2019-2020学年贵州省贵阳市高一下学期期末考试数学试题
贵州省贵阳市普通中学2022-2023学年高一上学期期末监测考试数学试题(1)
贵阳市普通中学2021-2022学年度第一学期期末监测考试试题高一数学一、选择题(本大题共8小题,每小题4分,共32分.每小题有四个选项,其中只有一个选项正确,请将你认为正确地选项填写在答题卷地相应位置上.)1 已知集合{}3782A x x x =-<-,{}2340B x x x =--<,则A B = ( )A. {}4x x < B. {}34x x << C. {}13x x -<< D. {}43x x -<<【结果】C 【思路】【思路】求出集合A ,B ,再由交集定义求出A B .【详解】∵集合{}{}37823A x x x x x =-<-=<,{}{}234014B x x x x x =--<=-<<,∴{}13A B x x ⋂=-<<.故选:C .2. 已知命题2:,10p n N n n ∀∈++>,则p 地否定为( )A. 2,10n N n n ∀∈++< B. 2,10n N n n ∀∈++≤C. 2,10n N n n ∃∈++< D. 2,10n N n n ∃∈++≤【结果】D 【思路】【思路】全称命题地否定为存在命题,利用相关定义进行判断即可【详解】全称命题地否定为存在命题,命题2:,10p n N n n ∀∈++>,则p ⌝为2,10n N n n ∃∈++≤.故选:D3. 函数12xy =地定义域为( )A. R B. (,0)(0,)-∞+∞ C. (,0)-∞ D. (0,)+∞【结果】B.【思路】【思路】要使函数12xy =有意义,则需要满足0x ≠即可.【详解】要使函数12x y =有意义,则需要满足0x ≠所以12x y =地定义域为(0)(0)∞∞-⋃+,,,故选:B4. 在平面直角坐标系xoy 中,角α与角β项点都在坐标原点,始边都与x 轴地非负半轴重合,它们地终边有关y 轴对称,若1cos 2α=-,则cos β=( )A.12B. 12-C.D. 【结果】A 【思路】【思路】利用终边相同地角和诱导公式求解.【详解】因为 角α与角β地终边有关y 轴对称,所以2,k k Z βπαπ=-+∈,所以 ()1cos cos 2cos 2k βπαπα=-+=-=,故选:A5. 借助信息技术画出函数ln y x =和||y x x a =-(a 为实数)地图象,当 1.5a =时图象如图所示,则函数| 1.5|ln y x x x =--地零点个数为( )A. 3B. 2C. 1D. 0【结果】B 【思路】的【思路】由| 1.5|ln 0y x x x =--=转化为 1.5y x x =-与ln y x =地图象交点个数来确定正确选项.【详解】令| 1.5|ln 0y x x x =--=, 1.5ln x x x -=,所以函数| 1.5|ln y x x x =--地零点个数即 1.5y x x =-与ln y x =地图象交点个数,结合图象可知 1.5y x x =-与ln y x =地图象有2个交点,所以函数| 1.5|ln y x x x =--有2个零点.故选:B6. 设 1.53cos2,0.3,log 2a b c -===,则a ,b ,c 地大小关系是( )A. a b c <<B. c a b<< C. a c b<< D. b c a<<【结果】C 【思路】【思路】比较a ,b ,c 与0和1地大小即可判断它们之间地大小.【详解】cos20a =<,1.500.30.31b -=>=,()333log 1log 2log 3,0,1c c <=<∈,故a c b <<故选:C.7. 已知1(0,),sin cos 5απαα∈+=-,则下面结论正确地是( )A. 4cos 5α= B. 7sin cos 5αα-=C.sin cos 4tan 15ααα+=-D.sin cos 73sin 2cos αααα-=-+【结果】B 【思路】【思路】先求出34sin cos 55αα==-,再对四个选项一一验证即可.【详解】因为1(0,),sin cos 5απαα∈+=-,又22sin cos 1αα+=,.解得:34sin cos 55αα==-.故A 错误。
2020-2021学年高一下学期数学(人教A版(2019)必修第二册)(含解析)
(1)求复数z;
(2)若复数z在复平面内所对应的点位于第一象限,且复数m满足 ,求 的最大值和最小值.
20.某中学为了解大数据提供的个性化作业质量情况,随机访问50名学生,根据这50名学生对个性化作业的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间 、 、…、 、 .
【详解】
∵向量 ,
∴ ,又 ,
∴ ,
∴ .
故选:B.
6.D
【分析】
设出正六棱柱底面边长为 ,可知正六棱柱的高为 ,再通过正六棱锥与正六棱柱的侧面积之比为 可得正六棱锥的高,这样就可以得到答案.
【详解】
设正六棱柱底面边长为 ,由题意可知正六棱柱的高为 ,则可知正六棱柱的侧面积为 .
设正六棱锥的高为 ,可知正六棱锥侧面的一个三角形的边为 上的高为 ,
9.BD
【分析】
根据图表,对各项逐个分析判断即可得解.
【详解】
对A,在前四年有下降的过程,故A错误;
对B,六年的在校生总数为24037,平均值为4006以上,故B正确;
对C, ,未接受高中阶段教育的适龄青少年有468万人以上,故C错误;
对D, ,故D正确.
故选:BD
10.ABC
【分析】
对于A, ,可判断错误;对于B找出反例 不满足题意,判定错误;对于C若 ,则其不正确;对于D, ,则其虚部为0,故正确.故可得答案.
A.近六年,高中阶段在校生规模与毛入学率均持续增长
B.近六年,高中阶段在校生规模的平均值超过4000万人
C.2019年,未接受高中阶段教育的适龄青少年不足420万
D.2020年,普通高中的在校生超过2470万人
10.下列说法不正确的是()
2019-2020学年高一下学期课后复习卷数学试题(平面向量)含答案
六安一中高一线上学习课后复习卷平面向量自学巩固练习(时间:90分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.设21,e e 是两不共线的向量,下列四组向量中,不能作为平面向量的一组基底的是( ) A .21e e +和21e e - B .212e e +和122e e + C .2123e e -和1264e e - D .2e 和21e e +2.已知向量(4,1),(2,)m =-=a b ,且()+a a b P ,则m =( ) A .12B .2C .12-D .2- 3.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则=EB ( )A .AC AB 4143- B .AC AB 4341- C .AC AB 4143+ D .AC AB 4341+4.对任意向量,a b ,下列关系式中不恒成立的是( )A .||||||⋅≤a b a bB .||||||||--≤a b a bC .22()||+=+a b a b D .22()()+-=-a b a b a b 5.设02θπ≤<,已知两个向量,,则向量21P P 长度的最大值是( )2 3 C.32 D.36.设向量,a b 满足||1,||2==a b ,且()⊥+a a b ,则向量a 在向量b 方向上的投影为( )A .1B 13C .1-D .12-7.已知向量(,6)x =a ,(3,4)=b ,且a 与b 的夹角为锐角,则实数x 的取值范围为( ) A .),8(+∞-B .),29()29,8(+∞-YC .),8[+∞-D .),29()29,8[+∞-Y8.点O 是△ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是△ABC的( )A .三条高的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三个内角的角平分线的交点9.已知向量2,3==OB OA ,OB n OA m OC +=,若OA u u u r 与OB uuu r的夹角为60°,且AB OC ⊥,则实数mn 的值为( )A .21 B .31 C .41 D .61 10.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是( )A .2-B .32-C .43- D .1-二、填空题11.已知向量a 与b 的夹角为120o ,3=a ,13+=a b ,则=b .12.如图所示,一力作用在小车上,其中力F 的大小为10N ,方向与水平面成60︒角.当小车向前运动10m 时,则力F 做的功为 .13.已知12,e e 是夹角为60°的两个单位向量,则a =2e 1+e 2和b =2e 2-3e 1的夹角为_______. 14.设ABC ∆是边长为2的正三角形,E 是BC 的中点,F 是AE 的中点,则)(+⋅的值为 .15.在平行四边形ABCD 中,1=AD ,60BAD ︒∠=,E 为CD 的中点.若1=⋅, 则AB 的长为 .三、解答题(解答应写出文字说明、证明过程或演算步骤)16.已知平面向量)0,5(),3,4(=-=b a . (1)求a 与b的夹角的余弦值;(2)若向量b k a +与b k a -互相垂直,求实数k 的值.17.设a 、b 是两个不共线的向量,(1)记OA =a ,OB =tb ,OC =13(a +b ),当实数t 为何值时,A 、B 、C 三点共线?(2)若|a |=|b |=1且a 与b 的夹角为120°,那么实数x 为何值时,|a -x b |的值最小?18.如图,在平面直角坐标系中,点1(,0)2A -,3(,0)2B ,锐角α的终边与单位圆O 交于点P .(1)当41-=⋅时,求α的值; (2)在x 轴上是否存在定点M MP AP 21=恒成立?若存在,求出点M 坐标;若不存在,说明理由.六安一中高一线上学习课后复习卷平面向量自学巩固练习(时间:90分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.设21,e e 是两不共线的向量,下列四组向量中,不能作为平面向量的一组基底的是(C ) A .21e e +和21e e - B .212e e +和122e e + C .2123e e -和1264e e - D .2e 和21e e +2.已知向量(4,1),(2,)m =-=a b ,且()+a a b P ,则m =( C ) A .12B .2C .12-D .2- 3.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则=EB ( A )A .AC AB 4143- B .AC AB 4341- C .AC AB 4143+ D .AC AB 4341+4.对任意向量,a b ,下列关系式中不恒成立的是( B ) A .||||||⋅≤a b a b B .||||||||--≤a b a b C .22()||+=+a b a b D .22()()+-=-a b a b a b 5.设02θπ≤<,已知两个向量,,则向量21P P 长度的最大值是( B)2 3 C.32 D.36.设向量,a b 满足||1,||2==a b ,且()⊥+a a b ,则向量a 在向量b 方向上的投影为( D ) A .1B 13C .1-D .12-7.已知向量(,6)x =a ,(3,4)=b ,且a 与b 的夹角为锐角,则实数x 的取值范围为( C B )A .),8(+∞-B .),29()29,8(+∞-YC .),8[+∞-D .),29()29,8[+∞-Y8.点O 是△ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是△ABC的( B A )A .三条高的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三个内角的角平分线的交点9.已知向量2,3==OB OA ,OB n OA m OC +=,若OA u u u r 与OB uuu r的夹角为60°,且AB OC ⊥,则实数mn 的值为( C D )A .21 B .31 C .41 D .6110.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是( A B )A .2-B .32-C .43- D .1-二、填空题11.已知向量a 与b 的夹角为120o ,3=a ,13+=a b ,则=b 4 . 12.如图所示,一力作用在小车上,其中力F 的大小为10N ,方向与水平面成60︒角.当小车向前运动10m 时,则力F 做的功为 50 .13.已知12,e e 是夹角为60°的两个单位向量,则a =2e 1+e 2和b =2e 2-3e 1的夹角为____120⁰____.14.设ABC ∆是边长为2的正三角形,E 是BC 的中点,F 是AE 的中点,则)(+⋅的值为 2 3 .15.在平行四边形ABCD 中,1=AD ,60BAD ︒∠=,E 为CD 的中点.若1=⋅, 则AB 的长为 1/3 1/2 .三、解答题(解答应写出文字说明、证明过程或演算步骤)16.已知平面向量)0,5(),3,4(=-=.(1)求与的夹角的余弦值;(2)若向量k+与k-互相垂直,求实数k的值.⑴解:由题意:a(4,-3),b(5,0)∴cosa,b=a·b/|a||b|=20/5×5=4/5∴a与b夹角的余弦值为4/5⑵解:由题意知:(a+kb)·(a-kb)=a²-k²b²=0∵a²=25=b²∴25-25k²=0∴k=1或-117.设a、b是两个不共线的向量,(1)记=a,=tb,=13(a+b),当实数t为何值时,A、B、C三点共线?(2)若|a|=|b|=1且a与b的夹角为120°,那么实数x为何值时,|a-x b|的值最小?⑴解:由题意知:AB=λAC,即-a+tb=λ(b-a)解得:t=1∴当t=1时,A,B,C三点共线⑵解:由题意知:|a-xb|=√(a-xb)²解得x=-1/2∴当x=-1/2时,其最小值为√3/218.如图,在平面直角坐标系中,点1(,0)2A -,3(,0)2B ,锐角α的终边与单位圆O 交于点P .(1)当41-=⋅时,求α的值; (2)在x 轴上是否存在定点M MP AP 21=恒成立?若存在,求出点M 坐标;若不存在,说明理由.⑴解:设点p (cosα,sinα),AP=(cosα+1/2,sinα),BP=(cosα-3/2,sinα) ∵AP·BP=-1/4,解得cosα=1/3∵α是锐角∴α=π/3 ⑵解:设M 点坐标为(t,0),则MP=(cosα-t,sinα) 由题意知(4+2t )cosα-t²+4=0恒成立,解得t=-2 ∴M (-2,0)。
2022-2023学年贵州省贵阳市乌当区下坝中学高一化学下学期期末试卷含解析
2022-2023学年贵州省贵阳市乌当区下坝中学高一化学下学期期末试卷含解析一、单选题(本大题共15个小题,每小题4分。
在每小题给出的四个选项中,只有一项符合题目要求,共60分。
)1. 下列说法正确的是A. 石油裂解的目的是为了提高汽油等轻质油的产量和质量B. 皂化反应后期向反应液中加入饱和食盐水析出高级脂肪酸C. 硬脂酸甘油酯在酸性环境下的水解程度小于其在碱性环境下的水解程度D. 糖类、油脂、蛋白质的水解产物都是非电解质参考答案:C试题分析:A.石油裂解的目的是获得乙烯、丙烯等小分子烃,A项错误;B.皂化反应后期向反应液中加入食盐晶体才能析出高级脂肪酸钠,B项错误;C.硬脂酸甘油酯在酸性环境下的水解程度小于其在碱性环境下的水解程度,C项正确;D.油脂水解的产物是高级脂肪酸和甘油,蛋白质水解的最终产物为氨基酸,高价脂肪酸和氨基酸属于电解质,D项错误;答案选C。
2. 下列电离方程式错误的是()。
A.Na2CO3==2Na++CO32-B.H2SO4==2H++SO42-C.MgCl2==Mg2++Cl2—D.Ba(OH)2==Ba2++2OH-参考答案:C3. 取100 mL 0.3 mol·L-1和300 mL 0.25 mol·L-1的硫酸注入500 mL的容量瓶中,加水稀释至刻度线,该混合溶液中H+的物质的量浓度是( )A.0.21 mol·L-1B.0.56 mol·L-1C.0.42 mol·L-1D.0.26 mol·L-1参考答案:C略4. 在一定温度下的定容密闭容器中,发生反应:A(s)+2B(g)C(g)+D(g)当下列物理量不再变化时,不能表明反应已达平衡的是()A.混合气体的物质的量B.混合气体的密度C.混合气体的平均相对分子质量D.固体A的质量参考答案:A【考点】化学平衡状态的判断.【分析】根据化学平衡状态的特征解答,当反应达到平衡状态时,正逆反应速率相等,各物质的浓度、百分含量不变,以及由此衍生的一些量也不发生变化,解题时要注意,选择判断的物理量,随着反应的进行发生变化,当该物理量由变化到定值时,说明可逆反应到达平衡状态.【解答】解:A、两边气体计量数相等,所以混合气体的物质的量一直不变,故A错误;B、混合气体的密度,说明气体的质量不变反应达平衡状态,故B正确;C、混合气体的平均相对分子质量不变,说明气体的质量不变,反应达平衡状态,故C正确;D、固体A的质量,说明正逆反应速率相等,反应达平衡状态,故D正确;故选A.5. 在人体所需的十多种微量元素中,有一种称为“生命元素”的R元素。
【期末冲刺】2019—2020学年高一年级下学期期末冲刺满分训练卷——第十一章 立体几何初步(解析版)
2019—2020学年高一年级下学期期末冲刺满分训练卷第十章 立体几何初步 期末单元测试卷(范围:新教材人教B 版 必修四 考试时间:90分钟 满分:150分)一、选择题(本题共12道小题,每小题5分,共60分)1.以下命题(其中a 、b 表示直线,α表示平面)中,正确的命题是( )A. 若//a b ,b α⊂,则//a αB. 若//a α,//b α,则//a bC. 若//a b ,b α⊥,则a α⊥D. 若//a α,b α⊂,则//a b答案及解析:1.C【分析】根据线线、线面有关定理对选项逐一分析,由此确定正确选项.【详解】对于A 选项,直线a 可能含于平面α,所以A 选项错误.对于B 选项,,a b 可能异面,所以B 选项错误.对于C 选项,由于//a b ,b α⊥,所以a α⊥,所以C 选项正确.对于D 选项,,a b 可能异面,所以D 选项错误.故选:C【点睛】本小题主要考查空间线线、线面位置关系的判断,属于基础题.2.下列命题正确的是( )A. 有两个面平行,其余各面都是四边形的几何体叫棱柱。
B. 有两个面平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。
C. 绕直角三角形的一边旋转所形成的几何体叫圆锥。
D. 用一个面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。
答案及解析:2.B【分析】根据课本中的相关概念依次判断选项即可.【详解】对于A 选项,几何体可以是棱台,满足有两个面平行,其余各面都是四边形,故选项不正确;对于B ,根据课本中棱柱的概念得到是正确的;对于C ,当绕直角三角形的斜边旋转时构成的几何体不是圆锥,故不正确;对于D ,用平行于底面的平面截圆锥得到的剩余的几何体是棱台,故不正确.故答案为:B.【点睛】这个题目考查了几何体的基本概念,属于基础题.3.在正方体ABCD - A 1B 1C 1D 1中,动点E 在棱BB 1上,动点F 在线段A 1C 1上,O 为底面ABCD 的中心,若1,BE x A F y ==,则四面体O-AEF 的体积( )A. 与x ,y 都有关B. 与x ,y 都无关C. 与x 有关,与y 无关D. 与y 有关,与x 无关答案及解析:3.B【分析】 根据等体积法以及锥体体积公式判断选择.【详解】因为V O -AEF =V E -OAF ,所以,考察△AOF 的面积和点E 到平面AOF 的距离的值,因为BB 1∥平面ACC 1A 1,所以,点E 到平面AOE 的距离为定值,又AO ∥A 1C 1,所以,OA 为定值,点F 到直线AO 的距离也为定值,即△AOF 的面积是定值,所以,四面体O-AEF 的体积与x ,y 都无关,选B 。
贵州省贵阳市2023-2024学年高一上学期期末考试 数学 含答案
贵阳市普通中学2023—2024学年度第一学期期末监测考试试卷高一数学注意事项:1.本试卷共6页,满分100分,考试时间120分钟.2.答案一律写在答题卡上,写在试卷上的不给分.3.考试过程中不得使用计算器.一、选择题(本大题共8小题,每小题4分,共32分.每小题有四个选项,其中只有一个选项正确,请将你认为正确的选项填写在答题卷的相应位置上.)1.全织U ={0,1,2,3,4,5,6, 7} il s4M = {O, 1,2,3}, N = {3,4,5},U,M, N,找合' 的关系如图所示,则图中阴影部分表示的集合为()u`C.{3}A.{l,2,3,4,5}B.{4,5}D.02命题“3xE R, x2 + x+1 � 0”的否定是()2A.3x e R, x2 + x +l之0B.3x E R, x2 + x+l< 0D.Vx茫R,x·+x+l< 0C.VxER,x2 +x+ l < 0 23对任意角a和fJ."sina = sin/J“是“a=fJ”的()A充分不必要条件B必要不充分条件C.充要条件D既不充分也不必要条件24已知函数f(x)= �+log。
,(2-x),则f(x)的定义域为()4x-3A (扣) B.(扣]C.(-oo,2) D (三)u(扣)5设函数f(x)=2·'+x的零点为X o'则X o所在的区间是()A.(-1,0) C.(1,2)B.(-2,-1) D.(0,1)6设a=(½/,b= 2(c = log2¾,则a,b,c的大小关系为(A. c<a<bB. c < b < aC. a<b<cD.a<c<bII冗7下列选项中,与sin(-飞-)的值不相等的是()A.2sin l5°sin 75°B.cosl8° cos42° -sinl8° sin42°C.2cos2l5°-lD.tan22.5° l-tan2 22.5°8.某池塘野生水葫芦的援盖面积与时间的函数关系图象如图所示.假设其函数关系为指数函数,其中说法错误的是(y/m2l 6t---------------- ,,,81----------t'一气, ,, ,, ,A此指数函数的底数为2B在第5个月时,野生水葫芦的稷盖面积会超过30m2C野生水葫芦从4m2荽延到12m2只需1.5个月D设野生水葫芦蔓延至2m2,3m2,6m2所需的时间分别为x1,x2,x3,则有X1+x2 = X3二、多项选择题(本题共2小题,每小题4分,共8分.在每小题给出的选项中,有多项符合题目要求,全部选对得4分,部分选对得2分,有选错得0分.)9已知a,b,c eR,则下列命题正确的是()I IA若->一,则a<ba bB若ac2> bc2,则(1>bC.若a<b,c <d,则a-c<b-dD若a>b > O,c > 0,则a a+c一>b b+cIO下列说法中,正确的是()IA函数y=-在定义域上是减函数e x -1B.函数y=——一是奇函数e x +lC函数y= f(x+a)-b为奇函数,则函数y=f(x)的图象关于点P(a,b)成中心对称图形D函数f(x)为定义在(-x,,O)U(O冲心)上的奇函数,且f(3) = I.对千任意x,,x2E (0,长't:)),x1:;cx2,汀(x,)-x2f(x2) 3都有1>0成立,则.f(x)三一的解集为(-OCJ,-3] u(0,3]X1 -x2''X三、填空题(本大题共5小题,每小题4分,共20分.请将你认为正确的答案填在答题卷的相应位置上.)11若幕函数f(x)=(11i2-2m-2)义”在(0,+~)上单调递增,则实数m=12函数y= sinx+ cosx的最大值是s13 已知圆和四边形(四个角均为直角)的周长相等,而积分别为S I'鸟,则_]_的最小值为s214已知函数f(x) = 2sin(cv x+(p)(co> O,I例<:)的部分图像如图所示,则f行)=X-2.一一一一-壹15已知函数f(X) = 2kx2 -kx -i (0 ::; X ::;; 2, k E R),若k=I,则该函数的零占为若对沁XE[0,2],不等式f(x) < -2k恒成立,则实数K的取值范围为四、解答题(本大题共4小题,每小题8分,共32分.解答应写出文字说明,证明过程或演算步骤.)16已知角0的终边过点(-3,4),求角0的三个三角函数值.17.(I)已知芦+a令=3,求a+矿的值:(2)已知log2[ l og3 (log4X)] =0'求X的值18 已知函数f(x)=x-�IX(I)判断函数f(x)的奇偶性:1(2)根据定义证明函数f(x)=x--在区间(0,+幻)上单调递增X冗19将函数f(x) =c o s(x+ �)的图象上所有点的横坐标缩短到原来的上,纵坐标不变,得到函数g(x的() 图象(I)求函数g(x)的单调递增区间和对称中心:(2)若关于X的方程2sin2x-m c o s x-4= 0在XE(吟)上有实数解,求实数m的取值范围五、阅读与探究(本大题1个小题,共8分解答应写出文字说明,条理清晰.)20. 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的瓜要途径,是思想阀门发现新问题、新结论的篮要方法.阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(I)整体观察:(2)整体设元;(3)整体代入:(4)整体求和等l l例如,ab=I,求证:一+-=l.I+a I+b证明:原式ab I b I+—=—+—=I. ab+a I+b b+I l+b阅读材料二:解决多元变掀问题时,其中一种思路是运用消元思想将多元问题转化为一元问题,再结合一元问题处理方法进行研究a+b例如,正实数a,b满足ab=L求(l+a)b解:由ab=I,得b=一,的最小值1 a+b a+--;; _ a 2+1_ (a+l }2-2(a+l)+2= = = ..(I+a)b I a+la+I (l+a )� a 2 2 =(a+l)+二-2�2✓(a+l)二-2=2✓2-2,当且仅当a+I =✓2,即a=✓2-1,b = ✓2 +1时,等号成立a+b.. (l+a)b的最小值为2J5-2波利亚在《怎样解题》中指出:“当你找到第一个腮菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征结合阅读材料解答下列问题:(I)已知ab=I,求+——了的值;l+a 2. l +bI I(2)若正实数a,b 满足ab=I,求M =--=--+ 的最小值I+a I+3b贵阳市普通中学2023—2024学年度第一学期期末监测考试试卷高一数学注意事项:1.本试卷共6页,满分100分,考试时间120分钟.2.答案一律写在答题卡上,写在试卷上的不给分.3.考试过程中不得使用计算器.一、选择题(本大题共8小题,每小题4分,共32分.每小题有四个选项,其中只有一个选项正确,请将你认为正确的选项填写在答题卷的相应位置上.)1.全织U = {0,1,2,3,4,5,6, 7} il s4M = {O, 1,2,3}, N={3,4,5},U,M, N,找合' 的关系如图所示,则图中阴影部分表示的集合为(u`A.{l,2,3,4,5}【答案】B【解析】B.{4,5}【分析】求出M n N,得到阴影部分表示的渠合C.{3}[详解】图中阴影部分表示的渠合为N中元素去掉M n N的元素后的梊合,MnN = {0,1,2,3们{3,4,5}={习,故图中阴影部分表示的集合为{4,5}故选:B2.命题“3xER,x2+x+l2:0”的否定是()A.3x ie R, x2 + x+l ;;:: 0B.3x E R, x2 + x+I <0C.VxER,x2+x+l<0 2D.Vx茫R,X4+x+l< 0【答案】C【解析】【分析】根据命题的否定即可求解D.0【详解】命题“:3x E R, x 2+ x + 1 2:: 0”的否定是“"ix E R,x 2+x+ 1< 0",故选:C3对任意角a 和/3,"sin a = s in/3“是“a=/3”的()A 充分不必要条件B必要不充分条件C.充要条件D 既不充分也不必要条件【答案)B 【解析】【分析】根据三角函数的性质,结合必要不充分的定义即可求解【详解】由sina=s in/3可得a=/J+2朊或者a+/3=冗+2幻,kEZ,故sina=s in/3不能得到a=/3,但a=/3,则sina= s in/3,故“sina=sin/3“是“a=/3”的必要不充分条件,故选:B2 4已知函数f(x) =�+log 。
2019-2020学年贵阳市名校七年级第二学期期末学业质量监测数学试题含解析
解:0.0007=7×10﹣4
故选C.
【点睛】
本题考查科学计数法,难度不大.
二、填空题
11.“b的 与c的和是负数”用不等式表示为_________.
【答案】 b+c<0
【解析】
“b的 与c的和是负数”用不等式表示为: .
故答案为: .
12.如图,△ABC中,AP垂直∠ABC的平分线BP于点P.若△ABC的面积为32cm2,BP=6cm,且△APB的面积是△APC的面积的3倍.则AP=________cm.
三、解答题
18.解不等式组 并写出它的整数解.
【答案】不等式组的解集为 ,整数解为:2,3和1
【解析】
【分析】
先求出不等式组的解集,再求出不等式组的整数解即可.
【详解】
解:
由①得
由②得
该不等式组的解集为: ,
该不等式组的整数解为:2,3和1.
【点睛】
本题考查解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解题的关键.
19.△ABC中,∠C=60°,点D,E分别是边AC,BC上的点,点P是直线AB上一动点,连接PD,PE,设∠DPE=α.
(1)如图①所示,如果点P在线段BA上,且α=30°,那么∠PEB+∠PDA=___;
(2)如图②所示,如果点P在线段BA上运动,
①依据题意补全图形;
②写出∠PEB+∠PDA的大小(用含α的式子表示);并说明理由。
∴直线y=1与线段AB有交点,则m的取值范围为﹣2≤m≤1;
故答案为﹣2≤m≤1.
【点睛】
本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
2022-2023学年贵州省贵阳市高一下学期期末监测数学试题【含答案】
2022-2023学年贵州省贵阳市高一下学期期末监测数学试题一、单选题1.设i 为虚数单位,则3i =()A .1B .iC .-1D .i-【答案】D【分析】利用复数的乘法运算即可求得结果.【详解】32i i i 1i i =⋅=-⋅=-,故选:D.【点睛】本题主要考查复数的乘法运算,属基础题.2.平面直角坐标系中,已知()1,1A ,()1,0B -,()0,1C ,则AB AC +=()A .()1,1-B .()3,1--C .()3,1-D .()0,2【答案】B【分析】根据平面向量的坐标表示,以及坐标运算的法则,即可求解.【详解】由()1,1A ,()1,0B -,()0,1C ,可得,((2,11)),0AB AC ---==,所以(3,1)AB AC +=--.故选:B.3.已知事件A ,B 互斥,若()15P A =,()815P A B = .则()P B =()A .13B .23C .715D .815【答案】A【分析】由互斥事件并事件概率的加法公式求解.【详解】由于事件A ,B 互斥,则()()()()18515P A B P A P B P B =+=+= ,所以()13P B =,选项A 正确.故选:A4.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是()A .若m n ⊥,n ∥α,则m α⊥B .若m ∥n ,n α⊥,则m α⊥C .若m α⊥,m n ⊥,则n ∥αD .若m α⊥,αβ⊥,则m β⊥【答案】B【分析】对于ACD ,举例判断,对于B ,根据线面垂直的判定定理分析判断.【详解】对于A ,如下图,m n ⊥,n ∥α,而m ∥α,所以A 错误,对于B ,设,k l α⊂,且k l O = ,因为n α⊥,所以,n k n l ⊥⊥,因为m ∥n ,所以,m k m l ⊥⊥,因为,k l α⊂,且k l O = ,所以m α⊥,所以B 正确,对于C ,如下图,m α⊥,m n ⊥,此时n ⊂α,所以C 错误,对于D ,如下图,m α⊥,αβ⊥,此时m ∥β,所以D 错误,故选:B5.已知直角三角形三边长分别为3,4,5,以其中一条边所在直线为轴旋转一周后得到一个几何体,则该几何体的最大体积为()A .48π5B .12πC .16πD .32π【答案】C【分析】分别计算以直角边和斜边为轴旋转得到的几何体体积,然后比较大小;【详解】当以斜边为轴旋转时,所得的几何体是由两个同底的圆锥拼接而成,如图所示,在直角三角形ABC 中,43,5,AB BC AC ===,所以11,22ABC S AB BC AC BO =⋅=⋅ 解得:12,5BO =故圆锥底面面积为:()2144ππ,25S BO ==所以几何体的体积为()11144π48π5,33255V V V S AO OC =+=⋅+=⨯⨯=下上以4AB =为轴旋转时,21π3412π,3V =⨯⨯⨯=当以3BC =为轴旋转时,21π4316π,3V =⨯⨯⨯=综上所述,当以3BC =为轴旋转时,体积最大,故选: C.6.从正五边形的5个顶点中任取3个构成三角形,则所得三角形是锐角三角形的概率为()A .15B .13C .12D .25【答案】C【分析】首先根据组合求解基本事件总数,然后分析所得三角形是锐角三角形的情形,即可得到答案;【详解】从正五边形的五个顶点中,随机选择三个顶点连成三角形,基本事件总数为;35C 10,n ==因为正五边形的顶角为钝角,所以以它们作为顶点的三角形是锐角三角形(如图所示)的个数为5,所以51102P ==.故选:C.7.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知3a =,3b =,2B A =,则c =()A .32B .3C .3D .23【答案】D【分析】先利用正弦定理结合已知条件可求出A ,则可求出角,B C ,从而可求出c 【详解】在ABC 中,3a =,3b =,2B A =,由正弦定理得sin sin a b A B =,33sin sin 2A A=,得23sin cos 3sin A A A =,因为sin 0A ≠,所以23cos 3A =,得3cos 2A =,因为()0,πA ∈,所以π6A =,所以π3B =,则π2C =,所以223c a ==,故选:D8.利用向量方法研究函数()sin cos f x a x b x =+(x ∈R ,a ,b 不同时为0),过程如下:设(),m b a =,(),cos sin x n x = ,则()22cos ,cos ,f x m n m n m n a b m n =⋅==+ .所以当m 与n 方向相同时,()f x 取到最大值22a b +,当m与n方向相反时,()f x 取到最小值22a b -+;根据以上研究,下列关于函数()3sin 4cos g x x x =+的结论正确的是()A .最大值为5,取到最大值时3tan 4x =B .最大值为5,取到最大值时4tan 3x =C .最大值为5,取到最大值时3tan 4x =D .最大值为5,取到最大值时4tan 3x =【答案】A【分析】根据所给定义及向量模的坐标表示计算可得.【详解】因为()3sin 4cos g x x x =+,设()4,3m = ,(),cos sin x n x = ,则22435m =+= ,22cos sin 1n x x =+= ,则()cos ,5cos ,g x m n m n m n m n =⋅==,所以()max 5g x =,当m与n方向相同,即4sin 3cos x x =,即3tan 4x =时取最大值.故选:A二、多选题9.已知复数z 的共轭复数为z ,则下列说法正确的是()A .z z +一定是实数B .z z ⋅一定是实数C .z z -一定是纯虚数D .22z z=【答案】AB【分析】设i,(,R)z a b a b =+∈,得到i z a b =-,结合选项,逐项判定,即可求解.【详解】设i,(,R)z a b a b =+∈,则i z a b =-,对于A 中,由2R z z a +=∈,所以A 正确;对于B 中,由()()22i i R z z a b a b a b ⋅=+-=+∈,所以B 正确;对于C 中,由2i z z b -=,只有当0b ≠时,z z -是纯虚数,所以C 不正确;对于D 中,由2222222i,z a b ab z a b =-+=+,所以22z z ≠,所以D 不正确.故选:AB.10.底面为平行四边形的四棱柱称为平行六面体,连接平行六面体不在同一面上两个顶点的线段称为平行六面体的体对角线.以下关于平行六面体的命题,正确的是()A .平行六面体的4条体对角线交于一点且互相平分B .平行六面体的8个顶点在同一球面上C .平行六面体的4条体对角线长的平方和等于所有棱长的平方和D .各棱长均为1的平行六面体1111ABCD A B C D -中,1160A AB A AD BAD ∠=∠=∠=︒,则体对角线1AC 的长为6【答案】ACD【分析】由平行四边形对角线互相平分可证选项A;由圆内接四边形对角互补,可判断选项B 错误;由平行四边形11ABC D 对角线的平方和等于四条边的平方和性质,可得选项C 正确;由三棱锥1A ABD -为棱长为1正三棱锥,可求出1cos A AS Ð,从而在1ACC △中利用余弦定理求解,可判断选项D 正确.【详解】如图,连结111,,AC BD AC 依题意,111//,//,,AB CD CD C D AB CD CD C D ==,所以111//,AB C D AB C D =,即11ABC D 为平行四边形,则11,AC BD 相交且互相平分,同理11,BD AC 相交且互相平分,则1111,,,AC BD AC B D 相交于中点O ,所以平行六面体的4条体对角线交于一点且互相平分,选项A 正确;若平行六面体的8个顶点在同一球面上,则平行四边形ABCD 四个定点在一个圆周上,而圆的内接四边形对角互补,而平行四边形ABCD 对角不一定互补,选项B 错误;11AC AB BB BC =++ ,11BD BB BC BA =++ ,2222211111()222AC AB BB BC AB BB BC AB BB AB BC BB BC =++=+++⋅+⋅+⋅ ,2222211111()222BD BB BC BA BB BC BA BB BC BB AB BC AB =++=+++⋅-⋅-⋅,则2222211112224AC BD BB BC BA BB BC +=+++⋅,2222211111()222AC AB BC B B AB BC B B AB B B AB BC B B BC =++=+++⋅+⋅+⋅ ,2222211111()222DB CB AB BB CB AB BB BC AB CB BB AB B B =++=++-⋅+⋅-⋅ ,则2222211112224AC DB AB CB B B BC B B +=+++⋅ 所以222222211111444AC BD AC DB AB CB B B +++=++ ,即平行六面体的4条体对角线长的平方和等于所有棱长的平方和,选项C 正确;根据题意,三棱锥1A ABD -为棱长为1正三棱锥,所以1A 在平面ABD 上的投影为正ABD △的中心,则323233AS =´=,113cos 3AS A AS AA Ð==,所以13cos 3ACC Ð=-,由余弦定理2222111132cos 312363AC AC CC AC CC ACC =+-⋅∠=++⨯⨯=,所以1AC 的长为6,选项D 正确.故选:ACD三、填空题11.已知平面向量a ,b 满足2a = ,3b = ,a 与b的夹角为60°,则a b ⋅=.【答案】3【分析】根据平面向量数量积定义求解即可.【详解】1cos 602332a b a b ⋅=⋅=⨯⨯=.故答案为:312.甲、乙两名学生通过某种听力测试的概率分别为12,23,若两人同时参加测试,则有且只有一人能通过的概率是.【答案】12/0.5【分析】根据相互独立事件的概率乘法公式,以及互斥事件的概率加法,结合题意,即可求解.【详解】设事件A 表示“甲同学通过测试”,事件B 表示“乙同学通过测试”,可得12(),()23P A P B ==,则有且只有一人能通过的概率为12121()()()()(1)(1)23232P P A P B P A P B =+=⨯-+-⨯=.故答案为:12.13.一个圆台的上、下底面圆周在同一球面上,已知圆台上、下底面的半径分别为3cm 和4cm ,球100πcm,则该圆台的高为cm.的表面积为2【答案】7或1/1或7、,球心为O,分圆台的上、下底面不在同一半球上【分析】设圆台的上、下底面的圆心分别为E F和圆台的上、下底面在同一半球上两种情况,再利用勾股定理可得答案.、,球心为O,【详解】设圆台的上、下底面的圆心分别为E F如图,当圆台的上、下底面不在同一半球上时,222594cmEO AO AE,=-=-=+=;2225163cmFO CO CF,所以则该圆台的高为437cm=-=-=如图,当圆台的上、下底面在同一半球上时,222594cmEO AO AE,=-=-=-=;2225163cmFO CO CF,所以则该圆台的高为431cm=-=-=综上,该圆台的高为7cm或1cm.故答案为:7或1.四、双空题14.某校采用比例分配分层随机抽样采集了高一年级学生的身高情况,部分统计数据如下:性别样本量样本平均数样本方差男10017022女10016038则估计该校高一年级的全体学生的身高平均数为,方差为.(注:由人教版高中数学必修第二册习题9.2拓广探索可知以下结论:已知总体划分为两层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m ,x ,21s ;n ,y ,22s .记总的样本平均数为ω,样本方差为2s ,则()(){}22222121s m s n x m n y s ωω⎡⎤⎡⎤=+-++-⎢⎥⎢⎥⎣⎦⎣⎦+)【答案】16555【分析】根据题意,由公式代入计算,即可得到结果.【详解】由题意可得,该校高一年级的全体学生的身高平均数为()1100170100160165200⨯+⨯=由结论可得,方差为()(){}22222121s m s n x m n y s ωω⎡⎤⎡⎤=+-++-⎢⎥⎢⎥⎣⎦⎣⎦+()(){}22221100221701651003816016555100100⎡⎤⎡⎤=⨯+-++-=⎣⎦⎣⎦+.故答案为:165;5515.魏晋时期的刘徽在其所撰《海岛算经》中,运用二次测望法解决实际测量问题,是世界测量学上取得的伟大成就.某数学学习小组受《海岛算经》中“望山松”一题的启发,进行了如下测量实践活动:如图,为测量山顶松树的高AB ,在山底C 所在水平面内,选择D 、E 两点,使C 、D 、E 三点在同一直线上,在D 点测得A 点和B 点的仰角分别为60°、45°,在E 点测得A 点的仰角为30°,测得基线DE 的长为100米.由以上测量数据可得出:①松树的高AB =米(精确到0.1);②ADB ∠和AEB ∠分别是人在D 点和E 点观测松树的视角,其大小关系为:ADB ∠AEB∠(填“>”,“<”或“=”).(参考数据:2 1.414≈,3 1.732≈)【答案】36.6>【分析】由题意可得30DEA DAE ∠==︒,则可得100AD DE ==,然后求出,AC BC 可求得AB 的值,由图可知ABE 的外接圆大于ABD △,然后分别在两个三角形中利用正弦定理比较即可【详解】由题意得45,60,30,100BDC ADC AEC DE ∠=︒∠=︒∠=︒=,所以120ADE ∠=︒,所以30DEA DAE ∠==︒,所以100AD DE ==,在Rt ADC 中,3sin 1005032AC AD ADC =∠=⨯=,1cos 100502CD AD ADC =∠=⨯=,在Rt BDC 中,tan 50BC CD BDC CD =∠==,所以5035050 1.7325036.6AB AC BC =-=-≈⨯-≈,设ABE 的外接圆半径为1r ,ABD △的外接半径为2r ,由图可知12r r >,由正弦定理得122,2sin sin AB ABr r AEB ADB==∠∠,所以sin sin AB AB AEB ADB>∠∠,所以sin sin ADB AEB ∠>∠,因为,ADB AEB ∠∠都为锐角,所以ADB AEB >∠∠,故答案为:36.6,>五、解答题16.如图,在平行四边形ABCD 中,E ,F ,G 满足2AB AE = ,2AD AF = ,2BC BG = ,设AB a=,AD b =.(1)用a ,b 表示EF ,EG ;(2)若EF EG ⊥,求a b.【答案】(1)1122EF a b =-+ ,1122EG a b=+(2)1【分析】(1)根据题意,由平面向量基本定理即可得到结果;(2)根据题意,由EF EG ⊥可得22a b = ,即可得到结果.【详解】(1)1122EF EA AF a b =+=-+ ,1122EG EB BG a b =+=+ ;(2)若EF EG ⊥ ,则0EF EG ⋅= 所以221111*********a b a b b a ⎛⎫⎛⎫-+⋅+=-= ⎪ ⎪⎝⎭⎝⎭ 所以22a b = ,所以1a b= .17.某企业生产口罩、防护服、消毒水等物品,在加大生产的同时,该公司狠抓质量管理,不定时抽查口罩,该企业质检人员从所生产的口罩中随机抽取了100个,将其质量指标值分成以下六组:[)40,50,[)50,60,[)60,70,…,[]90,100,得到如下频率分布直方图.(1)求出直方图中m 的值;(2)利用样本估计总体的思想,估计该企业所生产的口罩的质量指标值的中位数(精确到0.01);(3)规定:质量指标值小于70的口罩为二等品,质量指标不小于70的口罩为一等品.采用样本量比例分配的分层随机抽样,从该企业所抽取的100个口罩中抽出5个口罩,其中一等品和二等品分别有多少个?【答案】(1)0.030m =(2)73.33(3)一等品有3个和二等品有2个【分析】(1)根据频率之和为1,列出方程,即可得到结果;(2)根据中位数的计算公式,代入计算,即可得到结果;(3)根据分层抽样的计算公式,代入计算,即可得到结果.【详解】(1)由()100.0100.0150.0150.0250.0051m ⨯+++++=,得0.030m =.(2)因为0.10.150.150.40.5++=<,0.10.150.150.30.70.5+++=>所以中位数在第4组,设中位数为n ,则()0.10.150.150.03700.5n +++-=,解得22073.333n =≈.所以可以估计该企业所生产的口罩的质量指标值的中位数为73.33.(3)由频率分布直方图可知:100个口罩中一等品有60个,二等品有40个,由分层抽样可知,所抽取的5个口罩中一等品有6053100⨯=个,二等品有532-=个,所以抽取的5个口罩中一等品有3个和二等品有2个.18.ABC 的内角,,A B C 的对边分别为,,a b c ,且满足()cos 2cos b A c a B =-.(1)求B 的大小;(2)若ABC 为钝角三角形,且4a =,3b =,求ABC 的面积.【答案】(1)π4(2)42-【分析】(1)根据题意,由正弦定理和三角形的性质化简得到sin 2sin cos C C B =,进而得到cos B 的值,即可求解.(2)由正弦定理求得22sin 3A =,结合题设条件,得到1cos 3A =-,求得sin C ,利用三角形的面积公式,即可求解.【详解】(1)解:因为()cos 2cos b A c a B =-,所以cos cos 2cos b A a B c B +=,由正弦定理可得sin cos sin cos 2sin cos B A A B C B +=,即()sin 2sin cos A B C B +=,因为πA B C ++=,可得()sin sin A B C +=,所以sin 2sin cos C C B =,又因为(0,π)C ∈,可得sin 0C ≠,所以2cos 2B =,因为(0,π)B ∈,π4B =.(2)解:由正弦定理有43sin 22A =,可得22sin 3A =,则1cos 3A =或13-若1cos 3A =,则()21222cos cos 02323C A B ⎛⎫=-+=-⨯-⨯> ⎪ ⎪⎝⎭,此时ABC 为锐角三角形,不满足条件.若1cos 3A =-,此时ABC 为钝角三角形.则()2122242sin sin 23236C AB ⎛⎫-⎛⎫=+=⨯-+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以1sin 422ABC S ab C ==-△.19.如图,四面体A BCD -中,AD CD ⊥,AD CD =,ADB BDC ∠=∠,点F 在BD 上,E 为AC 的中点.(1)证明:平面FAC ⊥平面BDE ;(2)若DE BE ⊥,1DE =,四面体A BCD -的体积为33,若AFC ∠恰为二面角A BD C --的平面角,求AFC △的面积.【答案】(1)证明见解析(2)32【分析】(1)依题意,可证ABD CBD ≌△△,由等腰三角形性质得AC BE ⊥,AC DE⊥从而AC ⊥平面BDE ,由面面垂直的判定定理得证;(2)连接EF ,由AFC ∠是二面角A DB C --的平面角,可得BD ⊥平面AFC ,从而BD EF ⊥,求得2AC =,再由四面体A BCD -的体积为33,解得3BE =,由等面积法得32EF =,最后12AFC S AC EF =⋅△,解决问题.【详解】(1)证明:因为AD CD =,E 为AC 的中点,所以AC DE ⊥,在ABD △和CBD △中AD CD =,ADB CDB ∠=∠,DB DB =,所以ABD CBD ≌△△,所以AB CB =,又E 为AC 的中点,所以AC BE ⊥,又DE ,BE ⊂平面BDE ,DE BE E ⋂=,所以AC ⊥平面BDE .又AC ⊂平面FAC ,所以平面FAC ⊥平面BDE(2)如图,连接EF ,因为AFC ∠是二面角A DB C --的平面角,所以AF BD ⊥,CF BD ⊥,又AF ,CF ⊂平面AFC ,AF CF F ⋂=,所以BD ⊥平面AFC .因为EF ⊂平面AFC ,所以BD EF ⊥.因为AD CD ⊥,AD CD =,1DE =,所以2AC =,又由(1),AC ⊥平面BDE所以四面体A BCD -的体积13A BCD DBE V S AC -=⨯⨯△,即31112332BE ⎛⎫=⨯⨯⨯⨯ ⎪⎝⎭,解得3BE =.因为1122BDE S DE BE BD EF =⋅=⋅△,即DE BE BD EF ⋅=⋅,()221313EF ⨯=+,则32EF =.又AC ⊥平面BED ,所以AC EF ⊥,所以113322222AFC S AC EF =⋅=⨯⨯=△.20.阅读材料:材料一:我国南宋的数学家秦九韶在《数书九章》中提出了“三斜求积术”:若把三角形的三条边分别称为小斜、中斜和大斜,记小斜为a ,中斜为b ,大斜为c ,则三角形的面积为222222142c a b S a c ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦.这个公式称之为秦九韶公式;材料二:古希腊数学家海伦在其所著的《度量论》或称《测地术》;中给出了用三角形的三条边长表示三角形的面积的公式,即已知三角形的三条边长分别为,,a b c ,则它的面积为()()()S p p a p b p c =---,其中()12p a b c =++,这个公式称之为海伦公式;材料三:秦九韶公式和海伦公式都解决了由三角形的三边直接求三角形面积的问题.海伦公式形式优美,容易记忆,体现了数学的对称美,秦九韶公式虽然与海伦公式形式不一样,但与海伦公式完全等价,且由秦九韶在不借助余弦定理的情况下独立推出,充分说明了我国古代学者具有很高的数学水平;材料四:印度数学家婆罗摩笈多将海伦公式推广到凸四边形(凸四边形即任取平面四边形一边所在直线,其余各边均在此直线的同侧)中,即设凸四边形的四条边长分别为a b c d ,,,,()12p a b c d =+++,凸四边形的一对对角和的半为θ,则凸四边形的面积为()()()()2cos S p a p b p c p d abcd θ=-----.这个公式称之为婆罗摩笈多公式.请你结合阅读材料解答下面的问题:(1)在下面两个问题中选择一个作答:(如果多做,按所做的第一个问题给分)①证明秦九韶公式与海伦公式的等价性;②已知圆内接四边形MNPQ 中,2MN =,4NP =,5PQ =,3QM =,求MNPQ 的面积;(2)ABC 中,,,A B C 的对边分别为,,a b c ,已知ABC 的面积为6,其内切圆半径为1,4,a b c =<,求b ,c .【答案】(1)答案见解析(2)3,5b c ==【分析】(1)若选择①:由秦九韶公式证明海伦公式化简得到()()()ABC S p p a p b p c =--- ,即可求解;若选择②:根据题意得到7p =,得到四边形的面积为2120cos S abcd θ=-,结合四边形MNPQ 是圆内接四边形对角和为180︒,代入即可求解;(2)设内切圆半径为r ,根据()12ABC S a b c r =++⋅△,求得8+=b c ,再由海伦公式化简得到15bc =,联立方程组,即可求解.【详解】(1)解:若选择①:由秦九韶公式证明海伦公式:2222222222221142422ABC c a b c a b c a b S a c ac ac ⎡⎤⎛⎫⎛⎫⎛⎫+-+-+-=-=+-⎢⎥ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ()()222214222222a c b b a c a b c a c b b a c b c a ⎡⎤⎡⎤+---+++-+-+-==⋅⋅⋅⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设()12p a b c =++,所以2222ABC a b c a b c a b c a b c S b c a ++++++++⎛⎫⎛⎫⎛⎫=--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭△()()()p p a p b p c =---上述每一步均为等价变形,所以秦九韶公式与海伦公式是等价的.若选择②:因为()12p a b c d =+++,且2MN =,4NP =,5PQ =,3QM =,代入可得()1245327p =⨯++=+,所以()()()()22cos 120cos S p a p b p c p d abcd abcd θθ=-----=-,因为四边形MNPQ 是圆内接四边形,对角和为180︒,所以90θ=︒,可得21202453cos 90230S =-⨯⨯⨯︒=.(2)解:设内切圆半径为r ,因为()12ABC S a b c r =++⋅△,代入6ABC S = ,4a =,1r =,可得8+=b c ,①又由()162ABC S p a b c r=++==△,由海伦公式()()()ABC S p p a p b p c =--- ,可得()()()666466b c =---,化简得()()663b c --=,即()6363bc b c -++=,代入①,可得15bc =,②联立方程组815b c bc +=⎧⎨=⎩,且b c <,解得3,5b c ==.。
期末考试综合检测试卷-2020-2021学年高一数学同步练习和分类专题(人教A版2019必修第二册)
高中数学必修二期末考试综合检测试卷第二学期高一期末测试一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z=(1-i)+m(1+i)是纯虚数,则实数m=( )A.-2B.-1C.0D.12.幸福感指数是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意程度越高.现随机抽取6位小区居民,他们的幸福感指数分别为5,6,7,8,9,5,则这组数据的第80百分位数是( )A.7B.7.5C.8D.93.已知α为平面,a,b为两条不同的直线,则下列结论正确的是( )A.若a∥α,b∥α,则a∥bB.若a⊥α,a∥b,则b⊥αC.若a⊥α,a⊥b,则b∥αD.若a∥α,a⊥b,则b⊥α4.已知在平行四边形ABCD中,M,N分别是BC,CD的中点,如果=a,=b,那么=( )A.a-bB.-a+bC.a+bD.-a-b5.已知圆锥的表面积为3π,且它的侧面展开图是一个半圆,则该圆锥的体积为( )A.πB.πC.πD.2π6.庆祝中华人民共和国成立70周年的阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就,装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有6位外国人,其中关注此次大阅兵的有5位,若从这6位外国人中任意选取2位进行一次采访,则被采访者都关注了此次大阅兵的概率为( )A. B. C. D.7.如图,有四座城市A、B、C、D,其中B在A的正东方向,且与A相距120 km,D在A的北偏东30°方向,且与A相距60 km,C在B的北偏东30°方向,且与B相距60 km.一架飞机从城市D出发,以360 km/h 的速度向城市C飞行,飞行了15 min后,接到命令改变航向,飞向城市B,此时飞机距离城市B的距离为( )A.120 kmB.60 kmC.60 kmD.60 km8.如图,在平面直角坐标系xOy中,原点O为正八边形P1P2P3P4P5P6P7P8的中心,P1P8⊥x轴,若坐标轴上的点M(异于原点)满足2++=0(其中1≤i≤8,1≤j≤8,且i,j∈N*),则满足以上条件的点M的个数为( )A.2B.4C.6D.8二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.已知复数z满足(1-i)z=2i,则下列关于复数z的结论正确的是( )A.|z|=B.复数z的共轭复数=-1-iC.复平面内表示复数z的点位于第二象限D.复数z是方程x2+2x+2=0的一个根10.某市教体局对全市高一年级学生的身高进行抽样调查,随机抽取了100名学生,他们的身高都处在A,B,C,D,E五个层次内,根据抽样结果得到如下统计图,则下列结论正确的是( )A.样本中女生人数多于男生人数B.样本中B层次人数最多C.样本中E层次的男生人数为6D.样本中D层次的男生人数多于女生人数11.已知事件A,B,且P(A)=0.5,P(B)=0.2,则下列结论正确的是( )A.如果B⊆A,那么P(A∪B)=0.2,P(AB)=0.5B.如果A与B互斥,那么P(A∪B)=0.7,P(AB)=0C.如果A与B相互独立,那么P(A∪B)=0.7,P(AB)=0D.如果A与B相互独立,那么P()=0.4,P(A)=0.412.如图,正方体ABCD-A'B'C'D'的棱长为1,则下列命题中正确的是( )A.若点M,N分别是线段A'A,A'D'的中点,则MN∥BC'B.点C到平面ABC'D'的距离为C.直线BC与平面ABC'D'所成的角等于D.三棱柱AA'D'-BB'C'的外接球的表面积为3π三、填空题(本题共4小题,每小题5分,共20分)13.已知a,b,c分别为△ABC的三个内角A,B,C的对边,且bcos C+ccos B=asin A,则A= .14.已知数据x1,x2,x3,…,x m的平均数为10,方差为2,则数据2x1-1,2x2-1,2x3-1,…,2x m-1的平均数为,方差为.15.已知|a|=3,|b|=2,(a+2b)·(a-3b)=-18,则a与b的夹角为.16.如图,在三棱锥V-ABC中,AB=2,VA=VB,AC=BC,VC=1,且AV⊥BV,AC⊥BC,则二面角V-AB-C的余弦值是.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知向量a=(1,2),b=(4,-3).(1)若向量c∥a,且|c|=2,求c的坐标;(2)若向量b+ka与b-ka互相垂直,求实数k的值.18.(12分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,且a=,c=1,A=.(1)求b及△ABC的面积S;(2)若D为BC边上一点,且,求∠ADB的正弦值.从①AD=1,②∠CAD=这两个条件中任选一个,补充在上面的问题中,并解答.注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)在四面体A-BCD中,E,F,M分别是AB,BC,CD的中点,且BD=AC=2,EM=1.(1)求证:EF∥平面ACD;(2)求异面直线AC与BD所成的角.20.(12分)溺水、校园欺凌等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为,乙队每人回答问题正确的概率分别为,,,且每人回答问题正确与否相互之间没有影响.(1)分别求甲队总得分为3分与1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.21.(12分)如图,在三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,PA=AB=BC=2,点D为线段AC的中点,点E 为线段PC上一点.(1)求证:平面BDE⊥平面PAC;(2)当PA∥平面BDE时,求三棱锥P-BDE的体积.22.(12分)2020年开始,山东推行全新的高考制度.新高考不再分文理科,采用“3+3”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科满分100分.2020年初受疫情影响,全国各地推迟开学,开展线上教学.为了了解高一学生的选科意向,某学校对学生所选科目进行检测,下面是100名学生的物理、化学、生物三科总分成绩,以20为组距分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如图所示.(1)求频率分布直方图中a的值;(2)(i)求物理、化学、生物三科总分成绩的中位数;(ii)估计这100名学生的物理、化学、生物三科总分成绩的平均数(同一组中的数据用该组区间的中点值作代表);(3)为了进一步了解选科情况,在物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中用比例分配的分层随机抽样方法抽取7名学生,再从这7名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.答案全解全析1.B 复数z=(1-i)+m(1+i)=(m+1)+(m-1)i,因为z是纯虚数,所以解得m=-1.2.C 将6个数据按照从小到大的顺序排列为5,5,6,7,8,9,因为6×80%=4.8,所以第5个数据即为这组数据的第80百分位数,故选C.3.B 如果两条平行直线中的一条垂直于一个平面,那么另一条直线也垂直于这个平面,因此B选项正确,易知A、C、D错误.4.B =-=+-(+)=+--=-+=-a+b.5.A 设圆锥的底面半径为r,母线长为l,依题意有2πr=·2πl,所以l=2r,又圆锥的表面积为3π,所以πr2+πrl=3π,解得r=1,因此圆锥的高h==,于是体积V=πr2h=π×12×=π.6.C 这6位外国人分别记为a,A,B,C,D,E,其中a未关注此次大阅兵,A,B,CD,E关注了此次大阅兵, 则样本点有(a,A),(a,B),(a,C),(a,D),(a,E),(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D ,E),共15个,其中被采访者都关注了此次大阅兵的样本点有10个,故所求概率为=.故选C.7.D 取AB的中点E,连接DE,BD.设飞机飞行了15 min后到达F点,连接BF,如图所示,则BF即为所求.因为E为AB的中点,且AB=120 km,所以AE=EB=60 km,又∠DAE=60°,AD=60 km,所以三角形DAE为等边三角形,所以DE=60 km,∠ADE=60°,在等腰三角形EDB中,∠DEB=120°,所以∠EDB=∠EBD=30°,所以∠ADB=90°,所以BD2=AB2-AD2=1202-602=10 800,所以BD=60 km,因为∠CBE=90°+30°=120°,∠EBD=30°,所以∠CBD=90°,所以CD===240 km,所以cos∠BDC===,因为DF=360×=90 km,所以在三角形BDF中,BF2=BD2+DF2-2×BD×DF×cos∠BDF=(60)2+902-2×60×90×=10 800,所以BF=60 km,即此时飞机距离城市B的距离为60 km.8.D 取线段P i P j的中点Q k,因为2++=0,所以+=-2,即2=-2,所以=-,于是Q k,O,M共线,因为点M在坐标轴上,所以Q k也在坐标轴上,于是满足条件的(i,j)的情况有(1,8),(2,7),(3,6),(4,5),(2,3),(1,4),(5,8),(6,7),即满足条件的点M有8个.9.ABCD 由(1-i)z=2i得z==-1+i,于是|z|=,其共轭复数=-1-i,复数z在复平面内对应的点是(-1,1),位于第二象限.因为(-1+i)2+2(-1+i)+2=0,所以复数z是方程x2+2x+2=0的一个根,故选项A、B、C、D均正确.10.ABC 样本中女生人数为9+24+15+9+3=60,则男生人数为40,故A选项正确;样本中B层次人数为24+40×30%=36,并且B层次占女生和男生的比例均最大,故B层次人数最多,B选项正确;E层次中的男生人数为40×(1-10%-30%-25%-20%)=6,故C选项正确;D层次中,男生人数为40×20%=8,女生人数为9,故D选项错误.11.BD 由于B⊆A,所以A∪B=A,AB=B,于是P(A∪B)=P(A)=0.5,P(AB)=P(A∩B)=P(B)=0.2,故A选项错误;由于A与B互斥,所以P(A∪B)=P(A)+P(B)=0.5+0.2=0.7,AB为不可能事件,因此P(AB)=0,故B 选项正确;如果A与B相互独立,那么P(AB)=P(A)P(B)=0.1,故C选项错误;P()=P()P()=0.5×0.8=0.4,P(A)=P(A)P()=0.5×0.8=0.4,故D选项正确.12.ACD 因为M,N分别是线段A'A,A'D'的中点,所以MN∥AD',又因为AD'∥BC',所以MN∥BC',故A 选项正确;连接B'C,易证B'C⊥平面ABC'D',因此点C到平面ABC'D'的距离为B'C=,故B选项错误;直线BC与平面ABC'D'所成的角为∠CBC'=,故C选项正确;三棱柱AA'D'-BB'C'的外接球即正方体的外接球,其半径R=,因此其表面积为4π×=3π,故D选项正确.13.答案90°解析由正弦定理可得sin Bcos C+sin Ccos B=sin2A,即sin(B+C)=sin 2A,所以sin A=sin2A,易知sin A≠0,所以sin A=1,故A=90°.14.答案19;8解析依题意可得2x1-1,2x2-1,…,2x m-1的平均数为2×10-1=19,方差为22×2=8.15.答案解析设a,b的夹角为θ,依题意有|a|2-a·b-6|b|2=-18,所以32-3×2×cos θ-6×22=-18,解得cos θ=,由于θ∈[0,π],故θ=.16.答案解析取AB的中点D,连接VD,CD,由于VA=VB,AC=BC,所以VD⊥AB,CD⊥AB,于是∠VDC就是二面角V-AB-C的平面角.因为AV⊥BV,AC⊥BC,AB=2,所以VD=,DC=,又VC=1,所以cos∠VDC==.17.解析(1)解法一:因为向量c∥a,所以设c=λa,(1分)则c2=(λa)2,即(2)2=λ2a2,(2分)所以20=5λ2,解得λ=±2.(4分)所以c=2a=(2,4)或c=-2a=(-2,-4).(5分)解法二:设向量c=(x,y).(1分)因为c∥a,且a=(1,2),所以2x=y,(2分)因为|c|=2,所以=2,(3分)由解得或(4分)所以c=(2,4)或c=(-2,-4).(5分)(2)因为向量b+ka与b-ka互相垂直,所以(b+ka)·(b-ka)=0,(6分)即b2-k2a2=0.(7分)因为a=(1,2),b=(4,-3),所以a2=5,b2=25,(8分)所以25-5k2=0,解得k=±.(10分)18.解析(1)由余弦定理得,()2=b2+12-2bcos ,(2分)整理得b2+b-6=0,解得b=2或b=-3(舍去).(5分)所以△ABC的面积S=bcsin A=×2×1×=.(6分)(2)选择条件①.在△ABC中,由正弦定理=,得=,(8分)所以sin B=.(9分)因为AD=AB=1,所以∠ADB=∠B.(10分)所以sin∠ADB=sin B,所以sin∠ADB=.(12分)选择条件②.在△ABC中,由余弦定理的推论,得cos B==.(8分)因为A=,所以∠BAD=-=,(9分)所以sin∠ADB=cos B,即sin∠ADB=.(12分)19.解析(1)证明:因为E,F分别为AB,BC的中点,所以EF∥AC.(2分)因为EF⊄平面ACD,AC⊂平面ACD,所以EF∥平面ACD.(4分)(2)易得EF∥AC,FM∥BD,(5分)所以∠EFM为异面直线AC与BD所成的角(或其补角).(7分)在△EFM中,EF=FM=EM=1,所以△EFM为等边三角形,(10分)所以∠EFM=60°,即异面直线AC与BD所成的角为60°.(12分)20.解析(1)记“甲队总得分为3分”为事件A,“甲队总得分为1分”为事件B.甲队得3分,即三人都答对,其概率P(A)=××=.(2分)甲队得1分,即三人中只有一人答对,其余两人都答错,其概率P(B)=××+××+××=.(5分)所以甲队总得分为3分的概率为,甲队总得分为1分的概率为.(6分)(2)记“甲队总得分为2分”为事件C,“乙队总得分为1分”为事件D.甲队得2分,即三人中有两人答对,剩余一人答错,则P(C)=××+××+××=.(8分)乙队得1分,即三人中只有一人答对,其余两人都答错,则P(D)=××+××+××=.(11分)由题意得,事件C与事件D相互独立.所以甲队总得分为2分且乙队总得分为1分的概率为P(C)P(D)=×=.(12分)21.解析(1)证明:因为PA⊥底面ABC,且BD⊂底面ABC,所以PA⊥BD.(1分)因为AB=BC,且点D为线段AC的中点,所以BD⊥AC.(2分)又PA∩AC=A,所以BD⊥平面PAC.(3分)又BD⊂平面BDE,所以平面BDE⊥平面PAC.(4分)(2)因为PA∥平面BDE,PA⊂平面PAC,平面PAC∩平面BDE=ED,所以ED∥PA.(5分)因为点D为AC的中点,所以点E为PC的中点.(6分)解法一:由题意知P到平面BDE的距离与A到平面BDE的距离相等.(7分)所以V P-BDE=V A-BDE=V E-ABD=V E-ABC=V P-ABC=×××2×2×2=.所以三棱锥P-BDE的体积为.(12分)解法二:由题意知点P到平面BDE的距离与点A到平面BDE的距离相等.(7分)所以V P-BDE=V A-BDE.(8分)由题意得AC=2,AD=,BD=,DE=1,(9分)由(1)知,AD⊥BD,AD⊥DE,且BD∩DE=D,所以AD⊥平面BDE,(10分)所以V A-BDE=AD·S△BDE=×××1×=.所以三棱锥P-BDE的体积为.(12分)解法三:由题意得AC=2,AD=,BD=,DE=1,(8分)由(1)知,BD⊥平面PDE,且S△PDE=DE·AD=×1×=.(10分)所以V P-BDE=V B-PDE=BD·S△PDE=××=.所以三棱锥P-BDE的体积为.(12分)22.解析(1)由题图得,(0.002+0.009 5+0.011+0.012 5+0.007 5+a+0.002 5)×20=1,(1分)解得a=0.005.(2分)(2)(i)因为(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5,所以三科总分成绩的中位数在[220,240)内,(3分)设中位数为x,则(0.002+0.009 5+0.011)×20+0.012 5×(x-220)=0.5,解得x=224,即中位数为224.(5分)(ii)三科总分成绩的平均数为170×0.04+190×0.19+210×0.22+230×0.25+250×0.15+270×0.1+290×0.05=225.6.(7分)(3)三科总分成绩在[220,240),[260,280)两组内的学生分别有25人,10人,故抽样比为=.(8分)所以从三科总分成绩为[220,240)和[260,280)的两组中抽取的学生人数分别为25×=5,10×=2.(9分)记事件A=“抽取的这2名学生来自不同组”.三科总分成绩在[220,240)内的5人分别记为a1,a2,a3,a4,a5,在[260,280)内的2人分别记为b1,b2.现在这7人中抽取2人,则试验的样本空间Ω={(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4) ,(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2)},共21个样本点.(10分) 其中A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(a5,b1),(a5,b2)},共10个样本点.(11分)所以P(A)=,即抽取的这2名学生来自不同组的概率为.(12分)。
贵州省贵阳市2019-2020学年九年级数学第一学期期末考试试卷答案及评分标准
九年级数学参考答案 第1页(共4页)贵阳市普通中学2019—2020学年度第一学期期末监测考试试卷九年级数学参考答案及评分建议说明:1.本次考试成绩仅作为学生期末评价的一个方面,学生期末的总体评价还应包括“知识与技能”、“过程和方法”、“情感、态度和价值观”三个方面的动态评价。
本次考试成绩的量17.(本题满分5分)(1) ① 20 ;② 0…….……………..……………... ................................................…(4分) (2)矩形“接近度”的合理定义为:根据矩形与正方形的接近程度称为“接近度”,定义矩形“接近度”为n n. ...............................(5分)九年级数学参考答案 第2页(共4页)4250)5400)(2540(=+m m --18.(本题满分5分) 解:(1.…………...........................…..…..……............………(2分) (2) 画树状图如下:19 如图所示,线段FG 即为所求. 20答:八,九这两个月的月平均增长率为25% . ………………………......(4分) (2)设:当农产品每袋降价m 元时,该淘宝网店10月份获利4250元.根据题意可得:解得:m 1=5,m 2=-70(不合题意舍去).答:当农产品每袋降价5元时,该淘宝网店10月份获利4250元. …. ...(7分)开始第17题图九年级数学参考答案 第3页(共4页)21.(本题满分8分)解:(1) ∵AB ⊥CD ,AC ⊥BC ,∴∠A+∠ACD =90°,∠BCD+∠ACD =90°, ∴∠A =∠BCD ,又∵NM ⊥BM ,AC ⊥BC ,∴∠AMN+∠BMC =90°,∠CBM+∠BMC =90°,22九年级数学参考答案 第4页(共4页)23.(本题满分8分)解:(1) 6-x ; ……………………….............................................................. . ..............(2分) (2)在Rt △ACB 中,由勾股定理有:222AB BC AC =+,且BC=8,AB=10,∴AC=6,又∵A 1是BC 的中点, (3又∵∠A =∠DA 1E ,∠A =∠DA 1E =∠CDA 1 EA 1//AD∴四边形ADA 1E 是平行四边形, ∵DA =DA 1,∴平行四边形ADA 1E 是菱形. .................................................................…….......(8分)(第23题图)(第23题备用图)。
贵州省贵阳市2023-2024学年度第二学期期末监测试卷高一数学试题(含答案)
;
(2)若
uuur AB
uuur × AC
=
0
且
AB
=
3,
AC
=
2
,求
uuur CD
.
试卷第41 页,共33 页
17.在 VABC 中,角 A, B,C 的对边分别为 a, b, c ,已知 b =
2,c =
5, cosC = -
2. 2
(1)求 sinB 的值;
(2)求 VABC 的面积. 18.根据央视网消息显示,贵州省文旅厅网站 5 月 1 日公布《2023 年“五一”假期前三天 全省文化旅游情况》,其中显示,假期前三天,根据抽样调查结果,全省接待游客 2038.26
D.0
二、多选题
试卷第21 页,共33 页
9. VABC 中角 A, B,C 所对的边分别为 a,b, c ,若 c = 4, B = 30o ,则下列结论正确的有 ()
A.若 b = 2 ,则 VABC 有一个解 B.若 VABC 有两个解,则 a 有可能等于 3 3
C.若
VABC
为等腰三角形,则 b
=
43 3
或
4
D.若 VABC 为直角三角形,则 b 一定为 2
10.如图,在正方体 ABCD - A1B1C1D1 中,点 P 在线段 BC1 上运动时(包括 B、C1 点),下列 命题正确的是( )
A.三棱锥 A - D1PC 的体积不变 B.直线 AD 一定与平面 PA1D1 平行
C.直线
C1
ar
=
r b
=
2,
ar
+
r b
=
2
3
,则
ar
×
2024届贵州省贵阳市普通高中数学高一下期末联考试题含解析
2024届贵州省贵阳市普通高中数学高一下期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图的折线图为某小区小型超市今年一月份到五月份的营业额和支出数据(利润=营业额-支出),根据折线图,下列说法中正确的是( )A .该超市这五个月中,利润随营业额的增长在增长B .该超市这五个月中,利润基本保持不变C .该超市这五个月中,三月份的利润最高D .该超市这五个月中的营业额和支出呈正相关2.设点M 是直线20x y +-=上的一个动点,M 的横坐标为0x ,若在圆22:2O x y +=上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A .20,2⎡⎤⎢⎥⎣⎦B .[0,1]C .[0,2]D .[0,2]3.等差数列的公差,且,则数列的前项和取得最大值时的项数是( ) A .9B .10C .10和11D .11和124.一个圆柱的侧面展开图是一个正方形,这个圆柱全面积与侧面积的比为( ) A .122ππ+ B .144ππ+ C .12ππ+ D .142ππ+ 5.函数的图象可由函数的图象( )A .向左平移个单位长度得到B .向左平移个单位长度得到C .向右平移个单位长度得到D .向右平移个单位长度得到6.在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .57.已知点()()1,0a a >到直线:20+-=l x y 的距离为1,则a 的值为( ) A .2B .22-C .21-D .21+8.设实数,x y 满足约束条件35472x y x y x +≥⎧⎪-≥-⎨⎪≤⎩,则4z x y =+的最大值为( )A .2-B .9C .11D .4149.己知(2,0)A -,(2,0)B ,若x 轴上方的点P 满足对任意R λ∈,恒有2AP AB λ-≥成立,则P 点纵坐标的最小值为( ) A .14B .12C .1D .210.已知等差数列:1,a 1,a 2,9;等比数列:-9,b 1,b 2,b 3,-1.则b 2(a 2-a 1)的值为( ) A .8 B .-8 C .±8D .二、填空题:本大题共6小题,每小题5分,共30分。
贵州省贵阳市六校(六中、二中、八中、十二中、省实、贵阳高中)2023-2024学年高一下学期第一次联
贵州省贵阳市六校(六中、二中、八中、十二中、省实、贵阳高中)2023-2024学年高一下学期第一次联考数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.C,(1i)22i z z ∈-=--则z 的虚部是( )A .-2B .2i -C .2D .2i2.ABC V 中,角A 、B 、C 的对应边是a 、b 、c .已知30,3,A c a ︒===的ABC V 有( )A .一个解B .两个解C .无解D .不确定3.已知121cos isin ()Z Z θθθ=-=+∈R ,则12Z Z ⋅=( )A .4B .1C .2D .不确定 4.在等腰梯形ABCD 中,下列结论正确的是( )A .DA CB =u u u r u u u r B .AD AB AC +=u u u r u u u r u u u rC .12AD AB AC +=u u u r u u u r u u u r D .||||DA DB CA CB +=+u u u r u u u r u u r u u u r5.如图圆O 中若4,5BA BC ==,则BO AC ⋅u u u r u u u r 的值等于( )A .92- B .3 C .92 D .-36.锐角ABC V 中,π2,3a A ==,则22b c +取值范围是( ) A .(0,4] B .(4,8] C .20,83⎛⎤ ⎥⎝⎦D .20,83⎡⎫⎪⎢⎣⎭ 7.如图,在平行四边形ABCD 中,13AE AO =u u u r u u u r ,延长DE 交AB 于点F ,AB a u u u r r =,AD b u u u r r =.则DF =u u u r ( )A .15a b -r rB .15a b -r rC .25a b -r rD .2155a b +r r 8.故宫博物院收藏着一副《梧桐双兔图》.该绢本设色画纵约176cm ,横约95cm ,挂在墙上最低点B 离地面194cm ,小兰身高160cm (头顶距眼睛的距高为10cm).为使观测视角θ最大,小兰离墙距离S 应为( )A .B .94cmC .D .76cm二、多选题9.下列说法正确的是( )A .(cos ,sin ),(1,a b a b θθ==⊥r r r r ,则π6θ= B .若21,e e u r u u r 为平面上一组基底,则121212,2e e e e -+u r u r u u r u u r 也是一组基底 C .若对于两个非零向量,a b r r ,满足()b a b a b a +=-≥r r r r r r ,则a r 与b r 共线 D .若//a b r r ,则存在唯一实数λ使得a b λ=r r10.下列说法正确的是( )A .C Z ∀∈,有22||Z Z =B .C,0,0Z Z Z Z ∈≠+=则”是“Z 为纯虚数”的充要条件C .若1iZ =,则31Z -对应的点在复平面内的第四象限 D .C,||2Z Z ∈=,则|i |Z +的范围是[]1,311.ABC V 中,角A 、B 、C 的对边分别是a 、b 、c ,若cos si ,n a B b A c a +==222sin a c b ac B +-=⋅,则下列说法正确的是( )A .π4A =B .tan 2B =C .b =D .ABC V 面积为三、填空题12.复数()222log (1)i log 22Z a a a =-+⋅--是实数,则=a .13.函数ππsin 24y x ⎛⎫=- ⎪⎝⎭的部分图像如图所示,则OB OC ⋅=uu u r u u u r.14.ABC V 中,角、、A B C 的对边分别是a 、b 、c ,若c o s c B ⋅c o s c o s c o s c o s A b A C b B +⋅=⋅,则ABC V 的形状是.四、解答题15.(1)计算2620218i +++;(2)已知关于x 的方程2i (23i)0x x m ++⋅-=有实数解,求纯虚数m . 16.锐角ABC V ,角,,A B C 的对边分别是,,a b c .已知2sin 0b A a -=.(1)求B ;(2)求sin cos A C +的取值范围.17.如图所示,点G 是ABC V 重心.,(,R)AM xAB AN y AC x y ==∈u u u u r u u u r u u u r u u u r .(1)用,AM AN u u u u r u u u r 表示AG u u u r (系数中的字母只含x ,y );(2)求2x y +最小值.18.ABC V 内角A 、B 、C 的对边分别是a 、b 、c ,已知:25cos cos 24A A π⎛⎫++= ⎪⎝⎭. (1)求A ;(2)若3,AB AC =边上的中线BD ABC V 面积;(3)a =ABC V 内切圆半径的取值范围.19.ABC V 内角,,A B C 的对边分别是,,a b c ,已知:sin sin cos sin cos sin sin a A a C B b C A b B c A ⋅+⋅+⋅=⋅+⋅.(1)求角B ;(2)若4a =,且ABC V 为锐角三角形,求ABC V 周长的取值范围;(3)若23()2b ac a c =>,且外接圆半径为2,圆心为O ,P 为圆上一个动点,试求PA PB ⋅u u u r u u u r 的取值范围.。
2019-2020学年贵州省贵阳市普通中学高一下学期期末地理试题
2019-2020学年贵州省贵阳市普通中学高一下学期期末地理试题1. 图示意喜马拉雅山植被垂直地域分异,据此完成下面小题。
1.图中甲和乙对应的植被是()A.高山草甸、高寒荒漠B.高山灌木林、高山草甸C.高山针叶林、高山灌木林D.常绿阔叶林、高山针叶林2.决定喜马拉雅山垂直地域分异规律的主导因素是()A.热量状况B.水分状况C.水热状况D.洋流分布3.喜马拉雅山南坡自然带比北坡丰富,主要是因为南坡()①相对高差大②地形坡度陡③纬度比较低④坡向为阴坡A.①②B.①③C.②③D.③④2. 叙利亚位于亚洲西部,大部分地区属于热带沙漠气候,人口密度较小。
近年来,该国军事冲突不断。
据此完成下面小题。
1. 近年来,叙利亚人口迁移的直接原因是()A.经济因素B.国家政策C.旅游休闲D.战争因素2.推测叙利亚环境人口容量较小的主要原因是()A.水资源贫乏B.教育欠发达C.开放程度低D.石油产量大3. 上海市浦东新区黄浦江畔的陆家嘴,是众多跨国银行的大中华区及东亚总部所在地,也是中国最具影响力的金融中心之一。
据此完成下面小题。
1. 陆家嘴是上海摩天大楼最密集的地带,其城市土地利用方式为()A.工业用地B.住宅用地C.商业用地D.休憩及绿化用地2.浦东新区城市建设对自然地理环境的影响主要是()A.交通拥堵B.水土流失C.热岛效应D.住房紧张4. 图为“某都市圈示意图”,据此完成下面小题。
1.图示都市圈内,服务范围最广、等级最高的城市是()A.上海B.南京C.滁州D.镇江2.下列叙述正确的是()①与淮安相比,扬州城市服务功能明显偏多②与滁州相比,芜湖距南京远,故等级较低③城市等级越高,数量越少、相距越远④南京的服务范围大于都市圈内其它城市的服务范围A.①②B.③④C.①③D.②④5. 图示意澳大利亚某农场土地利用状况,据此完成下面小题。
1.该农场()①形成种麦-放牧-休耕的良性生态系统②小农经营、精耕细作,劳动力投入大③可根据市场需求调整土地利用方式④产品以鲜花、水果、蔬菜等时鲜为主A.①②B.①③C.②③D.③④2.该农业地域类型为()A.季风水田农业B.混合农业C.商品谷物农业D.大牧场放牧业6. “万物皆可直播,人人都可做主播”。
2020-2021学年贵州省贵阳市高一(下)期末数学试卷(解析版)
2020-2021学年贵州省贵阳市高一(下)期末数学试卷一、选择题(共10小题,每题4分,共40分).1.已知两点和B(﹣2,0),则直线AB的倾斜角为()A.30°B.60°C.120°D.150°2.在空间直角坐标系O﹣xyz中,点(2,﹣1,2)关于yOz平面的对称点坐标为()A.(2,1,2)B.(﹣2,﹣1,﹣2)C.(2,﹣1,﹣2)D.(﹣2,﹣1,2)3.已知直线l经过圆C:x2+y2+2y=0的圆心且与直线l0:2x﹣3y+2=0平行,则l的方程是()A.3x﹣2y﹣2=0B.2x﹣3y﹣1=0C.2x﹣3y﹣3=0D.3x+2y+2=0 4.若实数a,b,c满足a<b<0<c,则下列不等式中不一定成立的是()A.ac<bc B.b2<c2C.a﹣c<c﹣b D.5.等比数列{a n}中,若a1=1,a5=,则a3=()A.B.C.±D.±6.在△ABC中,若有sin2(B+C)=sin2B+sin2C﹣sin B sin C,则角A的大小是()A.B.C.D.7.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为()A.6 斤B.9 斤C.9.5斤D.12 斤8.某三棱锥的三视图如图中粗实线所示(每个小方格的长度为1),则该三棱锥的外接球的表面积为()A.16πB.18πC.22πD.29π9.在数列{a n}中,已知a1=1,a n+1+a n=3(n∈N*),则a2021=()A.1B.2C.3D.202110.若关于x的不等式ax2+6ax+a+8≥0对任意x∈R恒成立,则a的取值范围为()A.(0,1]B.(﹣∞,1]C.[0,1]D.[1,+∞)二、填空题(本大题共5小题,每小题4分,共20分。
高中数学必修二 期末测试卷02-新教材-2021学年下学期期末考试全真模拟卷(人教A2019)
2020-2021学年高一数学下学期期末考试全真模拟卷(二)测试时间:120分钟 测试范围:人教A2019必修第一册+第二册满分:150分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、若集合{}21A x x =-≤≤,{}2log 1B x x =≤,则A B =( )A .12x xB .{}01x x <≤C .{}22x x -≤≤D .{2x x <-或}2x >【答案】C 【详解】由{}2log 1B x x =≤,得{}02B x x =<≤. 又{}21A x x =-≤≤, 所以{}22AB x x =-≤≤.故选:C . 2、复数113i-的虚部是( )A .310-B .110-C .110D .310【答案】D 【详解】 因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.3、某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A 【详解】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入我0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确; 新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%28%58%50%+=>,所以超过了经济收入的一半,所以D 正确;4、已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=a a b +( )A .3135-B .1935-C .1735D .1935【答案】D 【详解】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D.5、埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .514- B .512- C .514+ D .512+ 【答案】C 【详解】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得154b a +=(负值舍去). 故选:C.6、已知π2tan tan()74θθ-+=,则tan θ=( )A .–2B .–1C .1D .2【答案】D 【详解】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D.7、如图是我国古代著名的“赵爽弦图”的示意图,它由四个全等的直角三角形围成,其中3sin 5BAC ∠=,现将每个直角三角形的较长的直角边分别向外延长一倍,得到如图的数学风车,若在该数学风车内随机取一点,则该点恰好取自“赵爽弦图”外面(图中阴影部分)的概率为( )A .2543B .1843C .2549D .2449【答案】D 【详解】在Rt ABC ∆中,3sin 5BAC ∠=不妨设3BC =,则5AB =,4AC =则阴影部分的面积为1434242⨯⨯⨯=;数学风车的面积为224549+=∴所求概率2449P =本题正确选项:D 8、已知ABC ∆是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 平面ABC 的距离为( )A .3B .32C .1D .32【答案】C 【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =. 设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ==.故选:C.二、多项选择题(本题共4小题,每小题5分,共16分,在每小题给出的四个选项中,不止有一项是符合题目要求的)9、下列说法正确的是( ) A .随着试验次数的增加,频率一般会越来越接近概率B .连续10次掷一枚骰子,结果都是出现1点,可以认为这枚骰子质地不均匀C .某种福利彩票的中奖概率为11000,那么买1000张这种彩票一定能中奖D .某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为不降水 【答案】AB 【详解】对于A ,试验次数越多,频率就会稳定在概率的附近,故A 正确对于B ,如果骰子均匀,则各点数应该均匀出现,所以根据结果都是出现1点可以认定这枚骰子质地不均匀,故B 正确. 对于C ,中奖概率为11000是指买一次彩票,可能中奖的概率为11000,不是指1000张这种彩票一定能中奖,故C 错误.对于D ,“明天本市降水概率为70%”指下雨的可能性为0.7,故D 错. 故选:AB .10、有以下四种说法,其中正确的有( ) A .“2x >且3y >”是“5x y +>”的充要条件B .直线l ,m ,平面α,若m α⊂,则“l α⊥”是“l m ⊥”的充分不必要条件C .“3x =”是“2230x x --=”的必要不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab =”的既不充分也不必要条件【答案】BD 【详解】对于A ,由“2x >且3y >”,根据不等式的性质可得5x y +>,充分性满足;反之,5x y +>推不出“2x >且3y >”,必要性不满足,故A 不正确; 对于B ,根据线面垂直的定义:“l α⊥”可推出“l m ⊥”,反之,由线面垂直的判定定理可知:仅“l m ⊥”,不一定得出“l α⊥”,故B 正确; 对于C ,“3x =”可得“2230x x --=”,充分性满足;反之,“2230x x --=”可得“3x =”或“1x =-”,必要性不满足, 所以“3x =”是“2230x x --=”的充分不必要条件,故C 不正确; 对于D ,若“0a ≠且0b =”可推出“0ab =”; 反之,若“0ab =”,可得“0a =”或“0b =”,所以“0a ≠”是“0ab =”的既不充分也不必要条件,故D 正确; 故选:BD11、已知函数()sin()f x x ωϕ=-(0,||2πωϕ><)的部分图象如图所示,则下列选项正确的是( )A .函数()f x 的最小正周期为3πB .5(,0)4π为函数()f x 的一个对称中心 C .1(0)2f =-D .函数()f x 向右平移2π个单位后所得函数为偶函数【答案】ACD 【分析】根据图象,先由144T ππ=-得,求ω,判断A 正确,再利用五点法定位确定ϕ得到解析式,结合利用正弦函数性质逐一判断BCD 的正误即可. 【详解】根据函数()sin(),0,||2f x x πωϕωϕ⎛⎫=-><⎪⎝⎭的部分图象,由144T ππ=-,所以3T π=,故A 正确; 由23ππω=,可得23ω=, 由点,04π⎛⎫⎪⎝⎭在函数图像上,可得2sin 034πϕ⎛⎫⨯-= ⎪⎝⎭,可得2,34k k πϕπ⨯-=∈Z ,解得,6k k πϕπ=-∈Z , 因为||2ϕπ<,可得6π=ϕ,可得2()sin 36f x x π⎛⎫=- ⎪⎝⎭,因为52523sin sin 0434632f ππππ⎛⎫⎛⎫=⨯-==≠⎪ ⎪⎝⎭⎝⎭,故B 错误; 由于1(0)sin 62f π⎛⎫=-=- ⎪⎝⎭,故C 正确; 将函数()f x 向右平移2π个单位后所得函数为2f x π⎛⎫- ⎪⎝⎭22sin cos 3263x x ππ⎡⎤⎛⎫=--=- ⎪⎢⎥⎝⎭⎣⎦为偶函数,故D正确. 故选:ACD.12、如图,棱长为1的正方体1111ABCD A B C D -中,点E 为11A B 的中点,则下列说法正确的是( )A .DE 与1CC 为异面直线B .DE 与平面11BCC B 所成角的正切值为24C .过,,D CE 三点的平面截正方体所得两部分的体积相等D .线段DE 在底面ABCD 的射影长为2【答案】ABC 【详解】由图可知:DE 与CC1为异面直线,∴A 正确;因为平面11//BCC B 平面11ADD A ,所以DE 与平面11BCC B 所成角即DE 与平面11ADD A 所成角,连接A1D ,显然,1A DE ∠是DE 与平面11ADD A 所成角.在直角三角形EA1D 中:111122tan 42A E A DE A D ∠===,∴B 正确;过D 、C 、E 三点的平面截正方体所得两部分的体积关系即为平面A1B1CD 截正方体所得两部分的体积关系,由正方体的对称性可知截得两部分几何体的体积相等,∴C 正确; 取AB 中点F ,连接EF 、DF ,∵EF //B1B 且B1B ⊥底面ABCD ,∴EF ⊥底面ABCD ,∴DF 的长为线段DE 在底面ABCD 的射影长,在直角三角形DFE 中:EF=1,DE=32,∴DF=2235122⎛⎫-= ⎪⎝⎭,∴D 错. 故选:ABC.三、填空题(本题共4小题,每小题5分,共20分)13、已知不等式220ax bx ++>的解集为{|12}x x -<<,则不等式220x bx a ++<的解集为__________________. 【答案】1{|1}?2x x -<< 【分析】 【详解】不等式220ax bx ++>的解集为{|12}x x -<<,220ax bx ∴++=的两根为1-,2,且0a <,即12b a-+=-,()212a -⨯=,解得1a =-,1b =,则不等式可化为2210x x +-<,解得112x -<<,则不等式220x bx a ++<的解集为1{|1}2x x -<<.14、在ABC ∆中,2cos ,4,33C AC BC ===,则tan B =____________.【答案】45【详解】设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴= 22221145cos sin 1()tan 452999a cb B B B ac +-==∴=-=∴=15、在四边形ABCD 中,AD BC ∥,23AB =,5AD =,30A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________.【答案】1-. 【详解】建立如图所示的直角坐标系,则(23,0)B ,535(,)22D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒, 因为AE BE =,所以30BAE ABE ∠=∠=︒, 所以直线BE 的斜率为33,其方程为3(23)3y x =-,直线AE 的斜率为33-,其方程为33y x =-. 由3(23),333y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得3x =,1y =-, 所以(3,1)E -.所以35(,)(3,1)122BD AE =-=-. 16、设函数()()21ln 11f x x x =+-+,则使()()21f x f x >-成立的x 的取值范围是____________. 【答案】1(,1)3【详解】试题分析:()()21ln 11f x x x =+-+,定义域为,∵,∴函数为偶函数,当时,函数单调递增,根据偶函数性质可知:得()()21f x f x >-成立,∴,∴,∴的范围为1,13⎛⎫⎪⎝⎭故答案为A.四、解答题(17题10分,其余每题12分,共70分,解答应写出文字说明、证明过程或演算步骤,考生根据要求作答)17、成年人收缩压的正常范围是(90,140)(单位:mmHg ),未在此范围的献血志愿者不适合献血,某血站对志愿者的收缩压进行统计,随机抽取男志愿者100名、女志愿者100名,根据统计数据分别得到如下直方图:(1)根据直方图计算这200名志愿者中不适合献血的总人数; (2)估计男志愿者收缩压的中位数;(3)估计女志愿者收缩压的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)20人;(2)115mmHg ;(3)125mmHg . 【详解】解:(1)由(0.0100.01520.0200.030)101m +++⨯+⨯=得0.005m =, 故这些男志愿者中有5人不适合献血;由(0.0050.01020.0200.035)101n ++++⨯=得0.015n =, 故这些女志愿者中有15人不适合献血. 综上所述,这些志愿者中共有20人不适合献血.(2)设男志愿者收缩压的中位数为(mmHg)x ,则110120x <<.由0.015100.02010(110)0.0300.5x ⨯+⨯+-⨯=得115x =, 因此,可以估计男志愿者收缩压的中位数为115(mmHg).(3)950.051050.101150.151250.351350.201450.15125⨯+⨯+⨯+⨯+⨯+⨯=, 因此,可以估计女志愿者收缩压的平均值为125(mmHg).18、在ABC ∆中,角,,A B C 所对的边分别为,,a b c.已知5,a b c === (Ⅰ)求角C 的大小; (Ⅰ)求sin A 的值; (Ⅰ)求πsin(2)4A +的值. 【答案】(Ⅰ)4C π;(Ⅰ)sin A =(Ⅰ)sin 2426A π⎛⎫+=⎪⎝⎭. 【详解】(Ⅰ)在ABC中,由5,a b c ===222cos 22a b c C ab +-===, 又因为(0,)C π∈,所以4Cπ;(Ⅰ)在ABC 中,由4Cπ,a c ==可得sin sin a CA c===13; (Ⅰ)由a c <知角A为锐角,由sin A =,可得cos A ==进而2125sin 22sin cos ,cos22cos 11313A A A A A ===-=,所以125sin(2)sin 2coscos2sin444132132A A A πππ+=+=⨯+⨯=26.19、如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析. 【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC = 所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内20、已知()22sin ,cos ,(3cos ,2),()a x x b x f x a b ===⋅. (1)求()f x 的最小正周期及单调递减区间; (2)求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(1)T π=,单调递减区间为2,,63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2)见解析【详解】(1)2()23sin cos 2cos f x a b x x x =⋅=+2cos 212sin 216x x x π⎛⎫=++=++ ⎪⎝⎭,∴()f x 的最小正周期22T ππ==. 由3222,262k x k k Z πππππ+++∈,得2,63k x k k Z ππππ++∈, ∴()f x 的单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)∵0,2x π⎡⎤∈⎢⎥⎣⎦, ∴72,666x πππ⎡⎤+∈⎢⎥⎣⎦, 当7266x ππ+=,即2x π=时,函数()f x 取得最小值,为72sin106π+=; 当262x ππ+=,即6x π=时,函数()f x 取得最大值,为2sin 132π+=.故函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为3,最小值为0.21、在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos cos cos A B C ++的取值范围. 【答案】(I )3B π=;(II)3]2【详解】(I)由2sin b A =结合正弦定理可得:2sin sin ,sin B A A B =∴= △ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 32A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,113sin ,2232A π⎛⎤⎛⎫++∈ ⎥ ⎪ ⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.22、有一种鱼的身体吸收汞,当这种鱼身体中的汞含量超过其体重的1.00ppm (即百万分之一)时,人食用它,就会对人体产生危害.现从一批该鱼中随机选出30条鱼,检验鱼体中的汞含量与其体重的比值(单位:ppm ),数据统计如下:0.07 0.24 0.39 0.54 0.61 0.66 0.73 0.82 0.82 0.820.87 0.91 0.95 0.98 0.98 1.02 1.02 1.08 1.14 1.201.20 1.26 1.29 1.31 1.37 1.40 1.44 1.58 1.62 1.68(1)求上述数据的中位数、众数、极差,并估计这批鱼该项数据的80%分位数;(2)有A ,B 两个水池,两水池之间有10个完全相同的小孔联通,所有的小孔均在水下,且可以同时通过2条鱼.(Ⅰ)将其中汞的含量最低的2条鱼分别放入A 水池和B 水池中,若这2条鱼的游动相互独立,均有13的概率进入另一水池且不再游回,求这两条鱼最终在同一水池的概率;(Ⅰ)将其中汞的含量最低的2条鱼都先放入A 水池中,若这2条鱼均会独立地且等可能地从其中任意一个小孔由A 水池进入B 水池且不再游回A 水池,求这两条鱼由不同小孔进入B 水池的概率.【答案】(1)中位数为1;众数为0.82;极差为1.61;估计这批鱼该项数据的80百分位数约为1.34;(2)(Ⅰ)49;(Ⅰ)910. 【详解】解:(1)由题意知,数据的中位数为0.98 1.0212+=数据的众数为0.82数据的极差为1.680.07 1.61-=估计这批鱼该项数据的80百分位数约为1.31 1.371.342+= (2)(Ⅰ)记“两鱼最终均在A 水池”为事件A ,则212()339P A =⨯=记“两鱼最终均在B 水池”为事件B ,则212()339P B =⨯=∵事件A 与事件B 互斥,∴两条鱼最终在同一水池的概率为224()()()999P AB P A P B =+=+= (Ⅰ)记“两鱼同时从第一个小孔通过”为事件1C ,“两鱼同时从第二个小孔通过”为 事件2C ,依次类推;而两鱼的游动独立∴12111()()1010100P C P C ===⨯=记“两条鱼由不同小孔进入B 水池”为事件C ,则C 与1210...C C C 对立,又由事件1C ,事件2C ,10C 互斥∴121011()(...)1010010P C P C C C ==⨯=即12109()1(...)10P C P C C C =-=。
贵州省贵阳市2019-2020学年八年级(下)开学数学试卷(含解析)
2019-2020学年贵州省贵阳市八年级(下)开学数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)下列实数中,属于无理数的是()A.B.C.D.π2.(3分)已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为()A.30cm B.80cm C.90cm D.120cm3.(3分)如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣4,﹣1)B.(﹣4,1)C.(4,﹣1)D.(1,﹣4)4.(3分)我市某一周每天的最高气温统计如下(单位:℃):27,28,29,28,29,30,29.这组数据的众数与中位数分别是()A.28,28B.28,29C.29,28D.29,295.(3分)已知点A(m+3,2)与点B(1,n﹣1)关于x轴对称,m=(),n=()A.﹣4,3B.﹣2,﹣1C.4,﹣3D.2,16.(3分)如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°7.(3分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米8.(3分)一次函数y=kx﹣k的大致图象可能如图()A.B.C.D.9.(3分)《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,则列方程组错误的是()A.B.C.D.10.(3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC 二、填空题:每小题4分,共20分.11.(4分)已知:一个正数的两个平方根分别是2a﹣3和a﹣2,则a的值是.12.(4分)点A(m,m+5)在函数y=﹣2x+1的图象上,则m=.13.(4分)如图,已知O为△ABC内任意一点,且∠A=40°,∠1=25°,∠2=35°,则∠BOC=.14.(4分)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.15.(4分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.若PE=5,则点P 到AB的距离是.三、解答题:本大题8小题,共50分.16.(9分)计算:(2)3x(x﹣2)=2(x﹣2)17.(9分)如图,在四边形ABCD中,点E,F分别在AB和CD上,已知AB∥CD,∠CDE =∠ABF.求证:DE∥BF18.(9分)如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积.(2)判断△ABC是什么形状?并说明理由.19.(9分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴的对称图形△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积;(3)在x轴上找出使P A+PB的值最小的点P,并写出点P的坐标20.(9分)周口市某水果店一周内甲、乙两种水果每天销售情况统计如下:(单位:千克)品种星期一二三四五六日甲45444842575566乙48444754515360(1)分别求出本周内甲、乙两种水果每天销售量的平均数;(2)哪种水果销售量比较稳定?21.(9分)甲开车从距离B市100千米的A市出发去B市,乙从同一路线上的C市出发也去往B市,二人离A市的距离与行驶时间的函数图象如图(y代表距离,x代表时间).(1)C市离A市的距离是千米;(2)甲的速度是千米∕小时,乙的速度是千米∕小时;(3)小时,甲追上乙;(4)试分别写出甲、乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式.(注明自变量的范围)22.(8分)某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.23.(8分)已知一次函数y=kx+b经过点(0,3)和(3,0).(1)求此一次函数解析式;(2)求这个函数与直线y=2x﹣3及y轴围成的三角形的面积.2019-2020学年贵州省贵阳市八年级(下)开学数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)下列实数中,属于无理数的是()A.B.C.D.π【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:,,∴,,是有理数,π是无理数.故选:D.2.(3分)已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为()A.30cm B.80cm C.90cm D.120cm【分析】先求出斜边的平方,进而可得出结论.【解答】解:设直角三角形的斜边长为x,∵三边的平方和为1800cm2,∴x2=900cm2,解得x=30cm.故选:A.3.(3分)如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣4,﹣1)B.(﹣4,1)C.(4,﹣1)D.(1,﹣4)【分析】根据A(1,1),B(2,0),再结合图形即可确定出点C的坐标.【解答】解:∵点A的坐标是:(1,1),点B的坐标是:(2,0),∴点C的坐标是:(4,﹣1).故选:C.4.(3分)我市某一周每天的最高气温统计如下(单位:℃):27,28,29,28,29,30,29.这组数据的众数与中位数分别是()A.28,28B.28,29C.29,28D.29,29【分析】根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数,即可得出答案.【解答】解:29出现了3次,出现的次数最多,则众数是29;把这组数据从小到大排列27,28,28,29,29,29,30,最中间的数是29,则中位数是29;故选:D.5.(3分)已知点A(m+3,2)与点B(1,n﹣1)关于x轴对称,m=(),n=()A.﹣4,3B.﹣2,﹣1C.4,﹣3D.2,1【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:由点A(m+3,2)与点B(1,n﹣1)关于x轴对称,得m+3=1,n﹣1=﹣2,解得m=﹣2,n=﹣1,故选:B.6.(3分)如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°【分析】根据同位角相等,两直线平行这一定理可知a∥b,再根据两直线平行,同旁内角互补即可解答.【解答】解:∵∠3=∠5=110°,∵∠1=∠2=58°,∴a∥b,∴∠4+∠5=180°,∴∠4=70°,故选:A.7.(3分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.8.(3分)一次函数y=kx﹣k的大致图象可能如图()A.B.C.D.【分析】根据一次函数图象:k>0,b>0图象经过一二三象限,k>0,b<0图象经过一三四象限,k<0,b<0,图象经过二三四象限,k<0,b<0图象经过一二四象限,可得答案.【解答】解:当k>0时,﹣k<0,图象经过一三四象限,A、k>0,﹣k>0,故A不符合题意;B、k>0,﹣k<0,故B符合题意;C、k<0,﹣k<0,故C不符合题意;D、k<0,﹣k=0,故D不符合题意;故选:B.9.(3分)《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,则列方程组错误的是()A.B.C.D.【分析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.【解答】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组错误,故选:D.10.(3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC 【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC =CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.二、填空题:每小题4分,共20分.11.(4分)已知:一个正数的两个平方根分别是2a﹣3和a﹣2,则a的值是.【分析】根据一个正数的平方根有两个,它们互为相反数求出a的值即可.【解答】解:∵一个正数的两个平方根分别是2a﹣3和a﹣2,∴2a﹣3+a﹣2=0,解得:a=,故答案为:.12.(4分)点A(m,m+5)在函数y=﹣2x+1的图象上,则m=﹣.【分析】把点A(m,m+5)代入y=﹣2x+1得到关于m的一元一次方程,解之即可.【解答】解:把点A(m,m+5)代入y=﹣2x+1得:m+5=﹣2m+1,解得:m=﹣,故答案为:﹣.13.(4分)如图,已知O为△ABC内任意一点,且∠A=40°,∠1=25°,∠2=35°,则∠BOC=100°.【分析】连接AO,延长AO交BC于点D,利用三角形的外角性质可得出∠BOD=∠1+∠BAO,∠COD=∠2+∠CAO,结合∠BOC=∠BOD+∠COD,∠BAC=∠BAO+∠CAO,即可求出∠BOC的度数.【解答】解:连接AO,延长AO交BC于点D,如图所示.∵∠BOD=∠1+∠BAO,∠COD=∠2+∠CAO,∴∠BOC=∠BOD+∠COD=∠1+∠BAO+∠2+∠CAO=∠BAC+∠1+∠2=40°+25°+35°=100°.故答案为:100°.14.(4分)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.【分析】由两条直线的交点坐标(m,4),先求出m,再求出方程组的解即可.【解答】解:∵y=x=2经过P(m,4),∴4=m+2,∴m=2,∴直线l1:y=x+2与直线l2:y=kx+b相交于点P(2,4),∴,故答案为15.(4分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.若PE=5,则点P 到AB的距离是5.【分析】作PF⊥AB于F,根据角平分线的性质解答即可.【解答】解:作PF⊥AB于F,∵AD是∠BAC的平分线,PE⊥AC,PF⊥AB,∴PF=PE=5,故答案为:5.三、解答题:本大题8小题,共50分.16.(9分)计算:(2)3x(x﹣2)=2(x﹣2)【分析】(1)先算乘方,二次根式,绝对值,再算乘法即可求解;(2)根据因式分解法解方程即可求解.【解答】解:(1)原式==﹣1+2+π﹣3=π﹣2;(2)3x(x﹣2)=2(x﹣2),3x(x﹣2)﹣2(x﹣2)=0,(x﹣2)(3x﹣2)=0,x﹣2=0或3x﹣2=0,解得.17.(9分)如图,在四边形ABCD中,点E,F分别在AB和CD上,已知AB∥CD,∠CDE =∠ABF.求证:DE∥BF【分析】先由AB∥CD知∠CDE=∠AED,结合∠CDE=∠ABF得∠AED=∠ABF,据此即可得证.【解答】证明:∵AB∥CD,∴∠CDE=∠AED.∵∠CDE=∠ABF,∴∠AED=∠ABF.∴DE∥BF.18.(9分)如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积.(2)判断△ABC是什么形状?并说明理由.【分析】(1)用长方形的面积减去三个小三角形的面积即可求出△ABC的面积.(2)根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:(1)△ABC的面积=4×8﹣1×8÷2﹣2×3÷2﹣6×4÷2=13.故△ABC的面积为13;(2)∵正方形小方格边长为1∴AC==,AB==,BC==2,∵在△ABC中,AB2+BC2=13+52=65,AC2=65,∴AB2+BC2=AC2,∴网格中的△ABC是直角三角形.19.(9分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴的对称图形△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积;(3)在x轴上找出使P A+PB的值最小的点P,并写出点P的坐标【分析】(1)直接利用关于y轴对称点的性质得出对应点位置进而得出答案;(2)根据三角形的面积公式解答即可;(3)利用轴对称求最短路线的方法分析得出答案.【解答】解:(1)如图△A1B1C1即为所求.(﹣3,4);;(3)如图,点P即为所求.(2,0)20.(9分)周口市某水果店一周内甲、乙两种水果每天销售情况统计如下:(单位:千克)品种星期一二三四五六日甲45444842575566乙48444754515360(1)分别求出本周内甲、乙两种水果每天销售量的平均数;(2)哪种水果销售量比较稳定?【分析】(1)根据平均数的计算公式分别进行计算即可;(2)根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:(1)甲==51(千克),==51(千克);乙(2)S甲2=[(45﹣51)2+(44﹣51)2+(48﹣51)2+(42﹣51)2+(57﹣51)2+(55﹣51)2+(66﹣51)2]=,S乙2=[48﹣51)2+(44﹣51)2+(47﹣51)2+(54﹣51)2+(51﹣51)2+(53﹣51)2+(60﹣51)2]=,∵S甲2>S乙2,∴乙种水果销量比较稳定.21.(9分)甲开车从距离B市100千米的A市出发去B市,乙从同一路线上的C市出发也去往B市,二人离A市的距离与行驶时间的函数图象如图(y代表距离,x代表时间).(1)C市离A市的距离是28千米;(2)甲的速度是40千米∕小时,乙的速度是12千米∕小时;(3)1小时,甲追上乙;(4)试分别写出甲、乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式.(注明自变量的范围)【分析】(1)由函数图象可以直接得出C市离A市的距离是28千米;(2)由函数图象可以直接得出甲的速度为40千米∕小时,乙的速度为12千米∕小时;(3)由函数图象可以直接得出1小时,甲追上乙;(4)设甲离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y甲=k1x,乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y乙=k2x+b,由待定系数法求出其解即可.【解答】解:(1)由函数图象可以直接得出C市离A市的距离是28千米.故答案为:28;(2)由函数图象可以直接得出甲的速度为40千米∕小时,乙的速度为12千米∕小时.故答案为:40,12;(3)由函数图象可以直接得出1小时,甲追上乙.故答案为:1.(4)设甲离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y甲=k1x,乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y乙=k2x+b,由题意,得40=k1,∴y甲=40x(0≤x≤2.5).,解得:,∴y乙=12x+28(0≤x≤6).22.(8分)某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.【分析】(1)根据题意可知本题的等量关系有,1个大餐厅容纳的学生人数+2个小餐厅容纳的学生人数=1680,2个大餐厅容纳的学生人数+1个小餐厅容纳的学生人数=2280.根据这两个等量关系,可列出方程组.(2)根据题(1)得到1个大餐厅和1个小餐厅分别可容纳学生的人数,可以求出5个大餐厅和2个小餐厅一共可容纳学生的人数,再和5300比较.【解答】解:(1)设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,根据题意,得解这个方程组,得答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.(2)因为960×5+360×2=5520>5300,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.23.(8分)已知一次函数y=kx+b经过点(0,3)和(3,0).(1)求此一次函数解析式;(2)求这个函数与直线y=2x﹣3及y轴围成的三角形的面积.【分析】(1)将两坐标代入函数求得k,b,即求出了一次函数解析式;(2)求出两直线的交点坐标及两直线分别与y轴相交得到的交点坐标,再根据三角形面积公式求得结果.【解答】解:(1)将(0,3)(3,0)代入y=kx+b解得:∴一次函数解析式y=﹣x+3(2)一次函数y=﹣x+3与y轴的交点坐标为(0,3)直线y=2x﹣3与y轴的交点坐标为(0,﹣3)两直线的交点坐标解得交点坐标(2,1)∴S△==6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
数学试题
注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上
一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的.
1.在∆ABC 中,角A ,B ,C 的对边分别为c b a ,,,若3,2,3π===C b a ,则边c 的值为() A .7 B .13 C .4 D .19
2.若直线l 过点(2,3)且倾角为45°,若直线l 与y 轴交于点P ,则点P 的坐标为()
A .(1,0)
B .(-1,0)
C .(0,1)
D .(0,-1)
3.在数列{a n }中,2,211=--=+n n a a a ,则=5a ()
A .-6
B .6
C .10
D .-10 4.已知P 是圆422=+y x 上的动点,点A 的坐标为(0,5),则||PA 的最小值为()
A .9
B .7
C .5
D .3
5.已知d c b a >>>0,,则下列命题中,正确的是()
A .d b c a +>+
B .bd ac >
C .22b a >
D .b
c a c < 6.两直线013:1=++y ax l ,01)1(2:2=+++y a x l ,若21//l l ,则a 的值为()
A .﹣3
B .2
C .3或﹣2
D .﹣3或2
7.下列四个命题:
○
1垂直于同一条直线的两条直线平行 ○
2若一个平面内的两条相交直线都与另一个平面平行,那么这两个平面相互平行 ○
3一条直线垂直于一个平面内的无数条直线,则这条直线和这个平面垂直 ○
4若一个平面经过另一个平面的垂线,那么这两个平面相互垂直 其中正确命题的个数是()
A .0
B .1
C .2
D .3
8.若一个正方体的八个顶点都在同一个球面上,则正方体与这个球的表面积之比为()
A .π332
B .23π
C .π2
D .2
π 9.我国南北朝时期的数学家、天文学家祖恒提出了著名的祖恒原理:“幂势既同,
则积不容异”。
“幂”是面积,“势”即为高,意思是:夹在两平行平面之间的两
个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总
相同,那么这两个几何体的体积相等。
如图,网格纸上小正方形的边长为1,粗
线画出的是某几何体的三视图。
若某不规则几何体满足“幂势同”,则该不规则
几何体的体积为()
A .348π-
B .π-8
C .328π-
D .24π
-
10.在∆ABC 中,角A ,B ,C 的对边分别为c b a ,,,若角A ,B ,C 成等差数列,且直线012=-+cy ax 平分圆0642
2=--+y x y x 的周长,则∆ABC 的面积的最大值为() A .33 B .233 C .23 D .3
二、填空题:本大题共5小题,每小题4分,共20分.请把答案填在题中横线上
11.已知变量y x ,满足条件⎪⎩
⎪⎨⎧≥≤+≥-020y y x y x ,则函数y x z +=2的最大值为 .
12.已知关于x 的不等式02322<+-a ax x 的解集为{}21|<<x x ,则实数a 的值为 .
13.在等比数列{}n a 中,若21=a ,且12+a 是31,a a 的等差中项,则数列{}n a 的前5项和=5S
14.根据以往数据统计发现,某大型商场中秋节前30天内,前t 天的月饼销售总量)(t f 大致满足
)300(12100
)(2
≤<++=t t t t f (单位:百斤),则该商场前t 天内平均每天售出的月饼量最少约为 百斤。
15.我们称“n
a a a n +++ 21”为n 个正数n a a a ,,,21 的“均倒数”,若某个正项数列{}n a 的前n 项的“均倒数”为1
21+n ,则数列{}n a 的通项公式为 三、解答题:本大题共4小题,每小题8分,共32分,解答应写出文字说明,证明过程或演算步骤
16.已知∆ABC 的内角A ,B ,C 的对边分别为c b a ,,,若3,3=+=b a c 且有 (从○
1○2○3三个条件中选择一个条件,并将条件编号写在横线上)○1C B A cos 3)sin(=+;○2ab c b a =-+222;○3C A A
a >=,2sin (Ⅰ)求角C 的大小;
(Ⅱ)求∆ABC 的面积
17.在等差数列{}n a 中,11,97261=+=+a a a a .
(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)已知数列{}n n b a +是首项为2,公比为2的等比数列,求数列{}n b 的前n 和n S .
18.如图,在四棱锥P —ABCD 中,PA ⊥平面ABCD ,AD//BC ,AB AD ⊥,AB=BC=1,PA=AD=2,E 是PD 中点.
(Ⅰ)求证:CE//平面PAB ;
(Ⅱ)求异面直线BD 与CE 所成角的余弦值。
19.已知半径为2的圆C 与直线01034:1=++y x l 相切,且圆心在x 轴非负半轴上.
(1)求圆C 的方程;
(2)直线3
6233:2+=x y l 与圆C 交于A ,B 两点,分别过A ,B 作直线2l 的垂线与x 轴分别交于M ,N 两点,求||MN .
四、阅读与探究(本题1个小题,共8分。
解答应写出文字说明,条理清晰)
20.如图一,在平面直角坐标系xOy 中,O 为坐标原点,A (11,y x ),B (22,y x ),请根据以下信息,处理问题(1)和(2).
信息一:O 为坐标原点,),(22y x OB =,若将OB 顺时针旋转90°得到向量B O ,则),(22x y B O -=,且||||B O '=; 信息二:),(22y x =与),(11y x =的夹角记为θ,),(22x y B O -='与),(11y x =的夹角记为α,则|cos |sin αθ=; 信息三:θsin ||||21⋅⋅=
∆OB OA S OAB 信息四:12212211
y x y x y x y x -=,叫二阶行列式
(Ⅰ)求证:2211
21y x y x S OAB =∆,(外层“”表示取绝对值);
(Ⅱ)如图二,已知三点M (2,1),N (3,4),Q (1,6),试用(1)中的结论求MNQ ∆的面积.(说明:若用其他方法求解可酌情给分)。