4-卡方检验
第四章 卡方检验
4.1 适合度检验
④ SPSS 点击确定。再点击菜单分析→非参数检验 →旧对话框→卡方:
4.1 适合度检验
④ SPSS
弹出对话框,将数量选择到检验变量列表中,在 期望值下面选择值,按比例从小到大分别输入1, 添加,3,添加:
4.1 适合度检验
④ SPSS
点击确定,即可得到结果:
4.1 适合度检验
② SPSS 点击继续,返回上级对话框,点击确定,得到结果:
df=1时,需要看连续校正的卡方值,为23.174,对应的p值为0.000, 小于0.01表明两种人群的气管炎患病率有非常显著的差异。
4.2.1.1 需要校正的四格表资料的χ2检验
例 某医师欲比较胞磷胆碱与神经节苷酯治疗脑 血管疾病的疗效,将78例脑血管疾病患者随机分 为两组,结果见表。问两种药物治疗脑血管疾病 的有效率是否相等?
4.1 适合度检验
④ SPSS 定义变量,输入数据,点击菜单数据→
加权个案,弹出对话框,选择加权个案, 将数量选择到频率变量下面,点击确定。 再点击菜单分析→非参数检验→旧对话框 →卡方,弹出对话框,将数量选择到检验 变量列表中,在期望值下面选择值,按比 例从小到大分别添加1,3,32×2表)分析:
4.2.1.3 四格表资料的Fisher确切概率法
① DPS 立刻得到结果:
4.2.1.3 四格表资料的Fisher确切概率法
② SPSS 定义变量,输入数据,点击菜单数据→加权个案,弹
出对话框,选择加权个案,将数量选择到频率变量下面, 点击确定。点击菜单分析→描述统计→交叉表:
4.2.1.1 需要校正的四格表资料的χ2检验
① DPS 在DPS中输入数据,选择数据,点击菜单分类
数据统计→四格表→四格表(2×2表)分析:
四格表卡方检验的基本要求
四格表卡方检验的基本要求
表卡方检验,简称卡方检验,是经典单样本检验的一种。
它通常应用于比较两组或多组分类数据之间的统计显著性。
四格表卡方检验,又称散点图方法,是表卡方检验的一种。
基本要求如下:
1、多组分类数据:四格表卡方检验用于比较多组分类数据之间的统计显著性,如两组或多组。
2、组内的联合分布:组内的分布要满足联合分布条件,说明数据分布没有异常值。
3、组间独立性:表卡方检验要求不同组间不能有交互作用。
组间要保持独立性。
4、组间频数:不同组间的频数要具有一致性,即不同组间的频数之和相等。
5、有限自由度:组间的自由度约束在一定的范围,不能超过该范围。
四格表卡方检验可以有效地评估多组分类数据之间的统计显著性,有助于我们更好地理解数据的整体特征,以便进行更有效的决策。
四格表卡方检验的基本要求可以保证检验结果的准确性,从而获得有效的决策结果。
四格表卡方检验结果解读
四格表卡方检验结果解读
卡方检验是一种统计方法,用于判断两个分类变量之间是否存在关联性。
四格表卡方检验是卡方检验的一种特殊形式,常用于比较两个变量的分布,特别是当变量有两个分类且分别为两个互斥的水平时。
四格表卡方检验的结果解读主要包括卡方值、自由度和显著性水平等。
卡方值是用于衡量观察到的频数与期望频数之间的偏离程度。
自由度是指用于计算卡方值的度量数量,计算方法为(行数-1)*(列数-1)。
显著性水平是指判断卡方值是否显著的阈值,通常使用0.05或0.01作为判断标准。
当卡方值显著小于显著性水平时,我们可以认为两个变量之间不存在关联性。
这意味着两个变量的分布在统计上没有差异,变量之间的关联是由于随机差异引起的。
反之,当卡方值显著大于等于显著性水平时,我们可以认为两个变量之间存在关联性。
这意味着两个变量的分布在统计上存在差异,变量之间的关联是非随机的。
需要注意的是,卡方检验只能表明两个变量之间是否存在关联性,不能确定关联性的方向和强度。
如果想要探究更深入的关系,可以使用其他统计方法,如相关分析或回归分析等。
四格表卡方检验是一种常用的统计方法,用于判断两个变量之间的关联性。
通过解读卡方值、自由度和显著性水平,可以得出两个变量之间是否存在关联性的结论。
然而,卡方检验只能表明是否存在关联性,不能确定其方向和强度。
如需深入了解两个变量的关系,可以考虑其他统计方法。
生物统计学第四章——卡方检验
p f x0 8 1 1 5 2 2 0 3 1 0 4 5 5 2 0.191
nN
1 6 00
4.1 适合度检验
•用Excel函数BINOMDIST(i,n,p,0)计算二项分布的理论 概率:
4.1 适合度检验
• 将理论概率乘以苹果总箱数(N=60),得到理论次数:
下面,点击确定。
4.1 适合度检验
• ④ SPSS • 点击确定,即可得到结果:
4.1 适合度检验
•例 4.3 某批苹果进行保存实验,共60箱,每箱10个,实 验结束后检查每箱苹果的变质情况,结果如下表,试检 验苹果的变质数是否服从二项分布?
4.1 适合度检验
•设每个苹果变质的平均概率为p,变质数x服从二项分布,
4.1 适合度检验
② 6SQ统计插件 弹出对话框,无需修改设置:
4.1 适合度检验
•卡②方值6S为Q3统0计2.6插2件9,p=0.000<0.01,表明观测值比例与 •理论点比击有确非定常,显即著可的得差到异结。果:
4.1 适合度检验
③ DPS (1)输入数据与选择数据,点击菜单分类数据统计→模 型拟合优度检验:
• ① Minitab • 输入数据,点击菜单统计→表格→卡方拟合优度检验
(单变量):
4.1 适合度检验
•检①验下Mi面nit选ab择按历史计数制定的比率,下拉条选择输入 •列,弹将出理对论话选框择,到将按实历际史选计择数到制观定测的计比数率后后面面,:豌豆性状
选择到类别名称(可选)后面。
4.1 适合度检验
第四章 卡方检验
• 卡方(χ2)检验主要有三种类型: • 第一是适合性检验,比较观测值与理论值是否符合; • 第二是独立性检验,比较两个或两个以上的因子相互
卡方检验四格表计算举例
卡方检验四格表计算举例卡方检验是一种统计学方法,用于确定观察到的频数与期望频数之间的差异是否显著。
它常常应用于四格表(4×2)、二项分布(2×2)和多格表(大于4×2)等情况中。
下面以一个四格表的例子来进行卡方检验的计算。
假设我们进行了一项实验,想要研究两种不同的投放广告方式对销售额的影响。
为了测试这个假设,我们随机选择了两组参与者,每组30人。
一组参与者暴露在广告A下,另一组参与者暴露在广告B下。
我们记录了两组参与者中购买产品的人数如下:广告A广告B购买1020未购买2010根据这个表格,我们可以计算期望频数,然后计算卡方值和p值。
首先,我们需要计算每个格子的期望频数。
期望频数是根据总样本数和每个组的比例计算得到的。
总样本数为60(30+30),购买产品人数比例为(10+20)/60,未购买产品人数比例为(20+10)/60。
广告A(期望)广告B(期望)购买10(15)20(15)未购买20(15)10(15)接下来,我们计算卡方值。
卡方值的计算公式为:卡方值=∑((观察频数-期望频数)^2/期望频数)。
卡方值=((10-15)^2/15)+((20-15)^2/15)+((20-15)^2/15)+((10-15)^2/15)=5/3+5/3+5/3+5/3=20/3≈6.67最后,我们需要计算p值,用于判断卡方值的显著性。
p值表示在假设成立的情况下,观察到大于或等于当前卡方值的频数出现的概率。
p值可以通过查表或计算软件进行计算。
在这里,我们使用计算软件得到p值≈0.009,这是根据自由度为1的卡方分布得到的。
最后我们需要比较p值和显著性水平(通常为0.05)来判断原假设(两种广告方式对销售额无影响)是否成立。
由于p值(0.009)小于显著性水平(0.05),我们可以拒绝原假设,并得出结论:两种广告方式对销售额有显著影响。
以上是一个卡方检验四格表的计算举例。
根据具体的数据和研究问题,我们可以通过类似的步骤进行卡方检验的计算和解释。
完全随机设计四格表资料的卡方检验,其校正公式
完全随机设计四格表资料的卡方检验,其校正公式摘要:I.引言- 介绍完全随机设计四格表资料的卡方检验- 说明卡方检验的重要性II.卡方检验原理- 定义卡方统计量- 说明卡方检验与期望频数的关系III.校正公式- 介绍校正公式的由来- 说明校正公式的作用IV.应用实例- 举例说明卡方检验在实际研究中的应用- 展示校正公式在具体研究中的使用V.结论- 总结卡方检验在校正四格表资料中的作用- 强调卡方检验在研究中的重要性正文:I.引言完全随机设计四格表资料的卡方检验,是一种用于检验两个分类变量之间是否独立的方法。
在实际研究中,我们常常需要分析不同变量之间的关系,以期发现它们之间的关联性。
卡方检验就是在这种背景下应运而生的。
通过卡方检验,我们可以推断出实际观测频数与期望频数之间的差异,从而判断两个变量之间是否存在关联。
II.卡方检验原理卡方检验的原理是通过计算卡方统计量,来推断观测频数与期望频数之间的差异是否显著。
卡方统计量是由观测频数和期望频数的差异所组成的。
在进行卡方检验时,我们需要计算卡方统计量的值,并与临界值进行比较。
若卡方统计量的值大于临界值,则说明观测频数与期望频数之间的差异显著,从而拒绝原假设;反之,若卡方统计量的值小于临界值,则说明观测频数与期望频数之间的差异不显著,不能拒绝原假设。
III.校正公式在完全随机设计四格表资料的卡方检验中,由于观测频数和期望频数的计算涉及到概率乘法原理和加法原理,因此可能会出现期望频数小于5 的情况。
为了保证卡方检验的准确性,当期望频数小于5 时,我们需要使用校正公式来进行计算。
校正公式是通过对期望频数进行修正,从而使得卡方检验的计算结果更加接近真实值。
IV.应用实例在实际研究中,卡方检验被广泛应用于检验两个分类变量之间的关联性。
例如,在医学研究中,研究者可能会使用卡方检验来分析不同治疗方法对患者病情的改善情况;在社会学研究中,研究者可能会使用卡方检验来分析不同社会因素对个体行为的影响。
卡方检验详述
卡方检验什么是卡方检验卡方检验是一种用途很广的计数资料的假设检验方法。
它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。
其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。
它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
卡方检验的基本原理卡方检验是以χ2分布为基础的一种常用假设检验方法,它的无效假设H0是:观察频数与期望频数没有差别。
该检验的基本思想是:首先假设H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。
根据χ2分布及自由度可以确定在H0假设成立的情况下获得当前统计量及更极端情况的概率P。
如果P值很小,说明观察值与理论值偏离程度太大,应当拒绝无效假设,表示比较资料之间有显著差异;否则就不能拒绝无效假设,尚不能认为样本所代表的实际情况和理论假设有差别。
卡方值的计算与意义χ2值表示观察值与理论值之问的偏离程度。
计算这种偏离程度的基本思路如下。
(1)设A代表某个类别的观察频数,E代表基于H0计算出的期望频数,A与E之差称为残差。
(2)显然,残差可以表示某一个类别观察值和理论值的偏离程度,但如果将残差简单相加以表示各类别观察频数与期望频数的差别,则有一定的不足之处。
因为残差有正有负,相加后会彼此抵消,总和仍然为0,为此可以将残差平方后求和。
(3)另一方面,残差大小是一个相对的概念,相对于期望频数为10时,期望频数为20的残差非常大,但相对于期望频数为1 000时20的残差就很小了。
考虑到这一点,人们又将残差平方除以期望频数再求和,以估计观察频数与期望频数的差别。
进行上述操作之后,就得到了常用的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson χ2,其计算公式为:其中,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。
四格表卡方检验的适用条件
四格表卡方检验的适用条件
四格表卡方检验是一种常用的假设检验方法,适用于分析两个分类变
量之间的关系。
在进行四格表卡方检验之前,需要满足以下几个条件:
1. 样本数量足够大
样本数量应该足够大,以确保每个单元格中的观测值都不小于5。
如果任何一个单元格中的观测值小于5,则可能会导致卡方统计量不准确。
2. 数据是随机抽取的
数据应该是随机抽取的,以确保样本代表总体。
如果数据不是随机抽
取的,则可能会导致结果不准确。
3. 变量是分类变量
变量应该是分类变量,即每个变量都有两个或多个互斥的类别。
如果
变量不是分类变量,则无法使用四格表卡方检验进行分析。
4. 变量之间相互独立
每个观测值只能属于一个单元格,并且每个单元格中的观测值应该相互独立。
如果观测值不相互独立,则可能会导致结果不准确。
综上所述,四格表卡方检验适用于分析两个分类变量之间的关系,并且样本数量足够大、数据是随机抽取的、变量之间相互独立。
如果以上条件不满足,则可能会导致卡方统计量不准确,从而影响结果的可靠性。
因此,在进行四格表卡方检验之前,需要仔细检查数据是否符合上述条件。
四格表卡方检验
目的和意义
目的
通过四格表卡方检验,可以了解两个 分类变量之间的关系,判断它们是否 独立或者存在某种关联性。
意义
四格表卡方检验在医学、生物学、社 会学等领域有广泛的应用,可以帮助 研究者了解不同类别数据之间的关系 ,为进一步的研究提供依据。
02 卡方检验基础知识
卡方检验的定义
总结词
卡方检验是一种统计方法,用于比较实际观测频数与预期频 数之间的差异。
详细描述
卡方检验适用于分析两个分类变量之间的关系,特别是当样本量较小或理论频数较低时。 它可以用于检验两个分类变量之间是否存在关联性,以及这种关联性是否具有统计学显 著性。此外,卡方检验还可以用于评估分类变量的一致性,例如诊断准确率、调查问卷
的一致性等。
卡方检验的基本步骤
• 总结词:卡方检验的基本步骤包括选择适当的卡方检验类型、构建期望 频数、计算卡方统计量、选择合适的显著性水平以及解释结果。
社会学研究
在社会学研究中,四格表卡方检验用于分析两个分类变量之间的关系, 例如调查不同人群的婚姻状况与性别比例的关系。
生物学研究
在生物学研究中,四格表卡方检验用于分析物种分布、生态位和种群 遗传结构等。
心理学研究
在心理学研究中,四格表卡方检验用于分析不同心理特征或行为模式 在不同人群或条件下的分布情况。
样本量大小的要求
足够大的样本量
四格表卡方检验需要足够的样本量才能获得 可靠的统计结果。通常来说,样本量越大, 结果的稳定性越高。
考虑最小样本量
在选择样本量时,需要考虑最小样本量的要 求。根据研究目的和预期效应大小,确定合 适的样本量。
卡方检验的局限性
1 2 3
适用范围有限
四格表卡方检验主要用于比较两组分类变量之间 的关联程度,对于连续变量或等级变量则不太适 用。
医学统计方法之卡方检验
医学统计方法之卡方检验卡方检验(Chi-square test)是一种常用的医学统计方法,用于比较观察频数与期望频数的差异,以判断两个或多个类别变量之间是否存在相关性或差异。
卡方检验适用于分类数据的分析,常用于研究疾病与相关因素的关系、药物与不良反应的关系等。
卡方检验的基本原理是通过计算观察频数与期望频数之间的差异,并比较差异的程度来判断两个或多个分类变量之间的关联性。
卡方值越大,观察频数与期望频数之间的差异越大,相关性越显著。
卡方检验的零假设(Null hypothesis)是假设变量之间没有关联性,即观察频数与期望频数之间的差异是由随机误差引起的。
卡方检验的计算步骤如下:1.建立零假设与备择假设。
例如,我们想要研究其中一种药物与不良反应的关系,零假设可以是“该药物与不良反应之间没有关联性”,备择假设可以是“该药物与不良反应之间存在关联性”。
2.构建两个变量的列联表,计算观察频数。
列联表是将两个或多个分类变量交叉组合生成的一个二维表格。
例如,我们可以将药物使用与不良反应按行和列分别组合,得到一个2×2的列联表。
3.计算期望频数。
期望频数是在零假设成立的情况下,根据总体总数和变量之间的独立性计算的理论频数。
期望频数可以通过计算每个组合的行合计、列合计以及总体合计来得到。
4.计算卡方值。
卡方值是观察频数与期望频数之间的差异的平方和除以期望频数的总和,即卡方值=Σ((O-E)²/E),其中O为观察频数,E为期望频数。
5.比较卡方值与临界值。
通过查找卡方分布表,根据给定的显著性水平(一般为0.05或0.01),确定临界值。
如果卡方值大于临界值,则拒绝零假设,认为两个变量之间存在关联性。
如果卡方值小于等于临界值,则无法拒绝零假设,认为两个变量之间不存在关联性。
6.进行推论。
如果拒绝零假设,可以推断两个变量之间存在关联性。
反之,如果无法拒绝零假设,不能推断两个变量之间存在关联性。
需要注意的是,卡方检验对样本容量有一定要求,通常要求每个格子的期望频数不低于5、如果期望频数低于5,需要采取合适的修正方法或使用其他适用于小样本的检验方法。
卡方检验四格表计算举例
卡方检验四格表计算举例卡方检验是一种用于统计两个分类变量之间是否存在关联的方法。
它的计算过程涉及到四格表,其中每个格子包含了两个分类变量的交叉频次。
以下是一个卡方检验四格表的计算举例:假设我们想要研究饮食习惯与健康状况之间的关联。
为了进行研究,我们在一组参与者中选择了200人,并记录了他们的饮食习惯(偏好肉类或偏好蔬菜)和他们的健康状况(有健康问题或无健康问题)。
根据我们的观察,四格表可以构建如下:有健康问题,无健康问------------------,-----------------,-----------------偏好肉类,a,b------------------,-----------------,-----------------偏好蔬菜,c,d------------------,-----------------,-----------------在这个例子中,a表示偏好肉类和有健康问题的参与者数量,b表示偏好肉类但没有健康问题的参与者数量,c表示偏好蔬菜但有健康问题的参与者数量,d表示偏好蔬菜和没有健康问题的参与者数量。
计算卡方值的步骤如下:1.计算每个格子的期望频次。
期望频次是基于无关联假设的预期频次。
在这个假设下,我们认为饮食习惯和健康状况之间没有关联。
计算期望频次的公式为:E=(总行和*总列和)/总样本数。
对于我们的例子,总行和为a+b、c+d,总列和为a+c、b+d,总样本数为a+b+c+d。
因此,期望频次E(a)=[(a+b)(a+c)]/(a+b+c+d)。
2.计算每个格子的卡方统计量。
卡方统计量是观察频次和期望频次之间的差异的平方和除以期望频次的总和。
计算卡方统计量的公式为:χ²=Σ[(O-E)²/E]。
对于我们的例子,第一个格子的卡方统计量为[(a-O(a))²/O(a)+(c-O(c))²/O(c)],其中O(a)和O(c)是观察频次。
卡方检验-有序资料的卡方检验
在社会学研究中,卡方检验可用 于分析分类变量之间的关系,例 如性别与职业选择、婚姻状况与
教育程度等。
在市场营销中,卡方检验可用于 分析消费者偏好和行为,例如品
牌选择、产品购买决策等。
注意事项
卡方检验的前提假设是样本数 据相互独立,且每个单元格的
期望频数不能太小。
卡方检验的结果受到样本大小 和期望频数的影响,因此在使 用时需要谨慎选择样本和数据
卡方检验的定义和原理
• 有序卡方检验基于卡方检验的原理,通过比较实际观测频数与期望频数之间的 差异,来评估变量之间的关联性。它利用卡方统计量来衡量观测频数与期望频 数之间的偏离程度,通过计算卡方值和对应的概率值(p值),判断变量之间 的关联是否具有统计学显著性。
• 有序卡方检验通常使用列联表的形式呈现数据,其中行表示一个分类变量,列 表示另一个分类变量。在列联表中,每个单元格表示两个分类变量在特定水平 下的观测频数。通过比较期望频数与实际观测频数,可以计算每个单元格的卡 方值。
05
卡方检验的案例分析
案例一:不同年龄段人群的吸烟习惯
01
目的
比较不同年龄段人群的吸烟习惯是否存在显著差异。
02
数据
将年龄段分为5个等级,分别为18岁以下、18-25岁、26-35岁、36-45
岁、46岁以上。吸烟习惯分为不吸烟、偶尔吸烟、经常吸烟三个等级。
03
分析
使用卡方检验分析不同年龄段人群的吸烟习惯分布是否有显著差异。
对样本量要求较高
有序卡方检验对样本量有一定的要求,如果 样本量过小,可能会导致检验结果不准确。
对数据要求较高
有序卡方检验要求数据必须满足一定的假设条件, 如独立性、均匀分布等,否则可能会导致检验结果 偏差。
四格表卡方检验
发病率 (0/00) =④/② 1.61
1.93
死亡率 (0率 (%) =⑤/③ 2.60
5.51
55~
65~
36584
10343
214
95
125
87 479
15
23 61
20.11
8.93
5.85
9.18
3.42
8.41 2.39
0.41
2.22 0.30
7.94
英国统计学家
1901年10月与 Weldon,Galton 一起创办 Biometvika
2019年3月28日
例8-1 某医院收治376例胃脘痛患者,随机分 为两组,分别用新研制的中药胃金丹和西药治疗。 结果如表8-1,探讨两药疗效有无差别。
表8-1 疗法 胃金丹 西药 合 计 两药治疗胃脘痛的疗效四格表 有效 271(253.24) 74(91.76) 345 无效 5(22.76) 26(8.24) 31 合计 276 100 376 有效率 98.19% 74.00% 91.76%
2019年3月28日
理论数公式
nr nc Trc ,nr 表示第r行的合计数; n nc 表示第c列的合计数; n表示总合计。
271
5
253.24 22.76 91.76 8.24
74
26
2019年3月28日
衡量理论数与实际数的差别
检验统计量
R ,C
2 值:
2 2 ( A T ) ( A T ) 2 rc rc Trc T r ,c 1
第一节
常用相对数
医药统计中的资料类型
常用相对数指标
应用注意事项
四格表卡方检验
第29页/共42页
• (3) 2检验 从菜单选择 Analyze→Descriptive Statistics→Crosstable(交叉表) 指定 Row(s):组别 Columns(s):疗效 击Statistics按钮选择Chi-square。
第30页/共42页
输出结果
理论数小于5的格子数为2(占50%),最小理论数为4.18 卡方检验:有效观测数 n=71>40,有两个格子理论数T<5,故用
校正卡方检验2 =2.746,P=0.098,不能认为两药疗效不同。
第31页/共42页
第二节 四格表确切概率法
四格表确切概率法基本思想 实例
第32页/共42页
36
2
38
合计
62
9
71
第25页/共42页
例8-2 对表8-4资料推断两组的疗效有无差别
(1) H0: 1 2 ,即两组疗效相同
H1: 1 2 ,即两组疗效不同 , α=0.05
(2)计算2值,最小理论数
9 33 T12 71 4.18
因有理论数1<T<5,n>40,故用校正2检验
第26页/共42页
一致性检验 危险度分析
配对四格表卡 方检验
第20页/共42页
主要输出结果
校正只适用于四格表 理论数小于5的格子数为0(占0%),最小理论数为8.24
第21页/共42页
结果分析
卡方检验(计数资料)
卡方检验(计数资料)四格表资料的卡方检验四格表资料的卡方检验用于进行两个率或两个构成比的比较。
1. 专用公式:若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=(ad-bc)2*n/(a+b)(c+d)(a+c)(b+d),自由度v=(行数-1)(列数-1)2. 应用条件:要求样本含量应大于40且每个格子中的理论频数不应小于5。
当样本含量大于40但理论频数有小于5的情况时卡方值需要校正,当样本含量小于40时只能用确切概率法计算概率。
行X列表资料的卡方检验行X列表资料的卡方检验用于多个率或多个构成比的比较。
1. 专用公式:r行c列表资料卡方检验的卡方值=n[(A11/n1n1+A12/n1n2+...+Arc/nrnc)-1]2. 应用条件:要求每个格子中的理论频数T均大于5或1<t<1或1<t<5的格子较多时,可采用并行并列、删行删列、增大样本含量的办法使其符合行x列表资料卡方检验的应用条件。
而多个率的两两比较可采用行x 列表分割的办法。
列联表资料的卡方检验:同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。
1. R*C 列联表的卡方检验:R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行X列表资料的卡方检验相同。
2. 2*2列联表的卡方检验:2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。
当用一般四格表的卡方检验计算时,卡方值=(ad-bc)2n/(a+b)(c+d)(a+c)(b+d),此时用于进行配对四格表的相关分析,如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。
列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。
卡方检验及其应用
卡方检验及其应用一、卡方检验概述:卡方检验主要应用于计数数据的分析,对于总体的分布不作任何假设,因此它属于非参数检验法中的一种.它由统计学家皮尔逊推导.理论证明,实际观察次数(f o )与理论次数(f e ),又称期望次数)之差的平方再除以理论次数所得的统计量,近似服从卡方分布,可表示为:)(n f f f ee 2202~)(χχ∑-= 这是卡方检验的原始公式,其中当f e 越大,近似效果越好。
显然f o 与f e 相差越大,卡方值就越大;f o 与f e 相差越小,卡方值就越小;因此它能够用来表示f o 与f e 相差的程度。
根据这个公式,可认为卡方检验的一般问题是要检验名义型变量的实际观测次数和理论次数分布之间是否存在显著差异。
一般用卡方检验方法进行统计检验时,要求样本容量不宜太小,理论次数≥5,否则需要进行校正。
如果个别单元格的理论次数小于5,处理方法有以下四种:1、单元格合并法;2、增加样本数;3、去除样本法;4、使用校正公式。
当某一期望次数小于5时,应该利用校正公式计算卡方值。
公式为:∑--=ee f f f 202)5.0(χ二、卡方检验的统计原理:• 卡方检验所检测的是样本观察次数﹙或百分比﹚与理论或总体次数﹙或百分比﹚的差异性.• 理论或总体的分布状况,可用统计的期望值(理论值)来体现。
• 卡方的统计原理,是取观察值与期望值相比较。
卡方值越大,代表统计量与理论值的差异越大,一旦卡方值大于某一个临界值,即可获得显著的统计结论.三、卡方检验的主要应用: 1、独立性检验独立性检验主要用于两个或两个以上因素多项分类的计数资料分析,也就是研究两类变量之间的关联性和依存性问题.如果两变量无关联即相互独立,说明对于其中一个变量而言,另一变量多项分类次数上的变化是在无差范围之内;如果两变量有关联即不独立,说明二者之间有交互作用存在。
独立性检验一般采用列联表的形式记录观察数据, 列联表是由两个以上的变量进行交叉分类的频数分布表,是用于提供基本调查结果的最常用形式,可以清楚地表示定类变量之间是否相互关联。
四格表卡方检验结果解读
四格表卡方检验结果解读在统计学中,卡方检验是一种常用的统计方法,用于检验两个或多个分类变量之间是否存在关联性。
四格表卡方检验是其中的一种形式,通常用于分析两个分类变量的关联性。
四格表是由两个分类变量所组成的一个二维交叉表,其中每个分类变量各有两个水平(类别)。
卡方检验的目的是判断这两个分类变量是否独立,即变量之间是否存在关联性。
卡方检验的原假设为“两个变量之间独立”,备择假设则为“两个变量之间不独立”。
进行卡方检验的关键是计算出卡方值,并将其与临界值进行比较。
若计算得到的卡方值大于临界值,则认为两个变量之间存在显著关联性;反之,若计算得到的卡方值小于或等于临界值,则认为两个变量之间不相关。
卡方值的计算是基于四格表中的观察频数与期望频数的比较。
观察频数是指四格表中每个单元格中的实际观察到的频数,而期望频数是指基于假设模型下,每个单元格中的预期频数。
解读四格表卡方检验的结果时,首先需要查看输出的卡方检验统计量和自由度。
卡方检验统计量通常表示为χ2(读作“卡方”),其数值越大,说明两个变量之间的差异越显著。
自由度表示独立变量的自由度和独立变量水平数目之间的关系。
自由度越大,说明检验结果越可靠。
在解读卡方检验结果时,需要关注的重要指标有四个:卡方值,自由度,P值和显著性水平。
卡方值越大,表明差异越显著,与假设模型越不符合。
自由度越大,卡方值越大,相应的P值越小,表明差异越显著。
P值是在给定假设模型成立的条件下,观察到卡方值或更极端的情况发生的概率。
一般而言,当P值小于等于0.05时,我们可以拒绝原假设,认为两个变量之间存在显著关联性。
当P值大于0.05时,我们无法拒绝原假设,即无法得出两个变量之间存在关联性的结论。
显著性水平是事先确定的一个阈值,通常取0.05。
当P值小于等于显著性水平时,拒绝原假设;当P值大于显著性水平时,无法拒绝原假设。
在解读四格表卡方检验结果时,需要同时综合考虑卡方值、自由度、P值和显著性水平这四个指标来进行判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配对卡方检验
配对卡方检验
例:某实验室分别用乳胶凝集法和免疫荧光法对58名 可疑系统性红斑狼疮患者血清中抗核抗体进行测定, 问两种方法的检测结果有无差别?
免疫荧光法 乳胶凝集法 合计
+
+ 11
12 23
合计
2 13
33 45
35 58
建立数据库
加权
选中进行配对卡方 检验
结果分析
练习题
建立数据库
加权
按某一变量分层
进行分层卡方检 验
结果分析
按变量age取值分层的交叉表
分层卡方检验结果
校正年龄混杂作用 后的综合OR值
SPSS -卡方检验
卫生学教研室
☆内容提要
◎ 卡方检验基础
◎ 四格表卡方检验 ◎ 配对卡方检验 ◎ R×C表卡方检验 ◎ 两分类变量间关联程度的度量 ◎ 分层卡方检验
卡方检验基础
二项分布中 两个率的u检验
X2检验
当观察例数不足/多个率比较时,u检验不适用 X2检验:分类变量资料
四格表卡方检验
在医学资料中,常常需要比较两个样本率之间的差异 有无显著性,如推断某人群男与女的某种疾病的患病 率是否相等,即该病是否与性别有关。这类资料由4 个数据构成:男与女的患病人数和未患病人数,统计 学称这类资料为四格表资料。
四格表卡方检验
例:某种药物加化疗与单用某种药物治疗的两 种处理方法,观察对某种癌症的疗效。
处理
有效 药物加化疗 单用药物 合计 42 48 90
疗效
无效 13 3 16
合计
55 51 106
首先建立数据库
由于数据录入中录入的不是原始数据而是频数表数据,所以要进行预处理也 就是对频数进行加权
加权的具体步骤
Cells
Statistics
结果分析
校正条件:
练习题
P410 第一题
度的近似。
例:某次食物中毒,现想通过调查发现,吃某海 产品(food)和食物中毒发生(poison)是否具有 相关性,以及吃了某食物的人是没吃海产品的人 的几倍。
poison
yes food yes no 10 6 no 30 54
建立数据库
Yes=1 no=2
可计算OR值
结果分析
上图为两变量的四格表
建立数据库
加权
Statistics
Cells
结果分析
练习题
P411 第四题
两分类变量间关联程度的度量 RR(相对危险度):
RR=1,表明暴露与疾病无联系
RR<1,负联系(提示暴露是保护因子) RR>1,正联系(提示暴露是危险因子) OR(优势比): OR≈RR ,(当事件发生概率比较小)
两分类变量间关联程度的度量
相对危险度RR:是一个概率的比值,指试验组人群反应阳性概 率与对照组人群反应阳性概率的比值。数值为1,表明试验因素
与反应阳性无关联;小于1时,表明试验因素导致反应阳性的发
生率降低;大于1时,表明试验因素导致反应阳性的发生率增加。 优势比OR:是一个比值的比,是反应阳性人群中试验因素有无 的比例与反应阴性人群中试验因素有无的比例之比。 当关注的事件发生概率比较小时(<0.1),优势比可作为相对危险
上图为卡方检验的结果,说明吃该海产品与食物中毒 有关。
结果显示,OR=3.00,说明吃该海产品者发生食物中毒的可
能性是没有吃该海产品者的3.00倍?
分层卡方检验
例:国外某病例对照研究,调查口服避孕药与心 肌梗死的情况,考虑到年龄是一个可能的混杂因 素,故也将其纳入调查。
年龄<40 服用OC 病例 对照 合计 21 17 38 未服OC 26 59 85 18 7 25 年龄≥40 服用OC 未服OC 88 95 183
P410 第二题
R×C表卡方检验
R×C表卡方检验
例:某地发生松毛虫病,333例患者按年龄分为2组, 分析不同年龄人群病变类型结构有无区别?
年龄分组 皮炎型 骨关节型 软组织类型 儿童组 成人组 合计 50 105 155 48 10 58 18 7 பைடு நூலகம்5
混合型 72 23 95
合计 188 145 333