高等数学一总复习资料

合集下载

高数一知识点

高数一知识点

高数一知识点高等数学一是大学理工科专业的一门重要基础课程,它包含了众多关键的知识点,为后续的专业学习和科学研究打下坚实的基础。

函数与极限是高数一的开篇重要内容。

函数,简单来说,就是一种输入与输出之间的对应关系。

比如常见的一次函数、二次函数、三角函数等等。

而极限则是描述函数在某个点或者无穷远处的趋势。

理解极限的概念对于后续学习导数、积分等知识至关重要。

通过极限,我们能够精确地描述函数的变化趋势,比如当自变量趋近于某个值时,函数值的趋近情况。

导数与微分也是高数一的核心知识点。

导数反映了函数在某一点处的变化率。

想象一下汽车的速度表,它显示的就是汽车行驶路程这个函数的瞬时变化率,也就是导数。

通过求导,我们能够知道函数是在上升还是下降,以及上升或下降的快慢程度。

微分则是对函数微小变化的近似描述,它与导数密切相关。

积分则是高数一的另一个重点。

积分分为定积分和不定积分。

不定积分是求一个函数的原函数,而定积分则可以用来计算曲线下的面积、几何体的体积等实际问题。

比如说,要计算一个不规则图形的面积,通过定积分就能够巧妙地解决。

无穷级数是高数一的一个难点。

无穷级数包括数项级数和函数项级数。

数项级数的收敛与发散判断有多种方法,比如比较判别法、比值判别法等。

函数项级数则更加复杂,需要考虑其一致收敛性等问题。

多元函数的微积分也是高数一的重要组成部分。

多元函数相对于一元函数来说,多了一些变量,其性质和运算也更加复杂。

比如偏导数,它表示多元函数在某一个方向上的变化率。

而全微分则综合了各个方向上的变化情况。

空间解析几何在高数一中有一定的涉及。

它通过建立坐标系,将空间中的点、线、面等用代数方程表示出来,为解决一些几何问题提供了代数方法。

在学习高数一的过程中,要注重理解基本概念,多做练习题来加深对知识点的掌握。

很多同学在学习时容易陷入死记硬背公式的误区,而忽略了对概念的深入理解。

其实,只有真正理解了概念的本质,才能灵活运用公式和定理解决各种问题。

高数一、二学习资料大全

高数一、二学习资料大全

《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达) 3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>-解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。

成人高考专升本高等数学(一)考试辅导复习资料【全】

成人高考专升本高等数学(一)考试辅导复习资料【全】

成人高等学校招生考试专升本高等数学(一)(适合2022年及往后的成考复习)函数、极限与连续本章内容一、函数二、极限三、连续本章约13%,20分选择题、填空题、解答题第一节函数知识点归纳●函数的概念、性质●反函数●复合函数●基本初等函数●初等函数考试要求1、理解概念会求函数包括分段函数的定义域、表达式及函数值,并会作出简单的分段函数图象。

2、掌握判断掌握函数的单调性、奇偶性、有界性和周期性定义,会判断所给函数的相关性质。

3、理解函数理解函数与它的反函数之间的关系,会求单调函数的反函数。

4、掌握过程掌握函数四则运算与复合运算,熟练掌握复合函数的复合过程。

5、掌握性质掌握基本初等函数的简单性质及其图象。

6、掌握概念掌握初等函数的概念。

第一节函数一、函数的概念定理设x和y是两个变量,D是一个给定的数集,如果对于每个数x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y=f(x).y是因变量,x是自变量。

函数值全体组成的数集W={y|y=f(x),x∈D} 称为函数的值域。

函数概念的两个基本要素对于给定的函数y=f(x),当函数的定义域D确定后,按照对应法则f,因变量的变化范围也随之确定,所以定义域和对应法则就是确定一个函数的两个要素。

两个函数只有在它们的定义域和对应法则都相同时,才是相同的。

例:研究函数y=x和y=2是不是表示相同的函数。

解:y=x是定义在(−∞,+∞)上的函数关系,y=2是定义在(−∞,0)∪(0,+∞)上的函数关系,它们定义域不同,所以这两个函数是不同的函数关系。

例:研究下面这两个函数是不是相同的函数关系f(x)=x,g(x)=2解:f(x)=x和g(x)=2是定义在(−∞,+∞)上的函数关系,f(x)的值域在(−∞,+∞)上的函数,g(x)的值域在[0,+∞),它们定义域相同,值域不同函数。

函数的定义域(1)在分式中,分母不能为零;(2)在根式中,负数不能开偶次方根;(3)在对数式中,真数必须大于零,底数大于零且不等于1;(4)在反三角函数式中,应满足反三角函数的定义要求;(5)如果函数的解析式中含有分式、根式、对数式和反三角函数式中的两者或两者以上的,求定义域时应取各部分定义域的交集。

公共课《高等数学》复习资料

公共课《高等数学》复习资料

公共课《高等数学》复习资料1一、选择题1、下列曲线中经过原点的为A 1y x =+B 2y x x =- C cos y x = D 221x y +=2、函数()f x =1(2)(3)x x x +-- 的所有间断点为A x =-1B x =2C x =3D x =2, x =33、函数sin xy x=的微分dy A 2cos sin x x x x - B 2sin cos x x x x - C 2cos sin x x x x -dx D 2sin cos x x x x -dx4、已知cos x 是()f x 的一个原函数,则不定积分()f x dx ⎰=A sin x C +B cos xC + C sin x C -+D cos x C +5、设函数(,)f x y =()h x ()g y 在点(,00x y )的某领域内有定义,且存在一阶偏导数,则y f (,00x y )=A (,)(,)lim 00000x f x t y f x y t →+-B (,)(,)lim 00000x f x t y t f x y t →++-C ()()lim ()0000x g y t g y h x t →+-D ()()lim 000x g y t g y t→+- 二、填空题1、点P (3,2,0)到平面3270x y -++=的距离为 。

2、已知函数(,)f x y =x y x y -+,则(,)11f y x= 。

3、微分方程''3xy y e --=的特解*y = 。

4、齐次方程组123123123000x x x x x x x x x λλλ++=⎧⎪++=⎨⎪++=⎩只有零解,则λ应满足 。

5、ln()limln 1n n n→∞+= 。

三、计算题 1、求曲线211y x =+在点(1,12)处的切线方程。

2、求极限21lim 2xx x x →∞++。

(完整版)高数一知识点

(完整版)高数一知识点

第一章~~第三章一、极限数列极限lim n n x ->∞函数极限lim ()x f x ->∞,lim ()x f x →+∞,lim ()x f x →-∞lim ()x x f x ->,0lim ()x x f x -->,0lim ()x x f x +->求极限(主要方法):(1)100sin 1lim1,lim(1),lim(1)x xx x x xe x e x x->->∞->=+=+=(2)等价无穷小替换(P76)。

当()0x ϕ→时,代换时要注意,只有乘积因子才可以代换。

(3)洛必达法则(000,,0,,0,1,0∞∞⋅∞∞-∞∞∞),只有0,0∞∞可以直接用罗比达法则。

幂指函数求极限:()lim ()ln ()lim ()v x v x u x u x e =;或,令()()v x y u x =,两边取对数ln ()ln ()y v x u x =,若lim ()ln ()v x u x a =,则()lim ()v x a u x e =。

结合变上限函数求极限。

二、连续 00lim ()()x x f x f x ->=左、右连续 000lim ()(),lim ()()x x x x f x f x f x f x -+->->==函数连续⇔函数既左连续又右连续闭区间上连续函数性质:最值,有界,零点(结合证明题),介值,推论。

三、导数 0000000()()()()'()limlim x x x f x f x f x x f x f x x x x->->-+-==-V V V 左导数 0000000()()()()'()lim lim x x x f x f x f x x f x f x x x x---->->-+-==-V V V右导数 0000000()()()()'()lim lim x x x f x f x f x x f x f x x x x+++->->-+-==-V V V 微分 ()'y A x z dy Adx y dx ο∆=⋅∆+==可导⇒连续 可导⇔可微 可导⇔既左可导又右可导求导数:(1) 复合函数链式法则[]()'[]'()dy dy du y f u u g x f u g x dx du dx====[()]''[()]'()'[()]([()])'y f g x y f g x g x f g x f g x ==≠(2) 隐函数求导法则两边对x 求导,注意y 、y '是x 的函数。

大一高数复习资料

大一高数复习资料

高等数学第一章 函数与极限第一节 函数●函数基础(高中函数部分相关知识)(▲▲▲) ●邻域(去心邻域)(▲)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限 ●数列极限的证明(▲)〖題型 〗已知数列{}n x ,证明{}lim n x x a →∞=〖证明 〗N -ε语言1.由n x a ε-<化簡得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限●0x x →时函数极限的证明(▲)〖題型 〗已知函数()x f ,证明()A x f x x =→0lim〖证明 〗δε-语言1.由()f x A ε-<化簡得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim●∞→x 时函数极限的证明(▲)〖題型 〗已知函数()x f ,证明()A x f x =∞→lim〖证明 〗X -ε语言1.由()f x A ε-<化簡得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大●无穷小与无穷大的本质(▲) 函数()x f 无穷小⇔()0lim =x f函数()x f 无穷大⇔()∞=x f lim●无穷小与无穷大的相关定理与推论(▲▲) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f1-为无穷大〖題型 〗計算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小;(()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则●极限的四则运算法则(▲▲) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110 则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)〖題型 〗求值233lim 9x x x →--〖求解示例〗解:因為3→x ,从而可得3≠x ,所以原式()()23333311lim lim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ●连续函数穿越定理(复合函数的极限求解)(▲▲) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 〖題型 〗求值:93lim 23--→x x x 〖求解示例〗3x →===第六节 极限存在准则及两个重要极限●夹迫准则(P53)(▲▲▲) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11limlim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)●单调有界收敛准则(P57)(▲▲▲)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )〖題型 〗求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x〖求解示例〗()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫ ⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ●等价无穷小(▲▲)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1U U U U U U U e +-2.U U cos 1~212-(乘除可替,加减不行)〖題型 〗求值:()()xx x x x x 31ln 1ln lim 20++++→ 〖求解示例〗()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim ,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性 ●函数连续的定义(▲)()()()000lim lim x x x x f x f x f x -+→→==●间断点的分类(P67)(▲)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)〖題型 〗设函数()⎩⎨⎧+=xa e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?〖求解示例〗1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ●零点定理(▲)〖題型 〗证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 〖证明 〗1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ)4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念●高等数学中导数的定义及几何意义(P83)(▲▲)〖題型 〗已知函数()⎩⎨⎧++=b ax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b〖求解示例〗1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩∴1,2a b ==〖題型 〗求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 〖求解示例〗1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则●函数和(差)、积与商的求导法则(▲▲▲) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则●反函数的求导法则(▲)〖題型 〗求函数()x f1-的导数〖求解示例〗由题可得()x f 为直接函数,其在定于域D上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ●复合函数的求导法则(▲▲▲) 〖題型 〗设(ln y e =,求y '〖求解示例〗(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛⎫ ⎝第四节 高阶导数 ●()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(▲) 〖題型 〗求函数()x y +=1ln 的n 阶导数 〖求解示例〗()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦,()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ●隐函数的求导(等式两边对x 求导)(▲▲▲) 〖題型 〗试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程〖求解示例〗由ye x y +=两边对x 求导即()y y x e '''=+化簡得1yy e y ''=+⋅∴ee y -=-='11111∴切线方程:()e x ey +--=-1111 法线方程:()()e x e y +---=-111●参数方程型函数的求导〖題型 〗设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd〖求解示例〗1.()()t t dx dy ϕγ''= 2.()22dy d y dx dx t ϕ'⎛⎫⎪⎝⎭='第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分●基本初等函数微分公式与微分运算法则(▲▲▲)()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ●引理(费马引理)(▲) ●罗尔定理(▲▲▲)〖題型 〗现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立〖证明 〗1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ== 即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立●拉格朗日中值定理(▲)〖題型 〗证明不等式:当1x >时,xe e x >⋅ 〖证明 〗1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化簡得x e e x >⋅,即证得:当1x >时,xe e x >⋅〖題型 〗证明不等式:当0x >时,()ln 1x x +< 〖证明 〗1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+; 2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立, 化簡得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则●运用罗比达法则进行极限运算的基本步骤(▲▲)1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件, 则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 〖題型 〗求值:0lim ln x x x α→⋅〖求解示例〗()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 〖題型 〗求值:011lim sin x x x →⎛⎫-⎪⎝⎭〖求解示例〗 200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法) 〖題型 〗求值:0lim xx x →〖求解示例〗()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)〖題型 〗求值:()10lim cos sin xx x x →+〖求解示例〗()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法)〖題型 〗求值:tan 01lim xx x →⎛⎫⎪⎝⎭〖求解示例〗()()tan 00200020*******,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln lim limlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得●运用罗比达法则进行极限运算的基本思路(▲▲)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ●连续函数单调性(单调区间)(▲▲▲) 〖題型 〗试确定函数()3229123f x x x x =-+-的单调区间 〖求解示例〗1.∵函数()f x 在其定义域R 上连续,且可导 ∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2〖題型 〗证明:当0x >时,1xe x >+ 〖证明 〗1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+〖題型 〗证明:当0x >时,()ln 1x x +< 〖证明 〗1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<●连续函数凹凸性(▲▲▲)〖題型 〗试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点〖证明 〗1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩3.(四行表)x (,0)-∞ 0 (0,1) 1(1,2) 2 (2,)+∞y ' -0 + + 0 - y '' + +- -y 1 (1,3) 54.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值●函数的极值与最值的关系(▲▲▲)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;〖題型 〗求函数()33f x x x =-在[]1,3-上的最值 〖求解示例〗1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= x1- ()1,1-1 (]1,3()f x ' 0+-()f x极小值极大值4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求)第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ●原函数与不定积分的概念(▲▲) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(▲▲)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(▲▲)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)●基本积分表(▲▲▲)●不定积分的线性性质(分项积分公式)(▲▲▲)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法●第一类换元法(凑微分)(▲▲▲) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 〖題型 〗求221dx a x+⎰ 〖求解示例〗222211111arctan 11x x dx dx d C a x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:〖題型 〗求〖求解示例〗()()121212x x C=+=+=●第二类换元法(去根式)(▲▲)(()dx x f dy ⋅'=的正向应用) ⑴对于一次根式(0,a b R ≠∈):t =,于是2t bx a-=, 则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctanxt a=,则原式可化为sec a t ; ⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ; bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;〖題型 〗求(一次根式) 〖求解示例〗211221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰〖題型 〗求(三角换元)〖求解示例〗()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ●分部积分法(▲▲)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ●运用分部积分法計算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接計算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C〖題型 〗求2x e x dx ⋅⎰〖求解示例〗()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:〖題型 〗求sin x e xdx ⋅⎰〖求解示例〗()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd e e x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即: ∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ●有理函数(▲)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式●有理函数(真分式)不定积分的求解思路(▲)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<); 即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k l P x P x P x Q x x a x px q =+-++ 其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N xpx q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解〖題型 〗求21xdx x +⎰(构造法) 〖求解示例〗()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质 ●定积分的定义(▲)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)●定积分的性质(▲▲▲)⑴()()b baaf x dx f u du =⎰⎰ ⑵()0a a f x dx =⎰ ⑶()()bbaakf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()b c baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()bbaaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰●积分中值定理(不作要求)第二节 微积分基本公式●牛顿-莱布尼兹公式(▲▲▲)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰●变限积分的导数公式(▲▲▲)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 〖題型 〗求21cos 2limt xx e dt x-→⎰〖求解示例〗()221100cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x --'→→='⎰⎰()()()()2222221cos cos 000cos 0cos cos 0cos 010sin sin limlim22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ●定积分的换元法(▲▲▲) ⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 〖題型 〗求20121dx x +⎰〖求解示例〗()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()baf x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰〖題型 〗求4⎰〖求解示例〗()2210,43220,1014,332332311132213111332223522933解:t t x x t x t t dx t t t dt t dt t x t =-====+−−−−−−→+⎛⎫=⋅⋅=+=+ ⎪⎝⎭=-=⎰⎰⎰⎰ ⑶(分部积分法)()()()()()()()()()()()()bba ab bb aaau x v x dx u x v x v x u x dxu x dv x u x v x v x du x ''=-=-⎡⎤⎣⎦⎰⎰⎰⎰●偶倍奇零(▲▲)设()[],f x C a a ∈-,则有以下结论成立:⑴若()()f x f x -=,则()()02aaaf x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0aaf x dx -=⎰第四节 定积分在几何上的应用(暂时不作要求)第五节 定积分在物理上的应用(暂时不作要求) 第六节 反常积分(不作要求)如:不定积分公式21arctan 1dx x C x =++⎰的证明。

成人高等教育《高等数学(理工类一)》复习资料

成人高等教育《高等数学(理工类一)》复习资料

成人高等教育《高等数学(理工类一)》复习资料知识讲解11.罗尔中值定理中的条件是充分的,但非必要条件12.已知且则x等于213.在空间直角坐标系中,方程组代表的图形为双曲线极限存在是函数在该点连续的必要条件14.函数f(x)在点x15.016.设,则17.018.若,则为19.设在区间上连续,,则是的一个原函数20.函数在区间上的最小值为421.设,则当时,是x的同阶但不等价无穷22.基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(),三角函数(y=sinx),常数函数(y=c)23.分段函数不是初等函数24.无穷小:高阶+低阶=低阶例如:25.两个重要极限:经验公式:当,例如:26.可导必定连续,连续未必可导。

例如:连续但不可导。

27.导数的定义:28.复合函数求导:例如:29.隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:30.由参数方程所确定的函数求导:若,则,其二阶导数:31.微分的近似计算:例如:计算32.函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:(x=0是函数可去间断点),(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:(x=0是函数的振荡间断点),(x=0是函数的无穷间断点)33.渐近线:水平渐近线:铅直渐近线:斜渐近线:例如:求函数的渐近线34.驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。

35.极值点:令函数y=f(x),给定x0的一个小邻域u(x0,δ),对于任意x ∈u(x0,δ),都有f(x)≥f(x0),称x0是f(x)的极小值点;否则,称x0是f(x)的极大值点。

极小值点与极大值点统称极值点。

36.拐点:连续曲线弧上的上凹弧与下凹弧的分界点,称为曲线弧的拐点。

37.拐点的判定定理:令函数y=f(x),若f"(x0)=0,且x<x0,f"(x)>0;x>x0时,f"(x)<0或x<x0,f"(x)<0;x>x0时,f"(x)>0,称点(x0,f(x0))为f(x)的拐点。

高等数学A(1)复习资料

高等数学A(1)复习资料

高数A (1)复习资料一、极限计算:常用方法包括等价无穷小替换,洛必达法则,两个重要极限。

解题思路:首先判断是否为未定式,否则化成未定式类型(特别注意幂指函数情形利用对数函数性质转化;加减法类型一般通分;如果无穷多项相加则要先求和,如果不能直接求和可能需要利用夹逼准则放缩后后再求和;),对于未定式类型先考虑利用等价无穷小替换后再利用洛必达法则。

注意:函数中如果出现幂指函数类型也可以考虑直接利用第二个重要极限处理,注意处理技巧。

如果出现变上限函数类型,注意变上限函数的导数如何计算,特别是上限为x 的函数,也就是积分上限函数为复合函数时求导要利用链式法则;如果积分上限函数被积函数不是积分变量的一元函数,则将其他变量提出到积分号外面,或者利用换元法化到积分限上。

常用等价无穷小:2~cos 1~arctan ,~arcsin ,~tan ,~sin 2x x x x x x x x x x -,,x x x e x x x αα~1)1(,~1,~)1ln(-+-+(0→x )练习题:1. 设822lim =⎪⎭⎫⎝⎛-+∞→xx a x a x ,则___________=a ; 2. ____________________arctan lim 21=⎪⎭⎫ ⎝⎛∞→x x x x ;3.=+→xx x sin 2)31(lim .4. 0tan sin lim sin x x x x x→-- 5. 0ln sin 5lim ln sin 2x x x →+ 6. 2013sin coslim(1cos )ln(1)x x x x x x →+++ 7. 2220(1)limxtx x t e dtx-→+∞+⎰2220(1)1[lim]2xt xx t e dt xe →+∞+==⎰二、无穷小比较:高阶,同阶,等价的定义处理思路:转化为求极限问题,特别是同阶无穷小;注意如果分式极限存在,分母为无穷小量,则分子也一定为无穷小量。

高数学习资料

高数学习资料

高数学习资料(总30页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章 函数与极限函数和极限都是高等数学中最重要、最基本的概念,极值方法是最基本的方法,一切内容都将从这二者开始。

§1、 函 数一、集合、常量与变量1、集合:集合是具有某种特定性质的事物所组成的全体。

通常用大写字母A 、B 、C ……等来表示,组成集合的各个事物称为该集合的元素。

若事物a 是集合M 的一个元素,就记a ∈M (读a 属于M );若事物a 不是集合M 的一个元素,就记a ∉M 或a ∈M (读a 不属于M );集合有时也简称为集。

注 1:若一集合只有有限个元素,就称为有限集;否则称为无限集。

2:集合的表示方法:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧===+++======等。

中在点;为我校的学生;须有此性质。

如:中的元素必中,且,即:有此性质的必在所具有的某种性质合可表示为:,那么该集若知其元素有某种性质不到元素规律的集合,、列不出全体元素或找为全体偶数集;,,,然数集,为全体自,,,写出,如:元素的规律,也可类似、对无限集,若知道其;鸡一只猫,一只狗,一只的方法来表示,如:可用列举出其全体元素、若集合为有限集,就枚举法}),(),{(}{}0375{}{)(}642{}321{)(}{},10,,3,2,1{)(23D y x y x C x x B x x x x A A A x x A iii B A ii B A i 3:全体自然数集记为N,全体整数的集合记为Z,全体有理数的集合记为Q,全体实数的集合记为R 。

以后不特别说明的情况下考虑的集合均为数集。

4:集合间的基本关系:若集合A 的元素都是集合B 的元素,即若有A x ∈,必有B x ∈,就称A 为B 的子集,记为B A ⊂,或A B ⊃(读B 包含A)。

显然:R Q Z N ⊂⊂⊂.若B A ⊂,同时A B ⊂,就称A 、B 相等,记为A=B 。

2022年自考00020高等数学(一)核心考点资料

2022年自考00020高等数学(一)核心考点资料

2.函数的性质
(1)有界性
设函数 f(x)在 D 上有定义,如果存在两个实数 m 和 M 满足条件:对 D 中所有的 x 都有不等式
m≤f(x)≤M,则称 f(x)在 D 上是有界函数,m 叫做 f(x)的下界,M 叫做 f(x)的上界.
如果对于任意 M>0,在 D 中均存在 x,使得|f(x)|>M,则称 f(x)在 D 上是无界函数.
限趋于”一个确定的数 A,则称函数 f(x)在 x→x0 时的极限是 A,记作
.
2.函数在一点的单侧极限
(1)函数在一点的左极限
设函数 f(x)在 x0 的左侧附近有定义,若当 x<x0 且“无限趋于”x0 时,其对应的函数值 f(x)
“无限趋于”一个确定的常数 A,则称函数 f(x)在 x0 点的左极限是 A,记作
§1.4 函数运算
1.函数的四则运算 设函数 f(x),g(x)都在 D 上有定义,k∈R,则对它们进行四则运算的结果还是一个函数,它 们的定义域不变(除法运算时除数为 0 的点除外),而函数值的对应定义如下: (1)加法运算(f+g)(x)=f(x)+g(x),x∈D. (2)数乘运算(kf)(x)=kf(x),x∈D. (3)乘法运算(fg)(x)=f(x)g(x),x∈D.
f(x)=o(1)(x→x0).
2.无穷大量的概念
若函数
在 x→x0 时是一个无穷小量,则称函数 f(x)在 x→x0 时是一个无穷大量,记作 .
当 x 无限趋于 x0 时,若 量,记作
且无限趋于 0,则称函数 f(x)在 x→x0 时是一个正无穷大 .
当 x 无限趋于 x0 时,若
量,记作 3.无穷小量的比较
格函数.
平均收益函数为

高等数学知识点总结大一

高等数学知识点总结大一

高等数学知识点总结大一大一高等数学知识点总结。

一、函数与极限。

1. 函数。

- 定义:设数集D⊆ R,则称映射f:D→ R为定义在D上的函数,通常记为y = f(x),x∈ D。

- 函数的特性。

- 有界性:若存在M>0,使得对任意x∈ X⊆ D,都有| f(x)|≤ M,则称f(x)在X上有界。

- 单调性:设函数y = f(x)的定义域为D,区间I⊆ D。

如果对于区间I上任意两点x_1及x_2,当x_1 < x_2时,恒有f(x_1)(或f(x_1)>f(x_2)),则称函数y =f(x)在区间I上是单调增加(或单调减少)的。

- 奇偶性:设函数y = f(x)的定义域D关于原点对称,如果对于任意x∈D,有f(-x)=f(x),则称f(x)为偶函数;如果对于任意x∈ D,有f(-x)= - f(x),则称f(x)为奇函数。

- 周期性:设函数y = f(x)的定义域为D,如果存在一个正数T≠0,使得对于任意x∈ D有(x± T)∈ D,且f(x + T)=f(x),则称y = f(x)为周期函数,T称为y = f(x)的周期。

- 复合函数:设函数y = f(u)的定义域为D_1,函数u = g(x)在D上有定义且g(D)⊆ D_1,则由下式确定的函数y = f[g(x)],x∈ D称为由函数u = g(x)与函数y = f(u)构成的复合函数,它的定义域为D,变量u称为中间变量。

- 反函数:设函数y = f(x)的定义域为D,值域为W。

如果对于值域W中的任一y值,从关系式y = f(x)中可确定唯一的一个x值,则称变量x为变量y的函数,记为x = f^-1(y),y∈ W,称x = f^-1(y)为函数y = f(x)的反函数。

习惯上y = f(x)的反函数记为y = f^-1(x)。

2. 极限。

- 极限的定义。

- 数列极限:设{x_n}为一数列,如果存在常数a,对于任意给定的正数varepsilon(不论它多么小),总存在正整数N,使得当n > N时,不等式| x_n - a|都成立,那么就称常数a是数列{x_n}的极限,或者称数列{x_n}收敛于a,记为lim_n→∞x_n=a。

高等数学复习资料

高等数学复习资料

寄语:亲爱的学弟,学妹们。

期末将至,班主任助理小组为大家准备了一些关于高数的复习资料。

请大家做好考前准备,预祝大家取得优异的成绩。

亲~ 一定要看哦! 考试内容、重点问题与方法(按照考试提纲总结的) 第一部分:函数极限的计算 (1) 函数值的计算 (2) 连续性的判断 (3) 未定式极限的求法 (4) 洛比达法则的应用 常用的极限公式non x x n n k x kn x x q q x n o=<===→-∞→∞→∞→lim )1|(|0lim 01lim 01lim1 )()(lim 1lim )0(1lim o n n x n n n n n x p x p n a a o==>=→∞→∞→)(0co lim sin lim )"1("1sin lim0为无穷小无穷小乘以有界函数仍极限===∞→∞→→x sx x x x x x x x e x e xen x x n =+=+=+→∞→∞→1x x n )1(lim )11(lim )11(lim 111sinlim 1sinlim 01sin lim 0===∞→∞→→xx x x x x x x x ∞=⋅==⋅=∞→∞→∞→→→→x x x x x x x x x x x x x x x x lim 1sin lim 1sin lim 0lim 1sin lim 1sinlim 2020常见的等价无穷小xx xe x x x x x x x αα~1)1(~121~cos 1~tan ~sin 2-+-- x nx x x x x xx x x n1~1)1(~)1l n (21~1c o s~a r c t a n ~a r c s i n 12-++--第二部分:导数的计算 (1) 包括初等函数,隐函数及参数方程及抽象函数的一阶,二阶或高阶导数概念与求法;(2) 包括导数概念,几何意义以及连续、导数与微分的关系。

高等数学(数一)知识重点及复习计划

高等数学(数一)知识重点及复习计划

函数的概念,常见的函数〔有界函数、奇函数与偶函数、单调函数、周期函数〕、复合函数、反函数、初等函数具体概念和形式习题 1-1:4,5,8,9,15,16数列极限的定义,数列极限的性质<惟一性、有界性、保号性习题 1-2:1,4,5,6函数极限的定义与基本性质〔极限的保号性、极限的惟一性、函数极限的函数局部有界性,函数极限与数列极限的关系等〕习题 1-3:1,2,4无穷小与无穷大的定义,它们之间的关系,以与与极限的关系习题 1-4:4,6,7极限的运算法则<6 个定理以与一些推论>习题 1-5:1,2,3,4,5两个重要极限〔要牢记在心,要注意极限成立的条件, 不要混淆,应熟悉等价表达式〕 ,函数极限的存在问题〔夹逼定理、单调有界数列必有极限〕 ,利用函数极限求数列极限,利用夹逼准则求极限,求递归数列的极限.习题 1-6:1,2,4无穷小阶的概念〔同阶无穷小、等价无穷小、高阶无1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数与分段函数的概念,了解反函数与隐函数的概念.4.掌握基本初等函数的性质与其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以与函数极限存在与左、右极限之间的关系.6.掌握极限的性质与四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限 , 掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷穷小、 k 阶无穷小〕 ,重要的等价无穷小〔特别重要, 一定要烂熟于心〕以与它们的重要性质和确定方法. 习题 1-7:1,2,3,4函数的连续性,间断点的定义与分类〔第一类间断点与第二类间断点〕 ,判断函数的连续性〔连续性的四则运算法则,复合函数的连续性,反函数的连续性〕和间断点的类型.习题 1-8:2,3,4,5连续函数的运算与初等函数的连续性<包括和,差, 积,商的连续性,反函数与复合函数的连续性,初等函数的连续性>习题 1-9:3,4,5,6理解闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理与介值定理<零点定理对于证明根的存在是非常重要的一种方法习题 1-10:1,2,5总复习题一: 1,2,3,4,5,9,10,11,12导数的定义、几何意义,单侧与双侧可导的关系,可导与连续之间的关系〔非常重要,时常会浮现在选择题中〕 ,函数的可导性,导函数,奇偶函数与周期函数的导数的性质,按照定义求导与其合用的情形,利用导数定义求极限. 会求平面曲线的切线方程和法线方.习题 2-1:6,7,9,11,14,15,16,17,18,19,20复合函数求导法、求初等函数的导数和多层复合函数的导数,由复合函数求导法则导出的微分法则, 〔幂、指数函数求导法,反函数求导法〕 ,分段函数求导法. 大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念〔含左连续与右连续〕 ,会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质〔有界性、最大值和最小值定理、介值定理〕,并会应用这些性质.1.理解导数和微分的概念, 理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,程习题 2-2:2,3,5,7,8,10,11,14高阶导数求法〔归纳法,分解法,用莱布尼兹法则〕习题 2-3:2,3,10,11,12由参数方程确定的函数的求导法,隐函数的求导法, 相关变化率习题 2-4:,1-11函数微分的定义,微分的几何意义,微分运算法则习题 2-5:2,3,4总复习题二: 1,2,3,5,6,7,8,9,10,11,12,13,14 掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念, 会求简单函数的高阶导数.4.会求分段函数的导数, 会求隐函数和由参数方程所确定的函数以与反函数的导.微分中值定理与其应用〔费马定理与其几何意义,罗尔定理与其几何意义,拉格朗日定理与其几何意义、柯西定理与其几何意义〕习题 3-1:5-12洛比达法则与其应用习题 3-2:1-4泰勒中值定理,麦克劳林展开式习题 3-3:1-7,10求函数的单调性、凹凸性区间、极值点、拐点、渐进习题 3-4:1,2,4,5,8,9, 12,13,14,15函数的极值,<一个必要条件,两个充分条件>,最大最小值问题.函数性的最值和应用性的最值问题,与最值问题有关的综合题习题 3-5:1,4,5,6,7简单了解利用导数作函数图形〔普通出选择题与判断1.理解并会用罗尔<Rolle> 定理、拉格朗日 <Lagrange> 中值定理和泰勒 <Taylor>定理,了解并会用柯西<Cauchy> 中值定理.2.掌握用洛必达法则求未定式极限的方法.3.理解函数的极值概念, 掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法与其应用.4.会用导数判断函数图形的凹凸性,会求函数图形的数.图形题〕 ,对其中的渐进线和间断点要熟练掌握.习题 3-6:2,4弧微分,曲率的概念,曲率圆与曲率半径习题 3-7:1-5总复习题三: 1,2,4,6,7,8,10,11,12,20原函数与不定积分的概念与基本性质〔它们各自的定义,之间的关系,求不定积分与求微分或者导数的关系〕 ,基本的积分公式,原函数的存在性习题 4-1:1,7换元积分法习题 4-2 全部分部积分法习题 4-3 全部有理函数的积分习题 4-4 全部积分表的使用总习题四全部定积分的概念与性质<可积累在定理><定积分的7 个性质习题5-1:4,10,13微积分的基本公式积分上限函数与其导数牛顿-莱布尼兹公式习题5-2:1-12定积分的换元法与分部积分法习题5-3:1,2,3,4,6,7反常积分无界函数反常积分与无穷限反常积分拐点以与水平、铅直和斜渐近线,会描绘函数的图形.5.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.1.理解原函数的概念 , 理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质与定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.1.理解定积分的概念.2.掌握定积分的基本公式 , 掌握定积分的性质与定积分中值定理,3.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.4.掌握换元积分法与分部积分法..习题:5-4:1-3反常积分的审敛法总复习题五:1,3,4,5,6,7,10,13定积分元素法定积分的几何应用〔求平面曲线的弧长 ,求平面图形的面积,求旋转体的体积 ,求平行截面为已知的立体体积,求旋转曲面的面积〕习题 6-2:1,2,3,4,5,6,7,8,9,11,12,13,15,16,21,22定积分在物理学上的应用〔变力沿直线所做的功 ,水压力,引力〕习题 6-3:1-12总复习题六: 1-6微分方程的基本概念〔微分方程与其阶、解、通解、初始条件和特解〕习题 7-1:1,2,3,4,5可分离变量的微分方程<可分离变量的微分方程的概念与其解法 >习题 7-2:1,2齐次方程〔一阶齐次微分方程的形式与其解法〕习题 7-3:1,2一阶线性微分方程,伯努利方程习题 7—4:1,2可降阶的高阶微分方程习题1,2高阶线性微分方程〔微分方程的特解、通解〕习题 7-6:1-4常系数齐次线性微分方程〔特征方程,微分方程通解5.了解广义反常积分的概念, 会计算广义反常积分.会用定积分计算平面图形的面积、平面曲线的弧长、旋转体的体积与侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等1.了解微分方程与其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程与一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会解二阶可降解的微分方程.5.理解线性微分方程解.中对应项〕习题 7-7:1,2常系数非齐次线性微分方程〔会解自由项为多项式、指数函数、正弦函数、余弦函数以与它们的和与积的二阶常系数非齐次线性微分方程〕的性质与解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.习题 7-8:1,27.会解自由项为多项式、欧拉方程习题 7-9指数函数、正弦函数、余弦函数以与它们的和与积的二阶常系数非齐次线性微分方程.总复习题七: 3,4,5,7,10 8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.向量与其线性运算习题 8-1: 1-19数量积、向量积、混合积习题 8-2:1,2,3,6,7,9曲面与其方程习题 8-3:1-11空间曲线与其方程习题 8-41-8平面与其方程习题 8-51-9 1.理解空间直角坐标系,理解向量的概念与其表示.2.掌握向量的运算〔线性运算、数量积、向量积、混合积〕,了解两个向量垂直、平行的条.3.理解单位向量、方向数与方向余弦、向量的坐标表达式, 掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程与其求法.5.会求平面与平面、平面与件直线、直线与直线之间的夹角,并会利用平面、直线的相空间直线与其方程习题 8-61-15总习题八: 1-21 互关系〔平行、垂直、相交等〕解决有关问题.6.会求点到直线以与点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程与其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和普通方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.多元函数的基本概念〔二元函数的极限、连续性、有界性与最大值最小值定理、介值定理〕习题 9— 1:5,6,7,8偏导数<偏导数的概念,二阶偏导数的求解 >,习题 9—2:1,2,3,4,6,7,8,9全微分〔全微分的定义,可微分的必要条件和充分条件〕 ,习题 9—3:1,2,3,5多元复合函数的求导法则〔多元复合函数求导,全微分形式的不变性〕习题 9—4:1—12隐函数的求导公式〔隐函数存在的 3 个定理〕习题 9—5:1—101.理解多元函数的概念, 理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以与有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念 ,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度多元函数微分学的几何应用〔空间曲线的切线与法平面,曲面的切平面与法线〕习题 9—6:4—12方向导数与梯度习题 9—7:1-8,10多元函数的极值与其求法〔多元函数极值与最值的概念,二元函数极值存在的必要条件和充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值〕习题 9—8:1—12总复习题九: 1-18二重积分的概念与性质〔二重积分的定义与 6 个性,习题 10-1:1,4,5二重积分的计算法〔会利用直角坐标计算二重积分, 会利用极坐标计算二重积分〕 ,习题 10-2:1,2, 4,6,7,8,11,12,13,14,15三重积分的概念,三重积分的计算〔会利用直角坐标计算三重积分,会利用柱面坐标计算三重积分,会利用球面坐标计算三重积分〕的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理, 会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面与曲面的切平面和法线的概念 ,会求它们的方.8.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值 ,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.1.理解二重积分、三重积分的概念,了解重积分的性质, 了解二重积分的中值定.2.掌握二重积分的计算方法〔直角坐标、极坐标〕 , 会计算三重积分〔直角坐标、柱面坐标、球面坐标〕 .理程质〕习题 10-3:4-11 3.会用重积分求一些几何量与物理量〔平面图形的面积、重积分的应用〔会计算曲面的面积,质心,转动惯量,体积、曲面面积、弧长、质量、引力〕质心、形心、转动惯量、引力、习题 10-4:1,2,3,4,5,6,9,10,11,12,13,14功等〕 .对弧长的曲线积分〔对弧长的曲线积分的概念与性质,对弧长的曲线积分的计算〕习题 11-1:3对坐标的曲线积分〔对坐标的曲线积分的概念与性质,对坐标的曲线积分的计算,两类曲线积分之间的联系〕习题 11-2:3,4,7,8格林公式与其应用〔格林公式,平面上曲线积分与路径无关的条件,二元函数的全微分求积,全微分方程〕习题 11-3:1-6对面积的曲面积分〔对面积的曲面积分的概念与性质,对面积的曲面积分的计算,〕习题 11-4:4-8 对坐标的曲面积分〔对坐标的曲面积分的概念与性质,对坐标的曲面积分计算,两类曲面积分之间的联系〕习题 11-5:3,4高斯公式〔会用高斯公式,会计算通量与散度〕习题 11-6:1,2,3斯托克斯公式〔会用斯托克斯公式,会计算环流量与旋度〕习题 11-7:2,31.理解两类曲线积分的概念,了解两类曲线积分的性质与两类曲线积分的关系.2.掌握计算两类曲线积分的方法.3.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.4.了解两类曲面积分的概念、性质与两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.5.了解散度与旋度的概念,并会计算.总习题十一: 1-5.常数项级数的概念和性质〔常数项级数的概念,收敛级数的基本性质〕习题 12-1:1-4常数项级数的审敛法〔正项级数与其审敛法,交织级数与其审敛法,绝对收敛与条件收敛〕习题 12-2:1-5幂级数〔幂级数与其收敛性,幂级数的运算〕习题 12-3:1.2.傅里叶级数〔函数展开成傅里叶级数,正弦级数,余弦级数〕习题 12-7:1-6 1.理解常数项级数收敛、发散以与收敛级数的和的概念, 掌握级数的基本性质与收敛的必要条件.2.掌握几何级数与P-级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交织级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念以与绝对收敛与收敛的关系.6.了解函数项级数的收敛域与和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半.普通周期函数的傅里叶级数〔周期为 2L 的周期函数的傅里叶级数〕习题 12-7:1,2总习题十二: 1-12 径、收敛区间与收敛域的求法.8.了解幂级数在其收敛区间内的基本性质〔和函数的连续性、逐项求导和逐项积分〕, 会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握e x ,sin x ,cos x ,ln(1+ x) 与(1+ x)a 的麦克劳林〔Maclaurin〕展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[一l, l] 上的函数展开为傅里叶级数,会将定义在[0,l] 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.11 / 11。

大学高数复习资料大全

大学高数复习资料大全

高等数学第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞= 【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311limlim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim 23--→x x x【求解示例】36x →===第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +- 2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→ 【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性○函数连续的定义(★)()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数()x f1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导即()y y x e '''=+化简得1yy e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★) 【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ== 即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立,化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件,则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法)【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法) 【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 00200020*******,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln lim limlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩3.(四行表)x(,0)-∞ 0(0,1) 1(1,2) 2(2,)+∞y '-++- y '' ++--y1 (1,3) 5 4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],ab 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= .(三行表)x1- ()1,1-1 (]1,3()f x ' 0+-()f x极小值极大值4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求221dx a x +⎰【求解示例】222211111arctan 11x x dx dx d Ca x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈):t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd ee x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k lP x P x P x Q x x a x px q =+-++其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b baaf x dx f u du =⎰⎰ ⑵()0a af x dx =⎰ ⑶()()b ba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x--'→→='⎰⎰()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()baf x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰。

(完整版)高等数学基本知识点大全大一复习,考研必备

(完整版)高等数学基本知识点大全大一复习,考研必备

大一期末复习和考研复习必备高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。

变量x的变化范围叫做这个函数的定义域。

通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。

注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。

这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。

如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。

这里我们只讨论单值函数。

⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。

由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。

例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。

例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。

c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。

高等数学一总复习资料

高等数学一总复习资料

,可知 f(0)=0 。在
f(x+y)=f(x)+f(y) 中令 y = -x ,得 0 = f(0) = f(x-x) = f[ x+(-x) ] = f(x)+f(-x)
所以有
f(-x) = - f(x)
,即 f(x) 为奇函数,故应选 A 。
例 8 :函数
的反函数是( )。
A.
B.
C.
D.
解:
由于
,故( B)中数列发散。
由于正弦函数是一个周期为
的周期函数,当
时,
于一个确定的值,因而( C)中数列也发散。
由于
,故( D)中数列收敛。
并不能无限趋近
例 2:设 A.0 B.1 C.3 D.1/3
,则 a=( )
解:假设 =0,则所给极限为 趋于有限值 3,所以极限为∞,不是 1/5 ,因而 ≠ 0。
的( )。
A. 同阶无穷小量 B. 高阶无穷小量 C. 低价无穷小量 D. 较低阶的无穷小量
解:由于
可知 例 8. 当
是 x 的同阶无穷小量,所以应选 A。 等价的无穷小量是 ( )
A.
B.
C.
D.
解:由于
可知 所以选 D。
的高阶无穷小量,同时
等价的无穷小量,
例 9. 下列变量在给定的变化过程中是无穷大量的是 ( )
要非负可知
即要有 x>0、x≠1 与
同时成立,从而其定义域为

即应选 C。
例 3:下列各组函数中,表示相同函数的是( )
解: A 中的两个函数是不同的,因为两函数的对应关系不同,当 |x|>1 时,两函数取得不同的 值。
B 中的函数是相同的。因为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B 中的函数是相同的。因为
对一切实数 x 都成立,故应选 B。
C 中的两个函数是不同的。因为
的定义域为 x ≠-1 ,而 y=x 的定义域为( - ∞,
+∞)。
D 中的两个函数也是不同的,因为它们的定义域依次为( - ∞, 0)∪( 0,+∞)和( 0,+ ∞)。
例 4:设
解:在
令 t=cosx-1 ,得
由于
,故( B)中数列发散。
由于正弦函数是一个周期为
的周期函数,当
时,
于一个确定的值,因而( C)中数列也发散。
由于
,故( D)中数列收敛。
并不能无限趋近
例 2:设 A.0 B.1 C.3 D.1/3
,则 a=( )
解:假设 =0,则所给极限为 趋于有限值 3,所以极限为∞,不是 1/5 ,因而 ≠ 0。
又因为 -1 ≤cosx ≤1,所以有 -2 ≤cosx-1 ≤ 0,即 -2 ≤ t ≤ 0,从而有

例 5:
f(2) 没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。
例 6:函数
是( )。
A.偶函数 B .有界函数 C.单调函数 D.周期函数
解:由于
,可知函数为一个奇函数而不是偶函数,即( A)
例 2:函数
的定义域为( ).
解:由于对数函数 lnx 的定义域为 x>0,同时由分母不能为零知 lnx ≠0,即 x≠1。由根式内
要非负可知
即要有 x>0、x≠1 与
同时成立,从而其定义域为

即应选 C。
例 3:下列各组函数中,表示相同函数的是( )
解: A 中的两个函数是不同的,因为两函数的对应关系不同,当 |x|>1 时,两函数取得不同的 值。
所以有
f(-x) = - f(x)
,即 f(x) 为奇函数,故应选 A 。
例 8 :函数
的反函数是( )。
A.
B.
C.
D.
解:
于是,
是所给函数的反函数,即应选 C。
例 9 :下列函数能复合成一个函数的是(
)。
A.
B.
C.
D.
解:在 (A)、(B)中,均有 u=g(x) ≤ 0,不在 f (u) 的定义域内,不能复合。在 (D)中, u=g(x)=3
A.
B.
C.
D.
解:由于
所以应选 A. 例 10. 要使函数 A.1/2 B.2 C.1 D.0
解:
在 x=0 处连续, f (0)应该补充定义的数值是 ( )
要使函数 f (x)在 x=0 处连续,必须有 因此要令 f(0)=1. 故应选 C。
例 11. 设
求 k,使 f (x) 连续。
解:由于函数 f (x)在( - ∞,0)和( 0,+∞)两区间内均由初等函数表示,而且在这两个
第一章 函数及其图形
例 1: A. {x | x>3} B. {x | x<-2} C. {x |-2< x
( ). ≤ 1} D. {x | x ≤1}
注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题 的解题策略与技巧》 ,这里为说明解题相关的知识点,都采用直接法。
A.奇函数 B .偶函数 C .非奇非偶函数 D.奇偶性不确定
解:因为 f(x+y)=f(x)+f(y) ,故 f(0)= f(0+0)=f(0)+f(0)=2f(0)
,可知 f(0)=0 。在
f(x+y)=f(x)+f(y) 中令 y = -x ,得 0 = f(0) = f(x-x) = f[ x+(-x) ] = f(x)+f(-x)
也不满足 f(u) 的定义域
,也不能复合。 只有 (C)中
的定义
域内,可以复合成一个函数,故应选 C。
例 10 :函数
可以看成哪些简单函数复合而成:
解:
,三个简单函数复合而成
第二章 极限与连续
例 1:下列数列中,收敛的数列是( )
A.
B.
C.
D.
解:( A)中数列为 0,1,0,1,……其下标为奇数的项均为 0,而下标为偶数的项均为 1,即奇偶数项分别趋于不同的常数值,从而可知该数列没有极限,是发散的。
,其分子趋于∞,而分母
当 ≠0 时,所给极限为
,故应选 C。
一般地,如果有理函数
那么,当
时,
当 k=l 时, f (n) 的极限为
,其中

分别为 次项的系数之比;
当 k<l 时, f (n) 的极限为零; 当 k>l 时, f (n) 的极限为∞。
对于当 x→∞(或 +∞,-∞)时 x 的有理分式函数 果。
例 4. 求 解法 1 解法 2
解法 3 例 5.
A. 0 B. 1 C. 1/2 D. 1/4 解:由于 例 6.
, 故应选 D。

:
注意 本题属于“∞ - ∞”型,是个未定式,不能简单地认为它等于 0 或认为是∞,对于此类 问题一般需要将函数进行通分,然后设法进行化简,进而求出其极限值。
例 7. 当 x→0 时,
区间内均有定义,因此在这两个区间内是连续的。函数是否连续取决于它在
x=0 处是否连续。
要让 f (x)在 x=0 处连续,必须
由于
= 又由 可知
例 12. 证明方程
在区间( 1,2)内必有一根。
证:令
,由于 f (x)是初等函数,它在区间( - ∞, +∞)
上连续,另外 f (1)=-1<1 ,f (2)=13>0, f (x)在 [1 ,2] 上连续,故由零点
不正确。由函数在 x=0,1,2 点处的值分别为 0, 1,4/5 ,可知函数也不是单调函数;该函数 显然也不是一个周期函数,因此,只能考虑该函数为有界函数。
事实上,对任意的 x,由 任意的 x,有

,可得
,从而有
。可见,对于
因此,所给函数是有界的,即应选择 B。
例 7:若函数 f(x) 满足 f(x+y)=f(x)+f(y), 则 f(x) 是( )。
例 3.
A. 0 B. 1 C. 解 利用重要极限
π D. n
的极限,也有类似的结
,故应选 C。
注:第一重要极限
的本质是
子,里面可以填入任意以零为极限的表达式(三个
, 这里的 可以想象为一个空的筐 填入的内容要相同)。
类似地,第二重要极限 相同的任意趋于无穷大的表达式。
可以看作是
,其中 可以同时填入
的( )。
A. 同阶无穷小量 B. 高阶无穷小量 C. 低价无穷小量 D. 较低阶的无穷小量
解:由于
可知 例 8. 当
是 x 的同阶无穷小量,所以应选 A。 等价的无穷小量是 ( )
A.
B.
C.
D.
解:由于
可知 所以选 D。
的高阶无穷小量,同时
等价的无穷小量,
例 9. 下列变量在给定的变化过程中是无穷大量的是 ( )
相关文档
最新文档