高中数列的概念知识点和相关练习试题百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列的概念选择题
1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184
B .174
C .188
D .160
2.数列{}n a 的通项公式是2
76n a n n =-+,4a =( )
A .2
B .6-
C .2-
D .1
3.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件
D .既不充分也不必要条件
4.已知数列{}
ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( )
A .13i =,33j =
B .19i =,32j =
C .32i =,14j =
D .33i =,14j =
5.已知数列{}n a 的前n 项和为(
)*
22n
n S n =+∈N ,则3
a
=( )
A .10
B .8
C .6
D .4
6.数列{}n a 满足 112a =
,111n n
a a +=-,则2018a 等于( )
A .
12
B .-1
C .2
D .3
7.在数列{}n a 中,()11
11,1(2)n
n n a a n a --==+
≥,则5a 等于
A .
3
2
B .
53 C .85
D .
23
8.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220n
n x b x -+=的实数根,
则10b 等于( ) A .24
B .32
C .48
D .64
9.在数列{}n a 中,11a =,11n n a a n +=++,设数列1n a ⎧⎫
⎨⎬⎩⎭
的前n 项和为n S ,若n S m
<对一切正整数n 恒成立,则实数m 的取值范围为( )
A .()3,+∞
B .[
)3,+∞
C .()2,+∞
D .[)2,+∞
10.若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有1n n a a +=成立,则称数列
{}n a 为周期数列,周期为T .
已知数列{}n a 满足()111,1
0,{1
,01n n n n n
a a a m m a a a +->=>=<≤ ,则下列结论错误的是( ) A .若34a =,则m 可以取3个不同的数; B
.若m =
,则数列{}n a 是周期为3的数列;
C .存在m Q ∈,且2m ≥,数列{}n a 是周期数列;
D .对任意T N *∈且2T ≥,存在1m >,使得{}n a 是周期为T 的数列. 11.数列{}n a 满足:12a =,111n
n n
a a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-
B .1
6-
C .
16
D .6
12.已知数列{}n a 的前n 项和为n S ,若*1
n S n N n =∈,,则2a =( ) A .12
-
B .16
-
C .
16
D .
12
13.定义:在数列{}n a 中,若满足
21
1n n n n
a a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则
2020
2018
a a 等于( )
A .4×20162-1
B .4×20172-1
C .4×20182-1
D .4×20182
14.已知数列{}n b 满足1
2122n n b n λ-⎛⎫=-- ⎪⎝⎭
,若数列{}n b 是单调递减数列,则实数λ的
取值范围是( ) A .
10
1,
3
B .110,23⎛⎫- ⎪⎝⎭
C .(-1,1)
D .1,12⎛⎫
-
⎪⎝⎭
15.数列{}n a 满足1
111,(2)2
n n n a a a n a --==≥+,则5a 的值为( )
A .
18
B .
17 C .
131
D .
16
16.已知数列{}n a
满足112n a +=+112
a =,则该数列前2016项的和为( ) A .2015
B .2016
C .1512
D .
3025
2
17.已知数列{}n a 满足2122
11
1,16,2
n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92
B .102
C .
81
82
D .112
18.在数列{}n a 中,11
(1)1,2(2)n
n n a a n a --==+≥,则3a =( ) A .0
B .
53
C .
73
D .3
19.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么
24620201a a a a ++++
+=( )
A .2021a
B .2022a
C .2023a
D .2024a
20.在数列{}n a 中,114a =-,1
11(1)n n a n a -=->,则2019a 的值为( ) A .
4
5
B .14
-
C .5
D .以上都不对
二、多选题
21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54
C .S 2020=a 2022-1
D .a 1+a 3+a 5+…+
a 2021=a 2022