一个三角形被分割为两个等腰三角形
专题9.1 与三角形有关的线段【八大题型】(举一反三)(华东师大版)(解析版)
专题9.1与三角形有关的线段【八大题型】【华东师大版】【题型1三角形的分类】 (1)【题型2判断三角形的个数】 (3)【题型3三角形三边关系的应用】 (5)【题型4三角形的稳定性】 (6)【题型5三角形的角平分线、中线和高线概念辨析】 (8)【题型6三角形的中线与面积问题】 (10)【题型7三角形的中线与周长问题】 (13)【题型8证明三角形中线段不等关系】 (16)【例1】(2021秋•漳平市期中)下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④【分析】①根据等腰三角形及等边三角形的定义进行解答即可;②由三角形按边分可分为不等边三角形和等腰三角形,其中等腰三角形又可分为底和腰不相等的三角形和等边三角形,可得结论;③根据等腰三角形的定义进行解答;④根据三角形按角分类情况可得答案.【解答】解:①∵有两个边相等的三角形叫等腰三角形,三条边都相等的三角形叫等边三角形,∴等腰三角形不一定是等边三角形,∴①错误;②∵三角形按边分可分为不等边三角形和等腰三角形,其中等腰三角形又可分为底和腰不相等的三角形和等边三角形,∴②错误;③∵两边相等的三角形称为等腰三角形,∴③正确;④∵三角形按角分类可以分为锐角三角形、直角三角形、钝角三角形,∴④正确.故选:C.【变式1-1】(2021秋•威县期末)下列关于三角形的分类,有如图所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲分法正确,乙分法错误C.甲分法错误,乙分法正确D.甲、乙两种分法均错误【分析】给出知识树,分析其中的错误,这就要求平时学习扎实认真,概念掌握的准确.【解答】解:甲正确的分类应该为,乙分法正确;故选:C.【变式1-2】(2021秋•阳新县期末)如图表示的是三角形的分类,则正确的表示是()A.M表示三边均不相等的三角形,N表示等腰三角形,P表示等边三角形B.M表示三边均不相等的三角形,N表示等边三角形,P表示等腰三角形C.M表示等腰三角形,N表示等边三角形,P表示三边均不相等的三角形D.M表示等边三角形,N表示等腰三角形,P表示三边均不相等的三角形【分析】根据三角形按边的分类可直接选出答案.【解答】解:三角形根据边分类如下:三角形不等边三角形等腰三角形底和腰不相等的等腰三角形等边三角形;故选:B.【变式1-3】(2021秋•静安区期末)下列说法错误的是()A.任意一个直角三角形都可以被分割成两个等腰三角形B.任意一个等腰三角形都可以被分割成两个等腰三角形C.任意一个直角三角形都可以被分割成两个直角三角形D.任意一个等腰三角形都可以被分割成两个直角三角形【分析】根据等腰三角形的判定和直角三角形的性质判断即可.【解答】解:A、任意一个直角三角形被斜边的中线分割成两个等腰三角形,说法正确;B、有的等腰三角形不能分割成两个等腰三角形,说法错误;C、任意一个直角三角形可以被斜边的高分割成两个直角三角形,说法正确;D、任意一个等腰三角形可以被底边上的高分割成两个直角三角形,说法正确;故选:B.【题型2判断三角形的个数】【例2】(2021•蒙阴县校级开学)如图中三角形的个数是()A.3B.4C.5D.6【分析】结合图形写出所有的三角形,得到答案.【解答】解:图中有△ABE、△ABC、△BCE、△BCD、△CED共5个,故选:C.【变式2-1】(2022春•建邺区校级期中)如图,以AB为边的三角形的个数是()A.1个B.2个C.3个D.4个【分析】根据三角形的概念、结合图形写出以AB为边的三角形.【解答】解:△ABC、△ABE、△ABF、△ABD四个三角形是以AB为边的三角形,故选:D.【变式2-2】(2021秋•安徽期中)现有若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角,则在这些三角形中锐角三角形的个数是()A.3B.4或5C.6或7D.8【分析】根据三角形的定义,先得出三角形的个数.再根据三角形的分类,得出锐角三角形的个数.【解答】解:由题意得:若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角时,∴共有33÷3=11个三角形;又三角形中,最多有一个直角或最多有一个钝角,显然11个三角形中,有5个直角三角形和3个钝角三角形;故还有11﹣5﹣3=3个锐角三角形.故选:A.【变式2-3】(2022秋•饶平县校级期末)观察图形规律:(1)图①中一共有个三角形,图②中共有个三角形,图③中共有个三角形.(2)由以上规律进行猜想,第n个图形共有个三角形.【分析】(1)根据图形直接数出三角形个数即可;(2)根据(1)中所求得出数字变化规律,进而求出即可.【解答】解:(1)如图所示:图①中一共有3个三角形,图②中共有6个三角形,图③中共有10个三角形.故答案为:3,6,10;(2)∵1+2=3,1+2+3=6,1+2+3+4=10,∴第n个图形共有:1+2+3+…+(n+1)=(r1)(r2)2.故答案为:(r1)(r2).【题型3三角形三边关系的应用】【例3】(2022•平桂区二模)老师布置了一份家庭作业:用老师给的三根小木棍做出一个三角形木架,三根小木棍的长度分别为:5cm、9cm、10cm,要求只能对10cm的小木棍进行裁剪(裁剪后长度为整数).你认为同学们最多能做出()个不同的三角形木架.A.1B.2C.6D.10【分析】根据三角形的三边关系列出不等式组,判断即可.【解答】解:设从10cm的小木棍上裁剪的线段长度为xcm,则9﹣5<x<9+5,即4<x<14,∴整数x的值为5cm、6cm、7cm、8cm、9cm、10cm,∴同学们最多能做出6个不同的三角形木架,故选:C.【变式3-1】(2022春•秦淮区期中)如图,用四颗螺丝将不能弯曲的木条围成一个木框,不计螺丝大小,其中相邻两颗螺丝的距离依次为3、4、6、8,且相邻两根木条的夹角均可以调整,若调整木条的夹角时不破坏此木框,则任意两颗螺丝的距离的最大值是()A.7B.10C.11D.14【分析】分四种情况、根据三角形的三边关系解答即可.【解答】解:①选3+4、6、8作为三角形,则三边长为7、6、8;7﹣6<8<7+6,能构成三角形,此时两个螺丝间的最长距离为8;②选6+4、3、8作为三角形,则三边长为10、3、8;8﹣3<10<8+3,能构成三角形,此时两个螺丝间的最大距离为10;③选3+8、4、6作为三角形,则三边长为111、4、6;4+6<11,不能构成三角形,此种情况不成立;④选6+8、3、4作为三角形,则三边长为14、3、4;而3+4<14,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为10,故选:B.【变式3-2】(2022•襄州区模拟)一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为()A.2个B.4个C.6个D.8个【分析】首先设三角形第三边长为x,根据三角形的三边关系可得9﹣5<x<5+9,解不等式可得x的取值范围,再根据周长是偶数确定x的值,进而可得答案.【解答】解:设三角形第三边长为x,由题意得:9﹣5<x<5+9,解得:4<x<14,∵周长是偶数,∴x=6,8,10,12,共4个.故选:B.【变式3-3】(2021秋•祁阳县期末)已知三角形的三条边长均为整数,其中有一条边长是4,但它不是最短边,这样的三角形的个数为()A.6个B.8个C.10个D.12个【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,用穷举法即可得出答案.【解答】解:∵三角形的三条边长均为整数,其中有一条边长是4,但它不是最短边,列举法:当4是最大边时,有(1,4,4),(2,3,4),(2,4,4),(3,3,4),(3,4,4).当4是中间的边时,有(2,4,5),(3,4,5),(3,4,6).共8个,故选:B.【题型4三角形的稳定性】【例4】(2021春•左权县月考)我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥中的斜拉索桥,那么你能推断出斜拉索大桥中运用的数学原理是.【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性.【解答】解:可以推断出斜拉索大桥中运用的数学原理是三角形的稳定性.故答案为:三角形的稳定性.【变式4-1】(2021秋•云梦县月考)下列生活中的一些事实运用了“三角形稳定性”的是()A.B.C.D.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:儿童座架利用三角形的稳定性,座架形成三角形不变形,结实,故C符合题意;A、B、D不是三角形,故选项不符合题意.故选:C.【变式4-2】(2021秋•龙岩期末)下列图形中,不具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性进行解答即可.【解答】解:A、不具有稳定性,故此选项符合题意;B、具有稳定性,故此选项不符合题意;C、具有稳定性,故此选项不合题意;D、具有稳定性,故此选项不符合题意;故选:A.【变式4-3】(2021秋•岚皋县校级月考)要使如图所示的六边形木架不变形,则至少需要钉上木条的根数为()A.1B.2C.3D.4【分析】三角形具有稳定性,所以要使六边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【解答】解:过六边形的一个顶点作对角线,有6﹣3=3条对角线,所以至少要钉上3根木条.故选:C.交AC于E.F为AB上的一点,CF⊥AD于H.下列判断正确的有()A.AD是△ABE的角平分线B.BE是△ABD边AD上的中线C.CH为△ACD边AD上的高D.AH为△ABC的角平分线【分析】根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.【解答】解:A、根据三角形的角平分线的概念,知AG是△ABE的角平分线,故本选项错误;B、根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故本选项错误;C、根据三角形的高的概念,知CH为△ACD的边AD上的高,故本选项正确;D、根据三角形的角平分线的概念,知AD是△ABC的角平分线,故本选项错误.故选:C.【变式5-1】(2021春•镇江期中)如图,△ABC的角平分线AD与中线BE相交于点O,有下列两个结论:①AO是△ABE的角平分线:②DE是△ADC的中线,其中()A.只有①正确B.只有②正确C.①和②都正确D.①和②都不正确【分析】易得∠BAD=∠CAD,AE=CE,根据这两个条件判断所给选项是否正确即可.【解答】解:∵△ABC的角平分线AD与中线BE相交于点O,∴∠BAD=∠CAD,AE=CE,①在△ABE中,∠BAD=∠CAD,∴AO是△ABE的角平分线,故①正确;②在△ADC中,AE=CE,∴DE是△ADC的中线,故②正确;故选:C.【变式5-2】(2022春•静安区期中)下列判断错误的是()A.三角形的三条高的交点在三角形内B.三角形的三条中线交于三角形内一点C.直角三角形的三条高的交点在直角顶点D.三角形的三条角平分线交于三角形内一点【分析】根据三角形的角平分线,中线,高的定义一一判断即可.【解答】解:A、锐角三角形的三条高的交点在三角形内,故本选项说法错误,符合题意;B、三角形的三条中线交于三角形内一点,故本选项说法正确,不符合题意;C、直角三角形的三条高的交点在直角顶点,故本选项说法正确,不符合题意;D、三角形的三条角平分线交于三角形内一点,故本选项说法正确,不符合题意.故选:A.【变式5-3】(2021秋•茶陵县期末)下列说法中,正确的个数是()①三角形的中线、角平分线、高都是线段;②三角形的三条角平分线、三条中线、三条高都在三角形内部;③直角三角形只有一条高;④三角形的三条角平分线、三条中线、三条高分别交于一点.A.1B.2C.3D.4【分析】根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上.【解答】解:①三角形的中线、角平分线、高都是线段,故正确;②钝角三角形的高有两条在三角形外部,故错误;③直角三角形有两条直角边和直角到对边的垂线段共三条高,故错误;④三角形的三条角平分线、三条中线分别交于一点是正确的,三条高线所在的直线一定交于一点,高线指的是线段,故错误.所以正确的有1个.故选:A.【题型6三角形的中线与面积问题】【例6】(2022春•广州期中)如图,△ABC的面积是24,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是()A.9B.9.5C.10.5D.10【分析】根据中线的性质,可得:△AEF的面积=12×△ABE的面积=14×△ABD的面积=18×△ABC的面积=3,△AEG的面积=3,根据三角形中位线的性质可得△EFG的面积=14×△BCE的面积=3,进而得到△AFG的面积.【解答】解:∵点D是BC的中点,∴AD是△ABC的中线,∴△ABD的面积=△ADC的面积=12×△ABC的面积,同理得:△AEF的面积=12×△ABE的面积=14×△ABD的面积=18×△ABC的面积=18×24=3,△AEG的面积=3,△BCE的面积=12×△ABC的面积=12,又∵FG是△BCE的中位线,∴△EFG的面积=14×△BCE的面积=14×12=3,∴△AFG的面积是3×3=9,故选:A.【变式6-1】(2022春•邗江区校级期中)如图,在△ABC中,D,E分别是BC,AD的中=2cm2,则S△ABC=()点,点F在BE上,且EF=2BF,若S△BCFA.3B.6C.8D.12=2cm2,求得S△BEC=3S△BCF=6cm2,根据三角形中线把【分析】根据EF=2BF,S△BCF=S△CDE=12S△BEC=3cm2,从而求出S△ABD 三角形分成两个面积相等的三角形可得S△BDE=2S△BDE=6cm2,再根据S△ABC=2S△ABD计算即可得解.=S△ACD=2cm2,【解答】解:如图,∵EF=2BF,S△BCF=3S△BCF=3×2=6cm2,∴S△BEC∵D是BD的中点,=S△CDE=12S△BEC=3cm2,∴S△BDE∵E是AD的中点,=S△ACD=2S△BDE=6cm2,∴S△ABD=2S△ABD=12cm2,∴S△ABC∴△ABC的面积为12cm2,故选:D.【变式6-2】(2021秋•潮安区期末)如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8,则阴影部分的面积为()A.4B.2C.6D.8【分析】根据AD是△ABC的中线,点E是AD的中点,得出三角形EDC的面积+三角形AEB的面积与三角形ABC的面积的关系即可.【解答】解:∵AD是△ABC的中线,=S△ACD=12S△ABC,∴S△ABD∵点E是AD的中点,=S△BDE=12S△ABD,∴S△ABES△EDC=S△CAE=12S△ACD,=14S△ABC,S△CDE=14S△ABC,∴S△ABE+S△CDE=14S△ABC+14S△ABC=12S△ABC=12×8=4,∴S△ABE故选:A.【变式6-3】(2022春•泰兴市校级月考)如图,在△ABC中,G是边BC上任意一点,D、E、F分别是AG、BD、CE的中点,S△ABC=48,则S△DEF的值为.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【解答】解:连接CD,如图所示:∵点D是AG的中点,=12S△ABG,S△ACD=12S△AGC,∴S△ABD+S△ACD=12S△ABC=24,∴S△ABD=12S△ABC=24,∴S△BCD∵点E是BD的中点,=12S△BCD=12,∴S△CDE∵点F是CE的中点,=12S△CDE=6.∴S△DEF故答案为:6.【题型7三角形的中线与周长问题】【例7】(2021秋•乳山市校级月考)在△ABC中,∠B<∠C,AD为BC边的中线,△ABD 的周长与△ADC的周长相差3,AB=8,则AC=.【分析】根据三角形的中线的定义可得BD=CD,然后求出△ABD与△ADC的周长差,然后代入数据计算即可得解.【解答】解:如图:∵AD为BC边的中线,∴BD=CD,∵△ABD与△ADC的周长差为3,AB=8,∠B<∠C,﹣C△ADC=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC=8﹣AC=3,∴C△ABD解得AC=5.故答案为:5.【变式7-1】(2021秋•涧西区校级期中)如图,在△ABC中,AD是BC边上的中线,△ADC 的周长比△ABD的周长多2,AB+AC=8,则AC的长为.【分析】根据三角形的中线的定义得到BD=DC,根据三角形的周长公式得到AC﹣AB =2,根据题意列出方程组,解方程组得到答案.【解答】解:∵AD是BC边上的中线,∴BD=DC,由题意得,(AC+CD+AD)﹣(AB+BD+AD)=2,整理得,AC﹣AB=2,则A−A=2A+A=8,解得,A=5A=3,故答案为:5.【变式7-2】(2021春•芙蓉区校级月考)△ABC中,AC=2BC,BC边上的中线AD把△ABC 的周长分成40和60两部分,求BC的长.【分析】先根据AD是BC边上的中线得出BD=CD,设BD=CD=x,AB=y,则AC=4x,再分△ACD的周长是60与△ABD的周长是60两种情况进行讨论即可.【解答】解:∵AD是BC边上的中线,AC=2BC,∴BD=CD,设BD=CD=x,AB=y,则AC=4x,分为两种情况:①AC+CD=60,AB+BD=40,则4x+x=60,x+y=40,解得:x=12,y=28,即BC=2x=24,AB=28,AC=4x=48,∵BC+AB=24+28=52>AC,∴此时符合三角形三边关系定理;②AC+CD=40,AB+BD=60,则4x+x=40,x+y=60,解得:x=8,y=52,即AC=4x=32,AB=52,BC=2x=16,∵AC+BC=32+16=48<AB,∴此时不符合三角形三边关系定理;综合上述:BC=24.【变式7-3】(2022秋•重庆期末)如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+12DE的值.【分析】(1)设AE=xcm,根据三角形BDE与四边形ACDE的周长相等列方程,解方程即可;(2)找出图中所有的线段,再根据所有线段长度的和是53cm,求出2BC+DE,得到答案.【解答】解:(1)∵三角形BDE与四边形ACDE的周长相等,∴BD+DE+BE=AC+AE+CD+DE,∵BD=DC,∴BE=AE+AC,设AE=x cm,则BE=(10﹣x)cm,由题意得,10﹣x=x+6.解得,x=2,∴AE=2cm;(2)图中共有8条线段,它们的和为:AE+EB+AB+AC+DE+BD+CD+BC=2AB+AC+2BC+DE,由题意得,2AB+AC+2BC+DE=53,∴2BC+DE=53﹣(2AB+AC)=53﹣(2×10+6)=27,∴BC+12DE=272(cm).【题型8证明三角形中线段不等关系】【例8】(2022春•鼓楼区期末)如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.【分析】首先延长BP交AC于点D,再在△ABD中可得PB+PD<AB+AD,在△PCD中,PC<PD+CD然后把两个不等式相加整理后可得结论.【解答】证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.【变式8-1】(2021春•嵩县期末)如图所示,D是△ABC的边AC上任意一点(不含端点),连结BD,请判断AB+BC+AC与2BD的大小关系,并说明理由.【分析】根据三角形两边之和大于第三边即可求解.【解答】解:AB+BC+AC>2BD.理由如下:在△ABD中,AB+AD>BD,在△BCD中,BC+CD>BD,∴AB+AD+BC+CD>2BD,即AB+BC+AC>2BD.【变式8-2】(2022春•台江区校级期末)如图,在△ABC中,已知∠BAC=70°,∠ABC 和∠ACB的平分线相交于点D.(1)求∠BDC的度数;(2)试比较DA+DB+DC与12(AB+BC+AC)的大小,写出推理过程.【分析】(1)先由三角形内角和定理求出∠ABC+∠ACB=110°,再由角平分线的定义求出∠CBD+∠BCD=55°,然后由三角形内角和定理即可得出答案;(2)由三角形的三边关系得:DA+DB>AB,DB+DC>BC,DA+DC>AC,则2(DA+DB+DC)>AB+BC+AC,即可得出结论.【解答】解:(1)∵∠BAC=70°,∴∠ABC+∠ACB=180°﹣70°=110°,∵∠ABC和∠ACB的平分线相交于点D,∴∠ABD=∠CBD=12∠ABC,∠ACD=∠BCD=12∠ACB,∴∠CBD+∠BCD=12(∠ABC+∠ACB)=12×110°=55°,∴∠BDC=180°﹣(∠CBD+∠BCD)=180°﹣55°=125°;(2)DA+DB+DC>12(AB+BC+AC),理由如下:在△ABD中,由三角形的三边关系得:DA+DB>AB①,同理:DB+DC>BC②,DA+DC>AC③,①+②+③得:2(DA+DB+DC)>AB+BC+AC,∴DA+DB+DC>12(AB+BC+AC).【变式8-3】(2021秋•饶平县校级期中)在锐角三角形ABC中,AB>AC,AM为中线,P 为△AMC内一点,证明:PB>PC(如图).【分析】在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,根据在两边对应相等的两个三角形中,第三边大的,所对的角也大,得出∠AMB>∠AMC.而∠AMB+∠AMC=180°,则∠AMC<90°.由于P为锐角△AMC内一点,过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.【解答】证明:在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,∴∠AMB>∠AMC,∴∠AMC<90°.过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.所以PB>PC.。
2014年中考数学高分冲刺17-图形的分割与剪拼
关键点十七 图形的分割与剪拼纵观近年来全国各地的中考试卷,图形操作型的问题渐多,而这些题又可分为两大类:一类是围绕“图形变换”展开的(我们已有专题论及),另一类是围绕图形的分割与剪拼展开的。
我们现在要研究的,就是这后边的一类,分割与剪拼的形式与依据主要有:Ⅰ、原图形基础上进行分割,而分割的要求又分为: (1)借助于“边、角”计算的分割; (2)依“面积等分”为要求的分割;Ⅱ、将原图形等面积地变化成新图形的“剪与拼”。
一、图形的分割1、借助于“边、角”计算的分割例1 (1)已知ABC ∆中,︒=∠︒=∠5.67,90B A ,请画一条直线,把这个三角形分割成两个等腰三角形。
(2)已知ABC ∆中,C ∠是其最小的内角,过顶点B 的一条直线把这个三角形分割成了两个等腰三角形,请探求ABC ∠与C ∠之间的关系。
【观察与思考】对于(1)只需“构造等角”;对于(2), (1) 可从“等边”推演角之间的关系。
解:(1)如图①,图②,有两种不同的分割法。
(2)设ABC ∠y =,C ∠x =,过顶点B 的直线 ① 交边AC 于D 。
在等腰三角形DBC 中,①若C ∠是顶角,如图③,则︒>∠90ADB ,,2190)180(21x x CDB CBD -︒=-︒=∠=∠ y x A --︒=∠180。
②此时只能有ABD A ∠=∠,即)2190(180x y y x -︒-=--︒, ︒=+∴54043y x ,即ABC ∠与C ∠的关系是:C ABC ∠-︒=∠43135。
②若C∠是底角,则有两种情况。
③AC A BC︒5.67 ︒5.67 ︒5.22︒5.22AB C︒45 ︒5.22︒5.22︒45 ABC DABD ∆中,x y ABD x ADB -=∠=∠,2。
Ⅰ、由AD AB =,得x y x -=2,此时有x y 3=,即有关系C ABC ∠=∠3。
④ Ⅱ、由BD AB =,得x yx 2180=--︒,此时 ︒=+1803y x ,即C ABC ∠-︒=∠3180。
中考复习谈一个三角形分割成两个等腰三角形的条件
欢迎阅读页脚内容从特殊到一般 由结果探条件——也谈一个三角形分割成两个等腰三角形的条件问题1 如图1,图2,有两个三角形.图1中三角形的内角分别为10°,20°,150°;图2中三角形的内角分别为80°,25°,75°.你能把每一个三角形分成两个等腰三角形吗?画一画,并标出各角的度数.答案 图1中作20°角的角平分线;图2中以75°角的顶点为顶点,一边为边向三角形内作25°的角(画图略.)在让学生探究之后,笔者提出了两个问题:(1) (2) 学生 学生 60°,80 问题 O ,在 145°,90°.2 ,所以三角形为直角三角形,分割方法是沿斜边上的中线分割成两个等腰三角形.显然这种情况可以将情况1包含其中,②当锐角是右边等腰三角形的底角时,设左边的等腰三角形的两个底角度数为α,由三角形的外角性质可得这个底角为2α,所以此等腰三角形中还有一个角的度数为2α,如图5,如图6,还有两种情况:(i)如图5,再设该等腰三角形的第三个角的度数为⊙8,可得原三角形的三个角的度数为α,β,3α,因为α+β+3α=180°,可得0°<α<45°.分割方法为将3α分出一个α与原α角构成一个等腰三角形,另一个三角形也是等腰三角形.欢迎阅读页脚内容 (ii)如图6,再设该等腰三角形的第三个角的度数为β,可得原三角形的三个角的度数为α,2c ,α+β,因为α+2α+α+β=180°,可得0°<α< 45°.分割方法为将α+β分出一个α与原α角构成一个等腰三角形,另一个三角形也是等腰三角形.综上所述,一个三角形能分割成两个等腰三角形.共有三种情况:情形1 有一个内角为90°,沿原三角形斜边上的中线分割成两个等腰三角形.情形2 当三个角为α,β,3α,(0°<α<45°),将3α分出一个α与原α角构成一个等腰三角形,另一个三角形必是等腰三角形. 情形3 当三个角为α,2α,α+β,(0°<α<45°),将α+β分出一个α与原α角构成一个等腰三角形,另一个三角形也必是等腰三角形.种.问题 (i)36°,36°, (ii)1807⎛⎫︒ ⎪⎝⎭ =α+β,α 5407⎫︒⎪⎭,5407⎛⎫︒ ⎪⎝⎭ 探究反思 1.关于分割出等腰三角形的问题,对于八年级的学生而言是有一定难度的,笔者先从两个特例出发,让学生经历探究的过程,并通过两个思考题让学生分享探究的经验,这为问题2提供了研究的方向,这种从特殊到一般的研究方法是数学中常用的研究方法.2.该问题在探究中既可以从某个角出发进行分割,然后分类讨论,也可以假设已经分出两个等腰三角形,对可能出现哪些情况进行分类讨论.此题从假设出发,对在D 点出分割出的两个角进行讨论,可以简化分类,而且也为问题3的解决提供依据.。
2021-2022学年江苏省南京十二中等四校联考八年级(上)期中数学试卷(解析版)
2021-2022学年江苏省南京十二中等四校联考八年级第一学期期中数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,怡有一项是符命题目要求的,请将正确选项前的学母代号填涂在答题卡相应位霉上)1.如图,下列图案中,是轴对称图形的是()A.B.C.D.2.以下列数组为边长的三角形中,能构成直角三角形的是()A.5,12,13B.8,15,16C.9,16,25D.12,15,20 3.等腰三角形△ABC的周长为8cm,AB=2cm,则BC长为()A.2cm B.3cm C.2或3cm D.4cm4.的平方根是()A.B.2C.±2D.5.如图,∠CAB=∠DBA,再添加一个条件,不能判定△ABC≌△BAD的是()A.AC=BD B.AD=BC C.∠DAB=∠CBA D.∠C=∠D6.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个B.3个C.4个D.5个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在箐题卡相应位置上)7.计算:=.8.如图,四边形ABCD≌四边形A'B'C'D',则∠A的大小是.9.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是.10.如图,在Rt△ABC中,∠C=90°,以点A为圆心,任意长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,以大于长为半径画弧,两弧交于点O,作射线AO交BC于D,若CD=3,P为AB上一动点,则PD的最小值为.11.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的顶角为.12.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为.13.如图,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE =BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确结论有个.14.如图,在△ABC中,∠C=90°,点D在AB上,满足BC=BD,过点D做DE⊥AB交AC于点E.△ABC的周长为36,△ADE的周长为12,则BC=.15.在△ABC中,AC=5,中线AD=4,则边AB的取值范围是.16.如图,∠AOB=30°,OC为∠AOB内部一条射线,点P为射线OC上一点,OP=6,点M、N分别为OA、OB边上动点,则△MNP周长的最小值为.三、解答题(本大题共68分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)17.已知:如图,AB∥ED,AB=DE,点F,点C在AD上,AF=DC.(1)求证:△ABC≌△DEF;(2)求证:BC∥EF.18.如图,在所给网格图中每小格均为边长是1的正方形.△ABC的顶点均在格点上,请完成下列各题:(用直尺画图)(1)画出△ABC关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PB+PC最小;(3)在DE上画出点Q,使|QA1﹣QB|最大.19.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE分别交AB、AC于D、E.(1)若AC=12,BC=10,求△EBC的周长;(2)若∠A=40°,求∠EBC的度数.20.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.21.如图,已知CD⊥AB,BE⊥AC,垂足分别为点D,E,且AB=AC,BE交CD于点O.(1)求证:DB=EC.(2)求证:AO平分∠BAC.22.我们已经知道,通过不同的方法表示同一图形的面积,可以探求相应的等式,如图①所示,四个形状大小完全相同的直角三角形与中间的小正方形拼成一个大正方形,四个直角三角形的两条直角边长分别为a、b,斜边长为c.(1)试用图①证明勾股定理;通过不同的方法表示同一几何体的体积,也可以探求相应的等式.图②是棱长为a+b的正方体,被如图所示的分割线分成8块.(2)用不同方法计算这个正方体的体积,就可以得到一个等式,这个等式为;(3)已知a+b=4,ab=2,利用上面的等式求a3+b3值为.23.如图,△ABC是等腰直角三角形,∠BCA=90°,AC=BC,AD⊥CD,BE⊥CD,垂足分别为点D、点E,连接BD.(1)求证:AD=CE;(2)BE平分∠DBC,①试判断△DBC的形状,并给出证明的过程;②若CE=4,则△ABD的面积=.24.【问题引领】问题1:如图1,在四边形ABCD中,CB=CD,∠B=∠ADC=90°,∠BCD=120°.E,F分别是AB,AD上的点.且∠ECF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接CG,先证明△CBE≌△CDG,再证明△CEF≌△CGF.他得出的正确结论是.【探究思考】问题2:如图2,若将问题1的条件改为:四边形ABCD中,CB=CD,∠ABC+∠ADC =180°,∠ECF=∠BCD,问题1的结论是否仍然成立?请说明理由.【拓展延伸】问题3:如图3在问题2的条件下,若点E在AB的延长线上,点F在DA的延长线上,则问题2的结论是否仍然成立?若不成立,猜测此时线段BE、DF、EF之间存在什么样的等量关系?并说明理由.25.(1)如图1中,∠A=90°,请用直尺和圆规作一条直线,把△ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹).(2)已知内角度数的两个三角形如图2、图3所示.请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请画出直线,并标注底角的度数.(3)一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大的内角可能值为.参考答案一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,怡有一项是符命题目要求的,请将正确选项前的学母代号填涂在答题卡相应位霉上)1.如图,下列图案中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、B、C都不是轴对称图形,D是轴对称图形,故选:D.2.以下列数组为边长的三角形中,能构成直角三角形的是()A.5,12,13B.8,15,16C.9,16,25D.12,15,20【分析】要构成直角三角形必须满足3个数字为勾股数,分别对每个选项的3个数字进行验证即可解题.解:A、∵52+122=132,∴A正确;B、∵82+152≠162,∴B错误;C、∵92+162≠252,∴C错误;D、∵122+152≠202,∴D错误;故选:A.3.等腰三角形△ABC的周长为8cm,AB=2cm,则BC长为()A.2cm B.3cm C.2或3cm D.4cm【分析】按照AB为底边和腰,分类求解.当AB为底边时,BC为腰;当AB腰时,BC 为腰或底边.解:(1)当AB=2cm为底边时,BC为腰,由等腰三角形的性质,得BC=(8﹣AB)=3cm;(2)当AB=2cm为腰时,①若BC为腰,则BC=AB=2cm,不能构成三角形;②若BC为底,则BC=8﹣2AB=4cm,不能构成三角形.故选:B.4.的平方根是()A.B.2C.±2D.【分析】首先根据算术平方根的定义化简,然后根据平方根的定义即可得出结果.解:∵=4,又∵22=4,(﹣2)2=4,∴的平方根为±2;故选:C.5.如图,∠CAB=∠DBA,再添加一个条件,不能判定△ABC≌△BAD的是()A.AC=BD B.AD=BC C.∠DAB=∠CBA D.∠C=∠D【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据以上内容判断即可.解:A、∵AC=BD,∠CAB=∠DBA,AB=BA,利用SAS能判定△ABC≌△BAD,不符合题意;B、∵AD=BC,∠CAB=∠DBA,AB=BA,利用SSA不能判定△ABC≌△BAD,符合题意;C、∵∠DAB=∠CBA,AB=BA,∠CAB=∠DBA,利用ASA能判定△ABC≌△BAD,不符合题意;D、∵∠C=∠D,∠CAB=∠DBA,AB=BA,利用AAS能判定△ABC≌△BAD,不符合题意;故选:B.6.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个B.3个C.4个D.5个【分析】根据题意画出图形,找出对称轴及相应的三角形即可.解:如图:共3个,故选:B.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在箐题卡相应位置上)7.计算:=﹣3.【分析】根据(﹣3)3=﹣27,可得出答案.解:=﹣3.故答案为:﹣3.8.如图,四边形ABCD≌四边形A'B'C'D',则∠A的大小是95°.【分析】利用全等图形的定义可得∠D=∠D′=130°,然后再利用四边形内角和为360°可得答案.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.9.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是17m.【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故答案为:17m.10.如图,在Rt△ABC中,∠C=90°,以点A为圆心,任意长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,以大于长为半径画弧,两弧交于点O,作射线AO交BC于D,若CD=3,P为AB上一动点,则PD的最小值为3.【分析】作DP⊥AB于P,根据垂线段最短得到此时PD最小,根据角平分线的性质解答.解:作DP⊥AB于P,则此时PD最小,由尺规作图可知,AD平分∠CAB,又∠C=90°,DP⊥AB,∴DP=CD=3,故答案为:3.11.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的顶角为65°或115°.【分析】题中没有指明这个等腰三角形的形状,故应该分情况进行分析,从而不难求解.解:①如图,∵∠ABD=25°,∠BDA=90°,∴∠A=65°,②如图,∵∠ABD=25°,∠BDA=90°,∴∠BAD=65°,∴∠BAC=115°,故答案为:65°或115°.12.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为14.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故答案为14.13.如图,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE =BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确结论有①②③④个.【分析】首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,得到△CFG是等边三角形,易得③正确.过C作CM ⊥AE于M,CN⊥BD于N,想办法证明CN=CM即可判断④正确;解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,AC=BC,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确)同理:△DFC≌△EGC(ASA),∴CF=CG,∴△CFG是等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,(③正确)过C作CM⊥AE于M,CN⊥BD于N,∵△BCD≌△ACE,∴∠BDC=∠AEC,∵CD=CE,∠CND=∠CMA=90°,∴△CDN≌△CEM,∴CM=CN,∵CM⊥AE,CN⊥BD,∴△Rt△OCN≌Rt△OCM(HL)∴∠BOC=∠EOC,∴④正确;故答案为:①②③④.14.如图,在△ABC中,∠C=90°,点D在AB上,满足BC=BD,过点D做DE⊥AB交AC于点E.△ABC的周长为36,△ADE的周长为12,则BC=12.【分析】设BC=BD=x,AD=y,△BCE和△BDE全等,根据全等三角形的性质进行解答.解:连接BE,∵∠C=90°,DE⊥AB,在Rt△BCE与Rt△BDE中,,∴Rt△BCE≌Rt△BDE(HL),∴CE=DE,设BC=BD=x,∵△ABC的周长为36,△ADE的周长为12,∴BC+BD+CE+AD+AE=BC+BD+DE+AD+AE=x+x+12=36,解得:x=12,即BC=12.故答案为:12.15.在△ABC中,AC=5,中线AD=4,则边AB的取值范围是3<AB<13.【分析】作出图形,延长AD至E,使DE=AD,然后利用“边角边”证明△ABD和△ECD全等,根据全等三角形对应边相等可得AB=CE,再利用三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出CE的取值范围,即为AB的取值范围.解:如图,延长AD至E,使DE=AD,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AD=4,∴AE=4+4=8,∵8+5=13,8﹣5=3,∴3<CE<13,即3<AB<13.故答案为:3<AB<13.16.如图,∠AOB=30°,OC为∠AOB内部一条射线,点P为射线OC上一点,OP=6,点M、N分别为OA、OB边上动点,则△MNP周长的最小值为6.【分析】作点P关于OA的对称点P1,点P关于OB的对称点P2,连接P1P2,与OA的交点即为点M,与OB的交点即为点N,则此时M、N符合题意,求出线段P1P2的长即可.解:作点P关于OA的对称点P1,点P关于OB的对称点P2,连接P1P2,与OA的交点即为点M,与OB的交点即为点N,△PMN的最小周长为PM+MN+PN=P1M+MN+P2N=P1P2,即为线段P1P2的长,连接OP1、OP2,则OP1=OP2=OP=6,又∵∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形,∴P1P2=OP1=6,即△PMN的周长的最小值是6.故答案为:6.三、解答题(本大题共68分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)17.已知:如图,AB∥ED,AB=DE,点F,点C在AD上,AF=DC.(1)求证:△ABC≌△DEF;(2)求证:BC∥EF.【分析】(1)根据SAS即可证明△ACB≌△DEF.(2)利用全等三角形的性质即可证明.【解答】证明:(1)∵AB∥ED,∴∠A=∠D,∵AF=DC,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).(2)∵△ABC≌△DEF,∴∠BCA=∠EFD,∴BC∥EF.18.如图,在所给网格图中每小格均为边长是1的正方形.△ABC的顶点均在格点上,请完成下列各题:(用直尺画图)(1)画出△ABC关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PB+PC最小;(3)在DE上画出点Q,使|QA1﹣QB|最大.【分析】(1)利用轴对称的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)连接BC1交DE于点P,连接PC,点P即为所求;(3)延长BA交DE于点Q,点Q即为所求.解:(1)如图,△A1B1C1即为所求;(2)如图,点P即为所求;(3)如图,点Q即为所求.19.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE分别交AB、AC于D、E.(1)若AC=12,BC=10,求△EBC的周长;(2)若∠A=40°,求∠EBC的度数.【分析】(1)由AB的垂直平分线DE分别交AB、AC于点D、E,易得△EBC的周长=AC+BC;(2)由AB=AC,∠A=40°,即可得到∠ABC的度数,再根据∠ABE=∠A,即可得出∠EBC的度数.解:(1)∵AB的垂直平分线DE分别交AB、AC于点D、E,∴AE=BE,∴△EBC的周长=BC+BE+CE=BC+AE+CE=BC+AC=10+12=22;(2)∵AB=AC,∠A=40°,∴∠ABC=70°,又∵AE=BE,∴∠ABE=∠A=40°,∴∠EBC=70°﹣40°=30°.20.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.解:连接AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD=AC•CD=×5×12=30.∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36.21.如图,已知CD⊥AB,BE⊥AC,垂足分别为点D,E,且AB=AC,BE交CD于点O.(1)求证:DB=EC.(2)求证:AO平分∠BAC.【分析】(1)根据垂直的定义得到∠ADC=∠AEB=90°,根据全等三角形的性质即可得到结论;(2)根据垂直的定义得到∠BDO=∠CEO=90°,根据全等三角形的性质得到OD=OE,根据角平分线的性质即可得到结论.【解答】(1)证明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,在△ADC和△AEB中,,∴△ADC≌△AEB(AAS),∴AD=AE,∴AB﹣AD=AC﹣AE,即DB=EC;(2)证明:∵CD⊥AB,BE⊥AC,∴∠BDO=∠CEO=90°,在△BDO和△CEO中,,∴△BDO≌△CEO(AAS),∴OD=OE,∵CD⊥AB,BE⊥AC,∴AO平分∠BAC.22.我们已经知道,通过不同的方法表示同一图形的面积,可以探求相应的等式,如图①所示,四个形状大小完全相同的直角三角形与中间的小正方形拼成一个大正方形,四个直角三角形的两条直角边长分别为a、b,斜边长为c.(1)试用图①证明勾股定理;通过不同的方法表示同一几何体的体积,也可以探求相应的等式.图②是棱长为a+b的正方体,被如图所示的分割线分成8块.(2)用不同方法计算这个正方体的体积,就可以得到一个等式,这个等式为(a+b)3=a3+b3+3a2b+3ab2;(3)已知a+b=4,ab=2,利用上面的等式求a3+b3值为40.【分析】(1)求出阴影部分面积的两种表示,再根据同一图形的面积相等即可得出结论;(2)求出大正方体的体积和各个部分的体积,即可得出答案;(3)代入(2)中的等式求出即可.【解答】证明:(1)图中阴影部分小正方形的边长可表示为(b﹣a),图中阴影部分的面积为c2﹣2ab或(b﹣a)2,∴c2﹣2ab=(b﹣a)2,即a2+b2=c2;解:(2)图形的体积为(a+b)3或a3+b3+a2b+a2b+a2b+ab2+ab2+ab2,即(a+b)3=a3+b3+3a2b+3ab2,故答案为:(a+b)3=a3+b3+3a2b+3ab2;(3)∵a+b=4,ab=2,(a+b)3=a3+b3+3a2b+3ab2,=a3+b3+3ab(a+b)∴43=a3+b3+3×2×4,解得:a3+b3=40.故答案为:40.23.如图,△ABC是等腰直角三角形,∠BCA=90°,AC=BC,AD⊥CD,BE⊥CD,垂足分别为点D、点E,连接BD.(1)求证:AD=CE;(2)BE平分∠DBC,①试判断△DBC的形状,并给出证明的过程;②若CE=4,则△ABD的面积=8.【分析】(1)根据垂直定义及余角性质可得∠CAD=∠BCE,根据全等三角形的判定与性质可得结论;(2)①利用余角定义可得∠BCD=∠BDC,得出DB=BC;②根据等腰直角三角形的性质及全等三角形的性质可得AC=BC,根据由三角形面积公式可得答案.【解答】(1)证明:∵AD⊥CD,BE⊥CD,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠CAD=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS).∴AD=CE(2)①解:△DBC为等腰三角形,证明:∵BE⊥CD,∴∠BEC=∠BED=90°,∵∠EBC=∠EBD,∠EBC+∠BCE=90°,∠EBC+∠BDC=90°,∴∠BCD=∠BDC,∴BD=BC,∴△DBC为等腰三角形;②∵△ACD≌△CBE,∴AD=EC=4,EB=CD=8,∴AC=BC==4,∴S△ADB=S△ADC+S△BDC﹣S△ACB=×4×8+×8×8﹣×4×4=8.故答案为:8.24.【问题引领】问题1:如图1,在四边形ABCD中,CB=CD,∠B=∠ADC=90°,∠BCD=120°.E,F分别是AB,AD上的点.且∠ECF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接CG,先证明△CBE ≌△CDG,再证明△CEF≌△CGF.他得出的正确结论是BE+FD=EF.【探究思考】问题2:如图2,若将问题1的条件改为:四边形ABCD中,CB=CD,∠ABC+∠ADC=180°,∠ECF=∠BCD,问题1的结论是否仍然成立?请说明理由.【拓展延伸】问题3:如图3在问题2的条件下,若点E在AB的延长线上,点F在DA的延长线上,则问题2的结论是否仍然成立?若不成立,猜测此时线段BE、DF、EF之间存在什么样的等量关系?并说明理由.【分析】问题1,先证明△CBE≌△CDG,再证明△CEF≌△CGF,最后用线段的和差即可得出结论;问题2、先判断出∠ABC=∠GDC,进而判断出△CBE≌△CDG,再证明△CEF≌△CGF,最后用线段的和差即可得出结论;问题3、同问题2的方法即可得出结论、解:问题1、BE+FD=EF,理由:延长FD到点G.使DG=BE.连接CG,在△CBE和△CDG中,,∴△CBE≌△CDG(SAS),∴CE=CG,∠BCE=∠DCG,∵∠BCD=120°,∴∠ECG=120°,∵∠ECF=60°,∴∠ECF=∠GCF,在△CEF和△CGF中,,∴△CEF≌△CGF,∴EF=GF,∴EF=DF+DG=DF+BE;故答案为:EF=DF+BE;问题2,问题1中结论仍然成立,如图2,理由:延长FD到点G.使DG=BE.连接CG,∵∠ABC+∠ADC=180°,∠CDG+∠ADC=180°,∴∠ABC=∠GDC在△CBE和△CDG中,,∴△CBE≌△CDG(SAS),∴CE=CG,∠BCE=∠DCG,∴∠BCD=∠ECG,∵∠ECF=∠BCD,∴∠ECF=∠ECG,∴∠ECF=∠GCF,在△CEF和△CGF中,,∴△CEF≌△CGF,∴EF=GF,∴EF=DF+DG=DF+BE;问题3.结论:DF=EF+BE;理由:如图3,在DF上取一点G.使DG=BE.连接CG,∵∠ABC+∠ADC=180°,∠ABC+∠CBE=180°,∴∠CBE=∠GDC在△CBE和△CDG中,,∴△CBE≌△CDG(SAS),∴CE=CG,∠BCE=∠DCG,∴∠BCD=∠ECG,∵∠ECF=∠BCD,∴∠ECF=∠ECG,∴∠ECF=∠GCF,在△CEF和△CGF中,,∴△CEF≌△CGF,∴EF=GF,∴DF=FG+DG=EF+BE;25.(1)如图1中,∠A=90°,请用直尺和圆规作一条直线,把△ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹).(2)已知内角度数的两个三角形如图2、图3所示.请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请画出直线,并标注底角的度数.(3)一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大的内角可能值为108°.【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,作BC的垂直平分线即可确定点E,连接AE即可;(2)分别以24°为底角,可分割出两个等腰三角形;(3)利用图1、2、3中三角形内角之间的关系进行判断.解:(1)如图,作BC的垂直平分线交BC于E,连接AE,则直线AE即为所求;(2)如图:(3)根据(1)(2)中三个角之间的关系可知:但三角形是直角三角形时,肯定可以分割成两个等腰三角形,此时最大角为90°;当一个角是另一个三倍时,也肯定可以分割成两个等腰三角形,此时最大角为99°;如图3,此时最大角为108°.综上所述:最大角为108°,故答案为:108°.。
把一个三角形分成两个等腰三角形的条件
(分3倍角) (3)原三角形是直角三角形。(分直角)
2.如何分? 3.数学思想及方法:猜想——验证、分类 讨论、反例说明等
21.(2008年宁波市中考题)
(1)如图1中,∠C=90°.请用直尺和圆规作一 条直线,把△ABC分割成两个等腰三角形 (不写作法,但须保留作图痕迹).
会用几种方法?
A
β
Bβ
2β
P
图4
2β C
如图 5,△ABC中,设 ∠A=38˚,∠B=76˚,∠C=66˚.
怎么画呢?
如图 6,△ABC中,设 ∠A=36˚,∠B=96˚,∠C=48˚. 怎么画呢? 问题在哪里呢?
条件1还缺点什么呢?
三角形有一个角是 另一个角的2倍时,要增加什么条件呢?
(2)已知内角度数的两个三角形如图2、图3所 示.请你判断,能否分别画一条直线把它们分 割成两个等腰三角形?若能,请写出分割成的 两个等腰三角形顶角的度数.
C
C
A
24°
图1
BA
84°
24°
BA
图2
(第21题)
C
104°
52° B
图3
将一个等腰三角形分割成两 个等腰三角形,原等腰三角 形的顶角为几度?
日本MIHO博物馆
法国巴黎卢浮宫扩建工程
贝聿铭是世界顶级美籍华人建筑设计 师,他善于运用数学的原理进行建筑设计, 他注意纯化建筑物的体型、尽可能去掉那 些中间的、过渡的、几何特性不确定的组 成部分。使他设计的空间形象具有鲜明的 属性。我想这也是数学文化博大精深的体 现吧!
浙江绍兴县教师发展中心 姚志敏
△ABC一定能够被分割成两个等腰
三角形吗?
【2022年上海市初中一模数学卷】2022年上海市静安区初中毕业生学业模拟考试试卷九年级数学及答案
静安区2021学年第一学期期末教学质量调研九年级数学试卷 2022.1(完成时间:100分钟 满分:150分 )考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤; 3. 答题时可用函数型计算器.一、选择题:(本大题共6题,每题4分,满分24分) 1.下列实数中,有理数是(A )3; (B )π; (C )4; (D )39. 2.计算22x x ÷的结果是 (A )x 2; (B )x21; (C )2x ; (D )x 2.3.已知点D 、E 分别在△ABC 的边AB 、AC 的反向延长线上,且ED ∥BC ,如果AD :DB=1∶4,ED = 2,那么边BC 的长是(A )8; (B )10; (C )6; (D )4.4.将抛物线x x y 22−=向左平移1个单位,再向上平移1个单位后,所得抛物线的顶点坐标是(A ))1,1(−; (B ))1,1(−; (C ))0,1(; (D ))0,0(. 5.如果锐角A 的度数是°25,那么下列结论中正确的是 (A )21sin 0<<A ; (B )23cos 0<<A ; (C )1tan 33<<A ; (D )3cot 1<<A . 6.下列说法错误的是(A )任意一个直角三角形都可以被分割成两个等腰三角形; (B )任意一个等腰三角形都可以被分割成两个等腰三角形; (C )任意一个直角三角形都可以被分割成两个直角三角形; (D )任意一个等腰三角形都可以被分割成两个直角三角形. 二、填空题:(本大题共12题,每题4分,满分48分)7.5−的绝对值是 .8.如果x −3在实数范围内有意义,那么实数x 的取值范围是 . 9.已知32b a =,那么ab ab +−的值是 . 10.已知线段AB =2cm ,点P 是AB 的黄金分割点,且AP >PB ,那么AP 的长度 是 cm .(结果保留根号) 11.如果某抛物线开口方向与抛物线221x y =的开口方向相同,那么该抛物线有最 点.(填“高”或“低”) 12.已知反比例函数xy 1=的图像上的三点),2(1y −、),1(2y −、),1(3y ,判断y 1,y 2,y 3的大小关系: .(用“<”连接)13.如果抛物线42++=mx x y 的顶点在x 轴上,那么常数m 的值是 . 14.如果在A 点处观察B 点的仰角为α,那么在B 点处观察A 点的俯角为 . (用含α的式子表示)15.如图,在△ABC 中,AB =AC =6,BC =4,点D 在边AC 上,BD =BC ,那么AD 的长是 . 16.在△ABC 中,DE ∥BC ,DE 交边AB 、AC 分别于点D 、E ,如果△ADE 与四边形BCED的面积相等,那么AD ︰DB 的值为 .17.如图,在△ABC 中,中线AD 、BE 相交于点G ,如果,AD a BE b ==,那么 BC = .(用含向量a 、b的式子表示) 18.如图,正方形ABCD 中,将边BC 绕着点C 旋转,当点B 落在边AD 的垂直平分线上的点E 处时,∠AEC 的度数为 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:°+−°−°⋅°°45cos 2)130(sin 30cot 60sin 45tan 22.20.(本题满分10分)(第17题图)A B C D E G (第18题图)A BC D (第15题图) AB C D(第22题图)EDOF GHI 如图,在Rt △ABC 中,∠ACB =90°,CD 、CH 分别是AB 边上的中线和高,14=BC ,43cos =∠ACD ,求AB 、CH 的长.21.(本题满分10分, 其中第(1)小题4分,第(2)小题4分,第(3)小题2分) 我们将平面直角坐标系xOy 中的图形D 和点P 给出如下定义:如果将图形D 绕点P 顺时针旋转90°得到图形D ’,那么图形D ’称为图形D 关于点P 的“垂直图形” . 已知点A 的坐标为(2−,1),点B 的坐标为(0,1), △ABO 关于原点O 的“垂直图形”记为△A ’B ’O ,点 A 、B 的对应点分别为点A ’ 、B ’, (1)请写出:点A ’的坐标为 ;点B ’的坐标为 ; (2)请求出经过点A 、B 、 B ’ 的二次函数解析式;(3)请直接写出经过点A 、B 、A ’ 的抛物线的表达式为 . 22.(本题满分10分)据说,在距今2500多年前,古希腊数学家就已经较准确地测出了埃及金字塔的高度,操作过程大致如下:如图所示,设AB 是大金字塔的高.在某一时刻,阳光照射下的金字塔在地面上投下了一个清晰的阴影,塔顶A 的影子落在地面上的点C 处.金字塔底部可看作方正形FGHI ,测得正方形边长FG 长为160米,点B 在正方形的中心,BC 与金字塔底部一边垂直于点K .与此同时,直立地面上的一根标杆DO 留下的影子是OE .射向地面的太阳光线可看作平行线(AC ∥DE ).此时测得标杆DO 长为1.2米,影子OE 长为2.7米,KC 长为250米.求金字塔的高度AB 及斜坡AK 的坡度(结果均保留四个有效数字).CDB(第20题图)H23.(本题满分12分,其中第(1)小题6分,第(2)小题4分)如图,边长为1的正方形ABCD 中,对角线AC 、BD 相交于点O ,点Q 、R 分别在边AD 、DC 上,BR 交线段OC 于点P ,QP ⊥BP ,QP 交BD 于点E . (1)求证:△APQ ∽△DBR ; (2)当∠QED 等于60°时,求DRAQ的值.24.(本题满分12分,其中每小题4分)如图,在平面直角坐标系xOy 中,已知抛物线bx x y +=2经过点A (2, 0)和点B (-1,m ),顶点为点D .(1)求直线AB 的表达式; (2)求ABD ∠tan 的值;(3)设线段BD 与 x 轴交于点P ,如果点C 在x与△ABP 相似,求点C 的坐标.25.(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4分)如图1,四边形ABCD 中,∠BAD 的平分线AE 交边BC 于点E ,已知AB =9,AE =6,AD AB AE ⋅=2,且DC //AE .(1)求证:DC AE DE ⋅=2;(2)如果BE =9,求四边形ABCD 的面积;(3)如图2,延长AD 、BC 交于点F ,设x BE =,y EF =,求y 关于x 的函数解析式,并写出定义域.DE DCBAFECBA (第23题图)BCR (第24题图)参考答案一、选择题: 1.C ; 2.B ; 3.C ; 4.D ; 5.A ; 6.B .二、填空题: 7.5;8.3≤x ; 9.51; 10.15−; 11.低; 12.312y y y <<; 13.4,4−; 14.α; 15.310; 16.12+; 17. a b 3234+; 18.45°或135°.三、解答题: 19.解:原式=22)22(2)121(3231×+−−× ……………………………………(5分) =21221231×+− ……………………………………(3分)=67. ……………………………………(2分) 20.解:在Rt △ABC 中,∠ACB =90°,∵CD 是AB 边上的中线,∴DC=DA ,∴∠A=∠ACD .………………………………(2分) ∵43cos =∠ACD ,∴43cos ==BC AC A , ……………………………………(1分)设AC =3k , AB =4k ,则BC=14722==−k AC AB ……………………………(1分)∴2=k ,∴244==k AB .……………………………………(2分) 在Rt △ABC 中,∠ACB =90°,CH 是AB 边上的高,即CH ⊥AB ∵△ABC 面积一定,∴CH AB BC AC ⋅=⋅2121……………………………………(2分)∵233==k AC ,∴CH ×=×241423,∴1443=CH …………………(2分)所以,AB 的长为24 ,CH 的长为1443.21.解:(1)A ’(1,2)、B ’(1,0); ……………………………………(4分) (2)设抛物线解析式为)0(2≠++=a c bx ax y ,∵经过A (-2,1)、B (0,1)、B ’(1,0);∴代入可得:=++=+−=0101241b a b a c , 解得:=−=−=13231c b a ,…………………………(1+2分) ∴经过点A 、B 、 B ’ 的二次函数解析式为132312+−−=x x y ;…………(1分)(3)经过点A 、B 、A ’ 的抛物线的表达式为132312++=x x y .…………(2分)22.解:∵AC//DE ,AB 、DO 均垂直于地面. ∴∠C=∠E ,∠ABC=∠O =90°.∴Rt △BAC ∽Rt △ODE ,∴OE BC DO AB =.……………………………………(4分)由题意可知:BC =BK +KC =80+250=330(米),DO =1.2米,OE =2.7米………(1分) 代入可得7.23302.1=AB , 解得AB ≈146.7(米).……………………………………(2分)联结AK ,Rt △ABK 中,5453.0:1807.146≈==BK AB i AK .……………………………(3分)答:金字塔的高度AB 约为146.7米,斜坡AK 的坡度约为5453.0:1.23.(1)证明:∵正方形ABCD 中,对角线AC 、BD 相交于点O , ∴∠DAB=∠ADC =90°,AC ⊥DB , ∴°°=×=∠=∠459021BDC DAC .…………………………(2分)又∵QP ⊥BP ,∴∠EPO+∠OPB =90°,∵Rt △BOP 中,∠OBP+∠OPB =90°,…………………………(2分) ∴∠OBP =∠EPO , 即∠APQ =∠DBR ,…………………………(1分) ∴△APQ ∽△DBR …………………………(1分)(2)解:∵正方形ABCD 的边长为1,∴222=+==AD AB BD AC .…………(1分) ∵∠QED =60°,∴∠BEP =∠QED =60°,∵Rt △BPE 中,∠BPE =90°,∴∠EBP+∠BEP =90°,∴∠PBE = 30°.………………(1分) 又∵Rt △BOP 中,2221==BD BO ,33tan ==∠OB OP OBP ,∴66=OP .…………………………(1分) 又∵2221==AC AO ,∴AP=6622+.…………………………(1分)∵△APQ ∽Rt △DBR ,∴63326622+=+==BD AP DR AQ .…………………………(2分)24.解:(1)抛物线bx x y +=2经过点A (2, 0)和点B (-1,m ),将点A (2, 0)代入bx x y +=2得:2−=b .…………………………(1分)又∵x x y 22−=过点B (-1,m ),代入得:3=m ,∴B (-1,3),…………(1分) 设直线AB 的表达式为)0(≠+=k c kx y ;将A (2, 0)、B (-1,3)代入得.=+−=+302c k c k ,解得:=−=21c k ∴直线AB 的表达式为2+−=x y ;…………………………(2分)(2)∵x x y 22−=顶点为点D ,∴D (1,-1),…………………………(1分) ∴5220)13()11(22==++−−=BD ,2)10()12(22=++−=AD ,23183)21(22==+−−=BA ,∴222BA AD BD +=,…………………………(2分)∴△ABD 是直角三角形,即∠BAD =90°,∴31232tan ===∠AB AD ABD ;…………(1分)(3)设线段BD 的表达式为)0(,≠+=e f ex y ,过B (-1,3),D (1,-1),−=+=+−13f e f e ,解得: =−=12f e ,∴线段BD 的表达式为12+−=x y ; ∴线段BD 与 x 轴交点P 的坐标为)0,21(.…………(1分) 由题意可知△ABP 是钝角三角形,∠BP A 是钝角 ∵点C 在x 轴上,且△ABC 与△ABP 相似,①当点C 在点A 右侧时,∠BAC=∠BP A +∠PBA >∠BP A ,不合题意,舍去; ②当点C 在点A 左侧,且与点P 重合时,点C )0,21(;……………………(1分) ③当点C 在点A 左侧,且与点P 不重合时,由△ABC 与△ABP 相似,∠BAP=∠CAB可得∠APB = ∠ABC, ∠PBA=∠ACB, 过点B 作BH ⊥x 轴,垂足为H , ∵31tan =∠ABD ,∴31tan ==∠CH BH ACB∵B (-1,3),∴BH =3,∴CH =9,∴CH =9,∴C (-10,0).…………(2分) 综上所述,点C 的坐标为)0,21(1C 、)0,10(2−C .25.(1)证明:∵四边形ABCD 中,AE 平分∠BAD ,∴∠BAE =∠EAD,∵AD AB AE ⋅=2,∴AE AD AB AE =,∴△ABE ∽△AED , …………………………(2分)∴∠AED =∠B ,又∵∠AEC =∠B +∠BAE , 即∠AED +∠DEC=∠B +∠BAE , ∴∠DEC=∠BAE ,∴∠DEC=∠EAD .…………………………(1分)∵DC //AE ,∴∠CDE=∠DEA ,∴△AED ∽△E DC …………………………(1分)∴DE AE DC DE =,∴DC AE DE ⋅=2; …………………………(1分) (2)解:∵AB =9,AE =6,AD AB AE ⋅=2,∴AD =4.∵BE =AB =9,∴∠BEA=∠BAE . ∵∠BAE =∠EAD , ∴∠BEA=∠EAD ,∴AD //BC , ∵DC //AE ,∴四边形AECD 是平行四边形.…………………(2分) ∴EC =AD =4,BC =9+4=13.过点B 作BG ⊥AE ,过点A 作AH ⊥BE ,垂足分别为G 、H .∵Rt △BAG 中,321==AE AG ,∴26392222=−=−=AG AB BG .………………(1分)∵△BAE 面积一定,∴AH BE BG AE ⋅=⋅2121, ∴24=AH .…………………………(1分)∴梯形ABCD 的面积=23424)134(21=×+;…………………………(1分) (先算出三角形ABE 面积后,用面积比等于相似比的平方,得到另两个三角形的面积,从而求出四边形面积)(3)解:∵△ABE ∽△AED ∽△E DC ,x BE =,y EF = ,AB =9,AE =6,AD =4,∴3296===AB AE BE DE ,∴DE =x BE 3232=,∴AE DE AD EC =,∴32==AE AD DE EC ,x x EC 943232=×=…………………(1分)∵DC AE DE ⋅=2,∴2272x DC =.…………………………(1分)又∵DC //AE ,∴AE DC EF CF =,∴8162729422x xy x y ==−. 所以28136xxy −=,定义域: 93<<x .…………………………(2分)。
完整版)等腰三角形专项练习题
完整版)等腰三角形专项练习题BatchDoc-Word文档批量处理工具BatchDoc是一款方便快捷的Word文档批量处理工具,可以实现多种功能,如批量转换、批量重命名、批量加密、批量解密、批量压缩、批量解压等,提高了工作效率。
1.在等腰三角形ABC中,AB=AC,BD平分∠ABC,已知∠A=36°,求∠1的度数。
解:由BD平分∠XXX可知∠ABD=∠CBD,又因为AB=AC,所以∠BAC=2∠ABD=2∠CBD,即∠1=180°-∠BAC=108°。
2.已知等腰三角形的两边长分别为5和6,求该等腰三角形的周长。
解:设等腰三角形的底边为x,则根据勾股定理可得x²=6²-(5/2)²=31.25,即x=√31.25,所以周长为2x+5+6=2√31.25+11≈17.5.3.在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,求剪下的等腰三角形的面积。
解:如图,设剪下的等腰三角形为△ABC,其中AB=AC=10,BC=x,则根据勾股定理可得x²=16²-10²=196,即x=14.所以△ABC的面积为(1/2)×10×14=70平方厘米。
4.如图,在等腰三角形ABC中,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,判断下列结论的正确性:①△BDF、△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE。
解:①正确,因为∠XXX∠XXX∠XXX∠XXX∠BAC/2,所以△BDF、△CEF都是等腰三角形;②正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE,即DE=2BD;③错误,因为AB+AC=2AB≠AD+DE+EA=AD+2BD;④正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE。
【期末复习】浙教版八年级上册提分专题:等腰三角形中的分类讨论(解析版)
【期末复习】浙教版八年级上册提分专题:等腰三角形中的分类讨论【知识点睛】❖ 在等腰三角形中,没有明确指明边是腰还是底时,要进行分类讨论,且求出未知边的长后,一定要看这三边能否组成三角形;❖ 没有明确指明角是顶角或底角时,也要进行分类讨论设等腰三角形中有一个角为α时对应结论 当α为顶角时底角=α2190-︒当α为直角或钝角时 不需要分类讨论,该角必为顶角 当α为锐角时α可以为顶角;也可以为底角当等腰三角形的一个外角为α时对应结论 若α为锐角、直角 α必为顶角的外角若α为钝角α可以是顶角的外角,也可以是底角的外角❖ 动态环境下的等腰三角形存在性问题【类题训练】1.△ABC 中,AB =AC ,一腰上的中线BD 把三角形的周长分为9cm 和12cm 两部分,则此三角形的腰长是 8cm 或6cm .【分析】等腰三角形一腰上的中线将它的周长分为12厘米和18厘米两部分,但已知没有明确等腰三角形被中线分成的两部分的长,哪个是9cm ,哪个是12cm ,因此,有两种情况,需要分类讨论. 【解答】解:根据题意画出图形,如图, 设等腰三角形的腰长AB =AC =2x ,BC =y , ∵BD 是腰上的中线, ∴AD =DC =x ,若AB +AD 的长为12,则2x +x =12,解得x =4cm , 则x +y =9,即4+y =9,解得y =5cm ;若AB +AD 的长为9,则2x +x =9,解得x =3cm ,则x+y=12,即3+y=12,解得y=9cm;所以等腰三角形的腰长为8cm或6cm.故答案为:8cm或6cm.2.(1)等腰三角形中有一个角是70°,则它的顶角是70°或40°.(2)等腰三角形中有一个角是100°,则它的另两个角是40°,40°.(3)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【分析】(1)等腰三角形一内角为70°,没说明是顶角还是底角,所以有两种情况.(2)由于等腰三角形的两底角相等,所以100°的角只能是顶角,再利用三角形的内角和定理可求得另两底角.(3)题中没有指明已知角是底角还是顶角,故应该分情况进行分析从而求解.【解答】解:(1)①当70°角为顶角,顶角度数即为70°;②当70°为底角时,顶角=180°﹣2×70°=40°.(2)∵等腰三角形的两底角相等∴两底角的和为180°﹣100°=80°∴两个底角分别为40°,40°.(3)①当∠A=70°时,则∠ABC=∠C=55°,因为BD⊥AC,所以∠DBC=90°﹣55°=35°;②当∠C=70°时,因为BD⊥AC,所以∠DBC=90°﹣70°=20°故答案为:70°或40°;40°,40°;35°或20°.3.如果等腰三角形的周长是35cm,一腰上中线把三角形分成两个三角形,其周长之差是4cm,则这个等腰三角形的底边长是9cm或cm.【分析】根据题意画出图形,设等腰三角形的腰长为xcm,则底边长为(19﹣2x)cm,再根据两个三角形的周长差是4cm求出x的值即可.【解答】解:如图所示,等腰△ABC中,AB=AC,点D为AC的中点,设AB=AC=xcm,∵点D为AC的中点,∴AD=CD=,BC=25﹣(AB+AC)=35﹣2x,当△ABD的周长大于△BCD的周长时,AB+AD+BD﹣(BC+CD+BD)=4,即x+﹣(35﹣2x)﹣=4,解得x=13,底边长为35﹣13×2=9(cm);当△BCD的周长大于△ABD的周长时,则BC+CD+BD﹣(AB+AD+BD)=4,即35﹣2x+﹣(x+)=4,解得x=,底边长为35﹣×2=(cm).综上所述,这个等腰三角形的底边长为9cm或cm.故答案为:9cm或cm.4.已知△ABC中,CA=CB,AD⊥BC于D,∠CAD=50°,则∠B=70°或20°.【分析】利用直角三角形两锐角互余可求得∠C,再利用三角形内角和定理和等腰三角形的性质可求得∠B.【解答】解:若△ACB是锐角三角形,如图1.∵AD⊥BC,∠CAD=50°,∴∠C=90°﹣∠CAD=90°﹣50°=40°,∵CA=CB,∴∠B=∠CAB,且2∠B+∠C=180°,∴∠B=70°,若△ACB是钝角三角形,如图2.∵AD⊥BC,∠CAD=50°,∴∠DCA=90°﹣∠CAD=90°﹣50°=40°,∵CA=CB,∴∠B=∠CAB,且∠DCA=∠B+∠CAB∴∠B=20°故答案为:70°或20°.5.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△P AB是等腰三角形,则符合条件的P点有()A.5个B.6个C.7个D.8个【分析】根据等腰三角形的判定定理,结合图形即可得到结论.【解答】解:如图,第1个点在CA延长线上,取一点P,使BA=AP;第2个点在CB延长线上,取一点P,使AB=PB;第3个点在AC延长线上,取一点P,使AB=PB;第4个点在BC延长线上,取一点P,使AB=P A;第5个点在AC延长线上,取一点P,使AB=AP;第6个点在AC上,取一点P,使∠PBA=∠P AB;∴符合条件的点P有6个点.故选:B.6.用一根长为21厘米的铁丝围成一个三条边长均为整数厘米的等腰三角形,则方案的种数为()A.5B.6C.7D.8【分析】设等腰三角形的腰为x,底边为y,根据三角形的周长求出y=21﹣2x,根据三角形三边关系定理得出x+x>y,求出x+y>21﹣2x,再求出不等式组的解集即可.【解答】解:设等腰三角形的腰为x,底边为y,则x>0,y>0,x+x>y,则x+x+y=21,即①y=21﹣2x>0,所以②x+x>21﹣2x,解①②得:5<x<10.5,所以整数x可以为6,7,8,9,10,共5种,故选:A.7.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为120°或75°或30°.【分析】求出∠AOC,根据等腰得出三种情况,OE=CE,OC=OE,OC=CE,根据等腰三角形性质和三角形内角和定理求出即可.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OEC=∠OCE=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.8.如图,∠AOB=60°,C是BO延长线上一点,OC=12cm,动点P从点C出发沿CB以2cm/s的速度移动,动点Q从点O出发沿OA以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=4或12s时,△POQ是等腰三角形.【分析】根据等腰三角形的判定,分两种情况:(1)当点P在线段OC上时;(2)当点P在CO的延长线上时.分别列式计算即可求.【解答】解:分两种情况:(1)当点P在线段OC上时,设t时后△POQ是等腰三角形,有OP=OC﹣CP=OQ,即12﹣2t=t,解得,t=4s;(2)当点P在CO的延长线上时,此时经过CO时的时间已用6s,当△POQ是等腰三角形时,∵∠POQ=60°,∴△POQ是等边三角形,∴OP=OQ,即2(t﹣6)=t,解得,t=12s故答案为4s或12s.9.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.【分析】如果一个三角形有两个角相等,那么这两个角所对的边也相等,据此进行判断即可.【解答】解:A、如图所示,△ACD和△BCD都是等腰三角形;B、如图所示,△ABC不能够分成两个等腰三角形;C、如图所示,△ACD和△BCD都是等腰三角形;D、如图所示,△ACD和△BCD都是等腰三角形;故选:B.10.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条D.8条【分析】根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.【解答】解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时都能得到符合题意的等腰三角形.故选:C.11.如图,△ABC中,∠B=60°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为75°或120°或15°.【分析】分三种情形分别求解即可.【解答】解:∵△ABC中,∠B=60°,∠C=90°,∴∠BAC=180°﹣60°﹣90°=30°,如图,有三种情形:①当AC=AD时,∠ADC==75°.②当CD′=AD′时,∠AD′C=180°﹣30°﹣30°=120°.③当AC=AD″时,∠AD″C==15°,故答案为:75°或120°或15°.12.如图,等边△ABC的边长为6,点P沿△ABC的边从A→B→C运动,以AP为边作等边△APQ,且点Q在直线AB下方,当点P、Q运动到使△BPQ是等腰三角形时,点Q运动路线的长为3或9.【分析】如图,连接CP,BQ,由“SAS”可证△ACP≌△ABQ,可得BQ=CP,可得点Q运动轨迹是A→H→B,分两种情况讨论,即可求解.【解答】解:如图,连接CP,BQ,∵△ABC,△APQ是等边三角形,∴AP=AQ=PQ,AC=AB,∠CAP=∠BAQ=60°,∴△ACP≌△ABQ(SAS)∴BQ=CP,∴当点P运动到点B时,点Q运动到点H,且BH=BC=6,∴当点P在AB上运动时,点Q在AH上运动,∵△BPQ是等腰三角形,∴PQ=PB,∴AP=PB=3=AQ,∴点Q运动路线的长为3,当点P在BC上运动时,点Q在BH上运动,∵△BPQ是等腰三角形,∴BQ=PB,∴BP=BQ=3,∴点Q运动路线的长为3+6=9,故答案为:3或9.13.如图,在△ABC中,∠ACB=2∠A,过点C的直线能将△ABC分成两个等腰三角形,则∠A的度数为45°或36°或或.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵过点C的直线能将△ABC分成两个等腰三角形,①如图1,∵∠ACB=2∠A,∴AD=DC=BD,∴∠ACB=90°,∴∠A=45°;②如图2,AD=DC=BC,∴∠A=∠ACD,∠BDC=∠B,∴∠BDC=2∠A,∴∠A=36°,③AD=DC,BD=BC,∴∠BDC=∠BCD,∠A=∠ACD,∴∠BCD=∠BDC=2∠A,∴∠BCD=2∠A,∵∠ACB=2∠A,故这种情况不存在.④如图3,AD=AC,BD=CD,∴∠ADC=∠ACD,∠B=∠BCD,设∠B=∠BCD=α,∴∠ADC=∠ACD=2α,∴∠ACB=3α,∴∠A=α,∵∠A+∠B+∠ACB=180°,∴α+α+3α=180°,∴α=,∴∠A=,⑤如图4,AC=CD=DB,∴∠A=∠CDA,∠B=∠DCB,∵∠CDB=180°﹣∠CDA=180°﹣∠A,∴∠B=∠DCB==,∴∠ACB=∠A=180°﹣,∵∠ACB=2∠A,∴180°﹣=2∠A,∴综上所述,∠A的度数为45°或36°或或.故答案为:45°或36°或或.14.已知等边△ABC的边长为3,点E在直线AB上,点D在直线CB上,且ED=EC,若AE=6,则CD的长为3或9.【分析】①E在线段AB的延长线上时,过E点作EF⊥CD于F,②当E在线段AB的延长线时,过E点作EF ⊥CD于F,根据等边三角形的性质求出BE长和∠ABC=60°,解直角三角形求出BF,求出CF,即可求出答案.【解答】解:点E在直线AB上,AE=6,点E位置有两种情况:①E在线段AB的延长线上时,过E点作EF⊥CD于F,∵△ABC是等边三角形,△ABC的边长为3,AE=6,∴BE=6﹣3=3,∠ABC=60°,∴∠EBF=60°,∴∠BEF=30°,∴BF=BE=,∴CF=+3=,∵ED=EC,∴CF=DF,∴CD=×2=9;②如图2,当E在线段AB的延长线时,过E点作EF⊥CD于F,∵△ABC是等边三角形,△ABC的边长为3,AE=6,∴BE=6+3=9,∠ABC=60°,∴∠EBF=60°,∴∠BEF=30°,∴BF=AE=,∴CF=﹣3=,∵ED=EC,∴CF=DF,∴CD=×2=3;即C=9或3,故答案为:3或9.15.△ABC的高AD、BE所在的直线交于点M,若BM=AC,求∠ABC的度数.【分析】分两种情况考虑:当∠ABC为锐角时,如图1所示,由AD垂直于BC,BE垂直于AC,利用垂直的定义得到一对直角相等,再由一对对顶角相等,得到∠CAD=∠MBD,根据一对直角相等,再由BM=AC,利用AAS得出三角形BMD与三角形ACD全等,由全等三角形对应边相等得到AD=BD,得到三角形ABD为等腰直角三角形,可得出∠ABC=45°;当∠ABC为钝角时,如图2所示,同理利用AAS得出三角形ADC与三角形DBM全等,由全等三角形对应边相等得到AD=BD,得出三角形ABD为等腰直角三角形,求出∠ABD=45°,利用邻补角定义即可求出∠ABC=135°.【解答】解:分两种情况考虑:当∠ABC为锐角时,如图1所示,∵AD⊥DB,BE⊥AC,∴∠MDB=∠AEM=90°,∵∠AME=∠BMD,∴∠CAD=∠MBD,在△BMD和△ACD中,,∴△BMD≌△ACD(AAS),∴AD=BD,即△ABD为等腰直角三角形,∴∠ABC=45°;当∠ABC为钝角时,如图2所示,∵BD⊥AM,BE⊥AC,∴∠BDM=∠BEC=90°,∵∠DBM=∠EBC,∴∠M=∠C,在△BMD和△ACD中,,∴△BMD≌△ACD(AAS),∴AD=BD,即△ABD为等腰直角三角形,∴∠ABD=45゜,则∠ABC=135゜.16.已知点P为线段CB上方一点,CA⊥CB,P A⊥PB,且P A=PB,PM⊥BC于M,若CA=1,PM=4.求CB的长.【分析】根据全等三角形的判定得出△PMB≌△PNA,进而分类讨论得出答案即可.【解答】解:此题分以下两种情况:①如图1,过P作PN⊥CA于N,∵P A⊥PB,∴∠APB=90°,∵∠NPM=90°,∴∠NP A=∠BPM,在△PMB和△PNA中,,∴△PMB≌△PNA,∴PM=PN=4=CM,BM=AN=3,∴BC=7;②如图2,过P作PN⊥CA于N,∵P A⊥PB,∴∠APB=90°,∵∠NPM=90°,∴∠NP A=∠BPM,在△PMB和△PNA中,,∴△PMB≌△PNA,∴PM=PN=4=CM,BM=AN=5,可得BC=9.综合上述CB=7或9.17.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°﹣18°=57°,于是得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,②如图2,当点D在线段BC上时,∠ADC=x°+α,③如图3,当点D在点C右侧时,∠ADC=x°﹣α,根据题意列方程组即可得到结论.【解答】解:(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∴∠ADE=∠AED=75°,∴∠CDE=180°﹣35°﹣30°﹣75°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°﹣18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,∴,(1)﹣(2)得2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=x°+α,∴,(2)﹣(1)得α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=x°﹣α,∴,(2)﹣(1)得2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.18.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)图①是顶角为36°的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)图③是顶角为45°的等腰三角形,请你在图③中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,则x所有可能的值为.【分析】(1)在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线即可;(2)在图③中画出顶角为45°的等腰三角形的三分线即可;(3)分两种情况:AD为等腰三角形的腰或底作图即可得结论.【解答】解:(1)在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线;(2)在图③中画出顶角为45°的等腰三角形的三分线.每个等腰三角形顶角的度数为:90°、135°、45°.故答案为:90°、135°、45°.(3)如下图作△ABC,①如图1:当AD=AE时,∵2x+x=30+30,∴x=20.②如图2:当AD=DE时,∵2x+x+30+30=180.∴x=40.所以x的所有可能的值为20°或40°.故答案为20°或40°.19.如图,在四边形ABCD中,AB∥CD,AE交BC于点P,交DC的延长线于点E,点P为AE的中点.(1)求证:点P也是BC的中点;(2)若CB⊥AB,且DP=,CD=,AB=4,求AP的长;(3)在(2)的条件下,若线段AE上有一点Q,使得△ABQ是等腰三角形,求AQ的长.【分析】(1)由平行线的性质得出∠CEP=∠BAP,∠ECP=∠ABP,由点P为AE的中点,得出PE=P A,由AAS证得△CEP≌△BAP,即可得出结论;(2)由CB⊥AB,AB∥CD,得出∠DCP=∠ABP=90°,在Rt△DCP中,CP==3,由(1)得CP=PB=3,在Rt△ABP中,AP==5;(3)①当AQ=AB时,AQ=AB=4;②当BA=BQ时,过点B作BN⊥AQ于N,则AN=NQ,由S△ABP=AB•BP=AP•BN,求出BN=,在Rt△ABN中,AN==,则AQ=2AN=;③当AQ=QB时,证明QB=AQ=QP,则AQ=AP=.【解答】(1)证明:∵AB∥CD,∴∠CEP=∠BAP,∠ECP=∠ABP,∵点P为AE的中点,∴PE=P A,在△CEP和△BAP中,,∴△CEP≌△BAP(AAS),∴PC=PB,∴点P也是BC的中点;(2)解:∵CB⊥AB,AB∥CD,∴∠DCP=∠ABP=90°,在Rt△DCP中,CP===3,由(1)得:CP=PB=3,在Rt△ABP中,AP===5;(3)解:①当AQ=AB时,AQ=AB=4;②当BA=BQ时,过点B作BN⊥AQ于N,如图1所示:则AN=NQ,S△ABP=AB•BP=AP•BN,即4×3=5BN,∴BN=,在Rt△ABN中,AN===,∴AQ=2AN=;③当AQ=QB时,如图2所示:∵AQ=QB,∴∠QAB=∠QBA,∵∠QAB+∠QPB=90°,∠QBA+∠QBP=90°,∴∠QPB=∠QBP,∴QB=QP,∴QB=AQ=QP,∴AQ=AP=;综上所述,△ABQ是等腰三角形,AQ的长为4或或.。
2021中考数学一轮知识点系统复习之三角形能力达标测试题(附答案详解)
2021中考数学一轮知识点系统复习之三角形能力达标测试题(附答案详解)1.如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得ABC是等腰三角形,且AB为其中一腰.这样的C点有()个.A.7个B.8个C.9个D.10个2.若等腰三角形的腰长为10,底边长为12,则底边上的高为()A.6 B.7 C.8 D.93.一个三角形的三个内角的度数比是1:2:1,这个三角形是().A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形4.一个等腰三角形的两条边长分别是方程x2﹣6x+8=0的两根,则该等腰三角形的周长是()A.8 B.10 C.12 D.8或105.下列说法:①满足a+b>c的a,b,c三条线段一定能组成三角形;②三角形的三条高交于三角形内一点;③三角形的外角大于它的任何一个内角.其中错误的有( ) A.0个B.1个C.2个D.3个6.下列各组长度的线段能构成三角形的是()A.1,2,4B.4,5,9C.4,6,8D.5,5,117.如图,在四边形ABCD中,CB=CD,∠B=90°,∠ACD=∠ACB,∠BAC=35°,则∠BCD的度数为( )A.145°B.130°C.110°D.70°8.如图,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是()A.120°B.125°C.127°D.104°9.若a,b,c是△ABC的三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|的结果是( )A.a+b+c B.-a+3b-c C.a+b-c D.2b-2c10.如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,则图中的全等三角形对数共有()A.1对B.2对C.3对D.4对11.已知一个三角形的两边长为3和8,第三边长是偶数,则周长为________.12.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.13.如图,BD与CD分别平分∠ABC、∠ACB的外角∠EBC、∠FCB,若∠A=80°,则∠BDC=_______.14.在△ABC中,∠ABC和∠ACB的外角平分线BP,CP交于点P,PE⊥AC于点E,若S△BPC=3、PE=2,S△ABC=5,求△ABC的周长是______.15.如图,在等腰三角形ABC中,AD、BE分别是底边BC和腰AC上的高线,DA、BE的延长线交于点P.若∠BAC=110°,求∠P的度数。
[初中数学]用一条直线将一个三角形分成两个等腰三角形的条件的探究 沪科版
用一条直线将一个三角形分成两个等腰三角形的条件的探究三新学校 马艳玲探究目标1、 探究把特殊的三角形分割成两个等腰三角形,进而探究能被一条直线分割成两个等腰三角形的三角形所具备的条件;2、 进一步体会数形结合、分类讨论及由特殊到一般的数学思想方法;3、 培养自主探究、分工合作的意识,提高分析问题、解决问题的能力。
探究的重点、难点探究能被一条直线分割成两个等腰三角形的三角形所具备的条件。
预备知识等腰三角形性质,三角形内角和定理,三角形外角性质 问题提出上海市九年义务教育七年级第二学期《数学》课本第110页上有这样一道题目:已知△ABC 的三个内角度数分别为∠A=100°,∠B=60°,∠C=20°,试画一条直线MN ,将这个三角形分成两个等腰三角形。
研究过程三角形是平面几何最简单的直线型封闭图形,三角形的知识是进一步探究学习其他图形性质和特征的基础;所以我们用了近两周的时间去探索三角形的有关知识,那么今天我们将进一步深入的探究有关于三角形的知识。
用一条直线把一个三角形分割成两个等腰三角形。
一、 直角三角形的分割例题1 如图1-1,已知Rt △ABC ,∠C=90°,CA=CB 试画一条直线MN ,将这个三角形分割成两个等腰三角形。
解:过直角顶点C 作∠ACD=45°,交AB 于点D ,则CD 所在的直线就是所要画的直线(图1-2)。
例题2 如图2-1,已知Rt △ABC ,∠C=90°,∠A=60°,试画一条直线MN ,将这个三角形分割成两个等腰三角形。
解:过点A 作∠ACE=60°,交AB 于点E,CE 所在的直线就是所要画的直线(图2-2)。
图2-2图2-1CB C图1-1 C图1-2追问:任意的直角三角形都可以被一条直线分割成两个等腰三角形吗?讨论小结:任意的直角三角形都可以用一条直线把它分割成两个等腰三角形;所做直线必过直角顶点,且与直角顶点所对的边相交。
分割等腰三角形说课稿
《分割等腰三角形》说课稿车墩学校吴烨一、教材分析(一)、教材内容的地位和作用《分割等腰三角形》是新教材第十四章《三角形》之后的探究课,我根据本校班级学生基础知识掌握良好、认知能力良好但是思维品质缺乏、尖子生凤毛麟角等实际情况下,降低要求设计的一节课,三角形是平面几何最简单的直线型封闭图形,三角形的知识是进一步探究学习其他图形性质的基础;这个学习阶段,处在是演绎几何向论证几何的过渡期,本章对三角形的研究呈现从一般到特殊的过程,而等腰三角形对于学生学习和研究轴对称性具有重要意义。
本节课《分割等腰三角形》的设计也遵循了这个规律,从研究一般三角形到等腰三角形,探究过程中还可以帮助学生理解和掌握运用三角形知识,通过探究活动,不仅加强探索实践精神,而且还让学生感受到我国古老的数学文明,激发探索热情。
(二)、教学目标根据新的《课程标准》要求和教材分析,结合本班学生实际情况,制定如下教学目标:1.学会探究把一个一般的三角形分成两个等腰三角形的条件,进而会探究将一个等腰三角形分割成两个等腰三角形,计算可以被分割的等腰三角形的度数.2.体现数形结合、分类讨论的思想。
3.培养学生的自主探究的意识,初步掌握探究的一般思路和独立思考的习惯、提高解决问题的能力.(三)教学重点、难点教学重点、难点:探究把一个一般的三角形分割成两个等腰三角形的思路.探究把一个一般的三角形分割成两个等腰三角形的一般规律。
二、教法、学法分析本节课涉及的知识点有等腰三角形的“等边对等角”、“等角对等边”、“三角形内角和”定理(“三角形一个外角等于和它不相邻的两个内角之和”定理),都是前阶段学生经常使用的熟悉知识,计算分割好的三角形中角之间的关系应该不难,因此本节课将用较多的时间引导学生如何根据图形探究分割的方法和规律,教师以多媒体为教学平台,通过精心设计问题和有效的激励机制充分调动学生的学习积极性,达到事半功倍的教学效果。
而学生也在老师的鼓励引导下,小结方法,通过小组讨论等方式体会知识的应用和数学思考的方法增强学习的成就感和自信心,培养学生的探索精神和探究能力。
中考数学复习指导:怎样的三角形可分割成两个等腰三角形?
怎样的三角形可分割成两个等腰三角形?问题1 有一个三角形,其内角分别为:20°,40°,120°,怎样把三角形分成两个等腰三角形?将此题从特殊推广到一般,变为:问题2△ABC满足什么条件,可以用过顶点的一条直线将它分割成两个等腰三角,形?如何分?有几种分法?笔者对上述问题进行了研究,在此介绍如下,以供同行参考.我们不妨从角度出发去思考,首先找到度数最小的角(简称“最小角”).已知如图1,△ABC中,∠ABC<∠A,∠ABC<∠C,∠ABC是△ABC中最小角,过点B的直线BD把△ABC分割成△ABD和△CBD,两个三角形不可能同时是等腰三角形.证明在△ABD中,∠A>∠1,∠3>∠C>∠ABC>∠1,在△CBD中,∠C>∠2,∠4>∠A>∠ABC>∠2.可见,只剩下∠3=∠A,∠4=∠C的可能性了,那么它们能不能同时成立呢?∵∠3+∠4=180°,∴∠A+∠C=180..显然这个结论不可能的,所以,∠3=∠4与∠4=∠C不能同时成立.于是得出以下结论:结论1 过最小角的顶点的直线不能把原来的三角形分割成两个等腰三角形.结论2 三角形有三个相等的最小角,分割该等边三角形为两个较小的等腰三角形的12直线不存在.结论3 只有三个角都不相等和仅有两个角相等的两类三角形才可能被分割成两个等腰三角形.下面,我们先从三角形三个角都不相等的三角形开始研究.如图2,△ABC 中,∠B<∠ACB<∠BAC ,∠B 为最小角,不能再分割,那么∠B 将成为分割△ABC 后得到的其中一个等腰三角形的角.运用分类讨论思想,∠B 可能是这个等腰三角形的顶角,也可以是底角,并且当∠B 是底角时,又可以分为两类:以AB 为底边或以BC 为底边,可见,就∠B 而言,先分三大类:分类1 当∠B 为顶角时,以点B 为圆心,BA 长为半径作弧,交BC 于点D ,作直线AD 把△ABC 分割成△ABD 和△ACD ,显然△ABD 是等腰三角形.欲使△ACD 成等腰三角形,又可以分为三种情况考虑:∠C =∠DAC ,或者∠C =∠ADC ,或者∠DAC =∠ADC .但是,结合图形仔细分析一下,因为∠ADB 是锐角,所以∠ADC 是钝角,显然只有∠C =∠DAC 成立.当∠B 为顶角时,若∠C =∠DAC ,显然直线AD 把△ABC 分割成两个等腰三角形.设∠B =α(如图2),则可得∠BAC =3∠C .可以看出:当最大角是次大角的3倍时,从最大角中分割一个与次大角相等的角,并且要求这个角与次大角有一条公用边,那么分割最大角的这条直线把原来的三角形分割成两个等腰三角形.分类2 当∠B为底角,且以AB为底边时,作AB的垂直平分线DE交BC于点D,作直线AD,显然△ABD是等腰三角形,欲使△ACD成为等腰三角形,也可分为三种情况考虑:可以看出:直角三角形斜边上的中线所在的直线把直角三角形分割成了两个等腰三角形.②当∠B为底角,且以AB边为底边时,若∠C=∠ADC.设∠B=α(如图4),则∠C=∠ADC=2α.∴∠C=2∠B.可以看出:当次大角是最小角的2倍时,从最大角中分割一个与最小角相等的角,并且要求这个角与最小角有一条公共边,那么分割最大角的这条直线把原来的三角形分割成两个等腰三角形.③当∠B为底角,且以AB边为底边时,若∠DAC=∠ADC.设∠B=α(如图5),则∠DAC=∠ADC=2α.∴∠BAC=aα+2α=3α=3∠B.可以看出:当最大角是最小角的3倍时,从最大角中分割一个与最小角相等的角,并且要求这个角与最小角有一条公用边,那么分割成最大角的这条直线把原来的三角形分割3成两个等腰三角形.分类3 当∠B为底角且以BC边为底边时,作BC的垂直平分线DE交AB于点D,过G、D两点的直线CD把△ABC分割成△BCD和△ACD(如图6),显然△BCD是等腰三角形,欲使△ACD成等腰三角形,又可以分为三种情况考虑:∠A=∠ACD,或者∠A=∠ADC,或者∠ACD=∠ADC.但是,结合图形分析一下,因为∠A为最大角,∠ACB为次大角,所以淘汰掉∠A=∠ADC情形.①当∠B为底角且以AB边为底边时,若∠A=∠ACD,设∠B=α(如图6),则∠A=∠ADC=2α,∴∠A=2∠B.可以看出:当最大角是最小角的2倍时,从次大角中分割一个与最小角相等的角,并且要求这个角与最小角有一条公用边,那么分割次大角的这条直线把原来的三角形分割成两个等腰三角形.②当∠B为底角,且以BC边为底边时,若∠ACD=∠ADC.设∠B=α(如图7),则∠ACD=∠ADC=α+2α=3α,显然∠ACB=3∠B.可以看出:当次大角是最小角的3倍时,从次大角中分割一个与最小角相等的角,并且要求这个角与最小角有一条公用边,那么分割次大角的这条直线把原来的三角形分割成两个等腰三角形.45综上所述,三个角都不相等的三角形分割成两个等腰三角形的情形如下:情形1 有一个角是90°.分割的方法:作斜边上的中线所在的直线.情形2 有一个角是另一个角的3倍(笔者为了能描述清楚,令这里的较小角叫“单倍角”,较大的角为“三倍角”).有三种可能:最大角是最小角的3倍,次大角是最小角的3倍或最大角是次大角的3倍.分割方法:从三倍角中分割出一个与单倍角相等的角,并且要求这个角与单倍角有一条公用边,即以这个角与单倍角为两个内角构成一个较小的等腰三角形.情形3 有一个角是最小角的2倍(笔者令这里的较大角叫“二倍角”,最大的角为“三倍角”,并且强调一下:必须是最小角的2倍).有如下可能:最大角是最小角的2倍,次大角是最小角的2倍,分割方法:从第三个角(除最小角和“二倍角”)中分割出一个与最小角相等的角,并且要求这个角与最小角有一条公用边,即以这个角与最小角为两个内角构成一个较小的等腰三角形.值得注意的是:当三角形的三个内角满足上述的多种情形,比如既有3倍关系,又有2倍关系,那么分割方法可能不唯一.下面,我们再研究:两个角相等的等腰三角形的情形.1.当该等腰三角形只有一个最小角时,最小角必是顶角,另外两个较大角是底角.如果我们把两个相等的较大的底角,一个看成是最大角,另一个看成次大角,那么该等腰三角形上也有上面情形2,3分割方法,只是要多考虑到等腰三角形的轴对称性.分割该等腰三角形为两个较小的等腰三角形的直线有两条,研究过程与上面相似,这里就不一一叙述了.2.当该等腰三角形有两个相等的最小角时,第三个角必是最大角且是顶角,两个相等的最小角是底角.如果我们把两个相等的最小的底角,一个看成是最小角,另一个看成次大角,那么该等腰三角形也有上述情形1,2分割方法,当为情形2时,也要考虑等腰三角形的轴对称性,研究过程与上面相似,这里也省略.例在△ABC中,若过其中一个顶点的一条直线,将△ABC分成两个等腰三角形,求△ABC各内角的度数.解析①如图8,若△ABC中,底角是顶角的2倍.设∠A=α,∠B=∠C=2α,则α+2α+2α=180°,α=36°.三内角的度数分别为:36°、72°、72°.②如图9,若△ABC中,顶角是底角的2倍.设∠B=∠C=a,∠A=2a.则α+α+2α=180°,α=45°,三内角的度数分别为:90°、45°、45°.③如图10,若△ABC中,顶角是底角的3倍,设∠B=∠C=α,∠A=3α,则α+α+3α=180°,α=36°.三内角的度数分别为:108°、36°、36°.6。
怎样的三角形才能一刀分割成两个等腰三角形
怎样的三角形才能一刀截成两个等腰三角形浙江省余姚市实验学校 郑建元(315400)图形的分割与组合是对图形研究的重要内容之一,也是近几年来新教材及中考中频频出现的题型之一.图形的分割主要涉及到两种类型:一类是把图形分割成规定形状的图形,另一类是把图形分割成规定面积的图形.本文就第一种类型提出:怎样的三角形才能一刀截成两个等腰三角形这一问题作如下探究.如图1:D 为△ABC 中BC 上一点, 问:当△ABC 满足怎样的条件? △ABD 与△ADC 均为等腰三角形.我们不妨倒过来研究:假定△ABD 与△ADC 均为等腰三角形. 不失一般性,我们作如下分类讨论:1.若AD BD =,我们再分三种情形讨论:(1)若AD BD DC ==,则有B BAD ∠=∠,C DAC ∠=∠, 又180B BAD DAC C B BAC C ∠+∠+∠+∠=∠+∠+∠=,2∴∠∠(BAD+DAC)=180.90BAC ∴∠=.故△ABC 为直角三角形.(注:用定理“三角形一边上的中线是这边的一半的三角形是直角三角形”证明之更简捷) (2)若AD BD =,AC DC =,则有B BAD ∠=∠,DAC ADC ∠=∠,3BAC BAD DAC BAD ADC BAD B BAD B ∴∠=∠+∠=∠+∠=∠+∠+∠=∠.故△ABC 中存在两内角满足3倍关系;(3)若AD BD AC ==,显然B BAD ∠=∠,C ADC ∠=∠,2C ADC B BAD B ∴∠=∠=∠+∠=∠.故△ABC 中存在两内角满足2倍关系; 2.若AB AD =,我们再分两种情形讨论:(1)若AD DC =,类同1(3)可证∠B=2∠C,故△ABC 中两内角仍满足2倍关系; (2)若AD AC =,显然∠B=∠ADB ,C ADC ∠=∠,∴∠BAC +∠B+∠C>∠B+∠C=∠ADB+∠ADC=180°,这与定理“三角形内角和等于180°”矛盾,因此AD AC =不成立; (3)若AC DC =,显然∠B=∠ADB ,∠DAC =∠ADC ,∴∠BAC+∠B+∠C>∠B+∠DACABD图1C=∠ADB+∠ADC=180°,这与定理“三角形内角和等于180°”矛盾,因此AC DC =不成立. 3.若AB BD =,我们再分三种情形讨论:(1)若AD DC =,类同1(2),可证∠BAC=3∠C ,故△ABC 中存在两内角满足3倍关系; (2)若 AD AC =类同2(3),可证∠B+∠BAC+∠C>∠BA C+∠C>∠BAD+∠C=∠BDA+∠ADC=180°,这与定理“三角形内角和等于180°”矛盾,因此AD AC =不成立;(3)若AC DC =,AB+AC=BD+DC=BC ,这与定理“三角形任何两边之和大于第三边”矛盾,因此AC DC =不成立.综上:如果一个三角形能被一刀截成两个等腰三角形,则此三角形必定至少满足下列条件中的一个:(1)直角三角形;(2)其中两内角有3倍关系;(3)其中两内角有2倍关系.那么反过来成立吗?即满足上述三个条件中的一个,此三角形一定能一刀截成两个等腰三角形吗?显然,满足条件(1)时,成立.如图2,在RT △ABC 中,∠BAC=RT ∠,设∠B=α,∠C=β,在BC 上取一点D ,使∠BAD=α,易证∠DAC=β,从而DA=DB ,DA=DC ,即△ABD 与△ADC 均为等腰三角形.其次,满足条件(2)时亦成立.如图3,在△ABC 中,∠BAC=3∠B ,设∠B=α,则∠BAC=3α,在BC 上取一点D ,使∠BAD=∠α,易证∠DAC=∠ADC=2α,从而DA=DB , AC=DC ,即△ABD 与△ADC 均为等腰三角形.若满足条件(3),则不一定成立.如图4,在△ABC 中,∠C=2∠B ,设∠B=α,则∠C=2α. 再分三种情况讨论: ①∠BAC >α;αβα βCAB D 图2C A BDα α2α2α图3CAB D图4在BC 上取一点D ,使∠BAD=∠α,易证∠ADC=∠C =2α,从而DA=DB , AD=AC ,即△ABD 与△ADC 均为等腰三角形,但此时2α必小于90°.180B C BAC ∠+∠+∠=, 2180BAC αα∴++∠=.又∵∠BAC >α, 2180ααα∴++<.45α∴<. 290α∴<.②∠BAC=α;∵∠B+∠BAC+∠C=180°, ∴4α=180°. ∴2α=90°.此时△ABC 为直角三角形,从锐角顶点A 出发不能把△ABC 分成二个等腰三角形,但从直角顶点出发C ,仍能把△ABC 分成二个等腰三角形.③∠BAC <α;∵∠B+∠BAC+∠C=180°, ∴α+α+2α>180°. ∴4α>180°, ∴2α>90°, ∴∠C=2α>90°.此时△ABC 为钝角三角形, 从最小角顶点A 出发不能把△ABC 截成二个等腰三角形,但当∠B=3∠BAC ,或∠B=2∠BAC ,或∠C=3∠BAC 时分别从顶点B 、顶点C 、顶点C 出发仍能把△ABC 分成二个等腰三角形.由此可见,当三角形有两内角满足2倍关系时,此三角形不一定能一刀分割成两个等腰三角形,但当两锐角有2倍关系时,从第三角的顶点出发引“割线”能一刀分割成两个等腰三角形.综上研究,有如下定理:当且仅当满足下列条件之一时,一个三角形必定能被一刀截成两个等腰三角形:(1)直角三角形(从直角顶点出发引“割线”);(2)两内角有3倍关系(从有3倍关系的两内角中较大一角的顶点出发引“割线”);(3)两锐角有2倍关系(从有2倍关系的两内角之外的第三角的顶点出发引“割线”).对于这个定理的应用,因篇幅所限,仅举二例.1.已知一等腰三角形能被一刀分割成两个等腰三角形,求原等腰三角形顶角的度数. 应用本文定理,可知原等腰三角形三内角必定至少满足下列几种情况:(,,90)αα,(,,2)ααα,,)3,,(ααα(,3,3)ααα,(,2,2)ααα,中的一种.根据三角形内角和等于180。
数学初中 探究一个三角形可以分割成两个等腰三角形的条件
《探究一个三角形可以分割成两个等腰三角形的条件》的教学设计∙教学设想学生在学习了等腰三角形后,经常会碰到将一个三角形分成几个等腰三角形的问题,这类题具有较强的灵活性和开放性,很多同学都只会盲目地尝试分割,经常在解题时碰到障碍,影响了解题的效率。
于是我设计了这节专题课,通过对这类问题的讨论,找到其中的规律,帮助学生走出“瓶颈”,达到“事半功倍”的效果。
∙ 学习目标及重难点 ∙ 学习目标∙ 经历可以分割成两个等腰三角形的三角形的条件的探索过程,培养探索精神和合情推理能力; ∙ 在活动中,体会知识的运用和数学思想方法;∙ 重点:可以分割成两个等腰三角形的三角形的条件的探索过程。
∙ 难点:将一个规律三角形分割成两个等腰三角形以及设计的拓展题。
∙ 学习内容:∙ 探究一个任意三角形可以分割成两个等腰三角形的条件; ∙ 将给定的三角形分割成两个等腰三角形;∙ 一个等腰三角形可以分割成两个等腰三角形时,求原等腰三角形的内角; ∙ 将一个顶角是72°的等腰三角形分割成三个等腰三角形; ∙ 将一个正三角形分割成四个等腰三角形。
三、教学过程教学环节 设计意图∙ 直接给出宁波市中考题(1)如图1, ∠C=90°,请用直尺和圆规作一条直线,把△ABC 分割成两个等腰三角形(不写作法,但必须保留作图痕迹).(2)已知内角度数的两个三角形如图2,图3所示,请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请分别写出分割成的两个等腰三角形顶角的度数.学生利用定理“直角三角形斜边上的中 线等于斜边的一半”,就能很容易解决问题(1),对于问题(2)、(3),学生如果盲目地去任意画分割线,显然要耗费一定的时间,也是很困难地完成,所以在设计时,由这两个问题引入到本节课的探究活动,激起学生强烈的求知欲。
∙∙ 如图,△ADC 是等腰三角形,延长AD 到点B ,使△BCD 也是等腰三角形,有几种情况?此环节主要解决怎么画图的问题,以老师引导为主,师生共同探讨,一可以减少时间,二可以降低难度。
八年级上册数学思维训练培训(培优)试题:等腰三角形
八年级上册数学思维训练培训(培优)试题:等腰三角形【思维入门】例如图,BD是等腰AABC底边AC 上的高线,DE〃BC角AB于点E,求证:ΔBED是等腰三角形。
例1—1:如图,ZABC的平分线BF与AABC中ZACB相邻的外角的平分线CF相交于点F,过点F作DF〃BC, 交AB 于点D,交AC于点E, (1)图中有哪几个等腰三角形?请说明理由。
(2) BD, CE, DE之间存在着什么关系?请证明。
【思维拓展】例2:等腰三角形一腰上的高线与另一腰的夹角为30。
,则等腰三角形的顶角为例3:如图,在AABC 中,AB=AC, ZBAD=20°,且AD=AE,则ZCDE=例4:如图,在ZkABC 中,AB=AC, AD=DE, ZBAD=20% ZEDC=IO0,则ZDAE 的度数为 ______________________________________________________________________________________________【思维升华】例5:老师布宜了一道思考题: 如图1,点M, N分别在正三角形ABC的BC, AC边上,⅛ BM=CN, AM. BN交于点Q,求证:ZBQM = 60%(1)请你完成这道思考题;(2)做完(I)后,同学们在老师的启发下进行了反思.提岀了许多问题,如:①若将题中“BM=CK'与2BQM = 60尸的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别分别移动到BG AC的延长线,是否仍能得到ZBQM=60。
?③若将题中的条件“点卜1, N 分别在正三角形ABC的BGAC边上'改为“点MN分别在正方形ABCD的BGCD边上,,是否仍能得到ZBQM =60°?请你作出判断,在下列横线上填写“是"或“否① __________出证明。
_____ U对②,③的判断,选择一个给【思维探究活动】例:小区内有一个三角形小花坛,现在小明想把它分割成两个等腰三角形,使之可以种上不同的花,但是一泄可以分成两个等腰三角形吗?于是小明开始探索三角形可以被分割成两个等腰三角形的条件,小明把三角形花坛抽象成 几何图形,如图1,∆ABC 中,设ZA= α , ZB=0, ZC=/。
第07讲三角形的有关概念(知识总结+练习)(沪教版)(原卷版)
第07讲三角形的有关概念(核心考点讲与练)一.三角形(1)三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边.相邻两边的公共端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角,简称三角形的角.(2)按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).(3)三角形的主要线段:角平分线、中线、高.(4)三角形具有稳定性.二.三角形的角平分线、中线和高(1)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.(2)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.(3)三角形一边的中点与此边所对顶点的连线叫做三角形的中线.(4)三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.(5)锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.三.三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.四.三角形的稳定性当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.这一特性主要应用在实际生活中.五.三角形三边关系(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.(4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略。
人教版八年级上册13.3.1《等腰三角形》
《等腰三角形》◆教材分析本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。
◆教学目标【知识与能力目标】1、理解并掌握等腰三角形的性质。
2、会运用等腰三角形的概念和性质解决有关问题。
3、观察等腰三角形的对称性、发展形象思维。
4、探索等腰三角形的判定定理【过程与方法目标】1、通过实践、观察、证明等腰三角形的性质,培养学生的推理能力。
2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。
3、探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念【情感态度价值观目标】1、引导学生对图形的观察、发现,激发学生的好奇心和求知欲。
2、在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。
3、感受图形中的动态美、和谐美、对称美,感受合作交流带来的成功感,树立自信心。
4、通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力【教学重点】1、等腰三角形的概念和性质及其应用。
2、等腰三角形的判定定理及其应用【教学难点】1、等腰三角形的性质的证明。
2、探索等腰三角形的判定定理◆教学过程一、情景导入:师:日常生活中,我们会经常看到一些美丽的图案,其中一些是平面几何图形,接下来我们观察几幅图片,说一说你们看到了什么图形?(课件向学生展示平常见到的有关等腰三角形的图片)学生观察一组图片,回答问题。
【设计意图】使学生能从实际生活中抽象出等腰三角形,初步感知等腰三角形在实际生活中的广泛应用,用美丽的画面激发学生的求知欲。
培养学生勤观察,肯思考的学习习惯。