含受控源的电路分析

合集下载

电路分析中含受控源的电路分析

电路分析中含受控源的电路分析

电路分析中含受控源的电路分析含有受控源的电路分析是电路分析中的一种重要方法,用于分析电路中存在各类受控源的电路。

受控源是一种与输入信号有关的电源,它的电压或电流与电路中的一些参数有关。

常见的受控源有电压受控电压源(VCVS)、电流受控电流源(CCCS)、电流受控电压源(CCVS)和电压受控电流源(VCIS)等。

在含有受控源的电路分析中,首先需要建立电路的拓扑结构和元件的数学模型。

然后,根据电路中各个元件之间的连接关系和电路定律,可以列写出电路的基尔霍夫方程。

而对于含有受控源的电路分析,还需要考虑受控源的特性和输入信号的影响。

以电压受控电压源(VCVS)为例,电路中的一个元件可以认为是一个电流与输入电压之间存在关系的受控源。

在分析电路时,可以使用残源法、节点电压法或混合法等方法。

其中,节点电压法是最为常用的方法之一在节点电压法中,首先需要选择一个参考节点,并以该节点为基准确定其他节点的电压。

然后根据电压源、电压受控源和电流源等的性质,可以得到各个节点的电压与输入信号之间的关系。

在分析电路时,可以运用Kirchhoff定律、欧姆定律和元件电压-电流特性等基本原理,通过建立节点方程,将电路进行简化和分析。

受控源的特性对电路的分析和计算产生了影响。

在分析过程中,需要根据受控源的电压或电流与输入信号的关系,将其转换为等效电源。

例如,可以通过电流受控电流源(CCCS)将电压源转换为等效的电流源。

通过受控源的转换和简化,可以将电路分析问题转换为求解一组线性方程的问题。

通过受控源的电路分析,可以获得电路中各个节点的电压、元件的电流以及功率等信息。

这对于电路设计、电路故障分析等都具有重大的意义。

通过电路分析,可以评估电路的性能,确定电路中的瓶颈和关键元件,并改进电路的设计。

总而言之,含有受控源的电路分析是电路分析中一种重要的方法。

通过建立电路模型、使用电路定律和数学方法,可以对含有受控源的电路进行分析和计算。

通过受控源的转换和简化,可以将电路分析问题转化为线性方程组的求解问题,从而得到电路中各个节点的电压、元件的电流以及功率等信息。

受控源及电路分析

受控源及电路分析
3、受控源与独立源不能互换,因为受控源不能独立 向电路供电。
4、受控源和电阻构成的二端网络,可用等效电阻替 代。该等效电阻可能为负,表明受控源是有源元 件,供出能量。
2020/9/25
作业
习题:P59 20 21
2020/9/25
(G 2 G 4 )u 3 G 2 u 1 G 4 u 4i2
u4 U1
补充方程: U1u2u1
i2(u1u3)G2
2020/9/25
含受控源电路的等效变换
等效变换:把受控电流源并联电阻形式转换为受 控电压源串联电阻的形式,再对电路进一步等效,但 是受控源的控制量所在的支路不能变动。
2020/9/25
电源
电源:对外输出的端电压或电流保持为一 恒定值或确定的时间函数的二端元件 电源分为独立电源和受控电源 独立电源:能独立的对外电路提供能量的电源
受控电源:输出的电能是受电路中其它处 的电压或电流的控制。
2020/9/25
受控源
受控源有两对端钮,一对输入一对输出,输 入端施加的是控制量,是电压或电流,输出端输 出的是被控制量,是电压或电流。
等效 变换
求如图电路的u1 开路
I=0
u1 3(52u1) u1 3V
2020/9/25
含受控源电路的戴维南等效
由受控源和电阻构成的二端电路可等效为一 个纯电阻,可以是正电阻,也可以是负电阻,或 是电阻为零.
在含受控源的电路中应用戴维南定理,求等 效电阻时只把独立电源置零处理,受控源不变
求受控源和电阻构成的二端电路的等效电阻, 一般在电路端口外加电压源求端口电流,或外加电 流源求端口电压,列写端口伏安关系,则端口电压 与电流的比值即为等效电阻.
2020/9/25

2.8 受控源和含受控源简单电路的分析

2.8  受控源和含受控源简单电路的分析

受控源与独立源的区别
1、两者都是电源; 2、独立源在电路中是能量转换装置; 3、受控源是描述电路器件中控制与被控制的关系; 4、含独立源的电路所有分析方法对含受控源的电路一样适用。
+
10V
-
+ 10I 1-
+
4Ω U
-
解:在应用叠加定理时,在各独立源单独作用
的电路中,受控源均要保留,控制量相应地变
4A 成各独立源单独作用时产生的电压或电流。 (1)10V电压源单独作用
I1′ 6Ω
+ 10I1′-
+
+
10V
4Ω U ′
-
-
I1
10 64
1A,
U I1 4 10I1 6V
2.8 受控源和含受控源简单电路的分析
一、受控源
电源分为独立电源和受控电源 (1)独立电源:能独立的对外电路提供能量的电源. (2)受控电源:
电压源的输出电压或电流源的输出电流受电路中其 它部分的电流或电压控制的电源,简称受控源。
根据控制量是电压或电流,以及被控制量是电压源或电 流源,受控源可分为:
(2)4A电流源单独作用
I1′ ′6Ω
+ 10I1′′ -
+ 4A
4Ω U ′′
-
I1
4 64
(4)
1.6A
对大回路有:
6I
1
1 0I 1
U
0
U
1
6I
1
2 5.6V
(3)两个电源共同作用时
U U U
6 25.6 19.6V
注:含受控源电路的分析,受控源不能简单的看成独立电源。 要注意控制量与被控制量之间的关系,控制量存在,则被控制 量存在。

专题研讨含受控源的电路分析

专题研讨含受控源的电路分析

1
含受控源的无源单口网络等效电路
无源一端口(也称单口网络或二 端网络)的输入电阻定义为该端 口的端电压与端电流之比, 如图所示 图 无源一端口网络的输入电阻
含受控源的无源单口网络等效电路
01
02
03
无源一端口网络的输入电阻 和其等效电阻的数值是相等 的,可通过求等效电阻得到 输入电阻的值。求解和计算
-
THANKS!
xxxxxxxxx 汇报人:XXX 汇报时间:XX年xx月xx日
方法可归纳为
⑴对纯电阻网络,通过电阻 的串并联或Y-∆等效变换方
法求解
⑵当无源一端口网络含有受 控源时,需要采用外加电源 法。对含有独立源的一端口 网络,可采用外加电源法、 开路-短路法或直接求VAR法 ,本质上是求其等效电路的
内阻
含受控源的无源单口网络等效电路
试求图所示电路的端口等效电阻
含受控源的无源单口网络等效电路
网孔电流法
可能含有的受控源类型
含有一般受控源
网孔电流法
含有无伴受控电流源 ·单独一条支路
网孔电流法
·公共支路上 网孔电流法结论
含受控源电路的网孔分析方 法与步骤:与只含独立源电 路的网孔分析法全同。在列 网孔的KVL方程时,受控源与 独立源同样处理。但要将控 制变量用待求的网孔电流变 量表示,以作为辅助方程
节点电压法
节点电压法
节点电压法
总结论
由以上举例分析可知,任何受控源都可以用一个等效电源或一个电阻替代,其等效的关 键在于找出受控源的伏安关系。利用这种等效方法求解电路,可以避免复杂方程的列写 和求解,为初学者提供了一种方便实用的解题方法,只要掌握受控源的特点及分析受控 源电路的基本原则,加强练习,计算受控源电路就变成一件简单的事情了

含受控源的戴维南等效电路

含受控源的戴维南等效电路

含受控源的戴维南等效电路
戴维南等效电路是一种非常重要的电路分析方法,它是通过将电路中的元件抽象成为等效的电压源或电流源,并利用基尔霍夫电流定律和电压定律来简化电路的分析。

在实际的电路设计中,经常会遇到含受控源的电路,这时就可以使用含受控源的戴维南等效电路来简化电路的分析。

含受控源的戴维南等效电路分为两种情况:一种是含有电压控制电压源(VCVS)的电路,另一种是含有电流控制电流源(CCCS)的电路。

首先,我们来看含有VCVS的电路,它可以使用一个等效的电压源和一个串联的电阻来代替,其中电压源的电压等于VCVS输入电压和电阻两端电压之差,电阻的阻值等于VCVS输出电阻。

而含有CCCS的电路,则可以使用一个等效的电流源和一个并联的电阻来代替,其中电流源的电流等于CCCS输入电流和并联电阻两端电流之差,电阻的阻值等于CCCS输出电导。

利用这种含受控源的戴维南等效电路可以更加方便地对电路进行分析和计算,从而使得电路设计更加高效和可靠。

同时,在实际应用中也可以将受控源的模型作为模块化的基本单元,从而实现更加复杂电路的设计和分析。

总之,含受控源的戴维南等效电路是一种非常有效和实用的电路分析方法,值得广大电路设计者和电子爱好者深入学习和研究。

电路与电工基础项目38 含受控源电路的分析

电路与电工基础项目38  含受控源电路的分析
11
• 3.最大功率传输定理:当负载电阻等 于内电阻,负载获得最大输出功率;最 大输出功率为
Pmax
U 2oc 4Req
12
b
(c)
b
(d)
图3-29 例3-19电路图
• 例题3-19 求图3-29(a)所示电路的等效电阻。 • 解: 对最左边支路进行电源变换得图3-29(b),再
将图3-29(b)进行电源变换后得图3-29(c)电路,图 3-29(c)电路端口加电压U后,求端口电流I与电压U 的关系。 U (5 1.2)I 1.8I 8I
运用。了解替代定理、诺顿定理 • 掌握受控源的概念,能进行含受控源的简单电路的分析。 【技能目标】
1.能熟练应用叠加定理、戴维南定理测量电路中的电流、电 压和功率。 2.含受控源电路的电压电流的测量。
【课时安排】12课时。
2
项目3.8 含受控源电路的分析
3.8.1 含受控源电路的特点分析 3.8.2 受控源电路实例
所以该单口网络等效电阻为
U R0 I 8
• 温馨提示:
• 对于含受控源(无独立源)单口网络求等效电 阻的方法可归纳为:首先在端口处外加理想电 压源,电压为U,从而引起端口输入电流I。然 后根据KVL、KCL及欧姆定理列写电路方程 ,整理后找出U与I的比值,从而求得等效电阻 。对于较复杂的电路,可对电路进行等效简化 后再求等效电阻。注意简化电路时应保留控制 支路,以免造成解题的困难。
3.8.1 含受控源电路的特点分析
• 受控源电路的特点可以简要归纳为: • (1)受控电压源和电阻的串联组合与受控电流源和电阻
的并联组合,可以像独立电源一样进行等效变换。但在 变换过程中,必须保留控制量所在的支路; • (2)应用网络方程法分析计算含有受控源的电路时,受 控源可以按独立电源处理,但在网络方程中,要将受控 源的控制量用电路变量来表示。在节点电压方程中,控 制量用节点电压表示;在回路方程中,控制量用回路电 流来表示; • (3)用叠加定理求独立电源单独作用的电压、电流时, 受控源要全部保留。同样,用戴维南定理求网络的等效 电阻时,受控源也要全部保留; • (4)含受控源的二端电阻网络,其等效电阻可能为负值 。等效电阻为负值,表明该网络向外部电路发出能量。

浅谈含受控源电路的分析

浅谈含受控源电路的分析

浅谈含受控源电路的分析通信与信息工程学院电子信息工程12班B13011202~B13011207含有受控源网络的分析是现代网络理论的一个重要内容,受控源多端耦合的特性决定了电路分析、计算的复杂化。

对线性时不变电路中受控源的处理,利用受控源的“电阻性”和“有源性”依据线性电路的叠加定理和齐次性定理,把受控源等效成独立电源和电阻的串联组合成单个电阻,从而把含有受控源的电路变换成不含受控源电路的方法,该方法可简化一些电路的分析计算过程。

另外,还可以通过受控源控制量的等效变换,巧妙地简化解题过程。

◆将受控源当作独立源处理的基本分析方法此分析方法较适用于选用回路电流法或节点电压法分析计算含有受控源的电路问题中,即根据回路法,节点法等建立方程时把受控源当作独立源对待,但需列写被控制量与控制量关系的增补方程。

【例1】:试用节点电压法求图1中的电压U。

解:把CCVS视作独立源处理,列写节点电压方程如下:Un1=-5(1+2+2)Un2-2Un1-Un3=0Un3=-5I增补方程:I=-2Un2U=-2V。

对于受控源在叠加定理中的应用,教材中多把其视作电阻元件保留在电路中,而不看做独立电源,这是因为受控源本身不直接起激励作用。

其实,在叠加定理中把受控源看作是独立源单独作用,仍可以作为一种有效地解题方法。

但必须注意,受控源单独作用时控制量必须是控制源和受控源共同作用的结果,此时的受控源应看成是以控制量为变量的未知电源。

可以看出把受控源看做独立电源处理,分电路求解过程得以简化。

但须注意,受控源单独作用时控制量必须是独立源和受控源共同作用的结果。

◆受控源的等效变换法根据受控源在电路中所表现出的“电源性”和“电阻性”及其控制量所在支路的位置不同,把受控源等效成单个电阻,其阻值为负时说明对外发出功率。

或者将受控源等效成独立电源和电阻的串联形式,使等效后的电路不含受控源,从而简化计算。

此方法应用在叠加定理,戴维南(诺顿)定理及求单端口网络等效电阻时效果较好。

含受控源的电路分析

含受控源的电路分析
得到
u (10)i 20V
求得单口VCR方程为 1 i u 2A 或 u (10)i 20V
10
以上两式对应的等效电路为 10电阻和 20V电压源的串联,如 图(b)所示,或10电阻和2A电流源的并联,如图(c)所示。
三、含受控源电路的等效变换 独立电压源和电阻串联单口可以等效变换为独立电 流源和电阻并联单口网络。
例如:
图(a)所示的晶体管在一定条件下可以用图(b)所示的模 型来表示。这个模型由一个受控源和一个电阻构成,这个受 控源受与电阻并联的开路的控制,控制电压是ube,受控源 的控制系数是转移电导gm。
图2-34
图2-34
图(d)表示用图(b)的晶体管模型代替图(c)电路中的晶 体管所得到的一个电路模型。
图2-35 解: 设想在端口外加电流源i,写出端口电压u的表达式
u u1 u1 ( 1)u1 ( 1) Ri Roi
求得单口的等效电阻
由于受控电压源的存在,使端口电压增加了u1=Ri,导 致单口等效电阻增大到(+1)倍。若控制系数=-2,则单口等效
u Ro ( 1) R i
解:先将受控电流源3i1和10电
图2-40
阻并联单口等效变换为受控电压源
30i1和10电阻串联单口,如图(b) 所示。由于变换时将控制变量i1丢
失,应根据原来的电路将i1转换为
端口电流i 。
根据 KCL方程
i i1 3i1 0
求得

i1 0.5i
30i1 15i
得到图(c)电路,写出单口VCR方程
如图(b)所示。
将2和3并联等效电阻1.2和受控电流源0.5ri并联,等 效变换为1.2电阻和受控电压源0.6ri 的串联,如图(c)所示。

含受控源电路的研究实验报告

含受控源电路的研究实验报告

含受控源电路的研究实验报告
一、引言
受控源电路是一种重要的电路结构,其在实际应用中广泛存在。

本文
将对受控源电路的研究进行实验探究。

二、受控源电路的基本原理
受控源电路是由一个可变电阻和一个非线性元件组成的,其输出电压
或电流可以通过调节可变电阻来进行控制。

其中,非线性元件可以是
二极管、晶体管等。

三、实验设计
本次实验将采用二极管作为非线性元件,利用可变电阻调节输出电压。

四、实验步骤
1. 搭建受控源电路;
2. 连接直流稳压电源并调节输出电压;
3. 测试不同输入信号下的输出波形,并记录数据;
4. 对数据进行分析并得出结论。

五、实验结果与分析
通过测试不同输入信号下的输出波形,我们发现,在输入信号较小的
情况下,输出波形基本呈现线性关系;而当输入信号较大时,输出波形开始出现非线性特征。

这说明在受控源电路中,非线性元件对于大幅度信号具有较强的响应能力。

六、结论与展望
通过本次实验,我们深入了解了受控源电路的基本原理,并通过实验得出了相关结论。

未来,我们将进一步研究受控源电路在不同应用场景下的表现,并探索其更广泛的应用前景。

七、参考文献
1. 《电子技术基础》;
2. 《电子电路分析与设计》。

“电路分析”课程中含受控源电路的分析

“电路分析”课程中含受控源电路的分析

2 0 1 3 年 第 2 8 期
“ 电路分析’ ’ 课程中含受控源电路的分析
曲晓丽 田 葳
摘要: 电路 分析课 程中, 含 受控源电路的分析和计算是电路分析的难点和重点。 由于受控 源在电路 中 具有双重性质, 既有电源性质, 又有电阻陛质, 故理 解受控 源与独立电源的区别是正确分析 和处理含受控源电路 的关键 。 根 据选择分析方式的不同, 适当地处理受控
虽然受控源和独立 电源有着本质的区别 , 但在 电路分析 中,
有些 情况下, 受控源可 以暂时作 为独 立电源处 理, 但是要注意受
控量和控制量之间的关 系。 1 . 在电源的等效 变换 中, 受控源可作为独立电源处理
/ J t l  ̄ l , 充方程 ( 4 )、( 5 ) , 以求解方程组。因此 , 例1 所示 电路 的回
路 中一部分 电压或电流对另一部分 电压 或电流 的控制关 系。 根
据控制量 的不同 , 受控 源可分 为电压控制 电流源 ( V C C S) 、 电
路结构特征, 对所选择的独立 回路列写回路电流方程。 对于受控 源电路 , 在 列写方程时受控源的处理方法与独立电源相同, 但由
于受控源的特殊 性, 将会在方程中引入新的未 知量 , 所 以需要增 加补充方程 , 补充方程源于受控源的控制量。 如例1 所示。
103969jissn10070079201328036电源等效变换图???????????????????????图2?受控源等效变换图gigi电路图79课程教材改革总第287期电路的各支路电压或电流的分析方法
叶I 习 吨力 毅奄
DOI 编码 : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 7 — 0 0 7 9 . 2 0 1 3 . 2 8 . 0 3 6

2.5受控源及含受控源电路的分析

2.5受控源及含受控源电路的分析

本节小结 1、含受控源电路的分析与独立源电路基本相同,不同点是应用 叠加定理时受控源不能单独作用 2、含受控源和电阻的二端电路可等效为一个电阻 3、含独立源、受控源和电阻的二端电路,等效为一个电压源 和一个电阻的串联 4、含受控源电路的等效电阻需采用外加电源法或短路电流法 求解
课堂练习: 1、求下图所示电路的戴维宁等效电路
U T R 1 (1 )R 2 I T
RO UT R 1 (1 )R 2 IT
I I T
原电路的戴维宁等效电路
RO
+ U OC I
R3
U OC I S (R 1 R 2 ) U S I R O R 3 R 1 R 3 (1 )R 2
对三极管的输入回路,有
+ U -
I
Ib rbe
β Ib
RC RE Ie
RB
E
( I I b ) RB I b rbe (1 ) I b RE U
RB Ib I R B rbe (1 )R E
二端电路的输入电阻
RB rbe (1 ) RE U rbe (1 ) RE I b I RB rbe (1 ) RE
I1 + U1 -
+ μU 1 -
+ U2 -
+ γ I1 -
+ U2 -
(a) V C V S
I2 + U1 I1
(b) C C V S
I2
gU 1
β I1
(c) V C C S
受控源的四种类型
Hale Waihona Puke (d) C C C SR2 a
R3

运用戴维南定理对含受控源电路的求解及分析_李光

运用戴维南定理对含受控源电路的求解及分析_李光

文章编号:JL 010229(2006)03000502运用戴维南定理对含受控源电路的求解及分析李 光(石家庄铁道学院四方学院,河北石家庄050228) 摘 要:本文通过对《电路》教材中含有受控源电路的求解,着重分析了受控源的电源性质及戴维南定理在处理电路过程中的应用。

关键词:受控源;戴维南定理;电源性质;控制量转移 中图分类号:TN 7 文献标识码:A1 问题引出在现行电路教材中,对含有受控源的线性电路网络用戴维南定理分析时,即在求戴维南等效电路的电压源和内阻抗时,只允许把受控源视为电阻性元件保留在电路中,对电路进行分析简化,那么,能否利用受控源的电源性,将其作为独立源来处理简化电路呢?例题:电路如图(a )所示,试用戴维南定理求电路中电流I 和流过3V 电压源电流I 1。

解:把受控源分别视为电阻性和电源性元件求解。

解法1:将受控源视为电阻性元件,断开3V 电压源支路,应用戴维南定理进行求解。

断开3V 电压源支路如图(b )所示,求ab 端收稿日期:20051221责任编辑:姚树琪校 对:王素娟作者简介:李光(1977-),男,汉族,河北深州人,电气工程系,讲师,主要从事电工电子学教学与研究。

口开路电压U oc ,可求得I =0.5AU oc =3V将ab 端口短路如图(c )所示,求短路电流Isc 得I sc =0.5A故可求得戴维南等效电阻R o =U ocI sc=6Ψ则戴维南等效电路如图(d )所示,可求得I 1=3+36=1A返回原电路图(a ),由KV L 得 2006年9月 石家庄联合技术职业学院学术研究 Sept .2006 第1卷第3期 Academic Research o f Shijiazhuang Lionful Vo ca tional College Vo l .1No .3 3I 1-3-6I =0则有I =0A解法2:将受控源视为独立源,断开3V 电压源支路如图(b )。

用戴维南定理分析含受控源电路的两种求解方法

用戴维南定理分析含受控源电路的两种求解方法

用戴维南定理分析含受控源电路的两种求解方法戴维南定理是一种用于求解包含受控源电路的方法,可以用来简化电路分析过程。

它基于两个重要的原理:戴维南定理一和戴维南定理二、在本文中,将分析使用戴维南定理解决含有受控源电路的两种方法。

第一种方法是直接应用戴维南定理。

这种方法的核心思想是将受控源看作是独立的源,然后使用戴维南定理对电路进行分析。

具体步骤如下:1.将受控源替换为一个等效的独立源,其大小由受控元件的传输函数决定。

2.对电路进行划分,将分析对象划分为两个不同的部分:一个是受控源所控制的部分,另一个是受控源所控制的部分。

3.对两个部分分别应用戴维南定理进行分析。

对于受控源所控制的部分,把受控源替换为等效独立源,并求解得到电流或电压。

对于受控源所控制的部分,保持原样进行分析。

4.最后,根据受控源的传输函数,利用以上步骤中得到的结果计算出受控源的电流或电压。

这种方法的优点是能够直接应用戴维南定理进行分析,简化了原电路的复杂性。

但是,该方法的缺点是需要进行额外的计算来确定受控源的等效独立源。

第二种方法是使用戴维南定理的回路剪切法。

该方法是将受控源的作用进行回路剪切,然后通过引入未知变量进行分析。

具体步骤如下:1.对电路中的其中一回路进行剪切,将受控源切断。

2.在切断处引入未知变量,例如电流或电压。

3.根据戴维南定理,建立剪切处的电压或电流方程,利用已知条件进行求解。

4.利用未知变量的值,通过受控源的传输函数计算出受控源的电流或电压。

5.重复以上步骤,对每一个回路进行剪切,建立方程并解析。

这种方法的优点是可以直接应用戴维南定理,同时通过引入未知变量对电路进行分析。

而缺点是需要进行多次剪切和建立方程的过程,会增加计算的复杂性。

综上所述,戴维南定理是一种用于分析含有受控源电路的有效方法。

根据具体的电路情况和分析需求,可以选择直接应用戴维南定理或使用回路剪切法进行分析。

无论采用哪种方法,戴维南定理都能够简化电路分析过程,提高分析效率。

来分析含受控源的电路

来分析含受控源的电路
受控源还可以用于构建放大器和滤波器等模拟电路,以实现信号的放大、滤波和整形等功能。
模拟电路中的受控源应用
01
02
数字电路中的受控源应用
受控源在数字电路中还用于实现触发器和寄存器等时序逻辑电路,以实现信号的存储和传输等功能。
在数字电路中,受控源常被用于实现逻辑门的功能,如与门、或门、非门等。
控制系统中的受控源应用
详细描述
03
在分析含电流控制电压源的电路时,需要特别注意其输入电流的方向和极性,以正确理解其电压输出方向和大小。
总结词
04
电流控制电压源的电压输出方向和大小由输入电流的方向和极性决定。在实际电路中,可以通过测量输入电流和输出电压的大小及方向来确定电流控制电压源的工作状态。
详细描述
电流控制电压源(CCVS)分析
LTSpice
专门用于模拟电路仿真的软件,支持受控源的建模和仿真,具有直观的用户界面和强大的分析功能。
PSpice
由MicroSim公司开发的电路仿真软件,适用于模拟和数字电路的仿真,支持多种受控源的建模和仿真。
电路仿真软件介绍
实验设备与实验步骤
实验设备:电源、电阻、电容、电感、运算放大器、受控源等电子元件及测量仪器。
BIG DATA EMPOWERS TO CREATE A NEW ERA
06
结论与展望
受控源电路的重要性和应用前景
受控源电路在电子工程、通信、自动控制等领域具有广泛的应用,如放大器、振荡器、滤波器等。
随着科技的发展,受控源电路在高性能计算、物联网、人工智能等领域的应用前景更加广阔,将为未来的技术革新和产业发展提供重要支撑。
03
含受控源电路的分析实例
电压控制电流源是一种受控源,其输出电流受输入电压控制。

一种分析含受控源电路的去耦等效法

一种分析含受控源电路的去耦等效法

一种分析含受控源电路的去耦等效法近年来,由于在研究微电子电路中的精密控制和计算技术的发展,受控源电路的使用越来越普遍。

受控源电路是指,当电路中出现外界控制电位时,电路输出受到某种规则限制而发生变化的电路。

由于受控源电路结构复杂,电路行为难以准确预测,所以成为微电子领域的重要研究对象。

为了更好地分析和设计受控源电路,去耦等效技术作为研究的重点之一被广泛应用。

在1955年,发明者弗朗西斯施瓦茨首先提出了去耦等效电路的概念,并用此概念来解决受控源电路中的难题。

去耦等效电路的概念是将复杂的电路结构转化为等效电路,用容易理解的模型表示电路行为,这样可以更容易地分析其工作原理和表现特性。

在20世纪60年代,施瓦茨提出了一种称为“绝缘调节去耦等效法”的等效技术,用来分析受控源电路,这种方法在后来被广泛应用。

由于绝缘调节去耦等效法只适用于简单的受控源电路,因此,后来开发出一种新的分析含受控源电路的去耦等效法,即耦合电流法。

耦合电流法的优点是,它可以分析复杂的受控源电路,涉及到受控源电路的控制电路和多种变换器,可以直接应用于仿真分析。

首先,耦合电流法利用小信号调节去耦等效法将受控源电路进行简化,以确定受控源电路行为的输入和输出之间的耦合关系的模型。

然后,耦合电流法将控制电路和各种变换器连接到一起,以形成耦合电路,形成耦合电流,根据耦合电流求解受控源的输入和输出之间的耦合关系。

最后,根据求出的等效电路模型和因果图,得到受控源电路的行为函数。

含有受控源电路的耦合电流法不仅可以满足仿真和改善设计的要求,而且还可以更加精确地分析电路操作的行为。

由于耦合电流法具有以上优点,它在微电子领域被广泛使用,以改善电路设计和分析电路行为。

然而,耦合电流法仍存在一些不足之处。

首先,由于耦合电路的耦合电流是积分的,因此处理运算量比较大,程序复杂,计算时间长,这限制了耦合电流法的应用范围。

另外,耦合电流法只考虑电流耦合,并忽略了其他因素,如系统建模的准确性和变换器的非线性特性,这也限制了耦合电流法的应用。

用戴维南定理分析含受控源电路的两种求解方法

用戴维南定理分析含受控源电路的两种求解方法

用戴维南定理分析含受控源电路的两种求解
方法
1含受控源电路
受控源电路,也称为变编电路,是由一个特定的器件或元件组成的电路,该器件或元件可以以普通的电路元件不能做到的方式影响信号,因此用作控制的源。

根据含受控源电路的求解方法,可分为戴维南定理求解和微分格式求解。

2戴维南定理求解
戴维南定理是瞬态稳态及其他复杂电路求解最有效的工具,既可用于复杂又可用于简单的电路分析。

它可以用于求解含受控源电路的结构,是一种相当有用的方法。

戴维南定理求解含受控源电路的步骤如下:第一步,从源电路中提取出受控源;第二步,用一个普通的电源代替受控源,测量受控源的输出电压;第三步,将受控源替换成正确参数的模型,并利用电路分析计算其输出电压,比较得到受控源的正确参数。

3微分格式求解
微分格式求解可以用于求解大型以及复杂的含受控源电路,它的优点是可以减少解的复杂度,从而提高求解的效率。

微分格式求解含受控源电路的步骤如下:将受控源电路转换为微分格式,根据求解时间分离出受控源的瞬态响应;利用瞬态响应的特定解决方案求出单个
节点上的受控源输入幅度;根据受控源感性参数反推出受控源的参数;最后,把受控源替换成正确参数的模型,并用在受控源代替原电路形式实现完整的电路模拟。

4总结
使用戴维南定理可以有效求解含受控源电路,目前常用的两种方法是戴维南定理求解和微分格式求解,比较简单、容易理解易于使用。

另外,其他如牛顿-拉弗森定理、传统方程法等求解方法也可以求解含受控源电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图3-18
解:以i1, i2和 i3为网孔电流,用观察法列出网孔 1和网孔2
的网孔方程分别为:
补充两个受控源控制变量 与网孔电流i1和i2关系的方程:
图3-18
代入 =1, =1和两个补充方程到网孔方程中,移项整 理后得到以下网孔方程:
解得网孔电流i1=4A, i2=1A和i3 =3A。
四、含受控源电路的结点方程
时间函数变化的电压和电流,从而在电路中产生电压和电
流。 受控源则描述电路中两条支路电压和电流间的一种约 束关系,它的存在可以改变电路中的电压和电流,使电路 特性发生变化。
图3-13
图(a)所示的晶体管在一定条件下可以用图(b)所示的
模型来表示。这个模型由一个受控源和一个电阻构成,这
个受控源受与电阻并联的开路电压控制,控制电压是ube,
图3-12
当受控源的控制系数r、g、和为常量时,它们是时 不变双口电阻元件。本书只研究线性时不变受控源,并采
用菱形符号来表示受控源 ( 不画出控制支路 ) ,以便与独立
电源相区别。 受控源与独立电源的特性完全不同,它们在电路中所 起的作用也完全不同。
独立电源是电路的输入或激励,它为电路提供按给定
由线性电阻和独立电源构成的单口网络,就端口特性
而言,可以等效为一个线性电阻和电压源的串联单口,或
等效为一个线性电阻和电流源的并联单口。 由线性受控源、线性电阻和独立电源构成的单口网络, 就端口特性而言,可以等效为一个线性电阻和电压源的串 联单口,或等效为一个线性电阻和电流源的并联单口。 同样,可用外加电源计算端口 VCR方程的方法,求得 含线性受控源电阻单口网络的等效电路。
将控制变量i3用网孔电流表示,即补充方程
图3-17
代入上式,移项整理后得到以下网孔方程:
由于受控源的影响,互电阻R21=( r - R3)不再与互电阻 R12= -R3相等。自电阻R22=( R2+ R3 - r)不再是网孔全部电阻 R2 、R3的总和。
例3-14 图3-18电路中,已知 =1, =1。试求网孔电流。
与建立网孔方程相似,列写含受控源电路的结点方程 时,(1) 先将受控源作为独立电源处理;(2) 然后将控制变 量用结点电压表示并移项整理,即可得到如式(3-9)形式 的结点方程。现举例加以说明。 例如对于独立电流源、受 控电流源和线性电阻构成电路的结点方程如下所示:
例3-15 列出图3-19电路的结点方程。
口等效电阻Ro=-R,这表明该电路可将正电阻变换为一个
负电阻。
例3-11 求图3-15(a)所示单口网络的等效电阻。
图3-15
解:设想在端口外加电压源u,写出端口电流i的表达式为
由此求得单口的等效电导为
图3-15
由此求得单口的等效电导为
该电路将电导G增大到原值的(+1)倍或将电阻R=1/G
变小到原值的1/(+1)倍,若=-2 ,则Go=-G 或Ro=-R,这 表明该电路也可将一个正电阻变换为负电阻。
在列写含受控源电路的网孔方程时,可: (1) 先将受控源作为独立电源处理; (2) 然后将受控源的控制变量用网孔电流表示,再经过 移项整理即可得到如式(3-5)形式的网孔方程。
下面举例说明。
例3-13 列出图3-17电路的网孔方程。
图3-17
解:在写网孔方程时,先将受控电压源的电压ri3写在方程 右边:
源 (CCVS) ,电压控制的电流源 (VCCS) ,电流控制的电流
源(CCCS)和电压控制的电压源(VCVS),如下图所示。
每种受控源由两个线性代数方程来描述:
CCVS:
r具有电阻量纲,称为转移电阻。
VCCS:
g具有电导量纲,称为转移电导。 CCCS:
无量纲,称为转移电流比。
VCVS:
亦无量纲,称为转移电压比。
率为
一、受控源
受控源又称为非独立源。一般来说,一条支路的电压
或电流受本支路以外的其它因素控制时统称为受控源。受
控源由两条支路组成,其第一条支路是控制支路,呈开路 或短路状态;第二条支路是受控支路,它是一个电压源或 电流源,其电压或电流的量值受第一条支路电压或电流的 控制。
受控源可以分成四种类型,分别称为电流控制的电压
受控源的控制系数是转移电导gm。
图3-13
图(d)表示用图(b)的晶体管模型代替图(c)电路中的晶 体管所得到的一个电路模型。
二、含受控源单口网络的等效电路
在本章第一节中已指明,由若干线性二端电阻构成的 电阻单口网络,就端口特性而言,可等效为一个线性二端 电阻。
由线性二端电阻和线性受控源构成的电阻单口网络,
图3-19
解:列出结点方程时,将受控电流源gu3写在方程右边:
补充控制变量u3与结点电压关系的方程
图3-19
代入上式,移项整理后得到以下结点方程:
由于受控源的影响,互电导 G21 = ( g - G3) 与互电导
G12 = -G3 不再相等。自电导 G22 = ( G2+ G3- g) 不再是结点 ②全部电导之和。
例3-16 电路如图3-20所示。已知g=2S,求结点电压和受 控电流源发出的功率。
图3-20
解:当电路中存在受控电压源时,应增加电压源电流变量i
来建立入g=2S,消去电流i,经整理得到以下结点方程:
求解可得u1=4V, u2=3V, u3=5V。受控电流源发出的功
例3-12 求图3-16(a)所示单口网络的等效电路。
图3-16
解:用外加电源法,求得单口VCR方程为
其中 得到
图3-16
求得单口VCR方程为
或 以上两式对应的等效电路为10电阻和20V电压源的串 联,如图(b)所示,或10电阻和2A电流源的并联,如图(c) 所示。
三、含受控源电路的网孔方程
就端口特性而言,也等效为一个线性二端电阻,其等效电
阻值常用外加独立电源计算单口VCR方程的方法求得。现
举例加以说明。
例3-10 求图3-14(a)所示单口网络的等效电阻。
图3-14
解: 设想在端口外加电流源i,写出端口电压u的表达式
求得单口的等效电阻
求得单口的等效电阻
图3-14
由于受控电压源的存在,使端口电压增加了u1=Ri, 导致单口等效电阻增大到(+1)倍。若控制系数=-2,则单
§3-3 含受控源的电路分析
在电子电路中广泛使用各种晶体管、运算放大器等多
端器件。这些多端器件的某些端钮的电压或电流受到另一
些端钮电压或电流的控制。为了模拟多端器件各电压、电 流间的这种耦合关系,需要定义一些多端电路元件 ( 模型 ) 。 本节介绍的受控源是一种非常有用的电路元件,常用 来模拟含晶体管、运算放大器等多端器件的电子电路。从 事电子、通信类专业的工作人员,应掌握含受控源的电路 分析。
相关文档
最新文档