传感器的静态特性
第三章 传感器的静态特性和动态特性讲解
![第三章 传感器的静态特性和动态特性讲解](https://img.taocdn.com/s3/m/739184dc9b89680203d82541.png)
例1:一阶传感器的频率响应,系统输入量(压力) F 为F(t)= b0 x(t ),输出 量为位移y( t ),不考虑运动。
解:①列出微分方程
a1
dy dt
a0
y
b0
x
②作拉普-拉斯变换
Y (S )(a1S a0 ) b0 X (S )
③令H(S )中的S =jω,即σ= 0
H ( j ) Y (S ) b0 X (S ) ja1 a0
ΔLj=(b+kxj)-yj
均方差函数为: 取其极小值,有:
4)总精度 系统的总精度由其量程范围内的基本误差与满度值Y(FS)之
比的百分数表示。基本误差由系统误差与随机误差两部分组成, 迟滞与线性度所表示的误差为系统误差,重复性所表示的误差 为随机误差。
总精度一般可用方和根来表示,有时也可用代数和表示。
统示值范围上、下限之差的模。当输入量在量程范围以内 时,系统正常工作并保证预定的性能。
对于4-20mA标准信号,零位值 yo=so=4mA,上限值 yfs=20mA,量 程 y(FS)=16mA。
3)灵敏度 S 输出增量与输入增量的比值。即
① 纯线性传感器灵敏度为常数:S=a1。
② 非线性传感器灵敏度S与x有关。
4)分辨率
在规定的测量范围内,传感器所能检测出输入量 的最小变化值。有时用相对与输入的满量程的相对 值表示。即
2、静态特性的性能指标
1) 迟滞现象(回差EH )
回差EH 反映了传感器的输 入量在正向行程和反向行程全 量程多次测试时,所得到的特 性曲线的不重合程度。
2) 重复性 Ex (不重复性) 重复性 Ex 反映了传感器在输入量按同一方向(增或减)全
传感器的一般特性
![传感器的一般特性](https://img.taocdn.com/s3/m/2df4be31cc7931b765ce15a8.png)
• 通常用下面四个指标来表示传感器的动态性 能(P37): (1)时间常数τ (2)上升时间tr (3)响应时间t5、t2 (4)超调量
• 2.频域性能指标(P32) 通常在正弦信号作用下测定传感器动 态性能的频域指标,称为频率法。具体方 法是在传感器输入端加恒定幅值的正弦信 号,测出不同频率下稳定输出信号的幅值, 绘制出幅频特性曲线。 频域通常有下面三个动态性能指标: (1)通频带 b (2)工作频带 (3)相位误差
• 2.2传感器的动态特性 传感器的动态特性是指输入量随时间动态变 化时,其输出与输入的关系。传感器所检测的物 理量大多数是时间的函数,为使传感器输出信号 及时准确地反映输入信号的变化,不仅要求它具 有良好的静态特性,还要求它具有良好的动态特 性。 为研究传感器的动态特性,可建立其动态数 学模型,用数学中的逻辑推理和运算方法,分析 传感器在动态变化的输入量作用下,输出量如何 随时间改变。也常用实验手段研究传感器的动态 特性,即给传感器一个“标准”信号(正弦输入 和阶跃输入),测出其输出随时间的变化关系, 进而得到其各项动态特性技术指标。
1.理想的线性特性 当a0=a2 =a3=…=an=0时,具有这种特性。此时 y=a1x,静态特性曲线是一条直线,传感器的灵敏 度为Sn=y/x=a1=常数 2.非线性项仅有一次项和偶次项 即y= a1x+a2x2+a4x4+… 因不具有对称性,其线性范围较窄,所以在设 计传感器时一般很少采用这种特性。当出现 时,必须采取线性化补偿措施。
• 2.2.1传感器的动态数学模型 要精确建立传感器或其测试系统的数学 模型是很困难的,在工程上采取一些近似, 略去一些影响不大的因素。通常把传感器 看成一个线性时不变系统,用常系数线性 微分方程来描述其输出量y与输入量x之间的 关系。 对于一个复杂的系统或输入信号,求解 微分方程是很难的,常用一些足以反映系 统动态特性的函数,将系统的输出与输入 联系起来,这些函数有传递函数、频率响 应函数和脉冲响应函数等。
第一章 传感器的一般特性2zz
![第一章 传感器的一般特性2zz](https://img.taocdn.com/s3/m/81468a097cd184254b35355c.png)
7、漂移
漂移是指传感器的被测量不变,而其输出 量却发生了不希望有的改变。
y 灵敏度漂移
零点漂移 灵敏度漂移 时间漂移(时漂) 温度漂移(温漂)
2 1 零点漂移 O x
8 分辨力和阈值
(1)阈值:当传感器的输入从零开始缓慢增加时, 只有在达到了某一值后,输出才发生可观测的变化,这 个值说明了传感器可测出的最小输入量,称为传感器的 阈值。 (2)分辨力:当传感器的输入从非零的任意值缓慢 增加时,只有在超过某一输入增量后,输出才发生可观 测的变化,这个输入增量称为传感器的分辨力。
取较大者为
RMax
ΔRmax2 ΔRmax1
R ( R Max yFS ) 100%
x
6.稳定性 稳定性表示传感器在较长时间内保持 其性能参数的能力,故又称长期稳定性。 稳定性可用相对误差或绝对误差表示。 表示方式如: 个月不超过 %满量程输 出。有时也采用给出标定的有效期来表示。
第一章 传感器的一般特性
在工程应用中,任何测量装置性能的优劣总要 以一系列的指标参数衡量,通过这些参数可以方便地 知道其性能。这些指标又称之为特性指标。 传感器可看作二端口网络,即有两个输入端和 两个输出端,输出输入特性是其基本特性,可用静态 特性和动态特性来描述。
输入
传感器
输出
1. 1 传感器的静特性
九、抗干扰能力
设计、选用、购买
1、量程和范围
传感器所能测量的最大被测量(输入量)的数值称为测量上
限,最小被测量称为测量下限,上限与下限之间的区间,则 称为测量范围。
量程---测量上限与下限的代数差。
测量范围为-20~+20℃,量程为40℃; 测量范围为-5~+10g,量程为15g; 测量范围为100~1000Pa,量程为900Pa;
传感器静态特性
![传感器静态特性](https://img.taocdn.com/s3/m/e4beba9bec3a87c24028c4d7.png)
输出量Y
max E *100% YFS
曲线a
max
YFS
曲线b 0 X 曲线a存在零点误差,但并不存在非线性误差。这是 传感器经常遇到的问题,比如我们在以后章节要学习的 霍尔传感器就存在零点误差,我们可以在调理电路中把 零点误差处理掉。 曲线b既存在零点误差,又存在输入量与输出成反比, 但并不存在非线性误差。这也是传感器经常遇到的问题 之一,比如我们在以后章节要学习的超声波传感器是这 样,我们可以在调理电路中和数据处理中可以解决。
K
举例
某电容式气体压力传感器的噪声电平为0.2mV,灵敏度 K为0.5mV/Pa,对于电容传感器一般取系数为2,则由 CN 公式可得其最小检测量:
M
K
0.8 Pa
传感器的分辨率指在规定测量范围内所能检测输入 量的最小变化量 xmin
xmin 100% 也可以用该值相对满量程输入值的百分数 X FS
max
T
0
MAX 零漂= × 100% YFS T
例如如上图所示某压力传感器,其满量程值为1V,温 度变化范围为-40度到60度。其输出受温度影响最大偏 差为0.2V,则其温漂为: 零漂= MAX × 100%=0.2%/ oc
YFS T
产生漂移的原因是多方面的,主要是由于测量系统
的灵敏元件受外界(温度、湿度、电磁干扰)干扰和 传感器调理电路的元器件受外界条件干扰引起的。
(2)传感器的灵敏度 定 传感器的灵敏度是其在稳态下输出增量 Y 义 与输入增量 X 的比值.常用 Sn 来表示:
S n lim X 0 Y X
对于线性传感器,其灵敏度就是它的静态特 Y 性的斜率,如图(a)所示,即: S n Y
N点
传感器问答题
![传感器问答题](https://img.taocdn.com/s3/m/19f763b3eefdc8d377ee325d.png)
1-1 何为传感器静态特性,静态特性技术指标有哪些传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性;其主要指标有线性度、灵敏度、精确度、最小检测量和分辨力、迟滞、重复性、零点漂移、温漂。
-2 何为传感器动态特性,动态特性技术指标有哪些动态特性是指传感器对随时间变化的输入量的响应特性;(2)描述动态特性的指标:对一阶传感器:时间常数对二阶传感器:固有频率、阻尼比。
1-3 传感器的等级精度是如何确定的传感器的精度等级是允许的最大绝对误差相对于其测量范围的百分数,即A=ΔA/YFS*100%1-4 传感器的线性度是怎样确定的,拟合刻度直线有几种方法传感器标定曲线与拟合直线的最大偏差与满量程输出值的百分比叫传感器的线性度;(2)拟合直线的常用求法有:端基法和最小二乘法。
1-5 一阶传感器怎样确定输入信号频率范围由一阶传感器频率传递函数w(jw)=K/(1+jωτ),确定输出信号失真、测量结果在所要求精度的工作段,即由B/A=K/(1+(ωτ)2)1/2,从而确定ω,进而求出f=ω/(2π).1-6 什么是传感器的差动测量方法,有何特点若某传感器的位移特性曲线方程为y1=a0+a1x+a2x2+a3x3+…….让另一传感器感受相反方向的位移,其特性曲线方程为y2=a0-a1x+a2x2-a3x3+……,则Δy=y1-y2=2(a1x+a3x3+a5x5……),这种方法称为差动测量法。
其特点输出信号中没有偶次项,从而使线性范围增大,减小了非线性误差,灵敏度也提高了一倍,也消除了零点误差。
第二章 2-1 什么是金属材料的应变效应,什么是半导体材料的压阻效应1)金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象叫金属材料的应变效应。
(2)半导体材料在受到应力作用后,其电阻率发生明显变化,这种现象称为压阻效应。
2-2 比较金属丝应变片与半导体应变片相同点和不同点相同点:它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化所;不同点:金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。
传感器的静态特性
![传感器的静态特性](https://img.taocdn.com/s3/m/cae7ca7731b765ce04081401.png)
一般来说,这些办法都比较复杂。所以在非线性误差不 太大的情况下,总是采用直线拟合的办法来线性化。 在采用直线拟合线性化时,输出输入的校正曲线与其拟 合曲线之间的最大偏差,就称为非线性误差或线性度 通常用相对误差γL表示: γL=±(ΔLmax/yFS)×100% ΔLmax一最大非线性误差; yFS—量程输出。
重复性误差也常用绝对误差表示。检测时也可选取几个测试点, 对应每一点多次从同一方向趋近,获得输出值系列 yi1 , yi2 , yi3,…,yin ,算出最大值与最小值之差或3σ作为重复性偏差ΔRi, 在几个ΔRi中取出最大值ΔRmax 作为重复性误差。
11
8.静态误差
静态误差是指传感器在其全量程内任一点的输出值与其理论值的偏离 程度。反映了传感器的精度指标 静态误差的求取方法:把全部输出数据与拟合直线上对应值的残差,看 成是随机分布,求出其标准偏差,即
2 i 对k和b一阶偏导数等于零,求出b和k的表达式
7
n
n
2
2 i 2 yi kx i b xi 0 k 2i 2 yi kx i b 1 0 b
即得到k和b的表达式
k n xi yi xi yi n x xi
(a)准确度高而精密度低 (b)准确度低而精密度高
(c)精确度高
在测量中我们希望得到精确度高的结果。
14
例题:测得某检测装置的一组输入输出数据如下:
X y 0.9 2.5 3.3 4.5 5.7 6.7 1.1 1.6 2.6 3.2 4.0 5.0
试用最小二乘法拟合直线,求其线性度和灵敏度
y kx b, i yi (kxi b) k n xi y i xi y i n x ( xi )
第1章 传感器的特性
![第1章 传感器的特性](https://img.taocdn.com/s3/m/1ad22767f242336c1fb95e0b.png)
3.重复性(Repeatability) 传感器在同一工 作条件下输入量 按同一方向(同为 正行程或同为反 行程)作全量程连 续多次变动时所 得特性曲线的不 一致程度。
重复性误差:
Rmax R 100% YFS
△Rmax:正(反)行程中的最大重复偏差
特性曲线一致性好, 重复性就好,误差就小。
3
传感器的特性:传感器所有性质的总称。 传感器的基本特性:输出/输入特性。
概述
静态特性 : 被测参量基本不随时间变化或变化很缓慢时,传 感器的输出/输入特性。
动态特性 :
被测参量随时间变化时 ,传感器的输出/输入特 性。
5
传感器的特性
1.1 传感器静态特性方程与特性曲线 1.2 传感器的静态特性 1.3 传感器的动态特性
取2σ或3σ值即为传感器静态误差。静态误差也 可用相对误差表示,即:
3 100% y FS
静态误差是一项综合性指标,基本上包含了前面 叙述的非线性误差、迟滞误差、重复性误差、灵敏度 误差等。所以也可以把这几个单项误差综合而得,即:
L H R S
2 2 2
(3-3)
32
1.2 传感器静态特性的主要指标
• 由于受很多因素的影响,会引起灵敏度变化从而产生灵敏 度误差,习惯上用相对误差表示
s
k k
100%
• 灵敏度的量纲: 输出的量纲/输入的量纲。V/℃、mv/g、A/g、mv/mm
• 能量控制型传感器,灵敏度与供给sensor的电源电压有关。 例如:100(mv/mm.V) 某位移传感器,当电源电压为1V时,每1mm位移的变化量 引起输出电压变化100mv。
|
温度稳定性(温漂):传感器在外界温度变化情况下输 出量发生的变化,又称为温度漂移。 抗干扰能力稳定性:传感器对各种外界干扰的抵抗能力。
第2章 传感器的一般特性
![第2章 传感器的一般特性](https://img.taocdn.com/s3/m/98d481db28ea81c758f5785b.png)
y
a0
—— 输出量;
x
a1
—— 输入量; —— 理论灵敏度;
—— 零点输出;
a2,a3,...an
—— 非线性项系数。
各项系数不同,决定了特性曲线的具体形式不同。
传感器的静态特性
传感器静态特性的主要指标有以下几点: 2.1.1线性度(非线性误差) – 在采用直线拟合线性化时,输出输入的校正曲线与其拟合曲 线之间的最大偏差,就称为非线性误差或线性度,通常用相 对误差来表示,即
传感器的静态特性
2.1.6重复性(续)
重复性所反映的是测量结果偶然误差的大小,
而不表示与真值之间的差别。有时重复性虽然
很好,但可能远离真值。
传感器的静态特性
2.1.7 零点漂移
零点漂移:传感器无输入(或某一输入值不变)时,每隔 一段时间进行读数,其输出偏离零值(或原指示值),即 为零点漂移(简称零漂)。
导致传感器无法正常进行测量。 输入信号随时间变化时,引起输出信号也随时间变化, 这个过程称为响应。动态特性就是指传感器对于随时间变化 的输入信号的响应特性,通常要求传感器不仅能精确地显示 被测量的大小,而且还能复现被测量随时间变化的规律,这 也是传感器的重要特性之一。
传感器的动态特性
传感器的动态特性是指传感器对于随时间变化的输入量的 响应特性,传感器所检测的非电量信号大多数是时间的函数。 为了使传感器输出信号和输入信号随时间的变化曲线一致或相 近,我们要求传感器不仅有良好的静态特性,而且还应具有良 好的动态特性。传感器的动态特性是传感器的输出值能够真实 地再现变化着的输入量能力的反映。
《测控技术》 第二章 传感器的一般特性
扬州大学 陈虹
传感器的一般特性
2.1 传感器的静态特性
简述五种传感器静态特征的主要指标
![简述五种传感器静态特征的主要指标](https://img.taocdn.com/s3/m/8a2a16f45122aaea998fcc22bcd126fff7055d93.png)
简述五种传感器静态特征的主要指标
静态特性的主要技术指标有:线性度、量测范围和量程、迟滞和重复性、灵敏度、分辨力和阈值、稳定性、漂移和静态误差。
线性度是描述传感器静态特性的一个重要指标,以被测输入量处于稳定状态为前提。
在规定条件下,传感器校准曲线与拟合直线间的最大偏差(ΔYmax)与满量程输出(Y)的百分比,称为线性度(线性度又称为“非线性误差”),该值越小,表明线性特性越好。
灵敏度(Sensitivity)是指某方法对单位浓度或单位量待测物质变化所致的响应量变化程度,它可以用仪器的响应量或其他指示量与对应的待测物质的浓度或量之比来描述。
分辨力是指引起相应示值产生可觉察到变化的被测量的最小变化。
放大负片时,表示成为大致同标的清晰度和颗粒性的术语。
测量范围指计量器具所能够测量的最小尺寸与最大尺寸之间的范围。
测量范围的小值和值分别称为测量下限和测量上限,仪表的量程用来表示其测量范围的大小,是其测量上限值与下限值的代数差,即量程等于测量上限值减测量下限值,给出仪表的测量范围便知限及量程,反之只给出仪表的量程,却无法确定其限及测量范围。
静态误差是指当测量器件的测量值(或输入值)不随时间变化时,测量结果(或输出值)会有缓慢的漂移,这种误差称为静态输入误差,或称静态误差。
传感器静态特性
![传感器静态特性](https://img.taocdn.com/s3/m/c93ab2f04693daef5ef73d96.png)
地空学院测控系 李志华
第二章
§ 1
传感器的一般特性
传感器的静态特性
(1)传感器线性度 1 (2)传感器的灵敏度 ) (3)传感器的重复性 )
(4)迟滞误差
(5)最小检测量和分辨率 5 (6)漂移 6
一、 传感器的一般特性 1、静态特性与动态特性定义
从输入信号不随时间变化或变化极其缓慢的角 从输入信号不随时间变化或变化极其缓慢的角 不随时间变化 度考虑的传感器特性称为传感器静态特性 传感器静态特性。 度考虑的传感器特性称为传感器静态特性。
M=
K
= 0.8 Pa
传感器的分辨率指在规定测量范围内所能检测输入 量的最小变化量 ∆xmin
∆xmin ×100% 也可以用该值相对满量程输入值的百分数 X FS
来表示。 来表示。 数字传感器的分辨率可用输出数字指示值最后一位所 代表的输入量。 代表的输入量。
(6)漂移 6
传感器的漂移是指在外界的干扰下, 传感器的漂移是指在外界的干扰下,输出量发生与输 是指在外界的干扰下 入量无关的、不需要的变化。 入量无关的、不需要的变化。 零点漂移 传感器的漂移 灵敏度漂Y
∆ max
输入量X 0
YFS
输出量Y
∆ max E=± *100% YFS
曲线a
∆ max
YFS
曲线b 0 X 曲线a存在零点误差,但并不存在非线性误差。 曲线a存在零点误差,但并不存在非线性误差。这是 传感器经常遇到的问题, 传感器经常遇到的问题,比如我们在以后章节要学习的 霍尔传感器就存在零点误差, 霍尔传感器就存在零点误差,我们可以在调理电路中把 零点误差处理掉。 零点误差处理掉。 曲线b 存在零点误差,又存在输入量与输出成反比, 曲线b既存在零点误差,又存在输入量与输出成反比, 但并不存在非线性误差。 但并不存在非线性误差。这也是传感器经常遇到的问题 之一, 之一,比如我们在以后章节要学习的超声波传感器是这 我们可以在调理电路中和数据处理中可以解决。 样,我们可以在调理电路中和数据处理中可以解决。
传感器的静态模型、静态特性、动态模型及例题
![传感器的静态模型、静态特性、动态模型及例题](https://img.taocdn.com/s3/m/da5a9488fd0a79563c1e72c9.png)
传感器在输出量由大到小(正行程)及输入量由大到小(反行程)变化期间,其
输出-输入特性曲线不重合的现象称为迟滞。
δH
=
±
Δ������max yF⋅s
×
100%
4、 重复性
重复性误差用测量值正反行程标准偏差σ最大值的 2 或者 3 倍与满量程输出值
yF⋅s的百分比表示。 2������~3������
δR = ± yF⋅s × 100% 5、 精度
精度是指测量结果的可靠程度,误差越小,精度越高。传感器的精度是量程内最
大基本误差与满量程的百分比。
δ
=
±
Δmax yF⋅s
×
100%=δL
+
δH
+
δR
6、 分辨力
分辨力是表示传感器能够检测输入量最小变化的能力,是可观察输出变化的最小
输入量变化值。
7、 漂移
线性度是指传感器输出量与输入量之间的实际关系曲线偏离直线的程度,用δL表
示。
δL
=
±
Δymax yF⋅s
×
100%
ymax为实际关系曲线与拟合直线的最大偏差,yF⋅s为满量程输出。
2、 灵敏度
灵敏度是传感器在稳态下输出量的增量Δy与输出量的增量Δx的比值,这里用k表
示,其表达式为。 Δy
k = Δx 3、 迟滞
漂移主要包括零点漂移和灵敏度漂移。其中又包括时间漂移和温度漂移。
8、 测量范围与量程
传感器所能测量到的最小输入量(被测量)xmin与最大输入量(被测量)xmax之 间的范围,称为传感器的测量范围。传感器测量范围的上限值与下限之差称为传
感器的量程。
2.2 什么是传感器的动态模型?分别写出微分方程、传递函数和频率
传感器的静态模型、静态特性、动态模型及例题
![传感器的静态模型、静态特性、动态模型及例题](https://img.taocdn.com/s3/m/da5a9488fd0a79563c1e72c9.png)
y——输出量;
x——输入量;
������0——零位输出; ������1——传感器的线性灵敏度,常用 K 或 S 表示; ������2,������3,…, ������������——传感器的非线性项的待定常数。
传感器的静态特性有哪些技术指标?含义分别是什么?用哪些公式 表示?
传感器的静态特性是指当被测量处于稳定状态(x(t)=常量)时,传感器输出量与
输入量之间的相互关系。也常把输入量作为横坐标,把输出量作为纵坐标,画曲
线描述传感器的静态特性。衡量传感器静态特性的技术指标主要有线性度、灵敏
度、迟滞、重复性、精度、分辨力、漂移、测量范围和量程等。
1、 线性度
理想:y = a1x 实际遇到的传感器大多为非线性的,需要用线性度来说明传感器的非线性程度。
+
������0������(������)
=
������������
������������������(������) ������������������
+
������������−1
������������−1������(������) ������������������−1
+
⋯
+
������1
合格?
解:
δ
=
Δmax yF⋅s
×
100%
=
1.4������������ 110������������
×
100%
≈
1.27%
因为一级允许的最大误差为 1% 所以不合格。
δR = ± yF⋅s × 100% 5、 精度
精度是指测量结果的可靠程度,误差越小,精度越高。传感器的精度是量程内最
第二章传感器的特性21传感器的静态特性
![第二章传感器的特性21传感器的静态特性](https://img.taocdn.com/s3/m/6c282822f011f18583d049649b6648d7c1c708f7.png)
l 可靠度R(t) : 完成规定功能的概率P(T>t)
l 可靠寿命:年,月 l 失效率 (t) 在t时刻后单位时间发生失效的概
率
返回
上页
下页
2.2 传感器的动态特性
传感器对随时间变化的输入量的响应特性(测量 值大小、变化规律)
返回
上页
下页
标定系统组成
标定系统框图
传感器标定时,所用测量设备的精度至少要比待标 定传感器的精度高一个数量级。
返回
上页
下页
为了保证各种被测量量值的一致性和准确性,很多 国家都建立了一系列计量器具(包括传感器)检定的组织 和规程、管理办法。我国由国家计量局、中国计量科学 研究院和部、省、市计量部门以及一些大企业的计量站 进行制定和实施。国家计量局(1989年后由国家技术监 督局)制定和发布了力值、长度、压力、温度等一系列计 量器具规程,并于1985年9月公布了《中华人民共和国 计量法》,其中规定:计量检定必须按照国家计量检定 系统表进行。计量检定系统表是建立计量标准、制定检 定规程、开展检定工作、组织量值传递的重要依据。
返回
上页
下页
静态标定的目的是确定传感器静态特性指标,如 线性度、灵敏度、滞后和重复性等。传感器的静态 特性是在静态标准条件下标定的。
静态标准条件 所谓静态标准条件主要包括没有加速度、振动、冲 击及环境温度一般为室温 (20℃±5℃) 、相对湿度不 大于85%、大气压力(101±7)kPa 等条件。
返回
上页
下页
传感器的标定有两层含义: § 确定传感器的性能指标 § 明确这些性能指标所适用的工作环境
传感器静态特性
![传感器静态特性](https://img.taocdn.com/s3/m/c93ab2f04693daef5ef73d96.png)
∆X
M点 0
∆X
∆Y
X
非线性传感器的灵敏度是一个变量,如图(b)所 非线性传感器的灵敏度是一个变量,如图(b)所 示,即用 d y 表示传感器在其某一工作点的灵敏 dx 度。
Y
S n = lim ∆X → 0
∆Y dy = ∆X dx
M点
∆X
∆Y
X
0
(3)传感器的重复性 ) 重复性表示传感器在输入量按同一方向作全量程多次 测试时,所得特性曲线不一致性的程度(见图) 测试时,所得特性曲线不一致性的程度(见图)。多次按 相同输入条件测试的输出特性曲线越重合 的输出特性曲线越重合, 相同输入条件测试的输出特性曲线越重合,其重复性越 其重复性误差也越小。 好,其重复性误差也越小。 Y∆
M=
K
= 0.8 Pa
传感器的分辨率指在规定测量范围内所能检测输入 量的最小变化量 ∆xmin
∆xmin ×100% 也可以用该值相对满量程输入值的百分数 X FS
来表示。 来表示。 数字传感器的分辨率可用输出数字指示值最后一位所 代表的输入量。 代表的输入量。
(6)漂移 6
传感器的漂移是指在外界的干扰下, 传感器的漂移是指在外界的干扰下,输出量发生与输 是指在外界的干扰下 入量无关的、不需要的变化。 入量无关的、不需要的变化。 零点漂移 传感器的漂移 灵敏度漂移 时间漂移 Y 温度漂移
(4)迟滞 4
迟滞特性能表明传感器在正向(输入量增大) 迟滞特性能表明传感器在正向(输入量增大)行程和 反向(输入量减小)行程期间, 反向(输入量减小)行程期间,输出输入特性曲线不重合 的程度。对于同一输入正向和反向行程的差值 正向和反向行程的差值用 的程度。对于同一输入正向和反向行程的差值用E表示 为:
传感器的静态特性
![传感器的静态特性](https://img.taocdn.com/s3/m/23a24577804d2b160b4ec0b6.png)
传感器静态特性的一般知识传感器作为感受被测量信息的器件,总是希望它能按照一定的规律输出有用信号,因此需要研究其输出――输入的关系及特性,以便用理论指导其设计、制造、校准与使用。
理论和技术上表征输出――输入之间的关系通常是以建立数学模型来体现,这也是研究科学问题的基本出发点。
由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间而变化的量),理论上应该用带随机变量的非线性微分方程作为数学模型,但这将在数学上造成困难。
由于输入信号的状态不同,传感器所表现出来的输出特性也不同,所以实际上,传感器的静、动态特性可以分开来研究。
因此,对应于不同性质的输入信号,传感器的数学模型常有动态与静态之分。
由于不同性质的传感器有不同的内在参数关系(即有不同的数学模型),它们的静、动态特性也表现出不同的特点。
在理论上,为了研究各种传感器的共性,本节根据数学理论提出传感器的静、动态两个数学模型的一般式,然后,根据各种传感器的不同特性再作以具体条件的简化后给予分别讨论。
应该指出的是,一个高性能的传感器必须具备有良好的静态和动态特性,这样才能完成无失真的转换。
1. 传感器静态特性的方程表示方法静态数学模型是指在静态信号作用下(即输入量对时间t 的各阶导数等于零)得到的数学模型。
传感器的静态特性是指传感器在静态工作条件下的输入输出特性。
所谓静态工作条件是指传感器的输入量恒定或缓慢变化而输出量也达到相应的稳定值的工作状态,这时,输出量为输入量的确定函数。
若在不考虑滞后、蠕变的条件下,或者传感器虽然有迟滞及蠕变等但仅考虑其理想的平均特性时,传感器的静态模型的一般式在数学理论上可用n 次方代数方程式来表示,即2n 012n y a a x a x a x =+++⋯+ (1-2)式中 x ――为传感器的输入量,即被测量;y ――为传感器的输出量,即测量值;0a ――为零位输出;1a ――为传感器线性灵敏度;2a ,3a ,…,n a ――为非线性项的待定常数。
传感器简答
![传感器简答](https://img.taocdn.com/s3/m/67497845cc7931b765ce1581.png)
1、什么是传感器的静态特性?它有哪些性能指标? 如何用公式表征这些性能指标?2、什么是传感器的动态特性? 其分析方法有哪几种?3、什么是传感器的静特性?主要指标有哪些?有何实际意义?4、什么是传感器的基本特性?传感器的基本特性主要包括哪两大类?解释其定义并分别列出描述这两大特性的主要指标。
(要求每种特性至少列出2种常用指标)1、 答:传感器的静态特性是它在稳态信号作用下的输入-输出关系。
静态特性所描述的传感器的输入、输出关系式中不含有时间变量。
传感器的静态特性的性能指标主要有: ① 线性度:非线性误差maxL ∆ ④ 重复性:maxRFSR 100%Y γ∆=±⨯⑤ 漂移:传感器在输入量不变的情况下,输出量随时间变化的现象。
2、答:传感器的动态特性是指传感器对动态激励(输入)的响应(输出)特性,即其输出对随时间变化的输入量的响应特性。
传感器的动态特性可以从时域和频域两个方面分别采用瞬态响应法和频率响应法来分析。
知识点:传感器的动态特性 3、答:传感器的静态特性是当其输入量为常数或变化极慢时,传感器的输入输出特性,其主要指标有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。
传感器的静特性由静特性曲线反映出有:线性度(非线性误差)、灵敏度、迟滞、重复性和漂移;动态特性是指传感器对动态激励(输入)的响应(输出)特性,即其输出对随时间变化的输入量的响应特性,主要描述指标有:时间常数、延迟时间、上升时间、峰值时间、响应时间、超调量、幅频特性和相频特性。
1、什么叫应变效应? 利用应变效应解释金属电阻应变片的工作原理。
2、试简要说明电阻应变式传感器的温度误差产生的原因,并说明有哪几种补偿方法。
1、 答:材料的电阻变化由尺寸变化引起的,称为应变效应。
应变式传感器的基本工作原理:当被测物理量作用在弹性元件上,弹性元件在力、力矩或压力等的作用下发生形变,变换成相应的应变或位移,然后传递给与之相连的应变片,4、差动变压器式传感器有几种结构形式? 各有什么特点?5、差动变压器式传感器的零点残余电压产生的原因是什么?怎样减小和消除它的影响?2、答:变隙式电感传感器的输出特性与衔铁的活动位置、供电电源、线圈匝数、铁芯间隙有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器的静态特性
传感器的静态特性是指传感器的输入信号不随时间变化或变化非常缓慢时,所表现出来的输出响应特性,称静态响应特性。
通常用来描述静态特性的指标有:测量范围、精度、灵敏度、稳定性、非线性度、重复性、灵敏阈和分辨力、迟滞等。
测量范围测量范围是指传感器能正常工作时的最小输入值与最大输入值之间的范围。
精度与精度有关的指标有三个,即精密度、准确度和精确度。
稳定性传感器的稳定性,一是指传感器测量输出值在一段时间内的变化,即用所谓的稳定度表示;二是指在传感器外部环境和工作条件变化时而引起输出值的变化,即用影响量来表示。
例如,某传感器输出电压值每小时变化
1.3mv/h。
又如,某传感器由于电源变化10%而引起其输出值变化0.02mA,则应写成0.02mA/(u10%)。
灵敏度传感器灵敏度是表示传感器的输入增量与由它引起的输出增量之间
的函数关系。
更确切地说,灵敏度k 等于传感器输出增量与被测量增量之比,是传感器在稳态输出输入特性曲线上各点的斜率,可用下式表示:灵敏阈与分辨力灵敏阈是指传感器能够区分出的最小读数变化量。
对模拟
式仪表,当输入量连续变化时,输出量只做阶梯变化,则分辨力就是输出量的每个阶梯所代表的输入量的大小。
对于数字式仪表,灵敏度阈就是分辨力,即仪表指示数字值的最后一位数字所代表的值。
从物理含义看,灵敏度是广义的增益,而灵敏度阈则是死区或不灵敏度。
迟滞
传感器在正(输入量增大)反(输入量减小)行程中输入特性曲线不重合。