04 《高中数学》必会基础题型4—《三角函数》print

合集下载

高中数学三角函数知识点总结

高中数学三角函数知识点总结

高中数学三角函数知识点总结1500字三角函数是高中数学中的一个重要章节,是解决三角形相关问题的基础。

它包含了三角函数的定义、性质、图像、应用等内容。

下面是对高中数学三角函数知识点的总结。

一、基本概念1. 弧度制和角度制:弧度制是以弧长为单位,角度制是以度数为单位。

2. 平凡角和终边:平凡角是0和360度,终边是与角相交的射线。

3. 三角函数定义:正弦、余弦、正切、余切、正割、余割的定义;定义域、值域、性质等。

4. 基本关系式:勾股定理、和差化积公式、余弦定理、正弦定理等。

二、函数图像1. 正弦函数:图像、对称性、周期、振幅、最值、增减性等。

2. 余弦函数:图像、对称性、周期、振幅、最值、增减性等。

3. 正切函数:图像、周期、正切线、奇偶性、增减性、最值等。

4. 余切函数:图像、周期、对称性、最值等。

5. 常用三角函数性质:周期、对称性、最值、增减性等。

三、三角函数之间的关系1. 倍角公式和半角公式:正弦、余弦的倍角公式、正切的半角公式等。

2. 和差化积公式:正弦、余弦的和差化积公式等。

3. 万能公式:将三角函数的和、积、差表示为其他三角函数的表达式。

四、三角函数的应用1. 弧度与角度的相互转换:如何进行弧度和角度的换算。

2. 三角函数在矩形坐标系中的应用:如何利用三角函数求解矩形坐标系中的问题。

3. 三角函数在三角形中的应用:如何利用三角函数求解三角形相关问题,如边长、角度、面积等。

五、三角函数的解析式1. 余弦函数的解析式:如何利用余弦函数的图像求解角度的解析式。

2. 正弦函数和正切函数的解析式:如何利用正弦函数和正切函数的图像求解角度的解析式。

六、高级知识1. 三角恒等变换:三角函数的一些基本公式和恒等式。

2. 三角方程:如何解三角方程及其应用。

3. 三角函数与复数:三角函数与复数之间的关系。

总结:三角函数是高中数学中的一个重要章节,它涉及的知识点包括三角函数的定义、图像、性质、应用、解析式等。

高中数学必修四三角函数知识点总结

高中数学必修四三角函数知识点总结

高中数学必修四三角函数知识点总结三角函数是高中数学考试必考的一个内容, 也是很多同学遇到的一个难点, 下面是给大家带来的高中数学必修四三角函数知识点总结, 希望对你有帮助。

高中数学三角函数找知识点总结(一)高中数学三角函数知识点总结:锐角三角函数公式sin =的对边/ 斜边cos =的邻边/ 斜边tan =的对边/ 的邻边cot =的邻边/ 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A) )高中数学三角函数知识点总结:三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)高中数学三角函数知识点总结:三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:辅助角公式Asin+Bcos=(A^2+B^2)^(1/2)sin(+t), 其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsin+Bcos=(A^2+B^2)^(1/2)cos(-t), tant=A/B降幂公式sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=covers(2)/2tan^2()=(1-cos(2))/(1+cos(2))高中数学三角函数知识点总结:推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa高中数学三角函数知识点总结(二)sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(3/2)2-sin2a]=4sina(sin260-sin2a)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2] =4sinasin(60+a)sin(60-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(3/2)2]=4cosa(cos2a-cos230)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]} =-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)高中数学三角函数知识点总结:半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)点击下一页分享更多高中数学必修四三角函数知识点总结。

高中数学《三角函数》详解+公式+精题(附讲解)

高中数学《三角函数》详解+公式+精题(附讲解)

高中数学《三角函数》详解+公式+精题(附讲解)引言三角函数是中学数学的基本重要容之一,三角函数的定义及性质有许多独特的表现,是高考中对基础知识和基本技能进行考查的一个容。

其考查容包括:三角函数的定义、图象和性质,同角三角函数的基本关系、诱导公式、两角和与差的正弦、余弦、正切。

两倍角的正弦、余弦、正切。

、正弦定理、余弦定理,解斜三角形、反正弦、反余弦、反正切函数。

要求掌握三角函数的定义,图象和性质,同角三角函数的基本关系,诱导公式,会用“五点法”作正余弦函数及的简图;掌握基本三角变换公式进行求值、化简、证明。

了解反三角函数的概念,会由已知三角函数值求角并能用反三角函数符号表示。

由于新教材删去了半角公式,和差化积,积化和差公式等容,近年的高考基本上围绕三角函数的图象和三角函数的性质,以及简单的三角变换来进行考查,目的是考查考生对三角函数基础知识、基本技能、基本运算能力掌握情况。

2.近年来高考对三角部分的考查多集中在三角函数的图象和性质,重视对三角函数基础知识和技能的考查。

每年有 2 — 3 道选择题或填空题,或 1 — 2 道选择、填空题和 1 道解答题。

总的分值为 15 分左右,占全卷总分的约 10 左右。

( 1 )关于三角函数的图象立足于正弦余弦的图象,重点是函数的图象与 y=sinx 的图象关系。

根据图象求函数的表达式,以及三角函数图象的对称性。

如 2000 年第( 5 )题、( 17 )题的第二问。

( 2 )求值题这类问题在选择题、填空题、解答题中出现较多,主要是考查三角的恒等变换。

如 2002 年( 15 )题。

( 3 )关于三角函数的定义域、值域和最值问题( 4 )关于三角函数的性质(包括奇偶性、单调性、周期性)。

一般要先对已知的函数式变形,化为一角一函数处理。

如 2001 年( 7 )题。

( 5 )关于反三角函数, 2000 — 2002 年已连续三年不出现。

( 6 )三角与其他知识的结合(如 1999 年第 18 题复数与三角结合)今后有关三角函数仍将以选择题、填空题和解答题三种题型出现,难度不会太大,会控制在中等偏易的程度;三角函数如果在解答题出现的话,应放在前两题的位置,放在第一题的可能性最大,难度不会太大。

高中数学必修4《三角函数》知识点与易错点归纳

高中数学必修4《三角函数》知识点与易错点归纳

高中数学必修4《三角函数》知识点与易错点归纳知识点(一)任意角和弧度制1.与θ终边相同的角的集合是 ;第一或第三象限角的集合是 ;x 轴上的角的集合是 ;2.若α是锐角,则πα-是第 象限角;πα+是第 象限角;2πα-是第 象限角;α-是第 象限角;32πα-是第 象限角;2πα+是第 象限角。

3.180°=π;1°= 弧度; 1弧度= ;圆心角α弧度数的绝对值||α= ;扇形面积公式S = 。

4.角ααcos 2=-,则2α角是 象限角。

知识点二.任意角的三角函数1.任意角的三角函数的定义:设α是任意一个角,(,)P x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin α= ,cos α= ,tan α= 。

2.如图,三角函数线:正弦线是 、余弦线是 、正切线是 ;4.已知角α的终边经过点(3,4)P -,则sin tan αα+的值为 ; 5.函数sin cos tan |sin ||cos ||tan |y αααααα=++的值域是 ; 6.sin cos θθ<⇔ ;sin cos θθ>⇔ 。

知识点三.同角三角函数的基本关系式及诱导公式1.平方关系:22sin cos αα+= ;商数关系:tan α= ;2.已知tan 2α=,则ααααcos sin cos 3sin +-= ;sin cos αα⋅= ;4.1419costan()34ππ+-的值为 ; 5.化简23sin (180)cos(360)sin(270)cos (180)cos(90)tan(180)αααααα+⋅-⋅-=--⋅+⋅+ 。

yTA xα B SO M P知识点四.正弦、余弦、正切公式及倍角公式1.基本公式及变式()()22222sin sin cos cos sin sin 22sin cos 1sin 2(sin cos )cos cos cos sin sin cos2cos sin 2cos 112sin t αβαβαβαβαβαααααααβαβαβααααα==±=±−−−→=⇒±=±±=−−−→=-=-=-↓↓令令  ()222tan tan 2tan 1+cos21cos2an tan 2cos sin 1tan tan 1tan 22αβααααβααααβα±-±=→=- = ,=变式:1tantan tan tan()(1tan tan),tan()1tan4απαβαβαβαα++=+⋅-⋅=+-;sin cos ),sin 2sin(cos 2sin()436πππθθθθθθθθθ±=±±=±±=±2.4411111212cos sin ππ-= ;sin163sin 223sin 253sin313+= ; 3.在ABC ∆中,53sin ,cos 135A B ==,则cos C = ; 4.在直角ABC ∆中,sin sin A B ⋅的最大值为 ;5.已知等腰三角形的一个底角的正弦值为13,则这个三角形的顶角的余弦值是 。

高中数学必修四三角函数知识点

高中数学必修四三角函数知识点

高中数学必修四三角函数知识点高中数学必修四三角函数知识点详解角是我们在几何学中经常接触到的重要概念,而三角函数则是与角密切相关的一类函数。

在高中数学必修四中,三角函数是一个重要的知识点,对于数学学习的深入和数学建模的实践具有重要的意义。

本文将结合具体例子,详细介绍高中数学必修四三角函数的相关知识。

一、正弦函数和余弦函数正弦函数和余弦函数是最基本、最常用的两个三角函数。

我们首先从几何解释的角度来理解它们。

对于一个角A,我们可以根据角A所在的单位圆上的点(x,y)的坐标值,得到角A的正弦值sinA和余弦值cosA。

而正弦函数sinx和余弦函数cosx则是将角x所对应的正弦值和余弦值关系式表示的函数。

举个例子来说明,假设有一角x=30°,那么根据单位圆上的坐标特点,点(x,y)的坐标值为(√3/2,1/2)。

因此,角x的正弦值sinx=1/2,余弦值cosx=√3/2。

我们可以用这样的方法,通过观察和计算,来确定正弦函数和余弦函数的函数图像和性质。

二、正切函数和余切函数正切函数和余切函数是另外两个重要的三角函数。

正切函数tanx和余切函数cotx则是将角x所对应的正切值和余切值关系式表示的函数。

我们以正切函数为例,来解释一下它的定义和性质。

对于一个角A,我们可以根据角A所在的单位圆上的点(x,y)的坐标值,得到角A的正切值tanA。

正切函数tanx就是将角x所对应的正切值关系式表示的函数。

正切函数tanx的一个重要特点是周期性。

考虑tanx的函数图像,我们可以观察到在每个周期内,tanx呈现出规律的周期性变化。

而周期为π的函数图像在整个定义域上都是无穷区间波动的。

三、其他三角函数除了上述介绍的正弦函数、余弦函数、正切函数和余切函数之外,还有其他一些与三角函数密切相关的函数,如割函数secx和余割函数cscx等。

割函数和余割函数定义如下:割函数secx是角x对应的余弦倒数的函数,余割函数cscx是角x对应的正弦倒数的函数。

高中数学基础题—《三角函数》

高中数学基础题—《三角函数》

题型1:角度制与弧度制的互化 公式:180180x x x x ππ=⨯=⨯;1.把下列角化为弧度制:(1)210 ,(2)252- ,(3)155 ,(4)235- ,(5)315 ,(6)5002.把下列角化为角度制:315π(),3(2)8π,53π(3),3(4)10π-,(5)1.5,(6) 2.3-特殊角对应关系:180π=圆心角l r α=,弧长l r α=⋅,12S lr =扇形 【注意:公式中的角必须是弧度制】3.已知弧度数为2的圆心角所对的弦长也是3,求这个圆心角所对的弧长。

4.已知一个扇形的圆心角是120 ,半径为8,求它的弦长、周长和面积。

5.已知扇形的周长为8,圆心角为2,求该扇形的半径、弧长和面积。

题型3:三角函数的定义(,)P x y 是角α的终边上的点,r =sin y r α=,cos x r α=,tan yx α=6.已知角α的终边上一点的坐标为(2,4)-,求sin ,cos ,tan ααα。

7.已知角β的终边上一点的坐标为(,4)x ,且3cos 5β=-,求cos ,tan ββ。

8.已知角α的终边上一点的坐标为(3,4)-,求sin ,cos ,tan ααα。

9.已知角α的终边上一点的坐标为(4,)x ,且3sin 5α=-,求cos ,tan αα。

题型4:判断三角函数的正负 10.(1)已知sin 0cos 0θθ<>且,则θ是第 象限角。

(2)已知sin cos 0θθ>,则θ是第 象限角。

(3)已知cos 0tan 0θθ<>且,则θ是第 象限角。

题型5:特殊角的三角函数值题型6:同角函数的基本关系式:22sin cos 1αα+=,tan cos αα= 11.已知α是第二象限角,且2sin 3α=,求cos ,tan αα。

12.已知α是第四象限角,且3cos 4α=,求sin ,tan αα。

13.已知α是第三象限角,且4tan 3α=,求sin ,cos αα。

高中数学《三角函数》知识点及题型总结(最全)—精品文档

高中数学《三角函数》知识点及题型总结(最全)—精品文档

P xyAOM T 高中数学《三角函数》知识点及题型总结(最全)一、知识点汇编A斜边 π-α (0,r) α 邻边 B 对边 C (∠A=) (﹣r,0) (r , 0)A 1π+α (0,﹣r) ﹣α(∠A=∠B=45°) B 1 CA2 ∠A=30°,∠B=60°)=,=,=一、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+> 则sin y r α=,cos x r α=,()tan 0yx xα=≠.(任意角α的三角函数值只与α有关,而与点P 的位置无关)二、三角函数值在各象限的符号函数值 第一象限第二象限第三象限第四象限Sin α+ + ﹣ ﹣ Cos α+﹣﹣+Otan α+﹣+ ﹣三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割-----+++++-+正弦、余割o o o x yx yx ySin α Cos α tan α注:①三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. ②正弦的符号决定于纵坐标y 的符号 ③余弦的符号决定于横坐标x 的符号④正切是纵坐标y ,横坐标x 共同决定,同号(+),异号(-)三、特殊角的三角函数值1.常见角函数值30 45 6090° 180° 270° 360°1-11-111不存在不存在2.特殊角函数值15° 75° 105°2-2+-2-四、三角函数诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2k π+α)=sin α cos (2k π+α)=cos α tan (2k π+α)=tan α cot (2k π+α)=cot α 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α cot (π+α)=cot α 公式三:任意角α与 -α的三角函数值之间的关系: sin (-α)=-sin α cos (-α)=cos α tan (-α)=-tan α cot (-α)=-cot α 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sin α cos (π-α)=-cos α tan (π-α)=-tan α cot (π-α)=-cot α 公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)=-sin α cos (2π-α)=cos α tan (2π-α)=-tan α cot (2π-α)=-cot α 公式六:(π/2)±α与α的三角函数值之间的关系:五、角与角之间的转换⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-;ααπsin )21cos(=-ααπcos )21sin(=-ααπcos )21sin(=+ααπsin )21cos(-=+⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ , ()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- , ()()tan tan tan 1tan tan αβαβαβ+=+-).六、二倍角的正弦、余弦和正切公式⑴sin 22sin cos ααα=. ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=). ⑶22tan tan 21tan ααα=- 七、公式变形2cos 21cos 2αα+=21cos 2sin 2αα-=1+= 1-=a b = (a)八、正弦、余弦定理的比较正弦定理余弦定理内容A a sin =B b sin =Ccsin =2R (外接圆直径);a 2=b 2+c 2-2bccosA . c 2=a 2+b 2-2abcosC . b 2=a 2+c 2-2accosB .变形形式①边化角⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2②角化边RcC R b B R a A 2sin ,2sin ,2sin ===. ③ a ∶b ∶c =sin A ∶sin B ∶sin C . ④aSinB=bSinA;bSinC=cSinB ;aSinC=cSinA解决问题①已知两角和任一边,求其他两边及一角.②已知两边和其中一边对角,求另一边的对角.(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.九、常用面积公式1. S=a(表示a 边上的高) 2.S=ab=ac=bc3.S=r (a+b+c ) (r 为内切圆的半径)十.三角函数图像sin y x =cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R函数性 质最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π 2π π奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭ 对称轴()x k k π=∈Z 对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭ 无对称轴十一,函数f(x)=Asin(ωx+φ)的图像与性质Y =Asin(ωx+φ)+b周期是ωπ2=T ; 对称轴ωx+φ=k +得x= ;对称中心:ωx+φ= k 得x=,所以对称中心为(,0)A 0 , ω0A 0 , ω0单调性单增 2kωx+φ2k π+单减2k π+ωx+φ2k π+单增2k π+ωx+φ2k π+单减2k ωx+φ2k π+ωx+φ=2k π+ωx+φ=2kωx+φ=2k ωx+φ=2k π+值域Y =Acos (ωx+φ)+b周期是ωπ2=T ; 对称轴ωx+φ=k 得x=;对称中心:ωx+φ= k +得x= ,所以对称中心为(,0)A 0 , ω0A 0 , ω0 单调性单增 2k -ωx+φ2k π单减2k πωx+φ2k π+单增2k πωx+φ2k π+ 单减 2k -ωx+φ2k πωx+φ=2k ωx+φ=2k +ωx+φ=2k+ωx+φ=2k值域十二、图像变化Y=Asin(ωx+φ)+b1.向上(下)平移K个单位,得Y=Asin(ωx+φ)+b k2.向左(右)平移K个单位,得Y=Asin+b3.横坐标不变,纵坐标变为原来的K倍,得Y=k4.纵坐标不变,横坐标变为原来的K倍,得Y=Asin(ω+φ)+b解题方法:1.求一个角的大小,通常求余弦值2.已知一个角的大小时,马上求出另外两角之和3.看见两角之和,马上变为减去第三个角4.看见,马上想到:=得到5.当有边的一次关系时,用正弦定理(边化角:a=2RsinA…角化边:sinA=…)6.已知角与对边关系,用正弦定理7.既有边的平方关系,又有边的乘积关系时,用余弦定理8.已知角与邻边关系时,用余弦定理9. 已知面积S=ab =ac =bc ,求出两边之积10. 2cos 21cos 2αα+=, 21cos 2sin 2αα-= ,11. a b=(a)y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑:①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点2;②B 的确定:根据图象的最高点和最低点,即B =最高点+最低点2;③ω的确定:结合图象,先求出周期,然后由T =2πω(ω>0)来确定ω;④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,代入最高点或最低点题型分类剖析一、求三角函数求值1. 已知sin cos 2αα-=,α∈(0,π),则sin 2α=2.3sincos 2αα==若,则 3.已知sin2α=,则cos 2(α+)=4.若α∈⎝⎛⎭⎪⎫0,π2,且sin 2α+cos2α=14,则tan α的值等于5.若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭cos sin αα+= 6.已知π4cos sin 365αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值的大小 7.已知:1tan()3πα+=-,22sin 2()4cos 2tan()10cos sin 2παααβαα-++=-.(1)求tan()αβ+的值; (2)求tan β的值.二、求三角形中的函数值8.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c.若a 2-b 2=3bc ,sinC =23sinB ,求角A 的大小。

(必考题)高中数学必修四第一章《三角函数》测试(有答案解析)

(必考题)高中数学必修四第一章《三角函数》测试(有答案解析)

一、选择题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图像如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=- ⎪⎝⎭B .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C .()3sin 26f x x π⎛⎫=-⎪⎝⎭D .1()3sin 26f x x π⎛⎫=-⎪⎝⎭ 2.已知关于x 的方程2cos ||2sin ||20(0)+-+=≠a x x a a 在(2,2)x ππ∈-有四个不同的实数解,则实数a 的取值范围为( ) A .(,0)(2,)-∞+∞B .(4,)+∞C .(0,2)D .(0,4)3.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .454.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积12=(弦⨯矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有弧AB 长为83π,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是( )3 1.73≈)A .6平方米B .9平方米C .12平方米D .15平方米5.函数1sin3y x =-的图像与直线3x π=,53x π=及x 轴所围成的图形的面积是( ) A .23π B .πC .43π D .53π 6.已知奇函数()f x 满足()(2)f x f x =+,当(0,1)x ∈时,函数()2x f x =,则12log 23f ⎛⎫= ⎪⎝⎭( ) A .1623-B .2316-C .1623D .23167.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .591698.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于09.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x10.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④11.若函数()22()sin 23cos sin f x x x x =+-的图像为E ,则下列结论正确的是( ) A .()f x 的最小正周期为2π B .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E 12.函数22y cos x sinx =- 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.函数()()sin f x x ωϕ=+的部分图象如图所示,则()f x 的单调递增区间为___________.15.sin 75=______.16.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .17.如图,游乐场所的摩天轮匀速旋转,每转一周需要l2min ,其中心O 离地面45米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请问:当你第六次距离地面65米时,用了________分钟?18.函数251612()sin (0)236x x f x x x x ππ-+⎛⎫=--> ⎪⎝⎭的最小值为_______. 19.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________. 20.给出下列命题: ①函数()4cos 23f x x π⎛⎫=+⎪⎝⎭的一个对称中心为5,012π⎛⎫-⎪⎝⎭; ②若α,β为第一象限角,且αβ>,则tan tan αβ>;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,则ABC ∆必有两解.④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 24y x π⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是 _________(把你认为正确的序号都填上).三、解答题21.已知函数()()1sin 226f x x x R π⎛⎫=+∈ ⎪⎝⎭. (1)填写下表,并用“五点法”画出()f x 在[0,]π上的图象;26x π+6π 136πxπ ()f x(2)将()y f x =的图象向上平移1个单位,横坐标缩短为原来的2,再将得到的图象上所有点向右平移4π个单位后,得到()g x 的图象,求()g x 的对称轴方程. 22.现给出以下三个条件:①()f x 的图象与x 轴的交点中,相邻两个交点之间的距离为2π;②()f x 的图象上的一个最低点为2,23A π⎛⎫- ⎪⎝⎭; ③()01f =.请从上述三个条件中任选两个,补充到下面试题中的横线上,并解答该试题. 已知函数()()2sin 05,02f x x πωϕωϕ⎛⎫=+<<<< ⎪⎝⎭,满足________,________. (1)根据你所选的条件,求()f x 的解析式; (2)将()f x 的图象向左平移6π个单位长度,得到()g x 的图象求函数()()1y f x g x =-的单调递增区间.23.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.24.已知函数π()3sin 26f x x ⎛⎫=+⎪⎝⎭. (1)用“五点法”画出函数()y f x =在一个周期内的简图;(2)说明函数()y f x =的图像可以通过sin y x =的图像经过怎样的变换得到?(3)若003()[2π3π]2f x x =∈,,,写出0x 的值. 25.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,28M π⎛⎫⎪⎝⎭、5,28N π⎛⎫- ⎪⎝⎭分别为其图象上相邻的最高点、最低点. (1)求函数()f x 的解析式; (2)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间和值域. 26.已知函数()2sin(2)(0)6f x x πωω=+>.(1)若点5(,0)8π是函数()f x 图像的一个对称中心,且(0,1)ω∈,求函数()f x 在3[0,]4π上的值域; (2)若函数()f x 在(,)33π2π上单调递增,求实数ω的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】 本题首先可根据33π44T 求出ω,然后根据当43x π=时函数()f x 取最大值求出ϕ,最后代入30,2⎛⎫- ⎪⎝⎭,即可求出A 的值. 【详解】因为4π7π3π3124,所以33π44T ,T π=,因为2T πω=,所以2ω=,()sin(2)f x A x ϕ=+,因为当43x π=时函数()sin(2)f x A x ϕ=+取最大值, 所以()42232k k Z ππϕπ⨯+=+∈,()26k k Z πϕπ=-+∈,因为2πϕ<,所以6πϕ=-,()sin 26f x A x π⎛⎫=-⎪⎝⎭, 代入30,2⎛⎫- ⎪⎝⎭,3sin 26A π⎛⎫-=- ⎪⎝⎭,解得3A =,()3sin 26f x x π⎛⎫=- ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查根据函数图像求函数解析式,对于()sin()f x A x ωϕ=+,可通过周期求出ω,通过最值求出A ,通过代入点坐标求出ϕ,考查数形结合思想,是中档题.2.D解析:D 【分析】令2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,易知函数()f x 是偶函数,将问题转化为研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,令sin t x =,则转化为2()22(0)=--≠h t at t a 有一个根(1,1)t ∈-求解.【详解】当(2,2)x ππ∈-,2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,则()()f x f x -=,函数()f x 是偶函数,由偶函数的对称性,只需研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,设sin t x =,则2()22(0)=--≠h t at t a 有一个根(1,1)t ∈- ①当0a <时,2()22=--h t at t 是开口向下,对称轴为10t a=<的二次函数,(0)20h =-<则(1)0->=h a ,这与0a <矛盾,舍去;②当0a >时,2()22=--h t at t 是开口向上,对称轴为10t a=>的二次函数, 因为(0)20h =-<,(1)220-=+->=h a a , 则存在(1,0)t ∈-,只需(1)220=--<h a ,解得4a <, 所以04a <<.综上,非零实数a 的取值范围为04a <<. 故选:D . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解3.B解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值. 【详解】 因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 4.B解析:B 【分析】根据已知求出矢2=,弦2AD ==. 【详解】由题意可得:823=43AOB ππ∠=,4OA =,在Rt AOD 中,可得:3AOD π∠=,6DAO π∠=,114222OD AO ==⨯=, 可得:矢422=-=, 由3sin4233AD AO π==⨯=, 可得:弦243AD ==, 所以:弧田面积12=(弦⨯矢+矢221)(4322)43292=⨯+=+≈平方米.故选:B 【点睛】方法点睛:有关扇形的计算,一般是利用弧长公式l r α=、扇形面积公式12S lr =及直角三角函数求解.5.C解析:C 【分析】作出函数1sin3y x =-的图像,利用割补法,补成长方形,计算面积即可. 【详解】作出函数1sin3y x =-的图象,如图所示,利用割补法,将23π到π部分的图象与x 轴围成的图形补到图中3π到23π处阴影部分,凑成一个长为3π,宽为2的长方形,后面π到53π,同理;∴1sin3y x =-的图象与直线3x π=,53x π=及x 轴所围成的面积为24233ππ⨯=,故选:C. 【点睛】用“五点法”作()sin y A ωx φ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取0,2π,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 6.B解析:B【分析】由已知得到(2)()f x f x +=,即得函数的周期是2,把12(log 23)f 进行变形得到223()16f log -, 由223(0,1)16log ∈满足()2x f x =,求出即可. 【详解】(2)()f x f x +=,所以函数的周期是2.根据对数函数的图象可知12log 230<,且122log 23log 23=-;奇函数()f x 满足(2)()f x f x +=和()()f x f x -=-则2312222223(log 23)(log )(log 23)(log 234)()16f f f f f log =-=-=--=-, 因为223(0,1)16log ∈ 2231622323()21616log f log ∴-=-=-,故选:B . 【点睛】考查学生应用函数奇偶性的能力,函数的周期性的掌握能力,以及运用对数的运算性质能力.7.B解析:B 【分析】求出弦长,再求出圆的半径,然后利用三角形面积求解. 【详解】如图,由题意8CD =,弓琖ACB 的面积为128,1(8)81282AB ⨯+⨯=,24AB =, 设所在圆半径为R ,即OA OB R ==,则22224(8)2R R ⎛⎫=-+ ⎪⎝⎭,解得13R =, 5OD =,由211sin 22AB OD OA AOB ⨯=∠得 2245120sin 13169AOB ⨯∠==. 故选:B .【点睛】关键点点睛:本题考查扇形与弓形的的有关计算问题,解题关键是读懂题意,在读懂题意基础上求出弦长AB ,然后求得半径R ,从而可解决扇形中的所有问题.8.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫⎪⎝⎭和23f π⎛⎫⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。

高中数学必修4三角函数知识归纳

高中数学必修4三角函数知识归纳

《三角函数》第一讲:诱导公式及同角的三角函数关系知识要点:一、三角函数的定义:()22,,P x y r OP x y α==+设点是角终边上异于原点的任一点,则()sin ;cos tan 0.y x yx r r xααα===≠; sin cos tan ααα“一、二象限为正,三、四象限为负”“一、四象限为正,二、三象限为负”“一、三象限为正,二、四象限为负”二、诱导公式:十字决:“奇变偶不变,符号看象限”说明:⑴将“α”始终视为锐角;⑵“奇,偶”指的是除α外的角是902π⎛⎫⎪⎝⎭或的奇数倍或偶数倍; ⑶“变,不变”指的是函数名的变或不变;⑷ “符号”指的是原函数的正负号,看象限指的是“() ”内整体角所在的象限。

三、同角的三角函数关系:平方关系:22sin cos 1αα+=;商数关系:sin tan ,cos 2k k Z απααπα⎛⎫=≠+∈ ⎪⎝⎭倒数关系:1tan ,cot 2k k Z πααα⎛⎫=≠∈ ⎪⎝⎭变形应用: ()2sin cos 12sin cos x x x x ±=±、()()22sin cos sin cos 2.x x x x ++-=典型例题:题型一:(诱导公式)【例1】tan 300sin 450+=【例2】已知sin (-α)=,则)2cos(απ+= .【例3】已知sin()4πα+=3sin()4πα-值为( )A.21 B. 12- C. 23 D. 题型二:(同角的三角函数关系)【例4】已知()3sin 5πα+=,且α是第四象限的角,则()cos 2απ-= . 【例5】已知:1cos tan 0,sin _______.5ααα=<=且则 【例6】已知tan100,sin80k =则的值等于_______. 【例7】已知:1tan 3α=-,求下列各式的值. ()()()24sin 2cos 11;2sin 3sin cos 1;3.5cos 3sin 1sin cos ααααααααα--++-【例8】已知()()sin cos ,32ππαπαθπ⎫--+=<<⎪⎝⎭求值:(1)sin cos αα-; (2)()()33sin2cos 2παπα-+-强化训练:1. 化简:)23sin()2sin(++-ππ= 。

高中数学必修四《三角函数》知识点与题型总结

高中数学必修四《三角函数》知识点与题型总结

【相关高考】(宁夏)如图,测量河对岸的塔高
AB 时,可以选与塔底 B 在同一水平面内的两个侧点
2

B2
C 与 D .现测 120 A2
得 BCD , BDC ,CD s ,并在点 C 测得塔顶 A 的仰角为 ,求塔高 AB .
7.三角函数与不等式
例 7(湖北文)已知函数 f (x) 2sin 2 π x 4
的值. 6 三角函数中的实际应用
例 6(山东理)如图,甲船以每小时 30 2 海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于
A1
处时,乙船位于甲船的北偏西 105 方向的 B1处,此时两船相距 20 海里,当甲船航行 20 分钟到达 A2 处时, 乙船航行
到甲船的北偏西 120 方向的 B2 处,此时两船相距 10 2 海里,问乙船每小时航行多少海里?
3 cos2x , x
π,π .( I )求 f ( x) 的最大值和最小值; 42
( II )若不等式 f ( x) m 2 在 x
π,π 上恒成立,求实数 m 的取值范围.
42
8.三角函数与极值
例 8(安徽文)设函数 f x
cos2 x
xx 4t sin cos
4t 3
t2Βιβλιοθήκη 3t4, xR
22
其中 t ≤ 1,将 f x 的最小值记为 g( t ).
sin( x ) 2
.(Ⅰ)求
f(x)的定义域;(Ⅱ)若角
a 在第一象限,且
cos a 3 , 求 f( a)。 5
【相关高考 2】 (重庆理 )设 f ( x ) = 6 cos2 x 3sin 2x (1)求 f( x )的最大值及最小正周期;( 2)若锐角 满足

高一数学常用三角函数

高一数学常用三角函数

高一数学常用三角函数
三角函数是高中数学中的一个重要内容,常用的一些基本三角函数包括正弦函数sin、余弦函数cos、正切函数tan、余切函数cot等。

以下是这些函数的定义和基本性质:
1.正弦函数sin:表示直角三角形中锐角的对边与斜边的比值,即sinθ=y/r(其中θ为锐角,r为斜边长度,y为对边长度)。

正弦函数的值域为[-1,1],在第一象限内,随着角度的增大而增大;在第二象限内,随着角度的增大而减小。

2.余弦函数cos:表示直角三角形中锐角的邻边与斜边的比值,即cosθ=x/r(其中θ为锐角,r为斜边长度,x为邻边长度)。

余弦函数的值域也为[-1,1],在第一象限内,随着角度的增大而增大;在第二象限内,随着角度的增大而减小。

3.正切函数tan:表示直角三角形中锐角的对边与邻边的比值,即tanθ=y/x(其中θ为锐角,x为
邻边长度,y为对边长度)。

正切函数的值域为全体实数,在每个象限内,随着角度的增大而增大。

4.余切函数cot:表示直角三角形中锐角的邻边与对边的比值,即cotθ=x/y(其中θ为锐角,x为邻边长度,y为对边长度)。

余切函数的值域也为全体实数,在每个象限内,随着角度的增大而减小。

除了这四个基本的三角函数之外,还有一些其他的三角函数和公式,例如两角和与差的三角函数公式、倍角公式、半角公式等。

这些公式可以用来进行三角函数的计算和变换。

高考数学基础知识总结:第四章 三角函数

高考数学基础知识总结:第四章 三角函数

§03. 三角函数知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββο②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|οββ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|οοββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90|οββ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180|οοββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形4、三角函数的定义:设α是一个任意角,在α(x,y )P 与原点的距离为r ,则 r y =αsin ; rx =αcos ; 5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. (3) 若 o<x<2,则sinx<x<tanx16. 几个重要结论:8、同角三角函数的基本关系式:ααtan cos =1cos sin 22=+αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限”公式组一 公式组二 公式组四三 公式组四 公式组五x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=- x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ xx x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ 公式组六10、两角和与差的正弦、余弦、正切公式及倍角公式 公式组一 公式组二βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-=(升幂公式)βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -= 22cos 1cos αα+=βαβαβαsin cos cos sin )sin(-=- 2cos 12sin αα-±=22cos 1sin αα-=(降幂公式)βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=-公式组三2tan 12tan2sin 2ααα+=2tan 12tan 1cos 22ααα+-=2tan 12tan2tan 2ααα-=42675cos 15sin -==οο,42615cos 75sin +==οο,3275cot 15tan -==οο,3215cot 75tan +==οο.11.三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构.即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心;其次看函数名称之间的关系,通常“切化弦”;再次观察代数式的结构特点.基本的技巧有:(1)已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.如α=(α+β)-β=(α-β)+β, 2α=(α+β)+(α-β), 2α=(β+α)-(β-α), α+β=2·α+β2,α+β2=(α-β2)-(α2-β)等. (2)三角函数名互化(切化弦). (3)公式变形使用 如tan α±tan β=tan(α±β)(1∓tan αtan β).(4)三角函数次数的降升(降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α).(5)形的变换:统一函数形式,注意运用代数运算。

《高中数学》必会基础题型4—《三角函数》

《高中数学》必会基础题型4—《三角函数》

《数学》必会基础题型——《三角函数》题型1:角度制与弧度制的互化 公式:180180x x x x ππ=⨯=⨯;1.把下列角化为弧度制:(1)210,(2)252-,(3)155,(4)235-,(5)315,(6)5002.把下列角化为角度制:315π(),3(2)8π,53π(3),3(4)10π-,(5)1.5,(6) 2.3- 特殊角对应关系:180π=圆心角l r α=,弧长l r α=⋅,12S lr =扇形 【注意:公式中的角必须是弧度制】3.已知弧度数为2的圆心角所对的弦长也是3,求这个圆心角所对的弧长。

4.已知一个扇形的圆心角是120,半径为8,求它的弦长、周长和面积。

5.已知扇形的周长为8,圆心角为2,求该扇形的半径、弧长和面积。

题型3:三角函数的定义(,)P x y 是角α的终边上的点,r =sin y r α=,cos x r α=,tan yx α=6.已知角α的终边上一点的坐标为(2,4)-,求sin ,cos ,tan ααα。

7.已知角β的终边上一点的坐标为(,4)x ,且3cos 5β=-,求cos ,tan ββ。

8.已知角α的终边上一点的坐标为(3,4)-,求sin ,cos ,tan ααα。

9.已知角α的终边上一点的坐标为(4,)x ,且3sin 5α=-,求cos ,tan αα。

题型4:判断三角函数的正负 10.(1)已知sin 0cos 0θθ<>且,则θ是第 象限角。

(2)已知sin cos 0θθ>,则θ是第 象限角。

(3)已知cos 0tan 0θθ<>且,则θ是第 象限角。

0 题型6:同角函数的基本关系式:22sin cos 1αα+=,tan cos αα= 11.已知α是第二象限角,且2sin 3α=,求cos ,tan αα。

12.已知α是第四象限角,且3cos 4α=,求sin ,tan αα。

13.已知α是第三象限角,且4tan 3α=,求sin ,cos αα。

必修4数学三角函数基础知识与典型例题复习

必修4数学三角函数基础知识与典型例题复习

数学基础知识与典型例题第四章三角函数三角函数相关知识关系表角的概念1.①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Zkk∈+⨯=,360|αββ ;②终边在x轴上的角的集合:{}Zkk∈⨯=,180|ββ;③终边在y轴上的角的集合:{}Zkk∈+⨯=,90180|ββ;④终边在坐标轴上的角的集合:{}Zkk∈⨯=,90|ββ.2. 角度与弧度的互换关系:360°=2π180°=π1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,熟记特殊角的弧度制.例1.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长为(C)()2A()sin2B2()sin1C()2sin1D例2.已知α为第三象限角,则2α所在的象限是(D )(A)第一或第二象限(B)第二或第三象限3.弧度制下,扇形弧长公式12rα=,扇形面积公式211||22S R Rα==,其中α为弧所对圆心角的弧度数。

(C)第一或第三象限(D)第二或第四象限1.三角函数定义:利用直角坐标系,可以把直角三角形中的三角函数推广到任意角的三角数22x y=+,r=,r=,x=,y=。

例3.已知角α的终边经过6sin15cos 754-==sin313= ( B )1)2B 3()2C - 3()2D3=3- 6,2== 6,2-=。

人教版A版高中数学必修4-三角函数知识点例题

人教版A版高中数学必修4-三角函数知识点例题

人教版A版高中数学必修4-三角函数知识点例题(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除三角函数知识点总结⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. 7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα= sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.{符号看象限,就是把α看作是某一个锐角(例如30°、45°、60°之类),然后π+α、π-α、-α就看作是π与这个锐角相加减或者相反后的角,然后根据这个角在第几象限,来判断三角函数的正负。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学》必会基础题型——《三角函数》
题型1:角度制与弧度制的互化 公式:180180
x x x x π
π
=⨯
=⨯

1.把下列角化为弧度制:(1)210 ,(2)252- ,(3)155 ,(4)235- ,(5)315 ,(6)500
2.把下列角化为角度制:315π(),3(2)8π,53π(3),3(4)10
π-
,(5)1.5,(6) 2.3- 特殊角对应关系:180π=
圆心角l r α=,弧长l r α=⋅,1
2
S lr =扇形 【注意:公式中的角必须是弧度制】
3.已知弧度数为2的圆心角所对的弦长也是3,求这个圆心角所对的弧长。

4.已知一个扇形的圆心角是120 ,半径为8,求它的弦长、周长和面积。

5.已知扇形的周长为8,圆心角为2,求该扇形的半径、弧长和面积。

题型3:三角函数的定义
(,)P x y 是角α的终边上的点,r =sin y r α=,cos x r α=,tan y
x α=
6.已知角α的终边上一点的坐标为(2,4)-,求sin ,cos ,tan ααα。

7.已知角β的终边上一点的坐标为(,4)x ,且3
cos 5
β=-,求cos ,tan ββ。

8.已知角α的终边上一点的坐标为(3,4)-,求sin ,cos ,tan ααα。

9.已知角α的终边上一点的坐标为(4,)x ,且3
sin 5
α=-,求cos ,tan αα。

题型4:判断三角函数的正负 10.(1)已知sin 0cos 0θθ<>且,则θ是第 象限角。

(2)已知sin cos 0θθ>,则θ是第 象限角。

(3)已知cos 0tan 0θθ<>且,则θ是第 象限角。

题型6:同角函数的基本关系式:22sin cos 1αα+=,tan cos αα
= 11.已知α是第二象限角,且2
sin 3α=
,求cos ,tan αα。

12.已知α是第四象限角,且3
cos 4α=,求sin ,tan αα。

13.已知α是第三象限角,且4
tan 3
α=,求sin ,cos αα。

14.已知α是第三象限角,且1
sin cos 5
x x -=-,求sin cos x x 和sin cos x x +的值。

15.已知tan 3x =,求sin cos 2sin cos αααα+-①,22
3sin cos 2sin cos αααα
-②,22
sin 2cos x x -③
题型7:诱导公式
sin()sin αα-=-①,cos()cos αα-=,tan()tan αα-=【正角与负角的转化】 sin(2)sin k παα+=②,cos(2)cos k παα+=,tan(2)tan k παα+=【周期转化】 sin()sin παα+=-③,cos()cos παα+=-,tan()tan παα+=
sin()sin παα-=④,cos()cos παα-=-,tan()tan παα-=-【钝角转化成锐角】
sin()cos 2παα-=⑤,cos()sin 2
π
αα-= 【正弦与余弦的转化】
16.化简①sin(300)- ②cos(300)- ③tan(300)- ④sin 570
⑤cos570 ⑥tan 570 ⑦5sin
3π ⑧5cos()3
π
- ⑨8tan 3π ⑽sin 480 ⑾13cos()3π- ⑿7tan
4
π
题型8:用基本关系式与诱导公式化简求值
17.化简下列各式:①cos tan αα ②tan ;③222cos 1
12sin αα--;
④tan ;
题型9:求三角函数的周期 tan()y A x B ωφ=++的周期||
T π
ω=
, sin()y A x B ωφ=++和cos()y A x B ωφ=++的周期2||
T πω=。

18.求下列函数的周期:①sin(2)3y x π=-+ ②1cos()24
y x π
=-
③13tan(3)3y x π=+ ④1112sin()534
y x π
=---
19.已知sin()3y x πω=+(0ω>)的周期为3
π
,求ω。

20.已知()2sin()f x x ωϕ=+(0,)2
ωϕπ
><的周期为4π,且(0)f =求ωφ和。

题型10:用“五点作图法”画三角函数的图像 21.画出函数2sin(2)3
y x π
=+在一个周期内的图像。

22.画出下列函数在一个周期内的图像:
①3sin()3y x π=-;②2cos()4y x π=+;③4sin(2)4y x π=-+;④1cos(2)26
y x π
=-
题型11:比较三角函数值的大小(先画出函数的图像,根据图像判断大小)
23.①sin()7π- sin()5π-; ②4cos 7π 5cos 8π
; ③cos 250 cos 260 ;
④15sin 8π 14sin 9π; ⑤sin 5π 12sin 5
π; ⑥sin110 sin 400
题型12:求三角函数的单调区间
sin x 的增区间为[2,2]()22k k k Z ππππ-+∈,
减区间为3[2,2]()22k k k Z ππ
ππ++∈。

cos x 的增区间为[2,2]()k k k Z πππ-∈,减区间为[2,2]()k k k Z πππ+∈。

tan y x =增区间为[,]()22
k k k Z π
π
ππ-
+∈,没有减区间。

24.①函数3sin 1y x =-的增区间 ,减区间 ②函数2sin 1y x =-+的增区间 ,减区间 ③函数3sin()y x =-的增区间 ,减区间
④函数3cos 5y x =-的增区间 ,减区间 ⑤函数3cos()1y x =-+的增区间 ,减区间 ⑥函数2sin()3y x π
=+的增区间 ,减区间
⑦函数3cos(2)4
y x π
=-的增区间 ,减区间
题型13:求三角函数的值域(最大值、最小值) 25.求函数3cos 5y x =-和2sin 3y x =-+的值域。

26.求函数2sin y x =(23
3x π
π-
≤≤
)和2cos 1y x =-+(233
x ππ-≤≤)的值域。

27.求函数2sin(2)16y x π=-+(63
x ππ
-≤≤)的最大值和最小值。

题型14:判断三角函数的奇偶性
sin y x =是奇函数,cos y x =是偶函数,tan y x =是奇函数。

sin y A x ω=是奇函数,cos y A x ω=是偶函数,tan y A x ω=是奇函数。

sin y A x B ω=+非奇非偶,cos y A x B ω=+是偶函数,tan y A x B ω=+非奇非偶。

【注意:sin()y A x ωφ=+、cos()y A x ωφ=+和tan()y A x ωφ=+可能是奇函数也可能是偶函数,要先用诱导公式化简后再判断。


28.判断下列函数的奇偶性:
①3sin 2y x =- ②3sin()22y x π=+- ③cos()12
y x π
=--+
④33cos()12y x π
=-- ⑤3tan 2y x =+ ⑥3tan(2)2y x π=-+
29.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 。

题型15:三角函数的图像变换
30.把cos y x =的图像向右平移3
π
个单位得到函数 的图像,
再纵坐标不变,横坐标变为原来的2倍,得到函数 的图像, 再把函数图像向下平移1个单位,得到函数 的图像。

31.把cos y x =的图像如何平移得到函数cos(3)23y x π
=-+的图像?
32.将sin y x =的图像如何平移得到函数4sin(2)13
y x π
=--的图像?
33.将cos y x =的图像如何平移得到函数12sin()2234
y x π
=++的图像?。

相关文档
最新文档