k1(解法02-2-15修改)
解析几何求轨迹方程的常用方法
解析几何求轨迹方程的常用方法求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标〔x ,y 〕表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f 〔t 〕, y =g 〔t 〕,进而通过消参化为轨迹的普通方程F 〔x ,y 〕=0。
4. 代入法〔相关点法〕:如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,〔该点坐标满足某已知曲线方程〕,则可以设出P 〔x ,y 〕,用〔x ,y 〕表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用。
一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为〔-4,0〕,〔4,0〕,C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
例2: 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,假设b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
学法大视野·数学·九年级上册(湘教版)·答案
学法大视野·数学·九年级上册(湘教版)·答案第1章反比例函数1.1反比例函数课前预习1.y=kx≠零课堂探究【例1】探究答案:-1k≠0 B 变式训练1-1:解:判断某函数是否是反比例函数,不是看表示变量的字母是不是有x与y,而要看它能否化为y=kx(k为常数,k≠0)的形式所以(2)是反比例函数,其中k=-6;(3)是反比例函数, 其中k=-3. 变式训练1-2:解:(1)由三角形的面积公式,得12xy=36 于是y=72x 所以,y是x的反比例函数. (2)由圆锥的体积公式,得13xy=60,于是y=180 所以y是x的反比例函数.【例2】探究答案:1.y=kx(k≠0) 2.(2,-2 解:设反比例函数的解析式为y=kx(k≠0 因为图象过点(2,-2), 将x=2,y=-2代入,得-2=k2,解得k=-2 因此,这个反比例函数的解析式为y=-2x 将x=-6,y=13代入,等式成立所以函数图象经过-6,13. 变式训练2-1:B 变式训练2-2:解:(1)设y1=k1x,y2=k2x(k1,k2为常数,且k1≠0,k2≠0),则y=k1x+ ∵x=1,y=4;x=2,y=5,∴k 解得k ∴y与x的函数表达式为y=2x+2x (2)当x=4时,y=2×4+24=81课堂训练 1.B 2.C 3.A 4.-2 5.解:设大约需要工人y个,每人每天生产纪念品x个. ∴xy=100,即y=100x(x>0∵5≤x≤8,∴1008≤y≤100 即1212≤y≤20 ∵y是整数,∴大约需工人13至20人.课后提升 1.D 2.A 3.C 4.B 5.C 6.27.4008.-12 9.解:(1)∵y是x的正比例函数, ∴m2-3=1, m2=4, m=±2. ∵m=2时,m-2=0, ∴舍去. ∴m=-2. (2)∵y是x的反比例函数, ∴m2-3=-1, m2=2, m=±2. 10.解:(1)由S=12xy=30,得y=60 x的取值范围是x>0. (2)由y=60x可知,y是x的反比例函数,系数为601.2反比例函数的图象与性质第1课时反比例函数的图象课前预习3.(1)一、三(2)二、四课堂探究【例1】探究答案:第一、三象限> 解:(1)∵这个反比例函数图象的一支分布在第一象限, ∴m-5>0,解得m>5. (2)∵点A(2,n)在正比例函数y=2x的图象上, ∴n=2×2=4,则A点的坐标为(2,4). 又∵点A在反比例函数y=m-5 ∴4=m-52,即m-5 ∴反比例函数的解析式为y=8x 变式训练1-1:C 变式训练1-2:-5【例2】探究答案:1.(1,5) 2.y 解:(1)∵点(1,5)在反比例函数y=kx的图象上∴5=k1,即k=5 ∴反比例函数的关系式为y=5x 又∵点(1,5)在一次函数y=3x+m的图象上, ∴5=3+m, ∴m=2. ∴一次函数的关系式为y=3x+2. (2)由题意可得y解得x1= ∴这两个函数图象的另一个交点的坐标为-53,-3. 变式训练2-1:A 变式训练2-2:解:(1)将A(-1,a)代入y=-x+2中, 得a=-(-1)+2,解得a=3. (2)由(1)得,A(-1,3),将A(-1,3)代入y=kx中得到3=k-1,即k=- 即反比例函数的表达式为y=-3x (3)如图:过A点作AD⊥x轴于D,∵A(-1,3),∴AD=3, 在直线y=-x+2中,令y=0,得x=2, ∴B(2,0),即OB=2, ∴△AOB的面积S=12×OB×AD=12×2×3=课堂训练1.A 2.C 3.B 4.m>15.解:(1)∵反比例函数y=kx 与一次函数y=x+b的图象,都经过点A(1,2 ∴将x=1,y=2代入反比例函数解析式得, k=1×2=2, 将x=1,y=2代入一次函数解析式得,b=2-1=1, ∴反比例函数的解析式为y=2x 一次函数的解析式为y=x+1. (2)对于一次函数y=x+1, 令y=0,可得x=-1; 令x=0,可得y=1. ∴一次函数图象与x轴,y轴的交点坐标分别为(-1,0),(0,1).课后提升 1.C 2.B 3.A 4.D 5.C 6.-37.-24 8.解:m2=(-4)×(-9)=36,∴m=±6. ∵反比例函数y=mx的图象位于第一、三象限,∴m>0 ∴m=6. 9.解:(1)∵y=m-5x的一支在第一象限内,∴ m-5 ∴m>5. 对直线y=kx+k来说,令y=0,得kx+k=0,即k(x+1)=0. ∵k≠0,∴x+1=0,即x=-1. ∴点A的坐标为(-1,0). (2)过点M 作MC⊥AB于点C, ∵点A的坐标为(-1,0),点B的坐标为(3,0),∴AB=4,AO=1. ∵S△ABM=12×AB× =12×4× =8, ∴MC=4. 又AM=5,∴AC=3, 又OA=1,∴OC=2.∴点M的坐标为(2,4). 把M(2,4)代入y=m- 得4=m-52,则m=13,第2课时反比例函数的性质课前预习1.在每一象限内减小在每一象限内增大2.y=±x坐标原点课堂探究【例1】探究答案:1.一、三>0 2.减小> 解:(1)图象的另一支在第三象限,则2n-4>0,解得n>2. (2)把点(3,1)代入y=2n-4x,得2n- 解得n=72 (3)因为在每个象限内,y随x的增大而减小,所以由a1<a2,得b1>b2. 变式训练1-1: A 变式训练1-2:<【例2】探究答案:|k|解:设点A的坐标为a,2a,则点B的坐标为-a,-2a, ∵BC‖x轴,AC‖y轴,∴AC⊥BC, 又由题意可得BC=2a,AC=4a S△ABC=12BC·AC=12·2a·4a 变式训练2-1:1 变式训练2-2:解:设A的坐标是(m,n),则n=km,即k=mn ∵OB=-m,AB=n,S长方形ABOC=OB·AB=(-m)n=-mn=3, ∴mn=-3,∴k=-3,则反比例函数的解析式是y=-3x课堂训练 1.A 2.C 3.6 4.25.解:设一次函数的解析式为y=kx+b(k≠0). ∵点A是直线与反比例函数y=2x的交点∴把A(1,a)代入y=2x,得a=2 ∴A(1,2). 把A(1,2)和C(0,3)代入y=kx+b,得k 解得k=-1,b=3. 所以一次函数的解析式为:y=-x+3.课后提升 1.D 2.D 3.A 4.C 5.C 6.C7.x<-2或0<x<1 8.6< span="">9.解:(1)图象的另一支在第三象限, ∵图象在一、三象限,∴5-2m>0, ∴m<52 (2)b1<b2.理由如下:∵m<52,∴m-4<m-3<0,∴b1<="" span="">【例1】探究答案:1.反比例v=PF2.解:(1)设反比例函数解析式为v=PF 把(3000,20)代入上式, 得20=P3000,P=3000×20=60000 ∴v=60000F (2)当F=1200时,v=600001200=50(米/秒)=180(千米/时即当它所受的牵引力为1200牛时,汽车的速度为180千米/时. (3)由v=60000F≤30,得F≥2000 所以,若限定汽车的速度不超过30米/秒,则F应不小于2000牛. 变式训练1-1:C 变式训练1-2:0.5【例2】探究答案:1.k2-2 2.图象解:(1)∵双曲线y=k2x 经过点A(1,2),∴k2= ∴双曲线的解析式为y=2x ∵点B(m,-1)在双曲线y=2x上∴m=-2,则B(-2,-1). 由点A(1,2),B(-2,-1)在直线y=k1x+b上, 得k 解得k ∴直线的解析式为y=x+1. (2)y2<y11或-2<x<0. < span="">变式训练2-1:C 变式训练2-2:解:(1)直线y=12x+b经过第一、二、三象限,与y轴交于点B ∴OB=b, ∵点A(2,t),△AOB的面积等于1. ∴12×2×b=1,可得b=1 即直线为y=12x+1 (2)由点A(2,t)在直线y=12x+1上可得t=2,即点A坐标为(2,2), 反比例函数y=kx(k是常量,k≠0)的图象经过点A,可得k=4 所求反比例函数解析式为y=4x 课堂训练 1.C 2.C 3.B 4.(1,-2) 5.解:(1)将A(2,4)代入反比例函数解析式得m=8, ∴反比例函数解析式为y2=8x 将B(-4,n)代入反比例函数解析式得n=-2, 即B(-4,-2), 将A与B坐标代入一次函数解析式得, 2 解得k 则一次函数解析式为y1=x+2. (2)联立两函数解析式得y 解得x=2 则y1=y2时,x的值为2或-4. (3)利用题图象得,y1>y2时, x的取值范围为-4<x<0或x>2. 课后提升1.D 2.D 3.C 4.D 5.x<0或1<x<4 6.1.67.(3,2) 8.19.< span="">解:(1)∵反比例函数y=kx的图象过B(4,-2)点∴k=4×(-2)=-8, ∴反比例函数的解析式为y=-8x ∵反比例函数y=-8x的图象过点A(-2,m ∴m=-8-2= 即A(-2,4). ∵一次函数y=ax+b的图象过A(-2,4),B(4,-2)两点, ∴- 解得a ∴一次函数的解析式为y=-x+2. (2)∵直线AB:y=-x+2交x轴于点C, ∴C(2,0).∵AD⊥x轴于D,A(-2,4), ∴CD=2-(-2)=4,AD=4,∴S△ADC=12·CD·AD=12×4×4= 10.解:(1)把A(m,2)代入反比例函数解析式y=2 得2=2m 所以m=1. ∴A(1,2). (2)把A(1,2)代入正比例函数解析式y=kx得2=k,所以k=2,因此正比例函数的解析式为y=2x. (3)因为正比例函数的解析式为y=2x,当x=2时,y≠3,所以点B(2,3)不在正比例函数图象上.第2章一元二次方程2.1一元二次方程课前预习1.一个2整式 3.相等课堂探究【例1】探究答案:1.2=2 2.≠0 解:根据题意,得m2-2=2,且m-2≠0. 解得m=±2,且m≠2.所以m=-2. 则m2+2m-4=(-2)2+2×(-2)-4=-4. 变式训练1-1:C 变式训练1-2:≠±1=1【例2】探究答案:1.移项合并同类项 2.符号0 解:(1)去括号,得4t2+12t+9-2(t2-10t+25)=-41, 去括号、移项、合并得2t2+32t=0, 所以二次项系数、一次项系数和常数项分别为2,32,0.(2)去括号,得12x2-x+12=3x+ 移项、合并,得12x2-4x+16= 所以二次项系数、一次项系数和常数项分别为12,-4,1 变式训练2-1:B 变式训练2-2:解:m 解得m=±2且m≠-2. ∴m=2.【例3】探究答案:1.根 2.≠0 解:根据题意,得(m-2)×12+(m2-3)×1-m+1=0, 即m2-4=0,故m2=4, 解得m=2或m=-2. ∵方程(m-2)x2+(m2-3)x-m+1=0是关于x的一元二次方程, ∴m-2≠0,即m≠2.故m=-2. 变式训练3-1:1 变式训练3-2:解:把x=0代入方程得a2-1=0, ∴a=±1, ∵a-1≠0,∴a≠1, ∴a=-1.课堂训练1.C 2.A 3.-10 4.-2 5.解:去括号,得9x2+12x+4=4x2-24x+36. 移项、合并同类项得,5x2+36x-32=0. ∴它的二次项为5x2 二次项系数为5, 一次项为36x, 一次项系数为36, 常数项为-32.课后提升 1.D 2.D 3.C 4.C 5.D 6.x(x+5)=300x2+5x-300=015-3007.18.≠1=1 9.解:(1)去括号,得x2-4=3x2+2x, 移项,得-2x2-2x-4=0,二次项系数为-2,一次项系数为-2,常数项为-4. (2)去括号,移项合并,得(1-2a)x2-2ax=0,二次项系数为1-2a,一次项系数为-2a,常数项为0. 10.解:小明的话有道理. 理由:若方程为一元二次方程,则m+1=2,m=1. 而m=1时,m2+m-2=0, 所以此方程不可能为一元二次方程.2.2一元二次方程的解法2.2.1配方法第1课时用配方法解简单的一元二次方程课前预习1.(1)平方根2.(1)a2±2ab+b2(2)完全平方式课堂探究【例1】探究答案:-a±b没有解:移项,得2(x+1)2=92 两边同时除以2,得(x+1)2=94 ∴x+1=±32 ∴x1=-1+32=12,x2=-1-32 变式训练1-1:m≥7 变式训练1-2:解:(1)移项,得(2x-1)2=25, 开平方得2x-1=±5, ∴2x-1=5或2x-1=-5, 解这两个方程得:x1=3,x2=-2. (2)两边同除以3,得(x-2)2=4, 开平方得:x-2=±2, ∴x-2=2或x-2=-2. 解这两个方程,得x1=4,x2=0.【例2】探究答案:一次项系数一半的平方解:移项,得x2-12x=1 配方,得x2-12x+142=916, ∴x-14=34或x-14=-34,∴x1=1,x 变式训练2-1:±4 变式训练2-2:解:移项,得x2-2x=2,配方,得(x-1)2=3, 解得x=1±3. ∴x1=1+3,x2=1-3.课堂训练1.D 2.B 3.±32 4.± 5.解:(1)移项得x2-2x=1,配方,得x2-2x+1=2, 即(x-1)2=2,开方,得x-1=±2, 则x1=1+2,x2=1-2. (2)移项,得x2-4x=-1, 配方,得x2-4x+4=-1+4,即(x-2)2=3, 开方,得x-2=±3, ∴原方程的解是x1=2+3,x2=2-3.课后提升1.D 2.B 3.D 4.B 5.3 6.-37.900 cm2 8.解:(1)直接开平方得,x-1=±3,即x-1=3或x-1=-3, ∴x1=1+3,x2=1-3. (2)配方,得x2-2x+1=4+1,即(x-1)2=5. ∴x-1=±5,即x-1=5或x-1=-5∴x1=1+5,x2=1-5. (3)方程两边都除以2,得x2-32=-52 移项,得x2+52x=3 配方,得x2+52x+542=32+542, 即x+542=4916. 开平方得,x+54=±74,∴x1=12,x2 9.解:用配方法解方程a2-10a+21=0,得a1=3,a2=7. 当a=3时,3、3、7不能构成三角形; 当a=7时,三角形周长为3+7+7=17. 10.解:移项得x2+px=-q, 配方得x2+px+p22=-q+p22, 即x+p22=p2- ∵p2≥4q, ∴p2-4q≥0, ∴x+p2=±p ∴x1=-p+p2-4第2课时用配方法解复杂的一元二次方程课前预习(1)1 (2)二次项和一次项常数项(3)一次项系数一半的平方课堂探究【例1】探究答案:1.1 2.完全平方式解:两边同时除以2,得x2-32x+12= 移项,得x2-32x=-1 配方,得x2-32x+-342=- 即x-34 两边开平方,得x-34=±14,x-34=14或x- ∴原方程的解为x1=1,x2=12 变式训练1-1:D 变式训练1-2:解:(1)二次项系数化为1, 得x2-16x-2=0 移项,得x2-16x=2,配方得x2-16x+1144=2+ 即x-1122=289144, ∴x-112=±1712,∴x1=32,x2 (2)二次项系数化为1,得x2-12x-12= 移项,得x2-12x=1 配方得x2-12x+142=12+142, 即x-142=916, ∴x-14=±3 ∴x1=1,x2=-12【例2】探究答案:1.1 2.减去解:2x2-4x+5=2(x2-2x)+5=2(x2-2x+12-12)+5 =2(x-1)2+3 ∵2(x-1)2≥0, ∴2(x-1)2+3>0, ∴代数式2x2-4x+5的值总是一个正数. 变式训练2-1:13 变式训练2-2:解:x2-4x+5=x2-4x+22-22+5 =(x-2)2+1. ∵(x-2)2≥0,且当x=2时值为0, ∴当x=2时, 代数式x2-4x+5的值最小,最小值为1.课堂训练1.A 2.B 3.x1=-2,x2=1 4.3或-7 5.-3或3 6.解:由题意得2x2-x=x+6,∴2x2-2x=6, ∴x2-x=3,∴x2-x+14=3+1∴x-122=134,∴x-12=±13 ∴x1=1+132,x2 ∴x=1+132或1-132时,整式2x2课后提升1.D 2.D 3.B 4.D 5.x1=1+3,x2=1-3 6.87.3 8.1±22 9.解:去括号,得4x2-4x+1=3x2+2x-7, 移项,得x2-6x=-8,配方,得(x-3)2=1, ∴x-3=±1,∴x1=2,x2=4. 10.解:由题意,得2x2+x-2+(x2+4x)=0, 化简,得3x2+5x-2=0. 系数化为1,得x2+53x=2 配方,得x+562=4936,∴x+56=±7 ∴x1=-2,x2=132.2.2公式法课前预习 1.x=-b±b2-4ac2 2.求根公式课堂探究【例1】探究答案:1.一般形式 2.a、b、c 解:原方程可化为x2+2x-1=0, ∵a=1,b=2,c=-1. b2-4ac=22-4×1×(-1)=8>0,∴x=-2±82×1= ∴x1=-1+2,x2=-1-2. 变式训练1-1:D 变式训练1-2:解:(1)移项,得2x2+3x-1=0, ∵a=2,b=3,c=-1,∴b2-4ac=17>0, ∴x=-3 ∴x1=-3+174,x (2)化简得,x2+5x+5=0, ∴a=1,b=5,c=5, ∴b2-4ac=5>0, ∴x=-5 ∴x1=-5+52,x【例2】探究答案:1.一元二次方程有实数根 2.相等解:原方程可化为2x2+22x+1=0, ∵a=2,b=22,c=1,∴b2-4ac=(22)2-4×2×1=0, ∴x=-22± ∴x1=x2=-22 变式训练2-1:解:(1)b2-4ac=(-2)2-4×1×1=4-4=0. ∴此方程有两个相等的实数根.(2)b2-4ac=72-4×(-1)×6=49+24=73>0. ∴此方程有两个不相等的实数根. 变式训练2-2:C课堂训练 1.D 2.C 3.2 4.解:(1)b2-4ac=(-4)2-4×2×(-1)=16+8=24>0. ∴x=-b±b2-4a∴x1=2+62,x2 (2)整理,得4x2+12x+9=0, 所以a=4,b=12,c=9. 因为b2-4ac=122-4×4×9=0, 所以方程有两个相等的实数根, 所以x=-b± =-128=- ∴x1=x2=-32课后提升 1.C 2.A 3.D 4.D 5.-1+ 6.x1=1,x2=1 7.25或16 8.解:整理得x2+2x-1=0, b2-4ac=22-4×1×(-1)=8, x=-2±82×1=∴x1=-1+2,x2=-1-2. 9.解:(1)x2-4x-1=0, ∵a=1,b=-4,c=-1,∴Δ=(-4)2-4×1×(-1)=20, ∴x=4±202×1 ∴x1=2+5,x2=2-5.(2)∵3x(x-3)=2(x-1)(x+1), ∴x2-9x+2=0, ∵a=1,b=-9,c=2,∴Δ=(-9)2-4×1×2=73>0, ∴x=-b±b ∴x1=9+732,x2 10.解:由题意得,m2+1=2, 且m+1≠0, 解得m=1. 所以原方程为2x2-2x-1=0, 这里a=2,b=-2,c=-1. b2-4ac=(-2)2-4×2×(-1)=12. ∴x=2±23∴x1=1+32,x22.2.3因式分解法课前预习1.(2)(a-b)(a+b)(a±b)22.一次因式课堂探究【例1】探究答案:x[(x+2)-4]3(x-5)2-2(5-x)=0 (x-5)(3x-13) 解:(1)x(x+2)-4x=0,x[(x+2)-4]=0, 即x(x-2)=0, ∴x=0或x-2=0,∴x1=0,x2=2. (2)3(x-5)2=2(5-x), 3(x-5)2-2(5-x)=0, (x-5)[3(x-5)+2]=0,∴x-5=0或3x-15+2=0, ∴x1=5,x2=133 变式训练1-1:C 变式训练1-2:解:(1)(3x-4)2=3(3x-4), ∴(3x-4)(3x-7)=0, ∴x1=43,x2=7(2)3(x+2)2=(x+2)(x-2), (x+2)[3(x+2)-(x-2)]=0, ∴(x+2)(2x+8)=0,∴x1=-2,x2=-4.【例2】探究答案:直接开平方法配方法公式法因式分解法解:(1)公式法:∵a=1,b=-3,c=1, ∴b2-4ac=(-3)2-4×1×1=5>0, ∴x=-(-3 ∴x1=3+52,x2 (2)因式分解法:原方程可化为x(x-3)=0,∴x=0或x-3=0 ∴x1=0,x2=3. (3)配方法:配方,得x2-2x+1=4+1, 即(x-1)2=5, ∴x-1=±5, ∴x1=1+5,x2=1-5. 变式训练2-1:C 变式训练2-2:解:(1)用直接开平方法:原方程可化为(x-3)2=4, ∴x-3=±2,∴x1=5,x2=1. (2)用配方法:移项,得x2-4x=7. 配方,得x2-4x+4=7+4, 即(x-2)2=11, ∴x-2=±11 ∴x-2=11或x-2=-11, ∴x1=2+11,x2=2-11. (3)用因式分解法:方程两边分别分解因式,得(x-3)2=2(x-3)(x+3), 移项,得(x-3)2-2(x-3)(x+3)=0. 方程左边分解因式,得(x-3)[(x-3)-2(x+3)]=0, 即(x-3)(-x-9)=0, ∴x-3=0或-x-9=0.∴x1=3,x2=-9.课堂训练 1.C 2.D 3.7 4.-1或4 5.解:(1)∵a=3,b=1,c=-1, ∴b2-4ac=12-4×3×(-1)=13>0, ∴x=- ∴x1=-1+136,x (2)移项,得(3x-2)2-4(3-x)2=0, 因式分解, 得[(3x-2)+2(3-x)][(3x-2)-2(3-x)]=0,即(x+4)(5x-8)=0, ∴x+4=0或5x-8=0, ∴x1=-4,x2=85 (3)将原方程整理,得x2+x=0, 因式分解,得x(x+1)=0, ∴x=0或x+1=0, ∴x1=0,x2=-1.课后提升1.A 2.D 3.B 4.B 5.B 6.x1=3,x2=97.68.-1 9.解:(1)用求根公式法解得y1=3,y2=-8. (2)用分解因式法解得x1=52,x2=-1 (3)用求根公式法解得y1=-2+22,y 10.解:解方程x(x-7)-10(x-7)=0, 得x1=7,x2=10. ∵4<第三边长<10, ∴x2=10(舍去).第三边长为7. 这个三角形的周长为3+7+7=17.2.3一元二次方程根的判别式课前预习1.a≠02.(1)>(2)=(3)<课堂探究【例1】探究答案:1.一般形式 2.a、b、c b2-4ac 解:(1)原方程可化为x2-6x+9=0, ∵Δ=b2-4ac=(-6)2-4×1×9=0, ∴原方程有两个相等的实数根. (2)原方程可化为x2+3x+1=0,∵Δ=b2-4ac=32-4×1×1=5>0, ∴原方程有两个不相等的实数根. (3)原方程可化为3x2-26x+3=0. ∵Δ=b2-4ac=(-26)2-4×3×3=-12<0, ∴原方程无实数根. 变式训练1-1:A 变式训练1-2:B【例2】探究答案:1.≥ 解:由题意知:b2-4ac≥0, 即42-8k≥0,解得k≤2. ∴k的非负整数值为0,1,2. 变式训练2-1:B 变式训练2-2:解:∵a=2,b=t,c=2. ∴Δ=t2-4×2×2=t2-16, 令t2-16=0,解得t=±4, 当t=4或t=-4时,原方程有两个相等的实数根.课堂训练 1.D 2.A 3.D 4.k<-1 5.解:(1)当m=3时,Δ=b2-4ac=22-4×1×3=-8<0, ∴原方程没有实数根. (2)当m=-3时,x2+2x-3=0, x2+2x=3, x2+2x+1=3+1, (x+1)2=4, ∴x+1=±2,∴x1=1,x2=-3.课后提升 1.D 2.A 3.C 4.C 5.D 6.m>17.m<2且m≠1 8.6或12或10 9.解:由题意,得b 由①,得4(k+1)+4-8k>0, 即-4k>-8,解得k<2. 由②得,k≠12,由③得,k≥-1 ∴-1≤k<2且k≠12 10.解:(1)Δ=b2-4ac =4-4(2k-4) =20-8k. ∵方程有两个不等的实根,∴20-8k>0,∴k<52 (2)∵k为正整数, ∴0<k<52(且k为整数即k为1或2,∴x="-1±5-" ∵方程的根为整数,∴5-2k为完全平方数.="" 当k="1时,5-2k=3;当k=2时,5-2k=1." ∴k="2.2.4一元二次方程根与系数的关系课前预习-ba课堂探究【例1】探究答案:1.-1 2.2ab a 解:因为方程x2-x-1=0的两实根为a、b. 所以(1)a+b=1; (2)ab=-1;(3)a2+b2=(a+b)2-2ab=12-2×(-1)=3; (4)1a+1b=a+ 变式训练1-1:-2变式训练1-2:-65【例2】探究答案:1.2(m+1) 2.>0 解:∵方程有两个不相等的实数根, ∴Δ=b2-4ac=[-2(m+1)]2-4×1×(m2-3) =16+8m>0, 解得m>-2; 根据根与系数的关系可得x1+x2=2(m+1),∵(x1+x2)2-(x1+x2)-12=0, ∴[2(m+1)]2-2(m+1)-12=0, 解得m1=1或m2=-52 ∵m>-2,∴m2=-52(舍去∴m=1. 变式训练2-1:1 变式训练2-2:解:∵x1+x2=2,∴m=2. ∴原方程为x2-2x-3=0,即(x-3)(x+1)=0, 解得x1=3,x2=-1.课堂训练 1.B 2.A 3.-2 4.5 5.解:设x1,x2是方程的两个实数根, ∴x1+x2=-32,x1x2=1 又∵1x1+1x2=3,∴∴-31-∴-3=3-3m,∴m=2, 又∵当m=2时,原方程的Δ=17>0, ∴m的值为2.课后提升 1.B 2.B 3.D 4.B 5.B 6.-20147.68.2014 9.解:将-2代入原方程得:(-2)2-2+n=0, 解得n=-2, 因此原方程为x2+x-2=0, 解得x1=-2,x2=1, ∴m=1. 10.解:(1)根据题意得m≠1Δ=(-2m)2-4(m-1)(m+1)=4, ∴x1=2m+2 x2=2m-2 (2)由(1)知x1=m+1m- 又∵方程的两个根都是正整数, ∴2m- ∴m-1=1或2. ∴m=2或3.2.5一元二次方程的应用第1课时增长率与利润问题课前预习 1.a(1±x) 2.(1)单件售价(2)单件利润课堂探究【例1】探究答案:(1)10000(1+x)10000(1+x)2 (2)12100(1+x) 解:(1)设捐款增长率为x,根据题意列方程得, 10000(1+x)2=12100, 解得x1=0.1,x2=-2.1(不合题意,舍去); 答:捐款增长率为10%. (2)12100×(1+10%)=13310元. 答:第四天该单位能收到13310元捐款. 变式训练1-1:A 变式训练1-2:B【例2】探究答案:200+40x0.1解:设应将每千克小型西瓜的售价降低x元. 根据题意,得(3-2-x)200+40x0.1-24= 解这个方程,得x1=0.2,x2=0.3. 答:应将每千克小型西瓜的售价降低0.2元或0.3元. 变式训练2-1:2或6 变式训练2-2:解:设每件童装应降价x 元. 根据题意得(40-x)(20+2x)=1200, 解这个方程得x1=10,x2=20. 因为在相同利润的条件下要扩大销售量,减少库存, 所以应舍去x1=10. 答:每件童装应降价20元.课堂训练 1.B 2.D 3.B 4.20% 5.解:设每千克核桃应降价x元. 根据题意得(60-x-40)(100+x2×20)= 解这个方程得x1=4,x2=6. 答:每千克核桃应降价4元或6元.课后提升 1.C 2.C 3.D 4.B 5.10% 6.30007.40(1+x)2=48.48.10% 9.解:(1)设每轮传染中平均一个人传染了x个人, 由题意,得1+x+x(1+x)=64, 解之,得x1=7,x2=-9. 答:每轮传染中平均一个人传染了7个人. (2)7×64=448. 答:又有448人被传染. 10.解:(1)设每年市政府投资的增长率为x, 根据题意,得:2+2(1+x)+2(1+x)2=9.5, 整理,得x2+3x-1.75=0, 解之,得x1=0.5, x2=-0.35(舍去) 所以每年市政府投资的增长率为50%. (2)到2013年年底共建廉租房面积=9.5×82=38(万平方米)第2课时面积与动点问题课堂探究【例1】探究答案:1.(6-x)2x 2.12(6-x)·2x= 解:设经过x秒钟后,△PBQ的面积等于8 cm2. 根据题意得12(6-x)·2x=8 解这个方程得x1=2,x2=4. 答:经过2秒或4秒后,△PBQ的面积等于8 cm2. 变式训练1-1:解:(1)由勾股定理:AC=5 cm,设x秒钟后,P、Q之间的距离等于5 cm,这时PC=5-x,CQ=2x, 则(5-x)2+(2x)2=52,即x2-2x=0. 解这个方程,得x1=0,x2=2,其中x1=0不合题意,舍去. 答:再运动2秒钟后,P、Q间的距离又等于5 cm. (2)设y秒钟时,可使△PCQ的面积等于4 cm2. 12×(5-y)×2y=4 即y2-5y+4=0, 解得y1=1,y2=4. 经检验,它们均符合题意. 答:1秒钟或4秒钟时,△PCQ的面积等于4 cm2. 变式训练1-2:解:设应移动x米.OA=AB2-O 则由题意得(3+x)2+(4-x)2=52. 解这个方程得x1=1,x2=0(不合题意,舍去). 答:应移动1米.【例2】探究答案:(100-2x)(50-2x) 解:设正方形观光休息亭的边长为x米. 依题意,有(100-2x)(50-2x)=3600. 整理,得x2-75x+350=0.解得x1=5,x2=70. ∵x=70>50,不合题意,舍去,∴x=5. 答:矩形花园各角处的正方形观光休息亭的边长为5米. 变式训练2-1:B 变式训练2-2: 解:设P、Q两块绿地周围的硬化路面的宽都为x米, 根据题意,得(40-2x)(60-3x)=60×40×14 解之,得x1=10, x2=30(不符合题意,舍去). 答:两块绿地周围的硬化路面的宽都是10米.课堂训练1.B 2.C 3.D 4.1 5.解:设花边的宽为x米, 根据题意,得(2x+6)(2x+3)=40. 解得x1=1,x2=-112 但x2=-112不合题意,舍去答:花边的宽为1米.课后提升 1.D 2.C 3.C 4.B 5.D 6.97.24458.1000 9.解:(1)设小货车原计划每辆每次运送帐篷x顶,则大货车原计划每辆每次运送帐篷(x+200)顶,根据题意,得2[8x+2(x+200)]=16800,解得x=800, x+200=800+200=1000. 故大、小货车原计划每辆每次分别运送帐篷1000顶,800顶. (2)根据题意,得2(1000-200m)1+12m+8(800-300)(1+m)=14400, 化简为m2-23m+42=0,解得m1=2,m2=21. ∵1000-200m不能为负数,且12m为整数∴m2=21(不符合实际,舍去),故m的值为2. 10.解:设x秒后四边形APQB的面积是△ABC面积的23 在Rt△ABC中,AB=10,AC=8, 由勾股定理,得BC2=AB2-AC2=102-82=36,∴BC=6. 则12(8-2x)(6-x)=13×12×6 解得x1=2,x2=8(不合题意,舍去), ∴2秒后四边形APQB的面积是△ABC面积的23 第3章图形的相似3.1比例线段3.1.1比例的基本性质课前预习 1.(1)比值比值(2)比例内项 2.(1)bc课堂探究【例1】探究答案:1.3x3y=2y 2.7y=4x7∶4 解:(1)∵3x=2y, ∴3x3y 即xy=2 (2)∵7x=4 ∴7y=4x, xy=7 变式训练1-1:D 变式训练1-2:4【例2】探究答案:1.2 解:∵ADAB=AEA ∴AD+A 即△ADE 设△ADE和△ABC的周长分别为2x cm和3x cm,则有3x-2x=15,得x=15. ∴△ABC的周长为45 cm,△ADE的周长为30 cm. 变式训练2-1:D 变式训练2-2:解:设x3=y5=z7=k,则x=3k,y=5k,z= ∴x-y+zx+y 课堂训练 1.C 2.A 3.2∶3=4∶6(答案不唯一) 4.1 5.解:因为m-nn 所以3(m-n)=2n, 化简得3m=5n, 所以mn=53,则3m+2nn=3mn+2=mn×3+课后提升 1.C 2.C 3.D 4.C 5.A 6.52727.338.2或9.解:∵a∶b∶c=1∶2∶4, 设a=k,b=2k, c=4k, 则a+2b+3ca 10.解:∵ab=cd=ef ∴2a2b=-c- ∴2a-c3.1.2成比例线段课前预习 1.m∶n ABC 2.ab=c 3.BCAC黄金比课堂探究【例1】探究答案:1.(12-x)x12-x=64 2 解:(1)设AD=x cm,则DB=(12-x)cm. 则有x12-x=64,解这个方程得x= 所以AD=7.2 cm.(2)DBAB=12-7.212= 所以DBAB 所以线段DB、AB、EC、AC是成比例线段. 变式训练1-1:B 变式训练1-2:解:利用比例线段的定义, ∵a=1 mm=0.1 cm,b=0.8 cm, c=0.02 cm,d=4 cm,∴d>b>a>c, 而db=40.8=5,ac ∴db=a ∴d、b、a、c四条线段是成比例线段.【例2】探究答案:1.ACAB=CBAC 解:设CB=x,∵点C为线段AB的黄金分割点, ∴ACAB=CBAC,即3x+3= 解得x1=35-32,x2=- 故CB的长为35 变式训练2-1:C 变式训练2-2:解:因为点C是AB的黄金分割点, 所以当AC>BC时,ACAB 又因为AB=10 cm, 所以AC=5-12×10=(55-5 当AC<bc时,bcab 所以bc="5-12×10=(55-5" 所以ac="AB-BC=10-(55-5)=(15-55)(cm)," 所以ac的长为(55-5)cm或(15-55)cm. <="" span="">课堂训练 1.D 2.4535 3.6-25 5.解:(1)a∶b=c∶d,即a∶0.2=0.5∶1, 则a=0.2×0.5=0.1. (2)a∶b=c∶d,即3∶7=c∶21,则7c=21×3,得c=9.课后提升 1.B 2.D 3.C 4.B 5.B 6.6.987.168.5-1 9.解:设相邻两个钉子之间的距离为1个单位长度, 则AD=2,BD=5,BE=5, CE=1,CF=4,AF=3. 在直角三角形ABD中, AB=AD2+BD 在直角三角形BCE中, BC=BE2+CE 在直角三角形ACF中, AC=CF2+AF 所以ABAC=295, 10.解:设每一份为k, 由(a-c)∶(a+b)∶(c-b)=(-2)∶7∶1, 得a-c 而(3k)2+(4k)2=(5k)2, 即a2+b2=c2, 所以△ABC是直角三角形.3.2平行线分线段成比例课前预习(1)在另一条直线上截得的线段也相等(2)对应线段(3)成比例课堂探究【例1】探究答案:1.35 2. 解:∵l1‖l2‖l3, ∴ABAC∵ABBC=32,∴∴DEDF 由DF=20 cm,得DE=35DF=12 cm∴EF=DF-DE=8 cm. 变式训练1-1:D 变式训练1-2:1【例2】探究答案:1.AEAC 2.x-4x-4 D 变式训练2-1:B 变式训练2-2:A课堂训练 1.B 2.A 3.A 4.5 5.解:∵DE⊥AB,CB⊥AB,∴DE‖BC, ∴ADAB=AEAC ∴AC=253 ∴BC=AC2-AB课后提升 1.C 2.C 3.A 4.D 5.D 6.97.68.14 9.解:∵DE‖BC,DF‖AC, ∴四边形EDFC为平行四边形, ∴DE=FC=5, 又∵DF‖AC, ∴ADBD=CFBF,即48 10.解:∵DE‖BC, ∴ADAB 又∵EF‖CD, ∴AFAD ∴ADAB ∴AD2=AB·AF=36, ∴AD=6 cm.3.3相似图形课前预习 1.(1)对应相等对应成比例(2)∽△ABC相似于△A'B'C' (3)相等成比例 2.(1)对应角成比例(2)相等等于相似比课堂探究【例1】探究答案:1.∠A'∠B'∠C' 2.180°-∠A-∠B解:∵△ABC∽△A'B'C', ∴∠B=∠B'=60°, 在△ABC中,∠C=180°-∠A-∠B=180°-50°-60°=70°. 变式训练1-1:50 变式训练1-2:1∶2【例2】探究答案:(1)CD CB(2)77°83°解:因为四边形ABCD∽四边形EFGH, ∴∠F=∠B=77°,∠G=∠C=83°, EFAB=GHCD= ∴∠H=360°-(∠E+∠F+∠G)=83°, BC=FG÷29=6×92=CD=GH÷29=7×92=31. 变式训练2-1:B 变式训练2-2:解:由四边形ABCD与四边形A'B'C'D'相似得, x21=12y= ∠A=∠A'=120°,∴x=21×1015=14 y=12÷1015=12×32=∠α=360°-(∠A+∠B+∠C)=80°.课堂训练 1.C 2.B 3.6 1.5 4.9或25 5.解:因为梯形AEFD∽梯形EBCF, 所以ADEF=E 又因为AD=4,BC=9, 所以EF2=AD·BC=4×9=36, 所以EF=6, 所以AEEB=ADE课后提升 1.B 2.D 3.D 4.D 5.D 6.230°7.60°140°18.5 9.解:∵四边形ABCD与四边形EFGH相似,∴∠E=∠A=70°,∠F=∠B=80°. ∴∠G=360°-70°-80°-150°=60°.∵ABEF ∴AB=EF·ADE ∵BCFG ∴BC=FG·ADEH= 10.解:∵△ABC∽△APQ, ∴ABAP 即4040+60 解得PQ=75. 答:PQ的长为75 cm.3.4相似三角形的判定与性质3.4.1相似三角形的判定第1课时两角对应相等或平行判定相似课前预习(1)相似(2)相等课堂探究【例1】探究答案:1.EDA 2.DFC 3.△EDA△DFC 解:∵四边形ABCD是平行四边形, ∴AB‖CD,AD‖BC,∴△BEF∽△CDF,△BEF∽△AED, ∴△BEF∽△CDF∽△AED. 当△BEF∽△CDF时,相似比k1=BECD 当△BEF∽△AED时,相似比k2=BEAE 当△CDF∽△AED时,相似比k3=CDAE 变式训练1-1:3 变式训练1-2:1∶2【例2】探究答案:1.∠DAE 2.∠D 解:△ABC∽△ADE,理由如下: ∵∠1=∠2, ∴∠1+∠DAC=∠2+∠DAC, 即∠BAC=∠DAE,又∵在△AOB与△COD中, ∠AOB=∠COD,∠1=∠3, ∴∠B=∠D, ∴△ABC∽△ADE. 变式训练2-1:C 变式训练2-2:证明:∵四边形ABCD是平行四边形, ∴AD‖BC,AB‖CD,∴∠ADF=∠CED,∠B+∠C=180°, ∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C, ∴△ADF∽△DEC.课堂训练 1.D 2.C 3.A 4.∠ADE=∠C(答案不唯一) 5.解:(1)在△ABC中, ∵∠A=90°,∠B=50°, ∴∠C=40°.∴∠A=∠A'=90°,∠C=∠C'=40°. ∴△ABC∽△A'B'C'(两角相等的两个三角形相似). (2)在△ABC中, ∵∠A=∠B=∠C,∴∠A=∠B=∠C=60°, ∴∠A=∠A',∠B=∠B', ∴△ABC∽△A'B'C'(两角相等的两个三角形相似).课后提升1.A 2.D 3.C 4.D 5.6 6.2.5 7.解:∵∠A=36°,AB=AC, ∴∠ABC=∠ACB=72°, ∵BD平分∠ABC,∴∠CBD=∠ABD=36°, ∠BDC=72°, ∴AD=BD,BC=BD,∴△ABC∽△BDC, ∴BDAB=CDBC ∴AD2=AC·CD, 设AD=x,则CD=1-x, ∴x2=1×(1-x), x2+x-1=0, x=-1±1 x1=-1+52,x2= ∴AD=5-∴AD的长是5- 8.解:(1)△ABC∽△FOA,理由如下: 在矩形ABCD 中,∠BAC+∠BCA=90°, ∵l垂直平分AC, ∴∠OFC+∠BCA=90°,∴∠BAC=∠OFC=∠OFA, 又∵∠ABC=∠FOA=90°,∴△ABC∽△FOA. (2)四边形AFCE是菱形,理由如下: ∵AE‖FC,∴∠AEO=∠OFC,∠EAO=∠OCF, ∴△AOE∽△COF,∵OC=OA,∴OE=OF, 即AC、EF互相垂直平分, ∴四边形AFCE是菱形.第2课时两边成比例夹角相等或三边成比例判定相似课前预习(1)成比例夹角(2)成比例课堂探究【例1】探究答案:1.45 2.△DCA 解:因为ABCD=45, 所以ABCD 又因为∠B=∠ACD, 所以△ABC∽△DCA, 所以ABDC 所以AD=DC·ACA 变式训练1-1:B 变式训练1-2:证明:∵四边形ABCD是正方形, ∴AD=DC=BC,∠D=∠C=90°, ∵M是CD的中点,∴AD∶DM=2∶1, ∵BP=3PC,∴CM∶PC=2∶1, 即ADDM=CMPC, ∴△ADM∽△MCP.【例2】探究答案:1.51052210 2.102102 解:相似.理由如下: AB=5,AC=10,BC=5, DE=2,DF=2,EF=10,∵ABDE=102,ACDF 即ABDE=A ∴△ABC∽△DEF. 变式训练2-1:A 变式训练2-2:证明:∵D、E、F分别为AB、AC、BC的中点, ∴DE、DF、EF分别为△ABC的中位线, ∴DE=12BC,DF=12AC,EF=1∴DECB=DFC ∴△DEF∽△CBA.课堂训练 1.A 2.C 3.B 4.3 5.解:由题知AC=2,BC=12+32=10 DF=22+22=22,EF=2 ED=8,∴ACDF=BCE∴△ABC∽△DEF.课后提升1.C 2.C 3.D 4.C 5.B 6.20°7.(4,0)或(3,2) 8.解:(1)△ABC∽△EBD,理由如下: ∵BD·AB=BE·BC,∴BDBC 又∵∠B 为公共角,∴△ABC∽△EBD. (2)ED⊥AB,理由如下: 由△ABC∽△EBD可得∠EDB=∠C, ∵∠C=90°,∴∠EDB=90°,即ED⊥AB. 9.解:△A'B'C'∽△ABC,理由如下: ∵OA'OA=OC'OC∴△AOC∽△A'OC', ∴A'C'AC 同理B'C'BC=3 ∴A'C'AC∴△A'B'C'∽△ABC.3.4.2相似三角形的性质课前预习1.相似比2.(1)相似比相似比的平方(2)相似比相似比的平方课堂探究【例1】探究答案:1.△ADE 2.DE 解:∵BC‖DE,∴∠ABC=∠ADE,∠ACB=∠AED, ∴△ABC∽△ADE, 所以MCNE 设DE高为x m,则0.630=0. 故旗杆大致高12 m. 变式训练1-1:C 变式训练1-2:1∶2【例2】探究答案:1.相似比的平方 2.9解:(1)∵△ABC∽△ADE,∴ABAD ∵AB=15,AC=9,BD=5,∴AD=20,∴AE=AD·ACA 即AE的长为12.(2)∵△ABC∽△ADE,∴S△ABCS ∴S△ADE=16×279 ∴S四边形BDEC=48-27=21. 变式训练2-1:A 变式训练2-2:D课堂训练 1.D 2.D 3.1∶2 4.1∶21∶4 5.解:因为DE‖BC, 所以∠ADE=∠ABC,∠AED=∠ACB, 所以△ADE∽△ABC. 又DEBC=13,△ADE的周长是所以△ABC的周长是30 cm, 所以梯形BCED的周长为30-8+2=24(cm).课后提升 1.D 2.A 3.B 4.A 5.1∶9 6.37.60378. 9.(1)证明:∵E是AB的中点, ∴AB=2EB, ∵AB=2CD,∴CD=EB, 又∵AB‖CD, ∴四边形CBED是平行四边形, ∴DE‖CB,∴∠EDM=∠MBF,∠DEM=∠MFB, ∴△EDM∽△FBM. (2)解:∵△EDM∽△FBM,∴DMBM 又∵F是BC的中点, ∴DE=2BF, ∴DM=2BM. ∴BM=13DB=3 S△EDMS△FB3.5相似三角形的应用课堂探究【例1】探究答案:1.△ABF△EFG 2.DFB 解:∵CD‖EF‖AB, ∴可以得到△CDF∽△ABF,△ABG∽△EFG, ∴CDAB=DFB 又∵CD=EF,∴DFBF∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7, ∴3DB+∴BD=9,BF=9+3=12,∴1.6AB=312,解得,AB=6 变式训练1-1:A 变式训练1-2:5.6【例2】探究答案:1.△EDC 2.△EDC B 解:(1)DE=AB,理由如下: ∵AB⊥BF,ED⊥BF, ∴∠ABC=∠EDC. ∵∠ACB=∠ECD,BC=CD, ∴△ABC≌△EDC(ASA), ∴AB=DE,即DE的长就是A、B的距离.∵∠ABC=∠EDC=90°,∠ACB=∠ECD, ∴△ABC∽△EDC,∴ABDE=BCCD,AB=DE·即A、B之间的距离为15米. 变式训练2-1:C 变式训练2-2:解:设AB=x米, 因为BC‖DE,所以∠ABC=∠D, 又∠A=∠A,所以△ABC∽△ADE, 则ABBC=ADDE 解得x=70.答:A、B两村相距70米. 课堂训练 1.A 2.B 3.874.1.55.解:由光的反射定律可知∠1=∠2,∴∠ABS=∠CBP.∵SA⊥AC,PC⊥AC,∴∠SAB=∠PCB=90°, ∴△ASB∽△CPB. ∴SAPC ∴SA=AB·PCCB=10 答:点光源S与平面镜的距离SA的长是12 cm.课后提升 1.C 2.A 3.A 4.D 5.22.5 6.8 m7.4.2 8.解:∵∠DEF=∠BCD=90°,∠D=∠D, ∴△DEF∽△DCB, ∴BCEF∵DE=40 cm=0.4 m,EF=20 cm=0.2 m,AC=1.5 m,CD=10 m. ∴BC0.∴BC=5(m), ∴AB=AC+BC=1.5+5=6.5(m),∴树高为6.5 m.3.6位似课前预习 1.同一个点O位似中心相似比 2.位似坐标原点课堂探究【例1】探究答案:1.1∶2 2.1∶4 解:(1)△ABC与△A'B'C'的周长之比为ABA'B' 设S△ABC周长为x cm,△A'B'C'周长为2x cm, 则2x-x=12,解得x=12, 所以△ABC的周长为12 cm. (2)△ABC与△A'B'C'的面积之比为ABAB2=1 设S△ABC=y cm2,则S△A'B'C'=4y cm2, 则y+4y=25,解得y=5, 所以△A'B'C'的面积为20 cm2. 变式训练1-1:B 变式训练1-2:解:(1)、(3)中的两个图形都是位似图形,位似中心分别为点A、O;(2)中的两个图形不是位似图形.【例2】探究答案:1.位似中心 2.位似中心解:(1)如图所示.(2)A'C'=22+22=22, ∴四边形AA'C'C的周长为AA'+A'C'+C'C+CA=2+22+2+42=4+62. 变式训练2-1:B 变式训练2-2:解:作法: (1)连接OA,并延长OA到A',使得AA'=OA; (2)连接OB,并延长OB到B',使得BB'=OB; (3)连接OC,并延长OC到C',使得CC'=OC;(4)连接OD,并延长OD到D',使得DD'=OD; (5)连接A'B',B'C',C'D',D'A'(如图所示),则四边形A'B'C'D'是四边形ABCD关于O点的位似图形, 且四边形A'B'C'D'与四边形ABCD的相似比为2.【例3】探究答案:1.位似中心 2.1∶(-2) 解:(1)延长BO到B',使B'O=2BO,延长CO到C',使C'O=2CO,连接B'C'.则△OB'C'即为△OBC的位似图形(如图所示). (2)观察图形可知,B'(-6,2)、C'(-4,-2).(3)M'(-2x,-2y). 变式训练3-1:C 变式训练3-2:6课堂训练 1.B 2.D 3.20 4.(-4,-4) 5.解:(1)OAE与△OBF相似.理由: ∵AC‖BD,∴OAOB 又CE‖DF,∴OEOF ∴OAOB ∴AE‖BF,∴△OAE∽△OBF. △OAE与△OBF位似.理由: 已证△OAE∽△OBF, 又△OAE和△OBF对应点的连线都经过点O,∴△OAE与△OBF位似. (2)△ACE与△BDF位似.理由: 由(1)得AE‖BF,∴AEBF 又AC‖BD,∴ACBD=O 又CE‖DF,∴CEDF ∴ACBD=C∴△ACE∽△BDF. 又△ACE和△BDF对应点的连线都经过点O, ∴△ACE与△BDF位似.课后提升 1.D 2.A 3.D 4.2,32或-2,-32 5.4 6.187.10 8.解:∵矩形ABCD与矩形AB'C'D'是位似图形,且点A为位似中心, ∴ABAB 即ABAB ∴2AB=4AD,即ABAD 又∵矩形ABCD的周长为24,即AB+AD=12, ∴AB=8,AD=4.第4章锐角三角函数 4.1正弦和余弦第1课时正弦课前预习 1.大小 2.对边斜边sin A∠A 3.1222课堂探究【例1】探究答案:1.直角 2.对斜角的大小无关解:∵BC2+AC2=62+82=102=AB2, ∴△ABC是直角三角形,∠C=90°, ∴sin A=BCAB=610=35,sin B=A 变式训练1-1:5 变式训练1-2:3 【例2】探究答案:1.1 1 2.倒数正311 3 3.3 解:原式=12+1-3-2×3 =23+1-3-3 =3-2. 变式训练2-1:45°变式训练2-2:2 课堂训练 1.C 2.D 3.4 4.4 5.解:(1)原式=2+3-2×1 =2+3-1 =4. (2)原式=3-1-4×32+2 =3-1-23+23 =2.课后提升 1.C 2.B 3.C 4.C 5.B 6.0.64217.538. 9.解:∵sin 30°=12 ∴∠A=30°, ∵sin 60°=32 ∴∠C=60°, 则∠B=180°-30°-60°=90°, ∴△ABC是直角三角形. 10.解:过点A作AD⊥BC于D, ∴sin ∠ABC=ADAB ∴AD=2114×AB=2114×10= 在Rt△ACD中,sin ∠ACB=ADAC第2课时余弦课前预习 1.邻边斜边 b 2.(90°-α)(90°-α) 3.3222课堂探究【例1】探究答案:1.BCAB AB2 2.ACAB解:∵sin A=BCAB 设BC=8x,AB=17x, ∴AC=AB2-B ∴cos A=ACAB=15 sin B=ACAB=cos cos B=BCAB=sin 变式训练1-1:D 变式训练1-2:27 变式训练1-3:0.5684【例2】探究答案:1.非负非负非负0 2.30°60° D 变式训练2-1:C 变式训练2-2:(1)6 (2)解:原式=22×22-32+2 =22-32+62 =2-62+ =2.课堂训练 1.B 2.B 3.513 4. 5.解:∵BC∶CA∶AB=5∶12∶13, 设BC=5k, 则CA=12k,AB=13k,∵(5k)2+(12k)2=(13k)2, 即BC2+CA2=AB2, ∴∠C=90°. 在Rt△ABC 中, sin A=BCAB=5 cos A=ACAB=12 sin B=cos A=1213 cos B=sinA=513课后提升 1.A 2.B 3.B 4.A 5.C 6.310107.18 9.解:(1)原式=2×22-1=1-1=0 (2)原式=-1-12+12+1= 10. 解:(1)过点B作BC⊥x轴于C, ∴sin ∠BOA=BCOB ∵OB=5, ∴BC=3, ∴OC=OB2- ∴点B的坐标为(4,3). (2)∵点A的坐标为(10,0), ∴AC=6. ∵BC=3,∴AB=62+32 ∴cos ∠BAO=ACAB=64.2正切课前预习 1.对边邻边ab 2.(2)正弦余弦正切 3.12 2232322212课堂探究【例1】探究答案:1.ACA 2.平行四边形ABED三角形ACD 三角形CDE B 变式训练1-1:C 变式训练1-2:A 【例2】探究答案:1.原式 2.2 解:(1)cos245°+tan 30°·sin 60° =222+33×3 =12+12= (2)cos 30°tan 30°+sin 60°tan 45°tan 60° =32×33+32× =12+ =2. 变式训练2-1:D变式训练2-2:1课堂训练 1.B 2.D 3.(1)0.3057(2)72.2° 4.3 5.解:(1)在Rt△ACD中,cos∠ADC=CDAD 设CD=3k,AD=5k, 由AD=BC得:5k=3k+4, ∴k=2.∴CD=3k=6. (2)∵BC=3k+4=10, AC=AD2-CD∴tan B=ACBC=8课后提升 1.A 2.C 3.B 4.C 5.A 6.337.58.②③④9. 10.解:11- ∴1-tan α=0,tan α=1, ∴α=45°, sin(α+15°)+cos(α-15°) =sin 60°+cos 30° =32+ =3.4.3解直角三角形课前预习 1.32未知 2.(1)a2+b2=c2(2)∠A+∠B=90°课堂探究【例1】探究答案:1.CD AB BD CD 2.BC BD BE D 解:(1)在△ABC中,AD是BC边上的高, ∴∠ADB=∠ADC=90°. 在△ADC中,∠ADC=90°,∠C=45°,AD=1, ∴DC=AD=1. 在△ADB中,∠ADB=90°,sin B=13,AD=1 ∴AB=ADsinB ∴BD=AB2-A∴BC=BD+DC=22+1. (2)∵AE是BC边上的中线, ∴BE=12BC=2+1∴DE=BD-BE=2-12 ∴tan∠DAE=DEAD=2 变式训练1-1:C 变式训练1-2:24【例2】探究答案:1.AB 2.AC·cos A AC·sin A CD 3.AD BD 解:过点C作CD⊥AB于D, ∵∠A=30°,AC=10 cm, sinA=CDAC,cos ∴CD=AC·sin A=10×sin 30°=5(cm), AD=AC·cos A=10×cos 30°=53(cm). ∵∠B=45°,∴BD=CD=5(cm).∴AB=AD+BD=53+5=5(3+1)cm. 变式训练2-1:D 变式训练2-2:21 课堂训练1.A 2.B 3.6 4.6 5.解:(1)∵∠C=90°,∴∠B=90°-∠A=60°. ∵cos A=bc ∴c=bcosA=3cos ∴a=12c=1.即∠B=60°,a=1,c=2 (2)∵∠C=90°,∴c2=a2+b2, 即a2=c2-b2=42-(22)2=8, ∴a=22,sin A=ac=224 ∴∠A=45°,∴∠B=45°. 即a=22,∠A=∠B=45°.课后提升 1.A 2.B 3.D 4.A 5.A 6.107.0,528.2 9.解:在Rt△BDC中,∠C=90°,∠BDC=45°, BD=102, ∴BC=BD·sin∠BDC =102·sin 45° =10. 在Rt△ABC中,sin A=BCAB=10 ∴∠A=30°. 10.解:过点B作BE⊥AD于E, BF⊥CD于F, ∵∠A=30°,AB=10,∴DF=BE=AB·sin A =10·sin 30° =5, AE=AB·cos 30°=53,∵∠C=30°,BC=20, ∴DE=BF=BC·sin C=20·sin 30°=10, CF=BC·cosC=20·cos 30°=103, ∴AD=AE+DE=53+10, CD=CF+DF=103+5.4.4解直角三角形的应用第1课时利用仰角、俯角解直角三角形课前预习 2.仰角俯角课堂探究【例1】探究答案:1.AD 2.tan 36°BD 解:根据题意,有∠CAD=45°,∠CBD=54°,AB=112 m. 在Rt△ACD中,∠ACD=∠CAD=45°, 有AD=CD.又AD=AB+BD,∴BD=AD-AB=CD-112. 在Rt△BCD中,∠BCD=90°-∠CBD=36°,∴tan∠BCD=tan 36°=BD 得BD=CD·tan 36°. 于是,CD·tan36°=CD-112. ∴CD=1121-tan36°≈1121 答:天塔的高度CD约为415 m. 变式训练1-1:A 变式训练1-2:D【例2】探究答案:1.△CBD△CAD 2.x3x 解:过点C作CD⊥AB于点D, 设CD=x米, 在Rt△ACD中, ∠CAD=30°, 则AD=CDtan30°=3 在Rt△BCD中,∠CBD=45°, 则BD=CD=x, 由题意得,3x-x=4, 解得x=43-1=2(3+1)≈5 答:生命所在点C的深度约为5.5米. 变式训练2-1:B 变式训练2-2:解:(1)根据题意得∠E=∠ABD-∠D=127°-37°=90°. 在Rt△BDE中,∠E=90°,∠D=37°. ∴cos D=DE ∴DE=BD·cos 37°≈520×0.8=416(m). 答:施工点E离D 约416米时,正好使A、C、E在一条直线上. (2)∵sin D=BE∴BE=BD·sin D=520×sin 37°≈312(m), ∴CE=BE-BC≈312-80=232(m). 答:公路CE段的长约为232 m.课堂训练 1.B 2.B 3.3871 m 4.7502 5. 解:如图,作CD⊥AB,垂足为D. 在Rt△ACD中,∠A=30°, ∴CD=12AC=5∴AD=CDtan30°=5 ∵∠B=45°,∴BD=CD=5,BC=52.∴AC+BC-AB=10+52-(53+5) =(5+52-53)(千米). 答:汽车从A地到B 地比原来少走(5+52-53)千米.课后提升1.A 2.A 3.D 4.D 5.A 6.607.2.78.90.6 第2课时利用坡度、方位角解直角三角形课前预习 1.坡角课堂探究【例1】探究答案:1.ABsin 45° 2.2ADcos 30°解:(1)已知AB=2 m,∠ABC=45°, ∴AC=BC=AB·sin 45°=2×22=2(m 答:舞台的高为2米. (2)不会触到大树.理由如下: 已知∠ADC=30°,∴AD=2AC=22. CD=AD·cos 30°=22×32=6(m)<3(m 故修新楼梯AD时底端D不会触到大树. 变式训练1-1:A 变式训练1-2:。
闸门开度测控仪使用说明书
闸门开度测控仪使用说明书V2.0济南智泽贸易有限公司目录1、概述 (2)2、技术指标 (2)3、工作原理 (3)4、面板布置及使用方法 (4)5、安装与调整 (7)6、注意事项 (14)7、低功耗说明 (14)8、质保与售后 (15)9、联系方式 (15)10、免责声明 (15)一、概述闸门开度远控测控仪,是根据水利工程的实际需要而制造的,它和绝对编码器相配合组成闸门开度测控装置。
闸门开度测控仪采用微电脑控制技术,具有测量值和设定值数码显示;输入输出电路采用光电隔离技术;四个继电器动作(上限、下限、上升-自动启门、下降-自动闭门),远程讯响提示(选配),继电器动作预置参数由仪表面板的按键(或远程上位机)完成,继电器动作时相应的指示灯点亮、蜂鸣器发出报警(静、响可控)功能。
RS485串行通讯接口等。
该仪表通过内部设定可修改编码器的增量方向、仪表地址编号、内部分段修正系数等,相对零点,用户可轻松地查看和设置,是理想的闸门开度(远控)测控仪表。
下图为闸门开度测控装置结构示意图:二、技术指标1、测量范围:0~9999mm(或0-9999cm)2、分辨率:1mm/或1cm3、精度:±0.1%×量程±1mm/或1cm4、闸门扬程-开度非线性修正系数:(16段)用户可自行调节5、输入信号:SSI接口(同步串行格雷码);(来自于开度编码器,输入至仪表后面板上的DB25端子);6、输入接点信号(光电隔离):输入接点通道3-7路(一般为3路)外部接点入信号处理开度信号微处理器按键接口4-20mA输出RS485接口声光报警继电器输出设定值LED显示测量值LED显示7、通讯接口:RS485串行通讯接口(支持MODBUS-RTU 协议)8、输出信号(光电隔离):4-20m 标准模拟量输出(对应值可自行调节)(选配)9、输出接点:●上限:测量值大于等于上限值,声、光报警,上限继电器动作;●下限:测量值小于等于下限值,声、光报警,下限继电器动作;●上升:自动启门。
机械工程控制基础陈康宁课后习题答案
使轴承下部压力上升。而基于与此相反的理由,轴承上半部压力减小,于是轴承下半部油腔产生
反作用力,与负荷相平衡,以减少偏移量 e,甚至完全消除偏移量 e,即达到“无穷大”的支承
刚度。
图题 1‐1 静压轴承薄膜反馈控制系统
举例 2:以数控机床工作台的驱动系统为例。 开环控制:一种简单的控制方案是根据控制装置发出的一定频率和数量的指令脉冲驱动步进 电机,以控制工作台或刀架的移动量,而对工作台或刀架的实际移动量不作检测,其工作原理如 图 1-5(a)所示。这种控制方式简单,但问题是从驱动电路到工作台这整个“传递链”中的任一环 的误差均会影响工作台的移动精度或定位精度。 闭环控制:为了提高控制精度,采用图 1-1(b)所示的反馈控制,以检测装置随时测定工作台 的实际位置(即其输出信息);然后反馈送回输入端,与控制指令比较,再根据工作台实际位置与 目的位置之间的误差,决定控制动作,达到消除误差的目的。
当初始条件均为零时,即
f (0) f '(0) f "(0) f (n1) (0) 0 则有
L f '(t) sF (s)
L f "(t) s2F (s)
L f (n) (t) sn F (s)
(3)积分定理
若 f(t)的拉氏变换为 F(s),则
L
f
(t )dt
F(s) s
解:有时间函数 f(t),t≥0,则 f(t)的拉氏变换记作:L[f(t)]或 F(s),并定义为
L[ f (t)] F (s) f (t) est dt 0
(2-1)
s 为复数,s j 。称 f(t)为原函数,F(s)为象函数。若式(2-1)的积分收敛于一确定的函数值,
则 f(t)的拉氏变换 F(S)存在,这时 f(t)必须满足:
新教材高中数学第2章平面解析几何两条直线的位置关系第2课时两条直线的垂直课件新人教B版选择性必修
1.判一判(正确的打“√”,错误的打“×”) (1)若两条直线垂直,则它们的斜率的乘积一定等于-1.( × ) (2)若两条直线的斜率都不存在且两直线不重合,则这两条直线都与 x 轴垂直.( √ ) (3)两条直线的斜率分别为 k1,k2,若 k1·k2≠-1,则两条直线一定不垂 直.( √ )
2.做一做
第二章 平面解析几何
2.2 直线及其方程 2.2.3 两条直线的位置关系 第2课时 两条直线的垂直
(教师独具内容) 课程标准:1.能根据斜率判定两条直线垂直.2.理解并掌握两条直线垂直 的条件.3.能利用两条直线垂直进行实际应用. 学法指导:从法向量和倾斜角两个角度结合图形探求两直线垂直的条 件. 教学重点:两条直线垂直的条件. 教学难点:利用两条直线垂直的条件解决对称问题及其他实际问题.
1.对两直线垂直与斜率的关系要注意的几点 (1)l1⊥l2⇔k1k2=-1 成立的前提条件:①两条直线的斜率都存在;② k1≠0 且 k2≠0. (2)两条直线中,一条直线的斜率不存在,同时另一条直线的斜率等于 零,则这两条直线垂直. (3)判定两条直线垂直的一般结论:l1⊥l2⇔k1k2=-1 或一条直线的斜率 不存在,同时另一条直线的斜率等于零.
2.常用对称的特例 (1)A(a,b)关于 x 轴的对称点为 A′(a,-b); (2)B(a,b)关于 y 轴的对称点为 B′(-a,b); (3)C(a,b)关于直线 y=x 的对称点为 C′(b,a); (4)D(a,b)关于直线 y=-x 的对称点为 D′(-b,-a); (5)P(a,b)关于直线 x=m 的对称点为 P′(2m-a,b); (6)Q(a,b)关于直线 y=n 的对称点为 Q′(a,2n-b).
所以直线 l 的方程为 4x+3y-6=0.
反比例函数k的八种几何模型及解法(解析版)-2023年中考数学重难点解题大招复习讲义-函数
模型介绍考点1一点一垂线模型【模型讲解】反比例函数图象上一点关于坐标轴的垂线、另一坐标轴上一点(含原点)围成的三角形面积等于12|k|.【示例】拓展:【例1】.如图,已知动点A,B分别在x轴,y轴正半轴上,动点P在反比例函数y=(x >0)图象上,PA⊥x轴,△PAB是以PA为底边的等腰三角形.当点A的横坐标逐渐增大时,△PAB的面积将会()A.越来越小B.越来越大C.不变D.先变大后变小解:如图,过点B作BC⊥PA于点C,则BC=OA,设点P(x,),=PA•BC=••x=3,则S△P AB当点A的横坐标逐渐增大时,△PAB的面积将会不变,始终等于3,故选:C.变式训练【变1-1】.如图,点A、B在反比例函数的图象上,过点A、B作x轴的垂线,垂足分别是M、N,射线AB交x轴于点C,若OM=MN=NC,四边形AMNB的面积是4,则k的值为﹣.解:设OM=a,则OM=MN=NC=a,∵点A、B在反比例函数y=的图象上,AM⊥OC、BN⊥OC,∴AM=,BN=,=S△AOM+S四边形AMNB+S△BNC,∵S△AOC∴﹣×3a×=﹣k+4﹣×a×,解得k=﹣,故答案为:﹣.【变1-2】.如图,在第一象限内,点P(2,3),M(a,2)是双曲线y=(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为()A.B.C.2D.解:把P(2,3),M(a,2)代入y=得k=2×3=2a,解得k=6,a=3,设直线OM的解析式为y=mx,把M(3,2)代入得3m=2,解得m=,所以直线OM的解析式为y=x,当x=2时,y=×2=,所以C点坐标为(2,),所以△OAC的面积=×2×=.故选:B.考点2一点两垂线模型【模型讲解】反比例函数图象上一点与坐标轴的两条垂线所围成的矩形面积等于|k |.【示例】ABCD S k【例2】.双曲线与在第一象限内的图象如图所示,作一条平行于y 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为()A .1B .2C .3D .4解:设直线AB 与x 轴交于点C .∵AB ∥y 轴,∴AC ⊥x 轴,BC ⊥x 轴.∵点A 在双曲线y =的图象上,∴△AOC 的面积=×10=5.∵点B 在双曲线y =的图象上,∴△COB的面积=×6=3.∴△AOB的面积=△AOC的面积﹣△COB的面积=5﹣3=2.故选:B.变式训练【变2-1】.如图,函数y=(x>0)和(x>0)的图象分别是l1和l2.设点P在l2上,PA∥y轴交l1于点A,PB∥x轴交l1于点B,△PAB的面积为.解:设点P(x,),则点B(,),A(x,),∴BP=x﹣=,AP=﹣=,==,∴S△ABP故答案为:.【变2-2】.如图,直线AB∥x轴,分别交反比例函数y=图象于A、B两点,若S△AOB=2,则k2﹣k1的值为4.解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,=2,∵S△AOB∴cd﹣ab=2,∴cd﹣ab=4,∴k2﹣k1=4,故答案为:4.【变2-3】.如图,在平面直角坐标系中,M为y轴正半轴上一点,过点M的直线l∥x轴,l分别与反比例函数y=和y=的图象交于A、B两点,若S△AOB=3,则k的值为﹣2.解:∵直线l∥x轴,∴AM⊥y轴,BM⊥y轴,=|k|,S△BOM=×4=2,∴S△AOM=3,∵S△AOB=1,∴S△AOM∴|k|=2,∵k<0,∴k=﹣2,故答案为:﹣2.考点3两曲一平行模型【模型讲解】两条双曲线上的两点的连线与一条(或两条)坐标轴平行,求这两点与原点或坐标轴上的点围成的图形面积,过这两点作坐标轴的垂线,结合k的几何意义求解.类型1两条双曲线的k值符号相同【示例】【例3】.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k为常数,k ≠0)的图象上,正方形ADEF的面积为16,且BF=2AF,则k值为()A.﹣8B.﹣12C.﹣24D.﹣36解:设A(x,0).∵正方形ADEF的面积为16,∴ADEF的边长为4,∴E(x﹣4,4),∵BF=2AF,∴BF=2×4=8,∴B(x,12).∵点B、E在反比例函数y=(k为常数,k≠0)的图象上,∴4(x﹣4)=12x,解得x=﹣2,∴B(﹣2,12),∴k=﹣2×12=﹣24,故选:C.变式训练【变3-1】.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为1;点E的坐标为(+,﹣).解:∵正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1.∴B点坐标为:(1,1),设反比例函数的解析式为y=;∴xy=k=1,设正方形ADEF的边长为a,则E(1+a,a),代入反比例函数y=(x>0)得:1=(1+a)a,又a>0,解得:a=﹣.∴点E的坐标为:(+,﹣).【变3-2】.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S=1.7,则S1+S2等于 4.6.阴影解:如图,∵A、B两点在双曲线y=上,=4,S四边形BDOC=4,∴S四边形AEOF∴S1+S2=S四边形AEOF+S四边形BDOC﹣2×S阴影,∴S1+S2=8﹣3.4=4.6故答案为:4.6.【变3-3】.如图,在反比例函数(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为1,2,3,4,….分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,…,则S1+S2+S3+…+S n=.(用n的代数式表示,n为正整数)解:当x=1时,P1的纵坐标为2,当x=2时,P2的纵坐标1,当x=3时,P3的纵坐标,当x=4时,P4的纵坐标,当x=5时,P5的纵坐标,…则S1=1×(2﹣1)=2﹣1;S2=1×(1﹣)=1﹣;S3=1×(﹣)=﹣;S4=1×(﹣)=﹣;…S n=﹣;S1+S2+S3+…+S n=2﹣1+1﹣+﹣+﹣+…+﹣=2﹣=.故答案为:.考点4两点一垂线模型【模型讲解】反比例函数与正比例函数图象的交点及由交点向坐标轴所作垂线围成的三角形面积等于|k|,反比例函数与一次函数图象的交点及坐标轴上任一点构成三角形的面积,等于坐标轴所分的两个三角形面积之和.【示例】【例4】.如图,正比例函数y=kx与反比例函数y=﹣相交于A,C两点,点A的横坐标为﹣4,过点A作x轴的垂线交x轴于B点,连接BC,下列结论:①k=﹣;②不等式kx<﹣的解集为﹣4<x<0或x>4;③△ABC的面积等于16.其中正确的结论个数为()A.0B.1C.2D.3解:将x=﹣4代入y=﹣得y=﹣=2,∴点A坐标为(﹣4,2),将(﹣4,2)代入y=kx得2=﹣4k,解得k=﹣,∴①正确.由反比例函数及正比例函数的对称性可得点C坐标为(4,﹣2),∴当﹣4<x<0或x>4时,kx<﹣,∴②正确.=S△AOB+S△BOC=OB•y A+OB•(﹣y C)=BO(y A﹣y C)=×(2+2)∵S△AOC=8,∴③错误.故选:C.变式训练【变4-1】.如图所示,一次函数y=kx(k<0)的图象与反比例函数y=﹣的图象交于A,B两点,过点B作BC⊥y轴于点C,连接AC,则△ABC的面积为4.解:∵BC⊥y轴于点C,=|﹣4|=2,∴S△COB∵正比例函数y=kx(k>0)与反比例函数y=﹣的图象均关于原点对称,∴OA=OB,=S△COB=2,∴S△AOC=S△AOB+S△BOC=2+2=4,∴S△ABC故答案为:4.【变4-2】.如图,过点O的直线与反比例函数y=的图象交于A、B两点,过点A作AC⊥x轴于点C,连接BC,则△ABC的面积为.解:∵点A反比例函数y=的图象上,过点A作AC⊥x轴于点C,=|k|=,∴S△AOC∵过点O的直线与反比例函数y=的图象交于A、B两点,∴OA=OB,=S△AOC=∴S△BOC=2S△ACO=,∴S△ABC故答案为:.【变4-3】.如图,函数y=x与y=的图象交于A、B两点,过点A作AC垂直于y轴,垂=3,则k=3.足为C,连接BC,若S△ABC解:设A(a,a)(a>0),∵函数y=x与y=的图象的中心对称性,∴B(﹣a,﹣a),=•a•2a=a2=3,∴S△ABC∴a=,∴A(,),把A(,)代入y=得k==3.故答案为:3.考点5两点两垂线模型【模型讲解】反比例函数与正比例函数图象的交点及由交点向坐标轴所作两条垂线围成的图形面积等于2|k|.【示例】【例5】.如图,正比例函数y=kx与反比例函数y=﹣的图象交于A,C两点,过点A作AB⊥x轴于点B,过点C作CD⊥x轴于点D,则△ABD的面积为4.解:∵点A在反比例函数y=﹣上,且AB⊥x轴,∴=2,∵A,C是反比例函数与正比例函数的交点,且CD⊥x轴,∴O是BD的中点,=2S△ABO=4.∴S△ABD故答案为:4.变式训练【变5-1】.如图,一次函数y=kx与反比例函数上的图象交于A,C两点,AB∥y轴,BC∥x轴,若△ABC的面积为4,则k=﹣2.解:设AB交x轴于点D,的面积为,由反比例函数系数的几何意义可得S△ADO由函数的对称性可得点O为AC中点,即DO为△ABC中位线,∴=,=4S△ADO=2|k|=4,∴S△ABC∵k<0,∴k=﹣2.故答案为:﹣2.【变5-2】.如图,正比例函数y=kx(k>0)与反比例函数y=的图象交于A,C两点,过点A作x轴的垂线,交x轴于点B,过点C作x轴的垂线,交x轴于点D,连接AD,BC,则四边形ABCD的面积为2.解:∵A、C是两函数图象的交点,∴A、C关于原点对称,∵CD⊥x轴,AB⊥x轴,∴OA=OC,OB=OD,=S△BOC=S△DOC=S△AOD,∴S△AOB又∵A点在反比例函数y=的图象上,=S△BOC=S△DOC=S△AOD×1=,∴S△AOB=4S△AOB=4×=2,∴S四边形ABCD故答案为:2.【变5-3】.如图,直线分别与反比例函数y=﹣和y=的图象交于点A和点B,与y轴交于点P,且P为线段AB的中点,作AC⊥x轴于点C,BD⊥x轴交于点D,则四边形ABCD的面积是5.解:过点A作AF⊥y轴,垂足于点F;过点B作BE⊥y轴,垂足为点E.∵点P是AB中点.∴PA=PB.又∵∠APF=∠BPE,∠AFP=∠BEP=90°,∴△APF≌△BPE.=S△BPE.∴S△APF=S四边形ACOF+S四边形EODB=|﹣2|+|3|=5.∴S四边形ABCD故答案为:5.考点6反比例函数上两点和外一点模型【模型讲解】反比例函数与一次函数图象的交点和原点所围成的三角形面积,若两交点在同一分支上,用减法.【示例】方法一:S △AOB =S △COD -S △AOC -S △BOD .方法二:作AE ⊥x 轴于点E ,交OB 于点M ,BF ⊥x 轴于点F ,则S △OAM =S 四边形MEFB (划归到模型一),则S △AOB =S 直角梯形AEFB .【拓展】方法一:当BE CE 或BFFA=m 时,则S 四边形OFBE =m |k |.方法二:作EM ⊥x 轴于M ,则S △OEF =S 直角梯形EMAF (划归到上一个模型示例).【例6】.如图,一次函数y =ax +b 的图象与反比例函数y =的图象交于A ,B 两点,则S△AOB=()A.B.C.D.6解:把A(﹣4,1)代入y=的得:k=﹣4,∴反比例函数的解析式是y=﹣,∵B(1,m)代入反比例函数y=﹣得:m=﹣4,∴B的坐标是(1,﹣4),把A、B的坐标代入一次函数y=ax+b得:,解得:a=﹣1,b=﹣3,∴一次函数的解析式是y=﹣x﹣3;把x=0代入一次函数的解析式是y=﹣x﹣3得:y=﹣3,∴D(0,﹣3),=S AOD+S△BOD=×3×(1+4)=.∴S△AOB故选:A.变式训练【变6-1】.如图,直线AB经过原点O,且交反比例函数的图象于点B,A,点C在x=12,则k的值为()轴上,且.若S△BCAA.12B.﹣12C.﹣6D.6解:作AD⊥x轴于D,BE⊥x轴于E,∵点A、B在反比例函数的图象上,直线AB经过原点,∴OA=OB=AB,=12,∵,S△BCA=S△BCA=6,∴OB=BC,S△BCO∵BE⊥OC,∴OE=CE,=S△BCO=3,∴S△OBE∵BE⊥x轴于E,=|k|,∴S△OBE∴|k|=6,∵k<0,∴k=﹣6.故选:C.【变6-2】.如图,在平面直角坐标系中,反比例函数y=与直线y=交于A,B,x轴的正半轴上有一点C 使得∠ACB =90°,若△OCD 的面积为25,则k 的值为48.解:设点A 坐标为(3a ,4a ),由反比例函数图象与正比例函数图象的对称性可得点B 坐标为(﹣3a ,﹣4a ),∴OA =OB ==5a ,∵∠ACB =90°,O 为AB 中点,∴OC =OA =OB =5a ,设直线BC 解析式为y =kx +b ,将(﹣3a ,﹣4a ),(5a ,0)代入y =kx +b 得,解得,∴y =x ﹣a ,∴点D 坐标为(0,﹣a ),∴S △OCD =OC •OD =5a ×a =25,解得a =2或a =﹣2(舍),∴点A 坐标为(6,8),∴k =6×8=48.故答案为:48.【变6-3】.如图,正比例函数y =﹣x 与反比例函数y =的图象交于A ,B 两点,点C 在x 轴上,连接AC ,BC .若∠ACB =90°,△ABC 的面积为10,则该反比例函数的解析式是y =﹣.解:设点A 为(a ,﹣a ),则OA ==﹣a ,∵点C 为x 轴上一点,∠ACB =90°,且△ACB 的面积为20,∴OA =OB =OC =﹣a ,∴S △ACB =×OC ×(y A +|y B |)=×(﹣a )×(﹣a )=10,解得,a =±(舍弃正值),∴点A 为(﹣,2),∴k =﹣×2=﹣6,∴反比例函数的解析式是y =﹣,故答案为:y =﹣.考点7反比例函数上两点和原点模型【模型讲解】反比例函数与一次函数图象的交点和原点所围成的三角形面积,若两交点分别在两个分支上,用加法.【示例】方法一:S △AOB =12OD ·|x B -x A |=12OC ·|y A -y B |.方法二:S △AOB =S △AOC +S △OCD +S △OBD .方法三:作AE ⊥y 轴于点E ,BF ⊥x 轴于点F ,延长AE 与BF 相交于点N ,则S △AOB =S △ABN -S △AOE -S △OBF -S 矩形OENF .【例7】.如图,直线AB 交双曲线于A 、B ,交x 轴于点C ,B 为线段AC 的中点,过=12.则k的值为8.点B作BM⊥x轴于M,连接OA.若OM=2MC,S△OAC解:过A作AN⊥OC于N,∵BM⊥OC∴AN∥BM,∵,B为AC中点,∴MN=MC,∵OM=2MC,∴ON=MN=CM,设A的坐标是(a,b),则B(2a,b),=12.∵S△OAC∴•3a•b=12,∴ab=8,∴k=ab=8,故答案为:8.变式训练【变7-1】.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且四边形ODBE的面积为21,则k=7.解:设D点的横坐标为x,则其纵坐标为,∵BD=3AD,∴点B点的坐标为(4x,),点C的坐标为(4x,0)=21,∵S四边形ODBE﹣S△OCE﹣S△OAD=21,∴S矩形ABCD即:4x•﹣﹣=21解得:k=7.故答案为:7.【变7-2】.如图,点是直线AB与反比例函数图象的两个交点,AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求反比例函数和直线AB的解析式;(2)△ABC和△ABD的面积分别为S1,S2,求S2﹣S1.解:(1)由点A(,4)在反比例函数y=(x>0)图象上,∴n=×4=6,∴反比例函数的解析式为y=(x>0),将点B(3,m)代入y=(x>0)并解得m=2,∴B(3,2),设直线AB的表达式为y=kx+b,∴,解得,∴直线AB的表达式为y=﹣x+6;(2)由点A坐标得AC=4,则点B到AC的距离为3﹣=,∴S1==3,设AB与y轴的交点为E,则点E(0,6),如图:∴DE=6﹣1=5,由点A(,4),B(3,2)知,点A,B到DE的距离分别为,3,∴S2=S△BDE﹣S△AED=﹣=,∴S2﹣S1=﹣3=.考点8两双曲线k值符号不同模型【模型讲解】两条双曲线上的两点的连线与一条(或两条)坐标轴平行,求这两点与原点或坐标轴上的点围成的图形面积,过这两点作坐标轴的垂线,结合k的几何意义求解.类型1两条双曲线的k值符号相同【示例】【例8】.如图,在平面直角坐标系中,函数y=kx与的图象交于A、B两点,过A作y轴的垂线,交函数的图象于点C,连接BC,则△ABC的面积为()A.2B.3C.5D.6解:∵正比例函数y=kx与反比例函数y=﹣的图象交点关于原点对称,∴设A点坐标为(x,﹣),则B点坐标为(﹣x,),C(﹣2x,﹣),=×(﹣2x﹣x)•(﹣﹣)=×(﹣3x)•(﹣)=6.∴S△ABC故选:D.变式训练【变8-1】.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=(x>0)和y=﹣(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则△ABC的面积为()A.3B.6C.9D.解:设P(a,0),a>0,则A和B的横坐标都为a,将x=a代入反比例函数y=﹣中得:y=﹣,故A(a,﹣);将x=a代入反比例函数y=中得:y=,故B(a,),∴AB=AP+BP=+=,=AB•x P的横坐标=××a=,则S△ABC故选:D.【变8-2】.如图,点A和点B分别是反比例函数y=(x>0)和y=(x>0)的图象上=2,则m﹣n的值为4.的点,AB⊥x轴,点C为y轴上一点,若S△ABC解:连接AO.CO,∵AB⊥x轴,点C为y轴上一点,∴AB∥y轴,=S△ABO=2,∴S△ABC∴=2.∴=2,即m﹣n=4.故答案为:4.1.如图,Rt△ABC的顶点A在双曲线y=的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是()A.4B.﹣4C.2D.﹣2解:∵∠ACB=30°,∠AOB=60°,∴∠OAC=∠AOB﹣∠ACB=30°,∴∠OAC=∠ACO,∴OA=OC=4,在△AOB中,∠ABC=90°,∠AOB=60°,OA=4,∴∠OAB=30°,∴OB=OA=2,∴AB=OB=2,∴A点坐标为(﹣2,2),把A(﹣2,2)代入y=得k=﹣2×2=﹣4.故选:B.2.如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于()A.8sin2αB.8cos2αC.4tanαD.2tanα解:方法一:过点C作CE⊥OA于点E,过点D作DF⊥OA交OA的延长线于点F,设C点横坐标为:a,则:CE=a•tanα,∴C点坐标为:(a,a•tanα),∵平行四边形OABC中,点D为边AB的中点,∴D点纵坐标为:a•tanα,设D点横坐标为x,∵C,D都在反比例函数图象上,∴a×a•tanα=x×a•tanα,解得:x=2a,则FO=2a,∴FE=a,∵∠COE=∠DAF,∠CEO=∠DFA,∴△COE∽△DAF,∴==2,∴AF=,∴AO=OF﹣AF=a,∵点A的坐标为(3,0),∴AO=3,∴a=3,解得:a=2,∴k=a×a•tanα=2×2tanα=4tanα.方法二:∵C(a,a tanα),A(3,0),∴B(a+3,a tanα),∵D是线段AB中点,∴D(,a tanα),即D(,a tanα).∵反比例函数过C,D两点,∴k=a•a tanα=(a+6)•a tanα,解得a=2,∴k=4tanα.故选:C.3.如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,=.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=的图象过点C.当以CD为边的正方形的面积为时,k的值是()A.2B.3C.5D.7解:设OA=3a,则OB=4a,∴A(3a,0),B(0,4a).设直线AB的解析式是y=kx+b,则根据题意得:,解得:,则直线AB的解析式是y=﹣x+4a,直线CD是∠AOB的平分线,则OD的解析式是y=x.根据题意得:,解得:则D的坐标是(,),OA的中垂线的解析式是x=,则C的坐标是(,),将C点坐标代入反比例函数y=,则k=.设OA的垂直平分线交x轴于点F,过点D作DE⊥x轴于点E,如图,则OF=CF=,OE=DE=a,∵∠DOA=45°,∴△COF和△DOE为等腰直角三角形,∴OC=OF=a,OD=OE=a,∴CD=OD﹣OC=()=(﹣)=a.∵以CD为边的正方形的面积为,∴=,则a2=,∴k=×=7.故选:D.4.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cos A=,则k的值为()A.﹣3B.﹣4C.﹣D.﹣2解:过A作AE⊥x轴,过B作BF⊥x轴,∵OA⊥OB,∴∠AOB=90°,∴∠BOF+∠EOA=90°,∵∠BOF+∠FBO=90°,∴∠EOA=∠FBO,∵∠BFO=∠OEA=90°,∴△BFO∽△OEA,在Rt△AOB中,cos∠BAO==,设AB=,则OA=1,根据勾股定理得:BO=,∴OB:OA=:1,:S△OEA=2:1,∴S△BFO∵A在反比例函数y=上,=1,∴S△OEA=2,∴S△BFO则k=﹣4.故选:B.5.如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A.B.C.D.解:如图,∵点A坐标为(﹣1,1),∴k=﹣1×1=﹣1,∴反比例函数解析式为y=﹣,∵OB=AB=1,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(﹣,t),∵PB=PB′,∴t﹣1=|﹣|=,整理得t2﹣t﹣1=0,解得t1=,t2=(不符合题意,舍去),∴t的值为.故选:A.6.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.﹣6B.﹣3C.3D.6解:∵A与C关于OB对称,∴A的坐标是(3,2).把(3,2)代入y=得:2=,解得:k=6.故选:D.7.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3B.6C.D.解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD,∵点B在直线y=x+4上,∴B(x,x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选:D.8.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于﹣12.解:设点C坐标为(a,),(k<0),点D的坐标为(x,y),∵四边形ABCD是平行四边形,∴AC与BD的中点坐标相同,∴(,)=(,),则x=a﹣1,y=,代入y=,可得:k=2a﹣2a2①;在Rt△AOB中,AB==,∴BC=2AB=2,故BC2=(0﹣a)2+(﹣2)2=(2)2,整理得:a4+k2﹣4ka=16a2,将①k=2a﹣2a2,代入后化简可得:a2=4,∵a<0,∴a=﹣2,∴k=﹣4﹣8=﹣12.故答案为:﹣12.方法二:因为ABCD是平行四边形,所以点C、D是点B、A分别向左平移a,向上平移b得到的.故设点C坐标是(﹣a,2+b),点D坐标是(﹣1﹣a,b),(a>0,b>0),∴﹣a(2+b)=b(﹣1﹣a),整理得2a+ab=b+ab,解得b=2a.过点D作x轴垂线,交x轴于H点,在直角三角形ADH中,由已知易得AD=2,AH=a,DH=b=2a.AD2=AH2+DH2,即20=a2+4a2,得a=2.所以D坐标是(﹣3,4)所以k=﹣12.9.如图,点E,F在函数y=(x>0)的图象上,直线EF分别与x轴、y轴交于点A,B,且BE:BF=1:m.过点E作EP⊥y轴于P,已知△OEP的面积为1,则k值是2,△OEF的面积是(用含m的式子表示)解:作EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图,∵△OEP的面积为1,∴|k|=1,而k>0,∴k=2,∴反比例函数解析式为y=,∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴==,即HF=mPE,设E点坐标为(t,),则F点的坐标为(tm,),+S△OFD=S△OEC+S梯形ECDF,∵S△OEF=S△OEC=1,而S△OFD=S梯形ECDF=(+)(tm﹣t)∴S△OEF=(+1)(m﹣1)=.故答案为:2,.10.如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.解:设⊙P与边AB,AO分别相切于点E、D,连接PE、PD、PA,如图所示.则有PD⊥OA,PE⊥AB.设⊙P的半径为r,∵AB=5,AC=1,=AB•PE=r,S△APC=AC•PD=r.∴S△APB∵∠AOB=90°,OA=4,AB=5,∴OB=3.=AC•OB=×1×3=.∴S△ABC=S△APB+S△APC,∵S△ABC∴=r+r.∴r=.∴PD=.∵PD⊥OA,∠AOB=90°,∴∠PDC=∠BOC=90°.∴PD∥BO.∴△PDC∽△BOC.∴=.∴PD•OC=CD•BO.∴×(4﹣1)=3CD.∴CD=.∴OD=OC﹣CD=3﹣=.∴点P的坐标为(,).∵反比例函数y=(k≠0)的图象经过圆心P,∴k=×=.故答案为:.11.如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是①④(把所有正确的结论的序号都填上).解:作AE⊥y轴于E,CF⊥y轴于F,如图,∵四边形OABC是平行四边形,∴S△AOB=S△COB,∴AE=CF,∴OM=ON,∵S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,∴=,故①正确;∵S△AOM=|k1|,S△CON=|k2|,∴S阴影部分=S△AOM+S△CON=(|k1|+|k2|),而k1>0,k2<0,∴S阴影部分=(k1﹣k2),故②错误;当∠AOC=90°,∴四边形OABC是矩形,∴不能确定OA与OC相等,而OM=ON,∴不能判断△AOM≌△CNO,∴不能判断AM=CN,∴不能确定|k1|=|k2|,故③错误;若OABC是菱形,则OA=OC,而OM=ON,∴Rt△AOM≌Rt△CNO,∴AM=CN,∴|k1|=|k2|,∴k1=﹣k2,∴两双曲线既关于x轴对称,也关于y轴对称,故④正确.故答案为:①④.12.如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n的横坐标为a n,若a1=2,则a2=﹣,a2013=﹣;若要将上述操作无限次地进行下去,则a1不可能取的值是0、﹣1.解:当a1=2时,B1的纵坐标为,B1的纵坐标和A2的纵坐标相同,则A2的横坐标为a2=﹣,A2的横坐标和B2的横坐标相同,则B2的纵坐标为b2=﹣,B2的纵坐标和A3的纵坐标相同,则A3的横坐标为a3=﹣,A3的横坐标和B3的横坐标相同,则B3的纵坐标为b3=﹣3,B3的纵坐标和A4的纵坐标相同,则A4的横坐标为a4=2,A4的横坐标和B4的横坐标相同,则B4的纵坐标为b4=,即当a1=2时,a2=﹣,a3=﹣,a4=2,a5=﹣,b1=,b2=﹣,b3=﹣3,b4=,b5=﹣,∵=671,∴a2013=a3=﹣;点A1不能在y轴上(此时找不到B1),即x≠0,点A1不能在x轴上(此时A2,在y轴上,找不到B2),即y=﹣x﹣1≠0,解得:x≠﹣1;综上可得a1不可取0、﹣1.故答案为:﹣;﹣;0、﹣1.13.如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.解:(1)把x=a,y=3代入y=x+1得,,∴a=4,把x=4,y=3代入y=得,3=,∴k=12;(2)∵点A(4,3),D点的纵坐标是0,AD=AC,∴点C的纵坐标是3×2﹣0=6,把y=6代入y=得x=2,∴C(2,6),①如图1,作CF⊥x轴于F,交AB于E,当x=2时,y==2,∴E(2,2),∵C(2,6),∴CE=6﹣2=4,∴x A==8;②如图2,当AB是对角线时,即:四边形APBQ是平行四边形,∵A(4,3),B(0,1),点Q的纵坐标为0,∴y P=1+3﹣0=4,当y=4时,4=,∴x=3,∴P(3,4),当AB为边时,即:四边形ABQP是平行四边形(图中的▱ABQ′P′),﹣y B=y P′﹣y A得,由y Q′0﹣1=y P′﹣3,=2,∴y P′当y=2时,x==6,∴P′(6,2),综上所述:P(3,4)或(6,2).14.在平面直角坐标系中,已知一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,)两点,且与反比例函数y2=的图象在第一象限内交于P,K两点,连接OP,△OAP的面积为.(1)求一次函数与反比例函数的解析式.(2)当y2>y1时,求x的取值范围.(3)若C为线段OA上的一个动点,当PC+KC最小时,求△PKC的面积.解:(1)∵一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,)两点,∴,解得.∴一次函数的解析式为:y1=﹣x+.∵△OAP的面积为,∴•OA•y P=,∴y P=,∵点P在一次函数图象上,∴令﹣x+=.解得x=4,∴P(4,).∵点P在反比例函数y2=的图象上,∴k2=4×=2.∴一次函数的解析式为:y1=﹣x+.反比例函数的解析式为:y2=.(2)令﹣x+=,解得x=1或x=4,∴K(1,2),由图象可知,当y2>y1时,x的取值范围为:0<x<1或x>4.(3)如图,作点P关于x轴的对称点P′,连接KP′,线段KP′与x轴的交点即为点C,∵P(4,).∴P′(4,﹣).∴PP′=1,∴直线KP′的解析式为:y=﹣x+.令y=0,解得x=.∴C(,0).=•(x C﹣x K)•PP′∴S△PKC=×(﹣1)×1=.∴当PC+KC最小时,△PKC的面积为.15.如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)∵一次函数y=x+1经过点A(m,2),∴m+1=2,∴m=1,∴A(1,2),∵反比例函数y=经过点(1,2),∴k=2,∴反比例函数的解析式为y=;(2)由题意,得,解得或,∴B(﹣2,﹣1),∵C(0,1),=S△AOC+S△BOC=×1×2+×1×1=1.5;∴S△AOB(3)有三种情形,如图所示,满足条件的点P的坐标为(﹣3,﹣3)或(﹣1,1)或(3,3).16.已知A(3,0)、B(0,4)是平面直角坐标系中两点,连接AB.(1)如图①,点P在线段AB上,以点P为圆心的圆与两条坐标轴都相切,求过点P 的反比例函数表达式;(2)如图②,点N是线段OB上一点,连接AN,将△AON沿AN翻折,使得点O与线段AB上的点M重合,求经过A、N两点的一次函数表达式.解:(1)作PC⊥x轴于C,PD⊥y轴于D,则四边形OCPD是矩形,∵以点P为圆心的圆与两条坐标轴都相切,∴PC=PD,∴矩形OCPD是正方形,设PD=PC=x,∵A(3,0)、B(0,4),∴OA=3,OB=4,∴BD=4﹣x,∵PD∥OA,∴△PDB∽△AOB,∴,∴,解得x=,∴P(,),设过点P的函数表达式为y=,∴k=xy==,∴y=;(2)方法一:∵将△AON沿AN翻折,使得点O与线段AB上的点M重合,∴ON=NM,MN⊥AB,由勾股定理得,AB=5,=S△AON+S△ABN,∴S△AOB∴=+,解得,ON=,∴N(0,),设直线AN的函数解析式为y=mx+,则3m+=0,∴m=﹣,∴直线AN的函数解析式为y=﹣x+.方法二:利用△BMN∽△BOA,求出BN的长度,从而得出ON的长度,。
高中数学优秀教案第二册上.两条直线的位置关系(一)
两条直线的平行与垂直一、教学目标(一)知识教学点掌握两条直线平行与垂直的条件,会运用条件判断两直线是否平行或垂直,能运用条件确定两平行或垂直直线的方程系数.一条直线与另一条直线所成角的概念及其公式,两直线的夹角公式,能熟练运用公式解题.(二)能力训练点通过研究两直线平行或垂直的条件的讨论,培养学生运用已有知识解决新问题的能力以及学生的数形结合能力.通过课题的引入,训练学生由特殊到一般,定性、定量逐层深入研究问题的思想方法;通过公式的推导,培养学生综合运用知识解决问题的能力.(三)学科渗透点通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,激发学生学习的兴趣.训练学生由特殊到一般,定性、定量逐步深入地研究问题的习惯.二、教材分析1.重点:两条直线平行和垂直的条件是解析几何中的一个重点,要求学生能熟练掌握,灵活运用.2.难点:启发学生把研究两直线的平行与垂直问题转化为考查两直线的斜率的关系问题.公式的记忆与应用.3.疑点:对于两直线中有一条直线斜率不存在的情况课本上没有考虑,上课时要注意解决好这个问题.推导l1、l2的角公式时的构图的分类依据.三、活动设计提问、讨论、解答.四、教学过程(一)特殊情况下的两直线平行与垂直这一节课,我们研究怎样通过两直线的方程来判断两直线的平行与垂直.当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角为90°,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)斜率存在时两直线的平行与垂直设直线l1和l2的斜率为k1和k2,它们的方程分别是l1: y=k1x+b1; l2: y=k2x+b2.两直线的平行与垂直是由两直线的方向来决定的,两直线的方向又是由直线的倾斜角与斜率决定的,所以我们下面要解决的问题是两平行与垂直的直线它们的斜率有什么特征.我们首先研究两条直线平行(不重合)的情形.如果l1∥l2(图1—29),那么它们的倾斜角相等:α1=α2.∴tgα1=tgα2.即k1=k2.反过来,如果两条直线的斜率相等,k1=k2,那么tgα1=tgα2.由于0°≤α1<180°,0°≤α<180°,∴α1=α2.∵两直线不重合,∴l1∥l2.两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即eq \x( )要注意,上面的等价是在两直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不存立.现在研究两条直线垂直的情形.如果l1⊥l2,这时α1≠α2,否则两直线平行.设α2<α1(图1—30),甲图的特征是l1与l2的交点在x轴上方;乙图的特征是l1与l2的交点在x轴下方;丙图的特征是l1与l2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为l1、l2的斜率是k1、k2,即α1≠90°,所以α2≠0°.可以推出α1=90°+α2.l1⊥l2.两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直,即(三)例题例1 已知两条直线l1:2x—4y+7=0,L2:x—2y+5=0.求证:l1∥l2.证明两直线平行,需说明两个要点:(1)两直线斜率相等;(2)两直线不重合.证明:把l1、l2的方程写成斜截式:∴两直线不相交.∵两直线不重合,∴l1∥l2.例2求过点A(1,-4),且与直线2x+3y+5=0平等的直线方程.即2x+3y+10= 0.解法2 因所求直线与2x+3y+5=0平行,可设所求直线方程为2x+3y+m=0,将A(1,-4)代入有m=10,故所求直线方程为2x+3y+10=0.例3 已知两条直线l1:2x—4y+7=0,l2:2x+y—5=0.求证:l1⊥l2.∴l1⊥l2.例4 求过点A(2,1),且与直线2x+y—10=0垂直的直线方程.解法1 已知直线的斜率k1=-2.∵所求直线与已知直线垂直,根据点斜式得所求直线的方程是就是x—2y=0.解法2 因所求直线与已知直线垂直,所以可设所求直线方程是x-2y+m=0,将点A(2,1)代入方程得m=0,所求直线的方程是x—2y=0.(四)两条直线的夹角两条直线l1和l2相交构成四个角,它们是两对对顶角.为了区别这些角,我们把直线l1依逆时针方向旋转到与l2重合时所转的角,叫做l1到l2的角.图1-27中,直线l1到l2的角是θ1,l2到l1的角是θ2(θ1+θ2=180°).l1到l2的角有三个要点:始边、终边和旋转方向.现在我们来求斜率分别为k1、k2的两条直线l1到l2的角,设已知直线的方程分别是l1∶y=k1x+b1 l2∶y=k2x+b2如果1+k1k2=0,那么θ=90°,下面研究1+k1k2≠0的情形.由于直线的方向是由直线的倾角决定的,所以我们从研究θ与l1和l2的倾角的关系入手考虑问题.设l1、l2的倾斜角分别是α1和α2(图1—32),甲图的特征是l1到l2的角是l1、l2和x轴围成的三角形的内角;乙图的特征是l1到l2的角是l1、l2与x轴围成的三角形的外角.tgα1=k1,tgα2=k2.∵θ=α2—α1(图1-32),或θ=π-(α1—α2)=π+(α2-α1),∴tgθ=tg(α2-α1).或tgθ=tg[π(α2—α1)]=tg(α2-α1).可得即eq \x( )上面的关系记忆时,可抓住分子是终边斜率减始边斜率的特征进行记忆.(五)夹角公式从一条直线到另一条直线的角,可能不大于直角,也可能大于直角,但我们常常只需要考虑不大于直角的角(就是两条直线所成的角,简称夹角)就可以了,这时可以用下面的公式(六)例题解:k1=—2,k2=1.∴θ=arctg3≈71°34′.本例题用来熟悉夹角公式.例2 已知直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0(B1≠0、B2≠0、A1A2+B1B2≠0),l1到l2的角是θ,求证:证明:设两条直线l1、l2的斜率分别为k1、k2,则这个例题用来熟悉直线l1到l2的角.例3等腰三角形一腰所在的直线l1的方程是x-2y-2=0,底边所在的直线l2的方程是x+y-1=0,点(—2,0)在另一腰上,求这腰所在直线l3的方程.解:先作图演示一腰到底的角与底到另一腰的角相等,并且与两腰到底的角与底到另一腰的角相等,并且与两腰的顺序无关.设l1、l2、l3的斜率分别是k1、k2、k3,l1到l2的角是θ1,l2到l3的角是θ2,则.因为l1、l2、l3所围成的三角形是等腰三角形,所以θ1=θ2.tgθ2=tgθ1=-3.解得k3=2.因为l3经过点(—2,0),斜率为2,写出点斜式为y=2[x-(-2)],即2x—y+4=0.这就是直线l3的方程.讲此例题时,一定要说明:无须作图,任一腰到底的角与底到另一腰的角都相等,要为锐角都为锐角,要为钝角都为钝角.(四)课后小结(1)斜率存在的不重合的两直线平行的等价条件;(2)两斜率存在的直线垂直的等价条件;(3)与已知直线平行的直线的设法;(4)与已知直线垂直的直线的设法.(5)l1到l2的角的概念及l1与l2夹角的概念;(6)l1到l2的角的正切公式;(7)l1与l2的夹角的正切公式;(8)等腰三角形中,一腰所在直线到底面所在直线的角,等于底边所在直线到另一腰所在直线的角.五、布置作业1.7练习第1,2,3题习题三第3,10题。
圆及其方程-测试
目录
狂刷小题·基础练
KUANG SHUA XIAO TI JI CHU LIAN
精做大题·能力练
JING ZUO DA TI NENG LI LIAN
狂刷小题·基础练
KUANG SHUA XIAO TI JI CHU LIAN
一、基础小题
1.直线 l:y=x 被圆 C:(x-3)2+(y-1)2=3 截得的弦长为( )
∠APC=2× 410× 46= 415,cos∠APB=cos(2∠APC)=cos2∠APC-sin2
∠APC=
462-
4102=-14<0,即∠APB
为钝角,所以
sinα=sin(π-
∠APB)=sin∠APB= 415.故选 B.
目录 狂刷小题 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
答案 解析
6.若圆 x2+y2-4x-4y-10=0 上至少有三个不同点到直线 l:ax
+by=0 的距离为 2 2,则直线 l 的斜率的取值范围是( )
A.[2- 3,1]
B.[2- 3,2+ 3]
C.
33,
3
D.[0,+∞)
目录 狂刷小题 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
圆及其方程
高考 高考在本考点的常考题型为选择题、填空题,分值为5分,中 概览 等难度
1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程 2.能根据给定直线、圆的方程,判断直线与圆的位置关系; 考点 能根据给定两个圆的方程判断两圆的位置关系 研读 3.能用直线和圆的方程解决一些简单的数学问题和实际问题 4.初步了解用代数方法处理几何问题的思想
偏微分方程数值解法(抛物型方程差分法)2省名师优质课赛课获奖课件市赛课一等奖课件
j(H
sin 2
)
| j
|
1 jn
2(n 1)
| (ra2 ) |
(ra2 )
| n |
| 1 |
ra 2
极值点满足
ra2 1 2
1 4ra2 sin2 4ra2 sin2 n 1
2(n 1)
2(n 1)
(ra2 ) 1 2sin2
cos 1
2(n 1)
n1
显式差分格式稳定充分条件. h2 / 2a 2
4/17
无穷大范数定义 ||
uk
||
max
1 jn
|
ukj
|
双层差分格式
n
n
u (k ) k1 jm m
u (k ) k
jm m
f
k j
m1
m1
记矩阵
A(k )
(
) (k )
jm nn
B(k)
(
) (k )
jm nn
双层格式旳矩阵形式 A(k )uk1 B(k )uk f k
双层差分格式初值稳定概念:
2ra2 cos j )]1
j
n
1
]1
[1 4ra2 sin2 nj 1 ]1 1
2(n 1)
11/17
过渡矩阵旳谱半径
(
H
)
max
1 j N 1
|
j
(
H
)
|
1
max
1 jn
|
1
4ra
sin2 (
j
/
2(n
1))
|
1
1 4ra sin2( / 2(n 1)) 1
K1_故障机维修指导书
英语学习电脑 K1 维修手册上海好记星数码科技有限公司深圳分公司目 录封面第1页目录第2页注意事项第3页拆机指引4-12页电路框图与原理13-16页常见故障维修实例17-18页工厂模式自检程序说明19-26页维修注意事项1、拆装壳时尽量不要使用锐利的器具;2、使用可调电源时,电池电压调至4-4.2V,USB电压不能超过5.0V;3、焊接元件时请必需关机并拔出电池接口;4、拆除电子元件后,焊接元件时请注意方向;(其中包括;二极管;有极电容;各IC)5、尽量不要使用市面上的劣质电烙铁;6、使用恒温电烙铁时,注意调节限止温度,不要超过350℃;7、焊接贵重IC时请注意继续焊接时间;8、更换LCD或触屏时请注意,拆装力度(避免人为损坏);9、安装触屏;LCD时注意排线方向;10、拆装时请注意各位置上的螺丝区分;11、维修过程中工作台与维修人员需防静电;12、禁止随意调换元器件(情况严重者将追究相应责任);13、维修加电检测主板时请务必接好触摸板,否则会自动开机;14、K1换LCD时需把LCD排线进行绝缘,以免与排座短路;以起显示异常;15、拆按键时或装按键时请不要太用力,以避免损坏排线;16、拆壳时请注意不要太用力,以避免损坏壳料。
一、拆机过程:图1图2图31、首先用镊子取出键盘底壳的四个脚垫,用电批将底壳四颗螺丝拆下,然后取拆机片将底壳划开取下底壳如图1、图2、如图3所示图53、用电批或者螺丝刀拆下主板和鼠标板上的10颗螺丝图5所示2、用烙铁将正负极电池线和两组喇叭线逐个焊掉,如图4所示5、用电批或者螺丝刀拆下转轴上的3颗螺丝翻开键盘面壳即可将LCD面壳组件和键4、用手在喇叭线位置拔出主板双列排针,将手指伸进主板内拔下键盘排线 然后将LCD FPCB排扣松开取出排线即可如图6所示,取下FFC线,然后在触摸板上滴少许酒精即可更换触摸板。
如图9所示6、用电批或者螺丝刀拆下键盘底壳右喇叭上的2颗螺丝和按键板上的4壳螺丝并7、用拆机片插入LCD底壳中间部位划开并取下LCD底壳如图10、图118、用电批或者螺丝刀拆下LCD两边压片上的6颗螺丝和LCD板上的3壳螺丝即可更换 LCD 、转轴或对LCD板进行维修。
计算方法线性方程组数值解法
d
2
a3b3c3
x3
d3
an
1bn1cn
1
xn
1
d
n
1
anbn xn dn
其系数矩阵为三对角形,元素满足以下条件:
|b1|>|c1|>0
|bi|≥|ai|+|ci|,且aici≠0 i=2,3,……n-1; |bn|≥|an|>0。
可以采用追赶法求解
4
线性代数方面的计算方法就是研究求解线 性方程组的一些数值解法与研究计算矩阵 的特征值及特征向量的数值方法。
5
设有线性方程组
a11x1 a12x2 a1nxn b1 a21x1a22x2a2nxnb2 an1x1 an2x2 annxn bn
式中,aij,bi为已知常数,xi为待求的未知量。记
u
2
2
u 2 n
u n 1,n 1u n 1,n
u n n
10
若uii≠0(i=1,2,……n),则由下至上依次回代得
xn yn / unn
xn1 ( yn1 xi yi
un1,n xn ) / un1,n1
n
uij x j ) / uii
0
a
( 2
2 2
)
a
( 2
2) ,k 1
a
( 2
2) ,k
a
( 2
2) ,n
a
( 2
2) ,n 1
0 A(k)
0 0
a
( k
k) ,k
a
( k
k) ,k 1
a
k
k ,n
a
( k
k) 1,n
1
佛山市三水中学2025届高考数学押题试卷含解析
佛山市三水中学2025届高考数学押题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.抛物线()220y px p =>的准线与x 轴的交点为点C ,过点C 作直线l 与抛物线交于A 、B 两点,使得A 是BC 的中点,则直线l 的斜率为( ) A .13±B .223±C .±1D . 3±2.等差数列{}n a 的前n 项和为n S ,若13a =,535S =,则数列{}n a 的公差为( ) A .-2B .2C .4D .73.已知函数3sin ()(1)()x xx xf x x m x e e -+=+-++为奇函数,则m =( )A .12B .1C .2D .34.已知复数z 满足:((1)11)i z i +-=-,则z 的共轭复数为( ) A .12i -B .1i +C .1i -+D .12i +5.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有( ) A .17种B .27种C .37种D .47种6.如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边,AB AC .已知以直角边,AC AB 为直径的半圆的面积之比为14,记ABC α∠=,则sin 2α=( )A .925B .1225C .35D .457.等差数列{}n a 中,已知51037a a =,且10a <,则数列{}n a 的前n 项和n S *()n N ∈中最小的是( )A .7S 或8SB .12SC .13SD .14S8.设(),1,a b ∈+∞,则“a b > ”是“log 1a b <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.已知抛物线C :()220y px p =>,直线()02p y k x k ⎛⎫=-> ⎪⎝⎭与C 分别相交于点A ,M 与C 的准线相交于点N ,若AM MN =,则k =( )A .3B .223C .22D .1310.已知向量a b (3,1),(3,3)=-=,则向量b 在向量a 方向上的投影为( ) A .3-B .3C .1-D .111.已知定义在R 上函数()f x 的图象关于原点对称,且()()120f x f x ++-=,若()11f =,则()1(2)(3)(2020)f f f f ++++=( )A .0B .1C .673D .674 12.用数学归纳法证明,则当时,左端应在的基础上加上( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
3.2抛物线的简单几何性质2024-2025学年高二上学期数学北师大版(2019)选择性必修第一册
例 2 已知抛物线 C:y2=2px(p>0),过点(2,0)的直线 l 与抛物线 C 相交于 A,B 两点,O
为坐标原点,且―O→A ·―O→B =2.
(1)求抛物线 C 的方程;
(2)点 M 坐标为(-2,0),直线 MA,MB 的斜率分别为 k1,k2,求证:k11+k12为定值.
解:(1)设 l 的方程为 x=my+2,A(x1,y1),B(x2,y2), (2)证明:因为 M 坐标为(-2,0),
(1)求p
(2)若点p在M上,PA,PB是C的两条切线,A,B是切点,
PAB面积的最大值
y
x 2
1x 2 4y
x0
y 0
得 x2 2x0x 4 y0
0
4x02
16 y0
由韦达定理可得 xA xB 2x0, xAxB 4 y0
AB 1 K 2AB
(xA xB )2 4xAxB
=y21y2+y22y1+y1y22(y1+y2)=(y1y2+2y)1y(2 y1+y2), 由(1)可得 y1+y2=m,y1y2=-2,
所以 p=12,所以抛物线 C 的方程为 y2=x.
所以k11+k12=0 为定值.
背景分析 题目展示 解法分析 拓展延伸 大胆猜想 感悟数学
定量到定性分析 数形结合思想 遵循逻辑推理
背景分析 题目展示 解题思路 大胆猜想 拓展延伸 感悟数学
本题中,1、过抛物线x2 2 py 外点 x0, y0 抛物线切点弦方程:x x0 p( y0 y)
过椭圆
外点 x2
a2
y2 b2
1
x0, y0
椭圆切点弦方程:xa02x
y0 y b2
1
过圆 x2 y2 r2 外点 x0, y0 切点弦方程:x0 x y0 y r 2
220 系列称重 测力控制器 操作手册说明书
目录
前言 .........................................................................................................................- 1 安全提示 .................................................................................................................- 1 一、 技术指标 .......................................................................................................- 1 三、 工作方式 .......................................................................................................- 3 -
-4-
关量 2 闭合,当显示重量值达 到第一比较限时开关量 1 断 开 OUT1 灯灭,重量值达到第 二比较限时开关量 2 断开 OUT2 灯灭,本轮结束;再次开 入启动端子则重新运行,期间 若无开入启动端子,则开关量 无输出;
四、参数说明 1.参数修改操作: 1)在运行界面长按[k1]三秒松开,进入参数界面后,显示 Ed-04 改上限 2)短按[k1]切换下一个(长按可以快速切换),切换到显示 Ed-02; 3)按[k4]进入 Ed-02 参数,最高位的值会闪烁; 4)进去后先按[k4]移动闪烁位,移动到要修改的闪烁位后,按[k3]增加闪 烁位数值;数值修改为 200; 5)修改完后按[k1]确认返回到参数界面,在按[k2]退出到运行界面;
l-k方程的快速解法
l-k方程的快速解法L-K方程是一种代表了两个整数的线性关系的方程,其中L和K是常数。
当给定L和K的值时,求解L-K方程就是要找到所有满足该方程的整数解。
L-K方程的一种快速解法是使用欧几里得算法。
首先,我们需要了解欧几里得算法。
欧几里得算法是一种用于求解两个整数的最大公约数的方法。
它基于以下原理:对于两个整数a和b,它们的最大公约数等于b和a%b(a对b取余)的最大公约数。
利用欧几里得算法,我们可以将L-K方程转化为求解最大公约数的问题。
具体步骤如下:步骤一:对于给定的 L 和 K,使用欧几里得算法求解它们的最大公约数。
记为 gcd(L, K)。
步骤二:判断 gcd(L, K) 是否整除右边的常数项 L。
如果不整除,则 L-K 方程无整数解。
如果整除,则继续执行下一步。
步骤三:将 L-K 方程化简为 gcd(L, K) * x = L 的形式,其中 x 是一个整数。
步骤四:使用扩展欧几里得算法求解 gcd(L, K) * x = L 方程的一个特解。
扩展欧几里得算法会返回一个特解 (x0, y0),其中 x0 是gcd(L, K) * x = L 方程的一个特解。
步骤五:L-K 方程的所有解可以表示为 x = x0 + (K / gcd(L, K)) * n,其中 n 为整数。
根据该公式,我们可以得到 L-K 方程的所有解。
下面,我将对每个步骤进行详细的解释。
步骤一:欧几里得算法求解最大公约数为了求解L和K的最大公约数,我们可以使用辗转相除法。
该算法的基本思想是不断用较小的数除以较大的数,直到余数为0。
最后的除数即为最大公约数。
具体步骤如下:1.如果L小于K,则交换L和K的值,保证K不小于L。
2.用K除以L,得到余数R。
3.如果R等于0,则L是最大公约数。
4.如果R不等于0,则将K的值赋给L,将R的值赋给K,然后返回第2步。
重复执行上述步骤,直到余数为 0。
最后的除数即为最大公约数gcd(L, K)。
k1指标临界值 -回复
k1指标临界值-回复什么是K1指标临界值?K1指标临界值是指在某个特定的场景或领域中,用于区分两组或多组数据的一个判断点。
它可以被用来判断该组数据的表现是否达到某种预期水平或标准要求。
K1指标临界值通常由专业人士、研究人员或规定机构来设定,以帮助组织或个人做出决策或评估工作。
设定K1指标临界值的方法设定K1指标临界值通常需要经过以下步骤:1. 定义指标:首先,需要明确所研究的领域或场景的核心指标。
这可以是一个量化的指标,例如销售额、用户增长率,或者是一个更加主观的指标,例如用户满意度、品牌知名度等。
这个指标应该能够准确地反映出该组数据的表现情况。
2. 收集数据:通过收集相关数据来支撑决策。
数据可以来自实地调研、市场调查、统计数据等多种渠道。
确保数据的质量和可靠性对于设定K1指标临界值的准确性至关重要。
3. 分析数据:对收集到的数据进行分析,了解数据的特征和分布情况。
通过统计学方法、数据挖掘技术等工具和手段,可以获得更加深入的洞察和理解。
4. 国际比较:如果可行,将本组数据与国际或行业标准进行对比。
这样可以更好地确定该组数据在全球范围或行业内的位置和表现。
5. 设定临界值:根据分析结果,结合领域专家的意见以及组织的需求和目标,制定K1指标临界值。
这个临界值应该在现有数据指标的基础上有所提升,并能够有效地衡量组数据表现的好坏。
应用K1指标临界值的场景K1指标临界值广泛应用于各个领域和行业,例如企业管理、市场营销、生产制造、医疗卫生等等。
在企业管理中,K1指标临界值可以用来评估团队绩效、判断项目进展是否符合预期。
在市场营销中,K1指标临界值可以用来判断产品销售是否达到预期目标。
在医疗卫生领域,K1指标临界值可以用于评估医院的患者满意度、手术成功率等。
K1指标临界值的意义K1指标临界值的设定对于组织和个人非常重要。
它可以让组织或个人明确目标和要求,帮助他们判断当前的表现是否达到了预期,从而及时调整策略和决策,提高效率和生产力。
S—P模式应用中k1、k2系数求解方法的探索
S—P模式应用中k1、k2系数求解方法的探索2002年第l期贵州环保科技V o1.8No.tlS—P模式应用中k,k2系数求解方法的探索杨星宇(贵州省环境科学研究设计院,贵州贵阳550002)摘要在建设项目环境影响评价报告书的编制中,通常要运用S—P模式来预测有机污染物在河流中降解的情况,模式运用中自净系数k,k(足.:耗氧系数;k:复氧系数)的确定是关键,文章运用"改进梯度法"自编程序,打破传统模式,同时求解k,k,使得在同一河流中,k,k:有较好的系统性和内在联系,通过实际应用验证.其灵敏度,可靠性较好.关键词耗氧系数k.复氧系数k梯度搜索法在河流有机污染物水质预测中,大多数只应用Streeter--Phelps模式(简称S—P模式)的一半,即只预测BOD的降解(只使用k)而对DO的预测往往忽略.事实上DO是河流一个极重要的水质指标,它与有机污染物降解有密切联系,为了正确,系统地反映河流BOD,DO的变化,通过《7舞阳河水环境容量及风景名胜资源保护对策研究》课题7舞阳河的水质预测,对贵州省山区河流S—P模式应用中k.,k的求解进行了以下探索.1自净系数k,k的意义1.1耗氧系数k,耗氧系数k定义为:有机生物化学需氧量减低的速度与它剩余的未氧化物质的需氧量成比例(即呈一级反应),这个比例常数k即称为耗氧系数,耗氧系数是一个统计平均值.影响k.值的主要因素是温度,流速,污水性质等.1.2复氧系数k水体中溶解氧主要来源有两个方面:一是通过水和空气交界面的分子作用,从大气摄取氧;二是藻类的光合作用向水体供氧.一般来说研究复氧系数主要指大气复氧系数.水体复氧的速率取决于溶解氧的亏损和其它一些物理量,水体表面有很微小的一层薄膜,它通过其分子不断地从大气摄取氧,这种表面薄膜不断更新的速率,直接关系到水体复氧的速度,因此可见水体复氧的速率与水流的流速成正比,而与水深成反比,并且与水面,河底比降,粗率系数,分子扩散,温度,水粘滞系数,表面张力,重力加速度等收稿日期:2002—03一l4;2o02一O8一l4修回作者简介:杨星宇.男,1975年生,助理工程师.从事环境评价,研究工作.312002年第4期贵州环保科技V o1.8No.4因素有一定的关系.2k,k:的确立,求解方法2.1确立,求解耗氧系数k的3种方法(1)利用河流各断面实际水质监测值进行反算.(2)根据实验室模拟试验推求.(3)利用监测,实验资料计算和求解.2.2确立,求解复氧系数k:的3种方法(1)实际监测或实验室模拟测定.(2)按机理采用经验和半经验公式估算.(3)利用监测,实验资料计算和求解.2.3应用改进"梯度搜索法"同时求解k,k2在水质预测中,分别求解k,k:往往在系统中出现较大的误差,为了使k,k:取值有系统性和同步性,经多因素分析和计算机运算比较,应用"梯度搜索法"同时求河流各研究断面水质模型参数k,k.的最优值. 具体步骤如下:设定目标函数¨:HfJ(k,kz)一∑∑[c(五,kz,,C0b.,tij)一].(1)式中:,C.——溶解氧饱和值和初值; 6.——B0Ds初值;f——第i次监测的第断面河水流经时间.采用一阶梯度搜索最优解:一∑[c—c73.J=1…(2)最优搜索计算程序可以有多种方法,经实际计算比较,采用改进梯度法的计算程序(图1),可省计算时间3倍以上.3k,k:计算方法说明和步骤32用"梯度搜索法"求解k,k:,实际上是一种应用多维参数的最优估值法,它可以同时确定模型中多个参数,这种方法的优点是从模型的整体出发求得参数值,使水质模型的可靠性提高.但需要注意的是这种非线性的多维参数最优搜索过程中,由于多变量函数的非凸特性,会因所取初始值的不同,求得的"最优值"有所不同,此时所求得的解实际是局部最优解,而非整体最优解.为了避免这种问题,除了要对可行范围内的各种初始值的"优值"多做些比较和处理外,有时往往采用降维的方法降低待估参数的维数,再进行最优搜索.对多变量函数往往采用直接最优化方法搜索其最优值,也就是从给定的初始值(或起点)五.出发,每次增减一定的量逐步改善目标函数J(k,),直到其满足目标值收敛的误差要求.目前直接最优化方法大多采用一阶梯度法(又称"最速下降法"),即在原点(或起点)的目标函数(五)下降速率最快的方向一型(一阶负梯度的方向),按一定的步长进行搜索,每次改进目标函数值,并得到新的起点,如此反复迭代计算,直到满足要求.具体工艺步骤:(1)将河流各研究断面B0D,DO的实际监测值进行离散分布序列集合成{五)和{c3).表示实测值,J表示第i次监测(一1,2,…,),可表示第J断面(一1,2,….k).(2)在排污条件下,同上计算B0D和DO的计算序列集合{k.,)和{O.).(3)由实测序列值和模型计算序列值之差的某一范数(常用一范数)构成一目标函数.对BOD,JL一∑(6t--b~.).一(矗^);2002年第4期贵州环保科技V o1.8No.4图1S—P模型参数的最优搜索计算——改进梯度法33?2002年第4期贵州环保科技V o1.8No.4对DO,J∑(c厂c)一Jc(正);f=1对第i次的总目标函数:一∑[+(卜),)J~]----J(正),=1式中:——加权因素(O≤≤1),表示B0D和D0实测值的相对可靠性或主要性,当一0时,指B0D值不可靠;当一1时,指D0值不可靠;当一0.5时,指B0D5和D0值同等可靠;正——待估参数(^一1,2,…,).(4)在有约束条件下,用一阶梯度法(搜索目标函数值数值最小时的待估参数或"决策变量")序列正即:t束(d≤正≤).4采用"最速下降法"求解k,k值的应用根据上述计算步骤,在对湃阳河各研究河段水文及水质现状监测资料的分析基础上,自行编制计算程序(略),选择漭阳河,相见河的是初值为0.15~0.30,足初值为0.25~0.37;杉木河的k初值为0.40~0.50,k2初值为0.50~0.60,按步长尸一0.001进行梯度搜索计算,经反复计算验证.计算出各研究河段自净系数值如表1.为7舞阳河研究河段水质预测提供了重要,关键的参数.表1浇阳河各研究河段年均温度下自净系数计算结果5水质模型参数灵敏度分析5.1灵敏度检验原则与方法水质模型参数灵敏度分析,目的是检验水质参数的适用条件和可靠性程度[3].将计算值与实际监测值进行比较,若计算值与实测值之间有相对均匀的偏离,通常说明模型标定时确定的系数适用于较大范围内的污染负荷;流量和水温条件下的水质计算,本研究中采用平均值比较和相对误差两种方法同时进行灵敏度分析.345.2灵敏度检验结果自净系数模型计算值与断面的实测值对照见表2,从表2可以看出:B0D,DO的计算值与实测值的误差很小(一世×lOO~),‰.值在实测值一'""o.12~5.98之间,Do值在0.14~3.449,5之间,且误差的趋势基本一致,说明自净系数模型应用及计算的可信度和可靠性比较大,符合客观实际情况,可以用来预测河段水质.2002年第4期贵州环保科技V o1.8No.46结语使用"改进梯度法"同时求解耗氧系数k和复氧系数k.,可以使S—P模式应用更为方便,简单.由于k,k同时求解,BOD与D0的预测更为系统和同步,且该方法求解的k,k.系数,灵敏度较高,为确定自净系数的较好方法之一.参考文献1傅国伟.河流水质数学模型及其模拟计算.北京:中国环境科学出版社,1987.218~2192傅国伟.河流水质数学模型及其模拟计算.北京:中国环境科学出版社,1987,2213夏青,孙艳.水污染物总量控制实用计算方法概要.环境科学研究,1989(3):29~30七七七七七七七七七七七七七七七七七"2002年中国有机食品发展研讨会暨第九期全国有机食品开发和信息交流讲习班"在贵阳举行由国家环境保护总局有机食品发展中心,贵州省环境保护局,贵州省农业厅,贵州省轻纺行业管理办公室,贵州省食品工业办公室等单位主办,并由贵州省环境科学研究设计院承办的"2002年中国有机食品发展研讨会暨第九期全国有机食品开发和信息交流讲习班"于2002年8月5日至8月9日在贵阳举行.来自北京,上海,广东,陕西,四川,山东,内蒙,山西,吉林,贵州,江苏,广西,云南,甘肃,宁夏,河南,安徽,辽宁,湖北,河北等省市的共192名代表参加了本次研讨会及讲习班.会议邀请了国家环保总局原副局长,中国工程院院士金鉴明,南京环境科学研究所领导,贵州省有关领导,香港和台湾等地嘉宾出席了本次会议.本次讲习班授课内容为:国内外有机食品发展状况和趋势;有机作物,野生植物,有机畜禽,水产,有机加工和贸易标准;有机认证程序和有机农业生产基地建设等.另外,会议还就大力培养和发展中国有机食品市场,台湾及香港有机食品发展现状,人世后中国农业面临的挑战和机遇以及各地有机食品基地建设经验等进行了研讨和交流.会议期问,与会代表还参观了羊艾生态茶场.该次研讨会取得了预期的效果并圆满结束.(安裕敏)35。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Section1 layer 2 TechnologiesErrors in the initial configSW1 vtp domain name is ccieroutingandswitchingyy and the others are ccieroutingandswitching.Solution :change SW1 vtp domain name to ccieroutingandswitching A::SW1 VTP password is cisc0 and the others are cisco.Solution :change SW1 vtp password to ciscoB:: On SW2 fastethernet0/10 config “switchport backup f0/4”, this command will cause interface fasterthernet 0/4 down. 初始TR可能还会有VTP password cisco 错误。
Solution :remove it1.2 implement the access-switch ports of switched network (already implemented)vlan port assignments are per the following tableVLAN ID VLAN NAME Router port2 VLAN_BB2 SW2 F0/103 VLAN_BB3 R3 G0/0;SW3 f0/1011 VLAN_A R1 G0/113 VLAN_B R3 G0/115 VLAN_BB1 R5 FA0/0;SW1 f0/1022 VLAN_C24 VLAN_H R4 F0/144 VLAN_F R4 FA0/045 VLAN_G R5 FA0/1Configure all of the appropriate nontrunking access switch ports on sw1,sw2 and sw3, according to the following requirements ; Configure the VLANS for the access switch ports show as the vlan tables Include the ports to BB1,BB2 and BB3Configure trunk between sw2 f0/2 and R2 G0/1Make sure that the spanning tree enters the forwarding state immediatelyOnly for these access switch ports , by passing the listening and learning statesAvoid transmitting bridge protocol date units(BPDUS)on these access switch ports, if a BPDU is received on any of these ports, the ports should transition back to the listening, learning and forward states ; Add any special layer 2 commands that are required that are required on the routers including trunk configurationSW1:vtp mode servervtp ver 2vtp domain ccieroutingandswitchingvtp password ciscoSW2/SW3/SW4:Vtp mode clientvtp ver 2vtp domain ccieroutingandswitchingyyvtp password ciscoSW1/SW2/SW3/SW4Spanning-tree portfast defaultSpanning-tree portfast bpdufilter default1.3 Implement frame relayUse the following requirements to configure R1 and R2 for frame relay and R4 as the frame relay switch ;Use ANSI LMI on frame relay switch and auto-sessing on R1 and R2 Don’t use any static frame relay maps or inverse address resolutions protocol ;Use RFC 1490/RFC2427(IETF)encapsulationUse the data-link connection identifier DLCI assignments from the table belowFrame Relay DLCI assignments ROUTER DLCI assignmentsR1 frame-relay interface 100R2 frame-relay interface 200R4(R4的预配置不允许更改) Frame-relay switchingInt s0/0/0En frame-relay ietfFrame-relay lmi-type ansiFrame-relay intf-type dceClock rate 64000Frame-relay route 100 int s0/1/0 200 No shutInt s0/0/1En frame-relay ietfFrame-relay lmi-type ansiFrame-relay intf-type dceClock rate 64000Frame-relay route 200 int s0/0/0 100 No shutR1:Int s0/0/0En frame-relay ietfNo shutexitint s0/0/0.12 point-to-pointip add yy.yy.15.242 255.255.255.252frame-relay interface-dlci 100R2:Int s0/0/0En frame-relay ietfNo ShutExitInt s0/0/0.21 point-to-pointIp add yy.yy.15.241 255.255.255.252Frame-relay interface-dlci 2001.4 traffic control protection from the backonesconfigure traffic control on the three backone links, protecting yournetwork from a broadcast storm. This protection should begin once broadcast traffic is half(50%) avaible bandwith. the port should remain functioning during this timeSW1/SW2/SW3:Int f0/10Storm-control broadcast level 50.001.5 trunking manipulationsconfigure the trunk ports between sw1, sw2, sw3 and sw4 according to the following requirements ;disable DTP on the six distribution ports for each switch ;set the list of allowed vlans that can receive and send traffic on these interfaces in tagged format, in particular , only allow VLAN 2. 3. 11. 13.15. 22. 24. 44. 45SW1/SW2/SW3/SW4:Vlan dot1q tag nativeInt r f0/19 -24Sw noSw tr en dotSw mode trSw tr all vlan 2,3,11,13,15,22,24,44,45 具体看考场需要Spanning-tree portfast defaultSpanning-tree portfast bpdufilter default考场需求变化注意看:SW1 to be the root for all vlan and for any new vlanSpanning-tree vlan 1-4094 priority 0but the trick they stated that BB devices must not be in the path to the root bridgeSW1:Int r f0/10Spanning-tree guard rootSw3:Int r f0/10Spanning-tree guard rootSw2Int r f0/10Spanning-tree guard rootSection II layer 3 technologiesaccess-list 1 permit 1.1.2.2access-list 1 permit 1.1.15.128access-list 1 permit 1.1.15.240access-list 11 permit 1.1.4.4access-list 11 permit 1.1.15.64after finishing each of the following questions, make sure that all configured interfaces andsubnets are consistently visible on all pertinent routers and switches don’t redistribute between any interior gateway protocol( IGP) and board gateway protocols BGPYou need to ping a bgp route only if it is stated in a question, otherwise the route should be onlyin the bgp tableAt the end of section 2. all subnets in your topology, including theloopback interface expectedfor sw3, must be reachable via ping,Therefore redistribute as you wish unless directly stated in a question. The backone interfacemust be reachable only if they are part of the solution to a questionThe loopback interface can be seen as either /24 or /32 in the routing tables unless statedotherwise in a questionThe loopback interfaces can be added into your IGP either via redistribution or added to a routingprocess of your choice2.1 Implement IPV4 OSPFConfigure open shortest path first ( OSPF)Updates should be advertised only out of the interfaces that are indicated in the IGP topology diagram;Don’t manually change the router IDDon’t create additional ospf areasConfigure ospf area 2 such that there are no TYPE5 Advertisements (LSA) in the area, R1 should generate a default route.Configure OSPF over frame relay between R1 and R2 choosing a network type that requires designate router(DR) and backup designate router(BDR) negotiations and has the fatest recover times ;sw2 :ip routingrouter ospf yyarea 2 nssanet yy.yy.8.8 0.0.0.0 a 2net yy.yy.15.130 0.0.0.0 a 2r2 :router ospf yyarea 2 nssanet yy.yy.15.129 0.0.0.0 a 2net yy.yy.15.241 0.0.0.0 a 2net yy.yy.2.2 0.0.0.0 a 2int s0/0.21ip ospf net broadcastip ospf dead-interval minimal hello-multiplier 20R1router ospf yyarea 2 nssa default-information-originatenet yy.yy.1.1 0.0.0.0 a 0net yy.yy.15.242 0.0.0.0 a 2net yy.yy.15.161 0.0.0.0 a 0int s0/0.12ip ospf net broadcastip ospf dead-interval minimal hello-multiplier 20 注意上考场看需求是否有fatest recover timessw1ip routingrouter ospf yynet yy.yy.15.162 0.0.0.0 a 0net yy.yy.15.194 0.0.0.0 a 0net yy.yy.7.7 0.0.0.0 a 0r3router ospf 9net yy.yy.3.3 0.0.0.0 a 0net yy.yy.15.193 0.0.0.0 a 02.2 Implement IPV4 EIGRPConfigure EIGRP 100 and EIGRP YY per the IGP topology diagramEigrp updates should be advertise only out to the interface per the IGP topology diagramOn R1 redistribute between ospf and eigrp YY. However all of the routes that are indicated below from backone3 (EIGRP100) should not be redistributed between both protocolsUse route maps to accomplish this requirement. All route-maps should utilize the same access listsOn R3, redistrubte from EIGRP 100 into OSPFOn R3, redistribute from EIGRP 100 into eigrp YY.However three networks 198.2.1.0/24, 198.2.3.0/24, 198.2.5.0/24 should be aggregated into a single address with the most specific mask Possible 新需求要开启autosummarysw4ip routingrouter eigrp yynet yy.yy.15.96 0.0.0.31net yy.yy.10.10 0.0.0.0r5router eigrp yynet yy.yy.15.96 0.0.0.31net yy.yy.15.248 0.0.0.3net yy.yy.15.244 0.0.0.3net yy.yy.5.5 0.0.0.0r1router eigrp yynet yy.yy.15.248 0.0.0.3r3router eigrp yynet yy.yy.15.244 0.0.0.3red eigrp 100router eigrp 100net 150.3.yy.0 0.0.0.255router os yyred eig 100 subnetsint s0/0ip summary-address eigrp yy 198.2.0.0 255.255.248.0r1: 匹配路由时先在R3 show ip eigrp 100 查看显示出来的路由别忘了还要加上一条汇总路由和直连150.3.yy.0路由。