎪⎧a 1=3,n =5. 8.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________.答案 -2解析 由题意知2S n =S n +1+S n +2,若q =1,则S n =na 1,式子显然不成立,若q ≠1,则有2a 1(1-q n )1-q= a 1(1-q n +1)1-q +a 1(1-q n +2)1-q, 故2q n =q n +1+q n +2,即q 2+q -2=0,∴q =-2.9.等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求数列{a n }的公比q ;(2)若a 1-a 3=3,求S n .解 (1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2),由于a 1≠0,故2q 2+q =0.又q ≠0,从而q =-12. (2)由已知可得a 1-a 1⎝⎛⎭⎫-122=3, 故a 1=4.从而S n =4⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1-⎝⎛⎭⎫-12=83⎣⎡⎦⎤1-⎝⎛⎭⎫-12n . 10.已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+ (1)b n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .解 (1)由a 1=2,a n +1=2a n ,得a n =2n (n ∈N *).由题意知:当n =1时,b 1=b 2-1,故b 2=2.当n ≥2时,1nb n =b n +1-b n . 整理得b n +1n +1=b n n,又b 22=b 11, 所以b n =n (n ∈N *).(2)由(1)知a n b n =n ·2n ,因此T n =2+2·22+3·23+…+n ·2n ,2T n =22+2·23+3·24+…+n ·2n +1,所以T n -2T n =2+22+23+…+2n -n ·2n +1.故T n =(n -1)2n +1+2(n ∈N *).11.在等比数列{a n }中,a 1=4,q =5,则使S n >107的最小正整数n 的值是( )A .11B .10C .12D .9 答案 A解析 由题意可知在等比数列{a n }中,a 1=4,q =5,∴S n =4·(1-5n )1-5=5n -1. ∵S n >107,∴5n -1>107,∴n >10.01,∵n 为正整数,∴n ≥11,故n 的最小值为11.12.等比数列{a n }的首项为2,项数为奇数,其奇数项之和为8532,偶数项之和为2116,这个等比数列前n 项的积为T n (n ≥2),则T n 的最大值为( )A.14B.12C .1D .2 答案 D解析 设数列{a n }共有(2m +1)项,由题意得S 奇=a 1+a 3+…+a 2m +1=8532, S 偶=a 2+a 4+…+a 2m =2116, 因为项数为奇数时,S 奇-a 1S 偶=q , 即2+2116q =8532, 所以q =12. 所以T n =a 1·a 2·…·a n=a n 1q 1+2+…+n -1=23222,n n -故当n =1或2时,T n 取最大值,为2.13.设数列{a n }的前n 项和为S n ,称T n =S 1+S 2+…+S n n 为数列a 1,a 2,a 3,…,a n 的“理想数”,已知数列a 1,a 2,a 3,a 4,a 5的理想数为2 014,则数列2,a 1,a 2,…,a 5的“理想数”为( )A .1 673B .1 675 C.5 0353 D.5 0413答案 D解析 因为数列a 1,a 2,…,a 5的“理想数”为2 014,所以S 1+S 2+S 3+S 4+S 55=2 014, 即S 1+S 2+S 3+S 4+S 5=5×2 014,所以数列2,a 1,a 2,…,a 5的“理想数”为2+(2+S 1)+(2+S 2)+…+(2+S 5)6=6×2+5×2 0146=5 0413. 14.已知数列{a n }的前n 项和为S n ,a 1=1,2S n =a n +1-1,则S n =________.答案 3n -12解析 当n =1时,则有2S 1=a 2-1,∴a 2=2S 1+1=2a 1+1=3;当n ≥2时,由2S n =a n +1-1得出2S n -1=a n -1,上述两式相减得2a n =a n +1-a n ,∴a n +1=3a n ,得a n +1a n =3且a 2a 1=3, ∴数列{a n }是以1为首项,以3为公比的等比数列,∴S n =1-3n 1-3=3n -12.15.设数列{a n }的前n 项和为S n ,点⎝⎛⎭⎫n ,S n n (n ∈N *)均在直线y =x +12上.若b n =123,n a +则数列{b n }的前n 项和T n =________.答案 9n +1-98解析 依题意得S n n =n +12, 即S n =n 2+12n . 当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫n 2+12n -⎣⎡⎦⎤(n -1)2+12(n -1)=2n -12; 当n =1时,a 1=S 1=32,符合a n =2n -12, 所以a n =2n -12(n ∈N *), 则1223,3n n n a b +==由b n +1b n =32(n +1)32n =32=9, 可知{b n }为公比为9的等比数列,b 1=32×1=9, 故T n =9(1-9n )1-9=9n +1-98. 16.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和. 解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n ,n ∈N *.(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n , 即S n =a 1+a 22+…+a n 2n -1,①S n 2=a 12+a 24+…+a n -12n -1+a n 2n .② 所以,①-②得S n 2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-⎝ ⎛⎭⎪⎫12+14+…+12n -1-2-n 2n =1-⎝ ⎛⎭⎪⎫1-12n -1-2-n 2n =n 2n . 所以S n =n 2n -1, 所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n 2n -1,n ∈N *.。

高中数学 同步学案 等比数列的前n项和

高中数学 同步学案 等比数列的前n项和
A.0B.1
C.-1D.2
解析:选C 由数列{an}的前n项和Sn=3n+k(n∈N*),
当n=1时,a1=S1=3+k;
当n≥2时,
an=Sn-Sn-1=3n+k-(3n-1+k)
=2×3n-1.
因为数列{an}是公比为3的等比数列,所以a1=2×31-1=3+k,解得k=-1.
3.已知等比数列的公比为2,且前5项和为1,那么前10项和等于( )
6.等比数列{an}共有2n项,它的全部各项的和是奇数项的和的3倍,则公比q=________.
解析:设{an}的公比为q,则奇数项也构成等比数列,其公比为q2,首项为a1,
偶数项之和与S偶=2S奇,
因为数列{an}的项数为偶数,
所以q= =2.
解析:选D 等比数列的公比q= = =2,所以前10项和S10= = =211-2,选D.
3.等比数列{an}中,公比q=-2,S5=44,则a1的值为( )
A.4B.-4
C.2D.-2
解析:选A 由S5= =44,
得a1=4.
4.设等比数列{an}的公比q=2,前n项和为Sn,则 等于( )
A.2B.4
答案:8
9.设等比数列{an}的前n项和为Sn.已知a2=6,6a1+a3=30,求an和Sn.
解:设{an}的公比为q,由题设得
解得 或
当a1=3,q=2时,an=3×2n-1,Sn=3(2n-1);
当a1=2,q=3时,an=2×3n-1,Sn=3n-1.
Sn=
[点睛] 在应用公式求和时,应注意到Sn= 的使用条件为q≠1,而当q=1时应按常数列求和,即Sn=na1.
2.等比数列前n项和的性质
(1)等比数列{an}中,若项数为2n,则 =q;若项数为2n+1,则 =q.

计算等比数列的前n项和

计算等比数列的前n项和

计算等比数列的前n项和在数学中,等比数列是一种特殊的数列,其中每一项与前一项的比值保持不变。

等比数列可以用以下公式表示:an = a1 * r^(n-1)其中,an表示数列的第n项,a1表示数列的首项,r表示公比(任意一项与它的前一项的比值)。

现在,我们来计算等比数列的前n项和。

首先,我们需要确定数列的首项a1、公比r和要计算的项数n。

假设a1=2,r=3/2,n=5,那么我们就需要计算等比数列2,3,9/2,27/4,81/8 的前5项和。

计算公式如下:Sn = a1 * (1 - r^n) / (1 - r)将我们的数值代入公式中:Sn = 2 * (1 - (3/2)^5) / (1 - 3/2)接下来,我们进行具体的计算:计算(3/2)^5:(3/2)^5 = 3^5 / 2^5 = 243 / 32 = 7.59375计算(1 - (3/2)^5):1 - (3/2)^5 = 1 - 7.59375 = -6.59375计算(1 - 3/2):1 - 3/2 = -1/2计算2 * (1 - (3/2)^5) / (1 - 3/2):2 * (-6.59375) / (-1/2) = -13.1875 / (-1/2) = 26.375因此,等比数列 2,3,9/2,27/4,81/8 的前5项和为 26.375。

同样的步骤,我们可以计算任意等比数列的前n项和。

只需要将数列的首项a1、公比r和项数n代入计算公式中即可。

通过上述计算,我们可以快速准确地计算等比数列的前n项和。

这对于许多实际问题的建模和解决提供了很大的便利性。

在金融、工程、经济学等领域中,等比数列的运用非常广泛,例如货币的利息计算、成本的估算和市场需求的分析等。

希望本文所介绍的计算等比数列的前n项和的方法能对您有所帮助。

如果您在计算过程中遇到任何问题,可以随时咨询数学专家或使用数学软件来进行计算。

高考数学复习知识点讲解与练习31 等比数列及其前n项和

高考数学复习知识点讲解与练习31 等比数列及其前n项和

高考数学复习知识点讲解与练习高考数学复习知识点讲解与练习 专题3131 等比数列及其前n 项和项和[基础强化]一、选择题1.等比数列{a n }的前n 项和为S n ,公比为q ,若S 6=9S 3,S 5=62,则a 1=( ) A. 2 B.2 C. 5 D.3 【解析】D设等差数列{a n }的公差为d .∵S 5=2S 4,a 2+a 4=8, ∴5a 1+5×42d =2 4a 1+4×32d ,a 1+d +a 1+3d =8,整理得 3a 1+2d =0,a 1+2d =4,解得 a 1=-2,d =3.∴a 5=a 1+4d =-2+12=10.故选D.2.已知等比数列{a n }满足a 1=18,4a 2a 4=4a 3-1,则a 2=( )A.±14 B.14 C.±116 D.116【解析】A设等差数列{a n }的首项为a 1,则由等差数列{a n }的前n 项和为S n 及S 10=15,得10(a 1+a 10)2=15,所以a 1+a 10=3.由等差数列的性质,得a 1+a 10=a 4+a 7,所以a 4+a 7=3.又因为a 4=52,所以a 7=12.故选A.3.等比数列{a n }中,若a n >0,a 2a 4=1,a 1+a 2+a 3=7,则公比q =( ) A.14 B.12 C.2 D.4 【解析】B设等差数列{a n }的公差为d ,则33a 1+3×22d =2a 1+d +4a 1+4×32d , 得d =-32a 1,又a 1=2,∴d =-3,∴a 5=a 1+4d =-10.4.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4=( )A.7 B.8 C.15 D.16 【解析】C∵S 6=(a 1+a 6)×62=48,∴a 1+a 6=16,又a 4+a 5=24,∴(a 4+a 5)-(a 1+a 6)=8, ∴3d -d =8,d =4.5.设{a n }是公比为q >1的等比数列,若a 2 010和a 2 011是方程4x 2-8x +3=0的两根,则a 2 012+a 2 013=( )A.18 B.10 C.25 D.9 【解析】B设等差数列{a n }的公差为d .因为a 3+a 7=22,所以2a 5=22,即a 5=11. 又因为S 11=(a 1+a 11)×112=2a 6×112=143,解得11a 6=143,即a 6=13.所以公差d =a 6-a 5=2,所以a n =a 5+(n -5)d =11+(n -5)×2=2n +1, 所以S n =(a 1+a n )n2=(n +2)n . 令(n +2)n >195,则n 2+2n -195>0,解得n >13或n <-15(舍).故选B.6.已知等比数列{a n }的前n 项积为T n ,若a 1=-24,a 4=-89,则当T n 取得最大值时,n的值为( )A.2 B.3 C.4 D.6【解析】D∵{an}为等差数列,∴S5=5a3=-15,∴a3=-3,∴d=a3-a2=-3-1=-4.7.[2024·全国乙卷(理),8]已知等比数列{an}的前3项和为168,a2-a5=42,则a6=( )A.14 B.12 C.6 D. 3【解析】B∵Sn=an2+bn,∴{a n}为等差数列,∴S7=(a1+a7)×72=(a2+a6)×72=(3+11)×72=49.8.[2023·新课标Ⅱ卷]记Sn为等比数列{a n}的前n项和,若S4=-5,S6=21S2,则S8=( )A.120 B.85 C.-85 D.-120【解析】C由题意可设每层有n个环,则三层共有3n个环,∴每一环扇面形石板的块数构成以a1=9为首项、9为公差的等差数列{a n},且项数为3n.不妨设上层扇面形石板总数为S1,中层总数为S2,下层总数为S3,∴S3-S2=[9(2n+1)·n+n(n-1)2×9]-[9(n+1)·n+n(n-1)2×9]=9n2=729,解得n=9(负值舍去).则三层共有扇面形石板(不含天心石)27×9+27×262×9=27×9+27×13×9=27×14×9=3 402(块).故选C.9.(多选)已知等比数列{an}的公比为q,前n项和为S n,且满足a6=8a3,则下列说法正确的是( )A.{a n }为单调递增数列 B.S 6S 3=9C.S 3,S 6,S 9成等比数列 D.S n =2a n -a 1 【解析】A方法一:设等差数列{a n }的公差为d ,∵ S 4=0,a 5=5,∴ 4a 1+4×32d =0,a 1+4d =5,解得a 1=-3,d =2,∴a n =a 1+(n -1)d =-3+2(n -1)=2n -5,S n =na 1+n (n -1)2d =n 2-4n .故选A.方法二:设等差数列{a n }的公差为d ,∵ S 4=0,a 5=5,∴ 4a 1+4×32d =0,a 1+4d =5,解得a 1=-3,d =2.选项A,a 1=2×1-5=-3;选项B,a 1=3×1-10=-7,排除B;选项C,S 1=2-8=-6,排除C;选项D,S 1=12-2=-32,排除D.故选A.二、填空题10.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.【解析】4解析:设等差数列{a n }的公差为d ,由a 2=3a 1,即a 1+d =3a 1,得d =2a 1, 所以S 10S 5=10a 1+10×92d 5a 1+5×42d =10a 1+10×92×2a 15a 1+5×42×2a 1=10025=4.11.[2023·全国乙卷(理)]已知{}a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=________.【解析】2解析:由等差数列的前n 项和S n =na 1+n (n -1)2d 得S n n =a 1+n -12d =a 1+(n -1)d 2,所以{S n n }仍是等差数列,其公差是原等差数列公差的一半,所以S 2 0242 024-S 2 0232 023的值为2.12.设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 【解析】2解析:方法一 设等差数列{a n }的首项为a 1,公差为d .因为2S 3=3S 2+6,所以2(a 1+a 1+d +a 1+2d )=3(a 1+a 1+d )+6,所以6a 1+6d =6a 1+3d +6,解得d =2.方法二 设等差数列{a n }的首项为a 1,公差为d .由2S 3=3S 2+6,可得2×3a 2=3(a 1+a 2)+6.整理,得a 2-a 1=2,所以d =2.[能力提升]13.[2023·全国甲卷(理)]设等比数列{a n }的各项均为正数,前n 项和为S n ,若a 1=1,S 5=5S 3-4,则S 4=( )A.158 B.658C.15 D.40 【解析】1.5解析:设此等差数列{a n }的公差为d ,前n 项和为S n ,由题意得,S 12=84,a 1+a 5+a 9=16.5,即 12a 1+12×112d =84,3a 5=3(a 1+4d )=16.5,解得 a 1=1.5,d =1,所以夏至的日影子长为1.5尺.14.设首项为1,公比为23的等比数列{an}的前n项和为S n,则( )A.Sn=2a n-1 B.S n=3a n-2C.Sn=4-3a n D.S n=3-2a n【解析】AC对于A,易知3d=a5-a2=12-18=-6,即d=-2,选项A正确;对于B,a1=a2-d=18-(-2)=20,所以选项B错误;对于C,a3+a4=a2+a5=18+12=30,所以选项C正确;对于D,因为an=a1+(n-1)d=20+(n-1)(-2)=-2n+22,a10=2>0,a11=0,a12=-2<0,所以当n=10或n=11时,S n最大,所以选项D错误.故选AC.15.记Sn为等比数列{a n}的前n项和.若a1=13,a24=a6,则S5=________.【解析】B方法一 由题意得an=a1+2π3(n-1),cos an+3=cos [a1+2π3(n+2)]=cos(a1+2π3n+4π3)=cos (a1+2π3n+2π-2π3)=cos (a1+2π3n-2π3)=cos an,所以数列{cos an}是以3为周期的周期数列,又cos a2=cos (a1+2π3)=-12cosa1-32sin a1,cos a3=cos (a1+4π3)=-12cos a1+32sin a1,因为集合S中只有两个元素,所以有三种情况:cos a1=cos a2≠cos a3,cos a1=cos a3≠cos a2,cos a2=cos a3≠cos a1.下面逐一讨论:①当cos a1=cos a2≠cos a3时,有cos a1=-12cos a1-32sin a1,得tana1=-3,所以ab=cos a1(-12cos a1+32sin a1)=-12cos2a1+32sin a1cos a1=-12cos2a1+32sin a1cos a1sin2a1+cos2a1=-12+32tan a1tan2a1+1=-12-323+1=-12.②当cos a 1=cos a 3≠cos a 2时,有cos a 1=-12cos a 1+32sin a 1,得tan a 1=3,所以ab =cos a 1(-12cos a 1-32sin a 1)=-12cos 2a 1-32sin a 1cos a 1=-12cos 2a 1-32sin a 1cos a 1sin 2a 1+cos 2a 1=-12-32tan a 1tan 2a 1+1=-12-323+1=-12.③当cos a 2=cos a 3≠cos a 1时,有-12cos a 1-32sin a 1=-12cos a 1+32sina 1,得sin a 1=0,所以ab =cos a 1(-12cos a 1-32sin a 1)=-12cos 2a 1=-12(1-sin 2a 1)=-12.综上,ab =-12,故选B.方法二 取a 1=-π3,则cos a 1=12,cos a 2=cos (a 1+2π3)=12,cos a 3=cos (a 1+4π3)=-1,所以S =12,-1,ab =-12,故选B.16.设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.【解析】-1,-78解析:方法一 由于S n =7n +n (n -1)2d =d 2n 2+7-d 2n ,设f (x )=d 2x 2+ 7-d 2x ,则其图象的对称轴为直线x =12-7d .当且仅当n =8时,S n 取得最大值,故7.5<12-7d <8.5,解得-1<d <-78.方法二 由题意,得a 8>0,a 9<0,所以7+7d >0,且7+8d <0,即-1<d <-78.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学等比数列的前n 项和练习一、选择题1.在等比数列{a n }中,S 4=2,S 8=6,a 17+a 18+a 19+a 20等于( )A.32B.16C.35D.1622.已知等比数列{a n }的公比q=31,且a 1+a 3+a 5+…+a 99=60,则a 1+a 2+a 3+a 4+…+a 100等于( ) A.100 B.80 C.60 D.403.一个等比数列,它的前n 项和S n =ab n +c ,其中a 、b 、c 为常数且a ≠0,b ≠0且b ≠1,则a 、b 、c 必须满足( )A.a+b=0B.b+c=0C.a+c=0D.a+b+c=04.等比数列{a n }的前n 项和为S n ,若S 10=10,S 20=30,则S 30等于( )A.70B.90C.100D.1205.一个等比数列{a n }的首项为a 1=2,公比q=3,从第m 项到第n 项(m <n)的和为720,则m 的值为( )A.3B.4C.5D.66.数列{a n }是由实数构成的等比数列,S n =a 1+a 2+…+a n ,则数列{S n }中( )A.任一项均不为0B.必有一项不为0C.至多有有限项为0D.或无一项为0,或有无穷多项为07.计算机成本不断降低,若每隔5年计算机价格降低31,现在的价格是8100元,则15年后,价格降低为( ) A.2200元 B.900元 C.2400元 D.3600元8.数列1,1+2,1+2+22,…,1+2+22+…+2n-1的前n 项和S n 等于( )A.2nB.2n -nC.2n+1-n-2D.n-2n9.一个等比数列{a n }共有2n+1项,奇数项之积为100,偶数项之积为120,则a n+1为( ) A.56 B.65 C.20D.110 10.已知等比数列{a n }中,a n =2·3n-1,则由此数列的偶数项所组成的新数列的前n 项和为( )A.3n -1B.3(3n -1)C.419-nD. 4)19(3-n 二、填空题1.已知lgx+lgx 2+…+lgx 10=110,则lgx+(lgx)2+…+(lgx)10= .2.在等比数列{a n }中,若S n =93,a n =48,公比q=2,则n= .3.S=1+a+a 2+a 3+…+a 10= .4.等比数列首项为2,公比为3,从前 项的和开始大于100.三、解答题1.已知等比数列{a n }的首项a 1>0,公比q >0.设数列{b n }的通项b n =a n+1+a n+2(n ∈N +),数列{a n }、{b n }的前n 项和分别为A n 与B n ,试比较A n 与B n 的大小.2.已知数列{a n }为等差数列,公差d ≠0,其中1k a ,2k a ,…, n k a 恰为等比数列,若k 1=1,k 2=5,k 3=17,求k 1+k 2+…+k n 的值.3.设数列{a n }的前n 项和S n =2a n -4(n ∈N +),数列{b n }满足:b n+1=a n +2b n ,且b 1=2,(1)求通项a n .(2)求{b n }前n 项的和T n .【素质优化训练】2.数列{a n}为等比数列,项数为偶数且各项为正数.如果该数列所有项的和为偶数项的和的4倍,且a2·a4=9(a3+a4).问数列{lga n}的前多少项的和最大?数列综合1、在首项为81,公差为-7的等差数列{a n}中,最接近零的是笫()A、11项B、12项C、13项D、14项2、等比数列的前n项和S n=a3n+1,则a的值是()A、全体实数B、-1C、1D、33、lgx,lgy,lgz成等差数列是x,y,z成等比数列的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分又不必要条件4、等差数列{a n}、{b n}的前n项和S n、T n且S n/T n=(3n+2)/(2n+3)则a7/b7= ()A、23/17B、41/29C、2/3D、3/25、数列1,1+2,1+2+22,……,1+2+22+……+2n-1,……的前n项和是S n= ()A、2nB、2n-n 2n+1-n D、2n+1-n-26、设{a n}的公差为-2的等差数列,如果a1+a4+a7+……+a97=50,则a3+a6+a9+……+a99= ( )A、-82B、82C、-132D、857、已知数列{a n}中,a3=12,a n+1=2a n/(a n+2),则a8= .8、等比数列{a n}中,a3=12,a5=48,则a8= .9、在等差数列{a n}中,S5=10,S10=15,则S15= .10、下列各命题中正确的命题是.1)等差数列{a n}的前n项和S n是关于n的且常数项是零的二次函数;2)若{a n}成等比数列,则a m a n=a p a q的充要条件是m+n=p+q;3)等比数列{a n}中,a3=2S2+1,a4=2S3+1,则公比q=3;4)等差数列{a n}中,a n=26-2n,则S n最大时,n=13.11、在等差数列{a n}中,S15=90,S30=-2701)求a1,d;2)n为何值时,S n=20;3)第几项为负数?4)n为何值,S n最大?12、等差数列{a n }中,S 3+S 6=2S 9,求公比q.13、设有数列{a n },a 1=5/6,若以a 1,a 2,……,a n 为系数的二次方程:a n-1x 2-a n x+1=0(n ∈N +且n ≧2)都有根α,β,且满足3α-αβ+3β=1.1)证明:{a n -1/2}是等比数列; 2)求a n ; 3)求{a n }的前项和S n.一、 选择题:1. 在首项为81,公差为-7的等差数列{}n a 中,最接近零的是第( )A .11项B .12项C .13项D .14项2. 等比数列的前n 项和13+⋅=n n k S ,则k 的值是( )A .全体实数B .-1C .1D .33. 在等比数列{}n a 中,首项01<a ,则{}n a 是递增数列的充要条件是公比q 满足( )A .q>1B .q<1C .0<q<1D .q<04. 现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .295. 随着科技发展计算机价格不断降低,每年计算机价格降低31,2000年价格为8100元的计算机,2004年价格可降为( )A .1800B .1600C .900D .3006. 等差数列{}n a 中,1a =-5,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值是4,则抽取的是( )A .11aB .10aC .9aD .8a7. 在等比数列{}n a 中,若3a ,9a 是方程091132=+-x x 的两根,则6a 的值是( ) A .3 B .±3 C .3± D .以上答案都不对.8. 将正偶数按下表排成4列:第1列 第2列 第3列 第4列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24…… 28 26则2000在( )A . 第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第4列 .二、 填空题:9. 数列1,1,2,2,3,3,4,4,……的一个通项公式是 .10. 已知数列{a n }的通项公式a n =9-2n ,则| a 1|+| a 2|+…+| a 20|= .11. 制造某机器配件的一道工序是:用汽锤把厚度为a 厘米的金属工件锻造成厚度不多于原厚度的83%的工件.现知汽锤每冲击一次后,工件的厚度就比这次冲击前的厚度降低3%,则至少需冲击 次.(lg83=1.9191,lg97=1.9868)12. 设正数数列{a n }前n 项和为S n ,且存在正整数t ,使得对所有正整数n ,有2n n a t tS +=,则S n 等于 .三、 解答题:13. 数列{}n a 是等比数列,1a =8,设n n a b 2log =(n N +∈),如果数列{}n b 的前7项和7S 是它的前n项和组成的数列{}n S 的最大值,且7S ≠8S ,求{}n a 的公比q 的取值范围.14. 设数列{a n }的前n 项和为S n ,已知a n =5S n -3 (n ∈N),求a 1+a 3+…+a 2 n -1的值.15. S n ,S 2n ,S 3n 表示一个等比数列的前n 项和,前2n 项,前3n 项的和.已知S n =a ,S 2n =b ,试用a ,b表示S 3n .16. 某地今年年初有居民住房面积为a m 2,其中需要拆除的旧房面积占了一半.当地有关部门决定每年以当年年初住房面积的10%的住房增长率建设新住房,同时每年拆除x m 2的旧住房,又知该地区人口年增长率为4.9‰.(1)如果10年后该地的人均住房面积正好比目前翻一番,那么每年应拆除的旧住房面积x 是多少?(2)依照(1)拆房速度,共需多少年能拆除所有需要拆除的旧住房?下列数据供学生计算时参考:1.19=2.381.00499=1.04 1.110=2.601.004910=1.05 1.111=2.851.004911=1.06。

相关文档
最新文档