Crystal Structure of (R)-3,3'- Bis (b enzyloxymethyl)- 1,1 '-bi- 2,2'-naphthol and Its

合集下载

脒基硫脲和氯离子为主体晶格的四丁基铵包合物的制备与晶体结构

脒基硫脲和氯离子为主体晶格的四丁基铵包合物的制备与晶体结构

脒基硫脲和氯离子为主体晶格的四丁基铵包合物的制备与晶体结构吴元勇;杨媛【摘要】利用拥有质子给体和受体的脒基硫脲、稀盐酸和正四丁基氢氧化铵制备出了一种新型的包合物(C2 H7 N4 S)+·Cl-(n-C4 H9)N+,并使用X射线单晶衍射试验方法对其结构进行了测定,结果表明,晶体属单斜晶系,P21/c空间群,其中a=1.01038(1)nm,b=1.48052(2)nm,c=1.62384(2)nm,β=97.637(2)°,V=2.40754 (5)nm3,Z=4,R1=0.1648,wR=0.5007(I>2σ(I)).在标题化合物的晶体结构中,脒基硫脲除了存在一个N-H…S内氢键外,还和氯离子构成了两个N-H…Cl氢键,形成沿a 轴无限延伸的氢键宽链.正四丁基铵阳离子也以'头碰头'的形式构成了沿b轴无限延伸的'S'长链,并把主体分子包含其中,脒基硫脲、氯离子和正四丁基铵阳离子通过氢键和静电相互作用共同构建出了一个新颖的包合物结构.【期刊名称】《贵阳学院学报(自然科学版)》【年(卷),期】2017(012)004【总页数】5页(P6-9,22)【关键词】脒基硫脲;季铵盐;包合物;氢键;晶体结构【作者】吴元勇;杨媛【作者单位】贵州师范大学化学与材料科学学院,贵州贵阳 550001;贵州省功能材料化学重点实验室,贵州贵阳 550001;贵州师范大学化学与材料科学学院,贵州贵阳550001;贵州省功能材料化学重点实验室,贵州贵阳 550001【正文语种】中文【中图分类】O6411前言包合物作为超分子化学体系中的一种重要化合物,主要由构成包合物网格的主体部分(母体)和位于网格中的客体部分组成,所以也被称主-客体化合物[1]。

自1947年牛津大学的Powell发表了β-对苯二酚的笼型包合物的文章[2],并定义了“包合物”的概念到现在,化学研究者们对包合物晶体结构的研究已成为了包合物研究的重要内容[3-5]。

si的晶体结构类型

si的晶体结构类型

si的晶体结构类型晶体结构类型是指晶体中原子、离子或分子排列的规则方式。

目前已经发现了多种晶体结构类型,它们的性质和特点不尽相同。

本文将针对最常见的晶体结构类型进行介绍,并提供相关参考内容。

1. 立方晶系:立方晶系是最简单的晶体结构类型,包括简单立方晶体和体心立方晶体。

简单立方晶体中原子位于晶格节点上,而体心立方晶体中除了晶格节点上的原子外,还在晶格的中心位置有一个原子。

参考内容:- Kume, T., Yamanaka, S., & Chiba, A. (2008). Crystal structure of the prorhodonine-bearing S-layer protein SbpA of Sulfolobus acidocaldarius. Acta Crystallographica Section D Biological Crystallography, 64(7), 729-735.- Li, W., Li, Y., Wu, H., Zhang, X., Ma, H., & Wang, C. (2017). Crystal structure of Ce1− x Yb x CoGa, CeCo1− x Ni x Ga, and inversely polarized Ce1− x− y Yb x CoNi y Ga (x= 0.2, y= 0.02) compounds. Journal of Solid State Chemistry, 252, 200-206.2. 单斜晶系:单斜晶系是指晶体的晶胞具有基本的单斜晶格参数。

在单斜晶系中,一个晶胞的三条棱长和三个夹角都不相等。

参考内容:- Ye, B., Hewer, G., Dobson, R. G., & Yurchenko, S. N. (2019). The crystal structure of copper hydride, CuH, from combined neutron and synchrotron X-ray powder diffraction. ActaCrystallographica Section C Structural Chemistry, 75(9), 1308-1311.- Cao, Y., Li, H., & Cui, Q. (2016). Crystal structure of methoxydiazen-1-ium-2-olate. Acta Crystallographica Section E Crystallographic Communications, 72(12), 1792-1794.3. 斜方晶系:斜方晶系的晶体晶胞具有基本的斜方晶格参数。

柔性双苯并咪唑配体构筑的一维钴配位聚合物的合成和晶体结构研究

柔性双苯并咪唑配体构筑的一维钴配位聚合物的合成和晶体结构研究

河北能源职业技术学院学报Journal of Hebei Energy College of Vocation and Technology第4期(总81期)2020年12月No.4 (Sum.81)Dec.2020柔性双苯并咪瞠配体构筑的一维钻配位聚合物的合成和晶体结构研究汤镇岭,刘佳璇,李娜,李宁舟,王泽萃(华北理工大学,河北 唐山063210)摘 要 采用水热法合成了一种新的6(11)配位聚合物,{[C o 2(L)2(3-NPA)2]-1.5H 2O}n (1),其中,L = 1,3- 双(苯并咪哇-1-甲基)苯,3-H 2NPA = 3-硝基邻苯二甲酸。

单晶X-射线衍射结果表明该配合物 是一维无限链状结构,并进一步通过堆积作用拓展成二维超分子网络。

热重分析显示该配合物 具有较高的热稳定性。

关键词:配位化合物;晶体结构;Co(II);柔性苯并咪哇;热稳定性中图分类号:0641.4 文献标识码:A 文章编号:1671-3974 (2020) 04-0056-03Synthesis, Crystal Structure of a One-dimensional Cobalt (II) Coordination Polymer Based onFlexible Bis(benzimidazole) LigandsTang Zhenling Liu Jiaxuan Li Na Li Ningzhou Wang Zecui(North China University of Science and Technology, Tangshan 063210, China)Abstract : A new Co(II) coordination polymer,{[Co2(L)2(3—NPA)2]*1.5H2O}n(l),(L=l,3—bis(benzimidazol —1—ylmethyl)benzene,3—H2NPA=3—nitrophthalic acid) was hydrothermally synthesized. The single crystalX —ray diSraction analysis indicated that 1 was a one —dimensional chain structure, which was further expanded into a two — dimensional supramolecular network via the — or stacking interaction. Thermogravimetric resultspresented that 1 possessed highly thermal stability.Key words : coordination polymer; crystal structure; Co (II); flexible benzimidazole; thermal stability金属-有机配位聚合物因其结构的多样性与特殊 性,具有独特的光、电、磁等性质,许多学者采用自组装的方法,利用配位键和超分子作用设计合成了大 量的的这类化合物应用于光催化、荧光敏化、气体储存、 吸附等多个领域[1_3]o芳香二竣酸具有良好的热稳定性和多种配位模式141, 可与过渡金属离子配位成多种多样的拓扑网络。

学生吴若秋指导老师鲁统部教授

学生吴若秋指导老师鲁统部教授

实验结果与讨论
四.配合物 [Cu2L1](ClO4)4对C6H5CN的催化活化 配合物[Cu2L1](ClO4)4苯甲腈溶液在50℃下加热,
催化活化反应与乙腈十分类似,并且反应所需条件更为 温和。
五.配合物 [Cu2L2](ClO4)4对腈类化合物的催化活化 配合物[Cu2L2](ClO4)4对腈类化合物的催化活化反应颜
0.00
500
600
700
Wavelength(nm)
0.4
0.2
619
0.0 200 300 400 500 600 700 800 900
Wavelength(nm)
2.5 304
2.0 1.5 1.0
0.20
0.15
576
0.10
0.05
0.00
500
600
700
Wavelength (nm)
N
N
H
H
[Cu2L2]4+
N
N
H
H
[Cu2L2(μ -CN)]3+
实验结果与讨论
一. ESI-MS
T:
100 90
{Cu2L1(ClO4)3}+ T:
834.93
100
90
[CuL1] +
471.40
80
70 [Cu2L1]2+
60 268.00
50 40 30 20 10
0 200
{[Cu2L1](ClO4)2}2+
O O HN
O O
Cl
O Cl
O
O
HN
O
HN
H2O
NH NH
OO

对苯二甲酸锌

对苯二甲酸锌

对苯⼆甲酸锌Hydrothermal Synthesis and Crystal Structure of a Novel 2-Fold Interpenetrated Framework Based on Tetranuclear Homometallic ClusterRong-Yi Huang ?Xue-Jun Kong ?Guang-Xiang LiuReceived:15December 2007/Accepted:11January 2008/Published online:5March 2008óSpringer Science+Business Media,LLC 2008Abstract A novel 2-fold parallel interpenetrated polymer,Zn 2(OH)(pheno)(p -BDC)1.5áH 2O (1)(pheno =phenan-threne-9,10-dione;p -BDC =1,4-benzenedicarboxylate)was prepared by hydrothermal synthesis and characterized by IRspectra,elemental analysis and single crystal X-ray /doc/c97a12ccf61fb7360b4c65f3.html plex1crystallizes in the orthorhombic space group Pbca and affords a three-dimensional (3D)six-connected a -Ponetwork.Keywords Carboxylate ligand áHomometallic complex áa -Po1IntroductionIn the last decade,the construction by design of metal-organic frameworks (MOFs)using various secondary building units (SBUs)connected through coordination bonds,supramolecular contacts (e.g.,hydrogen bonding,p áááp stacking,etc.),or their combination has been an increasingly active research area [1].The design and controlled assembly of coordination polymers based on nano-sized MO(OH)clusters and multi-functional car-boxylates have been extensively developed for their crystallographic and potential applications in catalysis,nonlinear optics,ion exchange,gas storage,magnetism and molecular recognition [2].In most cases,multinu-clear metal cluster SBUs can direct the formation of novel geometry and topology of molecular architectureand help to retain the rigidity of the networks [3].A number of carboxylate-bridged metal clusters have been utilized to build extended coordination frameworks.Among these compounds,frameworks from multinuclear zinc cluster SBUs,including dinuclear (Zn 2)[4],trinu-clear (Zn 3)[5],tetranuclear (Zn 4)[6],pentanuclear (Zn 5)[7],hexanuclear (Zn 6)[8],heptanuclear (Zn 7) [9],and octanuclear (Zn 8)[10]clusters have attracted great interest and have been investigated extensively.Addi-tionally,a series of systematic studies on this subject has demonstrated that an interpenetrated array cannot prevent porosity,but enhances the porous functionalities of the supramolecular frameworks [11].More importantly,the research upsurge in interpenetration structures was pro-moted by the fact that interpenetrated nets have been considered as potential super-hard materials [12]and possess peculiar optical and electrical properties [13].Herein we present the synthesis,structure,and spectral properties of a new coordination polymer based on tetranuclear homometallic cluster,Zn 2(OH)(pheno)(p -BDC)1.5áH 2O (1).2Experimental2.1Materials and MeasurementsAll commercially available chemicals are reagent grade and used as received without further puri?cation.Sol-vents were puri?ed by standard methods prior to use.Elemental analysis for C,H and N were carried with a Perkin-Elmer 240C Elemental Analyzer at the Analysis Center of Nanjing University.Infrared spectra were obtained with a Bruker FS66V FT IR Spectrophotometer as a KBr pellet.R.-Y.Huang áX.-J.Kong áG.-X.Liu (&)Anhui Key Laboratory of Functional Coordination Compounds,College of Chemistry and Chemical Engineering,Anqing Normal University,Anqing 246003,P.R.China e-mail:liugx@/doc/c97a12ccf61fb7360b4c65f3.htmlJ Inorg Organomet Polym (2008)18:304–308DOI 10.1007/s10904-008-9199-72.2Preparation of Zn2(OH)(pheno)(p-BDC)1.5áH2O(1)A mixture containing Zn(NO3)2á6H2O(0.20mmol), p-1,4-benzenedicarboxylic acid(H2BDC)(0.20mmol), phenanthrene-9,10-dione(pheno)(0.10mmol)and NaOH (0.20mmol)in water(10mL)was sealed in a18mL Te?on lined stainless steel container and heated at150°C for72h.The reaction product was dark yellow block crystals of1,which were washed by deionized water sev-eral times and collected by?ltration;Yield,78%. Elemental Analysis:Calcd.for C24H15N2O10Zn2:C,46.33;H,2.43;N,4.50%.Found:C,46.38;H,2.47;N,4.48%.IR (KBr pellet),cm-1(intensity):3437(br),3062(m),1587(s),1523(m),1491(w),1424(m),1391(s),1226(w),1147 (w),1103(w),1051(w),875(w),843(m),740(w),728 (m),657(w).2.3X-ray Structure DeterminationThe crystallographic data collections for complex1were carried out on a Bruker Smart Apex II CCD with graphite-monochromated Mo-K a radiation(k=0.71073A?)at 293(2)K using the x-scan technique.The data were inte-grated by using the SAINT program[14],which also did the intensities corrected for Lorentz and polarization effects.An empirical absorption correction was applied using the SADABS program[15].The structures were solved by direct methods using the SHELXS-97program; and,all non-hydrogen atoms were re?ned anisotropically on F2by the full-matrix least-squares technique using the SHELXL-97crystallographic software package[16,17]. The hydrogen atoms were generated geometrically.All calculations were performed on a personal computer with the SHELXL-97crystallographic software package[17].The details of the crystal parameters,data collection and re?nement for four compounds are summarized in Table1. Selected bond lengths and bong angles for complex1are listed in Table2.3Results and DiscussionThe X-ray diffraction study for1reveals that the material crystallizes in the orthorhombic space group Pbca and features a2-fold parallel interpenetrated3D?3D net-work motif.The asymmetric unit contains two Zn(II) atoms,one hydroxyl,one pheno ligand,one and half of p-BDC molecules and one solvent water molecule.Selected bond lengths for1are listed in Table2.As shown in Fig.1, the Zn1ion,which is in the center of a tetrahedral geom-etry,is surrounded by three carboxylic oxygen atoms (Zn–O=1.918(5)–1.964(5)A?)from three p-BDC ligands and one l3-OH oxygen atom(O9).The Zn–O distance is1.965(5)A?.Two nitrogen atoms(N1and N2)that belong to pheno,one p-BDC oxygen atom(O3A)and one hydroxyl oxygen atom(O9A)are ligated to the Zn2center in the equatorial plane with another oxygen atom(O9)that arises from the second hydroxyl group and one oxygen atom(O5)that arises from the second p-BDC molecule situated in the axial position.EachZn2lies approximately in the equatorial position with a maximum deviation (0.048A?)from the basal plane.In the structure,Zn–O and Zn–N bond distances are in the range of 2.0530(5)–2.112(5)and2.157(5)–2.184(2)A?,respectively. There exist two types of p-BDC found in1(Scheme1); namely,monobidentate bridging(l3)and bi-bidentatebridging(l4)coordination modes.The bidentate bridging p-BDC connects mixed metals,where the smallest ZnáááZn distance is3.163A?,to complete a homodinuclear cluster, which is further linked by l3-OH into a six-connected Table1Crystal data and summary of X-ray data collection for1Zn2(pheno)(OH)(BDC)1.5áH2O Empirical formula C24H15N2O10Zn2Molecular mass/g mol-1622.12Color of crystal Dark yellowCrystal fdimensions/mm0.1890.1690.12 Temperature/K293Lattice dimensionsa/A?18.777(9)b/A?13.657(6)c/A?19.983(9)a/°90b/°90c/°90Unit cell volume(A?3)5125(4)Crystal system OrthorhombicSpace group PbcaZ8l(Mo-K a)/mm-1 1.931D(cacl.)/g cm-3 1.613Radiation type Mo-K aF(000)2504Limits of data collection/° 2.04B h B25.05Total re?ections24155Unique re?ections,parameters4545,347No.with I[2r(I)2821R1indices[I[2r(I)]0.0657w R2indices0.1858Goodness of?t 1.060Min/max peak(Final diff.map)/e A?-3-0.658/2.322tetranuclear cluster that is jointly coordinated by six p-BDC molecules(Fig.2).The clusters are further extended by p-BDC into a single3D framework(Fig.3).For clarity, we used the topological method to analyze this3D framework.Thus,the six-connected SBU is viewed to be a six-connected node.Furthermore,based on consideration of the geometry of thisnode,the3D frame is classi?ed as an a-Po net with41263topology(Fig.4).Of particular interest,the most intriguing feature of complex1is that a pair of identical3D single nets is interlocked with each other,thus directly leading to the formation of a2-fold interpenetrated3D?3D architecture(Fig.4)and the two pcu(a-Po)frameworks are related by a screw axis21[18]. Recently,a complete analysis of3D coordination networks shows that more than50interpenetrated pcu(a-Po)frames have been documented in the CSD database[18],including 2-fold,3-fold[19],and4-fold[20]interpenetration.In addition,several non-interpenetration motifs with a-Po topology have been reported to date[21].ZnZnO ZnZnZnZnO Znbidentate bidentate bidentate monodentateI IIScheme1Coordination modesof the bdc ligands in the structure of1;I is bis(bidentate),II is bi/monodentateFig.1ORTEP representation of complex1(the H atoms have been omitted for the sake of clarity).The thermal ellipsoids are drawn at 30%probabilityTable2Selected bond lengths(A?)and angles(°)for1Symmetry transformations usedto generate equivalent atoms:#1x-1/2,y,-z+1/2;#2-x,-y+1,-z;#3-x+1/2,-y+1,z-1/2Zn(1)–O(1) 1.918(5)Zn(2)–O(9)#2 2.091(4)Zn(1)–O(4)#1 1.953(5)Zn(2)–O(9) 2.103(5)Zn(1)–O(6) 1.964(5)Zn(2)–O(3)#3 2.112(5)Zn(1)–O(9) 1.965(5)Zn(2)–N(1) 2.157(6)Zn(2)–O(5)#2 2.053(5)Zn(2)–N(2) 2.184(6)O(1)–Zn(1)–O(4)#197.9(2)O(9)–Zn(2)–O(3)#388.81(18)O(1)–Zn(1)–O(6)112.9(2)O(5)#2–Zn(2)–N(1)94.7(2)O(4)#1–Zn(1)–O(6)104.7(2)O(9)#2–Zn(2)–N(1)170.7(2)O(1)–Zn(1)–O(9)122.9(2)O(9)–Zn(2)–N(1)91.6(2)O(4)#1–Zn(1)–O(9)109.7(2)O(3)#3–Zn(2)–N(1)88.9(2)O(6)–Zn(1)–O(9)107.0(2)O(5)#2–Zn(2)–N(2)87.1(2)O(5)#2–Zn(2)–O(9)#291.9(2)O(9)#2–Zn(2)–N(2)98.3(2)O(5)#2–Zn(2)–O(9)173.72(19)O(9)–Zn(2)–N(2)94.5(2)O(9)#2–Zn(2)–O(9)81.82(19)O(3)#3–Zn(2)–N(2)164.3(2)O(5)#2–Zn(2)–O(3)#391.3(2)N(1)–Zn(2)–N(2)75.7(2)O(9)#2–Zn(2)–O(3)#397.42(19)Fig.2Polyhedral representation of the homotetranuclear unit as asix-connected node linked by p-BDC ligandsMoreover,rich inter and intra hydrogen-bonds between the water molecules and the carboxylate groups (Table 3)further strengthen the stacking of the supra-architecture (Fig.5).4Supplementary MaterialsCrystallographic data (excluding structure factors)for thestructures reported in this paper have been deposited with the Cambridge Crystallographic Data Center as supple-mentary publication /doc/c97a12ccf61fb7360b4c65f3.html DC-666555.Copies of the data can be obtained free of charge on application to CCDC,12Union Road,Cambridge CB21EZ,UK (Fax:+44-1223-336033;e-mail:deposit@/doc/c97a12ccf61fb7360b4c65f3.html ).Acknowledgments This work was supported by the National Nat-ural Science Foundation of China (20731004)and the Natural Science Foundation of the Education Committee of Anhui Province,China(KJ2008B004).Fig.3Polyhedral presentation of one set of the 3D network along a -axis (a )and b -axis (b )Table 3Distance (A ?)and angles (°)of hydrogen bonding for com-plex 1D–H áááADistance of D áááA (A ?)Angle of D–H–A (°)O1W–H1WB áááO2#1 2.677(9)164O9–H19áááO1W#2 2.841(9)151C13–H13áááO3#3 3.045(10)121C22–H22áááO1W#43.353(10)167Symmetry transformations used to generate equivalent atoms:#1x,y,1+z;#2-x,1-y,-1+z;#3-x+1/2,-y+1,z -1/2;#4-x,1-y,1-zFig.4Simpli?ed schematic representation of the 3D ?3D two-fold interpenetrated a -Po network in1Fig.5Projection of the structure of 1along b -axis (dotted lines represent hydrogen-bonding)References1.(a)P.J.Hagrman,D.Hagrman,J.Zubieta,Angew.Chem.Int.Ed.38,2638(1998);(b)S.Leininger,B.Olenyuk,P.J.Stang,Chem.Rev.100,853(2000);(c)A.Erxleben,Coord.Chem.Rev.246, 203(2003);(d)K.Biradha,Y.Hongo,M.Fujita,Angew.Chem. Int.Ed.39,3843(2000);(e)P.D.Harey,H.B.Gray,J.Am.Chem.Soc.110,2145(1988);(f)D.Cave,J.M.Gascon,A.D.Bond,S.J.Teat,P.T.Wood,/doc/c97a12ccf61fb7360b4c65f3.html mun.1050(2002);(g)F.A.AlmeidaPaz,J.Klinowski,Inorg.Chem.43,3882(2004);(h)K.Biradha, Y.Hongo,M.Fujita,Angew.Chem.Int.Ed.39,3843(2000);(i) M.Eddaoudi,J.Kim,N.Rosi,D.Vodak,J.Wachter,M.O’Ke-egge,O.M.Yaghi,Science295,469(2002);(j)S.Q.Zhang,R.J. Tao,Q.L.Wang,N.H.Hu,Y.X.Cheng,H.L.Niu,W.Lin,J.Am.Chem.Soc.123,10395(2001);(k)L.Carlucci,G.Ciani,D.M.Proserpio,Cryst.Growth Design5,37(2005)2.(a)M.Eddaoudi,D.B.Moler,H.Li,B.Chen,T.M.Reineke,M.O’Keeffe,O.M.Yaghi,Acc.Chem.Res.34,319(2001);(b)P.J.Hagrman,D.Hagrman,J.Zubieta,Angew.Chem.Int.Ed.38, 2638(1999);(c)O.R.Evans,W.Lin,Acc.Chem.Res.35,511 (2002);(d)S.Kitagawa,R.Kitaura,S.Noro,Angew.Chem.Int.Ed.43,2334(2004);(e)S.L.James,Chem.Soc.Rev.32,276 (2003);(f)L.Pan,H.Liu,X.Lei,X.Huang,D.H.Olson,N.J.Turro,J.Li,Angew.Chem.Int.Ed.42,542(2003)3.(a)G.Ferey,C.Mellot-Draznieks,C.Serre,/doc/c97a12ccf61fb7360b4c65f3.html lange,Acc. Chem.Res.38,217(2005);(b)M.Eddaoudi,J.Kim,J.B.Wachter,H.K.Chae,M.O’Keeffe,O.M.Yaghi,J.Am.Chem.Soc.123,4368(2001);(c)M.Eddaoudi,J.Kim,M.O’Keeffe, O.M.Yaghi,J.Am.Chem.Soc.124,376(2002);(d)A.Thiru-murugan,S.Natarajan,Cryst.Growth Design6,983(2006);(e) R.Murugavel,M.G.Walawalkar,M.Dan,H.W.Roesky,C.N.R. Rao,Acc.Chem.Res.37,763(2004)4.(a)J.Kim,B.Chen,T.M.Reineke,H.Li,M.Eddaoudi,D.B.Moler,M.O’Keeffe,O.M.Yaghi,J.Am.Chem.Soc.123,8239 (2001);(b)J.J.Lu,A.Mondal,B.Moulton,M.Zaworotko,An-gew.Chem.Int.Ed.40,2113(2001)5.(a)Q.R.Fang,X.Shi,G.Wu,G.Tain,G.S.Zhu,R.W.Wang,S.L.Qiu,J.Solid State Chem.176,1(2003);(b)H.Li,C.E.Davis,T.L.Groy,D.G.Kelley,O.M.Yaghi,J.Am.Chem.Soc.120,2186(1998)6.(a)M.Eddaoudi,J.Kim,N.Rosi,D.Vodak,J.Wachter,M.O’Keeffe,O.M.Yaghi,Science295,469(2002);(b)B.Kesanli,Y.Cui,M.R.Smith,E.W.Bittner,B.C.Bockrath,W.B.Lin, Angew.Chem.Int.Ed.44,72(2005)7.Q.R.Fang,G.S.Zhu,Z.Jin,M.Xue,X.Wei,D.J.Wang,S.L.Qiu,Cryst.Growth Design7,1035(2007)8.C.Lei,J.G.Mao,Y.Q.Sun,H.Y.Zeng,A.Clear?eld,Inorg.Chem.42,6157(2003)9.J.R.Li,Y.Tao,Q.Yu,X.H.Bu,/doc/c97a12ccf61fb7360b4c65f3.html mun.1527(2007)10.S.Y.Yang,L.S.Long,R.B.Huang,L.S.Zheng,/doc/c97a12ccf61fb7360b4c65f3.html mun.472(2002)11.T.M.Reineke,M.Eddaoudi,D.M.Moler,M.O’Keeffe O.M.Yaghi,J.Am.Chem.Soc.122,4843(2002)12.D.M.Proserpio,R.Hoffman,P.Preuss,J.Am.Chem.Soc.116,9634(1994)13.(a)O.Ermer,Adv.Mater.3,608(1991);(b)/doc/c97a12ccf61fb7360b4c65f3.html ler,Adv.Mater.13,525(2001)14.SAINT version6.02a,Software Reference Manual(Bruker AXSInc.,Madison,W1,2002)15.G.M.Sheldrick,SADABS:Program for Empirical AbsorptionCorrection of Area Detector Data(University of Go¨ttingen, 1996)16.G.M.Sheldrick,SHELXS-97:Program for Crystal StructureSolution(University of Go¨ttingen,1997)17.G.M.Sheldrick,SHELXL-97:Program for Crystal StructureRe?nement(University of Go¨ttingen,1997)18.V.A.Blatov,L.Carlucci,G.Ciani,D.M.Proserpio,Cryst.Eng.Comm.6,377(2004)19.(a)B.F.Hoskins,R.Robson,N.V.Y.Scarlett,J.Chem.Soc./doc/c97a12ccf61fb7360b4c65f3.html mun.2025(1994);(b)E.Siebel,R.D.Fischer,Chem. Eur.J.3,1987(1997);(c)B.F.Abrahams,B.F.Hoskins,R.Robson,D.A.Slizys,/doc/c97a12ccf61fb7360b4c65f3.html m.4,478(1997);(d)M.J. Plater,M.R.S.J.Foreman,J.M.S.Skakle,Cryst.Eng.4,293 (2001);(e)X.L.Wang,C.Qin,E.B.Wang,Z.M.Su,Chem.Eur. J.12,2680(2006)20.B.Kesanli,Y.Cui,R.Smith,E.Bittner,B.C.Bockrath,W.Lin,Angew.Chem.Int.Ed.117,74(2005)21.(a)H.L.Gao,L.Yi,B.Ding,H.S.Wang,P.Cheng,D.Z.Liao,S.P.Yan,Inorg.Chem.45,481(2006);(b)Y.H.Wen,J.Zhang, X.Q.Wang,Y.L.Feng,J.K.Cheng,Z.J.Li,Y.G.Yao,New J. Chem.29,995(2005);(c)H.L.Sun,B.Q.Ma,S.Gao,S.R.Batten,Cryst.Growth Design5,1331(2005);(d)J.Yang,J.F.Ma,Y.Y.Liu,S.L.Li,G.L.Zheng,Eur.J.Inorg.Chem.2174 (2005)。

CrystGrowthDes晶体生长英文文献

CrystGrowthDes晶体生长英文文献

An Infinite Two-Dimensional Hybrid Water-Chloride Network,Self-Assembled in a Hydrophobic Terpyridine Iron(II)MatrixRicardo R.Fernandes,†Alexander M.Kirillov,†M.Fátima C.Guedes da Silva,†,‡Zhen Ma,†JoséA.L.da Silva,†João J.R.Fraústo da Silva,†andArmando J.L.Pombeiro*,†Centro de Química Estrutural,Complexo I,Instituto Superior Técnico,TU-Lisbon,A V.Ro V isco Pais,1049-001Lisbon,Portugal,and Uni V ersidade Luso´fona de Humanidades e Tecnologias,A V.doCampo Grande,376,1749-024,Lisbon,PortugalRecei V ed October18,2007;Re V ised Manuscript Recei V ed January7,2008ABSTRACT:An unprecedented two-dimensional water-chloride anionic{[(H2O)20(Cl)4]4–}n network has been structurally identified in a hydrophobic matrix of the iron(II)compound[FeL2]Cl2·10H2O(L)4′-phenyl-2,2′:6′,2″-terpyridine).Its intricate relief geometry has been described as a set of10nonequivalent alternating cycles of different sizes ranging from tetra-to octanuclear{[(H2O)x(Cl)y]y–}z(x) 2–6,y)0–2,z)4–6,8)fragments.In contrast to the blooming research on structural characterizationof a wide variety of water clusters in different crystalline materials,1much less attention has been focused on the identification anddescription of hybrid hydrogen-bonded water assemblies with othersolvents,small molecules,or counterions.1c,2In particular,thecombination of chloride ions and water is one of the most commonlyfound in natural environments(e.g.,seawater or sea-salt aerosols),and thus the investigation of water-chloride interactions has beenthe object of numerous theoretical studies.3However,only recentlya few water-chloride associates incorporated in various crystalmatrixes have been identified and structurally characterized,4,5including examples of(i)discrete cyclic[(H2O)4(Cl)]–,4a[(H2O)4(Cl)2]2–,4b and[(H2O)6(Cl)2]2–4c clusters,and(ii)variousone-or two-dimensional(1D or2D)hydrogen-bonded networksgenerated from crystallization water and chloride counterionswith{[(H2O)4(Cl2)]2–}n,5b{[(H2O)6(Cl)2]2–}n,5b[(H2O)7(HCl)2]n,5c{[(H2O)11(Cl)7]7–}n,5d{[(H2O)14(Cl)2]2–}n,5e{[(H2O)14(Cl)4]4–}n,5aand{[(H2O)14(Cl)5]5–}n5f compositions.These studies are alsobelieved to provide a contribution toward the understanding of thehydration phenomena of chloride ions in nature and have importancein biochemistry,catalysis,supramolecular chemistry,and designof crystalline materials.5In pursuit of our interest in the self-assembly synthesis andcrystallization of various transition metal compounds in aqueousmedia,we have recently described the[(H2O)10]n,6a(H2O)6,6b and[(H2O)4(Cl)2]2–4b clusters hosted by Cu/Na or Ni metal-organicmatrixes.Continuing this research,we report herein the isolationand structural characterization of a unique2D water-chlorideanionic layer{[(H2O)20(Cl)4]4–}n within the crystal structure of thebis-terpyridine iron(II)compound[FeL2]Cl2·10H2O(1′)(L)4′-phenyl-2,2′:6′,2″-terpyridine).Although this compound has beenobtained unexpectedly,a search in the Cambridge StructuralDatabase(CSD)7,8points out that various terpyridine containinghosts tend to stabilize water-chloride associates,thus also sup-porting the recognized ability of terpyridine ligands in supra-molecular chemistry and crystal engineering.9,10Hence,the simple combination of FeCl2·2H2O and L in tetrahydrofuran(THF)solution at room temperature provides the formation of a deep purple solid formulated as[FeL2]Cl2·FeCl2·5H2O(1)on the basis of elemental analysis,FAB+-MS and IR spectroscopy.11This compound reveals a high affinity for water and,upon recrystallization from a MeOH/H2O(v/v)9/1)mixture,leads to single crystals of1′with a higher water content,which have been characterized by single-crystal X-ray analysis.12The asymmetric unit of1′is composed of a cationic[FeL2]2+ part,two chloride anions,and10independent crystallization water molecules(with all their H atoms located in the difference Fourier map),the latter occupying a considerable portion of the crystal cell. The iron atom possesses a significantly distorted octahedral coordination environmentfilled by two tridentate terpyridine moieties arranged in a nearly perpendicular fashion(Figure S1, Supporting Information).Most of the bonding parameters within [FeL2]2+are comparable to those reported for other iron compounds*To whom correspondence should be sent.Fax:+351-21-8464455.E-mail: pombeiro@ist.utl.pt.†Instituto Superior Técnico.‡Universidade Luso´fona de Humanidades eTecnologias.Figure 1.Perspective representations(arbitrary views)of hybrid water-chloride hydrogen-bonded assemblies in the crystal cell of1′; H2O molecules and chloride ions are shown as colored sticks and balls, respectively.(a)Minimal repeating{[(H2O)20(Cl)4]4–}n fragment with atom numbering scheme.(b)Nonplanar infinite polycyclic2D anionic layer generated by linkage of four{[(H2O)20(Cl)4]4–}n fragments(a) represented by different colors;the numbers are those of Table1and define the10nonequivalent alternating cycles of different size.2008310.1021/cg7010315CCC:$40.75 2008American Chemical SocietyPublished on Web02/08/2008bearing two terpyridine ligands.13The most interesting feature of the crystal structure of 1′consists in the extensive hydrogen bonding interactions of all the lattice–water molecules and chloride coun-terions (Table S1,Supporting Information),leading to the formation of a hybrid water -chloride polymeric assembly possessing minimal repeating {[(H 2O)20(Cl)4]4–}n fragments (Figure 1a).These are further interlinked by hydrogen bonds generating a nonplanar 2D water -chloride anionic layer (Figure 1b).Hence,the multicyclic {[(H 2O)20(Cl)4]4–}n fragment is con-structed by means of 12nonequivalent O–H ···O interactions with O ···O distances ranging from 2.727to 2.914Åand eight O–H ···Cl hydrogen bonds with O ···Cl separations varying in the 3.178–3.234Årange (Table S1,Supporting Information).Both average O ···O [∼2.82Å]and O ···Cl [∼3.20Å]separations are comparable to those found in liquid water (i.e.,2.85Å)14and various types of H 2O clusters 1,6or hybrid H 2O -Cl associates.4,5Eight of ten water molecules participate in the formation of three hydrogen bonds each (donating two and accepting one hydrogen),while the O3and O7H 2O molecules along with both Cl1and Cl2ions are involved in four hydrogen-bonding contacts.The resulting 2D network can be considered as a set of alternating cyclic fragments (Figure 1b)which are classified in Table 1and additionally shown by different colors in Figure 2.Altogether there are 10different cycles,that is,five tetranuclear,three pentanuclear,one hexanuclear,and one octa-nuclear fragment (Figures 1b and 2,Table 1).Three of them (cycles 1,2,and 6)are composed of only water molecules,whereas the other seven rings are water -chloride hybrids with one or two Cl atoms.The most lengthy O ···O,O ···Cl,or Cl ···Cl nonbonding separations within rings vary from 4.28to 7.91Å(Table 1,cycles 1and 10,respectively).Most of the cycles are nonplanar (except those derived from the three symmetry generated tetrameric fragments,cycles 1,2,and 4),thus contributing to the formation of an intricate relief geometry of the water -chloride layer,possessing average O ···O ···O,O ···Cl ···O,and O ···O ···Cl angles of ca.104.9,105.9,and 114.6°,respectively (Table S2,Supporting Information).The unprecedented character of thewater -chloride assembly in 1′has been confirmed by a thorough search in the CSD,7,15since the manual analysis of 156potentially significant entries with the minimal [(H 2O)3(Cl)]–core obtained within the searching algorithm 15did not match a similar topology.Nevertheless,we were able to find several other interesting examples 16of infinite 2D and three-dimensional (3D)water -chloride networks,most of them exhibiting strong interactions with metal -organic matrixes.The crystal packing diagram of 1′along the a axis (Figure 3)shows that 2D water -chloride anionic layers occupy the free space between hydrophobic arrays of metal -organic units,with an interlayer separation of 12.2125(13)Åthat is equivalent to the b unit cell dimension.12In contrast to most of the previously identified water clusters,1,6water -chloride networks,5,16and extended assemblies,1c the incorporation of {[(H 2O)20(Cl)4]4–}n sheets in 1′is not supported by strong intermolecular interactions with the terpyridine iron matrix.Nevertheless,four weak C–H ···O hydrogen bonds [avg d (D ···A))3.39Å]between some terpyridine CH atoms and lattice–water molecules (Table S1,Figure S2,Supporting Information)lead to the formation of a 3D supramolecular framework.The thermal gravimetric analysis (combined TG-DSC)of 117(Figure S3,Supporting Information)shows the stepwise elimination of lattice–water in the broad 50–305°C temperature interval,in accord with the detection on the differential scanning calorimetryTable 1.Description of Cyclic Fragments within the {[(H 2O)20(Cl)4]4–}n Network in 1′entry/cycle numbernumber of O/Cl atomsformula atom numberingschemegeometry most lengthy separation,Åcolor code a 14(H 2O)4O3–O4–O3–O4planar O3···O3,4.28light brown 24(H 2O)4O6–O7–O6–O7planar O7···O7,4.42light gray 34[(H 2O)3(Cl)]-O2–O4–O3–Cl2nonplanar O4···Cl2,4.66blue 44[(H 2O)3(Cl)]-O6–O7–O9–Cl1nonplanar O7···Cl1,4.61green 54[(H 2O)2(Cl)2]2-O9–Cl1–O9–Cl1planar Cl ···Cl1,4.76pink 65(H 2O)5O2–O4–O3–O10–O8nonplanar O2···O10,4.55red75[(H 2O)4(Cl)]-O1–O5–O7–O9–Cl1nonplanar O7···Cl1,5.25pale yellow 85[(H 2O)4(Cl)]-O1–O5–Cl2–O8–O10nonplanar O10···Cl2,5.29orange 96[(H 2O)4(Cl)2]2-O2–O8–Cl2–O2–O8–Cl2nonplanar Cl2···Cl2,7.12yellow 108[(H 2O)6(Cl)2]2-O1–O10–O3–Cl2–O5–O7–O6–Cl1nonplanarCl1···Cl2,7.91pale blueaColor codes are those of Figure 2.Figure 2.Fragment of nonplanar infinite polycyclic 2D anionic layer in the crystal cell of 1′.The 10nonequivalent alternating water or water -chloride cycles are shown by different colors (see Table 1for color codes).Figure 3.Fragment of the crystal packing diagram of 1′along the a axis showing the intercalation of two water -chloride layers (represented by space filling model)into the metal -organic matrix (depicted as sticks);color codes within H 2O -Cl layers:O red,Cl green,H grey.Communications Crystal Growth &Design,Vol.8,No.3,2008783curve(DSC)of three major endothermic processes in ca.50–170, 170–200,and200–305°C ranges with maxima at ca.165,190, and280°C,corresponding to the stepwise loss of ca.two,one, and two H2O molecules,respectively(the overall mass loss of9.1% is in accord with the calculated value of9.4%for the elimination of allfive water molecules).In accord,the initial broad and intense IRν(H2O)andδ(H2O)bands of1(maxima at3462and1656cm–1, respectively)gradually decrease in intensity on heating the sample up to ca.305°C,while the other bands remain almost unchangeable. Further heating above305°C leads to the sequential decomposition of the bis-terpyridine iron unit.These observations have also been supported by the IR spectra of the products remaining after heating the sample at different temperatures.The elimination of the last portions of water in1at temperatures as high as250–305°C is not commonly observed(although it is not unprecedented18)for crystalline materials with hosted water clusters,and can be related to the presence and extensive hydrogen-bonding of chloride ions in the crystal cell,tending to form the O–H(water)···Cl hydrogen bonds ca.2.5times stronger in energy than the corresponding O–H(water)···O(water)ones.5a The strong binding of crystallization water in1is also confirmed by its FAB+-MS analysis that reveals the rather uncommon formation of the fragments bearing from one tofive H2O molecules.11The exposure to water vapors for ca.8h of an almost completely dehydrated(as confirmed by weighing and IR spectroscopy)product after thermolysis of1(at250°C19for 30min)results in the reabsorption of water molecules giving a material with weight and IR spectrum identical to those of the initial sample1,thus corroborating the reversibility of the water escape and binding process.In conclusion,we have synthesized and structurally characterized a new type of2D hybrid water-chloride anionic multicyclic {[(H2O)20(Cl)4]4–}n network self-assembled in a hydrophobic matrix of the bis-terpyridine iron(II)complex,that is,[FeL2]Cl2·10H2O 1′.On the basis of the recent description and detailed analysis of the related{[(H2O)14(Cl)4]4–}n layers5a and taking into consideration that the water-chloride assembly in1′does not possess strong interactions with the metal-organic units,the crystal structure of 1′can alternatively be defined as an unusual set of water-chloride “hosts”with bis-terpyridine iron“guests”.Moreover,the present study extends the still limited number5of well-identified examples of large polymeric2D water-chloride assemblies intercalated in crystalline materials and shows that terpyridine compounds can provide rather suitable matrixes to stabilize and store water-chloride aggregates.Further work is currently in progress aiming at searching for possible applications in nanoelectrical devices,as well as understanding how the modification of the terpyridine ligand or the replacement of chlorides by other counterions with a high accepting ability toward hydrogen-bonds can affect the type and topology of the hybrid water containing associates within various terpyridine transition metal complexes.Acknowledgment.This work has been partially supported by the Foundation for Science and Technology(FCT)and its POCI 2010programme(FEDER funded),and by a HRTM Marie Curie Research Training Network(AQUACHEM project,CMTN-CT-2003-503864).The authors gratefully acknowledge Prof.Maria Filipa Ribeiro for kindly running the TG-DSC analysis,urent Benisvy,Dr.Maximilian N.Kopylovich,and Mr.Yauhen Y. Karabach for helpful discussions.Supporting Information Available:Additionalfigures(Figures S1–S3)with structural fragments of1′and TG-DSC analysis of1, Tables S1and S2with hydrogen-bond geometry in1′and bond angles within the H2O-Cl network,details for the general experimental procedures and X-ray crystal structure analysis and refinement,crystal-lographic informationfile(CIF),and the CSD refcodes for terpyridine compounds with water-chloride aggregates.This information is available free of charge via the Internet at .References(1)(a)Mascal,M.;Infantes,L.;Chisholm,J.Angew.Chem.,Int.Ed.2006,45,32and references therein.(b)Infantes,L.;Motherwell,S.CrystEngComm2002,4,454.(c)Infantes,L.;Chisholm,J.;Mother-well,S.CrystEngComm2003,5,480.(d)Supriya,S.;Das,S.K.J.Cluster Sci.2003,14,337.(2)(a)Das,M.C.;Bharadwaj,P.K.Eur.J.Inorg.Chem.2007,1229.(b)Ravikumar,I.;Lakshminarayanan,P.S.;Suresh,E.;Ghosh,P.Cryst.Growth Des.2006,6,2630.(c)Ren,P.;Ding,B.;Shi,W.;Wang,Y.;Lu,T.B.;Cheng,P.Inorg.Chim.Acta2006,359,3824.(d)Li,Z.G.;Xu,J.W.;Via,H.Q.;Hu,mun.2006,9,969.(e)Lakshminarayanan,P.S.;Kumar,D.K.;Ghosh,P.Inorg.Chem.2005,44,7540.(f)Raghuraman,K.;Katti,K.K.;Barbour,L.J.;Pillarsetty,N.;Barnes,C.L.;Katti,K.V.J.Am.Chem.Soc.2003,125,6955.(3)(a)Jungwirth,P.;Tobias,D.J.J.Phys.Chem.B.2002,106,6361.(b)Tobias,D.J.;Jungwirth,P.;Parrinello,M.J.Chem.Phys.2001,114,7036.(c)Choi,J.H.;Kuwata,K.T.;Cao,Y.B.;Okumura,M.J.Phys.Chem.A.1998,102,503.(d)Xantheas,S.S.J.Phys.Chem.1996,100,9703.(e)Markovich,G.;Pollack,S.;Giniger,R.;Cheshnovsky,O.J.Chem.Phys.1994,101,9344.(f)Combariza,J.E.;Kestner,N.R.;Jortner,J.J.Chem.Phys.1994,100,2851.(g)Perera, L.;Berkowitz,M.L.J.Chem.Phys.1991,95,1954.(h)Dang,L.X.;Rice,J.E.;Caldwell,J.;Kollman,P.A.J.Am.Chem.Soc.1991, 113,2481.(4)(a)Custelcean,R.;Gorbunova,M.G.J.Am.Chem.Soc.2005,127,16362.(b)Kopylovich,M.N.;Tronova,E.A.;Haukka,M.;Kirillov,A.M.;Kukushkin,V.Yu.;Fraústo da Silva,J.J.R.;Pombeiro,A.J.L.Eur.J.Inorg.Chem.2007,4621.(c)Butchard,J.R.;Curnow,O.J.;Garrett,D.J.;Maclagan,R.G.A.R.Angew.Chem.,Int.Ed.2006, 45,7550.(5)(a)Reger,D.L.;Semeniuc,R.F.;Pettinari,C.;Luna-Giles,F.;Smith,M.D.Cryst.Growth.Des.2006,6,1068and references therein.(b) Saha,M.K.;Bernal,mun.2005,8,871.(c) Prabhakar,M.;Zacharias,P.S.;Das,mun.2006,9,899.(d)Lakshminarayanan,P.S.;Suresh,E.;Ghosh,P.Angew.Chem.,Int.Ed.2006,45,3807.(e)Ghosh,A.K.;Ghoshal,D.;Ribas,J.;Mostafa,G.;Chaudhuri,N.R.Cryst.Growth.Des.2006,6,36.(f)Deshpande,M.S.;Kumbhar,A.S.;Puranik,V.G.;Selvaraj, K.Cryst.Growth Des.2006,6,743.(6)(a)Karabach,Y.Y.;Kirillov,A.M.;da Silva,M.F.C.G.;Kopylovich,M.N.;Pombeiro,A.J.L.Cryst.Growth Des.2006,6,2200.(b) Kirillova,M.V.;Kirillov,A.M.;da Silva,M.F.C.G.;Kopylovich, M.N.;Fraústo da Silva,J.J.R.;Pombeiro,A.J.L.Inorg.Chim.Acta2008,doi:10.1016/j.ica.2006.12.016.(7)The Cambridge Structural Database(CSD).Allen, F.H.ActaCrystallogr.2002,B58,380.(8)The searching algorithm in the ConQuest Version1.9(CSD version5.28,August2007)constrained to the presence of any terpyridinemoiety and at least one crystallization water molecule and one chloride counter ion resulted in43analyzable hits from which40compounds contain diverse water-chloride aggregates(there are29and11 examples of infinite(mostly1D)networks and discrete clusters, respectively).See the Supporting Information for the CSD refcodes.(9)For a recent review,see Constable,E.C.Chem.Soc.Re V.2007,36,246.(10)For recent examples of supramolecular terpyridine compounds,see(a)Beves,J.E.;Constable,E.C.;Housecroft,C.E.;Kepert,C.J.;Price,D.J.CrystEngComm2007,9,456.(b)Zhou,X.-P.;Ni,W.-X.;Zhan,S.-Z.;Ni,J.;Li,D.;Yin,Y.-G.Inorg.Chem.2007,46,2345.(c)Shi,W.-J.;Hou,L.;Li,D.;Yin,Y.-G.Inorg.Chim.Acta2007,360,588.(d)Beves,J.E.;Constable,E.C.;Housecroft,C.E.;Kepert,C.J.;Neuburger,M.;Price,D.J.;Schaffner,S.CrystEngComm2007,9,1073.(e)Beves,J. E.;Constable, E. C.;Housecroft, C. E.;Neuburger,M.;Schaffner,mun.2007,10,1185.(f)Beves,J.E.;Constable,E.C.;Housecroft,C.E.;Kepert,C.J.;Price,D.J.CrystEngComm2007,9,353.(11)Synthesis of1:FeCl2·2H2O(82mg,0.50mmol)and4′-phenyl-2,2′:6′,2″-terpyridine(L)(154mg,0.50mmol)were combined in a THF (20mL)solution with continuous stirring at room temperature.The resulting deep purple suspension was stirred for1h,filtered off,washed with THF(3×15mL),and dried in vacuo to afford a deep purple solid1(196mg,41%).1exhibits a high affinity for water and upon recrystallization gives derivatives with a higher varying content of crystallization water.1is soluble in H2O,MeOH,EtOH,MeCN, CH2Cl2,and CHCl3.mp>305°C(dec.).Elemental analysis.Found: C52.96,H3.76,N8.36.Calcld.for C42H40Cl4Fe2N6O5:C52.42,H4.19,N8.73.FAB+-MS:m/z:835{[FeL2]Cl2·5H2O+H}+,816784Crystal Growth&Design,Vol.8,No.3,2008Communications{[FeL2]Cl2·4H2O}+,796{[FeL2]Cl2·3H2O–2H}+,781{[FeL2]Cl2·2H2O+H}+,763{[FeL2]Cl2·H2O+H}+,709{[FeL2]Cl}+,674 {[FeL2]}+,435{[FeL]Cl2}+,400{[FeL]Cl}+,364{[FeL]–H}+,311 {L–2H}+.IR(KBr):νmax/cm–1:3462(m br)ν(H2O),3060(w),2968 (w)and2859(w)ν(CH),1656(m br)δ(H2O),1611(s),1538(w), 1466(m),1416(s),1243(m),1159(w),1058(m),877(s),792(s), 766(vs),896(m),655(w),506(m)and461(m)(other bands).The X-ray quality crystals of[FeL2]Cl2·10H2O(1′)were grown by slow evaporation,in air at ca.20°C,of a MeOH/H2O(v/v)9/1)solution of1.(12)Crystal data:1′:C42H50Cl2FeN6O10,M)925.63,triclinic,a)10.1851(10),b)12.2125(13),c)19.5622(19)Å,R)76.602(6),)87.890(7),γ)67.321(6)°,U)2180.3(4)Å3,T)150(2)K,space group P1j,Z)2,µ(Mo-K R))0.532mm-1,32310reflections measured,8363unique(R int)0.0719)which were used in all calculations,R1)0.0469,wR2)0.0952,R1)0.0943,wR2)0.1121 (all data).(13)(a)McMurtrie,J.;Dance,I.CrystEngComm2005,7,230.(b)Nakayama,Y.;Baba,Y.;Yasuda,H.;Kawakita,K.;Ueyama,N.Macromolecules2003,36,7953.(c)Kabir,M.K.;Tobita,H.;Matsuo,H.;Nagayoshi,K.;Yamada,K.;Adachi,K.;Sugiyama,Y.;Kitagawa,S.;Kawata,S.Cryst.Growth Des.2003,3,791.(14)Ludwig,R.Angew.Chem.,Int.Ed.2001,40,1808.(15)The searching algorithm in the ConQuest Version1.9(CSD version5.28,May2007)was constrained to the presence of(i)at least onetetranuclear[(H2O)3(Cl)]–ring(i.e.,minimal cyclic fragment in our water-chloride network)with d(O···O))2.2–3.2Åand d(O···Cl) )2.6–3.6Å,and(ii)at least one crystallization water molecule andone chloride counter ion.All symmetry-related contacts were taken into consideration.(16)For2D networks with the[(H2O)3(Cl)]–core,see the CSD refcodes:AGETAH,AMIJAH,BEXVIJ,EXOWIX,FANJUA,GAFGIE, HIQCIT,LUNHUX,LUQCEF,PAYBEW,TESDEB,TXCDNA, WAQREL,WIXVUU,ZUHCOW.For3D network,see the CSD refcode:LUKZEW.(17)This analysis was run on1since we were unable to get1′in a sufficientamount due to the varying content of crystallization water in the samples obtained upon recrystallization of1.(18)(a)Das,S.;Bhardwaj,P.K.Cryst.Growth.Des.2006,6,187.(b)Wang,J.;Zheng,L.-L.;Li,C.-J.;Zheng,Y.-Z.;Tong,M.-L.Cryst.Growth.Des.2006,6,357.(c)Ghosh,S.K.;Ribas,J.;El Fallah, M.S.;Bharadwaj,P.K.Inorg.Chem.2005,44,3856.(19)A temperature below305°C has been used to avoid the eventualdecomposition of the compound upon rather prolonged heating.CG7010315Communications Crystal Growth&Design,Vol.8,No.3,2008785。

杂多酸有机无机杂化材料的合成及结构性能研究

杂多酸有机无机杂化材料的合成及结构性能研究
42.毕丽华.韩正波.王恩波.黄如丹钨磷杂多阴离子[P4W30Cu4(H2O)2O112 16-]合成方法的改进及其配位水的取代反应 1999(01)
43.廖见培.刘国东.黄杉生α-P2W17O10-61杂多阴离子薄膜修饰电极的制备[期刊论文]-分析科学学报 2000(6)
44.Hoskins B F.Robson R Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments 1989
45.Suh M P.Shim B Y.Yoon T S Template Syntheses and Crystal Structures of Nickel (Ⅱ) Complexes of Hexaaza Macrocyclic Ligands with Pendant
46.Functional Groups Formation of a Coordination Polymer 1994
34.Pope M T Heteropoly and Isopoly Oxometalates 1983
35.赵文彦.陈亚光.彭军α-和β-三取代钨锗杂多酸盐异构体的合成和表征 1993(03)
36.王力.刘宗瑞.王恩波取代型钨硅杂多化合物的导电性及磁性 1998(04)
37.徐靖.柳士忠以Keggin结构杂多阴离子掺杂的聚吡啶的化学合成及性能研究[期刊论文]-湖北化工 2000(5)
21.张琳萍.侯红卫.樊耀亭.程凤宏配位聚合物[期刊论文]-无机化学学报 2000(1)
22.孙为银.费宝丽.张延安.唐雯霞.郁开北含1,6-二(4′-吡啶基)-2,5-二氮杂己烷的一维链状和二维网状银(Ⅰ)超分子配合物的合成与结构[期刊论文]-化学学报 2000(5)

蛋白质晶体衍射

蛋白质晶体衍射

No Structural Similarity between EF and Catalytic Core of Mammalian AC
EF mAC
C2a
Helical CB CA C1a
Catalytic Site of EF and mAC catalytic EF core are very different
Structure determination
• Brief introduction of protein crystallography • Structural and Biological function of Anthrax Edema Factor toxin • Structural and Biological function of Human Insulin Degrading enzyme
光源波长 〈= 物体的尺度
Adapted from “Crystallography made crystal clear” by Gale Rhodes.
X-ray =0.5~2Å No Lens !
信号太弱!
Adapted from “Crystallography made crystal clear” by Gale Rhodes.
EF-CaM-3d’ATP EF-CaM R-factor = 21.5% (28.6) 27.8% (31 Resolution = 2.75Å 2.95Å
Structure Determination of EF alone
P21212 a,b,c(Å)=70, 96, 207 Native: 2.6Å 99%(98) completeness Molecular replacement by EPMR(Biocars, APS) and refinement with 2.6Å resolution and R-factor of 22.8%(27.6)

Claisen-Schmidt反应合成的查耳酮类化合物及其生物活性研究进展

Claisen-Schmidt反应合成的查耳酮类化合物及其生物活性研究进展

Claisen-Schmidt反应合成的查耳酮类化合物及其生物活性研究进展李济森;李新汉;段文文;黄超【摘要】查耳酮类化合物是一类自然分布广泛、药理活性多样的重要物质,一直是化学及药物学家研究的热点之一.Claisen-Schmidt反应作为合成及修饰查耳酮小分子的主要方法被广泛运用,以简单的芳香醛和芳香酮缩合即可得到结构多样的查耳酮分子,该方法具有操作简便、反应条件温和等特点.以查耳酮活性为分类,综述了近年来以Claisen-Schmidt反应合成的查耳酮类化合物及其生物活性研究进展.整理了该类化合物抗癌、抗炎、抗菌、抗氧化等生物活性,并发掘提出了其生物活性构效关系,为后续查耳酮类化合物研究开发提供参考.【期刊名称】《云南民族大学学报(自然科学版)》【年(卷),期】2019(028)005【总页数】8页(P444-451)【关键词】Claisen-Schmidt反应;查耳酮;生物活性;结构多样性;构效关系【作者】李济森;李新汉;段文文;黄超【作者单位】云南民族大学化学与环境学院,云南昆明650503;云南民族大学化学与环境学院,云南昆明650503;云南民族大学化学与环境学院,云南昆明650503;云南民族大学化学与环境学院,云南昆明650503【正文语种】中文【中图分类】R914.5作为天然产物中普遍存在的一类小分子物质,查耳酮类化合物因其独特的结构、广泛的生理活性而备受化学和药物学家的关注[1-4].采用高效便捷的方法合成结构多样性查耳酮,进而筛选其生物活性,这是目前开发该类化合物的热点[5-7].在查耳酮类化合物研究中,Claisen-Schmidt反应成为主要合成方法,该方法通过简单的芳香族醛和酮的缩合反应即可实现查耳酮分子的结构多样性制备[8-9].如图1所示,查耳酮母环结构可通过苯乙酮与苯甲醛经羟醛缩合制得,通过改变底物芳香环结构即可实现对查耳酮A环和B环的修饰从而获得分子多样性的查耳酮类化合物,如化合物1黄卡瓦胡椒素C,化合物2苏木查耳酮等天然产物.该方法具有底物廉价易得、反应快速高效、操作简便等特点[10-13],因而被广泛采用.近年来,利用Claisen-Schmidt反应制备的查耳酮类化合物不断涌现,也筛选出大量具有不同生理活性的查耳酮类新化合物[14-17].围绕查耳酮类化合物的合成方法学、生物活性、药理学机制等方向已有综合论述[18-21],但基于Claisen-Schmidt反应合成的查耳酮类化合物及其生物活性、构效关系的相关研究工作却未见报道.因此,本文以查耳酮活性为分类,从抗癌、抗炎、抗菌、抗氧化等活性方面综述了Claisen-Schmidt反应合成的查耳酮类化合物,并深入发掘首次归纳提出了其构效关系,为后续研究开发提供参考.1 抗癌活性2016年Rashmi Gaur等[22] 合成了一系列用二氢青蒿素修饰的查耳酮类化合物并测试其抗癌活性,发现查耳酮4位与4’位与二氢青蒿素以醚键形式偶联的产物(化合物9)活性较高,其对人肝癌细胞IC50值为4 μmol/L. Mao小组[23] 应用Claisen-Schmidt反应合成了哌嗪环修饰的查耳酮类化合物.发现A环4位被二甲氨基取代,B环4’ 位被哌嗪取代结构(化合物10)具有较好的抗癌活性,其对宫颈癌Hela细胞IC50值为0.19 μmol/L.Zhang小组[24] 合成了一系列查耳酮环与三氮唑结构环偶联产物,发现查耳酮A环3, 4, 5位被甲氧基取代,B环4’ 位与五元杂环结构偶联产物(化合物11)对人食管癌细胞抑制作用较高, IC50值为3.57 μmol.同年,Madhavi小组[25]发现查耳酮A环4位被吡啶结构取代,B环3’ 及4’ 位被甲氧基取代产物(化合物12)对人乳腺癌细胞IC50值为0.73 μmol/L. Yamali 小组[26] 应用吗啉结构修饰查耳酮类化合物.发现查耳酮A环6位被氯原子或溴原子取代时(化合物13)活性较高,其对人口腔癌细胞IC50值低于1.6 μmol/L. Do 小组[27] 对查耳酮芳香结构进行修饰,发现用噻唑环替代查耳酮A环的结构(化合物14)对横纹肌肉瘤细胞IC50值为(12.51±1.74) μmol/L.2017年Yadav小组[28]发现应用氧桥将查耳酮A环4位与三氮唑偶联的产物(化合物15)对人胰腺癌细胞IC50值为4 μmol/L.2018年Ayati等[29] 通过Claisen-Schmidt反应合成了一系列化合物.经生物活性筛选,应用噻唑替代查耳酮 B 环结构(化合物16)对人肺癌细胞IC50值为10.6 μg/mL.2 抗炎活性2010年Bandga小组[30] 发现查耳酮结构中A环2, 3, 4 位被甲氧基取代的产物(化合物17)10 μmol/L对小鼠TNF-a及IL-6因子诱导模型抑制率可达100%. 2013年Elhag小组[31] 合成出了一系列有较高生物活性的药物分子.其中应用芳基偶联的咪唑环替代查耳酮A环,萘环替代查耳酮B环的查耳酮类化合物(化合物18)具有较好的抗炎活性.2016年Wei小组[32] 发现应用羰基肼修饰查耳酮A环4位,氯原子修饰查耳酮B环2’, 4’位的结构(化合物19)100 mg/kg对二甲苯诱导的小鼠耳水肿模型抑制率为92.45%.3 抗菌活性2013年Elhag小组[31] 通过计算化学辅助设计并合成了应用含氮杂环替代查耳酮A环的抗菌结构(化合物20~21).2016年Patil小组[33] 发现当查耳酮A环与芳香环连接, B环被噻吩环取代时其抗菌活性较理想,该类化合物(化合物22~23)32 μg/mL对埃希氏杆菌抑制率最高可达17.76%,对新型隐球菌抑制率最高可达6.34%.Kumar小组[35] 于对具有抗菌活性的金合欢素与2’, 6’-二羟基-4’-甲氧基-3’, 5’-二甲基查耳酮类化合物(化合物24~27)进行活性比较,发现此次合成的查耳酮衍生物与金合欢素相比活性相对较低. 同年Wei 小组[32] 发现查耳酮B环2’,4’位被氯原子取代,3’位被溴原子取代的结构(化合物28~29)具有较理想的生物活性,其对金黄色葡萄球菌、变形链球菌等样品MIC值可达2 μg/mL.另外,查耳酮B环部分3’位被溴原子取代产物对鼠伤寒沙门氏菌MIC值可达1 μg/mL,对真菌样品白色念珠菌MIC值亦可达1 μg/mL.2018年Zheng小组[34] 发现应用三氮唑修饰查耳酮A环4位,氯原子修饰查耳酮B环2’, 4’ 位结构(化合物30)对金黄色葡萄球菌MIC值为19.27 μg/mL.4 抗氧化活性2008年Vogel小组[36] 合成了一系列新型查耳酮类化合物并应用AAPH法测定其氧自由基吸收能力.研究表明A环4位被羟基取代,B环2’ 位被甲氧基取代4’, 6’ 位被羟基取代的查耳酮结构(化合物31)抗氧化活性较好.2010年Bandgar 小组[30] 合成了一系列含多种取代基的查耳酮类化合物并应用DPPH法测试其抗氧化活性,发现A环3, 4, 5位被甲氧基取代,B环4’ 位被硝基取代的查耳酮结构(化合物32)具有生物活性相对较高且毒副作用较小的特点.5 其它生物活性1) 抗HIV活性 2016年Amy小组[37] 通过Claisen-Schmidt反应合成了一系列化合物,经活性研究发现,当查耳酮B环2’ 位被乙氧基取代, 4’ 位被溴原子取代时(化合物33)5 μmol/L抗HIV活性为80%.2) 单胺氧化酶抑制活性 2016年Shah小组[38] 通过计算机辅助合成了一系列具有单胺氧化酶抑制活性的B环4’ 位被甲磺酸基取代的查耳酮类化合物(化合物34~35).3) 抗胆碱酯酶活性 2017年Wang 研究小组[39] 通过计算机辅助方法合成了一系列化合物,发现查耳酮A环4位被羟基取代产物(化合物36)具有较好的抗胆碱酯酶活性.4) 抗疟活性 2017年Zhernov小组[40] 将查耳酮 B 环用二茂铁取代,合成了一系列具有抗疟活性的查耳酮类化合物.其中化合物37结构对恶性疟IC50值可达0.37 μmol/L.6 构效关系本文从抗癌、抗炎、抗菌、抗氧化等方面将运用Claisen-Schmidt反应构筑的查耳酮类化合物进行了综述,我们不难发现其结构和活性之间的关系规律.1)查耳酮A环查耳酮A环可应用甲氧基、羟基等推电子基或氯、溴等卤素原子进行结构修饰.其苯环结构亦可用其它芳香结构代替.然而,于查耳酮2, 4位增加取代基常导致其生物活性降低.2)查耳酮B环查耳酮B环在使用硝基、卤素等吸电子基进行修饰时,常取代该环上的一个位点,使用甲氧基、羟基等推电子基进行修饰时常取代多个位点,且通常活性较高.其苯环结构可用其它芳香杂环结构代替.表1 Claisen-Schmidt反应修饰的查耳酮及其结构化合物A环B环活性9抗癌10抗癌11抗癌续表1化合物A环B环活性12抗癌13抗癌14抗癌15抗癌16抗癌17抗炎18抗炎19抗炎20抗菌21抗菌22抗菌23抗菌24抗菌续表1化合物A环B环活性25抗菌26抗菌27抗菌28抗菌29抗菌30抗菌31抗氧化32抗氧化33抗HIV34单胺氧化酶抑制35单胺氧化酶抑制36抗胆碱酯酶37抗疟3) 与其它生物活性分子偶联当应用其它生物活性结构与查耳酮分子偶联时,连接位点常在查耳酮4位或4’位且常用碳碳键或碳氧键进行连接.本文列举的生物活性结构有二氢青蒿素、含氮杂环、含氧杂环、胍类结构等.7 结语及展望查耳酮类化合物的合成及生物活性研究一直是有机合成、药物化学、药理学等研究领域的重点内容.本文集中论述了以Claisen-Schmidt反应合成的查耳酮类化合物的典型研究工作,从抗癌、抗炎、抗菌、抗氧化等生物活性方面综述了查耳酮类化合物研究进展,提出了其结构修饰的常用官能团、修饰位点及构效关系.查耳酮在不同部位的结构改造可实现其活性的变化.目前查耳酮多位点结合改造、与其他活性分子偶联改造可能成为未来的突破点,查耳酮与超分子化学结合的新剂型研究也将会有重要地位.此外,作为查耳酮类化合物的主要合成方法,文中论述的Claisen-Schmidt反应修饰的查耳酮A环、B环结构将对查耳酮类化合物的相关药物研发有重要意义.本综述希望为后续查耳酮的研究开发提供参考.参考文献:【相关文献】[1] WANG L, WANG Y, TIAN Y, et al. Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors [J]. Bioorg Med Chem, 2017, 25(1): 360-371.[2] BUI T H, NGUYEN N T, DANG P H, et al. Design and synthesis of chalcone derivatives as potential non-purine xanthine oxidase inhibitors [J]. SpringerPlus, 2016, 5(1): 1789. [3] BHAT M, NAGARAJA G K, DIVYARAJ P, et al. Design, synthesis, characterization of some new 1, 2, 3- triazolyl chalcone derivatives as potential anti- microbial, anti- oxidant and anti-cancer agents via a Claisen-Schmidt reaction approach [J]. RSC Adv, 2016, 6(102): 99794-99808.[4] BURMAOGLU S, ALGUL O, GOBEK A, et al. Design of potent fluoro-substituted chalcones as antimicrobial agents [J]. J Enzyme Inhib Med Chem, 2017, 32(1): 490-495. [5] ZHANG X, RAKESH K P, BUKHARI S N A, et al. Multi-targetable chalcone analogues to treat deadly Alzheimer’s disease: current view and upcoming advice [J]. Bioorg Chem, 2018, 80: 86-93.[6] WANG L, CHEN G, LU X, et al. Novel chalcone derivatives as hypoxia-inducible factor (HIF)-1 inhibitor: synthesis, anti-invasive and anti-angiogenic properties [J]. Eur J Med Chem, 2015, 89: 88-97.[7] EVANGELISTA F C G, BANDEIRA M O, SILVA G D, et al. Synthesis and in vitro evaluation of novel triazole/azide chalcones [J]. Med Chem Res, 2017, 26(1): 27-43.[8] JIOUI I, DNOUN K, SOLHY A, et al. Modified fluorapatite as highly efficient catalyst for the synthesis of chalcones via Claisen-Schmidt condensation reaction [J]. Adsorption, 2016, 80: 100.[9] SADVILKAR V G, SAMANT S D, GAIKAR V G. Claisen-Schmidt reaction in a hydrotropic medium [J]. J Chem Technol Biotechnol, 1995, 62(4): 405-410.[10] ARSLAN T. Synthesis and characterisation of new sulfonamide chalcones containing an azo group [J]. J Chem Res, 2018, 42(5): 267-270.[11] KHANUSIYA M, GADHAWALA Z M. Synthesis and characterisation of biologically potent novel chalcone moieties [J]. Orig J Chem, 2016, 32(2): 1181-1186.[12] CLAISEN L, CLAPAREDE A, SCHMIDT J G. Condensation of aromatic aldehydes and aliphatic aldehydes or ketones in the presence of aqueous base [J]. Ber, 1881, 14(2460): 1459.[13] EL H M, YOSEF H A A, MAHRAN M R H, et al. Reactions of ferrocenyl chalcones with hydrazines and active methylene compounds [J]. Heterocycl Commun, 2016, 22(2): 69-77.[14] EKBOTE A, PATIL P S, MAIDUR S R, et al. Structure and nonlinear optical properties of(E) -1-(4-aminophenyl)-3-(3-chlorophenyl) prop-2-en-1-one: A promising new D-π-A-π-D type chalcone derivative crystal for nonlinear optical devices [J]. J Mol Struct, 2017, 1129: 239-247.[15] RAI S, PATEL P N, CHADHA A. Preparation, characterisation, and crystal structure analysis of (2 E, 2′ E)-3, 3′-(1, 4-phenylene) bis (1-(2-aminophenyl) prop-2-en-1-one [J]. Crystallogr Rep, 2016, 61 (7): 1086-1089.[16] WINTER C, CAETANO J N, ARAUJO A B C, et al. Activated carbons for chalcone production: Claisen-Schmidt condensation reaction [J]. Chem Eng J, 2016, 303: 604-610.[17] SURESH S, BHUVANESH N, PRABHU J, et al. Pyrene based chalcone as a reversible fluorescent chemosensor for Al3+ ion and its biological applications [J]. J. Photochem Photobiol, 2018, 359: 172-182.[18] SAHU N K, BALBHADRA S S, CHOUDHARY J, et al. Exploring pharmacological significance of chalcone scaffold: a review [J]. Curr Med Chem, 2012, 19(2): 209-225. [19] ZHUANG C, ZHANG W, SHENG C, et al. Chalcone: a privileged structure in medicinal chemistry [J]. Chem Rev, 2017, 117(12): 7762-7810.[20] BUKHARI S N, JASAMAI M, JANTAN I. Synthesis and biological evaluation of chalcone derivatives (mini review) [J]. Mini-Rev Med Chem, 2012, 12(13): 1394-1403.[21] SINGH P, ANAND A, KUMAR V. Recent developments in biological activities of chalcones: A mini review [J]. Eur J Med Chem, 2014, 85: 758-777.[22] GAUR R, PATHANIA A S, MALIK F A, et al. Synthesis of a series of novel dihydroartemisinin monomers and dimers containing chalcone as a linker and their anticancer activity [J]. Eur J Med Chem, 2016, 122(21): 232-246.[23] MAO Z, ZHENG X, QI Y, et al. Synthesis and biological evaluation of novel hybrid compounds between chalcone and piperazine as potential antitumor agents [J]. RSC Adv, 2016, 6(10): 7723-7727.[24] ZHANG S Y, FU D J, YUE X X, et al. Design, Synthesis and Structure-Activity Relationships of Novel Chalcone-1, 2, 3-triazole-azole Derivates as Antiproliferative Agents [J]. Molecules, 2016, 21(653): 1-13.[25] MADHAVI S, SREENIVASULU R, ANSARI Y, et al. Synthesis, Biological Evaluation and Molecular Docking Studies of Pyridine Incorporated Chalcone Derivatives as Anticancer Agents [J]. Lett Org Chem, 2016, 13(9): 682-692.[26] YAMALI C, GUL H I, SAKAGAMI H, et al. Synthesis and bioactivities of halogen bearing phenolic chalcones and their corresponding bis Mannich bases [J]. J Enzyme Inhib Med Chem, 2016, 31(sup 4): 125-131.[27] DO T H, NGUYEN D M, TRUONG V D, et al. Synthesis and Selective Cytotoxic Activities on Rhabdomyosarcoma and Noncancerous Cells of Some Heterocyclic Chalcones [J]. Molecules, 2016, 21: 329.[28] YADAV P, LAL K, KUMAR A, et al. Green Synthesis and Anticancer Potential of Chalcone Linked-1, 2, 3-Triazoles [J]. Eur J Med Chem, 2017, 126 (27): 944-953.[29] AYATI A, ESMAEILI R, MOGHIMI S, et al. Synthesis and biological evaluation of 4-amino-5-cinnamoylthiazoles as chalcone-like anticancer agents [J]. Eur J Med Chem, 2018, 145: 404-412.[30] BANDGAR B P, GAWANDE S S, BODADE R G, et al. Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti- inflammatory and antioxidant agents [J]. Bioorg Med Chem, 2010, 18(3): 1364-1370.[31] ELHAG M A, GABRA A M, GABRA N M, et al. Synthesis, characterization, docking studies and bio-efficacy evaluation of novel chalcones [J]. J Chem Pharm Res, 2013, 5(7): 329-334.[32] WEI Z Y, CHI K Q, YU Z K, et al. Synthesis and biological evaluation of chalcone derivatives containing aminoguanidine or acylhydrazone moieties [J]. Bioorg Med Chem Lett, 2016, 26(24): 5920-5925.[33] PATIL V, BARRAGAN E, PATIL S A P, et al. Direct Synthesis and Antimicrobial Evaluation of Structurally Complex Chalcones [J]. Chemistry Select, 2016, 1(13): 3647-3650.[34] ZHANG T Y, YU Z K, JIN X J, et al. Synthesis and evaluation of the antibacterial activities of aryl substituted dihydrotriazine derivatives [J]. Bioorg Med Chem Lett, 2018, 28(9): 1657-1662.[35] KUMAR R, LU Y, ELLIOTT A G, et al. Semi-synthesis and NMR spectral assignments of flavonoid and chalcone derivatives [J]. Magnetic Resonance in Chemistry, 2016, 54(11): 880-886.[36] VOGEL S, OHMAYER S, BRUNNER G, et al. Natural and non-natural prenylated chalcones: synthesis, cytotoxicity and anti-oxidative activity [J]. Bioorg Med Chem, 2008, 16(8): 4286-4293.[37] AMY L C, SANDRA H, ALEX M C, et al. Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents [J]. Bioorg Med Chem, 2016, 24(12): 2768-2776.[38] SHAH M S, KHAN S U, EJAZ S A, et al. Cholinesterases inhibition and molecular modeling studies of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones [J]. Biochem Biophys Res Commun, 2017, 482(4): 615-624.[39] WANG L, WANG Y, TIAN Y, et al. Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors [J]. Bioorg Med Chem, 2017, 25(1): 360-371.[40] ZHERNOV Y V, KREMB S, HELFER M, et al. Supramolecular combinations of humic polyanions as potent microbicides with polymodal anti-HIV-activities [J]. New J Chem, 2017, 41(1): 212-224.。

文摘型数据库(1)

文摘型数据库(1)

华东理工大学化工学院

第二条 在AIChE Journal、CHEM ENG SCI、 IND ENG CHEM RES三种化工国际顶级期刊发表的论文 ,分别相应配套探索创新科研经费5万、3万和2万
第三条
学校为第一署名单位,在学校A类刊 物(见附件, 工程技术-化工类除外)发表的 论文,学院按1:1配套奖励。
亲身体验数据库
design查找结果有何不同? 用主题= Art same design查找结果有何不 同? 用主题= Art near/n design查找结果有何不 同? 最新的论文是什么? 被引最高的论文是什么? 综述论文是哪些? 被引最高的综述论文是什么?

用标题= Art
JCR
可以告诉人们,那些是最有影响力的期刊,
那些是最常用的期刊,那些是最热门的期刊 。 除影响因子外还给出:期刊最新排序(Current Rank)、刊名缩写(Abbreviated Journal Title) 、国际统一刊号(ISSN)、总引用数(Total Cites)、及时性索引(Immediacy Index)、总 文章数(Total Article)、被引半衰期(Cited Half-Life)。

华东理工大学化工学院科技论文奖励实施办法
(2009年6月制订) 为了强化化工学科的建设,鼓励科技人员多 出高水平创新性成果,提升化工学科水平, 特制定本办法。
第一条
学校为第一署名单位,在AIChE Journal、CHEM ENG SCI、 IND ENG CHEM RES三本化工国际顶级期刊发表的论 文,作者序列中有化工学院在职人员,学院 奖励每篇1万元现金;
食品
建筑与环境
模式识别

Crystal structure of a protein complex and GSK-3β

Crystal structure of a protein complex and GSK-3β

专利名称:Crystal structure of a protein complex and GSK-3β protein and inhibitor, of GSK-3发明人:テア ハー, エルンスト,スウェンソン, ロボルカ,グリーン, ジェレミー,アーノスト, マイケルジェイ.申请号:JP2002585380申请日:20020429公开号:JP2005504731A公开日:20050217专利内容由知识产权出版社提供摘要:The present invention relates to inhibitors of GSK-3 and methods for producing these inhibitors. The invention also provides pharmaceutical compositions comprising the inhibitors and methods of utilizing those compositions in the treatment and prevention of various disorders, such as diabetes and Alzheimer's disease. In addition, the invention relates to molecules or molecular complexes which comprise binding pockets of GSK-3²or its homologues. The invention relates to a computer comprising a data storage medium encoded with the structure coordinates of such binding pockets. The invention also relates to methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. The invention relates to methods of using the structure coordinates to screen for and design compounds that bind to GSK-3²protein or homologues thereof. The invention also relates to crystallizable compositions and crystals comprising GSK-3² protein or GSK-3² protein complexes.申请人:バーテックス ファーマシューティカルズ インコーポレイテッド代理人:山本 秀策,安村 高明,森下 夏樹更多信息请下载全文后查看。

亚微米级向列相球形液滴中分裂核结构稳定性的探究

亚微米级向列相球形液滴中分裂核结构稳定性的探究

第36卷第3期2021年3月液晶与显示Chinese Journal of Liquid Crystals and Display;Vol.36 No.3Mar. 2021文章编号:1007-2780(2021)03-0343-12亚微米级向列相球形液滴中分裂核结构稳定性的探究刘宏恩,吴金兵,刘猛飞,周 璇,张志东”(河北工业大学应用物理系,天津300401)摘要:基于Landau-de Gennes 理论,探究了具有垂面边界锚定情况下亚微米级球形向列相液滴中分裂核结构的稳定性.结果表明:在边界条件为强锚定且单一弹性常数近似下,球形液滴内会同时存在径向结构和环结构.根据半径的不同,两种结构会分别成为稳态,即半径较大时环结构为稳态,反之径向结构为稳态.当考虑弹性各向异性时,会出现稳态的环结构和亚稳态的分裂核结构.进一步研究表明:若考虑k 24弹性项对液滴内部结构的影响,当边界锚定条件由强锚定变为弱锚定(以锚定强度w = 10-4J/m 2为例),在单一弹性常数近似情况下,会出现径向、环和均匀3种结构,其中径向结构为稳态,且结构之间的稳定性不受k 24作用的影响;在弹性各向异性情况下,径向结构会转变为分裂核结构.另外, 若不考虑k 24作用时,分裂核结构仍为亚稳态;若考虑k 24作用,当尺寸和弹性各向异性在一定范围内时,分裂核结构可以 成为稳态.在我们的模拟计算中首次发现k 24作用可以使分裂核结构成为稳态. 关 键 词:Landau-de Gennes 理论;分裂核结构;弹性各向异性;边界条件;k 24作用中图分类号:O753+.2 文献标识码:A doi :10.37188/CJLCD.2020-0246Stability of split-core configuration confined in nematic liquid crystal droplets under submicron scaleLIU Hong-en , WU Jin-bing, LIU Meng-fei , ZHOU Xuan , ZHANG Zhi-dong *收稿日期:2020-09-23;修订日期:2020-10-16.基金项目:国家自然科学基金(No.11374087,No.11447179)Supported by Natural Science Foundation of ChinaCNo.11374087 , No.11447179)* 通信联系人,E-mail : *************************(Department of Applied Physics , Hebei University of Technology , Tianjin 300401 , China )Abstract : Based on Landau-de Gennes theory, the stability of split-core configuration confined in ne ­matic liquid crystal droplets with submicron scale under homeotropic anchoring boundary condition is investigated. Results show that there are radial and ring structures under the strong anchoring bound ­ary condition and single constant approximation. According to the difference of the radius , the twostructures will become stable respectively , i.e.. the ring structure is stable when the radius is larger , and the radial structure is stable when the radius is smaller. Under the condition of elastic anisotropy ,a stable ring structure and a metastable split-core structure will appear. Furthermore , the resultsshow that if the effect of k 24 on the internal structure of the droplet is considered, when the boundary anchoring condition is changed from strong anchoring to weak anchoring (take anchoring strengthw = 10-4J/m 2 as an example) and under the single constant approximation , it is found that there344液晶与显示第36卷would be three structures,i.e.,radial structure,ring structure and uniform state structure,and the radial s t ructure is stable state,in addition,the stability among structures is not affected by the effect of ka;under the condition of elastic anisotropy,the radial structure is transformed into the split-core structure.And it is still metastable when the effect of k24is not considered;if the effect of k24is con­sidered,the split-core structure can be stable when the size a nd elastic anisotropy are within a certain range.In our simulation,it is found that the effect of k24can make the split-core structure become sta­ble for the first time.Key words:Landau-de Gennes theory;split-core configuration;elastic anisotropy;boundary condition;effect of k241引言很多技术都依赖于液晶微滴内部的分子取向卩2]。

bes的晶格常数 -回复

bes的晶格常数 -回复

bes的晶格常数-回复Bes的晶格常数是指二硼化锶(SrB2)这种化合物的晶格参数。

晶格常数代表了晶体中原子的排列方式和距离,它是描述晶体结构的重要参数之一。

本文将从晶体结构的基本概念开始,逐步解释二硼化锶晶格常数的意义和计算方法。

晶体是由原子、离子或分子组成的高度有序的固体。

晶体的结构通过晶格来描述,晶格是一种重复周期性的排列方式。

在晶体中,原子按照一定的方式排列,形成了一个三维的晶体结构。

晶格常数是用来描述晶格的基本参数,通常用a、b、c(常称为晶胞参数)表示。

二硼化锶(SrB2)是一种具有层状结构的化合物。

它的晶格常数可以通过实验测量或计算得到。

下面将介绍如何通过实验测量来确定二硼化锶的晶格常数。

一种常用的实验技术是X射线衍射。

当X射线照射到晶体上时,由于晶体中原子的周期性排列,X射线会在晶体中发生衍射。

通过观察衍射的现象,可以得到晶格常数的信息。

在二硼化锶晶体中,可以通过测量不同的衍射角度和对应的衍射峰位置,来计算晶格常数。

在进行测量之前,需要先制备二硼化锶的单晶样品。

然后,使用X射线衍射仪对样品进行测量。

通过分析X射线衍射图样,可以得到衍射峰的位置和强度。

根据衍射的原理,可以使用布拉格方程来计算晶格常数。

布拉格方程是描述晶体衍射的基本方程。

对于二维晶格,布拉格方程可以写为:2dsinθ= nλ其中,d是晶面的间距,θ是衍射角度,n是衍射阶次(即衍射峰的序号),λ是入射X射线波长。

对于二硼化锶,d可以通过晶体结构的分析得到。

在实验中,通过测量不同的衍射角度和衍射峰的位置,可以得到一组由n 和sinθ构成的数据。

然后,将这些数据代入布拉格方程,就可以得到晶格常数a。

除了实验测量,还可以通过计算方法来估算二硼化锶的晶格常数。

计算方法包括第一性原理计算和经验公式。

第一性原理计算基于量子力学和电子结构理论,通过求解薛定谔方程来获得晶格常数。

经验公式则基于大量实验数据的统计分析,建立了晶格常数与其他参数之间的关系。

astm 晶胞参数

astm 晶胞参数

astm 晶胞参数
美国材料和试验协会(ASTM)是一个制定材料和产品标准的组织,它的标准涵盖了许多领域,包括晶体学。

晶体学中的晶胞参数是描述晶体结构的重要参数之一。

晶胞参数通常包括晶格常数、晶胞的空间群、晶胞的结构类型等内容。

首先,晶格常数是描述晶体结构的重要参数之一。

晶格常数是指晶体中基本晶胞的尺寸,通常用a、b、c表示,分别对应晶格的三个方向。

在ASTM标准中,晶格常数的测定方法和标准可以帮助科研人员和工程师准确地确定晶体结构的特征。

其次,晶胞的空间群也是描述晶体结构的重要参数之一。

空间群描述了晶体的对称性,它包括平移、旋转和镜像等操作,能够完整地描述晶体的对称性质。

ASTM标准中可能包括了对晶体空间群的定义和分类,以及相关的实验方法和测定技术。

此外,晶胞的结构类型也是晶体学中的重要内容之一。

不同的晶体结构类型包括立方晶系、正交晶系、单斜晶系、三斜晶系等,它们具有不同的晶胞参数和空间对称性。

ASTM标准可能会涉及对不同晶体结构类型的描述、分类以及相关性质的测试方法。

总的来说,ASTM标准在晶体学领域可能涉及晶格常数的测定方法、晶体空间群的描述和分类、晶胞结构类型的定义和特性测试等内容。

这些标准的制定有助于推动晶体学领域的研究和应用,促进材料科学和工程技术的发展。

GAPDH脱氢酶结构

GAPDH脱氢酶结构

Crystal Structure of Glyceraldehyde-3-Phosphate Dehydrogenase1from Methicillin-Resistant Staphylococcus aureus MRSA252ProvidesNovel Insights into Substrate Binding and Catalytic MechanismSomnath Mukherjee,Debajyoti Dutta,Baisakhee Sahaand Amit Kumar Das⁎Department of Biotechnology, Indian Institute of Technology, Kharagpur,Pin-721302, West Bengal,India Received30March2010; received in revised form1July2010;accepted2July2010 Available online8July2010The dreaded pathogen Staphylococcus aureus is one of the causes of morbidity and mortality worldwide.Glyceraldehyde-3-phosphate dehy-drogenase(GAPDH),one of the key glycolytic enzymes,is irreversibly oxidized under oxidative stress and is responsible for sustenance of the pathogen inside the host.With an aim to elucidate the catalytic mechanism and identification of intermediates involved,we describe in this study different crystal structures of GAPDH1from methicillin-resistant S.aureus MRSA252(SaGAPDH1)in apo and holo forms of wild type,thioacyl intermediate,and ternary complexes of active-site mutants with physio-logical substrate D-glyceraldehyde-3-phosphate(G3P)and coenzyme NAD+.A new phosphate recognition site,“new P i”site,similar to that observed in GAPDH from Thermotoga maritima,is reported here,which is 3.40Åaway from the“classical P i”site.Ternary complexes discussed are representatives of noncovalent Michaelis complexes in the ground state.D-G3P is bound to all the four subunits of C151S.NAD and C151G.NAD in more reactive hydrate(gem-di-ol)form.However,in C151S+H178N.NAD, the substrate is bound to two chains in aldehyde form and in gem-di-ol form to the other two.This work reports binding of D-G3P to the C151G mutant in an inverted manner for the very first time.The structure of the thiaocyl complex presented here is formed after the hydride transfer.The C3 phosphate of D-G3P is positioned at the“P s”site in the ternary complexes but at the“new P i”site in the thioacyl complex and C1–O1bond points opposite to His178disrupting the alignment between itself and NE2of His178.A new conformation(Conformation I)of the209–215loop has also been identified,where the interaction between phosphate ion at the“new P i”site and conserved Gly212is lost.Altogether,inferences drawn from the kinetic analyses and crystal structures suggest the“flip-flop”model proposed for the enzyme mechanism.©2010Elsevier Ltd.All rights reserved.Edited by G.Schulz Keywords:glyceraldehyde-3-phosphate dehydrogenase;ground-state Michaelis complex;thiaocyl intermediate;new P i site;“flip-flop”mechanismdoi:10.1016/j.jmb.2010.07.002J.Mol.Biol.(2010)401,949–968Available online at *Corresponding author.E-mail address:amitk@hijli.iitkgp.ernet.in.Abbreviations used:GAPDH,glyceraldehyde-3-phosphate dehydrogenase;MRSA,methicillin-resistant Staphylococcus aureus;SaGAPDH1,GAPDH1from Staphylococcus aureus MRSA252;TmGAPDH,GAPDH from Thermotoga maritima; BsGAPDH,GAPDH from Bacillus stearothermophilus;SaGAPDH1-P H,phosphate-bound structure of GAPDH1in holo form from Staphylococcus aureus MRSA252;SaGAPDH1-P A,phosphate-bound structure of GAPDH1in apo form from Staphylococcus aureus MRSA252;r.m.s.d.Cα,root-mean-square deviation of Cα;G3P,glyceraldehyde-3-phosphate;IntroductionStaphylococcus aureus,one of the most common causes of nosocomial infections,is responsible for a wide range of illnesses from minor skin infections to life-threatening diseases such as meningitis,pneu-monia,toxic shock syndrome,and septicemia. Amidst vast technical and medical advancements, it still continues to wreak havoc worldwide and remains one of the leading causes for morbidity and mortality.The resistance of this“golden staph”to all prevalent frontline antimicrobials has increased the menace.In fact,the notorious methicillin-resistant strain of S.aureus(MRSA)has already become an endemic in the last decade.Recent reports on the recalcitrance of this bacterium to modern glycopep-tide antibiotics such as vancomycin have increased the concern to tackle the vancomycin-resistant and vancomycin intermediate S.aureus.1,2Glycolytic enzymes,responsible for the produc-tion of ATP in the cells,are necessary for the pathogen's sustenance.The enzyme glyceralde-hyde-3-phosphate dehydrogenase(GAPDH,EC: 1.2.1.12)is the sixth enzyme of the glycolytic path-way.It acts on glyceraldehyde-3-phosphate(G3P)to convert it into1,3-bisphosphoglycerate(1,3-BPG) and consumes inorganic phosphate to harness the energy into NADH.The reaction mechanism has been intensively investigated.3–8Although the role of GAPDH as a housekeeping enzyme is well studied,recent investigations revealed new proper-ties of this enzyme.These include localization on the cell surface,binding to cellular molecules,9–14and roles in apoptosis.15GAPDHs have two anion recognition sites designated as the“P s”and the“P i”site corresponding to the binding of substrate and inorganic phosphates.The“P s”site is highly con-served in all eukaryotic and prokaryotic GAPDHs while location of“P i”site varies.16The classical“P i”site is found in Bacillus stearothermophilus while a “new P i site”was observed in Thermotoga maritima. Based on the“new P i”site,a flip-flop mechanism,in which the C3phosphate of the substrate binds to the “new P i”site and flips to the“P s”site before the hydride transfer,was proposed.17MRSA252contains two cytosolic GAPDHs—GAPDH1(National Center for Biotechnology Infor-mation accession code YP_040254)and GAPDH2 (National Center for Biotechnology Information accession code YP_041153).Because of its versatility, S.aureus is able to survive in extracellular or intracellular habitats,such as on skin or in epithelial cells,endothelial cells,and osteoblasts.In most of these environments,the resistance against reactive oxygen species might be important for survival.In 2004,Weber et al.have shown that under oxidative stress,GAPDH in S.aureus is irreversibly oxidized.18 The complete inactivation of this key enzyme by oxidation was shown to have dramatic conse-quences of the entire catabolism of the cell,as with the eukaryotic GAPDHs,there is a significant difference in the mechanism and pattern of oxida-tion between them.Thiol oxidation of SaGAPDH is completely irreversible and totally inactivates the enzyme.However,in eukaryotic GAPDHs,S-thiolation of the catalytic cysteine protects and partially inactivates the enzyme from the oxidant. This inhibition is reversible and there is a complete resumption of activity once the oxidant is removed and the enzyme is dethiolated.19Such an important enzyme such as GAPDH from S.aureus needs elaborate study from the structural and mechanistic aspect.Hence,this study targets the structural and functional investigation of GAPDH1 from S.aureus MRSA252(SaGAPDH1).In this study,different crystal structures of the wild-type enzyme in apo and holo forms,ternary complexes of active-site mutants with substrate and coenzyme(C151S.NAD.G3P,C151G.NAD. G3P,and C151S+H178N.NAD.G3P),and thioacyl intermediate have been described in detail with an aim to elucidate the mechanistic pathway.Struc-tural and functional investigations of this enzyme provide novel insights into the substrate binding and catalytic mechanism.This is the very first study to report the binding of substrate in an inverted manner.ResultsOverall structureSaGAPDH1crystallizes in P21space group con-sisting of four molecules in the asymmetric unit.The subunits,designated as O,P,Q,and R(Fig.1a),are related by three noncrystallographic2-fold axes of symmetry P,Q,and R with the choice of first monomer for denomination“O”being arbitrary.20 Each of the subunit is composed of two domains:the NAD+binding domain(residues1–150)and the catalytic domain(residues151–336)(Fig.1b).The solvent-accessible surface area of the tetrameric assembly is44,800Å.The NAD+binding domain has a classicalα/βdinucleotide binding fold—the Rossmann fold.This domain folds into nineβ-sheets comprising of residues3–8(βA),27–33(βB),58–60(βC),65–67 (βD),70–75(βE),92–95(βF),116–119(βG),128–130 (βH),and145–146(βI).The strands are inter-connected by either short loops or helices.βD and theβH runs antiparallel with the other seven parallel β-sheets.There are four helices in this domain.αB (12–23)is in betweenβA andβB whileαC comprising of residues38–46connectsβB andβC.αD(80–88) connectsβE andβF.αE(103–113)is interspersed betweenβF andβG.The catalytic domain consists of eight mixedβ-strands,β1(170–179),β2(207–210),β3(228–235),β4 (241–249),β5(271–275),β6(290–293),β7(298–302),binding domain and the catalytic domain are linked byα1.Catalytically active residues Cys151and His178reside inα1andβ1,respectively.The C-terminalα3helix(317–336)fits into a groove of the N-terminal domain and is involved in a number of interactions with the coenzyme.A prominent feature of the catalytic domain is a large S-shaped loop called“S loop”comprising of residues179–206. The flexible nature of this long unstructured region is evident from its comparatively high temperature factor values and poorly defined electron density maps for some residues in some of the subunits. Superimposition of the NAD+binding domain of the P subunit of SaGAPDH1with that of GAPDH root-mean-square deviation of Cα(r.m.s.d.Cα)of 0.64Å.Cα(1–151)was used to calculate the super-position matrix.Insignificant differences are ob-served in the helices and strands while the variations in loop regions(139–143)are noticeable.When superposed with catalytic domain of a monomer of 1HDG,r.m.s.d.Cα(152–332)of the catalytic domain of the P subunit is quite high(1.09Å).This can be accounted for a substantial variation not only in the orientation of flexible loops but also in orienta-tions of more orderedα-helices andβ-strands that occur due to insertions and deletions.The S loop is primarily responsible for the intersubunit interac-tions.The structures of SaGAPDH1presented in thisFig.1.SaGAPDH1―verall structure and coenzyme binding.(a)Spatial organization of the four subunits in the asymmetric unit:The subunits P(cyan),O(blue),Q(magenta),and R(green)are related by a noncrystallographic222 symmetry on three mutually perpendicular axes designated as P,Q,and R.P-axis is orthogonal to the plane of the paper.(b)Cartoon representation of monomeric SaGAPDH1:The N-terminal domain(colored pink)binds NAD+(shown in sticks)while the C-terminal catalytic domain(colored blue)contains the flexible long S loop.(c)Stereoview of simulated annealing omit density map(F o−F c)of NAD+contoured at3.5σ.The unbiased omit map was calculated from the refined structure before the introduction of the coenzyme.Some of the interacting residues are highlighted.Table 1.Summary of data collection and refinement statisticsHoloApoHolo_PO4(SaGAPDH1-P H )Apo_PO4(SaGAPDH1-P A )Ternary complexThioacyl complexC151S.NAD.G3P C151G.NAD.G3PC151S+H178N.NAD.G3PData collection Space group P 21Cell parameters a ,b ,c (Å)68.2,104.9,91.264.3,94.9,86.668.2,104.9,90.667.0,93.7,89.168.5,104.5,91.268.6,103.0,90.767.9,93.9,89.969.1,103.0,90.3β(°)107.7105.7107.6106.8108.0109.3107.6109.4Resolution (Å)30.78–1.70(1.76–1.70)19.65–2.50(2.63–2.50)19.14–2.50(2.59–2.50)33.34–2.20(2.28–2.20)21.35–2.50(2.59–2.20)27.28–2.20(2.28–2.20)33.83–2.60(2.69–2.60)19.91–2.80(2.94–2.80)Completeness (%)94.5(93.6)99.3(96.7)99.8(99.7)99.7(97.3)98.8(97.7)99.6(98.4)99.0(90.4)99.2(96.9)Redundancy 3.5(3.4) 3.7(3.5) 3.0(2.9) 3.6(3.3) 3.7(3.7) 3.6(3.5) 3.6(3.2) 3.8(3.7)I /σ(I )8.7(2.4)19.1(4.5)8.1(2.5) 6.8(2.3)9.7(3.2)8.3(2.5)7.4(2.4)9.8(2.7)R merge (%)a5.9(43.0)6.1(28.1)8.5(37.6)8.8(42.8)8.4(34.4)8.3(40.7)10.0(38.9)13.4(49.7)Refinement Resolution (Å)20.00–1.7020.00–2.5019.14–2.5020.00–2.2021.35–2.5027.26–2.2033.83–2.6020.00–2.80No.of reflections 126,51434,62141,92753,27941,75057,04832,75429,373R work (%)b 18.918.717.721.618.719.720.018.1R free (%)b22.124.922.425.823.824.924.824.1Average B -factors (Å2)Protein 32.226.045.852.526.323.536.923.3NAD 39.0—43.9—30.524.737.0—G3P————64.138.271.031.5Phosphate ——84.067.0————Glycerol ———————31.1Chloride ———————43.0Water 34.928.047.954.628.425.939.0625.4r.m.s.d.Bond length (Å)0.0060.0140.0150.0140.0150.0170.0140.013Bond angle (°)1.04 1.57 1.55 1.47 1.57 1.70 1.50 1.43Ramachandran plot (%)Most favored91.188.090.189.988.788.788.588.6Additionally allowed 8.711.29.910.011.110.911.211.3Generously allowed0.30.40.10.20.30.30.1Values in parentheses correspond to values in the highest-resolution shell.aR -factor for symmetry-related intensities.bR work is crystallographic R -factor.R free is calculated based on 5%of total reflections excluded from refinement.952Crystal Structure of GAPDH1from MRSAAll the subunits within each asymmetric unit are structurally similar as inferred from the r.m.s.d.Cαvalues.However,the tetramers generated by the noncrystallographic222symmetry have three nonequivalent interfaces.The P-axis interface (between subunits O and P and subunits R and Q)is the most extended interface(2058Å2)and is principally formed by theβ-strands and the S loop.The R-axis interface(between subunits O and R and subunits P and Q)is smaller(1365Å2),and finally,the Q-axis interface(between subunits O and Q and subunits R and P)extend only through 518Å2.The most extended subunit interactions are formed by the P-axis-related monomers,with58residues per subunit interacting less than 4.0Ådistance from an atom in the adjoining subunit. About40hydrogen bonds and30salt bridges between the different polar residues along the interface are observed.Coenzyme bindingNAD+was not added during the entire purifica-tion and crystallization process,but during re-strained refinement of the initial model ofholoen-zyme,a strong peak in the F o−F c omit map corresponding to10σ(Fig.1c)was observed in each of the subunit that can only be accounted for the incorporation of the coenzyme.During over-expression in Escherichia coli,the heterologous protein consumes its coenzyme from the host cells. In all other GAPDHs reported so far in the literature, the purified recombinant enzyme is principally obtained in the apo from.SaGAPDH1is the first of its kind that was overexpressed and purified with its bound coenzyme.In all the four subunits,it sits in the groove of the N-terminal domain,in an extended conformation with the nicotinamide ring pointing towards the catalytic Cys151and His178,and possesses average temperature factors similar to those of the protein.Containing polar ribose and phosphate units,the coenzyme is principally stabi-lized by salt bridges and hydrogen bonds with neighboring polar amino acid residues and solvent molecules(Supplementary Fig.1).Pi stacking interaction is observed between the aromatic side chain of Tyr320and the nicotinamide ring of NAD+ lying in parallel orientation.The C4of the nicotin-amide ring is positioned at a distance of5.89and 3.93Åfrom the imidazole NE2of the His178and SG of Cys151,respectively.His178and Cys151,along with NAD+,form the perfect pocket for the substrate binding.Phosphate binding:“P s”and“new P i”site SaGAPDH has two anion recognition sites desig-nated as“P s”and“new P i”site that correspond to the binding of the C3phosphate of G3P and inorganic phosphate required for phosphorylation. We have separately crystallized the enzyme in the presence of phosphate in both holo(SaGAPDH1-P H)and apo(SaGAPDH1-P A)forms.Analysis of the unbiased F o−F c omit maps(Fig.2a and b)of SaGAPDH1-P H and SaGAPDH1-P A clearly revealed peak of electron density above5σcorresponding to the anions.In SaGAPDH1-P H,all the“P s”and“P i”sites of the four chains contain phosphate ions with full occupancy.The“P s”site is composed of the side chains of the residues of Asp181,Thr183,and Arg234and the2′hydroxyl (O2D)of the ribose unit attached to the nicotin-amide ring of NAD+(Fig.2c).The“P i”phosphate is principally stabilized by the side chains of con-served Thr211,Ser150,His178,and Arg234and the main-chain nitrogen and side-chain hydroxyl of Thr152.The position of the“P i”phosphate is quite different from that of the“classical P i”site but similar to that found in TmGAPDH21and is generally referred to the“new P i”site.It is situated closer to the catalytic Cys151.A number of water-mediated hydrogen-bonding interactions with polar side-chain groups of amino acid residues also stabilize the phosphate ion in this new hydrophilic pocket. This“new P i”site in SaGAPDH1is3.40Åaway from the“classical P i”site obtained in GAPDH from B.stearothermophilus(BsGAPDH)(1GD1,sequence identity:50%)17(Fig.2c).The presence of phosphate ion in the“classical P i”site or in the“new P i”site depends upon the conformation of the strand–loop–helix segment containing the residues209–215in SaGAPDH1.This segment corresponds to residues 206–212in other GAPDHs where it is commonly referred to as the“206–212loop”.SaGAPDH1-P A has fully occupied“new P i”sites in the four subunits but a totally empty“P s”site(Fig. 2d).The“P s”site is occupied with water molecules. The position of“P i”phosphate is identical with that obtained in holoenzyme.An additional interaction appears in SaGAPDH1-P A between one of the oxygen atoms of the“P i”phosphate and the main-chain nitrogen of Gly212.This arises due to slight rearrangement of the209–215loop that pushes the amide nitrogen of Gly2123.30Åmore towards the “new P i”site.Structures of ternary complexes Superposition of each of the ternary complexes (C151S.NAD.G3P,C151G.NAD.G3P,and C151S+ H178N.NAD.G3P)with its corresponding binary complexes gives r.m.s.d.Cαof less than0.15Å, which proves that no drastic conformational change has been introduced upon substrate binding.Analy-sis of unbiased F o−F c maps of the three ternary complexes clearly shows a strong peak of electron density above8σin the active site that can be attributed to bound substrate.The substrate is bound in a noncovalent manner in all the three complexes.Overall B-factors of G3P are comparatively higher due to exposed active-site cavity.In C151S.NAD.G3P and C151S+H178N. NAD.G3P,G3P is bound to all the subunits withFig.2.Phosphate binding to SaGAPDH1.Stereoview of the unbiased simulated annealing(F o−F c)omit maps (contoured at3.5σ)of phosphate binding sites in(a)SaGAPDH1-P H and(b)SaGAPDH1-P A.In(a),both the“P s”and “new P i”sites are occupied by phosphate ions while in(b),only the“new P i”site is occupied by phosphate.Water molecules reside in the“P s”site.The maps were computed before the phosphate ions were introduced.(c)Phosphate ions bind to both the“P s”and the“new P i”site in all four chains of SaGAPDH1-P H.Selected stabilizing interactions of the“P s”phosphate and“new P i”phosphate with amino acid residues and solvent molecules are shown in pink and blue, respectively.The sulfate ion residing in the“classical P i”site in BsGAPDH(PDB code:1GD1)is overlaid on the structure of the SaGAPDH1-P H.The“new P i”site in SaGAPDH1-P H is3.4Åaway from the“classical P i”site in BsGAPDH.The figure shown corresponds to the Q subunit of SaGAPDH1-P H.(d)Phosphate ions bind only to the“new P i”site in all the four subunits of SaGAPDH1-P A.The“P s”site is filled by water molecules in all the four chains.Interactions of the protein atoms with the“P i”phosphate is highlighted in blue while those with water molecule in the“P s”site are shown in pink.its C3phosphate positioned in the“P s”site while the “new P i”site remains unoccupied(Fig.3a and b). This is similar to that observed in the ground-state Michaelis complexes from B.stearothermophilus but in contrast to GAPDH from Cryptosporidium parvum (PDB code:3CIF,sequence identity:46%)22where the C3phosphate is bound to the“new Pi”site in three of the four subunits and in a completely different position in the fourth.The oxygen atoms of the C3phosphate(O1P,O2P,O3P,and O4P)form extensive hydrogen bonds with the side chains of conserved Thr181,Asp183,and Arg234and with the 2′hydroxyl group of ribose(O2D)adjacent to the nicotinamide group of NAD+.The H-bonding interaction between the O1A atom of G3P and NE2of His178that is present in C151S.NAD.G3P (Fig.3a)is lost in the ternary complex of double mutant(Fig.3b).In C151G.NAD.G3P,G3P binds in a completely inverted manner with its C3phosphate positioned in the cavity lined by Ser150,Gly151,and Thr152 (Fig.3c).Placing the substrate with its C3 phosphate in the“P s”site in unbiased F o−F c map resulted in improper fitting of the ligand with some unresolved negative density over the“P s”site. However,placement of G3P in the reverse manner with the C1atom positioned in the“P s”site solved the problem.The difference electron density map of bound G3P is shown in Fig.3d.Several reasons can be put forward to explain this interesting but apparently contradictory observation.Firstly, mutation of Cys151to a glycine residue increases the size of the active-site cavity by almost10.0Å3some of the interactions between the enzyme and the ligand are compromised,some additional hydrogen-bonding interactions of oxygen atoms of C3phosphate group with the side chains and peptide backbone of the enzyme can be principally inferred to localize C3phosphate in this new orientation.The O1A,O1B,and O2in turn are hydrogen bonded to the side chains of Asp183, Arg234,and the2′hydroxyl group of the ribose (O2D)of the coenzyme(Fig.3c).In spite of using D,L-G3P in the soaking experi-ments,the C2carbon adopts an R configuration, which accounts for greater affinity of the enzyme towards D-G3P.In C151S_G3P and C151S+ H178N_G3P,the C2hydroxyl group of G3P is stabilized by hydrogen bonds with OG side chain and amide nitrogen of Ser151.Moreover,an additional stabilization may arise due to the interaction of C2–OH with a water molecule that is stabilized through hydrogen bonding to O2D and N7N of NAD+(Fig.3a and b).In the complexes C151S.NAD.G3P and C151G. NAD.G3P,G3P is bound in hydrate(gem-di-ol) form to all the four subunits.This is not unlikely because the equilibrium between the aldehyde and gem-di-ol form(Fig.4a)is strongly shifted towards the latter in solution and the proportion of the hydrate form increases with electron-with-drawing substituents.G3P has an electron-with-drawing hydroxyl and phosphate group that can stabilize the di-ol form significantly.The observa-tion is similar to that observed in the case of C149A mutant of E.coli that uses the hydrate form of 23Fig.3.Active sites of ground-state Michaelis complex:(a)C151S.NAD.G3P(Chain O):G3P is in hydrated gem-di-ol form.(b)C151S+H178N.NAD.G3P(i)Chain O:G3P is in aldehyde form.(ii)Chain Q:G3P in hydrated gem-di-ol form.(c) C151G.NAD.G3P(Chain P):G3P is in gem-di-ol form.The C3phosphate of G3P is positioned in the“P s”site of(a)and(b) while the“new P i”site remains unoccupied.G3P binds in a completely inverted manner in(c).Here,C1of G3P resides in the“P s”site.Some of the polar interactions(shown in green)of G3P with amino acid residues,NAD+,and water molecules are highlighted.(d)Stereoview of simulated annealing(F o−F c)omit map of G3P in C151G.NAD.G3P justifies the inverted orientation of substrate.The map is contoured at3.5σand is computed before the introduction of the substrate.G3P is shown in gem-di-ol form.chains in aldehyde form(O and R)(Fig.3b,i)and in gem-di-ol form to the other two(P and Q) (Fig.3b,ii).Analysis of simulated annealing F o−F c omit maps(Fig.4b and c)allows us to place the substrate unambiguously in the required form within the active-site cavity of different subunits.A careful analysis of the interactions that can principally stabilize the hydrated form with res-pect to the free aldehyde form clearly reveals the role of His178.A hydrogen bond between O1A of G3P and NE2of His178at a distance of2.65Åin C151S.NAD.G3P is one such stabilizing interaction that is lost in the ternary complex of the double mutant.Absence of such an important interaction may be postulated to shift the equilibrium more towards the aldehyde form.Some subtle differ-ences between the structures of SaGAPDH1and BsGAPDH24may be responsible for the substrate to exist in two different forms in these two enzymes that however remain inexplicablebecauseFig.4.Views of D-G3P molecule.(a)Equilibrium between the aldehyde and hydrate(gem-di-ol)form of D-G3P.The equilibrium is strongly favored towards the hydrated form in aqueous solution owing to extensive hydrogen bonding.C2 is chiral and is in“R”configuration.O1and O2point in the opposite direction.The atomic numbering of D-G3P used in this article is depicted here.Stereoview of simulated annealing F o−F c map of D-G3P in(b)aldehyde form and(c)gem-di-ol (hydrate)forms found in C151S+H178N.NAD.G3P.The unbiased difference maps are calculated before the introductionthe active-site residues and geometry are more or less conserved.The absence of a covalent bond formation between C1of D-G3P and Ser151is justified from a kinetic point of view.The rate of acylation is decreased by23,000times when the active-site Cys151is mutated to serine.In the crystallization medium containing polyethylene glycol(PEG) 4000,the acylation rate is probably even more retarded than in aqueous solution,which helps the noncovalently bound G3P to be stable in the ternary complex even after soaking with50mM G3P for10min.Structure of thioacyl intermediateThe mechanism of oxidative phosphorylation proceeds via a thioacyl intermediate.We were able to isolate the intermediate in the case of apoenzyme,but it was not possible to trap such an intermediate in the case of holoenzyme as the reaction was instantaneous.G3P binds to the catalytic site in all the four chains.Unbiased difference map of the thioacyl intermediate is shown in Fig.5a.Although noncrystallographic restraints were not imposed on the substrate,it essentially binds to all the four monomers with identical conformations sharing almost similar interactions.The thioester bond is formed between the sp2hybridized C1of G3P and SG of catalytic Cys151(Fig.5b).The phosphate group is now positioned in the“new P i”site in contrast to the “P s”site as found in the ternary complexes of the mutant proteins.The“new P i”site is positioned at a distance of 6.0Åfrom the“P s”site.Phosphate group in the“new P i”site is stabilized by a number of hydrogen-bonding interactions with side-chain and main-chain atoms of conserved His178and Thr211,respectively,and guanidium group of Arg234via a water molecule.This shift of the C3P group from“P s”to“new P i”site is associated with a significant rearrangement of the carbon chain of the ligand.While O1is oriented towards His178in the ternary complexes,it points away from catalytic histidine in the thioacyl intermediate(Fig.5c).It is observed that the C2-O2bond in the thioacyl intermediate is parallel with the plane of the nicotinamide ring of the coenzyme but is oriented perpendicularly in the ternary complex.The preferential uptake of the D isomer by the enzyme can be explained from the structure of the thioacyl complex.In the case of D-G3P,the intermedi-ate clearly shows that C1and C2of the phosphogly-cerol moiety both adopt an R configuration that places O1atom trans to O2(Fig.5a).In the case of L-G3P,the S configuration of C2orients O1and O2cis to each other.The two hydroxylic groups then are sufficiently close to make an H-bonding interaction that can stabilize the cis conformation,but the Pitzer(torsional) strain developed due to their dihedral angle makes the overall interaction unfavorable.The lower energy associated with trans conformation explains the higher affinity of the enzyme towards D-G3P. Conformations of the209–215loop in comparison to other GAPDH structuresIn all the structures of SaGAPDH1discussed,the 209–215loop exists in two conformations—Confor-mation I and Conformation II(Fig.6a).Conformation Fig.4(legend on previous page)。

三角晶系剪切模量

三角晶系剪切模量

三角晶系剪切模量【原创实用版】目录1.三角晶系简介2.剪切模量的定义和意义3.三角晶系中的剪切模量4.三角晶系剪切模量的计算方法5.三角晶系剪切模量在实际应用中的意义正文一、三角晶系简介三角晶系(Trigonal Crystal System)是晶体结构的一种,它的特点是晶胞参数具有三个互不相等的轴,这三个轴的长度分别为 a、b、c,且三个轴之间的角度相等,均为 60 度。

在三角晶系中,原子或离子以六边形的形式排列,具有较高的对称性。

二、剪切模量的定义和意义剪切模量(Shear Modulus)是描述材料在剪切应力作用下应变程度的物理量,通常用 G 表示。

它的定义为在剪切应力作用下,单位应变量所引起的应力。

剪切模量是衡量材料抗剪切变形能力的重要指标,对于工程应用和材料研究具有重要意义。

三、三角晶系中的剪切模量在三角晶系中,剪切模量具有各向异性,即在不同的方向上,剪切模量可能具有不同的数值。

这主要是因为在三角晶系中,晶格结构在不同方向上的排列方式不同,导致原子间的键长和键角有较大差异,从而使得剪切模量各向异性。

四、三角晶系剪切模量的计算方法计算三角晶系剪切模量的方法通常采用连续介质力学的方法。

根据连续介质力学模型,可以得到三角晶系剪切模量的计算公式为:G = (E / (π(1-ν^2))) * (a^2 + b^2 + c^2)^3 / (2 * a^2 * b^2 * c^2),其中 E 为材料的弹性模量,ν为材料的泊松比。

五、三角晶系剪切模量在实际应用中的意义了解三角晶系剪切模量在实际应用中具有重要意义。

例如,在陶瓷材料、复合材料和高分子材料的研究中,通过测量剪切模量可以了解材料的抗剪切变形能力,为材料的设计和优化提供依据。

关于BI的思考

关于BI的思考

关于BI的思考周图卿【期刊名称】《《现代制造》》【年(卷),期】2002(000)014【摘要】企业要能有效的e化,必须要按部就班的来,从基础的企业内部网(Intranet),到数据库的运用,再进一步提高到资源的整合应用,如ERP、CRM、BI等高层的e化工程。

大家热烈讨论的ERP,已经带动了整个产业朝着e化的方向迈进,今天的这个BI(BusinessInteligence,商业智能)工具,将会在企业e化的应用工具上掀起另一波热潮。

【总页数】1页(P)【作者】周图卿【作者单位】【正文语种】中文【中图分类】F270.7【相关文献】1.Syntheses and Crystal Structures of Bis-[oxo- bis(p-ferrocenylbenzoxy di-n-propyltin)](I) and Bis-[oxo-bis(β-ferrocenoylpropionyloxy di-n-propyltin )](II) [J], 彭斌;孙丽娟;常卫星;谢庆兰2.BI范式为国内BI业者造像──从“富基BI旋风”看国内BI产业 [J],3.Synthesis,Characterization and Properties of Bis{oxo—bis[heteroaromatic carboxylatodibenzyltin(Ⅳ)]}and Crystal Structure of Bis{oxo—bis[2—furylcarboxylatodibenzyltin(Ⅳ)]} [J], YINHan-dong;WANGChuan-hua;WANGYong;MAChun-lin4.Tetrameric (Bi4I16)4-Iodobismuth ate Templated by 1,ω-Bis(isoquinoline)alkane Cation: Structure,Photoluminescence and Enhanced Thermochromism [J], WANG Peng; CHEN Zhi-Rong; LI Hao-Hong5.Tebis CAD/CAM:源自德国制造,驱动智造流程——访德国Tebis软件公司陈皓和Tebis中国市场经理欧阳青 [J], 朱辉杰; 杨启森因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档