圆锥曲线专题:双曲线 (教师版)
圆锥曲线的轨迹方程问题(教师版)
圆锥曲线的轨迹方程问题1.抛物线C :y 2=2px (p >0)的焦点为F ,P 在抛物线C 上,O 是坐标原点,当PF 与x 轴垂直时,△OFP 的面积为1.(1)求抛物线C 的方程;(2)若A ,B 都在抛物线C 上,且OA ⋅OB =-4,过坐标原点O 作直线AB 的垂线,垂足是G ,求动点G 的轨迹方程.【答案】(1)y 2=4x ;(2)x 2+y 2-2x =0x ≠0【解析】(1)当PF 与x 轴垂直时,P p 2,p ,故S △OFP =12×p 2×p =1,故p =2,故抛物线的方程为:y 2=4x .(2)设A y 214,y 1 ,B y 224,y 2,直线AB :x =ty +m ,因为OA ⋅OB =-4,故y 21y 2216+y 1y 2=-4,整理得到:y 21y 22+16y 1y 2+64=0,故y 1y 2=-8.由x =ty +my 2=4x可得y 2-4ty -4m =0,故-4m =-8即m =2,故直线AB :x =ty +2,此直线过定点M 2,0 .因为OG ⊥GM ,故G 的轨迹为以OM 为直径的圆,其方程为:x -0 x -2 +y -0 y -0 =0即x 2+y 2-2x =0.因为直线AB :x =ty +2与x 轴不重合,故G 不为原点,故G 的轨迹方程为:x 2+y 2-2x =0x ≠0 .2.已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率e =233,且经过点P 3,1 .(1)求双曲线C 的方程;(2)设A ,B 在C 上,PA ⊥PB ,过P 点向AB 引垂线,垂足为M ,求M 点的轨迹方程.【答案】(1)x 26-y 22=1;(2)x -92 2+y +122=92(去掉点P )【解析】(1)∵双曲线的离心率e =c a =233,∴c 2=43a 2=a 2+b 2,即a 2=3b 2,将P 3,1 代入C :x 23b 2-y 2b 2=1,即93b 2-1b2=1,解得b 2=2,a 2=6,故双曲线C 的方程为x 26-y 22=1;(2)当直线AB 斜率不存在时,不满足PA ⊥PB ,故不满足题意;当直线AB 斜率存在时,设A x 1,y 1 ,B x 2,y 2 ,AB :y =kx +m ,代入双曲线方程整理得:3k 2-1 x 2+6kmx +3m 2+6 =0.Δ>0,则x 1+x 2=-6km 3k 2-1,x 1x 2=3m 2+63k 2-1,∵PA ⊥PB ,∴x 1-3 x 2-3 +y 1-1 y 2-1 =0,即x 1-3 x 2-3 +kx 1+m -1 kx 2+m -1 =0,整理得18k 2+9km +m 2+m -2=0,即3k +m -1 6k +m +2 =0,当3k +m -1=0时,AB 过P 点,不符合题意,故6k +m +2=0,直线AB 化为y +2=k x -6 ,AB 恒过定点Q 6,-2 ,∴M 在以PQ 为直径的圆上且不含P 点,即M 的轨迹方程为x -92 2+y +12 2=92(去掉点P ).3.已知抛物线C :y =x 2,过点M 1,2 的直线交抛物线C 于A ,B 两点,以A ,B 为切点分别作抛物线C 的两条切线交于点P .(1)若线段AB 的中点N 的纵坐标为32,求直线AB 的方程;(2)求动点P 的轨迹.【答案】(1)x -y +1=0;(2)2x -y -2=0【解析】(1)依题意有:直线AB 的斜率必存在,故可设直线AB 的方程为y -2=k (x -1).由y -2=k (x -1),y =x 2, 可得:x 2-kx +k -2=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=k ,x 1x 2=k -2.于是:y 1+y 2=x 21+x 22=(x 1+x 2)2-2x 1x 2=k 2-2k +4=3,解得k =1,故直线AB 的方程为x -y +1=0.(2)设P (x 0,y 0),对于抛物线y =x 2,y =2x ,于是:A 点处切线方程为y -y 1=2x 1(x -x 1),点P 在该切线上,故y 0-x 21=2x 1(x 0-x 1),即x 21-2x 0x 1+y 0=0.同理:P 点坐标也满足x 22-2x 0x 2+y 0=0,于是:x 1,x 2是方程x 2-2x 0x +y 0=0的两根,所以x 1+x 2=2x 0,x 1x 2=y 0.又由(1)可知:x 1+x 2=k ,x 1x 2=k -2,于是x 0=k2,y 0=k -2,消k 得y 0=2x 0-2,于是P 的轨迹方程为2x -y -2=0,点P 的轨迹是一条直线.4.已知圆C 与y 轴相切,圆心C 在直线x -2y =0上且在第一象限内,圆C在直线y =x 上截得的弦长为214.(1)求圆C 的方程;(2)已知线段MN 的端点M 的横坐标为-4,端点N 在(1)中的圆C 上运动,线段MN 与y 轴垂直,求线段MN 的中点H 的轨迹方程.【答案】(1)x -4 2+y -2 2=16;(2)4x 2+y -2 2=16【解析】(1)依题意,设所求圆C 的方程为x -a 2+y -b 2=r 2a >0 .所以圆心a ,b 到直线x -y =0d =a -b2,则有d 2+14 2=r 2,即a -b 2+28=2r 2.①由于圆C 与y 轴相切,所以r 2=a 2.②又因为圆C 的圆心在直线x -2y =0上,所以a -2b =0.③联立①②③,解得a =4,b =2,r =4,故所求圆C 的方程为x -4 2+y -2 2=16.(2)设点H 的坐标为x ,y ,点N 的坐标为x 0,y 0 ,点M 的坐标为-4,y ,因为H 是线段MN 的中点,所以x =x 0-42,y =y 0,于是有x 0=2x +4,y 0=y .①因为点N 在第(1)问中圆C 上运动,所以点N 满足x 0-4 2+y 0-2 2=16.②把①代入②,得2x +4-4 2+y -2 2=16,整理,得4x 2+y -2 2=16.此即为所求点H 的轨迹方程.5.已知圆O :x 2+y 2=4与x 轴交于点A (-2,0),过圆上一动点M 作x 轴的垂线,垂足为H ,N 是MH 的中点,记N 的轨迹为曲线C .(1)求曲线C 的方程;(2)过-65,0 作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.【答案】(1)x 22+y 2=1;(2)证明见解析.【解析】(1)设N (x 0,y 0),则H (x 0,0),∵N 是MH 的中点,∴M (x 0,2y 0),又∵M 在圆O 上,∴ x 20+(2y 0)2=4,即x 204+y 20=1;∴曲线C 的方程为:x 24+y 2=1;(2)①当直线l 的斜率不存在时,直线l 的方程为:x =-65,若点P 在轴上方,则点Q 在x 轴下方,则P -65,45 ,Q -65,-45,直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称,∴S 65,45,k 1=k AP =45-0-65+2=1,k 2=k AS =45-065+2=14,∴k 1=4k 2;若点P 在x 轴下方,则点Q 在x 轴上方,同理得:P -65,-45 ,Q -65,45 ,S 65,-45,∴k1=k AP=-45-0-65+2=-1,k2=k AS=-45-065+2=-14,∴k1=4k2;②当直线l的斜率存在时,设直线l的方程为:x=my-6 5,,由x=my-65,与x24+y2=1联立可得(m2+4)y2-12m5y-6425=0,其中Δ=144m225+4×(m2+4)×6425>0,设P(x1,y1),Q(x2,y2),则S(-x2,-y2),则y1+y2=12m5m2+4,y1y2=-6425m2+4,∴k1=k AP=y1-0x1+2=y1x1+2,k2=k AS=-y2-0-x2+2=y2x2-2,则k1k2=y1x1+2⋅x2-2y2=y1my2-165my1+45y2=my1y2-165y1my1y2+45(y1+y2)-45y1=-6425m2+4-165y1-6425mm2+4+45⋅125mm2+4-45y1=-6425m2+4-165y1-1625m2+4-45y1=4,∴k1=4k2.6.已知点E(2,0),F22,0,点A满足|AE|=2|AF|,点A的轨迹为曲线C.(1)求曲线C的方程;(2)若直线l:y=kx+m与双曲线:x24-y29=1交于M,N两点,且∠MON=π2(O为坐标原点),求点A到直线l距离的取值范围.【答案】(1)x2+y2=1;(2)655-1,655+1.【解析】(1)设A(x,y),因为|AE|=2|AF|,所以(x-2)2+(y-0)2=2×x-2 22+(y-0)2,平方化简,得x2+y2=1;(2)直线l:y=kx+m与双曲线:x24-y29=1的方程联立,得y=kx+mx2 4-y29=1⇒(4k2-9)x2+8kmx+4m2+36=0,设M(x1,y1),N(x2,y2),所以有4k2-9≠0(8km)2-4⋅(4k2-9)(4m2+36)>0⇒m2+9>4k2且k≠±32,所以x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9,因为∠MON =π2,所以OM ⊥ON⇒x 1x 2+y 1y 2=0⇒x 1x 2+(kx 1+m )(kx 2+m )=0,化简,得(k 2+1)x 1x 2+km (x 1+x 2)+m 2=0,把x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9代入,得(k 2+1)⋅4m 2+364k 2-9+km ⋅-8km 4k 2-9 +m 2=0,化简,得m 2=36(k 2+1)5,因为m 2+9>4k 2且k ≠±32,所以有36(k 2+1)5+9>4k 2且k ≠±32,解得k ≠±32,圆x 2+y 2=1的圆心为(0,0),半径为1,圆心(0,0)到直线l :y =kx +m 的距离为d =mk 2+1=65k 2+1k 2+1=655>1,所以点A 到直线距离的最大值为655+1,最小值为655-1,所以点A 到直线距离的取值范围为655-1,655+1 ,7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为-2,0 ,2,0 ,P 是动点,且直线DP 与EP 的斜率之积等于-14.(1)求动点P 的轨迹C 的方程;(2)已知直线y =kx +m 与椭圆:x 24+y 2=1相交于A ,B 两点,与y 轴交于点M ,若存在m 使得OA +3OB =4OM,求m 的取值范围.【答案】(1)x 24+y 2=1x ≠±2 ;(2)-1,-12 ∪12,1 【解析】(1)设P x ,y ,则k EP ⋅k DP =y x -2⋅y x +2=-14x ≠±2 ,所以可得动点P 的轨迹C 的方程为x 24+y 2=1x ≠±2 .(2)设A x 1,y 1 ,B x 2,y 2 ,又M 0,m ,由OA +3OB =4OM得x 1+3x 2,y 1+3y 2 =0,4m ,x 1=-3x 2联立y =kx +m x 24+y 2=1可得4k 2+1 x 2+8kmx +4m 2-4=0∵Δ=(8km )2-4×(4k 2+1)×(4m 2-4)>0,即64k 2-16m 2+16>0∴4k 2-m 2+1>0,且x 1+x 2=-8km4k 2+1x 1x 2=4m 2-44k 2+1,又x 1=-3x 2∴x 2=4km 4k 2+1,则x 1⋅x 2=-3x 22=4km 4k 2+1 2=4m 2-44k 2+1,∴16k 2m 2-4k 2+m 2-1=0,∴k 2=m 2-14-16m 2代入4k 2-m 2+1>0得m 2-11-4m2+1-m 2>0,14<m 2<1,解得m ∈-1,-12 ∪12,1 .∴m 的取值范围是-1,-12 ∪12,1 8.如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求P 的轨迹方程;(2)设点P 的轨迹为C ,点M 、N 是轨迹为C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求△MON 的面积.【答案】(1)x 23+y 22=1x ≠±3 ;(2)62【解析】(1)由已知设点P 的坐标为x ,y ,由题意知k AP ⋅k BP =y x +3⋅y x -3=-23x ≠±3 ,化简得P 的轨迹方程为x 23+y 22=1x ≠±3(2)证明:由题意M 、N 是椭圆C 上非顶点的两点,且AP ⎳OM ,BP ⎳ON ,则直线AP ,BP 斜率必存在且不为0,又由已知k AP ⋅k BP =-23.因为AP ⎳OM ,BP ⎳ON ,所以k OM k ON =-23设直线MN 的方程为x =my +t ,代入椭圆方程x 23+y 22=1,得3+2m 2 y 2+4mty +2t 2-6=0....①,设M ,N 的坐标分别为x 1,y 1 ,x 2,y 2 ,则y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m 2又k OM ⋅k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt y 1+y 2 +t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m2=-23,得2t 2=2m 2+3又S △MON =12t y 1-y 2 =12t -24t 2+48m 2+723+2m 2,所以S △MON =26t t 24t 2=62,即△MON 的面积为定值62.9.在平面直角坐标系xOy 中,已知直线l :x =1,点F 4,0 ,动点P 到点F 的距离是它到直线l 的距离的2倍,记P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 且斜率大于3的直线交C 于两点,点Q -2,0 ,连接QA 、QB 交直线l 于M 、N 两点,证明:点F 在以MN 为直径的圆上.【答案】(1)x 24-y 212=1;(2)证明见解析【解析】(1)设P x ,y ,由题意得x -4 2+y 2=2x -1 化简得x 24-y 212=1,所以曲线C 的方程为x 24-y 212=1.(2)证明:设A x 1,y 1 、B x 2,y 2 、M 1,m 、N 1,n ,设直线AB 的方程为y =k x -4 且k >3,联立y =k x -4 x 24-y 212=1得3-k 2 x 2+8k 2x -16k 2-12=0,3-k 2≠0,Δ=64k 4+43-k 2 16k 2+12 =144k 2+1 >0,由韦达定理可得x 1+x 2=8k 2k 2-3,x 1x 2=16k 2+12k 2-3,因为点M 在直线QA 上,则k QM =k QA ,即m3=y 1x 1+2,可得m =3y 1x 1+2=3k x 1-4x 1+2,同理可得n =3k x 2-4 x 2+2,FM=-3,m ,FN =-3,n ,所以,FM ⋅FN =9+mn =9+9k 2x 1x 2-4x 1+x 2 +16x 1x 2+2x 1+x 2 +4=9+9k 216k 2+12-32k 2+16k 2-4816k 2+12+16k 2+4k 2-12=0,故点F 在以MN 为直径的圆上.10.已知圆C :x 2+y 2-2x -2y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(2,3)处,求此时切线l 的方程;(2)求满足条件PM =PO 的点P 的轨迹方程.【答案】(1)x =2或3x -4y +6=0;(2)2x +2y -1=0.【解析】(1)把圆C 的方程化为标准方程为(x -1)2+(y -1)2=1,∴圆心为C (1,1),半径r =1.当l 的斜率不存在时,此时l 的方程为x =2,C 到l 的距离d =1=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -2),即kx -y +3-2k =0,则k -1+3-2k1+k 2=1,解得k =34.∴l 的方程为y -3=34(x -2),即3x -4y +6=0.综上,满足条件的切线l 的方程为x =2或3x -4y +6=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x -1)2+(y -1)2-1,|PO |2=x 2+y 2,∵|PM |=|PO |.∴(x -1)2+(y -1)2-1=x 2+y 2,整理,得2x +2y -1=0,∴点P 的轨迹方程为2x +2y -1=0.11.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1、l 2分别交C 于A 、B 两点,交C 的准线于P 、Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ .(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【答案】(1)证明见解析;(2)y 2=x -1.【解析】(1)由题意可知F 12,0 ,设l 1:y =a ,l 2:y =b 且ab ≠0,A a 22,a ,B b 22,b ,P -12,a ,Q -12,b ,R -12,a +b 2 ,直线AB 方程为2x -(a +b )y +ab =0,∵点F 在线段AB 上,∴ab +1=0,记直线AR 的斜率为k 1,直线FQ 的斜率为k 2,∴k 1=a -b 1+a 2,k 2=b-12-12=-b ,又∵ab +1=0,∴k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba =-b =k 2,∴AR ∥FQ ;(2)设l 1:y =a ,l 2:y =b ,A a 22,a ,B b 22,b ,设直线AB 与x 轴的交点为D x 1,0 ,∴S △ABF =12a -b FD =12a -b x 1-12,又S△PQF=a-b2,∴由题意可得S△PQF=2S△ABF,即a-b2=2×12·a-b⋅x1-12,解得x1=0(舍)或x1=1.设满足条件的AB的中点为E(x,y),则x=a2+b24y=a+b2,当AB与x轴不垂直时,由k AB=k DE可得a-ba22-b22=yx-1,即2a+b=yx-1(x≠1),∴y2=x-1x≠1.当AB与x轴垂直时,E与D重合,也满足y2=x-1.∴AB中点的轨迹方程为y2=x-1.12.已知椭圆C:x2a2+y2b2=1a>b>0的长轴长为4,左顶点A到上顶点B的距离为5,F为右焦点.(1)求椭圆C的方程和离心率;(2)设直线l与椭圆C交于不同的两点M,N(不同于A,B两点),且直线BM ⊥BN时,求F在l上的射影H的轨迹方程.【答案】(1)x24+y2=1,离心率为32;(2)x-322+y+3102=2125【解析】(1)由题意可得:2a=4,a2+b2=5,a2=b2+c2,可得a=2,c=3,b=1,所以椭圆C的方程为x24+y2=1,离心率为e=ca=32.(2)当直线斜率存在时,可设l:y=kx+m代入椭圆方程x24+y2=1,得:4k2+1x2+8kmx+4m2-1=0.设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-8km4k 2+1x 1x 2=4m 2-1 4k 2+1.因为直线BM ,BN 垂直,斜率之积为-1,所以k BM ⋅k BN =-1,所以k BM ⋅k BN =k 2x 1x 2+k m -1 x 1+x 2 +m -1 2x 1x 2=-1.将x 1+x 2=-8km 4k 2+1x 1x 2=4m 2-1 4k 2+1代入,整理化简得:m -1 5m +3 =0,所以m =1或m =-35.由直线l :y =kx +m ,当m =1时,直线l 经过0,1 ,与B 点重合,舍去,当m =-35时,直线l 经过定点E 0,-35,当直线斜率不存在时,可设l :x =t ,则M t ,1-t 24 ,N t ,-1-t 24,因为k BM ⋅k BN =-1,所以1-t 24-1t ×-1-t 24+1t=-1,解得t =0,舍去.综上所述,直线l 经过定点E 0,-35,而F 在l 上的射影H 的轨迹为以EF 为直径的圆,其E 0,-35 ,F 3,0 ,所以圆心32,-310 ,半径r =215,所以圆的方程为x -32 2+y +310 2=2125,即为点H 的轨迹方程.13.在平面直角坐标系xOy 中,A (-3,0),B (3,0),C 是满足∠ACB =π3的一个动点.(1)求△ABC 垂心H 的轨迹方程;(2)记△ABC 垂心H 的轨迹为Γ,若直线l :y =kx +m (km ≠0)与Γ交于D ,E 两点,与椭圆T :2x 2+y 2=1交于P ,Q 两点,且|DE |=2|PQ |,求证:|k |>2.【答案】(1)x 2+(y +1)2=4(y ≠-2);(2)证明见解析.【解析】设△ABC 的外心为O 1,半径为R ,则有R =AB 2sin ∠ACB=2,又∠OO 1B =∠OO 1C =π3,所以OO 1=R cos π3=1,即O 1(0,1),或O 1(0,-1),当O 1坐标为(0,1)时.设C (x ,y ),H x 0,y 0 ,有O 1C =R ,即有x 2+(y -1)2=4(y >0),由CH ⊥AB ,则有x 0=x ,由AH ⊥BC ,则有AH ⋅BC=x 0+3 (x -3)+y 0y =0,所以有y 0=-x 0+3 (x -3)y =3-x 2y =(y -1)2-1y=y -2,y >0,则y 0=y -2>-2,则有x 20+y 0+1 2=4(y 0>-2),所以△ABC 垂心H 的轨迹方程为x 2+(y +1)2=4(y >-2).同理当O 1坐标为(0,-1)时.H 的轨迹方程为x 2+(y -1)2=4(y <2).综上H 的轨迹方程为x 2+(y +1)2=4(y >-2)或x 2+(y -1)2=4(y <2).(2)若取x 2+(y +1)2=4(y >-2),记点(0,-1)到直线l 的距离为d ,则有d =|m +1|1+k 2,所以|DE |=24-d 2=24-(m +1)21+k 2,设P x 1,y 1 ,Q x 2,y 2 ,联立y =kx +m 2x 2+y 2=1,有2+k 2 x 2+2kmx +m 2-1=0,所以Δ=4k 2+2-2m 2 >0,|PQ |=1+k 2⋅Δ2+k 2=21+k 2 k 2+2-2m 2 2+k 2,由|DE |=2|PQ |,可得4-(m +1)21+k 2=4k 2+1 k 2+2-8m 2k 2+1 2+k 2 2≤4k 2+1 k 2+2-8m 2k 2+22,所以4k 2+2+8m 22+k 22≤(m +1)2k 2+1,即有4k 2+1 k 2+2+8k 2+1 m 22+k 22≤(m +1)2,所以2+2m 2-4k 2+1 k 2+2-8k 2+1 m 2k 2+22≥(m -1)2,即2k 2k 2+2k 2m 2k 2+2-1 =(m -1)2⇒k 2m 2k 2+2-1≥0⇒m 2≥1+2k2又Δ>0,可得m 2<1+k 22,所以1+2k2<1+k 22,解得k 2>2,故|k |>2.同理,若取x 2+(y -1)2=4(y <2),由对称性,同理可得|k |> 2.综上,可得|k |> 2.14.在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为-1,0 ,1,0 ,平面内两点G ,M 同时满足以下3个条件:①G 是△ABC 三条边中线的交点;②M 是△ABC 的外心;③GM ⎳AB .(1)求△ABC 的顶点C 的轨迹方程;(2)若点P 2,0 与(Ⅰ)中轨迹上的点E ,F 三点共线,求PE ⋅PF 的取值范围.【答案】(1)x 2+y 23=1(y ≠0);(2)3,92.【解析】(1)设C x ,y ,G x 0,y 0 ,M x M ,y M ,圆锥曲线的轨迹方程问题第11页因为M 是△ABC 的外心,所以MA =MB ,所以M 在线段AB 的中垂线上,所以x M =-1+12=0.因为GM ⎳AB ,所以y M =y 0.又G 是△ABC 三条边中线的交点,所以G 是△ABC 的重心,所以x 0=-1+1+x 3=x 3,y 0=0+0+y 3=y 3,所以y M =y 0=y 3.又MA =MC ,所以0+1 2+y 3-0 2=0-x 2+y 3-y 2,化简得x 2+y 23=1(y ≠0),所以顶点C 的轨迹方程为x 2+y 23=1(y ≠0).(2)因为P ,E ,F 三点共线,所以P ,E ,F 三点所在直线斜率存在且不为0,设所在直线的方程为y =k x -2 ,联立y =k x -2 ,x 2+y 23=1,得k 2+3 x 2-4k 2x +4k 2-3=0.由Δ=4k 2 2-4k 2+3 4k 2-3 >0,得k 2<1.设E x 1,y 1 ,F x 2,y 2 ,则x 1+x 2=4k 2k 2+3,x 1⋅x 2=4k 2-3k 2+3.所以PE ⋅PF =1+k 22-x 1 ⋅1+k 22-x 2 =1+k 2 ⋅4-2x 1+x 2 +x 1⋅x 2=1+k 2 ⋅4k 2+3 -8k 2+4k 2-3 k 2+3=91+k 2 k 2+3=9-18k 2+3.又0<k 2<1,所以3<k 2+3<4,所以3<PE ⋅PF <92.故PE ⋅PF 的取值范围为3,92 .15.已知A x 1,y 1 ,B x 2,y 2 是抛物线C :y 2=4x 上两个不同的点,C 的焦点为F .(1)若直线AB 过焦点F ,且y 21+y 22=32,求AB 的值;(2)已知点P -2,2 ,记直线PA ,PB 的斜率分别为k PA ,k PB ,且k PA +k PB =-1,当直线AB 过定点,且定点在x 轴上时,点D 在直线AB 上,满足PD ⋅AB =0,求点D 的轨迹方程.【答案】(1)AB =10;(2)x 2+y -1 2=5(除掉点-2,0 ).【解析】(1)由抛物线方程知:F 1,0 ,准线方程为:x =-1.圆锥曲线的轨迹方程问题第12页∵AF =x 1+1=y 214+1,BF =x 2+1=y 224+1,∴AB =AF +BF =y 21+y 224+2=10.(2)依题意可设直线AB :x =ty +m ,由y 2=4x x =ty +m得:y 2-4ty -4m =0,则Δ=16t 2+16m >0,∴y 1+y 2=4t y 1y 2=-4m ⋯①∵k PA +k PB =y 1-2x 1+2+y 2-2x 2+2=y 1-2ty 1+m +2+y 2-2ty 2+m +2=-1,∴2ty 1y 2+m +2 y 1+y 2 -2t y 1+y 2 -4m +2 t 2y 1y 2+t m +2 y 1+y 2 +m +2 2=-1⋯②由①②化简整理可得:8t -4m +m 2-4=0,则有m +2-4t m -2 =0,解得:m =2或m =4t -2.当m =4t -2时,Δ=16t 2+64t -32=16t +2 2-96>0,解得:t >-2+6或t <-2-6,此时AB :x =ty +4t -2=t y +4 -2过定点-2,-4 ,不符合题意;当m =2时,Δ=16t 2+32>0对于∀t ∈R 恒成立,直线AB :x =ty +2过定点E 2,0 ,∴m =2.∵PD ⋅AB =0,∴PD ⊥AB ,且A ,B ,D ,E 四点共线,∴PD ⊥DE ,则点D 的轨迹是以PE 为直径的圆.设D x ,y ,PE 的中点坐标为0,1 ,PE =25,则D 点的轨迹方程为x 2+y -1 2=5.当D 的坐标为-2,0 时,AB 的方程为y =0,不符合题意,∴D 的轨迹方程为x 2+y -1 2=5(除掉点-2,0 ).圆锥曲线的轨迹方程问题第13页。
圆锥曲线(教师版)
段长度的比值.
【解析】(1)
设椭圆方程为
x2 a2
+
y2 b2
=
1
a
>
b
>
0
Hale Waihona Puke ,由题意可得4 a2
+
1 b2
a = 2b
=
1
,解得
a2 b2
= =
8 2
,故椭圆方程为
x2 8
+
y2 2
=
1.
(2) 设 M x1,y1 ,N x2,y2 ,直线 MN 的方程为 y = kx + 4 ,
与椭圆方程
x2 8
3.
已知椭圆
C
:
x2 a2
+
y2 b2
=
1
过点
A(
-2,
-
1)
,且
a
=
2b.
(1) 求椭圆 C 的方程:
(2) 过点 B( -4,0) 的直线 l 交椭圆 C 于点 M ,N ,直线 MA,NA 分别交直线 x =-4 于点
第 2 页 共 30 页
P,Q.求
|PB| |BQ|
的值.
【试题来源】2020 年北京市高考数学试卷
【答案】(1) x82
+
y2 2
=
1
;(2)1.
【分析】(1) 由题意得到关于 a,b 的方程组,求解方程组即可确定椭圆方程;(2) 首先联立
直线与椭圆的方程,然后由直线 MA,NA 的方程确定点 P,Q 的纵坐标,将线段长度的比
值转化为纵坐标比值的问题,进一步结合根与系数关系可证得 yP + yQ = 0,从而可得两线
圆锥曲线专题二:双曲线(含详细答案)
基础知识:一 双曲线的定义:在平面内,到两个定点21F F 、的距离之差的绝对值等于常数a 2(a 大于0且212F F a <)的动点P 的轨迹叫作双曲线.这两个定点21F F 、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数a 2应当满足的约束条件:21212F F a PF PF <=-,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:21212F F a PF PF <=-)0(>a ,则动点轨迹仅表示双曲线中靠焦点2F 的一支;若21122F F a PF PF <=-()0(>a ),则动点轨迹仅表示双曲线中靠焦点1F 的一支;3. 若常数满足约束条件:21212F F a PF PF ==-,则动点轨迹是以F 1、F 2为端点的两条射线(包括端点);4.若常数满足约束条件:21212F F a PF PF >=-,则动点轨迹不存在; 5.若常数0=a ,则动点轨迹为线段21F F 的垂直平分线。
二 双曲线的标准方程:1.当焦点在轴上时,双曲线的标准方程:)0,0(12222>>=-b a b y a x ,其中222b a c +=;2.当焦点在y 轴上时,双曲线的标准方程:)0,0(12222>>=-b a bx a y ,其中222b a c +=;3.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x ;如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x ;4. 共焦点的双曲线系方程12222=--+k b y k a x 或 12222=--+kb x k a y三 双曲线的几何性质:双曲线)0,0(12222>>=-b a by a x 的几何性质1.对称性:对于双曲线标准方程)0,0(12222>>=-b a by a x ,把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方程都不变,所以双曲线)0,0(12222>>=-b a by a x 是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。
07 圆锥曲线中的二级结论及应用(教师版)
查补易混易错点07 圆锥曲线中的二级结论及应用圆锥曲线有许多形式结构相当漂亮的结论,记住圆锥曲线中一些二级结论,能快速摆平一切圆锥曲线压轴小题。
1设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点,记∠F1PF2=θ,则(1)|PF1||PF2|=2b21+cos θ;(2)S△PF1F2=b2tan θ2;(3)e=sin∠F1PF2sin∠PF1F2+sin∠PF2F1.2设P点是双曲线x2a2-y2b2=1(a>0,b>0)上异于实轴端点的任一点,F1,F2为其焦点,记∠F1PF2=θ,则(1)|PF1||PF2|=2b21-cos θ;(2)S△PF1F2=b2tanθ2;(3)e=sin ∠F1PF2|sin ∠PF1F2-sin ∠PF2F1|.3.设A,B为圆锥曲线关于原点对称的两点,点P是曲线上与A,B不重合的任意一点,则k AP·k BP =e2-1.4.设圆锥曲线以M(x0,y0)(y0≠0)为中点的弦AB所在的直线的斜率为k.(1)圆锥曲线为椭圆x2a2+y2b2=1(a>b>0),则k AB=-b2x0a2y0,k AB·k OM=e2-1.(2)圆锥曲线为双曲线x2a2-y2b2=1(a>0,b>0),则k AB=b2x0a2y0,k AB·k OM=e2-1.(3)圆锥曲线为抛物线y2=2px(p>0),则k AB=py0.5.过椭圆x2a2+y2b2=1(a>b>0)的右焦点F且倾斜角为α(α≠90°)的直线交椭圆于A,B两点,且|AF → |=λ|FB → |,则椭圆的离心率等于1(1)cos λλα-+.6.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 且倾斜角为α(α≠90°)的直线交双曲线右支于A ,B 两点,且|AF → |=λ|FB → |,则双曲线的离心率等于|λ-1(λ+1)cos α|.7.过抛物线y 2=2px (p >0)的焦点F 倾斜角为θ的直线交抛物线于A ,B 两点,则两焦半径长为p 1-cos θ,p 1+cos θ,1|AF |+1|BF |=2p ,|AB |=2p sin 2θ,S △AOB =p 22sin θ.1.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为M (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1 D.x 25-y 24=1【答案】B【解析】由题意可知k AB =-15-0-12-3=1,k MO =-15-0-12-0=54,由双曲线中点弦中的斜率规律得k MO ·k AB =b 2a 2,即54=b 2a 2,又9=a 2+b 2,联立解得a 2=4,b 2=5,故双曲线的方程为x 24-y 25=1.3.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =32,经过右焦点且斜率为k (k >0)的直线交椭圆于A ,B 两点,已知AF → =3FB →,则k =( )A .1 B.2 C.3 D .2【答案】B【解析】∵λ=3,由结论可得,e =32,由规律得32cos α=3-13+1,cos α=33,k =tan α=2.4.如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若F 是AC 的中点,且|AF |=4,则线段AB 的长为( )A .5B .6 C.163 D.203【答案】C 【解析】因为1|AF |+1|BF |=2p ,|AF |=4,所以|BF |=43,所以|AB |=|AF |+|BF |=4+43=163.6.已知双曲线C :()22105x y k k -=>的左、右焦点分别为1F ,2F ,且123F PF π∠=,则12F PF △的面积为().【答案】C【解析】由()22105x y k k -=>,b =123F PF π∠=,由结论可知122tan 2F PF b S θ==△7.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右顶点分别为A ,B ,点P 在椭圆上异于A ,B 两点,若AP 与BP 的斜率之积为-12,则椭圆的离心率为( )【答案】22【解析】k AP ·k BP =-12,e 2-1=-12,∴e 2=12,e =22.8.在椭圆x 225+y 29=1上,△PF 1F 2为焦点三角形,如图所示.(1)若θ=60°,则△PF 1F 2的面积是________;(2)若α=45°,β=75°,则椭圆离心率e =________.【答案】(1)33 (2)6-22【解析】(1)由结论得S △PF 1F 2=b 2tan θ2,即S △PF 1F 2=33.(2)由公式e =sin (α+β)sin α+sin β=sin 60°sin 45°+sin 75°=6-22.9.(2022·荆州模拟)已知P是椭圆x24+y2=1上的一点,F1,F2是椭圆的两个焦点,当∠F1PF2=π3时,则△PF1F2的面积为________.【答案】3 3【解析】由结论可得:S=b2tan θ2,可得S=1·tanπ6=33.标原点,则|AB |为【答案】12【解析】易知2p =3,由结论可得知|AB |=2psin 2α,所以|AB |=3sin 230°=12.15.设F 为抛物线C :y 2=16x 的焦点,过F 且倾斜角为6π的直线交C 于A 、B 两点,O 为坐标原点,则△AOB 的面积为。
高三解析几何双曲线教师版
圆锥曲线(2)教师版双曲线一、双曲线的定义㈠平面内到两个定点的距离差等于定值且该定值小于这两个定点的距离的点的轨迹为双曲线 ㈡符号语言: 已知FF 21,为平面上两个定点若()F F F Fa a P P2121202||<<=-则P 点轨迹为以F F 21,为焦点的双曲线注;单支双曲线的定义 已知FF 21,为x 轴上的两个定点且FF 21在左侧①若()F F F F a a P P 2121202<<=-则P 点轨迹为以F F 21,为焦点的双曲线的右支 ②若()F F F Fa a P P2112202<<=-则P 点轨迹为以F F 21,为焦点的双曲线的左支双曲线位置的判定 方程()()()N m ym x m m m m *∈=--+--22222935220113表示双曲线⑴求m⑵求双曲线焦点坐标及渐近线方程 典例求双曲线标准方程⎪⎩⎪⎨⎧轨迹方程法待定系数法几何法㈠几何法:求实半轴a 及虚半轴b注:双曲线定位条件:双曲线上点的坐标,焦点位置,渐进线方程,若题中无定位条件可以利用换轴法写方程,反之不行例已知双曲线()0,012222>>=-b a by a x 的一条渐近线为y=kx (k>0)离心率为k e 5=则双曲线标准方程A 、142222=-a y a x B 、152222=-ay a xC 、142222=-b y b x D 、152222=-by b x答案:C练习:1、已知圆C :084622=+--+y x yx ,以圆C 与坐标轴的交点分别作为双曲线的一个焦点和定点,则适合该条件的双曲线的标准方程为答案:112422=-yx2、已知双曲线中心在原点,焦点FF 21,,离心率为2,且过点()10,4-⑴求双曲线的方程⑵若点M (3,m )在双曲线上,求证:012=⋅→→F M F M⑶求FF M 21∆的面积答案;⑴622=-yx ,⑶63、过双曲线()0,012222>>=-b a by a x 的左焦点且垂直于x 轴的直线与双曲线相交于M ,N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为 提示:用通径算 答案:2㈡待定系数法:①已知双曲线上两个点坐标双曲线方程可设为()0122<⋅=-B A B Ay x②已知双曲线的渐近线方程为0=±By Ax 则与它对应的双曲线标准方程可设为()02222≠=-λλyB x A例1求经过点P (3,415),且一条渐近线为4x+3y=0的双曲线标准方程 答案:116922=-yx例2双曲线的渐近线方程为03=±y x ,焦点到渐进线的距离为3,求双曲线的标准方程 提示:分类讨论方法处理,找到渐进线的倾斜角直接可求c答案:19271932222=-=-xy y x 或㈢轨迹方程法(定义法) 例已知动圆M 与圆()24:221=+-yC x 外切,与圆()24:222=+-yC x 内切,求动圆圆心M 的轨迹方程圆C1的圆心C1(-4,0)半径21=r,圆C 2的圆心C 2(-4,0)半径22=r设动圆的半径为r,r r CC 21218+>=故圆C 1与圆C 2外离如图所示圆M 与圆C 1外切故r Cr M 11+=,圆M 与圆C 2外切故r C r M 22-=a M M C C 22221==-∴M 点轨迹为以C C 21,为左右焦点的双曲线的右支∴()2114222≥=-x yx注:当遇到利用定义法求曲线轨迹方程涉及圆内切问题时,一定要分析两已知圆的位置关系,只有这样才能知道动圆与圆C2哪个是大圆哪个是小圆练习1:设椭圆C1的离心率是135,焦点在x 轴上且长轴长26,若曲线C 2上的点到椭圆C 1的两个焦点距离差的绝对值等于8,则曲线C2的标准方程为,答案:191622=-yx2、双曲线116922=+yx的两个焦点为F F 21,,点P 在双曲线上,若F F P p 21⊥,则P 到x 轴的距离是提示:双曲线定义+等积法,答案:5163、F F 21,是双曲线()0,012222>>=-b a by a x 的两个焦点,P 在双曲线上,若ac F P F P F P F P 221,021==⋅→→→→(c 为半焦距),则双曲线的离心率为 答案;251+ 三、双曲线的几何性质 例F F 21,是双曲线()0,012222>>=-b a by a x 的两个焦点,若在双曲线的右支上存在一点P ,使022=⋅⎪⎪⎭⎫⎝⎛+→→→P F F O OP ,且F P F P 231→→=,则双曲线的离心率是解:根据向量加法的平行四边形法则作F O OP OM 2→→→+=显然四边形F OPM 2为菱形∴F OP 2∆为直角三角形例FF 21,是双曲线1322=-y x的两个焦点,点P 是双曲线上一点,若F P F P 2413→→=,则F F P 21∆的面积等于 练习:过双曲线()012222>>=+a b bya x 的左焦点F (-c,0)(c>0)作圆ay x 222=+的切线切点为E ,延长FE 交双曲线的右支于点P ,若⎪⎭⎫⎝⎛+=→→→OP OF OE21(O 为坐标原点)则双曲线的离心率为 A 、5 B 、3 C 、25 D 、26显然 OE 为B FRt F'∆的中位线,∴a B F 2'=又c F F 2'=由勾股定理及b a c 222+=,则BF=2b 又由双曲线定义知b=2a 可求e由双曲线定义四、直线与双曲线的位置关系㈠从几何角度探讨直线与双曲线的位置关系问题1:直线与双曲线重合时,直线与双曲线有几个交点?问题2:直线与双曲线渐近线平行时,直线与双曲线有几个交点?能不能出现下面几种情况?归纳:当直线与双曲线渐进线平行时,直线与双曲线有唯一交点问题3:直线与双曲线相切时,能不能出现下面两种情况?归纳:直线与双曲线相切,直线与双曲线有唯一交点问题4:直线与双曲线相交最多有几个交点?把直线方程和双曲线方程联立消元(消y )得到的方程02=++C Bx Ax最多两个根,故直线和双曲线最多有两个交点。
高考数学一轮复习第十章圆锥曲线与方程10.2双曲线及其性质获奖课件名师公开课
方法 2 双曲线的几何性质的解题策略
双曲线的几何性质包括:范围、对称性、顶点、离心率、渐近线等.常
考内容是离心率、渐近线等,解决此类问题的关键在于构造关于a,b,c的
等式或不等式.
例2
(2017浙江宁波期末,8)过双曲线x2-
y b
2 2
=1的左顶点A作斜率为1的
直线l,若l与双曲线的两条渐近线分别相交于点B,C,且2 A B= B,则C 此双
b
2 2
-x 2
a2
同的渐近线y=± b
a
x,它们的离心率e1、e2满足的关系式为1
e
1
2
=1,它们有共
+1 =1.
e
2 2
1.双基表
标准方程
范围
考点二 双曲线的几何性质
x2 a2
- by 22 =1(a>0,b>0)
|x|≥a
y a
2 2
- xb 22 =1(a>0,b>0)
|y|≥a
焦点 顶点 对称性 实、虚轴长 离心率
高考数学
§10.2 双曲线及其性质
知识清单
考点一 双曲线的定义和标准方程
1.双曲线的基本知识
2.(1)等轴双曲线:实轴长和虚轴长相等的双曲线叫做等轴双曲线.
(2)等轴双曲线⇔离心率e= 2⇔两条渐近线互相垂直(位置关系).
3.双曲线 x 2
a2
-y
b
2 2
=1(a>0,b>0)的共轭双曲线的方程为y
b1 b1
以c= 1=2 2,故2 双5曲线的离心率是 ,故选C5 .
评析 本题考查双曲线的标准方程和几何性质,向量的坐标表示等知 识,考查推理运算能力和方程思想.
双曲线专题辅导完整版(非常好)(可索要答案)
双曲线专题辅导双曲线知识点总结1、双曲线的定义:a MF MF 221=-(122a F F <) ①当2a ﹤2c 时,轨迹是双曲线; ②当2a =2c 时,轨迹是两条射线; ③当2a ﹥2c 时,轨迹不存在;2、双曲线标准方程焦点在x 轴上时:12222=-b y a x ;焦点在y 轴上时:12222=-bx a y ;★焦点坐在轴判断方法:看系数的正负;3、字母a b c 、、的关系:222b ac +=4、双曲线12222=-by a x 基本性质:①顶点:()0,),0,(21a A a A - ()b B b B -,0),,0(21 ②实轴:21A A 长为2a , a 叫做半实轴长; ③虚轴:21B B 长为2b ,b 叫做虚半轴长; ④焦距:12F F 长为2c ,c 叫做半焦距长;5、离心率:c e a === 6、 双曲线渐近线:(分焦点在x 轴与焦点在y 轴)①若双曲线方程为12222=-b y a x 则有:⇒渐近线方程⇒=-02222b y a x x aby ±=;②若双曲线方程为22221y x a b -=则有:⇒渐近线方程22220y x a b -=⇒ay x b=±;③若渐近线方程为x aby ±=⇒0=±b y a x① 222b AF BF a==②22bAB a=题型一:双曲线的标准方程的有关问题1、求双曲线14491622-=-y x 的实轴长、虚轴长、离心率以及渐近线方程;2、讨论192522=-+-ky k x 表示何种圆锥曲线,它们有何共同特征;3、根据条件求双曲线的标准方程; (1)过点⎪⎭⎫ ⎝⎛4153,P ,⎪⎭⎫⎝⎛-5316,Q 且焦点在坐标轴上; 提示:设122=+n y m x ;参考答案:116922=-x y(2)6=c ,经过点(-5,2),焦点在x 轴上;提示:设1622=--λλy x ;参考答案:1522=-y x(3)与双曲线141622=-y x 有相同的焦点,并且经过点()223,;提示:设141622=+--λλy x ;(4)双曲线为等轴双曲线,并且经过点)1,3(-M ; 提示:设m y x =-22;题型二、双曲线定义的运用(轨迹方程)1、P 是双曲线1366422=-y x 上一点,1F 、2F 是双曲线的两个焦点,且171=PF ,求2PF 的值;(参考:33)变式:已知1F 、2FP 在双曲线上,若点P 到焦点P 到焦点F 2的距离;2、在ABC ∆中,2=BC ,且A B C sin 21sin sin =-,求点A 的轨迹;3、求与圆A :9)5(22=++y x 以及圆B :1)5(22=+-y x 都外切的圆的圆心P 的轨迹方程;变式题:求下列动圆圆心M 的轨迹方程:(1)与⊙()2222=++y x C :内切,且过点()02,A ;(2)已知一个圆与⊙()11221=-+y x C :和⊙()41222=++y x C :都外切;(3)已知一个圆与⊙()93221=++y x C :外切,且与⊙()13222=+-y x C :内切;(4)双曲线4222=-y x C :的两焦点分别为21F F ,A 为双曲线上任一点。
双曲线专题复习(精心整理).
《圆锥曲线》---------双曲线 考点一:双曲线的定义例1 已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,求动圆圆心M 的轨迹方程.变式训练:由双曲线4922y x -=1上的一点P 与左、右两焦点F 1、F 2构成△PF 1F 2,求△PF 1F 2的内切圆与边F 1F 2的切点坐标.巩固训练:(1). F 1、F 2是双曲线162x -202y =1的焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.(2).过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是 .(3).一动圆与两定圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为A.椭圆B. 双曲线C.双曲线的一支D.抛物线 考点二:双曲线的方程例2 根据下列条件,求双曲线的标准方程.(1)与双曲线16922y x -=1有共同的渐近线,且过点(-3,23); (2)与双曲线41622y x -=1有公共焦点,且过点(32,2). 变式训练:已知双曲线的渐近线的方程为2x ±3y =0,(1)若双曲线经过P (6,2),求双曲线方程;(2)若双曲线的焦距是213,求双曲线方程;(3)若双曲线顶点间的距离是6,求双曲线方程.巩固训练:(1)求与椭圆221255x y +=共焦点且过点(32,2)的双曲线的方程; (2)中心在原点,一个顶点的坐标为(3,0),且焦距与虚轴长之比为5:4,求双曲线的标准方程;(3)已知双曲线的离心率2e =,经过点(5,3)M - ,求双曲线的方程;(4)与双曲线1422=-y x 有共同渐近线,且过点)2,2(的双曲线方程; (5)已知双曲线12222=-by a x (a >0,b >0)的两条渐近线方程为x y 33±=,若顶点到渐近线的距离为1,则双曲线方程为_________________.(6).已知方程22121x y m m -=++表示双曲线,则m 的取值范围是__________________. (7).经过两点)3,72(),26,7(B A --的双曲线的标准方程为___________.考点三:双曲线的几何性质例3 双曲线C :2222b y a x -=1 (a >0,b >0)的右顶点为A ,x 轴上有一点Q (2a ,0),若C 上存在一点P ,使AP ·PQ =0,求此双曲线离心率的取值范围变式训练:已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2,且过点P (4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:1MF ·2MF =0;(3)求△F 1MF 2的面积.巩固训练:(1)已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的一条渐近线平行,则此双曲线的离心率是:A.1B. 2C.3D.4(2)已知双曲线2221(2)2x y a a -=>的两条渐近线的夹角为3π,则双曲线的离心率为: A.2 B. 3 C.263 D.233(3)设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为_________.(4)双曲线22221(0,0)x y a b a b-=>>的一个焦点为F (4,0),过双曲线的右顶点作垂直于x 轴的垂线交双曲线的渐近线于A ,B 两点,O 为为坐标原点,则△AOB 面积的最大值为:A. 8B. 16C. 20D. 24考点四:双曲线的离心率例1、已知F 1、F 2分别是双曲线 22221(0,0)x y a b a b-=>>的左、右焦点,过F 1作垂直于X轴的直线与双曲线交于A 、B 两点,若△AF 2B 是直角三角形,求双曲线的离心率。
圆锥曲线图表(教师版)
基本专题:(1)求曲线的标准方程 方法一:待定系数法 方法二.求c b a ,,(2)判断曲线的类型 122=+By A x 类型 022=++C By Ax 类型(3)定义的应用 判断所求轨迹的点的性质(4)求曲线的离心率 要求曲线离心率,找出关系消去b ,化简之后变成e ,注意范围取正值 (5)中点弦问题 点差法(设而不求)(6)焦点三角形 (正弦定理.余弦定理的应用)(7)弦长公式 ||1||11||1||2122122m k y y kx x k AB ∆+=-+=-+=(8)最值问题 注意几何意义(9)圆锥曲线应用题 读题--->反复读题--->建立模型--->求解结果--->写出结论 (10)直线与圆锥曲线的位置关系 (点在曲线外/内/上)(直线:联立,化简,判断△)圆锥曲线的其他有用结论总结一、椭圆中结论:1、点00(,)P x y 在椭圆22221x y a b +=内部的条件:____________________点00(,)P x y 在椭圆22221x y a b+=外部的条件:____________________2、过椭圆22221x y a b +=上一点00(,)P x y 与椭圆相切的直线方程:____________________过椭圆22221x y a b +=外一点00(,)P x y 与椭圆相切得切点弦的方程:____________________过椭圆22221x y a b+=内一点00(,)P x y 的弦与椭圆交点的切线交点轨迹:____________________3、椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点,12F PF θ∠=, 则椭圆的焦点三角形的面积为____________________12||||PF PF =__________________ 4、AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则AB K =______________,即OM AB k k ⋅=______________。
高三数学:专题11 圆锥曲线 理(教师版)
山东省2013届高三数学 各地市最新模拟理数试题精品分类汇编 专题11 圆锥曲线 理(教师版)一、选择题:1. (山东省济南市2013年1月高三上学期期末理7)已知椭圆方程22143x y +=,双曲线22221(0,0)x y a b a b-=>>的焦点是椭圆的顶点, 顶点是椭圆的焦点,则双曲线的离心率为D. 32.(山东省德州市2013年1月高三上学期期末校际联考理10)双曲线22221(0,0)x y a b a b-=>> 的左、右焦点分别为F 1,F 2,渐近线分别为12,l l ,点P 在第 一象限内且在1l 上,若2l ⊥PF 1,2l //PF 2,则双曲线的离心率是 ( ) AB .2CD【答案】B【解析】双曲线的左焦点1(,0)F c -,右焦点2(,0)F c ,渐近线1:b l y x a =,2:bl y x a=-,因为点P 在第一象限内且在1l 上,所以设000(,),0P x y x >,因为2l ⊥PF 1,2l //PF 2,所以12PF PF ⊥,即1212OP F F c ==,即22200x y c +=,又00by x a=,代入得22200()b x x c a +=,解得00,x a y b ==,即(,)P a b 。
所以1PF bk a c=+,2l 的斜率为b a -,因为2l ⊥PF1,所以()1b ba c a ⨯-=-+,即2222()b a a c a ac c a =+=+=-,所以2220c ac a --=,所以220e e --=,解得2e =,所以双曲线的离心率2e =,所以选B.3.(山东省淄博市2013届高三上学期期末理8)已知双曲线()0,012222>>=-b a by a x 的一条渐近线的斜率为2,且右焦点与抛物线x y 342=的焦点重合,则该双曲线的离心率等于A .2B .3C .2D .234. (山东省济宁市2013届高三1月份期末测试理)抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是 A.78B.1516C.34D.05.(山东省枣庄三中2013届高三上学期1月阶段测试理)抛物线212y x =-的准线与双曲线22193x y -=的两渐近线围成的三角形的面积为B. 【答案】D【解析】抛物线212y x =-的准线为3x =,双曲线22193x y -=的两渐近线为3y x =和3y x =-,令3x =,分别解得12y y ==,所以三角形的低为(=,高为3,所以三角形的面积为132⨯= D.6.(山东省青岛一中2013届高三1月调研理)过抛物线x y 42=的焦点作一条直线与抛物线相交于B A ,两点,它们到直线2-=x 的距离之和等于5,则这样的直线 A .有且仅有一条 B .有且仅有两条 C .有无穷多条D .不存在7.(山东省实验中学2013届高三第一次诊断性测试理)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均与22:650C x y x +-+=相切,则该双曲线离心率等于A .5 B .2C .32D .58.(山东省实验中学2013届高三第三次诊断性测试理)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别为)0,(),0,21c F c F -(,若椭圆上存在点P 使1221sin sin F PF cF PF a ∠=∠,则该椭圆的离心率的取值范围为( ) A.(0,)12- B.(122,) C.(0,22) D.(12-,1)9.(山东省聊城市东阿一中2013届高三上学期期初考试)过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠= ,则椭圆的离心率为 ( )A .2 B .3 C .12 D .13二、填空题:10. (山东省济南市2013年1月高三上学期期末理15)若圆C 以抛物线24y x =的焦点为圆心,截此抛物线的准线所得弦长为6,则该圆的标准方程是 ;11. (山东省烟台市2013年1月高三上学期期末理15)设F 是抛物线C 1:24y x =的焦点,点A 是抛物线与双曲线C 2:22221(0,0)x y a b a b-=>>的一条渐近线的一个公共点,且AF x⊥轴,则双曲线的离心率为【解析】抛物线的焦点为(1,0)F .双曲线的渐近线为b y x a =±,不妨取by x a=,因为AF x ⊥,所以1A x =,所以2A y =±,不妨取(1,2)A ,又因为点(1,2)A 也在by x a=上,所以2b a=,即2b a =,所以22224b a c a ==-,即225c a =,所以25e =,即e =12. (山东省济宁市2013届高三1月份期末测试理13)已知双曲线的方程为221169x y -=,则双曲线的离心率是 .13.(山东省实验中学2013届高三第三次诊断性测试理)若焦点在x 轴上的椭圆1222=+my x 的离心率为21,则m = . 【答案】23【解析】因为焦点在x 轴上。
高三二轮复习:圆锥曲线(教师)
高三数学二轮复习——圆锥曲线的综合一、直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.二、有关弦的问题(1)有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.①斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形:|x2-x1|=x1+x22-4x1x2,|y2-y1|=y1+y22-4y1y2.②当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).(2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.三、圆锥曲线中的最值(1)椭圆中的最值F1、F2为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,P为椭圆的任意一点,B为短轴的一个端点,O 为坐标原点,则有 ①|OP |∈[b ,a ]. ②|PF 1|∈[a -c ,a +c ]. ③|PF 1|·|PF 2|∈[b 2,a 2]. ④∠F 1PF 2≤∠F 1BF 2. (2)双曲线中的最值F 1、F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有 ①|OP |≥a . ②|PF 1|≥c -a . (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有: ①|PF |≥p2.②A (m ,n )为一定点,则|PA |+|PF |有最小值. 小题一览例1、(2013·课标全国Ⅰ)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1D.x 218+y 29=1 答案 D 解析 设A (x 1,y 1)、B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b2=1x 22a 2+y22b 2=1运用点差法,所以直线AB 的斜率为k =b 2a 2,设直线方程为y =b 2a 2(x -3),联立直线与椭圆的方程得(a 2+b 2)x 2-6b 2x +9b 2-a 4=0, 所以x 1+x 2=6b 2a 2+b 2=2;又因为a 2-b 2=9,解得b 2=9,a 2=18. 例2、 (2013·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33B .-33C .±33D .-3答案 B解析 ∵S △AOB =12|OA ||OB |sin ∠AOB=12sin ∠AOB ≤12. 当∠AOB =π2时,S △AOB 面积最大.此时O 到AB 的距离d =22.设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0. 由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33).例3、 (2013·大纲全国)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( )A .[12,34]B .[38,34]C .[12,1]D .[34,1]答案 B解析 利用直线PA 2斜率的取值范围确定点P 变化范围的边界点,再利用斜率公式计算直线PA 1斜率的边界值. 由题意可得A 1(-2,0),A 2(2,0), 当PA 2的斜率为-2时,直线PA 2的方程式为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619.由点P 在椭圆上得点P ⎝ ⎛⎭⎪⎫2619,2419,此时直线PA 1的斜率k =38. 同理,当直线PA 2的斜率为-1时,直线PA 2方程为y =-(x -2), 代入椭圆方程, 消去y 化简得7x 2-16x +4=0,解得x =2或x =27.由点P 在椭圆上得点P ⎝ ⎛⎭⎪⎫27,127,此时直线PA 1的斜率k =34.数形结合可知,直线PA 1斜率的取值范围是⎣⎢⎡⎦⎥⎤38,34.例4、 (2012·四川)椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A 、B ,当△FAB的周长最大时,△FAB 的面积是________.答案 3解析 直线x =m 过右焦点(1,0)时,△FAB 的周长最大,由椭圆定义知,其周长为4a =8,此时,|AB |=2×b 2a =2×32=3,∴S △FAB =12×2×3=3.例5、(2012·北京)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点.其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为______.答案3解析 ∵y 2=4x 的焦点F (1,0), 又直线l 过焦点F 且倾斜角为60°, 故直线l 的方程为y =3(x -1),将其代入y 2=4x 得3x 2-6x +3-4x =0, 即3x 2-10x +3=0.∴x =13或x =3. 又点A 在x 轴上方,∴x A =3.∴y A =2 3.∴S △OAF =12×1×23= 3.综合题演练:题型一 圆锥曲线中的范围、最值问题例6、已知中心在原点的双曲线C 的右焦点为(2,0),实半轴长为3.(1)求双曲线C 的方程; (2)若直线l :y =kx +2与双曲线C 的左支交于A ,B 两点,求k 的取值范围;(3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,b ),求b 的取值范围. 审题破题 (2)直接利用判别式和根与系数的关系确定k 的范围;(3)寻找b 和k 的关系,利用(2)中k 的范围求解.解 (1)设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),由已知,得a =3,c =2,b 2=c 2-a 2=1,故双曲线方程为x 23-y 2=1.(2)设A (x A ,y A ),B (x B ,y B ),将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由题意,知⎩⎪⎪⎨⎪⎪⎧1-3k 2≠0,Δ=361-k 2>0,x A +x B=62k1-3k2<0,x A x B=-91-3k 2>0,解得33<k <1.所以当33<k <1时,直线l 与双曲线的左支有两个交点.(3)由(2),得x A +x B =62k1-3k 2,所以y A +y B =(kx A +2)+(kx B +2)=k (x A +x B )+22=221-3k 2,所以AB 中点P 的坐标为⎝ ⎛⎭⎪⎪⎫32k 1-3k 2,21-3k 2.设l 0的方程为y =-1k x +b ,将P 点的坐标代入l 0的方程,得b =421-3k 2,∵33<k <1,∴-2<1-3k 2<0,∴b <-22.∴b 的取值范围是(-∞,-22).反思归纳 求最值或求范围问题常见的解法有两种:(1)几何法.若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法.若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,这就是代数法.变式训练(2013·广东)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值. 解 (1)依题意知|c +2|2=322,c >0,解得c =1.所以抛物线C 的方程为x 2=4y . (2)由y =14x 2得y ′=12x , 设A (x 1,y 1),B (x 2,y 2),则切线PA ,PB 的斜率分别为12x 1,12x 2,所以切线PA 的方程为y -y 1=x 12(x -x 1),即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0.同理可得切线PB 的方程为x 2x -2y -2y 2=0, 又点P (x 0,y 0)在切线PA 和PB 上,所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0,所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0 的两组解, 所以直线AB 的方程为x 0x -2y -2y 0=0. (3)由抛物线定义知|AF |=y 1+1,|BF |=y 2+1, 所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1,联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y ,消去x 整理得y 2+(2y 0-x 20)y +y 20=0, ∴y 1+y 2=x 20-2y 0,y 1y 2=y 20,∴|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 20+x 20-2y 0+1=y 20+(y 0+2)2-2y 0+1=2y 20+2y 0+5 =2⎝⎛⎭⎪⎫y 0+122+92,∴当y 0=-12时,|AF |·|BF |取得最小值,且最小值为92.题型二 圆锥曲线中的定点、定值问题例7、(2012·福建)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上. (1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q , 证明以PQ 为直径的圆恒过y 轴上某定点.审题破题 (1)先求出B 点坐标,代入抛物线方程,可得p 的值;(2)假设在y 轴上存在定点M ,使得以线段PQ 为直径的圆经过点M ,转化为MP →·MQ →=0,从而判断点M 是否存在.(1)解 依题意,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12.因为点B (43,12)在x 2=2py 上,所以(43)2=2p ×12,解得p =2.故抛物线E 的方程为x 2=4y .(2)证明 方法一 由(1)知y =14x 2,y ′=12x . 设P (x 0,y 0),则x 0≠0,y 0=14x 20,且l 的方程为 y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20. 由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1得⎩⎪⎨⎪⎧x =x 2-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1. 设M (0,y 1),令MP →·MQ →=0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP →=(x 0,y 0-y 1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-1-y 1, 由MP →·MQ →=0,得x 20-42-y 0-y 0y 1+y 1+y 21=0,即(y 21+y 1-2)+(1-y 1)y 0=0.(*) 由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立, 所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1). 方法二 由(1)知y =14x 2,y ′=12x . 设P (x 0,y 0),则x 0≠0,y 0=14x 20, 且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20. 由⎩⎪⎨⎪⎧y =12x 0x -14x 2,y =-1得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1. 取x 0=2,此时P (2,1),Q (0,-1), 以PQ 为直径的圆为(x -1)2+y 2=2, 交y 轴于点M 1(0,1)、M 2(0,-1);取x 0=1,此时P ⎝ ⎛⎭⎪⎫1,14,Q ⎝ ⎛⎭⎪⎫-32,-1,以PQ 为直径的圆为⎝ ⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎫y +382=12564,交y 轴于点M 3(0,1)、M 4⎝⎛⎭⎪⎫0,-74.故若满足条件的点M 存在,只能是M (0,1).以下证明点M (0,1)就是所要求的点.因为MP →=(x 0,y 0-1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-2, 所以MP →·MQ →=x 20-42-2y 0+2=2y 0-2-2y 0+2=0.故以PQ 为直径的圆恒过y 轴上的定点M (0,1).反思归纳 定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量. 变式训练 已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b 2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等.(1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.(1)解 设椭圆的半焦距为c , 圆心O 到直线l 的距离d =61+1=3,∴b =5-3=2.由题意得⎩⎪⎨⎪⎧ca =33a 2=b 2+c2b =2,∴a 2=3,b 2=2.∴椭圆E 的方程为y 23+x 22=1.(2)证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程得⎩⎪⎨⎪⎧y =k x -x 0+y 0y 23+x22=1,消去y 得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0, ∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0, 整理得,(2-x 20)k 2+2kx 0y 0-(y 20-3)=0,设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2, 则k 1·k 2=-y 20-32-x 20,∵点P 在圆O 上,∴x 20+y 20=5,∴k 1·k 2=-5-x 20-32-x 20=-1.∴两条切线的斜率之积为常数-1. 题型三 圆锥曲线中的存在性问题例8、如图,椭圆的中心为原点O ,离心率e =22,且a 2c=22.(1)求该椭圆的标准方程;(2)设动点P 满足OP →=OM →+2ON →,其中M 、N 是椭圆上的点,直线OM 与ON 的斜率之积为-12.问:是否存在两个定点F 1,F 2,使得|PF 1|+|PF 2|为定值?若存在,求F 1,F 2的坐标;若不存在,说明理由.审题破题 (1)列方程组求出a 、c 即可;(2)由k OM ·k ON =-12先确定点M 、N 坐标满足条件,再根据OP →=OM →+2ON →寻找点P 满足条件:点P 在F 1、F 2为焦点的椭圆上. 解 (1)由e =c a=22,a 2c=22,解得a =2,c =2,b 2=a 2-c 2=2,故椭圆的标准方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2), 则由OP →=OM →+2ON →,得(x ,y )=(x 1,y 1)+2(x 2,y 2)=(x 1+2x 2,y 1+2y 2), 即x =x 1+2x 2,y =y 1+2y 2.因为点M 、N 在椭圆x 2+2y 2=4上,所以x 21+2y 21=4,x 22+2y 22=4, 故x 2+2y 2=(x 21+4x 22+4x 1x 2)+2(y 21+4y 22+4y 1y 2) =(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM ,ON 的斜率, 由题设条件知k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20. 所以P 点是椭圆x 2252+y 2102=1上的点,设该椭圆的左、右焦点为F 1、F 2,则由椭圆的定义|PF 1|+|PF 2|为定值,又因c =252-102=10,因此两焦点的坐标为F 1(-10,0),F 2(10,0).反思归纳 探究是否存在的问题,一般均是先假设存在,然后寻找理由去确定结论,如果真的存在,则能得出相应结论,如果不存在,则会由条件得出相互矛盾的结论. 变式训练 已知点P 是圆O :x 2+y 2=9上的任意一点,过P 作PD 垂直x 轴于D ,动点Q满足DQ →=23DP →.(1)求动点Q 的轨迹方程;(2)已知点E (1,1),在动点Q 的轨迹上是否存在两个不重合的两点M 、N ,使OE →=12(OM→+ON →)(O 是坐标原点),若存在,求出直线MN 的方程,若不存在,请说明理由. 解 (1)设P (x 0,y 0),Q (x ,y ),依题意,点D 的坐标为D (x 0,0), 所以DQ →=(x -x 0,y ),DP →=(0,y 0), 又DQ →=23DP →,故⎩⎪⎨⎪⎧x -x 0=0,y =23y 0,即⎩⎪⎨⎪⎧x 0=x ,y 0=32y ,因为P 在圆O 上,故有x 20+y 20=9, 所以x 2+⎝ ⎛⎭⎪⎫3y 22=9,即x 29+y 24=1,所以点Q 的轨迹方程为x 29+y 24=1. (2)假设椭圆x 29+y 24=1上存在不重合的两点M (x 1,y 1),N (x 2,y 2)满足OE →=12(OM →+ON →),则E (1,1)是线段MN 的中点,且有⎩⎪⎨⎪⎧ x 1+x 22=1,y 1+y22=1,即⎩⎪⎨⎪⎧x 1+x 2=2,y 1+y 2=2.又M (x 1,y 1),N (x 2,y 2)在椭圆x 29+y 24=1上,所以⎩⎪⎨⎪⎧x 219+y 214=1,x 229+y224=1,两式相减,得x 1-x 2x 1+x 29+y 1-y 2y 1+y 24=0,所以k MN =y 1-y 2x 1-x 2=-49,故直线MN 的方程为4x +9y -13=0.所以椭圆上存在点M ,N 满足OE →=12(OM →+ON →),此时直线MN 的方程为4x +9y -13=0.例9、抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足OA →+OB →=(-4,-12).(1)求直线l 和抛物线的方程;(2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值. 规范解答解 (1)根据题意可设直线l 的方程为y =kx -2,抛物线的方程为x 2=-2py (p >0).由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.[2分] 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.所以OA →+OB →=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.故直线l 的方程为y =2x -2,抛物线的方程为x 2=-2y .[6分](2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2, y 0=-12x 20=-2,即P (-2,-2).此时点P 到直线l 的距离d =|2·-2--2-2|22+-12=45=455.[9分]由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |=1+k 2·x 1+x 22-4x 1x 2=1+22·-42-4·-4=410. 于是,△ABP 面积的最大值为12×410×455=82.[12分]评分细则 (1)由OA →+OB →=(-4,-12)得到关于p ,k 的方程组得2分;解出p 、k 的值给1分;(2)确定△ABP 面积最大的条件给1分;(3)得到方程x 2+4x -4=0给1分. 阅卷老师提醒 最值问题解法有几何法和代数法两种,本题中的曲线上一点到直线的距离的最值可以转化为两条平行线的距离;代数法求最值的基本思路是转化为函数的最值. 课后练习:1. 已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B ,若AM →=M B →,则p 等于( )A .1B .2C .3D .4 答案 B解析 如图,由AB 的斜率为3,知α=60°,又AM →=M B →,∴M 为AB 的中点.过点B 作BP 垂直准线l 于点P ,则∠ABP =60°,∴∠BAP =30°. ∴||BP =12||AB =||BM . ∴M 为焦点,即p 2=1,∴p =2.2. 已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为 ( ) A .-2B .-8116C .1D .0 答案 A解析 由已知得A 1(-1,0),F 2(2,0).设P (x ,y ) (x ≥1),则PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即PA 1→·PF 2→取最小值,最小值为-2.3. 设AB 是过椭圆x 2a 2+y 2b 2(a >b >0)中心的弦,椭圆的左焦点为F 1(-c,0),则△F 1AB 的面积最大为 ( ) A .bcB .abC .acD .b 2答案 A解析 如图,由椭圆对称性知O 为AB 的中点,则△F 1OB 的面积为△F 1AB 面积的一半.又OF 1=c ,△F 1OB 边OF 1上的高为y B ,而y B 的最大值为b .所以△F 1OB 的面积最大值为12cb .所以△F 1AB 的面积最大值为bc .4. 已知点A (-1,0),B (1,0)及抛物线y 2=2x ,若抛物线上点P 满足|PA |=m |PB |,则m 的最大值为( ) A .3B .2C.3D.2答案 C解析 据已知设P (x ,y ), 则有m =|PA ||PB |=x +12+y 2x -12+y 2=x +12+2x x -12+2x=x 2+4x +1x 2+1=1+4xx 2+1=1+4x +1x,据基本不等式有m = 1+4x +1x≤ 1+42x ×1x=3,即m 的最大值为 3.故选C.5. 直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为( )A .16B .116C .4D .14答案 B解析 由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y得x 2-3x -4=0,∴x A =-1,x D =4,直线3x -4y +4=0恰过抛物线的焦点F (0,1),∴|AF |=y A +1=54,|DF |=y D +1=5,∴|AB ||CD |=|AF |-1|DF |-1=116.故选B. 6. 过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是A .(14,94)B .(23,1)C .(12,23)D .(0,12)答案 C解析 点B 的横坐标是c ,故B 的坐标(c ,±b 2a),已知k ∈(13,12),∴B (c ,b 2a).又A (-a,0),则斜率k =b 2a c +a =b 2ac +a 2=a 2-c 2ac +a 2=1-e 2e +1.由13<k <12,解得12<e <23. 7. 已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D (如图所示),则|AB |·|CD |的值( )A .等于1B .最小值是1C .等于4D .最大值是4 答案 A解析 设直线l :x =ty +1,代入抛物线方程, 得y 2-4ty -4=0. 设A (x 1,y 1),D (x 2,y 2),根据抛物线定义|AF |=x 1+1,|DF |=x 2+1, 故|AB |=x 1,|CD |=x 2, 所以|AB |·|CD |=x 1x 2=y 214·y 224=y 1y 2216,而y 1y 2=-4,代入上式,得|AB |·|CD |=1.故选A.8. 设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c上存在P 使线段PF 1的中垂线过点F 2,则此椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎥⎤0,22B.⎝ ⎛⎦⎥⎥⎤0,33C.⎣⎢⎢⎡⎭⎪⎪⎫22,1D.⎣⎢⎢⎡⎭⎪⎪⎫33,1解析 设P ⎝ ⎛⎭⎪⎫a 2c ,y ,F 1P 的中点Q 的坐标为⎝ ⎛⎭⎪⎫b 22c ,y 2,当kQF 2存在时,则kF 1P =cya 2+c 2,kQF 2=cyb 2-2c 2,由kF 1P ·kQF 2=-1,得y 2=a 2+c 2·2c 2-b 2c 2,y 2≥0,但注意到b 2-2c 2≠0,即2c 2-b 2>0, 即3c 2-a 2>0,即e 2>13,故33<e <1.当kQF 2不存在时,b 2-2c 2=0,y =0, 此时F 2为中点,即a 2c-c =2c ,得e =33,综上,得33≤e <1,即所求的椭圆离心率的范围是⎣⎢⎢⎡⎭⎪⎪⎫33,1.9. 已知椭圆的焦点是F 1(-22,0)和F 2(22,0),长轴长是6,直线y =x +2与此椭圆交于A 、B 两点,则线段AB 的中点坐标是________.答案 ⎝ ⎛⎭⎪⎫-95,15解析 由已知得椭圆方程是x 29+y 2=1,直线与椭圆相交有⎩⎪⎨⎪⎧x 2+9y 2=9,y =x +2,则10x 2+36x +27=0,AB 中点(x 0,y 0)有x 0=12(x A +x B )=-95,y 0=x 0+2=15,所以,AB 中点坐标是⎝ ⎛⎭⎪⎫-95,15.10.点P 在抛物线x 2=4y 的图象上,F 为其焦点,点A (-1,3),若使|PF |+|PA |最小,则相应P 的坐标为________.答案 ⎝⎛⎭⎪⎫-1,14解析 由抛物线定义可知PF 的长等于点P 到抛物线准线的距离,所以过点A 作抛物线准线的垂线,与抛物线的交点⎝ ⎛⎭⎪⎫-1,14即为所求点P 的坐标,此时|PF |+|PA |最小.11. 斜率为3的直线l 过抛物线y 2=4x 的焦点且与该抛物线交于A ,B 两点,则|AB |=_______.答案 163解析 如图,过A 作AA1⊥l ′,l ′为抛物线的准线.过B 作BB 1⊥l ′, 抛物线y 2=4x 的焦点为F (1,0),过焦点F 作FM ⊥A 1A 交 A 1A 于M 点,直线l 的倾斜角为60°,所以|AF |=|AA 1|=|A 1M |+|AM |=2+|AF |·cos 60°,所以|AF |=4,同理得|BF |=43,故|AB |=|AF |+|BF |=163.12.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.答案 32 解析 (1)当直线的斜率不存在时,直线方程为x =4,代入y 2=4x ,得交点为(4,4),(4,-4),∴y 21+y 22=16+16=32.(2)当直线的斜率存在时,设直线方程为y =k (x -4),与y 2=4x 联立,消去x 得ky 2-4y -16k =0,由题意知k ≠0,则y 1+y 2=4k ,y 1y 2=-16.∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32>32.综合(1)(2)知(y 21+y 22)min =32.13.(2013·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A 、B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值. 解 (1)设F (-c,0),由c a=33,知a =3c .过点F 且与x 轴垂直的直线为x =-c , 代入椭圆方程有-c 2a 2+y 2b 2=1,解得y =±6b3, 于是26b 3=433,解得b =2,又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k x +1,x 23+y22=1消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.求解可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2 =6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.14.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程.(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由. 解 (1)∵e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2,∴椭圆方程为x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2.设椭圆上的点到点Q (0,2)的距离为d ,则d =x -02+y -22=x 2+y -22=3b 2-3y 2+y -22=-2y +12+3b 2+6,∴当y =-1时,d 取得最大值,d max =3b 2+6=3,解得b 2=1,∴a 2=3. ∴椭圆C 的方程为x 23+y 2=1.(2)假设存在点M (m ,n )满足题意,则m 23+n 2=1,即m 2=3-3n 2.设圆心到直线l 的距离为d ′,则d ′<1, d ′=|m ·0+n ·0-1|m 2+n 2=1m 2+n 2.∴|AB |=212-d ′2=21-1m 2+n 2.∴S △OAB =12|AB |d ′=12·21-1m 2+n 2·1m 2+n 2=1m 2+n 2⎝ ⎛⎭⎪⎫1-1m 2+n 2.∵d ′<1,∴m 2+n 2>1,∴0<1m 2+n 2<1,∴1-1m 2+n 2>0.∴S △OAB =1m 2+n 2⎝ ⎛⎭⎪⎫1-1m 2+n 2≤⎝ ⎛⎭⎪⎫1m 2+n2+1-1m 2+n 222=12, 当且仅当1m 2+n 2=1-1m 2+n 2,即m 2+n 2=2>1时,S △OAB 取得最大值12.由⎩⎪⎨⎪⎧m 2+n 2=2,m 2=3-3n 2得⎩⎪⎨⎪⎧m 2=32,n 2=12,∴存在点M 满足题意,M 点坐标为 ⎝ ⎛⎭⎪⎪⎫62,22,⎝ ⎛⎭⎪⎪⎫62,-22,⎝ ⎛⎭⎪⎪⎫-62,22或⎝ ⎛⎭⎪⎪⎫-62,-22,此时△OAB 的面积为12.。
2021-2022学年高二竞赛科创寒假空课4:圆锥曲线(二)(教师版)
2020级高二数学(Ⅰ)寒假拓展性课程(一)一、知识与方法梳理 1、双曲线的定义平面内与两个定点F 1,F 2的距离之差的绝对值等于非零常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M ||| ||MF 1-||MF 2=2a },||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0. (1)当a <c 时,点P 的轨迹是双曲线; (2)当a =c 时,点P 的轨迹是两条射线; (3)当a >c 时,点P 不存在. 2、双曲线的标准方程和几何性质p 的几何意义:焦点F 到准线l 的距离O (0,0)4、与焦点弦有关的常用结论设A (x 1,y 1),B (x 2,y 2).(1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角).(3)1|AF |+1|BF |为定值2p. (4)以AB 为直径的圆与准线相切.(5)以AF 或BF 为直径的圆与y 轴相切. 5、与抛物线有关的经典结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=p 24,y 1y 2=-p 2;(2)|AF |=p 1-cos α,|BF |=p1+cos α,弦长|AB |=x 1+x 2+p=2psin 2α(α为弦AB 的倾斜角);(3)1|F A |+1|FB |=2p; (4)以弦AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上.二、例题解析例1.已知椭圆C 与双曲线2212y x -=有公共焦点,且右顶点为()2,0N .(1)求椭圆C 的标准方程;(2)设直线l :y kx m =+与椭圆C 交于不同的A ,B 两点(A ,B 不是左右顶点),若以AB 为直径的圆经过点N .求证:直线过定点,并求出定点. 【答案】(1)2214x y +=;(2)证明过程见解析,定点为6(,0)5.【分析】(1)根据双曲线的焦点和椭圆的右顶点的定义进行求解即可;(2)根据圆直径的性质,结合一元二次方程根与系数的关系、平面向量数量积的性质和坐标表示公式进行求解即可. (1)双曲线2212y x -=,3,0),椭圆的右顶点为()2,0N , 设椭圆的标准方程为:22221(0)x y a b a b+=>>,所以2222,431a c b a c ===-=-=,因此椭圆的标准方程为:2214x y +=;(2)直线l 方程与椭圆方程联立, 得222221(14)84404x y k x kmx m y kx m ⎧+=⎪⇒+++-=⎨⎪=+⎩,设1122(,),(,)A x y B x y , 于是有:22222(8)4(14)(44)041km k m m k ∆=-+->⇒<+,2121222844,1414km m x x x x k k-+=-=++, 因为以AB 为直径的圆经过点N ,所以()()()()1122121202,2,0220NA NB NA NB x y x y x x y y ⊥⇒⋅=⇒--=⇒--+=, 即12121242()()()0x x x x kx m kx m -+++++=,化简得:221212(1)(2)()40k x x km x x m ++-+++=,而2121222844,1414km m x x x x k k-+=-=++, 所以有:22222448(1)(2)401414m kmk km m k k-+⋅--⋅++=++,化简得: 226516120(56)(2)05m km k m k m k m k ++=⇒++=⇒=-或 2m k =-,显然满足2241m k <+,当2m k =-时,2(2)y kx m y kx k y k x =+⇒=-⇒=-,此时直线l 过椭圆的右顶点不符合题意;当65m k =-时,66()55y kx m y kx k y k x =+⇒=-⇒=-,此时直线l 恒过点6(,0)5,综上所述:直线过定点,定点为6(,0)5.【点睛】关键点睛:利用圆直径的性质,结合平面向量垂直的坐标运算公式是解题的关键.例2.已知抛物线()2:20C y px p =>的焦点为F ,点0(,4)M x 在C 上,且52p MF =.(1)求点M 的坐标及C 的方程;(2)设动直线l 与C 相交于,A B 两点,且直线MA 与MB 的斜率互为倒数,试问直线l 是否恒过定点?若过,求出该点坐标;若不过,请说明理由.(1)M 的坐标为()4,4,C 的方程为24y x =;(2)直线l 过定点()0,4-. 【分析】(1)利用抛物线定义求出0x ,进而求出p 值即可得解.(2)设出直线l 的方程x my n =+,再联立直线l 与抛物线C 的方程,借助韦达定理探求出m 与n 的关系即可作答. (1)抛物线2:2C y px =的准线:2px =-,于是得0522p p MF x =+=,解得02x p =,而点M 在C 上,即2164p =,解得2p =±,又0p >,则2p =,所以M 的坐标为()4,4,C 的方程为24y x =. (2)设()()1122,,,A x y B x y ,直线l 的方程为x my n =+, 由24x my n y x=+⎧⎨=⎩消去x 并整理得:2440y my n --=,则()2160m n ∆=+>,124y y m +=,124y y n =-, 因此,121222121212444444144444444MA MB y y y y k k y y x x y y ----⋅=⋅=⋅=⋅=--++--, 化简得()121240y y y y ++=,即4n m =,代入l 方程得4x my m =+,即()40x m y -+=,则直线l 过定点()0,4-, 所以直线l 过定点()0,4-. 【点睛】思路点睛:直线与圆锥曲线相交,直线过定点问题,设出直线的斜截式方程,与圆锥曲线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题. 三、巩固练习 (一)、选择题:1.已知圆C :()2228x y ++=,O 为坐标原点,点A (2,0),点B 是圆C 上一动点,若线段AB 的中垂线与直线BC 相交于点D ,在点D 的轨迹上任取一点S ,过点S 作直线y =x 的垂线,垂足为N ,则△SON 的面积为( )A .12 BCD【答案】A 【分析】首先根据双曲线的定义可得点D 的轨迹方程为x 2-y 2=2,然后设S (p ,q ),可得N 的坐标为,22p q p q ++⎛⎫⎪⎝⎭,然后可得|||,||ON p q SN +SNO S . 【详解】点A 在圆C外,此时有||||||||DA DC CB r CA -===, 点D 的轨迹是以C ,A 为焦点的双曲线,点D 的轨迹方程为x 2-y 2=2,设S (p ,q ),则p 2-q 2=2,直线SN 的方程为()y q x p -=--,它与直线y =x 的交点N 的坐标为,22p q p q ++⎛⎫⎪⎝⎭,所以||||,||ON p q SN =+=2211||||242SNO p q S ON SN -=⨯⋅==,故选:A2.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过左焦点1F 的直线l 与双曲线C 的左支相交于A ,B 两点.若线段1AF 的垂直平分线经过2F ,且1132BF AF =,则双曲线C 的离心率为( ) ABC .43D .75【答案】D设122F F c =,线段1AF 中点为H ,根据题意可得212AF F F =,2F H AB ⊥,分别求出22,,,AF AH BF BH ,再根据2F H 为两个直角三角形的公共边,构造齐次式,从而可得出答案.【详解】解:设122F F c =,因为线段1AF 的垂直平分线经过2F ,所以2122AF F F c ==,则由双曲线的定义知122AF c a =-, 因为1132BF AF =,所以()11332AF B c a F ==-,所以2123BF a BF c a =+=-, 设线段1AF 中点为H ,则2F H AB ⊥,AH c a =-,()4BH c a =-, 则222222AF AH BF BH -=-,即()()()22224316c c a c a c a --=---, 整理得2251270c ac a -+=,等式两边同除以2a 得251270e e -+=,解得75e =或1e =(舍去). 故选:D .3.矿山爆破时,在爆破点处炸开的矿石的运动轨迹可看作是不同的抛物线,根据地质、炸药等因素可以算出这些抛物线的范围,这个范围的边界可以看作一条抛物线,叫“安全抛物线”,如图所示.已知某次矿山爆破时的安全抛物线()2:240E x py p =-+>的焦点为3(0,)2F -,则这次爆破时,矿石落点的最远处到点F 的距离为( )A .32B .2 C.D .52【答案】D 【分析】根据给定条件求出抛物线E 的顶点,结合抛物线的性质求出p 值即可计算作答. 【详解】依题意,抛物线E 的顶点坐标为2(0,)p,则抛物线的顶点到焦点F 的距离为2322p p =+,p >0,解得4p =,于是得抛物线E 的方程为284x y =-+,由0y =得,2x =±,即抛物线E 与x 轴的交点坐标为()2,0M ±,因此,5||2MF =, 所以矿石落点的最远处到点F 的距离为52.故选:D 4.如图,抛物线2:4C y x =的焦点为F ,直线l 与C 相交于A ,B 两点,l 与y 轴相交于E 点.已知||7,||3AF BF ==,记AEF 的面积为1,S BEF 的面积为2S ,则( )A .122S S =B .1223S S =C .123S S =D .1234S S = 【答案】C 【分析】分别过点A ,B 作y 轴的垂线,垂足为11,A B ,利用三角形相似结合抛物线的定义求解. 【详解】解:抛物线C 的准线方程为1x =-,分别过点A ,B 作y 轴的垂线,垂足为11,A B ,则11211||||||171231||||131||2AE h AA S AE AF S BE BB BF BE h ⋅--======--⋅, 所以123S S =. 故选:C .5.已知F 是抛物线C :22y px =()0p >的焦点,直线l 与抛物线C 相交于P ,Q 两点,满足23PFQ π∠=,记线段PQ 的中点A 到抛物线C 的准线的距离为d ,则dPQ的最大值为( ) A .3 BCD .13【答案】C 【分析】设||,||PF m QF n ==,过点P ,Q 分别作抛物线的准线的垂线,垂足分别为','P Q ,进而得|'|'22PP QQ m nd ++==,再结合余弦定理得222||PQ m n mn =++,进而根据基本不等式求解得22111||34(1)4d PQ ≤=⨯-. 【详解】解:设||,||PF m QF n ==,过点P ,Q 分别作抛物线的准线的垂线,垂足分别为','P Q , 则','PP m QQ n ==,因为点A 为线段PQ 的中点,所以根据梯形中位线定理得点A 到抛物线C 的准线的距离为|'|'22PP QQ m nd ++==, 因为23PFQ π∠=, 所以在PFQ △中,由余弦定理得222222||2cos3PQ m n mn m n mn π=+-=++, 所以22222222()()1||4()4()41()d m n m n PQ m n mn mn m n mn m n ++===++⎡⎤⎡⎤+-⎣⎦-⎢⎥+⎣⎦,又因为2()4m n mn +≥,所以21()4mn m n ≤+,当且仅当m n =时等号成立, 所以22111||34(1)4d PQ ≤=⨯-,故d PQ ≤所以d PQ故选:C 【点睛】本题考查抛物线的定义,直线与抛物线的位置关系,余弦定理,基本不等式,考查运算求解能力,是中档题.本题解题的关键在于根据题意,设||,||PF m QF n ==,进而结合抛物线的定于与余弦定理得2m nd +=, 222||PQ m n mn =++,再求最值.6.抛物线1C :()220x py p =>与双曲线2C :223x y λ-=有一个公共焦点F ,过2C上一点()4P 向1C 作两条切线,切点分别为A 、B ,则AF BF ⋅=( ) A .49 B .68 C .32 D .52 【答案】A 【分析】将P 坐标代入双曲线方程求得双曲线的方程,进一步求得抛物线的方程中的参数p ,利用导数几何意义求得两切线的方程,利用韦达定理求得两根之和,两根之积,利用抛物线的定义,将A ,B 到焦点的距离转化为到准线的距离,表示为A ,B 的纵坐标的关系式,求得|AF ||BF |关于A ,B 纵坐标的表达式. 【详解】由P 在双曲线上,将P点坐标代入双曲线的方程,(22343λ=-⨯=-,∴双曲线的方程为2213x y -=,双曲线的焦点在y 轴上,221,3,a b ==∴2224c a b =+=,∴2c =,双曲线的焦点坐标为()0,2,抛物线22x py =的焦点坐标为0,2p ⎛⎫⎪⎝⎭,∵抛物线与双曲线的焦点重合,∴22p=,∴抛物线的准线为2y =-,4p =,抛物线的方程为28x y =,即218y x =,14y x '=,设()()1122,,,A x y B x y ,切线PA ,PB 的斜率分别为1211,44x x ,切线方程分别为()()11122211,,44y y x x x y y x x x -=--=-将P 的坐标及21118y x =,22218y x =代入,并整理得211320x -+=,222320x -+=, 可得12,x x为方程2320x -+=的两个实数根,由韦达定理得121232,x x x x =+=()()()()222221212121211112222488644AF BF y y x x x x x x ⎛⎫⎛⎫=++=++=+++ ⎪⎪⎝⎭⎝⎭=()()(222212121211112432232449644644x x x x x x ⎡⎤⎡⎤++-+=⨯+-⨯+=⎢⎥⎣⎦⎣⎦,故选:A . 【点睛】本题考查双曲线与抛物线的方程和性质,考查利用导数研究切线问题,关键是设而不求思想和韦达定理的灵活运用.7.设12,F F 是双曲线224x y -=的两个焦点,P 是双曲线上任意一点,过1F 作12F PF ∠平分线的垂线,垂足为M ,则点M到直线0x y +-的距离的最大值是( ). A .4 B .5 C .6 D .3 【答案】A 【分析】根据双曲线的对称性,不妨设点P 在双曲线的右支上,延长1F M 交2PF 于N ,进而得到1||||PF PN =,结合双曲线的定义可知24NF =,设()00,M x y ,根据题意得到点N 的坐标,于是得到点M 的轨迹方程,最后求得答案. 【详解】双曲线的方程为:22144x y -=,可得28c c =⇒=()()12,F F -,设()00,M x y ,不妨设点P 在双曲线的右支上,延长1F M 交2PF 于N,则()002N x y +.由题意,1||||PF PN =,由双曲线的定义:12||||24PF PF a -==,则24NF =,于是,220044x y =⇒+=,即点M 在以原点为圆心,2为半径的圆上,而圆心(0,0)到直线0x y +-2=,该直线与圆相切,则点M 到该直线的距离的最大值为:2+2=4. 故选:A.8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12F F 、,过1F 作一条渐近线的垂线,垂足为点A ,与另一渐近线交于点B ,若113F B AF =,则C 的离心率为() ABC D .2【答案】B 【分析】根据题意设出直线AB 的方程,然后分别联立直线方程求解出,A B 坐标,根据向量共线对应的纵坐标关系求解出,a c 的关系,则离心率可求. 【详解】不妨设过1F 的直线AB 与b y x a =-垂直,所以():aAB y x c b=+,因为()b y x a a y x c b ⎧=-⎪⎪⎨⎪=+⎪⎩,所以2a x c ab yc ⎧=-⎪⎪⎨⎪=⎪⎩,所以2,a ab A c c⎛⎫- ⎪⎝⎭,又因为()b y x a a y x c b ⎧=⎪⎪⎨⎪=+⎪⎩,所以22222a c xb a abc y b a ⎧=⎪⎪-⎨⎪=⎪-⎩,所以22222,a c abc B b a b a ⎛⎫ ⎪--⎝⎭, 又因为113F B AF =,所以3B A y y =-,所以223abc abbc=-⋅,所以()2223a b c -=,所以2232a c =,所以e =故选:B. 【点睛】方法点睛:求解双曲线离心率的值或范围的常用方法:(1)根据双曲线的方程直接求解出,a c 的值,从而求解出离心率;(2)构造关于,a c 的齐次方程,求解出ca的值,从而离心率可知;(3)根据离心率的定义以及双曲线的定义求解离心率;(4)利用双曲线及图形的几何性质构建关于e 的不等式,从而e 的范围可求.9.(多选题)已知双曲线C 的方程为221,,916x y A B -=两点分别是双曲线C 的左,右顶点,点P 是双曲线C 上任意一点(与,A B 两点不重合),记直线,PA PB 的斜率分别为12,k k ,则( ) A .双曲线C 的焦点到渐近线的距离为4B .若双曲线C 的实半轴长,虚半轴长同时增加相同的长度(0)m m >,则离心率变大 C .12k k ⋅为定值D .存在实数t 使得直线53y x t =+与双曲线左,右两支各有一个交点【答案】AC 【分析】A 选项,求出渐近线方程,利用点到直线距离公式求出焦点到渐近线距离;B 选项,把实半轴长,虚半轴长同时增加相同的长度(0)m m >后的离心率和变化前的离心率均求出来,用作差法进行比较即可;C 选项,求出1k ,2k 相乘是否是定值;D 选项,把直线斜率与渐近线斜率相比,数形结合得到结果. 【详解】对于A ,因为双曲线C 的一个焦点()5,0F ,渐近线方程化为430x y ±=,∴焦点F 到渐近线的距离为4d ==,故A 正确;对于B ,双曲线C 的离心率53e =,若C 的实半轴长,虚半轴长同时增加相同的长度(0)m m >,则离心率5e 3c m ma m m ++'==++,又()()()()3553552e e 0333333m m m m m m m +-++-'-=-==<+++,所以e e '<,即离心率变小,故B 错误; 对于选项C ,()()()3,0,3,0,,A B P x y - 12,33y y k k x x ==+-,2122339y y y k k x x x ∴⋅=⋅=+--,又点P 在双曲线上, 221916x y ∴-=, ()22216916199x x y -⎛⎫∴=-= ⎪⎝⎭,()2212216916999x y k k x -∴⋅=⋅=-(定值),故C 正确; 对于D ,双曲线C 的渐近线方程为43y x =±,5433>.根据双曲线图象可知直线53y x t =+若与双曲线C 有两个交点,这两个交点必在双曲线的同一支上,故D 错误; 故选:AC10.(多选题)已知P 为抛物线C :()220y px p =>上的动点,()4,4Q -在抛物线C 上,过抛物线C 的焦点F 的直线l 与抛物线C 交于A ,B 两点,()3,2M -,()1,1N -,则( ) A .PM PF +的最小值为4B .若线段AB 的中点为M ,则NAB △C .若NA NB ⊥,则直线l 的斜率为2D .过点()1,2E 作两条直线与抛物线C 分别交于点G ,H ,且满足EF 平分GEH ∠,则直线GH 的斜率为定值 【答案】ACD 【分析】先求出抛物线的方程24y x =,利用抛物线的定义转化即可求出最小值可判断A ;由直线与抛物线相交的弦长公式及点到直线的距离公式即可判断B ;设直线l :1x my =+,与抛物线的方程联立,结合韦达定理及0NA NB ⋅=即可判断C ;将已知转化为0EG EH k k +=结合两点连线的斜率公式即可得判断D. 【详解】由()4,4Q -在抛物线C 上,得2p =,抛物线C 的方程为24y x =,()1,0F . 对于A ,过点P 作抛物线的准线1x =-的垂线PD ,垂足为D , 由抛物线的定义知PM PF PM PD DM +=+≥,即M ,P ,D 三点共线时,PM PF +取得最小值,为314+=,故A 正确. 对于B ,因为()3,2M -为AB 的中点,所以6A B x x +=,28A B AB x x =++=, 求得直线l 的方程为1y x =-+,则点N 到直线l的距离d ==则12NAB S AB d =⋅=△B 错误; 对于C ,易知直线l 的斜率不为0,设直线l 的方程为1x my =+,代入24y x =,得2440y my --=,设()11,A x y ,()22,B x y ,则124y y m +=,124y y =-,()()11111,12,1NA x y my y =+-=+-,同理可得()222,1NB my y =+-,所以()()()()12122211NA NB my my y y ⋅=+++--()()()212121215m y y m y y =++-++()()()222414215441210m m m m m m =-++-+=-+=-=,解得12m =,所以直线l 的斜率为12m=,故C 正确.对于D ,易知点()1,2E 在抛物线上且EF x ⊥轴.设233,4y G y ⎛⎫ ⎪⎝⎭,244,4y H y ⎛⎫⎪⎝⎭.易知直线EG ,EH 的斜率存在,323324214EG y k y y -==+-,同理442EH k y =+. 因为EF 平分GEH ∠,EF x ⊥轴,所以0EG EH k k +=,即3444022y y +=++, 直线34220y y +++=,所以344y y +=-,直线GH 的斜率342234344144y y k y y y y -===-+-为定值,故D 正确. 故选:ACD(二) 、填空题11.设P 是抛物线y 2=4x 上的一个动点,F 是抛物线y 2=4x 的焦点,若B (3,2),则|PB |+|PF |的最小值为________.【答案】4【分析】根据抛物线的定义知|PB |+|PF |可转化为P 到准线的距离与|PB |的和,结合图象即可求解.【详解】过点B 作BQ 垂直准线于点Q ,交抛物线于点P 1,如图,则|P 1Q |=|P 1F |.则有|PB |+|PF |≥|P 1B |+|P 1Q |=|BQ |=4,即|PB |+|PF |的最小值为4.故答案为:412.已知抛物线:()220y px p => ,焦点为F ,若A B 、在抛物线上且在第一象限,2,4,AF BF ==3AB =,求直线AB 的斜率为________.【分析】设AB 的斜率为k ,根据抛物线的定义以及弦长公式建立方程即可求解.【详解】设1122(,),(,)A x y B x y 则由于AB 的斜率存在,设AB 的斜率为k .,A B ,都在x 轴上方,由题意知0k >, 由抛物线定义12,22pp AF x BF x =+=+ 则112222242p x x x p x ⎧+=⎪⎪⇒-=⎨⎪+=⎪⎩,由弦长公式12A B x =-所以12332AB x k -=⇒13.双曲线()22:10,0C mx ny m n -=>>的虚轴长为1,两条渐近线方程为y =,双曲线C 上有两个点D 、E ,直线OD 和OE 的斜率之积为1,则2211OE OD+=_________. 【答案】8【分析】根据已知条件求得双曲线C 的方程为221241x y -=,设直线OD 的方程为y kx =,其中k ≠且k ≠0k ≠,将直线OD 的方程与双曲线C 的方程联立,求得2OD ,进一步可得出2OE ,由此可求得结果.【详解】由题意可知,双曲线C 的焦点在x 轴上,且21b =,则1b =, 该双曲线的渐近线方程为b y x a =±=,则a ==, 所以,双曲线C的方程为22111124x y -=,即221241x y -=. 设直线OD 的方程为y kx =,其中k ≠k ≠0k ≠, 联立221241y kx x y =⎧⎨-=⎩,可得221124D x k =-, 所以,()2222211124D k OD k x k +=+=-,则22222111412412k k OE k k⎛⎫+ ⎪+⎝⎭==--, 因此,222221112412481k k k OE OD -+-+==+. 故答案为:8.14.已知双曲线E :22221x y a b-=(0a >,0b >)的左、右焦点分别为1F ,2F ,过原点的直线与E 的左、右两支分别交于B ,A 两点,直线2AF 交双曲线E 于另一点C (A ,C 在2F 的两侧).若222F C AF =,且260BF C ∠=,则双曲线E 的渐近线方程为______. 【答案】y = 【分析】连接1AF ,1BF ,1CF ,由双曲线的对称性得四边形12AF BF 是平行四边形,令12AF F B m ==,2AF n =,则22CF n =,结合双曲线的定义可得122CF a n =+,在1F AC △中,由余弦定理可得,m n 的关系,得到,m n 与a 的关系,进而在12F AF 中利用余弦定理可得,a c 的关系,进而求解. 【详解】 连接1AF ,1BF ,1CF ,如图所示:由双曲线的对称性得四边形12AF BF 是平行四边形,所以21AF F B =,令12AF F B m ==,2AF n =,22CF n =,由双曲线的定义,得12122CF CF AF AF a -=-=,所以122CF a n =+,在1F AC △中,由260BF C ∠=及余弦定理得: ()2221923222n m n n m a -⨯⨯=++, 代入2a m n =-化简可得85m n =,又2a m n =-得103n a =,163m a =. 在12F AF 中,2222cos604m n m n c +-⋅⋅=, 即2219649a c =,可得73c a =, ∴73c a =,b =, 所以E的渐近线方程为y =.故答案为:y = 【点睛】本题考查双曲线的几何性质和渐近线,涉及余弦定理的运用,双曲线的定义的运用,关键是利用双曲线的对称性,定义,和余弦定理得到,a c 的关系.属中档题.(三)、解答题15.设双曲线22221x y a b-=,其虚轴长为(1)求双曲线C 的方程;(2)过点()3,1P 的动直线与双曲线的左右两支曲线分别交于点A 、B ,在线段AB 上取点M 使得AM AP MB PB =,证明:点M 落在某一定直线上.【答案】(1)22212y x -= (2)证明见解析【分析】(1)依题意可得2b,c a =222+c a b ,即可求出22,a b ,即可得解;(2)设点M ,A ,B 的坐标分别为(),x y ,()11,x y ,()22,x y ,且123x x <<,依题意可得112233x x x x x x--=---,设直线l 的方程为()13y k x -=-,联立直线与椭圆方程,消元、列出韦达定理,代入整理即可得解;(1) 解:设双曲线22221x y a b-=,其虚轴长为∴2b =,c e a=∵222c a b =+, ∴22b =,212a =,∴双曲线C 的方程为22212y x -=. (2)解:设点M ,A ,B 的坐标分别为(),x y ,()11,x y ,()22,x y ,且123x x <<, ∵AM AP MB PB=,∴112233x x x x x x --=---, 即()()121212632x x x x x x x -+=+-⎡⎤⎣⎦,①设直线l 的方程为()13y k x -=-,②将②代入22212y x -=中整理,得()()22224629630k x k k x k k -+--+-=, ∴2122264k k x x k -+=-,21229634k k x x k -+-=-,代入①, 整理可得,得()1233x k x -=-,联立②消k 得,1220x y --=∴点M 落在某一定直线1220x y --=上.16.椭圆2222:1(0)x y C a b a b +=>>与抛物线2x y =有一个公共焦点且经过点P ⎛ ⎝⎭. (1)求椭圆C 的方程及其离心率;(2)直线:l y kx t =+与椭圆C 相交于M ,N 两点,O 为原点,是否存在点R 满足1OR =,0OR MR NR ++=,若存在,求出t 的取值范围,若不存在,请说明理由【答案】(1)22:14x C y +=,e =(2)存在,t <或t >. 【分析】(1)由题意,椭圆的c =P ⎛ ⎝⎭,联立即得解2a =,1b =,再由c e a =即可得离心率; (2)由题意,R 为OMN 的重心,将直线与椭圆联立,借助韦达定理可得 ()()2282,341341tk t R k k ⎛⎫ ⎪- ⎪++⎝⎭,且R 在圆221x y +=上,代入可得 ()()2222914344141t k k =⋅-++,由0∆>可得,2241t k <+,代入可得2528k >,结合k 的范围可得解. 【详解】(1)由题意,抛物线的标准方程为2y =-,∴抛物线焦点坐标为(即在椭圆中c =223a b -=,将点P ⎛ ⎝⎭代入曲线C 的方程, 得221314a b+= 由0a b >>得24a =,2a ∴=,1b =,则椭圆C 的方程为22:1x C y += 则椭圆的离心率c e a ==(2)存在符合要求的点R .直线:l y kx t =+与椭圆C 相交于M ,N 两点,联立方程2214x y y kx t ⎧+=⎪⎨⎪=+⎩,整理得()222418440k x tkx t +++-= 设M ,N 两点坐标为()11,M x y ,()22,N x y ,则122841tk x x k +=-+,122241t y y k +=+ ()()()222222641614116410k t t k k t ∆=--+=+->,得2241t k <+∵点R 满足0OR MR NR ++=且||1OR =,OMN ∴的重心R 在圆221x y +=上,33O M N O M N R R x x x y y y x y ++++== ()()2282,341341tk t R k k ⎛⎫ ⎪∴- ⎪++⎝⎭, ()()22222226441941941t k t k k ∴+=++,即()22224194161k t k +=⋅+, 2241t k <+, ()()2222941414161k k k +∴<++,即()()229414161k k +<+,2528k ∴>,212417k +> ()()()()()22222222224199191434161444413414141k t k k k k k +∴=⋅=⋅=⋅++--+++, 令2170,4112s k ⎛⎫=∈ ⎪+⎝⎭, 则221340,16s s ⎛⎫-+∈ ⎪⎝⎭,2116,3421s s ⎛⎫∴∈+∞ ⎪-+⎝⎭ 则229112,4347t s s ⎛⎫=⋅∈+∞ ⎪-+⎝⎭,t ∴<t >。
圆锥曲线之----双曲线专题(附答案)
圆锥曲线之----双曲线专题1. 设F 1,F 2分别是双曲线x 2a2−y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得∠F 1PF 2=60°,|OP|=3b(O 为坐标原点),则该双曲线的离心率为( )A. 43B. 2√33C. 76D. √426【答案】D【解析】【分析】本题考查双曲线的定义与余弦定理的应用,得到a 2与c 2的关系是关键,也是难点,考查分析问题,解决问题的能力,属于中档题.利用双曲线的定义与余弦定理可得到a 2与c 2的关系,从而可求得该双曲线的离心率. 【解答】解:设该双曲线的离心率为e ,依题意,||PF 1|−|PF 2||=2a , ∴|PF 1|2+|PF 2|2−2|PF 1|⋅|PF 2|=4a 2,不妨设|PF 1|2+|PF 2|2=x ,|PF 1|⋅|PF 2|=y , 上式为:x −2y =4a 2,① ∵∠F 1PF 2=60°, ∴在△F 1PF 2中,由余弦定理得,|F 1F 2|2=|PF 1|2+|PF 2|2−2|PF 1|⋅|PF 2|⋅cos60°=4c 2,② 即x −y =4c 2,②又|OP|=3b ,PF 1⃗⃗⃗⃗⃗⃗⃗ +PF 2⃗⃗⃗⃗⃗⃗⃗ =2PO ⃗⃗⃗⃗⃗ ,∴PF 1⃗⃗⃗⃗⃗⃗⃗ 2+PF 2⃗⃗⃗⃗⃗⃗⃗ 2+2|PF 1⃗⃗⃗⃗⃗⃗⃗ |⋅|PF 2⃗⃗⃗⃗⃗⃗⃗ |⋅cos60°=4|PO ⃗⃗⃗⃗⃗ |2=36b2, 即|PF 1|2+|PF 2|2+|PF 1|⋅|PF 2|=36b 2,即x +y =36b 2,③由②+③得:2x =4c 2+36b 2, ①+③×2得:3x =4a 2+72b 2, 于是有12c 2+108b 2=8a 2+144b 2, ∴c 2a =76, ∴e =ca =√426. 故选D .2. 过双曲线x 2a2−y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 2的切线,切点为E ,延长FE 交双曲线于点P ,O 为坐标原点,若OE ⃗⃗⃗⃗⃗=12(OF ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ ),则双曲线的离心率为( )A. 1+√52B. √52C. √5D. 1+√32【答案】C【解析】【分析】本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,考查双曲线的定义,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.设F′为双曲线的右焦点,由题设知|EF|=b ,|PF|=2b ,|PF′|=2a ,再由|PF|−|PF′|=2a ,知b =2a ,由此能求出双曲线的离心率. 【解答】解:∵|OF|=c ,|OE|=a ,OE ⊥EF ,∴|EF|=b , 设F′为双曲线的右焦点,∵OE ⃗⃗⃗⃗⃗ =12(OF ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ ),则E 为PF 的中点,OE 为△FPF′的中位线,∴|PF|=2b ,|PF′|=2a ,∵|PF|−|PF′|=2a ,∴b =2a , ∴e =√1+(ba )2=√5, 故选:C3. 已知F 1,F 2分别是双曲线y 2a 2−x 2b 2=1(a,b >0)的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆内,则双曲线离心率的取值范围是( ) A. (1,2) B. (2,+∞) C. (1,√2) D. (√2,+∞) 【答案】A【解析】解:如图1,不妨设F 1(0,c),F 2(0,−c),则过F 1与渐近线y =ab x 平行的直线为y =ab x +c , 联立{y =a b x +cy =−a b x 解得{x =−bc2a y =c 2即M(−bc 2a ,c2) 因M 在以线段F 1F 2为直径的圆x 2+y 2=c 2内, 故(−bc 2a )2+(c2)2<c 2,化简得b 2<3a 2,即c 2−a 2<3a 2,解得c a <2,又双曲线离心率e =ca >1,所以双曲线离心率的取值范围是(1,2).故选:A .不妨设F 1(0,c),F 2(0,−c),则过F 1与渐近线y =a b x 平行的直线为y =ab x +c ,联立直线组成方程组,求出M 坐标,利用点与圆的位置关系,列出不等式然后求解离心率即可. 本题考查直线与双曲线的位置关系的应用,双曲线的简单性质的应用,考查数形结合以及计算能力.4. 若双曲线E :x 2a2−y 2b 2=1(a >0,b >0)的一个焦点为F(3,0),过F 点的直线l 与双曲线E 交于A ,B 两点,且AB 的中点为P(−3,−6),则E 的方程为( )A. x 25−y 24=1B. x 24−y 25=1C. x 26−y 23=1D. x 23−y 26=1【答案】D【解析】解:由题意可得直线l 的斜率为k =k PF =0+63+3=1, 可得直线l 的方程为y =x −3, 代入双曲线E :x 2a 2−y 2b 2=1可得(b 2−a 2)x 2+6a 2x −9a 2−a 2b 2=0,设A(x1,y1),B(x2,y2),则x1+x2=6a2a2−b2,由AB的中点为P,可得6a2a2−b2=−6,即有b2=2a2,又a2+b2=c2=9,解得a=√3,b=√6,则双曲线的方程为x23−y26=1.故选:D.求出直线l的斜率和方程,代入双曲线的方程,化简可得x的二次方程,运用韦达定理和中点坐标公式,结合焦点坐标,可得a,b的方程组,解得a,b,进而得到双曲线的方程.本题考查双曲线的方程的求法,注意运用双曲线的焦点和联立方程组,运用韦达定理、中点坐标公式,考查运算能力,属于中档题.5.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1作圆x2+y2=a2的切线,交双曲线右支于点M,若∠F1MF2=45°,则双曲线的离心率为()A. √3B. 2C. √2D. √5【答案】A【解析】【分析】本题考查双曲线的离心率,考查双曲线的定义和三角形的中位线定理,考查运算能力,属于中档题.设切点为N,连接ON,作F2作F2A⊥MN,垂足为A,运用中位线定理和勾股定理,结合双曲线的定义,即可得到a,b的关系,则c=√a2+b2=√3a,进而得到离心率.【解答】解:设切点为N,连接ON,作F2作F2A⊥MN,垂足为A,由|ON|=a,且ON为△F1F2A的中位线,可得|F2A|=2a,|F1N|=√c2−a2=b,即有|F1A|=2b,在直角三角形MF2A中,可得|MF2|=2√2a,即有|MF1|=2b+2a,由双曲线的定义可得|MF1|−|MF2|=2b+2a−2√2a=2a,可得b=√2a,∴c=√a2+b2=√3a,∴e=ca=√3.故选:A .6. 已知F 1,F 2分别是双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,过F 2与双曲线的一条渐近线平行的直线交另一条渐近线于点M ,若∠F 1MF 2为锐角,则双曲线离心率的取值范围是( ) A. (1,√2) B. (√2,+∞) C. (1,2) D. (2,+∞) 【答案】D【解析】【分析】可得M ,F 1,F 2的坐标,进而可得MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ,MF 2⃗⃗⃗⃗⃗⃗⃗⃗ 的坐标,由MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ >0,结合abc 的关系可得关于ac 的不等式,结合离心率的定义可得范围.本题考查双曲线的离心率,考查学生解方程组的能力,属中档题. 【解答】解:联立{x 2a 2−y 2b2=1y =b a(x −c),解得{x =c 2y =−bc 2a,∴M(c 2,−bc2a ),F 1(−c,0),F 2(c,0), ∴MF 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−3c 2,bc 2a),MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =(c 2,bc2a ), 由题意可得MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ >0,即b 2c 24a 2−3c24>0,化简可得b 2>3a 2,即c 2−a 2>3a 2, 故可得c 2>4a 2,c >2a ,可得e =ca >2 故选D .7. 设双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线分别交双曲线左右两支于点M ,N ,连结MF 2,NF 2,若MF 2⃗⃗⃗⃗⃗⃗⃗⃗ ⋅NF 2⃗⃗⃗⃗⃗⃗⃗ =0,|MF 2⃗⃗⃗⃗⃗⃗⃗⃗ |=|NF 2⃗⃗⃗⃗⃗⃗⃗ |,则双曲线C 的离心率为( )A. √2B. √3C. √5D. √6【答案】B【解析】解:若MF 2⃗⃗⃗⃗⃗⃗⃗⃗ ⋅NF 2⃗⃗⃗⃗⃗⃗⃗ =0,|MF 2⃗⃗⃗⃗⃗⃗⃗⃗ |=|NF 2⃗⃗⃗⃗⃗⃗⃗ |,可得△MNF 2为等腰直角三角形,设|MF 2|=|NF 2|=m ,则|MN|=√2m , 由|MF 2|−|MF 1|=2a ,|NF 1|−|NF 2|=2a ,两式相加可得|NF 1|−|MF 1|=|MN|=4a ,即有m =2√2a ,在直角三角形HF 1F 2中可得4c 2=4a 2+(2a +2√2a −2a)2, 化为c 2=3a 2,即e=ca=√3.故选:B.由题意可得△MNF2为等腰直角三角形,设|MF2|=|NF2|=m,则|MN|=√2m,运用双曲线的定义,求得|MN|=4a,可得m,再由勾股定理可得a,c的关系,即可得到所求离心率.本题考查双曲线的定义、方程和性质,主要是离心率的求法,注意运用等腰直角三角形的性质和勾股定理,考查运算能力,属于中档题.8.已知双曲线x2a2−y2b2=1(a>0,b>0)的左,右焦点分别为F1,F2,点A在双曲线上,且AF2⊥x轴,若△AF1F2的内切圆半径为(√3−1)a,则其离心率为()A. √3B. 2C. √3+1D. 2√3【答案】A【解析】【分析】本题考查双曲线的离心率的求法,注意运用双曲线的定义和三角形的等积法,考查化简整理的运算能力,属于中档题.由题意可得A在双曲线的右支上,由双曲线的定义可得|AF1|−|AF2|=2a,设Rt△AF1F2内切圆半径为r,运用等积法和勾股定理,可得r=c−a,结合条件和离心率公式,计算即可得到所求值.【解答】解:如图:由点A在双曲线上,且AF2⊥x轴,可得A在双曲线的右支上,由双曲线的定义可得|AF1|−|AF2|=2a,设Rt△AF1F2内切圆半径为r,运用面积相等可得S△AF1F2=12|AF2|⋅|F1F2|=12r(|AF1|+|AF2|+|F1F2|),由勾股定理可得|AF2|2+|F1F2|2=|AF1|2,解得r=|AF2|+|F1F2|−|AF1|2=2c−2a2=c−a=(√3−1)a,从而可以得出c=√3a,则离心率e=ca=√3,故选A.9.已知O为坐标原点,双曲线x2−y2b2=1(b>0)上有一点P,过点P作两条渐近线的平行线,与两条渐近线的交点分别为A,B,若平行四边形PAOB的面积为1,则双曲线的离心率为()A. √17B. √15C. √5D. √3【答案】C【解析】解:由双曲线方程可得渐近线方程bx±y=0,设P(m,n)是双曲线上任一点,设过P平行于bx+y=0的直线为l,则l的方程为:bx+y−bm−n=0,l与渐近线bx−y=0交点为A,则A(bm+n2b ,bm+n2),|OA|=|bm+n2b|√1+b2,P点到OA的距离是:d=√b2+1,∵|OA|⋅d=1,∴|bm+n2b |√1+b2⋅bm−n√b2+1=1,∴b=2,∴c=√5,∴e=√5故选:C.求得双曲线的渐近线方程,设P(m,n)是双曲线上任一点,设过P平行于bx+y=0的直线为l,求得l的方程,联立另一条渐近线可得交点A,|OA|,求得P到OA的距离,由平行四边形的面积公式,化简整理,解方程可得b,求得c,进而得到所求双曲线的离心率.本题考查双曲线的离心率的求法,注意运用渐近线方程和两直线平行的条件:斜率相等,联立方程求交点,考查化简整理的运算能力,属于中档题.10.倾斜角为30°的直线l经过双曲线x2a2−y2b2=1(a>0,b>0)的左焦点F1,交双曲线于A、B两点,线段AB的垂直平分线过右焦点F2,则此双曲线的渐近线方程为()A. y=±xB. y=±12x C. y=±√32x D. y=±√52x【答案】A【解析】解:如图MF2为△ABF2的垂直平分线,可得AF2=BF2,且∠MF1F2=30°,可得MF2=2c⋅sin30°=c,MF1=2c⋅cos30°=√3c,由双曲线的定义可得BF1−BF2═2a,AF2−AF1=2a,即有AB=BF1−AF1=BF2+2a−(AF2−2a)=4a,即有MA=2a,AF2=√MA2+MF22=√4a2+c2,AF1=MF1−MA=√3c−2a,由AF2−AF1=2a,可得√4a2+c2−(√3c−2a)=2a,可得4a2+c2=3c2,即c=√2a,b=√c2−a2=a,则渐近线方程为y=±x.故选:A.由垂直平分线性质定理可得AF2=BF2,运用解直角三角形和双曲线的定义,求得AB= 4a,结合勾股定理,可得a,c的关系,进而得到a,b的关系,即可得到所求双曲线的渐近线方程.本题考查双曲线的方程和性质,主要是渐近线方程的求法,考查垂直平分线的性质和解直角三角形,注意运用双曲线的定义,考查运算能力,属于中档题.11. 已知双曲线x 2a 2−y2b 2=1(a >0,b >0)的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则该双曲线的离心率为( )A. √62B. √52C. 2√33D. √3【答案】B【解析】解:如图,不妨设直线l 的斜率为−ab ,∴直线l 的方程为y =−ab (x −c),联立{y =−a b (x −c)x 2a2−y 2b 2=1,得(b 2−a 2)c 2y 2−2ab 3cy +a 2b 4=0. ∴y =ab 3±a 2b 2(b 2−a 2)c.由题意,方程得(b 2−a 2)c 2y 2−2ab 3cy +a 2b 4=0的两根异号, 则a >b ,此时y A =ab 3+a 2b 2(b 2−a 2)c<0,y B =ab 3−a 2b 2(b 2−a 2)c>0.则ab 3+a 2b 2(a 2−b 2)c =3ab 3−a 2b 2(b 2−a 2)c,即a =2b .∴a 2=4b 2=4(c 2−a 2),∴4c 2=5a 2,即e =ca=√52. 故选:B .不妨设直线l 的斜率为−a b ,∴直线l 的方程为y =−ab (x −c),联立直线方程与双曲线方程,化为关于y 的一元二次方程,求出两交点纵坐标,由题意列等式求解. 本题考查双曲线的简单性质,考查计算能力,是中档题.12. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作圆x 2+y 2=a 2的切线,交双曲线右支于点M ,若∠F 1MF 2=45°,则双曲线的渐近线方程为( )A. y =±√2xB. y =±√3xC. y =±xD. y =±2x 【答案】A【解析】【分析】本题考查双曲线的渐近线方程,考查双曲线的定义和三角形的中位线定理,考查运算能力,属于中档题.设切点为N ,连接ON ,作F 2作F 2A ⊥MN ,垂足为A ,运用中位线定理和勾股定理,结合双曲线的定义,即可得到a ,b 的关系,进而得到所求渐近线方程. 【解答】解:设切点为N ,连接ON ,作F 2作F 2A ⊥MN ,垂足为A , 由|ON|=a ,且ON 为△F 1F 2A 的中位线,可得 |F 2A|=2a ,|F 1N|=√c 2−a 2=b , 即有|F 1A|=2b , 因为∠F 1MF 2=45°,所以在等腰直角三角形MF 2A 中,可得|MF 2|=2√2a , 即有|MF 1|=2b +2a ,由双曲线的定义可得|MF 1|−|MF 2|=2b +2a −2√2a =2a , 可得b =√2a ,则双曲线的渐近线方程为y =±√2x. 故选A .13. 已知点F 为双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的右焦点,直线x =a 与双曲线的渐近线在第一象限的交点为A ,若AF 的中点在双曲线上,则双曲线的离心率为( )A. √5B. 1+√2C. 1+√5D. −1+√5【答案】D【解析】解:设双曲线C :x 2a2−y 2b 2=1的右焦点F(c,0),双曲线的渐近线方程为y =ba x , 由x =a 代入渐近线方程可得y =b , 则A(a,b),可得AF 的中点为(a+c 2,12b),代入双曲线的方程可得(a+c)24a 2−14=1,可得4a 2−2ac −c 2=0, 由e =ca ,可得e 2+2e −4=0,解得e =√5−1(−1−√5舍去), 故选:D .设出双曲线的右焦点和渐近线方程,可得将交点A 的坐标,运用中点坐标公式,可得中点坐标,代入双曲线的方程,结合离心率公式,计算即可得到所求值.本题考查双曲线的离心率的求法,考查渐近线方程的运用,以及中点坐标公式,考查方程思想和运算能力,属于中档题.14. 已知双曲线C :x 2a 2−y2b 2=1(a >0,b >0),过左焦点F 的直线切圆x 2+y 2=a 2于点P ,交双曲线C 右支于点Q ,若FP⃗⃗⃗⃗⃗ =PQ ⃗⃗⃗⃗⃗ ,则双曲线C 的渐近线方程为( ) A. y =±x B. y =±2xC. y =±12xD. y =±√32x 【答案】B【解析】【分析】本题考查直线与双曲线的位置关系,考查双曲线的定义和渐近线方程,属于中档题. 由已知可得|OP |=a ,设双曲线的右焦点为F′,由P 为线段FQ 的中点,知|QF′|=2a ,|QF|=2b ,由双曲线的定义知:2b −2a =2a ,由此能求出双曲线C :x 2a −y 2b =1(a >0,b >0)的渐近线方程.【解答】解:∵过双曲线C :x 2a 2−y 2b 2=1(a >0,b >0),左焦点F 引圆x 2+y 2=a 2的切线,切点为P ,∴|OP |=a ,设双曲线的右焦点为F′, 由FP ⃗⃗⃗⃗⃗ =PQ ⃗⃗⃗⃗⃗ 可得,P 为线段FQ 的中点, ∴|QF′|=2|OP |=2a,|QF |=2|PF |=2b,,由双曲线的定义知:|QF |−|QF′|=2b −2a =2a , ∴b =2a . ∴双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x =±2x , 故选B .15. 已知F 为双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的右焦点.过点F 向C 的一条渐近线引垂线.垂足为A.交另一条渐近线于点B.若|OF|=|FB|,则C 的离心率是( )A. √62B. 2√33C. √2D. 2【答案】B【解析】【分析】 本题考查双曲线的简单几何性质,考查求双曲线性质的常用方程,考查数形结合思想,属于中档题.方法一:由双曲线的渐近线方程,利用点到直线的距离公式即可求得|AF|,分别求得|OB|,|根据勾股定理|OB|2=|OA|2+|AB|2,求得a 和b的关系,即可求得双曲线的离心率; 方法二:利用余弦定理求得:|OB|2=|OF|2+|FB|2−2|OF||FB|cos∠OFB =2c 2+2bc ,即可求得求得a 和b 的关系,即可求得双曲线的离心率;方法三:根据三角形的面积相等及渐近线方程求得A 点坐标,利用直角三角形的性质,即可求得a和b的关系,即可求得双曲线的离心率;方法四:求得双曲线的渐近线及AB的方程,联立即可求得A和B点坐标,根据等腰三角形的性质,即可求得a和b的值,即可求得双曲线的离心率.【解答】解:方法一:过F向另一条渐近线引垂线.垂足为D,双曲线的渐近线方程为y=±bax,则F(c,0)到渐近线的距离d=√a2+b2=b,即|FA|=|FD|=b,则|OA|=|OD|=a,|AB|=b+c,由△OFB为等腰三角形,则D为OB的中点,∴|OB|=2a,|OB|2=OA|2+|AB|2=a2+ (b+c)2.∴4a2=a2+(b+c)2,整理得:c2−bc−2b2=0,解得:c=2b,由a2=c2−b2,则2a=√3c,e=ca =2√33,故选B.方法二:过F向另一条渐近线引垂线.垂足为D,双曲线的渐近线方程为y=±bax,则F(c,0)到渐近线的距离d=√a2+b2=b,即|FA|=|FD|=b,则|OA|=|OD|=a,由△OFB为等腰三角形,则D为OB的中点,∴|OB|=2a由∠OFB=π−∠OFA,cos∠OFB=cos(π−∠OFA)=−cos∠OFA=−bc,由余弦定理可知:|OB|2=|OF|2+|FB|2−2|OF||FB|cos∠OFB=2c2+2bc,∴2c2+2bc=4a2,整理得:c2−bc−2b2=0,解得:c=2b,由a2=c2−b2,则2a=√3c,e=ca =2√33故选B.方法三:过F向另一条渐近线引垂线.垂足为D,双曲线的渐近线方程为y=±bax,则F(c,0)到渐近线的距离d=√a2+b2=b,即|FA|=|FD|=b,则|OA|=|OD|=a,由△OFB为等腰三角形,则D为OB的中点,∴|OB|=2a,根据三角形的面积相等,则A(a2c ,abc),∴在Rt△OAB中,2a=2×2×abc ,即c=2b,由a2=c2−b2,则2a=√3c,e=ca=2√33故选B.方法四:双曲线的一条渐近线方程为y=ba x,直线AB的方程为:y=−ab(x−2),{y=baxy=−ab(x−c),解得:{x=a2cy=abc,则A(a2c,abc),{y=−baxy=−ab(x−c),解得:{x=a2ca2−b2y=−abca2−b2,则B(a2ca2−b2,abca2−b2),由△OFB为等腰三角形,则D为OB的中点,则2×abc =abca2−b2,整理得:a2=3b2,∴e=c a=√1+b 2a =2√33, 故选:B .16. 已知双曲线x 2(m+1)2−y 2m 2=1(m >0)的离心率为√52,P 是该双曲线上的点,P 在该双曲线两渐近线上的射影分别是A ,B ,则|PA|⋅|PB|的值为( )A. 45B. 35C. 43D. 34【答案】A【解析】解:双曲线x 2(m+1)2−y 2m 2=1(m >0)的离心率为√52,可得e 2=c 2a 2=(m+1)2+m 2(m+1)2=54, 解得m =1,即双曲线的方程为x 24−y 2=1,渐近线方程为x ±2y =0, 设P(s,t),可得s 2−4t 2=4, 由题意可得|PA|⋅|PB|=√1+4⋅√1+4=|s 2−4t 2|5=45.故选:A .运用离心率公式,解方程可得m =1,求得渐近线方程,设P(s,t),可得s 2−4t 2=4,运用点到直线的距离公式,化简整理,即可得到所求值. 本题考查双曲线的方程和性质,主要是离心率和渐近线方程,考查点到直线的距离公式,化简整理的运算能力,属于中档题.17. 过双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 29的切线,切点为E ,延长FE 交双曲线右支于点P ,若FP⃗⃗⃗⃗⃗ =2FE ⃗⃗⃗⃗⃗ ,则双曲线的离心率为( ) A. √173B. √176C. √105D. √102【答案】A【解析】【分析】本题考查双曲线的离心率的求法,注意运用直线和圆相切的性质,以及双曲线的定义和中位线定理,勾股定理,考查化简整理的运算能力,属于中档题.由FP ⃗⃗⃗⃗⃗ =2FE ⃗⃗⃗⃗⃗ ,知E 为PF 的中点,令右焦点为F′,则O 为FF′的中点,则|PF′|=2|OE|=23a ,运用双曲线的定义可得|PF|=|PF′|+2a =83a ,在Rt △PFF′中,|PF|2+|PF′|2=|FF′|2,由此能求出离心率. 【解答】解:由若FP ⃗⃗⃗⃗⃗ =2FE⃗⃗⃗⃗⃗ ,可得E 为PF 的中点, 令右焦点为F′,O 为FF′的中点, 则|PF′|=2|OE|=23a ,由E 为切点,可得OE ⊥PF , 即有PF′⊥PF ,由双曲线的定义可得|PF|−|PF′|=2a , 即|PF|=|PF′|+2a =83a ,在Rt △PFF′中,|PF|2+|PF′|2=|FF′|2,即649a 2+49a 2=4c 2,即c =√173a ,则离心率e =c a =√173.故选A .18. 已知双曲线M :x 2a 2−y2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,|F 1F 2|=2c.若双曲线M 的右支上存在点P ,使a sin∠PF 1F 2=3csin∠PF 2F 1,则双曲线M 的离心率的取值范围为( )A. (1,2+√73) B. (1,2+√73] C. (1,2) D. (1,2]【答案】A【解析】解:由a sin∠PF 1F 2=3csin∠PF 2F 1,在△PF 1F 2中,由正弦定理可得PF 2sin∠PF 1F 2=PF1sin∠PF 2F1, 可得3c ⋅PF 2=a ⋅PF 1,且PF 1−PF 2=2a联立可得PF 2=2a 23c−a >0,即得3c −a >0,即e =ca >13,…①又PF 2>c −a(由P 在双曲线右支上运动且异于顶点), ∴PF 2=2a 23c−a >c −a ,化简可得3c 2−4ac −a 2<0, 即3e 2−4e −1<0,得2−√73<e <2+√73…②又e >1,③由①②③可得,e 的范围是(1,2+√73).故选:A .利用正弦定理及双曲线的定义,可得a ,c 的不等式,结合PF 2>c −a ,即可求出双曲线的离心率的取值范围.本题考查双曲线的离心率的取值范围,考查正弦定理及双曲线的定义,考查化简整理的圆能力,属于中档题.19. 设F 1,F 2是双曲线x 24−y 2=1的两个焦点,点P 在双曲线上,且PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =0,则|PF 1⃗⃗⃗⃗⃗⃗⃗ |⋅|PF 2⃗⃗⃗⃗⃗⃗⃗ |的值等于( )A. 2B. 2√2C. 4D. 8【答案】A【解析】解:由已知F 1(−√5,0),F 2(√5,0),则|F 1F 2|=2√5.即{|PF 1|2+|PF 2|2=|F 1F 2|2=20||PF 1|−|PF 2|=4, 得|PF 1⃗⃗⃗⃗⃗⃗⃗ |⋅|PF 2⃗⃗⃗⃗⃗⃗⃗ |=2. 故选A .先由已知F 1(−√5,0),F 2(√5,0),得出|F 1F 2|=2√5.再由向量的数量积为0得出直角三角形PF 1F 2,最后在此直角三角形中利用勾股定理及双曲线的定义列出关于的方程,即可解得|PF 1⃗⃗⃗⃗⃗⃗⃗ |⋅|PF 2⃗⃗⃗⃗⃗⃗⃗ |的值.本题主要考查了双曲线的应用及向量垂直的条件.考查了学生对双曲线定义和基本知识的掌握.20. 已知双曲线y 2a 2−x2b 2=1(a >0,b >0)的上、下焦点分别为F 2,F 1,过F 1且倾斜角为锐角的直线1与圆x 2+y 2=a 2相切,与双曲线的上支交于点M.若线段MF 1的垂直平分线过点F 2,则该双曲线的渐近线的方程为( )A. y =±43xB. y =±34xC. y =±53xD. y =±35x【答案】B【解析】解:设MF 1与圆相切于点E ,因为|MF 2|=|F 1F 2|=2c ,所以△MF 1F 2为等腰三角形, N 为MF 1的中点, 所以|F 1E|=14|MF 1|,又因为在直角△F 1EO 中,|F 1E|2=|F 1O|2−a 2=c 2−a 2, 所以|F 1E|=b =14|MF 1|①又|MF 1|=|MF 2|+2a =2c +2a ②, c 2=a 2+b 2 ③ 由①②③可得c 2−a 2=(c+a 2)2, 即为4(c −a)=c +a ,即3c =5a , b =√c 2−a 2=√259a 2−a 2=43a , 则双曲线的渐近线方程为y =±ab x , 即为y =±34x.故选:B .先设MF 1与圆相切于点E ,利用|MF 2|=|F 1F 2|,及直线MF 1与圆x 2+y 2=a 2相切,可得几何量之间的关系,从而可求双曲线的渐近线方程.本题考查直线与圆相切,考查双曲线的定义,考查双曲线的几何性质,注意运用平面几何的性质,考查运算能力,属于中档题.21. 已知双曲线x 2a 2−y2b 2=1(a >0,b >0)的右焦点为F ,过F 作双曲线渐近线的垂线,垂足为A ,直线AF 交双曲线右支于点B ,且B 为线段AF 的中点,则该双曲线的离心率是( )A. 2B. √62C. 2√105D. √2【答案】D【解析】【分析】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求出FA 的中点B 的坐标是解题的关键.设渐近线方程为y =b a x ,则FA 的方程为y −0=−ab (x −c),代入渐近线方程求得A 的坐标,由中点公式求得中点B 的坐标,再把点B 的坐标代入双曲线求得离心率. 【解答】解:由题意设渐近线方程为y =ba x , 则FA 的方程为y −0=−ab (x −c), 代入渐近线方程y =b a x 可得A 的坐标为(a 2c ,abc),B 是线段AF 2的中点(c+a 2c2,ab2c ),根据中点B 在双曲线C 上, ∴(a 2c +c)24a 2−a 2b 24b 2c 2=1,∴c 2a 2=2, 故e =ca =√2, 故选:D .22. 已知F 是双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,过点F 作垂直于x 轴的直线交该双曲线的一条渐近线于点M ,若|FM|=2a ,记该双曲线的离心率为e ,则e 2=( )A. 1+√172B. 1+√174C. 2+√52D. 2+√54【答案】A【解析】解:由题意可设F(c,0),一条渐近线方程为y =ba x , 可得M(c,bca ), 即有2a =bc a ,即bc =2a 2,即b 2c 2=4a 4,即(c 2−a 2)c 2−4a 4=0,由e=c可得e4−e2−4=0,a(负的舍去),解得e2=1+√172故选:A.设出F的坐标和一条渐近线方程,求得M的坐标和|FM|,由a,b,c的关系和离心率公式,解方程可得所求值.本题考查双曲线的方程和性质,考查渐近线方程和离心率的求法,考查方程思想和运算能力,属于中档题.。
高中数学 第二章 圆锥曲线与方程 2.3 双曲线 2.3.1 双曲线及其标准方程讲义 新人教A版选修
2.3.1 双曲线及其标准方程1.双曲线 (1)定义□01平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. (2)双曲线的集合描述设点M 是双曲线上任意一点,点F 1,F 2是双曲线的焦点,则由双曲线的定义可知,双曲线就是集合□02P ={M |||MF 1|-|MF 2||=2a,0<2a <|F 1F 2|}. 2.双曲线的标准方程1.判一判(正确的打“√”,错误的打“×”)(1)平面内到两定点的距离的差等于非零常数(小于两定点间距离)的点的轨迹是双曲线.( )(2)在双曲线标准方程x 2a 2-y 2b2=1中,a >0,b >0且a ≠b .( )(3)双曲线的标准方程可以统一为Ax 2+By 2=1(其中AB <0).( ) 答案 (1)× (2)× (3)√2.做一做(请把正确的答案写在横线上)(1)若双曲线x 24-y 216=1上一点M 到左焦点的距离为8,则点M 到右焦点的距离为________.(2)双曲线x 2-4y 2=1的焦距为________.(3)(教材改编P 55T 1)已知双曲线a =5,c =7,则该双曲线的标准方程为________. (4)下列方程表示焦点在y 轴上的双曲线的有________(把序号填在横线上).①x 2-y 22=1;②x 2a +y 22=1(a <0);③y 2-3x 2=1;④x 2cos α+y 2sin α=1⎝ ⎛⎭⎪⎫π2<α<π.答案 (1)4或12 (2) 5 (3)x 225-y 224=1或y 225-x 224=1(4)②③④解析 (3)∵a =5,c =7,∴b =c 2-a 2=24=2 6. 当焦点在x 轴上时,双曲线方程为x 225-y 224=1; 当焦点在y 轴上时,双曲线方程为y 225-x 224=1.探究1 双曲线标准方程的认识例1 若θ是第三象限角,则方程x 2+y 2sin θ=cos θ表示的曲线是( ) A .焦点在y 轴上的双曲线 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆 D .焦点在x 轴上的椭圆[解析] 曲线方程可化为x 2cos θ+y 2cos θsin θ=1,θ是第三象限角,则cos θ<0,cos θsin θ>0,所以该曲线是焦点在y 轴上的双曲线.故选A.[答案] A 拓展提升双曲线方程的认识方法将双曲线的方程化为标准方程的形式,假如双曲线的方程为x 2m +y 2n=1,则当mn <0时,方程表示双曲线.若⎩⎪⎨⎪⎧m >0,n <0,则方程表示焦点在x 轴上的双曲线;若⎩⎪⎨⎪⎧m <0,n >0,则方程表示焦点在y 轴上的双曲线.【跟踪训练1】 若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 答案 C 解析 原方程化为y 2k 2-1-x 2k +1=1,∵k >1,∴k 2-1>0,k +1>0.∴方程所表示的曲线为焦点在y 轴上的双曲线.探究2 双曲线的标准方程例2 求满足下列条件的双曲线的标准方程.(1)焦点在坐标轴上,且过M ⎝ ⎛⎭⎪⎫-2,352,N ⎝ ⎛⎭⎪⎫473,4两点;(2)两焦点F 1(-5,0),F 2(5,0),且过P ⎝⎛⎭⎪⎫352,2. [解] (1)当双曲线的焦点在x 轴上时,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∵M ,N 在双曲线上,∴⎩⎪⎨⎪⎧(-2)2a 2-⎝ ⎛⎭⎪⎫3522b 2=1,⎝ ⎛⎭⎪⎫4732a 2-42b 2=1,解得⎩⎪⎨⎪⎧1a 2=-116,1b 2=-19(不符合题意,舍去).当双曲线的焦点在y 轴上时,设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0). ∵M ,N 在双曲线上,∴⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫3522a 2-4b 2=1,42a 2-⎝ ⎛⎭⎪⎫4732b 2=1,解得⎩⎪⎨⎪⎧1a 2=19,1b 2=116,即a 2=9,b 2=16.∴所求双曲线方程为y 29-x 216=1.(2)由已知可设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),代入点P ⎝⎛⎭⎪⎫352,2可得454a 2-4b 2=1,①又a 2+b 2=25,②由①②联立可得a 2=9,b 2=16, ∴双曲线方程为x 29-y 216=1. [解法探究] 例2(1)有没有其他解法呢? 解 ∵双曲线的焦点位置不确定,∴设双曲线方程为mx 2+ny 2=1(mn <0). ∵M ,N 在双曲线上,则有 ⎩⎪⎨⎪⎧4m +454n =1,169×7m +16n =1,解得⎩⎪⎨⎪⎧m =-116,n =19,∴所求双曲线方程为-x 216+y 29=1,即y 29-x 216=1.拓展提升利用待定系数法求双曲线标准方程的步骤(1)定位置:根据条件确定双曲线的焦点在哪条坐标轴上,还是两种都有可能.(2)设方程:根据焦点位置,设方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b2=1(a >0,b >0),焦点不定时,亦可设为mx 2+ny 2=1(m ·n <0).(3)寻关系:根据已知条件列出关于a ,b ,c (m ,n )的方程组. (4)得方程:解方程组,将a ,b ,c (m ,n )代入所设方程即为所求.【跟踪训练2】 根据下列条件,求双曲线的标准方程. (1)与椭圆x 227+y 236=1有共同的焦点,且过点(15,4);(2)c =6,经过点(-5,2),焦点在x 轴上. 解 (1)椭圆x 227+y 236=1的焦点坐标为F 1(0,-3),F 2(0,3),故可设双曲线的方程为y 2a 2-x 2b 2=1.由题意,知⎩⎪⎨⎪⎧a 2+b 2=9,42a2-(15)2b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=5.故双曲线的方程为y 24-x 25=1.(2)∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2), ∴25λ-46-λ=1,∴λ=5或λ=30(舍去).∴所求双曲线方程是x 25-y 2=1.探究3 双曲线定义的应用例3 如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积. [解] 双曲线的标准方程为x 29-y 216=1,故a =3,b =4,c =a 2+b 2=5.(1)由双曲线的定义得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,则|16-x |=6,解得x =10或x =22.由于c -a =5-3=2,10>2,22>2,故点M 到另一个焦点的距离为10或22. (2)将|PF 2|-|PF 1|=2a =6,两边平方得 |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36,∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100. 在△F 1PF 2中,由余弦定理得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,∴∠F 1PF 2=90°,∴S △F 1PF 2=12|PF 1|·|PF 2|=12×32=16.拓展提升双曲线定义的两种应用(1)求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).(2)双曲线中的焦点三角形双曲线上的点P 与其两个焦点F 1,F 2连接而成的三角形PF 1F 2称为焦点三角形.令|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ,因|F 1F 2|=2c ,所以有①定义:|r 1-r 2|=2a .②余弦公式:4c 2=r 21+r 22-2r 1r 2cos θ. ③面积公式:S △PF 1F 2=12r 1r 2sin θ.一般地,在△PF 1F 2中,通过以上三个等式,所求问题就会顺利解决.【跟踪训练3】 (1)已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的左、右焦点,且|PF 1|=17,求|PF 2|的值.解 由双曲线方程x 264-y 236=1可得a =8,b =6,c =10,由双曲线的图象可得点P 到右焦点F 2的距离d ≥c -a =2,因为||PF 1|-|PF 2||=16,|PF 1|=17,所以|PF 2|=1(舍去)或|PF 2|=33.(2)已知双曲线x 29-y 216=1的左、右焦点分别是F 1,F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理得|PF 1|-|PF 2|=±6,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60°, 所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,则S △F 1PF 2=12|PF 1|·|PF 2|sin ∠F 1PF 2=12×64×32=16 3.探究4 与双曲线有关的轨迹问题例4 如图,在△ABC 中,已知|AB |=42,且三内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.并指出表示什么曲线.[解] 如图,以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立如图所示的平面直角坐标系,则A (-22,0),B (22,0). 由正弦定理得sin A =a 2R ,sin B =b 2R ,sin C =c2R .∵2sin A +sin C =2sin B , ∴2a +c =2b ,即b -a =c2.从而有|CA |-|CB |=12|AB |=22<AB .∴由双曲线的定义知,点C 的轨迹为双曲线的右支且不包括顶点. ∵a =2,c =22,∴b 2=c 2-a 2=6. ∴顶点C 的轨迹方程为x 22-y 26=1(x >2).故C 点的轨迹为双曲线右支且除去点(2,0). 拓展提升用定义法求轨迹方程的一般步骤(1)根据已知条件及曲线定义确定曲线的位置及形状(定形,定位). (2)根据已知条件确定参数a ,b 的值(定参). (3)写出标准方程并下结论(定论).【跟踪训练4】 如图所示,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:(x -5)2+y 2=42,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.解 圆F 1:(x +5)2+y 2=1, ∴圆心为F 1(-5,0),半径r 1=1. 圆F 2:(x -5)2+y 2=42, ∴圆心为F 2(5,0),半径r 2=4.设动圆M 的半径为R ,则有|MF 1|=R +1, |MF 2|=R +4,∴|MF 2|-|MF 1|=3<|F 1F 2|=10, ∴点M 的轨迹是以F 1,F 2为焦点的双曲线的左支, 且a =32,c =5,∴b =912,∴点M 的轨迹方程为49x 2-491y 2=1⎝ ⎛⎭⎪⎫x ≤-32.1.双曲线的定义中,一定要注意的几点(1)前提条件“平面内”不能丢掉,否则就成了空间曲面,不是平面曲线了;(2)不可漏掉定义中的常数小于|F 1F 2|,否则,当2a =|F 1F 2|时,||PF 1|-|PF 2||=2a 表示两条射线;当||PF 1|-|PF 2||>2a 时,不表示任何图形;(3)不能丢掉绝对值符号,若丢掉绝对值符号,其余条件不变,则点的轨迹为双曲线的一支. 2.求双曲线的标准方程时,应注意的两个问题 (1)正确判断焦点的位置;(2)设出标准方程后,再运用待定系数法求解.求双曲线的标准方程也是从“定形”“定式”和“定量”三个方面去考虑.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”是根据“形”设双曲线标准方程的具体形式;“定量”是指用定义法或待定系数法确定a ,b 的值.1.若方程y 24-x 2m +1=1表示双曲线,则实数m 的取值X 围是( )A .(-1,3)B .(-1,+∞)C .(3,+∞) D.(-∞,-1) 答案 B解析 依题意,应有m +1>0,即m >-1.2.已知双曲线x 216-y 29=1,则双曲线的焦点坐标为( )A .(-7,0),(7,0)B .(-5,0),(5,0)C .(0,-5),(0,5)D .(0,-7),(0,7) 答案 B解析 由双曲线的标准方程可知a 2=16,b 2=9,则c 2=a 2+b 2=16+9=25,故c =5.又焦点在x 轴上,所以焦点坐标为(-5,0),(5,0).3.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m 答案 B解析 ∵A ,B 在双曲线的右支上, ∴|BF 1|-|BF 2|=2a ,|AF 1|-|AF 2|=2a , ∴|BF 1|+|AF 1|-(|BF 2|+|AF 2|)=4a . ∴|BF 1|+|AF 1|=4a +m .∴△ABF 1的周长为4a +m +m =4a +2m .4.焦点在y 轴上,a =3,c =5的双曲线方程为________. 答案y 29-x 216=1 解析 ∵b 2=c 2-a 2=52-32=16,又焦点在y 轴上, ∴双曲线方程为y 29-x 216=1.5.已知双曲线的两个焦点F 1,F 2之间的距离为26,双曲线上一点到两焦点的距离之差的绝对值为24,求双曲线的方程.解 若以线段F 1F 2所在的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立直角坐标系,则word- 11 - / 11 双曲线的方程为标准形式x 2a 2-y 2b 2=1(a >0,b >0).由题意得2a =24,2c =26. ∴a =12,c =13,b 2=132-122=25. 双曲线的方程为x 2144-y 225=1; 若以线段F 1F 2所在直线为y 轴,线段F 1F 2的垂直平分线为x 轴,建立直角坐标系. 则双曲线的方程为y 2144-x 225=1.。
圆锥曲线(双曲线)
圆锥曲线(双曲线)圆锥曲线(双曲线)一.双曲线的定义(第一定义)平面内与两定点F1、F2距离之差的绝对值等于定长2a注意:⑴当2a<|21FF|时动点P的轨迹表双曲线的轨迹表双曲线若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
⑵当2a=|21FF|时动点P的轨迹表以F1、F2为端点的两条射线为端点的两条射线⑶当2a>|21FF|时点P不存在不存在二.双曲线的标准方程及几何性质222bac+=标准方程标准方程22221(0,0)x ya ba b-=>>22221(0,0)y xa ba b-=>>图像图像焦点坐标焦点坐标 )0,(),0,(21cFcF-)0,(),0,(21cFcF-顶点坐标顶点坐标 )0,(),0,(21aAaA-),0(),,0(21aBaB-取值范围取值范围|x|≥a,RyÎ|y|≥a,RxÎ对称轴对称轴 x轴,y轴实轴为a2、虚轴为b2准线方程准线方程cax2±=cay2±=渐近线渐近线xaby±=xaby±=离心率离心率 )1(>=eace(离心率越大,开口越大)(离心率越大,开口越大)通径通径ab22三、双曲线常规题型1.求中心在原点,对称轴为坐标轴,且满足下列条件的双曲线方程:.求中心在原点,对称轴为坐标轴,且满足下列条件的双曲线方程:⑴经过两点(⑴经过两点(227,3,3))、(-7-7,,-62) ⑵双曲线经过点(⑵双曲线经过点(3,93,92),离心率为310⑶双曲线C 的右焦点为(2,0),右顶点为)0,3(⑷与双曲线x 2-2y 2=2有共同的渐近线,且经过点(2,-2) ⑸过点P (2,-1),渐近线方程是y =±3x. 2.双曲线221102x y -=的焦距为(的焦距为() A .32B .42C .33D .433.动点P 与点1(05)F ,与点2(05)F -,满足126PF PF -=,则点P 的轨迹方程为的轨迹方程为(( ) A .221916x y -= B .221169x y -+= C .221(3)169x y y -+=≥ D .221(3)169x y y -+=-≤4.到两定点(3,0))0,3(21F F 、-的距离之差的绝对值等于6的点M 的轨迹是(的轨迹是( ) A .椭圆.椭圆 B .线段.线段 C .双曲线.双曲线 D .两条射线.两条射线5.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为的值为( ( )A .-14B B.-.-.-4C 4 C 4 C..4 D.146.设P 是双曲线22219x y a -=上一点,双曲线的一条渐近线方程为320x y -=,12F F ,分别是双曲线的左、右焦点,若13PF =,则2PF 的值为的值为 .7.双曲线19422=-y x 的渐近线方程是(的渐近线方程是( ) A .x y32±=B .x y94±=C .x y23±= D .x y 49±=8.已知双曲线的方程为1222=-2b y a x,点A 、B 在双曲线的右支上,线段AB 经过双曲线的右焦点2F ,m AB =||,1F 为另一焦点,则1ABF D 的周长为(的周长为( ) A . m a 22+ B . m a 24+ C .m a + D . m a 42+9.已知双曲线4422=-y x上一点P 到双曲线的一个焦点的距离等于6,那么P 点到另一焦点的距离等于(一焦点的距离等于( ) A .10 B .10或2 C .526+D .526±10.方程11122=-++k y k x 表示双曲线,则k 的取值范围是(的取值范围是( ) A .1-<k <1 B .k >0 C .k ≥0 D .k >1或k <1-11.双曲线14122222=--+my m x 的焦距是(的焦距是( ) A .4 B .22C .8 D .与m 有关有关12.过双曲线191622=-y x 左焦点1F 的弦AB 长为6,则2ABFD (F 2为右焦点)为右焦点) 的周长是(的周长是( )A .28 B .22 C .14 D .12 13.已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15, 则m =( ) A .1 B .2 C .3 D .4 14.已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15, 则m =( ) A .1 B .2 C .3 D .4 15.与曲线1492422=+yx 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为(共渐近线的双曲线方程为()A .191622=-x y B .191622=-y x C .116922=-x y D .116922=-y x16.方程151022=-+-ky k x 表示双曲线,则Îk ( ) A .(5,10) B .(5,¥-) C .(10,¥+) D .),10()5,(+¥È-¥17.双曲线112422=-y x 上点P 到左焦点的距离为6,则这样的点P 的个数为(的个数为() A . 1 B .2 C .3 D .4 1818.双曲线.双曲线)0,1(,x 122222222¹¹=-=-l l l by a b y a x 与双曲线有相同的(有相同的( )) A .焦点.焦点 B .准线.准线C .离心率.离心率D .渐近线.渐近线19.“a b<0”是“方程ax 2+b y 2 =c 表示双曲线”的(表示双曲线”的( )A .必要不充分条件 B .充分不必要条件.充分不必要条件C .充要条件.充要条件D .非充分非必要条件.非充分非必要条件20.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆心的轨迹为(都外切,则动圆心的轨迹为( )A .抛物线.抛物线B .圆.圆C .双曲线的一支 D .椭圆.椭圆21.方程22142x y t t +=--所表示的曲线为C ,有下列命题:,有下列命题: ①若曲线C 为椭圆,则24t <<;②若曲线C 为双曲线,则4t >或2t <; ③曲线C 不可能为圆;不可能为圆; ④若曲线C 表示焦点在y 上的双曲线,则4t >。
3.2.2双曲线的简单几何性质课件(人教版)
A1 A2
O
B1
•
F2
x
5.离心率 双曲线的离心率刻画了双曲线的“张口”大小
c
(1)定义: 双曲线的焦距与实轴长的比 e , 叫做双曲线的离心率.
a
∴e >1
(2)e的范围: ∵c>a>0
y
B2
(3)e的含义:e越接近1,双曲线开口越小;
e越大,双曲线开口越大.
(4)等轴双曲线的离心率e= ?
解:依题意可设双曲线的方程为 2 2 1
a
b
2a 16,
a 8
c 5
又 e , c 10
a 4
b2 c 2 a 2 102 82 36
x2 y2
双曲线的方程为
1
64 36
3
渐近线方程为y x ,且焦点F1 (10, 0), F2 (10, 0)
-a
a
F1 A1 O
A2
B2 -b
F2
4.双曲线的渐近线:
2
2
一般地,双曲线 2 − 2 = 1 ( > 0, > 0)的两支向外延伸时,与两条直
线 ± = 0逐渐接近,但永不相交.我们把这两条直线叫做双曲线的渐
近线.
y
x y
b
x2 y2
双曲线 2 2 1的渐近线方程为 0,即y x .
A1 (0,-a ), A2(0, a )
线段A1A2叫实轴 , 长度为2a
线段B1B2叫虚轴 , 长度为2b
c
e (e 1)
a
x y
b
0,即y x
高考数学复习强化双基系列--《圆锥曲线—双曲线》省名师优质课赛课获奖课件市赛课一等奖课件
旳范围列不等式解参数范围,在圆锥曲线解题
过程中应注重这方面旳应用。
3.椭圆中 a,b, c 旳关系与双曲线中 a,b, c 旳关
系是不同旳,应注意区别利用。
例6.已知双曲线旳焦点在轴上,且过点 A(1,0) 和 B(1,0) ,P是双曲线上异于A、B旳任一点, 假如ΔAPB旳垂心H总在此双曲线上,求双曲线 旳原则方程。
【思维点拨】设方程,消参数。
例7:双曲线旳实半轴与虚半轴旳长旳积为 3 , 它旳两个焦点分别为F1,F2,直线 l 过F2且与直 线F1F2旳夹角为 ,且 tan 21 , l 与线段
y 2 x2 1(a 0,b 0) a2 b2
形
平面几何 性质
离心率
e c (e 1) , e 大开口大 a
焦准距 p a 2 , 准线间距= 2a 2 , 焦渐距= b 。
c
c
阐明:
(1)双曲线旳两个定义是处理双曲线旳性质问题和求 双曲线方程旳两个有力工具,所以要对双曲线旳两 个定义有深刻旳认识。
2023届高考数学复习 强化双基系列课件
《圆锥曲线-双曲线》
一、基本知识概要: 1.双曲线旳定义
第一定义:平面内与两个定点 F1, F2 距离旳差旳 绝对值等于 2a(2a | F1F2 |) 旳点旳轨迹,即点集
P | PF1 PF2 2a 。( 2a F1F2 为两射线;2 a F1F2
r2 PF2 ex a
P在左支上,
r1 PF1 (ex a)
r2 PF2 ey a
P在下支上,
r1 PF1 (ey a)
r2 PF2 (ex a) r2 PF2 (ey a)
PF c a min
原则方 程
图
x2 y2 1(a 0,b 0)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆锥曲线与方程》专题复习第二节 双曲线考点一 用双曲线的定义解决相关问题1.(2012年大纲全国卷,文10)已知F 1、F 2为双曲线C:x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ) (A)14(B)35(C)34(D)45解析:由x 2-y 2=2知,a 2=2,b 2=2,c 2=a 2+b 2=4, ∴又∵|PF 1|-|PF 2|=2a,|PF 1|=2|PF 2|, ∴|PF 12又∵|F 1F 2|=2c=4,∴由余弦定理得cos ∠F 1PF 22224+-=34. 故选C. 答案:C2.(2010年大纲全国卷Ⅰ,理9)已知F 1、F 2为双曲线C:x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则P 到x轴的距离为( )解析:由双曲线方程可知1F 2由双曲线定义有||PF 1|-|PF 2||=2a=2,① 在△F 1PF 2中,由余弦定理有:8=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°② 联立①②解得|PF 1||PF 2|=4,设点P(x,y), 则12PF F S=12|PF 1||PF 2|sin 60°=12|F 1F 2||y|,解得故选B. 答案:B3.(2010年大纲全国卷Ⅰ,文8)已知F 1、F 2为双曲线C:x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|²|PF 2|=( ) (A)2 (B)4 (C)6 (D)8 解析:如图,设|PF 1|=m, |PF 2|=n.则(222122,2cos .m n m n mn F PF ⎧-=⎪⎨=+-∠⎪⎩∴222224,8.m mn n m mn n ⎧-+=⎪⎨-+=⎪⎩ ∴mn=4.∴|PF 1|²|PF 2|=4.故选B. 答案:B4.(2013年辽宁卷,文15)已知F 为双曲线C: 29x -216y =1的左焦点,P,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A(5,0)在线段PQ 上,则△PQF 的周长为 .解析:由题知,双曲线中a=3,b=4,c=5,则|PQ|=16,又因为|PF|-|PA|=6, |QF|-|QA|=6,所以|PF|+|QF|-|PQ|=12, |PF|+|QF|=28,则△PQF 的周长为44.答案:445.(2012年辽宁卷,文15)已知双曲线x 2-y 2=1,点F 1、F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为 .解析:设P 在双曲线右支上,|PF 2|=x(x>0), 则|PF 1|=2+x. ∵PF 1⊥PF 2, ∴(x+2)2+x 2=(2c)2=8,即:x 2+2x-2=0,解得∴|PF 1|+|PF 2答案6.(2010年江西卷,文15)点A(x 0,y 0)在双曲线24x -232y =1的右支上,若点A 到右焦点的距离等于2x 0,则x 0= .解析:由24x -232y =1可知,a 2=4,b 2=32,∴c 2=36,c=6, 右焦点F(6,0),由题意可得220001,4322,x y x ⎧-=⎪= 解方程组可得x 0=25或x 0=2.∵点A 在双曲线右支上, ∴x 0≥2,∴x 0=2. 答案:27.(2009年辽宁卷,理16)已知F 是双曲线24x -212y =1的左焦点,A(1,4),P 是双曲线右支上的动点,则|PF|+|PA|的最小值为.解析:由24x -212y =1知c 2=4+12=16,c=4.∴左焦点F(-4,0),设双曲线右焦点为F ′(4,0), ∵点P 在双曲线右支上, ∴|PF|-|PF ′|=2a=4, ∴|PF|=4+|PF ′|,∴|PF|+|PA|=4+|PF ′|+|PA|.由图可知,当A 、P 、F ′三点共线时,|PF ′|+|PA|最小,此时, (|PF|+|PA|)min =4+(|PF ′|+|PA|)min=4+|AF ′|=4+5 =9.答案:9考点二 双曲线标准方程的求法1.(2012年湖南卷,文6)已知双曲线C: 22x a -22y b=1的焦距为10,点P(2,1)在C 的渐近线上,则C 的方程为( )(A) 220x -25y =1(B) 25x -220y =1 (C) 280x -220y =1(D) 220x -280y =1解析: 22x a -22y b=1的焦距为10,∴①又双曲线渐近线方程为y=±b ax,且P(2,1)在渐近线上,∴2b a=1,即a=2b.②由①②解得故选A.答案:A2.(2011年山东卷,理8)已知双曲线22x a -22y b=1(a>0,b>0)的两条渐近线均和圆C:x 2+y 2-6x+5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )(A)25x -24y =1(B)24x -25y =1 (C)23x -26y =1 (D)26x -23y =1解析:∵双曲线22x a -22y b=1的渐近线方程为y=±b ax,圆C 的标准方程为(x-3)2+y 2=4, ∴圆心为C(3,0).又渐近线方程与圆C 相切,即直线bx-ay=0与圆C 相切,=2,∴5b 2=4a 2.①又∵22x a -22y b=1的右焦点F 2为圆心C(3,0),∴a 2+b 2=9.②由①②得a 2=5,b 2=4.∴双曲线的标准方程为25x -24y =1.故选A.答案:A3.(2010年新课标全国卷,理12)已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A、B两点,且AB的中点为N(-12,-15),则E的方程为( )(A)23x-26y=1 (B)24x-25y=1(C)26x-23y=1 (D)25x-24y=1解析:∵k AB=015 312++=1,∴直线AB的方程为y=x-3.由于双曲线的焦点为F(3,0),∴c=3,c2=9.设双曲线的标准方程为22xa-22yb=1(a>0,b>0),则22xa-()223xb-=1.整理,得(b2-a2)x2+6a2x-9a2-a2b2=0.设A(x1,y1),B(x2,y2),则x1+x2=2226aa b-=2³(-12),∴a2=-4a2+4b2,∴5a2=4b2.又a2+b2=9,∴a2=4,b2=5.∴双曲线E的方程为24x-25y=1.故选B.答案:B4.(2012年天津卷,文11)已知双曲线C1:22xa-22yb=1(a>0,b>0)与双曲线C2:24x-216y=1有相同的渐近线,且C1的右焦点为则a= ,b= .解析:与双曲线24x-216y=1有共同渐近线的双曲线的方程可设为24x-216y=λ,即24xλ-216yλ=1.由题意知则4λ+16λ=5⇒λ=1 4,则a2=1,b2=4,又a>0,b>0.故a=1,b=2.答案:1 2考点三双曲线离心率的求法1.(2013年重庆卷,文10)设双曲线C 的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A 1B 1和A 2B 2,使11A B =22A B ,其中A 1,B 1和A 2,B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( )(A) 2⎤⎥⎝⎦(B) 2⎫⎪⎪⎣⎭ (C) ⎫+∞⎪⎪⎝⎭(D) ⎫+∞⎪⎪⎣⎭解析:设双曲线的焦点在x 轴上,则双曲线的一条渐近线的斜率k=ba,所以13<2b a ⎛⎫ ⎪⎝⎭≤3,43<1+2b a ⎛⎫ ⎪⎝⎭≤4,即32,又双曲线的离心率为e=ca所以3<e ≤2.故选A. 答案:A2.(2012年福建卷,文5)已知双曲线22x a-25y =1的右焦点为(3,0),则该双曲线的离心率等于( )(A)14(B)4(C)32(D)43解析:由a 2+5=9得a 2=4, ∴a=2,∴e=c a =32.故选C.答案:C3.(2010年新课标全国卷,文5)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )解析:由题意知,过点(4,-2)的渐近线方程为y=-b ax,∴-2=-b a³4,∴a=2b.设b=k,则∴e=c a=2k=2答案:D4.(2009年江西卷,文7)设F 1和F 2为双曲线22x a -22y b=1(a>0,b>0)的两个焦点,若F 1、F 2、P(0,2b)是正三角形的三个顶点,则双曲线的离心率为( ) (A)32(B)2 (C)52(D)3解析:由2b c令则c=2,∴a=1,∴e=c a=2.故选B.答案:B5.(2013年湖南卷,文14)设F 1,F 2是双曲线C, 22x a -22y b=1(a>0,b>0)的两个焦点.若在C 上存在一点P,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为 . 解析:设点P 在双曲线右支上, 由题意,在Rt △F 1PF 2中, |F 1F 2|=2c,∠PF 1F 2=30°, 得|PF 2|=c,|PF 1根据双曲线的定义:|PF 1|-|PF 2e=c a答案6.(2012年重庆卷,文14)设P 为直线y=3b a x 与双曲线22x a -22y b=1(a>0,b>0)左支的交点,F 1是左焦点,PF 1垂直于x 轴,则双曲线的离心率e= .解析:由2222,31,b y x ax y a b ⎧=⎪⎪⎨⎪-=⎪⎩消去y,得x=a.又PF 1⊥x 轴,∴4a=c,∴e=c a=4. 答案:47.(2009年湖南卷,文13)过双曲线C: 22x a -22y b=1(a>0,b>0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A 、B.若∠AOB=120°(O 是坐标原点),则双曲线C 的离心率为 .解析:如图,由题知 OA ⊥AF,OB ⊥BF 且∠AOB=120°, ∴∠AOF=60°. 又OA=a,OF=c,∴a c =OA OF =cos 60°=12, ∴c a=2. 答案:2考点四 与渐近线有关问题的解法1.(2013年新课标全国卷Ⅰ,文4)已知双曲线C: 22x a -22y b=1(a>0,b>0)则C 的渐近线方程为( ) (A)y=±14x (B)y=±13x (C)y=±12x (D)y=±x解析:离心率e=ca=所以b a =12. 又双曲线C: 22x a -22y b=1的渐近线方程为y=±b ax=±12x.故选C.答案:C2.(2013年福建卷,文4)双曲线x 2-y 2=1的顶点到其渐近线的距离等于( )(A)12(B)2(C)1解析:双曲线x 2-y 2=1的渐近线方程为x ±y=0,双曲线x 2-y 2=1的顶点坐标为(±1,0),顶点到渐近线的距离为2.故选B.答案:B3.(2011年湖南卷,文6)设双曲线22x a-29y =1(a>0)的渐近线方程为3x ±2y=0,则a 的值为( )(A)4(B)3 (C)2 (D)1解析:由渐近线方程3x ±2y=0,得y=±32x,又由双曲线22x a-29y =1得渐近线方程y=±3ax,∴a=2.故选C. 答案:C4.(2009年全国卷Ⅱ,文8)双曲线26x -23y =1的渐近线与圆(x-3)2+y 2=r 2(r>0)相切,则r=( )(B)2 (C)3 (D)6解析:∵双曲线26x -23y =1的渐近线方程为y=±2x,则圆心(3,0)的距离为r,∴=故选A. 答案:A5.(2011年北京卷,文10)已知双曲线x 2-22y b=1(b>0)的一条渐近线的方程为y=2x,则b= .解析:由x 2-22y b=1知a=1,又一条渐近线的方程为y=b ax=2x,∴b=2. 答案:26.(2010年北京卷,文13)已知双曲线22x a -22y b=1的离心率为2,焦点与椭圆225x +29y =1的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 .解析:∵双曲线的焦点与椭圆的焦点相同,∴c=4.∵e=ca=2,∴a=2,∴b2=12,∴∵焦点在x轴上,∴焦点坐标为(±4,0),渐近线方程为y=±bax,即y=±y=0.答案:(±4,0) ±y=0考点五双曲线几何性质的简单应用1.(2013年湖北卷,文2)已知0<θ<π4,则双曲线C1:22sinxθ-22cosyθ=1与C2:22cosyθ-22sinxθ=1的( )(A)实轴长相等 (B)虚轴长相等(C)离心率相等(D)焦距相等解析:双曲线C1的半焦距c1双曲线C2的半焦距c2故选D.答案:D2.(2012年江苏卷,8)在平面直角坐标系xOy中,若双曲线2xm-224ym+=1则m的值为.解析:由c2=m+m2+4,e2=22ca=24m mm++=5得m2-4m+4=0,解得m=2,经检验符合题意.答案:2考点六直线与双曲线位置关系的判定及应用(2009年陕西卷,文22)已知双曲线C的方程为22xa-22yb=1(a>0,b>0),离心率e=2,顶点到渐近线的距离为5.(1)求双曲线C的方程;(2)如图,P是双曲线C上一点,A、B两点在双曲线C的两条渐近线上,且分别位于第一、二象限.若AP=λPB,λ∈1,23⎡⎤⎢⎥⎣⎦.求△AOB的面积的取值范围.解:(1)由题意知,双曲线C的顶点(0,a)到渐近线ax-by=0即abc由222,abccac a b⎧=⎪⎪⎪⎪=⎨⎪⎪=+⎪⎪⎩得2,1,abc⎧=⎪=⎨⎪=⎩∴双曲线C的方程为24y-x2=1.(2)由(1)知双曲线C的两条渐近线方程为y=±2x,设A(m,2m),B(-n,2n),m>0,n>0.由AP=λPB得P点坐标为()2,11m nm nλλλλ+⎛⎫-⎪++⎝⎭,将P点坐标代入24y-x2=1,化简得mn=()214λλ+.设∠AOB=2θ,∵tan(π2-θ)2.∴tan θ=12,sin 2θ=45.又∴S△AOB=12|OA|²|OB|²sin 2θ=2mn=121λλ⎛⎫+⎪⎝⎭+1,记S(λ)=121λλ⎛⎫+⎪⎝⎭+1,λ∈1,23⎡⎤⎢⎥⎣⎦.则S′(λ)=1221λλ⎛⎫+⎪⎝⎭.由S′(λ)=0得λ=1.又S(1)=2,S13⎛⎫⎪⎝⎭=83,S(2)=94,∴当λ=1时,△AOB的面积取得最小值2,当λ=13时,△AOB的面积取得最大值83.∴△AOB面积的取值范围是82,3⎡⎤⎢⎥⎣⎦.。