第8专题(理科)
八年级数学理科班讲义教学-几何证明
B CD AOB CE DA A CB ’ CA B C B ’ C 8、八年级数学理科班:直角三角形全等判定、性质姓名一、【直角三角形全等的特殊判定方法】知识要点:一条直角边和斜边对应相等的两个直角三角形全等。
简记为HL 。
1、【定理证明】已知:如图,在Rt △ABC 和Rt △A’B’C’中,∠C=∠C’=90°,AC=A’C’,AB=A’B’ 求证: Rt △ABC ≌Rt △A’B’C’2、【直角三角形全等判定方法梳理】如图,具有下列条件的Rt △ABC 和Rt △A’B’C’(其中∠C=∠C’=90°)是否全等?如果全等在( )里打“√”,并在“——”上填写判定三角形全等的理由,如果不全等,在( )里打“×”. (1)AC=A’C’,∠A=∠A’ ( ) _______ (2)AC=A’C’,BC=B’C’ ( ) _______ (3)AB=A’B’,BC=B’C’ ( ) _______ (4)∠A=∠A’,∠B=∠B’ ( ) ________3、【应用练习】 选择题1.下列说法正确的有( )① 斜边和一条直角边对应相等的两个直角三角形全等② 两条边分别相等的两个直角三角形全等 ③ 两条直角边对应相等的两个直角三角形全等 ④ 斜边相等的两个等腰直角三角形全等A .1个B .2个C .3个D .4个2.已知,如图,BD ⊥AC 于D,CE ⊥AB 于E,BD 与CE 相交于O , 且BD=CE ,则图中全等的三角形共有( )A .1对B .2对C .3对D .4对3.如果两个三角形的两条边和其中一边上的高对应相等,那么这两个三角形的第三边 所对的角( )A .相等B .不相等C .互余或相等D .相等或互补4.如图,已知:∠A=∠D=90°,AB=CD,求证:AC=DBBC F E DABC FE D AB C F E D A5.如图,已知:AB=CD,AE ⊥BC,DF ⊥BC,BF=CE.求证:AB ∥CD6.如图,已知:AB=AE, ∠B=∠E=90°,AF 垂直平分CD,求证:BC=DE7.如图,已知:AD 平分∠BAC,DB ⊥AB,DF ⊥AC 于点F ,ED=CD,求证:AC=AE+2BE.8.已知:AC ⊥BC ,AD ⊥BD ,AD=BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F , 求证:CE=DF二、直角三角形的性质 1、【定理】①直角三角形的两个锐角互余(显然) ②直角三角形斜边上的中线等于斜边的一半 2、【定理证明】已知:在Rt △ABC 中,∠ACB=90°,CD 是斜边AB 的中线.求证:AB CD 21例1.如图,△ABC中,BD⊥AC于D,CE⊥AB与E,连接DE,取BC的中点M,DE的中点N,问:MN与DE有什么样的位置关系,并说明理由。
2020年高考理科数学单元测试8 立体几何(A)
单元质检卷八 立体几何(A )(时间:45分钟 满分:100分)一、选择题(本大题共6小题,每小题7分,共42分)1.(2019届广东湛江调研测试,10)设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题中正确的是( )A.α∩β=n ,m ⊂α,m ∥β⇒m ∥nB.α⊥β,α∩β=m ,m ⊥n ⇒n ⊥βC.m ⊥n ,m ⊂α,n ⊂β⇒α⊥βD.m ∥α,n ⊂α⇒m ∥n2.(2019届山东青岛调研,11)如图,在正方体ABCD-A 1B 1C 1D 1中,E 为棱BB 1的中点,用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的左视图为( )3.(2019甘肃师大附中期中,8)某几何体的三视图如下图所示,数量单位为cm,它的体积是( )A.27√32 cm3 B.92 cm3 C.9√32 cm 3 D.272 cm 34.已知正方体ABCD-A 1B 1C 1D 1,平面α过直线BD ,α⊥平面AB 1C ,α∩平面AB 1C=m ,平面β过直线A 1C 1,β∥平面AB 1C ,β∩平面ADD 1A 1=n ,则m ,n 所成角的余弦值为 ( ) A .0B .12C .√22 D .√325.(2019届湖南桃江一中期中,5)某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A.25πB.26πC.32πD.36π6.已知某三棱锥的三视图如图所示,图中的3个直角三角形的直角边长度已经标出,则在该三棱锥中,最短的棱和最长的棱所在直线所成角的余弦值为()A.13B.√55C.12D.23二、填空题(本大题共2小题,每小题7分,共14分)7.(2019广东深圳实验中学、珠海一中等六校联考,15)在三棱锥D-ABC中,DC⊥底面ABC,AD=6,AB ⊥BC且三棱锥D-ABC的每个顶点都在球O的表面上,则球O的表面积为.8.如图,在三棱锥S-ABC中,SA=SB=SC,且∠ASB=∠BSC=∠CSA=π2,M、N分别是AB和SC的中点.则异面直线SM与BN所成的角的余弦值为,直线SM与平面SAC所成角的大小为.三、解答题(本大题共3小题,共44分)9.(14分)如图,在三棱锥S-ABC中,平面SAB⊥平面ABC,△SAB是等边三角形,已知AC=2AB=4,BC=2√5.(1)求证:平面SAB⊥平面SAC;(2)求二面角B-SC-A的余弦值.10.(15分)(2019湖南师范大学附中模拟,18)如图,α∩β=l,二面角α-l-β的大小为θ,A∈α,B∈β,点A在直线l上的射影为A1,点B在直线l上的射影为B1.已知AB=2,AA1=1,BB1=√2.(1)若θ=120°,求直线AB与平面β所成角的正弦值;(2)若θ=90°,求二面角A1-AB-B1的余弦值.11.(15分)(2019届江苏徐州期中)如图,在平行四边形ABCD 中,AB=1,AD=2,∠ABC=π3,四边形ACEF为矩形,平面ACEF ⊥平面ABCD ,AF=1,点M 在线段EF 上运动,且EM⃗⃗⃗⃗⃗⃗ =λEF ⃗⃗⃗⃗⃗ .(1)当λ=12时,求异面直线DE 与BM 所成角的大小;(2)设平面MBC 与平面ECD 所成二面角的大小为θ0<θ≤π2,求cos θ的取值范围.单元质检卷八 立体几何(A )1.A 对于A,根据线面平行性质定理即可得A 选项正确;对于B,当α⊥β,α∩β=m 时,若n ⊥m ,n ⊂α,则n ⊥β,但题目中无条件n ⊂α,故B 不一定成立;对于C,若m ⊥n ,m ⊂α,n ⊂β,则α与β相交或平行,故C 错误;对于D,若m ∥α,n ⊂α,则m 与n 平行或异面,则D 错误,故选A.2.C 取DD 1中点F ,连接AF ,C 1F ,平面AFC 1E 为截面.如下图,所以下半部分的左视图如C 选项,所以选C.3.C 根据三视图可将其还原为如下直观图,V=13S·h=13×12×(2+4)×3×3√32=9√32,故选C.4.D 如图所示,∵BD 1⊥平面AB 1C ,平面α过直线BD ,α⊥平面AB 1C ,∴平面α即为平面DBB 1D 1. 设AC ∩BD=O ,∴α∩平面AB 1C=OB 1=m.∵平面A 1C 1D 过直线A 1C 1,与平面AB 1C 平行,而平面β过直线A 1C 1,β∥平面AB 1C , ∴平面A 1C 1D 即为平面β.β∩平面ADD 1A 1=A 1D=n , 又A 1D ∥B 1C ,∴m ,n 所成角为∠OB 1C ,由△AB 1C 为正三角形,则cos ∠OB 1C=cos π6=√32.故选D .5.C 三视图对应的几何体如图所示,其中DA ⊥平面ABC ,∠ABC=90°,所以该四面体的四个面都是直角三角形且DA=4,AC=4,故四面体外接球的直径为DC=4√2,故外接球的表面积为4π×(2√2)2=32π,故选C.6.A 由三视图还原几何体如图.几何体是三棱锥A-BCD ,满足平面ACD ⊥平面BCD ,且AD ⊥CD ,BC ⊥CD.最短棱为CD ,最长棱为AB.在平面BCD 内,过点B 作BE ∥CD ,且BE=CD ,连接DE ,∴四边形BEDC 为正方形,可得AE=2√2,在Rt △AEB 中,求得AB=√12+(2√2)2=3,∴cos ∠ABE=BEAB=13. 即最短的棱和最长的棱所在直线所成角的余弦值为13.故选A .7.36π 因为三棱锥D-ABC 中,DC ⊥底面ABC ,所以DC ⊥AB ,又因为AB ⊥BC ,DC 和CB 相交于点C ,故得到AB ⊥面BCD ,故得到AB 垂直于BD ,又因为DC 垂直于面ABC ,故DC 垂直于AC ,故三角形ACD 和三角形ABD 均为直角三角形,有公共斜边AD ,取AD 中点为O 点,根据直角三角形斜边的中点为外心得到O 到A 、B 、C 、D 四个点的距离相等,故点O 是球心,球的半径为3,由球的面积公式得S=4πR 2=36π.故答案为36π. 8.√105π4因为∠ASB=∠BSC=∠CSA=π2,所以以S 为坐标原点,SA ,SB ,SC 为x ,y ,z 轴建立空间直角坐标系.设SA=SB=SC=2,则M (1,1,0),B (0,2,0),N (0,0,1),A (2,0,0),C (0,0,2).因为SM⃗⃗⃗⃗⃗⃗ =(1,1,0),BN ⃗⃗⃗⃗⃗⃗ =(0,-2,1),cos <SM ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗⃗ >=√2×√5=-√105, 所以异面直线SM 与BN 所成的角的余弦值为√105,平面SAC 一个法向量为SB⃗⃗⃗⃗⃗ =(0,2,0),则由cos <SM ⃗⃗⃗⃗⃗⃗ ,SB ⃗⃗⃗⃗⃗ >=√2×2=√22得<SM ⃗⃗⃗⃗⃗⃗ ,SB ⃗⃗⃗⃗⃗ >=π4,即直线SM 与平面SAC 所成角大小为π4. 9.(1)证明 在△BCA 中,∵AB=2,CA=4,BC=2√5, ∴AB 2+AC 2=BC 2,故AB ⊥AC.又平面SAB ⊥平面ABC ,平面SAB ∩平面ABC=AB ,∴AC ⊥平面SAB. 又AC ⊂平面SAC ,所以平面SAB ⊥平面SAC.(2)解 如图建立空间直角坐标系,A (0,0,0),B (2,0,0),S (1,0,√3),C (0,4,0),CS⃗⃗⃗⃗ =(1,-4,√3),BC ⃗⃗⃗⃗⃗ =(-2,4,0),AC ⃗⃗⃗⃗⃗ =(0,4,0), 设平面SBC 的法向量n =(x ,y ,z ),由{-2x +4y =0,x -4y +√3z =0,则n =(2,1,2√33).设平面SCA 的法向量m =(a ,b ,c ),由{4b =0,a -4b +√3c =0,∴m =(-√3,0,1),∴cos <n ,m >=-2√1919, ∴二面角B-SC-A 的余弦值为2√1919.10.解 (1)如图,过点A 作平面β的垂线交于点G ,连接GB 、GA 1,因为AG ⊥β,所以∠ABG 是AB 与β所成的角.在Rt △GA 1A 中,∠GA 1A=60°,AA 1=1,∴AG=√32. 在Rt △AGB 中,AB=2,AG=√32,sin ∠ABG=√34,故AB 与平面β所成的角的正弦值为√34. (2)如图,建立坐标系,则A 1(0,0,0),A (0,0,1),B 1(0,1,0),B (√2,1,0).在AB 上取一点F (x ,y ,z ),则存在t ∈R ,使得AF⃗⃗⃗⃗⃗ =t AB ⃗⃗⃗⃗⃗ ,即(x ,y ,z-1)=t (√2,1,-1), ∴点F 的坐标为(√2t ,t ,1-t ).要使A 1F ⃗⃗⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,须A 1F ⃗⃗⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0, 即(√2t ,t ,1-t )·(√2,1,-1)=0,2t+t-(1-t )=0,解得t=14,∴点F 的坐标为√24,14,34,∴A 1F ⃗⃗⃗⃗⃗⃗⃗ =√24,14,34.设E 为AB 1的中点,则点E 的坐标为0,12,12. ∴EF⃗⃗⃗⃗⃗ =√24,-14,14.又EF ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =√24,-14,14·(√2,1,-1)=12−14−14=0, ∴EF ⃗⃗⃗⃗⃗ ⊥AB⃗⃗⃗⃗⃗ , ∴∠A 1FE 为所求二面角的平面角.又cos ∠A 1FE=A 1F ⃗⃗⃗⃗⃗⃗⃗⃗ ·EF⃗⃗⃗⃗⃗ |A 1F ⃗⃗⃗⃗⃗⃗⃗⃗|·|EF ⃗⃗⃗⃗⃗ |=(√24,14,34)·(√24,-14,14)√216+116+916·√216+116+116=18-116+316√34×14=√3=√33,∴二面角A 1-AB-B 1的余弦值为√32.11.解 (1)在△ABC 中,AB=1,BC=AD=2,∠ABC=π3,则AC=√3,所以AB 2+AC 2=BC 2,即∠BAC=90°.因为四边形ACEF 为矩形,所以FA ⊥AC ,因为平面ACEF ⊥平面ABCD ,平面ACEF ∩平面ABCD=AC ,FA ⊂平面ACEF ,所以FA ⊥平面ABCD.建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),C (0,√3,0),D (-1,√3,0),E (0,√3,1),F (0,0,1),当λ=12时,EM ⃗⃗⃗⃗⃗⃗ =12EF⃗⃗⃗⃗⃗ ,所以M 0,√32,1.所以BM ⃗⃗⃗⃗⃗⃗ =-1,√32,1,DE⃗⃗⃗⃗⃗ =(1,0,1), 所以BM ⃗⃗⃗⃗⃗⃗ ·DE ⃗⃗⃗⃗⃗ =(1,0,1)·-1,√32,1=0,所以BM ⃗⃗⃗⃗⃗⃗ ⊥DE⃗⃗⃗⃗⃗ ,即异面直线DE 与BM 所成角的大小为90°. (2)平面ECD 的一个法向量n 1=(0,1,0),设M (x 0,y 0,z 0),由EM ⃗⃗⃗⃗⃗⃗ =λ(0,-√3,0)=(0,-√3λ,0)=(x 0,y 0-√3,z 0-1),得{x 0=0,y 0=√3(1-λ),z 0=1,即M (0,√3(1-λ),1),所以BM⃗⃗⃗⃗⃗⃗ =(-1,√3(1-λ),1),BC ⃗⃗⃗⃗⃗ =(-1,√3,0). 设平面MBC 的法向量n 2=(x ,y ,z ),因为{n 2⊥BC⃗⃗⃗⃗⃗ ,n 2⊥BM ⃗⃗⃗⃗⃗⃗ ,即{-x +√3y =0,-x +√3(1-λ)y +z =0, 取y=1,则x=√3,z=√3λ,所以平面MBC 的一个法向量n 2=(√3,1,√3λ),因为0<θ≤π2,所以cos θ=|n 1·n 2|n 1|·|n 2||=1√4+3λ.因为0≤λ≤1,所以cos θ∈[√77,12].。
2020高考理科数学二轮考前复习方略练习:专题八 第1讲 数学文化练典型习题 提数学素养 Word版含解析
[练典型习题·提数学素养] 一、选择题1.“干支纪年法”是中国自古以来就一直使用的纪年方法.干支是天干和地支的总称.天干、地支互相配合,配成六十组为一周,周而复始,依次循环.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号为天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为地支.如:公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年.则2049年为农历( )A .己亥年B .己巳年C .己卯年D .戊辰年解析:选B .法一:由公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年,可知以公元纪年的尾数在天干中找出对应该尾数的天干,再将公元纪年除以12,用除不尽的余数在地支中查出对应该余数的地支,这样就得到了公元纪年的干支纪年.2049年对应的天干为“己”,因其除以12的余数为9,所以2049年对应的地支为“巳”,故2049年为农历己巳年.故选B .法二:易知(年份-3)除以10所得的余数对应天干,则2 049-3=2 046,2 046除以10所得的余数是6,即对应的天干为“己”.(年份-3)除以12所得的余数对应地支,则2 049-3=2 046,2 046除以12所得的余数是6,即对应的地支为“巳”,所以2049年为农历己巳年.故选B .2.北宋数学家沈括的主要成就之一为隙积术,所谓隙积,即“积之有隙”者,如累棋、层坛之类,这种长方台形状的物体垛积.设隙积共n 层,上底由a ×b 个物体组成,以下各层的长、宽依次增加一个物体,最下层(即下底)由c ×d 个物体组成,沈括给出求隙积中物体总数的公式为s =n 6[(2a +c )b +(2c +a )d ]+n6(c -a ),其中a 是上底长,b 是上底宽,c 是下底长,d 是下底宽,n 为层数.已知由若干个相同小球粘黏组成的隙积的三视图如图所示,则该隙积中所有小球的个数为( )A .83B .84C .85D .86解析:选C .由三视图知,n =5,a =3,b =1,c =7,d =5,代入公式s =n6[(2a +c )b+(2c +a )d ]+n6(c -a )得s =85,故选C .3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其意思为:“有一个人要走378里路,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,走了六天后(第六天刚好用完)到达目的地.”若将此问题改为“第6天到达目的地”,则此人第二天至少走了( )A .96里B .48里C .72里D .24里解析:选A .根据题意知,此人每天行走的路程构成了公比为12的等比数列.设第一天走a 1里,则第二天走a 2=12a 1(里).易知a 1[1-⎝⎛⎭⎫126]1-12≥378,则a 1≥192.则第二天至少走96里.故选A .4.《数术记遗》相传是汉末徐岳(约公元2世纪)所著,该书主要记述了:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算、计数共14种计算方法.某研究性学习小组3人分工搜集整理该14种计算方法的相关资料,其中一人4种,其余两人每人5种,则不同的分配方法种数是( )A .C 414C 510C 55A 33A 22B .C 414C 510C 55A 22C 55A 33 C .C 414C 510C 55A 22D .C 414C 510C 55解析:选A .先将14种计算方法分为三组,方法有C 414C 510C 55A 22种,再分配给3个人,方法有C 414C 510C 55A 22×A 33种.故选A . 5.我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(ɡuǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四个节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是( )A .五寸B .二尺五寸C .三尺五寸D .四尺五寸解析:选B .设从夏至到冬至的晷长依次构成等差数列{a n },公差为d ,a 1=15,a 13=135,则15+12d =135,解得d =10.所以a 2=15+10=25,所以小暑的晷长是25寸.故选B .6.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )A .π15B .2π5C .2π15D .4π15解析:选C .因为该直角三角形两直角边长分别为5步和12步,所以其斜边长为13步,设其内切圆的半径为r ,则12×5×12=12(5+12+13)r ,解得r =2.由几何概型的概率公式,得此点取自内切圆内的概率P =4π12×5×12=2π15.故选C .7.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依次符号为“”,其表示的十进制数是()A.33 B.34C.36 D.35解析:选B.由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B .8.《九章算术》中有如下问题:“今有卖牛二、羊五,以买一十三豕,有余钱一千;卖牛三、豕三,以买九羊,钱适足;卖六羊、八豕,以买五牛,钱不足六百,问牛、羊、豕价各几何?”依上文,设牛、羊、豕每头价格分别为x 元、y 元、z 元,设计如图所示的程序框图,则输出的x ,y ,z 的值分别是( )A .1 3009,600,1 1203B .1 200,500,300C .1 100,400,600D .300,500,1 200解析:选B .根据程序框图得:①y =300,z =4603,x =6 4009,i =1,满足i <3;②y =400,z =6803,x =8 6009,i =2,满足i <3;③y =500,z =300,x =1 200,i =3,不满足i <3; 故输出的x =1 200,y =500,z =300.故选B .9.(2019·洛阳市统考)如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为30°,若向弦图内随机抛掷200颗米粒(大小忽略不计,取3≈1.732),则落在小正方形(阴影)内的米粒数大约为( )A .20B .27C .54D .64解析:选B .设大正方形的边长为2,则小正方形的边长为3-1,所以向弦图内随机投掷一颗米粒,落入小正方形(阴影)内的概率为(3-1)24=1-32,向弦图内随机抛掷200颗米粒,落入小正方形(阴影)内的米粒数大约为200×(1-32)≈27,故选B . 10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈7264L 2h相当于将圆锥体积公式中的π近似取为( )A .227B .258C .15750D .355113解析:选A .依题意,设圆锥的底面半径为r ,则V =13πr 2h ≈7264L 2h =7264(2πr )2h ,化简得π≈227.故选A .11.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A .392B .752C .39D .6018解析:选B .设下底面的长为x ⎝⎛⎭⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝⎛⎭⎫922+92×172+392=752.故选B .12.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,如图所示,鳖臑ABCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则函数y =f (x )的图象大致是( )解析:选A .如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则PQ ∥AB ,QR ∥CD .因为PQ ⊥BD ,又PQ ∩QR =Q ,所以BD ⊥平面PQR ,所以BD ⊥PR ,即PR 为△PBD 中BD 边上的高.设AB =BD =CD =1,则CP AC =x 3=PQ 1,即PQ =x3,又QR 1=BQ BC =APAC =3-x 3,所以QR =3-x 3, 所以PR =PQ 2+QR 2=⎝⎛⎭⎫x 32+⎝ ⎛⎭⎪⎫3-x 32=332x 2-23x +3, 所以f (x )=362x 2-23x +3=66⎝⎛⎭⎫x -322+34,故选A .二、填空题13.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k边形数中第n 个数的表达式:三角形数 N (n ,3)=12n 2+12n ;正方形数 N (n ,4)=n 2; 五边形数 N (n ,5)=32n 2-12n ;六边形数 N (n ,6)=2n 2-n ; ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________.解析:易知n 2前的系数为12(k -2),而n 前的系数为12(4-k ).则N (n ,k )=12(k -2)n 2+12(4-k )n ,故N (10,24)=12×(24-2)×102+12×(4-24)×10=1 000.答案:1 00014. (2019·湖南师大附中模拟)庄子说:“一尺之棰,日取其半,万世不竭.”这句话描述的是一个数列问题,现用程序框图描述,如图所示,若输入某个正整数n 后,输出的S ∈⎝⎛⎭⎫1516,6364,则输入的n 的值为________.解析:框图中首先给累加变量S 赋值0,给循环变量k 赋值1, 输入n 的值后,执行循环体,S =12,k =1+1=2.若2>n 不成立,执行循环体,S =34,k =2+1=3.若3>n 不成立,执行循环体,S =78,k =3+1=4.若4>n 不成立,执行循环体,S =1516,k =4+1=5.若5>n 不成立,执行循环体,S =3132,k =5+1=6.若6>n 不成立,执行循环体,S =6364,k =6+1=7.…由输出的S ∈(1516,6364),可得当S =3132,k =6时,应该满足条件6>n ,所以5≤n <6,故输入的正整数n 的值为5.答案:515.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:“今有蒲草第1天长高3尺,莞草第1天长高1尺.以后,蒲草每天长高前一天的一半,莞草每天长高前一天的2倍.问第几天蒲草和莞草的高度相同?”根据上述的已知条件,可求得第________天时,蒲草和莞草的高度相同.(结果采取“只入不舍”的原则取整数,相关数据:lg 3≈0.477 1,lg 2≈0.301 0).解析:由题意得,蒲草的长度组成首项为a 1=3,公比为12的等比数列{a n },设其前n 项和为A n ;莞草的长度组成首项为b 1=1,公比为2的等比数列{b n },设其前n 项和为B n .则A n =3⎝⎛⎭⎫1-12n 1-12,B n =2n -12-1,令3⎝⎛⎭⎫1-12n 1-12=2n -12-1,化简得2n +62n =7(n ∈N *),解得2n =6,所以n =lg 6lg 2=1+lg 3lg 2≈3,即第3天时蒲草和莞草长度相等. 答案:316.刘徽《九章算术注》记载:“邪解立方,得两堑堵.邪解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”意即把一长方体沿对角面一分为二,这相同的两块叫堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值2∶1,这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为________.解析:由三视图得阳马是一个四棱锥,如图中四棱锥P -ABCD ,其中底面是边长为1的正方形,侧棱P A ⊥底面ABCD 且P A =1,所以PC =3,PC 是四棱锥P -ABCD 的外接球的直径,所以此阳马的外接球的体积为4π3⎝⎛⎭⎫323=3π2.答案:3π2。
2018届高考数学理科全国通用一轮总复习课件:第八章 平面解析几何 8.1 精品
.
64 3
【解析】当α∈[ , ) 时,k=tanα∈[ 3 ,1);
64
3
当α∈ [2 , )时,k=tanα∈[ 3,0).
3
综上k∈[ 3,0) [ 3 ,1).
3
答案:[ 3,0) [ 3 ,1)
3
【加固训练】
1.直线xsin2-ycos2=0的倾斜角的大小是 ( )
A. 1
B. 2
且斜率为 3 .则直线l的方程为 ( )
4
A.3x+4y-14=0
B.3x-4y+14=0
C.4x+3y-14=0
D.4x-3y+14=0
【解析】选A.由点斜式得y-5=- 3 (x+2),即3x+4y-14=0.
4
感悟考题 试一试 3.(2016·淄博模拟)已知ab>0,bc>0,则直线ax+by=c通 过( ) A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限
4
4
4
【解析】选C.当a=0时,两直线的斜率都不存在,
它们的方程分别是x=1,x=-1,显然两直线是平行的.
当a≠0时,两直线的斜率都存在,故它们的斜率相等,
由 2a 1 a解得1a, =
1 2a 1
1, 4
综上,a=0或 1 .
4
考向一 直线的倾斜角与斜率
【典例1】(1)(2016·菏泽模拟)直线2xcosα-y-3=0
名 称 已知条件
方程
适用范围
点斜式
斜率k与点 (x1,y1)
_y_-_y_1_=_k_(_x_-_x_1)_ 不含直线x=x1
斜率k与直线 斜截式 在y轴上的截
2022年高考数学课标通用(理科)一轮复习真题演练:第八章 立体几何8-7 Word版含解析
真题演练集训1.[2022·新课标全国卷Ⅱ]如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值. (1)证明:由已知,得AC ⊥BD ,AD =CD . 又由AE =CF ,得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H . 由AB =5,AC =6,得 DO =BO =AB 2-AO 2=4. 由EF ∥AC ,得OH DO =AE AD =14. 所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解:如图,以H 为坐标原点,HF →的方向为x 轴正方向,HD →的方向为y 轴正方向,HD →′的方向为z 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0), AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0, 所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0, 所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n|m||n|=-1450×10=-7525,sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.2.[2022·山东卷]在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点.求证:GH ∥平面ABC ;(2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值. (1)证明:设FC 的中点为I ,连接GI ,HI ,在△CEF 中,由于点G 是CE 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,由于H 是FB 的中点, 所以HI ∥BC .又HI ∩GI =I ,OB ∩BC =B , 所以平面GHI ∥平面ABC .由于GH ⊂平面GHI , 所以GH ∥平面ABC .(2)解:解法一:连接OO ′,则OO ′⊥平面ABC . 又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系O -xyz .由题意,得B (0,23,0),C (-23,0,0), 所以BC →=(-23,-23,0). 过点F 作FM 垂直OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).故BF →=(0,-3,3).设m =(x ,y ,z )是平面BCF 的法向量, 由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎪⎨⎪⎧-23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝⎛⎭⎪⎫-1,1,33.由于平面ABC 的一个法向量n =(0,0.1),所以cos〈m,n 〉=m·n|m||n|=77.所以二面角F-BC-A的余弦值为7 7.解法二:如图,连接OO′.过点F作FM垂直OB于点M,则有FM∥OO′.又OO′⊥平面ABC,所以FM⊥平面ABC.可得FM=FB2-BM2=3.过点M作MN垂直BC于点N,连接FN.可得FN⊥BC,从而∠FNM为二面角F-BC-A的平面角.又AB=BC,AC是圆O的直径,所以MN=BM sin 45°=6 2,从而FN=422,可得cos ∠FNM=77.所以二面角F-BC-A的余弦值为7 7.3.[2022·新课标全国卷Ⅲ]如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD ∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求直线AN与平面PMN所成角的正弦值.(1)证明:由已知,得AM=23AD=2.如图,取BP的中点T,连接AT,TN.由N为PC的中点知,TN∥BC,TN=12BC=2.又AD∥BC,故TN綊AM,四边形AMNT为平行四边形,于是MN∥AT.由于AT⊂平面P AB,MN⊄平面P AB,所以MN∥平面P AB.(2)解:取BC的中点E,连接AE.由AB=AC,得AE⊥BC,从而AE⊥AD,且AE=AB2-BE2=AB2-⎝⎛⎭⎪⎫BC22= 5.以A为坐标原点,AE→的方向为x轴正方向,建立如图所示的空间直角坐标系A-xyz.由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝ ⎛⎭⎪⎫52,1,2,PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2.设n =(x ,y ,z )为平面PMN 的法向量, 则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎨⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN 所成角的正弦值为8525.4.[2021·新课标全国卷Ⅰ]如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3. 由BE ⊥平面ABCD ,AB =BC 可知,AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 由于EG ⊂平面AEC , 所以平面AEC ⊥平面AFC .(2)解:如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G -xyz .由(1)可得A (0,-3,0),E (1,0,2),F ⎝⎛⎭⎪⎫-1,0,22,C (0,3,0),所以AE →=(1,3,2),CF →=⎝⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33.5.[2021·新课标全国卷Ⅱ]如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值. 解:(1)交线围成的正方形EHGF 如图所示.(2)作EM ⊥AB ,垂足为M , 则AM =A 1E =4,EM =AA 1=8. 由于四边形EHGF 为正方形, 所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,所以AH =10.以D 为坐标原点,DA →的方向为x 轴正方向, 建立如图所示的空间直角坐标系D -xyz , 则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8), FE →=(10,0,0),HE →=(0,-6,8). 设n =(x ,y ,z )是平面α的法向量, 则⎩⎪⎨⎪⎧n ·FE →=0,n ·HE →=0,即⎩⎪⎨⎪⎧10x =0,-6y +8z =0, 所以可取n =(0,4,3).又AF →=(-10,4,8),故|cos 〈n ,AF →〉|=|n ·AF →||n ||AF →|=4515.所以AF 与平面α所成角的正弦值为4515. 课外拓展阅读巧用向量法求立体几何中的探究性问题立体几何中的探究性问题立意新颖,形式多样,近年来在高考中频频消灭,而空间向量在解决立体几何的探究性问题中扮演着举足轻重的角色,它是争辩立体几何中的探究性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探究性问题供应了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探究性问题的常见类型及其求解策略.1.条件追溯型解决立体几何中的条件追溯型问题的基本策略是执果索因.其结论明确,需要求出访结论成立的充分条件,可将题设和结论都视为已知条件,即可快速找到切入点.这类题目要求考生变换思维方向,有利于培育考生的逆向思维力量.[典例1] 如图所示,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CEBE =λ,当实数λ的值为________时,∠AFE 为直角.[思路分析][解析] 由于SA ⊥平面ABCD ,∠BAD =90°, 故可建立如图所示的空间直角坐标系A -xyz .由于AB =4,SA =3, 所以B (0,4,0),S (0,0,3). 设BC =m ,则C (m,4,0), 由于SF BF =CEBE =λ,所以SF →=λFB →.所以AF →-AS →=λ(AB →-AF →).所以AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3).所以F ⎝ ⎛⎭⎪⎪⎫0,4λ1+λ,31+λ. 同理可得E ⎝ ⎛⎭⎪⎪⎫m 1+λ,4,0, 所以FE →=⎝ ⎛⎭⎪⎫m 1+λ,41+λ,-31+λ. 由于F A →=⎝ ⎛⎭⎪⎫0,-4λ1+λ,-31+λ,要使∠AFE 为直角,即F A →·FE →=0, 则0·m 1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0,所以16λ=9, 解得λ=916. [答案] 916 2.存在推断型以“平行、垂直、距离和角”为背景的存在推断型问题是近年来高考数学中创新型命题的一个重要类型,它以较高的新颖性、开放性、探究性和制造性深受命题者的青睐,此类问题的基本特征是:要推断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种状况:假如存在,找出一个来;假如不存在,需要说明理由.这类问题常用“确定顺推”的方法.求解此类问题的难点在于涉及的点具有运动性和不确定性,所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简洁、解法固定、操作便利.[典例2] 如图所示,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.[思路分析][解] (1)如图所示,以D 为坐标原点,建立空间直角坐标系D -xyz . 依题意,得D (0,0,0),A (1,0,0),M (0,0,1),C (0,1,0),B (1,1,0),N (1,1,1),E ⎝ ⎛⎭⎪⎫12,1,0, 所以NE →=⎝⎛⎭⎪⎫-12,0,-1,AM →=(-1,0,1),由于|cos 〈NE →,AM →〉|=|NE →·AM →||NE →||AM →|=1252×2=1010. 所以异面直线NE 与AM 所成角的余弦值为1010.(2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN . 连接AE ,如图所示.由于AN →=(0,1,1),可设AS →=λAN →=(0,λ,λ), 又EA →=⎝⎛⎭⎪⎫12,-1,0,所以ES →=EA →+AS →=⎝⎛⎭⎪⎫12,λ-1,λ.由ES ⊥平面AMN ,得⎩⎨⎧ES →·AM →=0,ES →·AN →=0,即⎩⎪⎨⎪⎧-12+λ=0,(λ-1)+λ=0,解得λ=12,此时AS →=⎝ ⎛⎭⎪⎫0,12,12,|AS →|=22.经检验,当|AS |=22时,ES ⊥平面AMN .故在线段AN 上存在点S ,使得ES ⊥平面AMN ,此时|AS |=22. 3.结论探究型立体几何中的结论探究型问题的基本特征是:给出肯定的条件与设计方案,推断设计的方案是否符合条件要求.此类问题的难点是“阅读理解”和“整体设计”两个环节,因此,应做到审得认真、找得有法、推得有理、证得有力,整合过程无可辩驳.[典例3] 某设计部门承接一产品包装盒的设计(如图所示),客户除了要求AB ,BE 边的长分别为20 cm,30 cm 外,还特殊要求包装盒必需满足:①平面ADE ⊥平面ADC ;②平面ADE 与平面ABC 所成的二面角不小于60 °;③包装盒的体积尽可能大.若设计出的样品满足:∠ACB 与∠ACD 均为直角且AB 长20 cm ,矩形DCBE 的边长BE =30 cm ,请你推断该包装盒的设计是否符合客户的要求,并说明理由.[思路分析]建立空间直角坐标系→验证所给样品是否满足条件①②③→得出结论[解] 该包装盒的样品设计符合客户的要求.理由如下: 由于四边形DCBE 为矩形,∠ACB 与∠ACD 均为直角,所以以C 为原点,分别以直线CA ,CB ,CD 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系C -xyz .由于BE =30 cm ,AB =20 cm , 设BC =t cm ,则AC =400-t 2 cm , 则A (400-t 2,0,0),B (0,t,0),D (0,0,30),E (0,t,30),设平面ADE 的法向量为n 1=(x ,y ,z ), DA →=(400-t 2,0,-30),DE →=(0,t,0),由于n 1·DA →=0且n 1·DE →=0,所以⎩⎨⎧400-t 2x -30z =0,ty =0,取x =1,则n 1=⎝⎛⎭⎪⎪⎫1,0,400-t 230. 又平面ADC 的一个法向量CB →=(0,t,0), 所以n 1·CB →=1×0+0×t +400-t 230×0=0, 所以n 1⊥CB →,所以平面ADE ⊥平面ADC ,所以满足条件①. 由于平面ABC 的一个法向量为n 2=(0,0,1),设平面ADE 与平面ABC 所成二面角的平面角为θ,则cos θ≤12,所以cos θ=|cos 〈n 1,n 2〉|=400-t 2301+400-t 2900≤12,所以10≤t ≤20,即当10≤t <20时,平面ADE 与平面ABC 所成的二面角不小于60°.由∠ACB 与∠ACD 均为直角知, AC ⊥平面DCBE ,该包装盒可视为四棱锥A -BCDE ,所以V A -BCDE =13S 矩形BCDE ·AC =13·30t ·400-t 2=10·t 2(400-t 2) ≤10⎝ ⎛⎭⎪⎪⎫t 2+400-t 222=2 000,当且仅当t2=400-t2,即t=10 2 cm时,V A-BCDE的体积最大,最大值为2 000 cm3.而10<t=102<20,可以满足平面ADE与平面ABC所成的二面角不小于60°的要求.综上可知,该包装盒的设计符合客户的要求.方法总结解决立体几何中的结论探究型问题的策略是:先把题目读懂,全面、精确地把握题目所供应的全部信息和题目提出的全部要求,分析题目的整体结构,找好解题的切入点,对解题的主要过程有一个初步的设计,在此基础上建立空间直角坐标系,把所求的问题转化为空间几何体中的证明线面位置关系、角与最值等问题.。
2021版理科数学全国通用版备战一轮复习(课件 课时跟踪检测):第八章 立体几何 (2)
第八章立体几何第二节空间几何体的表面积与体积A级·基础过关|固根基|1.如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1-ABC1的体积为()A.312B.34C.612D.64解析:选A易知三棱锥B1-ABC1的体积等于三棱锥A-B1BC1的体积,又三棱锥A-B1BC1的高为32,底面积为12,故其体积为13×12×32=312.2.(2020届大同调研)某几何体的三视图如图所示,则该几何体外接球的表面积为()A.11πB.14π3C.28π3D.16π解析:选C由三视图可知,该几何体的直观图为三棱锥,记为三棱锥A-BCD,将该三棱锥放在长方体中,如图所示,其中AB⊥平面BCD,AB=2,△BCD为边长为2的正三角形.设O 1为正△BCD 的中心,O 为三棱锥A -BCD 外接球的球心,R 为外接球的半径.连接OO 1,OB ,O 1B ,则OO 1⊥平面BCD ,OO 1=1,BO 1=23×2×32=233,则OB 2=R 2=12+2332=73,所以该几何体外接球的表面积S =4πR 2=4π×73=28π3,故选C .3.如图是一个实心金属几何体的直观图,它的中间是高l 为6124的圆柱,上、下两端均是半径r 为2的半球,若将该实心金属几何体在熔炉中高温熔化(不考虑过程中的原料损失),熔成一个实心球,该球的直径为( )A .3B .4C .5D .6解析:选C 实心金属几何体的体积V =43πr 3+πr 2l =43π×8+π×4×6124=1256π.设实心球的半径为R ,由体积相等得43πR 3=1256π,所以R =52,所以该球的直径为2R =5.4.如图,圆柱的底面半径为1,平面ABCD 为圆柱的轴截面,从A 点开始,沿着圆柱的侧面拉一条绳子到C 点,若绳子的最短长度为3π,则该圆柱的侧面积为( )A .42π2B .22π2C .52π2D .4π2解析:选A 沿AD 将圆柱的侧面展开,绳子的最短长度即侧面展开图中A ,C 两点间的距离,连接AC ,所以AC =3π,展开后AB 的长度为π.设圆柱的高为h ,则AC 2=AB 2+h 2,即9π2=π2+h 2,解得h =22π,所以圆柱的侧面积为2×π×1×22π=42π2.5.(2020届贵阳摸底)某几何体的三视图如图所示,则它的体积为()A.23B.43C.13D.16解析:选A根据三视图可知,该几何体为三棱锥,记为A-BCD,放在正方体中如图所示,则该几何体的体积V=13·S△BCD×2=13×12×2×1×2=23.故选A.6.(2019届合肥市二检)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中俯视图由两个半圆和两条线段组成,则该几何体的表面积为()A.17π+12 B.12π+12C.20π+12 D.16π+12解析:选C由三视图知,该几何体是一个由大半圆柱挖去一个小半圆柱得到的,两个半圆柱的底面半径分别为1和3,高均为3,所以该几何体的表面积为12×2π×3×3+12×2π×1×3+2×⎝⎛⎭⎪⎫12π×32-12π×12+2×2×3=20π+12,故选C.7.(2019届福州市质检)如图,以棱长为1的正方体的顶点A为球心,以2为半径作一个球面,则该正方体的表面被球面所截得的所有弧长之和为()A.3π4B.2πC.3π2D.9π4解析:选C正方体的表面被该球面所截得的弧长是相等的三部分,如图,上底面被球面截得的弧长是以A1为圆心,1为半径的圆周长的14,所以所有弧长之和为3×2π4=3π2.故选C.8.(2019届洛阳市第二次联考)已知正三角形ABC的三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面圆面积的最小值是()A.7π4B.2πC.9π4D.3π解析:选C设正三角形ABC的中心为O1,连接OO1,OA,O1A,由题意得O1O⊥平面ABC,O1O=1,OA=2,∴在Rt△O1OA中,O1A=OA2-O1O2=3,∴AB=3.∵E为AB的中点,∴AE=3 2.连接OE,则OE⊥AB.过点E作球O的截面,当截面与OE垂直时,截面圆的面积最小,此时截面圆的半径r =32,可得截面圆面积的最小值为πr 2=9π4,故选C .9.(2019届南昌市二模)已知圆锥的侧面展开图为四分之三个圆面,设圆锥的底面半径为r ,母线长为l ,有以下结论:①l ∶r =4∶3;②圆锥的侧面积与底面面积之比为4∶3;③圆锥的轴截面是锐角三角形.其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③解析:选A 设圆锥的母线长l =1.因为圆锥的侧面展开图为四分之三个圆面,所以圆锥的侧面积为34π.又圆锥的底面半径为r ,所以由2πr =34×2π,得r =34,所以l r =43,故①正确;圆锥的侧面积与底面积之比为34ππ·⎝ ⎛⎭⎪⎫342=43,故②正确;设圆锥的轴截面三角形的顶角为θ,因为圆锥的底面直径为2×34=32,所以cos θ=12+12-⎝ ⎛⎭⎪⎫3222×1×1=-18,所以角θ为钝角,所以圆锥的轴截面是钝角三角形,故③错误.故选A .10.(2019届惠州模拟)已知三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,AB =2,SA =SB =SC =2,则三棱锥S -ABC 的外接球的球心到平面ABC 的距离是( )A .33B .1C . 3D .332解析:选A ∵三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,SA =SB =SC =2,∴S 在底面ABC 内的射影为AB 的中点.设AB 的中点为H ,连接SH,CH,∴SH⊥平面ABC,∴SH上任意一点到A,B,C的距离相等,易知SH=3,CH=1,∴在Rt△SHC中,∠HSC=30°.在面SHC内作SC的垂直平分线MO,交SH于点O,交SC于点M,则O为三棱锥S-ABC的外接球的球心.∵SC=2,∴SM=1.又∠OSM=30°,∴SO=233,OH=33,∴球心O到平面ABC的距离为33,故选A.11.如图,在直角梯形ABCD中,AD⊥DC,AD∥BC,BC=2CD=2AD=2,若将该直角梯形绕BC边旋转一周,则所得的几何体的表面积为________.解析:根据题意可知,所得几何体的上半部分为圆锥(底面半径为1,高为1),下半部分为圆柱(底面半径为1,高为1),如图所示,则所得几何体的表面积为圆锥侧面积、圆柱的侧面积以及圆柱的下底面面积之和,即表面积为π×1×12+12+2π×1×1+π×12=(2+3)π.答案:(2+3)π12.(2020届贵阳摸底)在四面体ABCD中,若AB=CD=5,AC=BD=6,AD=BC=3,则四面体ABCD的外接球的表面积为________.解析:如图所示,将四面体补形为长方体,则四面体的四个顶点均为长方体的顶点,四面体的外接球即长方体的外接球.设长方体的长、宽、高分别为a,b,c,则⎩⎪⎨⎪⎧a2+b2=9,a2+c2=6,b2+c2=5,三个等式相加得2(a2+b2+c2)=20⇒a2+b2+c2=10,设该四面体外接球的半径为R,则2R=a2+b2+c2=10,即R=102,所以该四面体外接球的表面积为4πR2=4π×104=10π.答案:10πB级·素养提升|练能力|13.(2019届合肥市二检)我国古代名著《张丘建算经》中记载:“今有方锥,下广二丈,高三丈.欲斩末为方亭,令上方六尺.问:斩高几何?”大致意思是:有一个正四棱锥下底边长为二丈,高三丈,现从上面截去一段,使之成为正四棱台,且正四棱台的上底边长为六尺,则截去的正四棱锥的高是多少.如果我们把求截去的正四棱锥的高改为求剩下的正四棱台的体积,则该正四棱台的体积是(注:1丈=10尺)()A.1 946立方尺B.3 892立方尺C.7 784立方尺D.11 676立方尺解析:选B解法一:如图,记正四棱台为A1B1C1D1-ABCD.该正四棱台由正四棱锥S-ABCD截得,O为正方形ABCD的中心,E为BC的中点,E1为B1C1的中点.设正四棱台的高为x,则由图中△SO1E1∽△SOE,得SO1SO=O1E1OE,即30-x30=310,解得x=21,所以该正四棱台的体积V=13×(62+6×20+202)×21=3 892(立方尺),故选B.解法二:如解法一中图,记正四棱台为A1B1C1D1-ABCD.该正四棱台由正四棱锥S-ABCD截得,O为正方形ABCD的中心,E为BC的中点,E1为B1C1的中点.设截去的正四棱锥的高为x,则由图中△SO1E1∽△SOE,得SO1SO =O1E1OE,即x 30=310,解得x=9,所以该正四棱台的体积V=V正四棱锥S-ABCD-V正四棱锥S-A1B1C1D1=13×202×30-13×62×9=3 892(立方尺),故选B.14.(2019届郑州市第二次质量预测)在长方体ABCD-A1B1C1D1中,AD=DD1=1,AB=3,E,F,G分别是棱AB,BC,CC1的中点,P是底面ABCD 内一动点,若直线D1P与平面EFG没有公共点,则△PBB1面积的最小值为()A.32B.1C.34D.12解析:选C记△PBB1的面积为S.因为P在底面ABCD上,所以PB⊥BB1,即△PBB1为直角三角形.又BB1=DD1=1,所以S=12×BB1×PB=12PB,所以当线段PB的长最小时,S取得最小值.因为D1P与平面EFG无公共点,所以D1P∥平面EFG.如图①,连接AD1,D1C,AC,易证GF∥AD1,EF∥AC,又GF∩EF =F,AD1∩AC=A,所以平面AD1C∥平面EFG,所以D1P⊂平面AD1C,又点P 是底面ABCD内一动点,所以点P一定在线段AC上运动.如图②,当PB⊥AC时,线段PB的长最小,此时PB=AB·BCAC=32,故S min=12×32=34,故选C.15.在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.9π2C.6πD.32π3解析:选B由题意可得,若V最大,则球与直三棱柱的部分面相切,若与三个侧面都相切,可求得球的半径为2,球的直径为4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底面相切,此时半径R=32,故该球的体积最大,V max=43πR3=4π3×278=9π2.16.(2020届惠州调研)在三棱锥A-BCD中,底面BCD是直角三角形且BC⊥CD,斜边BD上的高为1,三棱锥A-BCD的外接球的直径是AB,若该外接球的表面积为16π,则三棱锥A-BCD体积的最大值为________.解析:如图,过点C作CH⊥BD于H.由外接球的表面积为16π,可得外接球的半径为2,则AB=4.因为AB为外接球的直径,所以∠BDA=90°,∠BCA =90°,即BD⊥AD,BC⊥CA,又BC⊥CD,CA∩CD=C,所以BC⊥平面ACD,所以BC⊥AD,又BC∩BD=B,所以AD⊥平面BCD,AD⊂平面ABD,所以平面ABD⊥平面BCD,又平面ABD∩平面BCD=BD,所以CH⊥平面ABD.设AD=x(0<x<4),则BD=16-x2.在△BCD中,BD边上的高CH=1,所以V三棱锥A-BCD=V三棱锥C-ABD=13×12×x×16-x2×1=16-x4+16x2,当x2=8时,V三棱锥A-BCD有最大值,故三棱锥A-BCD体积的最大值为4 3.答案:4 3。
【2020】人教版高考理科数学一轮复习练习:第八篇 第2节 圆与方程
4.(20xx·沈阳二模)直线x-3y+3=0与圆(x-1)2+(y-3)2=10相交所得弦长为( A )(A) (B) (C)4 (D)3解析:圆(x-1)2+(y-3)2=10的圆心坐标为(1,3),半径r=,圆心到直线x-3y+3=0的距离d==,弦长为2=.故选A.5.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为( A )(A)5-4 (B)-1(C)6-2 (D)解析:圆C1,C2的图象如图所示.设P是x轴上任意一点,则|PM|的最小值为|PC1|-1,同理|PN|的最小值为|PC2|-3,则|PM|+|PN|的最小值为|PC1|+|PC2| -4.作C1关于x轴的对称点C1′(2,-3),连接C1′C2,与x轴交于点P,连接PC1,可知|PC1|+|PC2|的最小值为|C1′C2|,则|PM|+|PN|的最小值为5-4.故选A.6.点P(4,-2)与圆x2+y2=4上任一点连线的中点轨迹方程是( A )(A)(x-2)2+(y+1)2=1 (B)(x-2)2+(y+1)2=4(C)(x+4)2+(y-2)2=4 (D)(x+2)2+(y-1)2=1解析:设M(x0,y0)为圆x2+y2=4上任一点,PM中点为Q(x,y),则所以代入圆的方程得(2x-4)2+(2y+2)2=4,即(x-2)2+(y+1)2=1.故选A.7.(20xx·东××区调研)当方程x2+y2+kx+2y+k2=0所表示的圆的面积取最大值时,直线y=(k-1)x+2的倾斜角α= .解析:由题意知,圆的半径r==≤1,当半径r取最大值时,圆的面积最大,此时k=0,r=1,所以直线方程为y=-x+2,则有tan α=-1,又α∈[0,π),故α=.=(2-x,2-y),。
2017届高三理科数学一轮复习课件:第八篇第2节 空间几何体的表面积与体积
(A) 2 (B) 3 (C) 4
3
3
3
(D) 3 2
解析:(1)如图,分别过点 A,B 作 EF 的垂线,
垂足分别为 G,H,连接 DG,CH,容易求得 EG=HF= 1 , 2
AG=GD=BH=HC= 3 ,所以 S =S = △AGD △BHC 1 × 2 ×1= 2 ,
2
22
4
所以 V= VEADG + VFBHC + VAGDBHC
径的球的表面积是
.
解析:设 O 到底面的距离为 h,则 1 ×3×h= 3 2 ,
3
2
解得 h= 3 2 .OA= 2
h2
6 2 2
=
6,
故球的表面积为 4π×( 6 )2=24π.
答案:24π
第十页,编辑于星期六:一点 十九分。
数学
5.(2016海淀模拟)已知某四棱锥,底面是边长为2的正方形,且俯视图如图所
1.圆柱、圆锥、圆台的侧面积公式是如何导出的?
提示:将其侧面展开利用平面图形面积公式求解. 2.将圆柱、圆锥、圆台的侧面沿任意一条母线剪开铺平分别得到什么图形?
提示:矩形、扇形、扇环.
第四页,编辑于星期六:一点 十九分。
数学
知识梳理
空间几何体的表面积和体积公式如下
表面积
棱柱
S 表=S 侧+2S 底
考点专项突破 在讲练中理解知识
考点一 几何体的表面积
几何体的表面积
【例1】 (1)(2014高考山东卷)一个六棱锥的体积为2,其底面是边长为2的正
六边形,侧棱长都相等,则该六棱锥的侧面积为
.
解析:(1)设该六棱锥的高为 h,
则 1 ×6× 3 ×22×h=2 6 ,
高考数学江苏专版三维二轮专题复习教学案:专题八-二项式定理与数学归纳法(理科)-含答案
江苏新高考本部分内容在高考中基本年年都考,并以压轴题形式考查. ,主要考查组合计数;考复合函数求导和数学归纳法;考查计数原理为主,又涉及到数学归纳法;考查组合数及其性质等基础知识,考查考生的运算求解能力和推理论证能力;考查概率分布与期望及组合数的性质,既考查运算能力,又考查思维能力.近年高考对组合数的性质要求较高,常与数列、函数、不等式、数学归纳法等知识交汇考查.第1课时计数原理与二项式定理(能力课)[常考题型突破]计数原理的应用[例1]{1,2,3,…,3n}的子集中所有“好集”的个数为f(n).(1)求f(1),f(2)的值;(2)求f(n)的表达式.[解](1)①当n=1时,集合{1,2,3}中的一元好集有{3},共1个;二元好集有{1,2},共1个;三元好集有{1,2,3},共1个,所以f(1)=1+1+1=3.②当n=2时,集合{1,2,3,4,5,6}中一元好集有{3},{6},共2个;二元好集有{1,2},{1,5},{2,4},{3,6},{4,5},共5个;三元好集有{1,2,3},{1,2,6},{1,3,5},{1,5,6},{4,2,3},{4,2,6},{4,3,5},{4,5,6},共8个;四元好集有{3,4,5,6},{2,3,4,6},{1,3,5,6},{1,2,3,6},{1,2,4,5},共5个;五元好集有{1,2,4,5,6},{1,2,3,4,5}共2个,还有一个全集.故f(2)=1+(2+5)×2+8=23.(2)首先考虑f(n+1)与f(n)的关系.集合{1,2,3,…,3n,3n+1,3n+2,3n+3}在集合{1,2,3,…,3n}中加入3个元素3n+1,3n +2,3n+3.故f(n+1)的组成有以下几部分:①原来的f(n)个集合;②含有元素3n +1的“好集”是{1,2,3,…,3n }中各元素之和被3除余2的集合, 含有元素是3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合, 含有元素是3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合. 合计是23n ;③含有元素是3n +1与3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合,含有元素是3n +2与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合,含有元素是3n +1与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余2的集合.合计是23n ;④含有元素是3n +1,3n +2,3n +3的“好集”是{1,2,3,…,3n }中“好集”与它的并,再加上{3n +1,3n +2,3n +3}.所以f (n +1)=2f (n )+2×23n +1. 两边同除以2n +1, 得f (n +1)2n +1-f (n )2n =4n +12n +1. 所以f (n )2n =4n -1+4n -2+…+4+12n +12n -1+…+122+32=4n -13+1-12n (n ≥2).又f (1)21也符合上式, 所以f (n )=2n (4n -1)3+2n-1.[方法归纳](1)深化对两个计数原理的认识,培养“全局分类”和“局部分步”的意识,并在操作中确保:①分类不重不漏;②分步要使各步具有连续性和性. 解决计数应用题的基本思想是“化归”,即由实际问题建立组合模型,再由组合数公式来计算其结果,从而解决实际问题.(2)本题是有关数论问题,其难度较大,求解关键是得出f (n +1)与f (n )的关系,求解中用到归纳法和分类讨论思想.(·苏北三市三模)已知集合U ={1,2,…,n }(n ∈N *,n ≥2),对于集合U 的两个非空子集A ,B ,若A ∩B =∅,则称(A ,B )为集合U 的一组“互斥子集”.记集合U 的所有“互斥子集”的组数为f (n )(视(A ,B )与(B ,A )为同一组“互斥子集”).(1)写出f (2),f (3),f (4)的值; (2)求f (n ).解:(1)f (2)=1,f (3)=6,f (4)=25.(2)法一:设集合A 中有k 个元素,k =1,2,3,…,n -1. 则与集合A 互斥的非空子集有2n -k -1个. 于是f (n )=12∑k =1n -1C k n (2n -k -1)=12(∑k =1n -1C k n 2n -k -∑k =1n -1C kn ).因为∑k =1n -1C k n 2n -k =∑k =0nC k n 2n -k -C 0n 2n -C n n 20=(2+1)n -2n -1=3n -2n-1,∑k =1n -1C k n =∑k =0n C k n -C 0n -C n n =2n -2, 所以f (n )=12[(3n -2n -1)-(2n -2)]=12(3n -2n +1+1).法二:任意一个元素只能在集合A ,B ,C =∁U (A ∪B )之一中, 则这n 个元素在集合A ,B ,C 中,共有3n 种, 其中A 为空集的种数为2n ,B 为空集的种数为2n , 所以A ,B 均为非空子集的种数为3n -2×2n +1. 又(A ,B )与(B ,A )为同一组“互斥子集”, 所以f (n )=12(3n -2n +1+1).二项式定理的应用[例2] (·--(1)求(1+x )2n-1的展开式中含x n 的项的系数,并化简:C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n ;(2)证明:(C 1n )2+2(C 2n )2+…+n (C n n )2=n C n 2n -1.[解] (1)(1+x )2n-1的展开式中含x n 的项的系数为C n 2n -1,由(1+x )n -1(1+x )n =(C 0n -1+C 1n -1x +…+C n -1n -1x n -1)·(C 0n +C 1n x +…+C n nx n ), 可知(1+x )n -1(1+x )n 的展开式中含x n 的项的系数为C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n . 所以C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n =C n 2n -1.(2)证明:当k ∈N *时,k C k n =k ×n !k !(n -k )!=n !(k -1)!(n -k )!=n ×(n -1)!(k -1)!(n -k )!=n C k -1n -1.所以(C 1n )2+2(C 2n )2+…+n (C n n )2=∑k =1n[k (C k n )2]=∑k =1n (k C k n C k n )=∑k =1n (n C k -1n -1C kn )=n ∑k =1n(C k -1n -1C k n )=n ∑k =1n(C n -k n -1C kn ).由(1)知C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n =C n 2n -1,即∑k =1n(C n -k n -1C k n )=C n 2n -1,所以(C 1n )2+2(C 2n )2+…+n (C n n )2=n C n 2n -1.[方法归纳]二项式定理中的应用主要是构造一个生成相应二项式系数的函数,通过研究函数关系证明恒等式、不等式和整除性问题.将二项式定理(a +b )n =C\o\al(0,n )a n +C\o\al(1,n )a n -1b +…+C\o\al(r ,n )a n -r b r +…+C\o\al(n ,n )b n 中的a ,b 进行特殊化就会得到很多有用的有关组合数的相关和的结果,这是研究有关组合数的和的问题的常用方法.还可以利用求函数值的思想进行赋值求解.(·南京、盐城一模)设n ∈N *,n ≥3,k ∈N *.(1)求值:①k C k n -n C k -1n -1;②k 2C k n -n (n -1)C k -2n -2-n C k -1n -1(k ≥2);(2)化简:12C 0n +22C 1n +32C 2n +…+(k +1)2C k n +…+(n +1)2C n n . 解:(1)①k C k n -n C k -1n -1=k ×n !k !(n -k )!-n ×(n -1)!(k -1)!(n -k )!=n !(k -1)!(n -k )!-n !(k -1)!(n -k )!=0.②k 2C k n -n (n -1)C k -2n -2-n C k -1n -1=k 2×n !k !(n -k )!-n (n -1)×(n -2)!(k -2)!(n -k )!-n ×(n -1)!(k -1)!(n -k )!=k ×n !(k -1)!(n -k )!-n !(k -2)!(n -k )!-n !(k -1)!(n -k )!=n !(k -2)!(n -k )!⎝⎛⎭⎫k k -1-1-1k -1=0.(2)法一:由(1)可知,当k ≥2时,(k +1)2C k n =(k 2+2k +1)C k n =k 2C kn +2k C k n +C k n =[n (n -1)C k -2n -2+n C k -1n -1]+2n C k -1n -1+C k n =n (n -1)C k -2n -2+3n C k -1n -1+C k n .故12C 0n +22C 1n +32C 2n +…+(k +1)2C k n +…+(n +1)2C n n =(12C 0n +22C 1n )+n (n -1)(C 0n -2+C 1n -2+…+C n -2n -2)+3n (C 1n -1+C 2n -1+…+C n -1n -1)+(C 2n +C 3n +…+C n n)=(1+4n )+n (n -1)2n -2+3n (2n -1-1)+(2n -1-n )=2n -2(n 2+5n +4).法二:当n ≥3时,由二项式定理,有(1+x )n =1+C 1n x +C 2n x 2+…+C k n x k +…+C n n x n , 两边同乘以x ,得(1+x )n x =x +C 1n x 2+C 2n x 3+…+C k n x k +1+…+C n n xn +1, 两边对x 求导,得(1+x )n +n (1+x )n -1x =1+2C 1n x +3C 2n x 2+…+(k +1)C k n x k +…+(n +1)C n n x n,两边再同乘以x ,得(1+x )n x +n (1+x )n -1x 2=x +2C 1n x 2+3C 2n x 3+…+(k +1)C k n xk +1+…+(n +1)C n n xn +1, 两边再对x 求导,得(1+x )n +n (1+x )n -1x +n (n -1)(1+x )n -2x 2+2n (1+x )n -1x =1+22C 1n x +32C 2n x 2+…+(k +1)2C k n x k +…+(n +1)2C n n x n.令x =1,得2n +n ·2n -1+n (n -1)2n -2+2n 2n -1=1+22C 1n +32C 2n +…+(k +1)2C kn +…+(n+1)2C n n ,即12C 0n +22C 1n +32C 2n +…+(k +1)2C k n +…+(n +1)2C n n =2n -2(n 2+5n +4).组合数的性质应用[例3] (·苏北四市调研)在杨辉三角形中,从第3行开始,除1以外,其他每一个数值是它上面的两个数值之和,这个三角形数阵开头几行如图所示.(1)在杨辉三角形中是否存在某一行,且该行中三个相邻的数之比为3∶4∶5?若存在,试求出是第几行;若不存在,请说明理由;(2)已知n ,r 为正整数,且n ≥r +3.求证:任何四个相邻的组合数C r n ,C r +1n ,C r +2n ,C r +3n不能构成等差数列.[解] (1)杨辉三角形的第n 行由二项式系数C k n , k =0,1,2,…,n 组成.如果第n 行中有C k -1nC k n =k n -k +1=34,C k nC k +1n=k +1n -k =45, 那么3n -7k =-3,4n -9k =5, 解得k =27,n =62.即第62行有三个相邻的数C 2662,C 2762,C 2862的比为3∶4∶5. (2)证明:若有n ,r (n ≥r +3),使得C r n ,C r +1n ,C r +2n ,C r +3n 成等差数列,则2C r +1n =C r n +C r +2n ,2C r +2n =C r +1n +C r +3n ,即2n !(r +1)!(n -r -1)!=n !r !(n -r )!+n !(r +2)!(n -r -2)!,2n !(r +2)!(n -r -2)!=n !(r +1)!(n -r -1)!+n !(r +3)!(n -r -3)!.所以有2(r +1)(n -r -1)=1(n -r -1)(n -r )+1(r +1)(r +2),2(r +2)(n -r -2)=1(n -r -2)(n -r -1)+1(r +2)(r +3),化简整理得,n 2-(4r +5)n +4r (r +2)+2=0, n 2-(4r +9)n +4(r +1)(r +3)+2=0. 两式相减得,n =2r +3,于是C r 2r +3,C r +12r +3,C r +22r +3,C r +32r +3成等差数列.而由二项式系数的性质可知C r 2r +3=C r +32r +3<C r +12r +3=C r +22r +3,这与等差数列的性质矛盾,从而要证明的结论成立.[方法归纳](1)对于组合数问题,需要熟记并能灵活运用以下两个组合数公式:C k n =C n -k n ,C k n +1=C k n+C k -1n .(2)对于二项式定理问题,需掌握赋值法和二项式系数的性质,并能将二项式系数与二项展开式系数区别开来.设(1-x )n =a 0+a 1x +a 2x 2+…+a n x n ,n ∈N *,n ≥2. (1)若n =11,求|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|的值;(2)设b k =k +1n -k a k +1(k ∈N ,k ≤n -1),S m =b 0+b 1+b 2+…+b m (m ∈N ,m ≤n -1),求⎪⎪⎪⎪S m C m n -1的值.解:(1)因为a k =(-1)k C k n ,当n =11时,|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|=C 611+C 711+C 811+C 911+C 1011+C 1111=12(C 011+C 111+…+C 1011+C 1111)=210=1 024. (2)b k =k +1n -k a k +1=(-1)k +1k +1n -k C k +1n =(-1)k +1C k n , 当1≤k ≤n -1时, b k =(-1)k +1C k n =(-1)k+1()C k n -1+C k -1n -1=(-1)k +1C k -1n -1+(-1)k +1C k n -1 =(-1)k -1C k -1n -1-(-1)k C k n -1.当m =0时,⎪⎪⎪⎪S m C m n -1=⎪⎪⎪⎪b 0C 0n -1=1.当1≤m ≤n -1时,S m =-1+∑k =1m[(-1)k -1C k -1n -1-(-1)k C k n -1]=-1+1-(-1)m C m n -1=-(-1)m C m n -1, 所以⎪⎪⎪⎪S mC m n -1=1.综上,⎪⎪⎪⎪S mC m n -1=1.[课时达标训练]1.设集合A ,B 是非空集合M 的两个不同子集,满足:A 不是B 的子集,且B 也不是A 的子集.(1)若M ={a 1,a 2,a 3,a 4},直接写出所有不同的有序集合对(A ,B )的个数; (2)若M ={a 1,a 2,a 3,…,a n },求所有不同的有序集合对(A ,B )的个数. 解:(1)110.(2)集合M 有2n 个子集,不同的有序集合对(A ,B )有2n (2n -1)个. 当A ⊆B ,并设B 中含有k (1≤k ≤n ,k ∈N *)个元素,则满足A ⊆B 的有序集合对(A ,B )有∑k =1nC k n (2k-1)=∑k =0nC k n 2k -∑k =0nC k n =3n -2n个. 同理,满足B ⊆A 的有序集合对(A ,B )有3n -2n 个.故满足条件的有序集合对(A ,B )的个数为2n (2n -1)-2(3n -2n )=4n +2n -2×3n . 2.(·南京、盐城二模)现有n (n +1)2(n ≥2,n ∈N *)个给定的不同的数随机排成一个下图所示的三角形数阵:******………………………………**…………**…………第1行…………第2行…………第3行…………第n 行设M k 是第k 行中的最大数,其中1≤k ≤n ,k ∈N *.记M 1<M 2<…<M n 的概率为p n . (1)求p 2的值; (2)证明:p n >C 2n +1(n +1)!.解:(1)由题意知p 2=2A 22A 33=23,即p 2的值为23.(2)证明:先排第n 行,则最大数在第n 行的概率为n n (n +1)2=2n +1;去掉第n 行已经排好的n 个数,则余下的n (n +1)2-n =n (n -1)2个数中最大数在第n -1行的概率为n -1n (n -1)2=2n;…故p n =2n +1×2n×…×23=2n -1(n +1)×n ×…×3=2n(n +1)!.由于2n =(1+1)n =C 0n +C 1n +C 2n +…+C n n ≥C 0n +C 1n +C 2n >C 1n +C 2n =C 2n +1,故2n (n +1)!>C 2n +2(n +1)!,即p n >C 2n +1(n +1)!. 3.记1,2,…,n 满足下列性质T 的排列a 1,a 2,…,a n 的个数为f (n )(n ≥2,n ∈N *).性质T :排列a 1,a 2,…,a n 中有且只有一个a i >a i +1(i ∈{1,2,…,n -1}).(1)求f (3); (2)求f (n ).解:(1)当n =3时,1,2,3的所有排列有(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),其中满足仅存在一个i ∈{1,2,3},使得a i >a i +1的排列有(1,3,2),(2,1,3),(2,3,1),(3,1,2),所以f (3)=4.(2)在1,2,…,n 的所有排列(a 1,a 2,…,a n )中,若a i =n (1≤i ≤n -1),从n -1个数1,2,3,…,n -1中选i -1个数按从小到大的顺序排列为a 1,a 2,…,a i -1,其余按从小到大的顺序排列在余下位置,于是满足题意的排列个数为C i -1n -1.若a n =n ,则满足题意的排列个数为f (n -1). 综上,f (n )=f (n -1)+∑i =1n -1C i -1n -1=f (n -1)+2n -1-1.从而f (n )=23(1-2n -3)1-2-(n -3)+f (3)=2n -n -1.4.(·江苏高考)(1)求7C 36-4C 47的值;(2)设m ,n ∈N *,n ≥m ,求证:(m +1)C m m +(m +2)·C m m +1+(m +3)C m m +2+…+n C mn -1+(n +1)C m n =(m +1)C m +2n +2.解:(1)7C 36-4C 47=7×6×5×43×2×1-4×7×6×5×44×3×2×1=0. (2)证明:当n =m 时,结论显然成立.当n >m 时,(k +1)C mk =(k +1)·k !m !·(k -m )!=(m +1)·(k +1)!(m +1)!·[(k +1)-(m +1)]!=(m +1)C m +1k +1,k =m +1,m +2,…,n . 又因为C m +1k +1+C m +2k +1=C m +2k +2,所以(k +1)C m k =(m +1)(C m +2k +2-C m +2k +1),k =m +1,m +2,…,n .因此,(m +1)C m m +(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C m n =(m +1)C m m +[(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C mn ]=(m +1)C m +2m +2+(m +1)[(C m +2m +3-C m +2m +2)+(C m +2m +4-C m +2m +3)+…+(C m +2n +2-C m +2n +1)] =(m +1)C m +2n +2.5.设a n 是满足下述条件的自然数的个数:各数位上的数字之和为n (n ∈N *),且每个数位上的数字只能是1或2.(1)求a 1,a 2,a 3,a 4的值; (2)求证:a 5n -1(n ∈N *)是5的倍数.解:(1)当n =1时,只有自然数1满足题设条件,所以a 1=1; 当n =2时,有11,2两个自然数满足题设条件,所以a 2=2; 当n =3时,有111,21,12三个自然数满足题设条件,所以a 3=3; 当n =4时,有1 111,112,121,211,22五个自然数满足题设条件,所以a 4=5. 综上所述,a 1=1,a 2=2,a 3=3,a 4=5.(2)证明:设自然数X 的各位数字之和为n +2,由题设可知,X 的首位为1或2两种情形.当X 的首位为1时,则其余各位数字之和为n +1.故首位为1,各位数字之和为n +2的自然数的个数为a n +1; 当X 的首位为2时,则其余各位数字之和为n .故首位为2,各位数字之和为n +2的自然数的个数为a n .所以各位数字之和为n +2的自然数的个数为a n +1+a n ,即a n +2=a n +1+a n . 下面用数学归纳法证明a 5n -1是5的倍数.①当n =1时,a 4=5,所以a 4是5的倍数,命题成立; ②假设n =k (k ≥1,n ∈N *)时,命题成立,即a 5k -1是5的倍数. 则a 5k +4=a 5k +3+a 5k +2 =2a 5k +2+a 5k +1 =2(a 5k +1+a 5k )+a 5k +1 =3a 5k +1+2a 5k =3(a 5k +a 5k -1)+2a 5k=5a 5k +3a 5k -1.因为5a 5k +3a 5k -1是5的倍数,即a 5k +4是5的倍数.所以n =k +1时,命题成立. 由①②可知,a 5n -1(n ∈N *)是5的倍数.6.(·常州期末)对一个量用两种方法分别算一次,由结果相同构造等式,这种方法称为“算两次”的思想方法.利用这种方法,结合二项式定理,可以得到很多有趣的组合恒等式.如:考察恒等式(1+x )2n =(1+x )n (1+x )n (n ∈N *),左边x n 的系数为C n 2n ,而右边(1+x )n(1+x )n =(C 0n +C 1n x +…+C n n x n )(C 0n +C 1n x +…+C n n x n ),x n 的系数为C 0n C n n + C 1n C n -1n +…+C n n C 0n =(C 0n )2+(C 1n )2+(C 2n )2+…+(C n n )2,因此可得到组合恒等式C n 2n =(C 0n )2+(C 1n )2+(C 2n )2+…+(C n n )2.(1)根据恒等式(1+x )m +n =(1+x )m (1+x )n (m ,n ∈N *),两边x k (其中k ∈N ,k ≤m ,k ≤n )的系数相同,直接写出一个恒等式;(2)利用算两次的思想方法或其他方法证明:第2课时数学归纳法(能力课)[常考题型突破]用数学归纳法证明等式[例1] (·苏锡常镇一模)设|θ|<π2,n 为正整数,数列{a n }的通项公式a n =sin n π2tan n θ,其前n 项和为S n .(1)求证:当n 为偶数时,a n =0;当n 为奇数时,a n =(-1)n -12tan nθ;(2)求证:对任何正整数n ,S 2n =12sin 2θ·[1+(-1)n +1tan 2n θ].[证明] (1)因为a n =sin n π2tan n θ.当n 为偶数时,设n =2k ,k ∈N *,a n =a 2k =sin 2k π2tan 2k θ=sin k π·tan 2k θ=0,a n =0.当n 为奇数时,设n =2k -1,k ∈N *,a n =a 2k -1=sin (2k -1)π2tan n θ=sin ⎝⎛⎭⎫k π-π2·tan nθ. 当k =2m ,m ∈N *时,a n =a 2k -1=sin ⎝⎛⎭⎫2m π-π2·tan n θ=sin ⎝⎛⎭⎫-π2·tan n θ=-tan nθ, 此时n -12=2m -1,a n =a 2k -1=-tan n θ=(-1)2m -1tan n θ=(-1)n -12tan n θ.当k =2m -1,m ∈N *时,a n =a 2k -1=sin ⎝⎛⎭⎫2m π-3π2·tan n θ=sin ⎝⎛⎭⎫-3π2·tan n θ=tan nθ, 此时n -12=2m -2,a n =a 2k -1=tan n θ=(-1)2m -2·tan n θ=(-1)n -12tan n θ.综上,当n 为偶数时,a n =0;当n 为奇数时,a n =(-1)n -12tan nθ.(2)当n =1时,由(1)得,S 2=a 1+a 2=tan θ, 等式右边=12sin 2θ(1+tan 2θ)=sin θ·cos θ·1cos 2θ=tan θ.故n =1时,命题成立,假设n =k (k ∈N *,k ≥1)时命题成立,即S 2k =12sin 2θ·[1+(-1)k +1tan 2k θ].当n =k +1时,由(1)得:S 2(k +1)=S 2k +a 2k +1+a 2k +2=S 2k +a 2k +1=12sin 2θ·[]1+(-1)k +1tan 2k θ+(-1)k tan 2k +1θ=12sin 2θ·1+(-1)k +1tan 2k θ+(-1)k ·2sin 2θtan 2k +1θ=12sin 2θ·1+(-1)k +2·tan 2k +2θ·-1tan 2θ +2sin 2θtan θ=12sin 2θ·1+(-1)k +2·tan 2k +2θ·⎝⎛⎭⎫-cos 2θsin 2θ+1sin 2θ =12sin 2θ·[1+(-1)k +2·tan 2k +2θ ]. 即当n =k +1时命题成立.综上所述,对任何正整数n ,S 2n =12sin 2θ·[1+(-1)n +1tan 2n θ].[方法归纳](1)用数学归纳法证明等式问题是常见题型,其关键点在于弄清等式两边的构成规律,等式两边各有多少项,以及初始值n 0的值.(2)由n =k 到n =k +1时,除考虑等式两边变化的项外还要充分利用n =k 时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.(·扬州期末)已知F n (x )=(-1)0C 0n ,f 0(x )+(-1)1C 1n f 1(x )+…+(-1)n C n n f n (x )(n ∈N *,x >0),其中f i (x )(i ∈{0,1,2,…,n })是关于x 的函数. (1)若f i (x )=x i (i ∈N),求F 2(1),F 2 017(2)的值; (2)若f i (x )=xx +i (i ∈N),求证:F n (x )=n !(x +1)(x +2)·…·(x +n )(n ∈N *). 解:(1)因为f i (x )=x i (i ∈N),所以F n (x )=(-1)0C 0n x 0+(-1)1C 1n x 1+…+(-1)n C n n x n =(1-x )n ,所以F 2(1)=0, F 2 017(2)=(1-2)2 017=-1.(2)证明:因为f i (x )=xx +i(x >0,i ∈N), 所以F n (x )=(-1)0C 0n f 0(x )+(-1)1C 1n f 1(x )+…+(-1)n C n n f n (x )=∑i =0n⎣⎡⎦⎤(-1)i C i n x x +i (n ∈N *). ①当n =1时,F n (x )=∑i =0n =1⎣⎡⎦⎤(-1)i C i 1x x +i =1-x x +1=1x +1,所以n =1时结论成立.②假设n =k (k ∈N *)时结论成立, 即F k (x )=∑i =0k ⎣⎡⎦⎤(-1)i C i k xx +i=k !(x +1)(x +2)·…·(x +k ),则n =k +1时,F k +1(x )=∑i =0k +1 ⎣⎡⎦⎤(-1)i C i k +1x x +i=1+∑i =1k⎣⎡⎦⎤(-1)i C i k +1x x +i +(-1)k +1C k +1k +1x x +k +1 =1+∑i =1k ⎣⎡⎦⎤(-1)i (C i k +C i -1k )x x +i +(-1)k +1·C k +1k +1x x +k +1 =∑i =0k⎣⎡⎦⎤(-1)i C i k x x +i +∑i =1k +1 ⎣⎡⎦⎤(-1)i C i -1k x x +i =F k (x )-∑i =1k +1 ⎣⎡⎦⎤(-1)i -1C i -1k x x +i=F k (x )-∑i =0k ⎣⎡⎦⎤(-1)i C i k xx +i +1=F k (x )-∑i =0k⎣⎢⎡⎦⎥⎤(-1)i C ikx +1x +i +1·x x +1=F k (x )-x x +1F k (x +1)=k !(x +1)(x +2)·…·(x +k )-k !(x +2)(x +3)…(x +1+k )·xx +1=(x +1+k )·k !-x ·k !(x +1)(x +2)…(x +k )(x +1+k )=(k +1)!(x +1)(x +2)(x +3)…(x +1+k ),所以n =k +1时,结论也成立. 综合①②可知,F n (x )=n !(x +1)(x +2)…(x +n )(n ∈N *).用数学归纳法证明不等式[例2] (·南京模拟)已知数列{a n }满足a n =3n -2,函数f (n )=1a 1+1a 2+…+1a n,g (n )=f (n 2)-f (n -1),n ∈N *.(1) 求证:g (2)>13;(2) 求证:当n ≥3时,g (n )>13.[证明] (1)由题意知,a n =3n -2,g (n )=1a n +1a n +1+1a n +2+…+1a n 2,当n =2时,g (2)=1a 2+1a 3+1a 4=14+17+110=69140>13.故结论成立.(2)用数学归纳法证明: ①当n =3时,g (3)=1a 3+1a 4+1a 5+…+1a 9=17+110+113+116+119+122+125=17+⎝⎛⎭⎫110+113+116+⎝⎛⎭⎫119+122+125>18+⎝⎛⎭⎫116+116+116+⎝⎛⎭⎫132+132+132=18+316+332>18+316+116>13, 所以当n =3时,结论成立.②假设当n =k (k ≥3,k ∈N *)时,结论成立, 即g (k )>13,则当n =k +1时,g (k +1)=g (k )+1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+2k +13(k +1)2-2-13k -2 =13+(2k +1)(3k -2)-[3(k +1)2-2][3(k +1)2-2](3k -2)=13+3k 2-7k -3[3(k +1)2-2](3k -2), 由k ≥3可知,3k 2-7k -3>0,即g (k +1)>13.所以当n =k +1时,结论也成立. 综合①②可得,当n ≥3时,g (n )>13.[方法归纳](1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k (k ∈N *)成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等证明.设实数a 1,a 2,…,a n 满足a 1+a 2+…+a n =0,且|a 1|+|a 2|+…+|a n |≤1(n ∈N *且n ≥2),令b n =a n n (n ∈N *).求证:|b 1+b 2+…+b n |≤12-12n(n ∈N *).证明:(1)当n =2时,a 1=-a 2, 所以|a 1|+|a 2|=2|a 1|≤1,即|a 1|≤12,所以|b 1+b 2|=⎪⎪⎪⎪a 1+a 22=|a 1|2≤14=12-12×2, 即当n =2时,结论成立.(2)假设当n =k (k ∈N *且k ≥2)时,结论成立,即当a 1+a 2+…+a k =0,且|a 1|+|a 2|+…+|a k |≤1时,有|b 1+b 2+…+b k |≤12-12k .则当n =k +1时,由a 1+a 2+…+a k +a k +1=0, 且|a 1|+|a 2|+…+|a k +1|≤1,可得2|a k +1|=|a 1+a 2+…+a k |+|a k +1|≤|a 1|+|a 2|+…+|a k +1|≤1, 所以|a k +1|≤12.又a 1+a 2+…+a k -1+(a k +a k +1)=0,且|a 1|+|a 2|+…+|a k -1|+|a k +a k +1|≤|a 1|+|a 2|+…+|a k +1|≤1,由假设可得⎪⎪⎪⎪b 1+b 2+…+b k -1+a k +a k +1k ≤12-12k ,所以|b 1+b 2+…+b k +b k +1| =⎪⎪⎪⎪⎪⎪b 1+b 2+…+b k -1+a k k +a k +1k +1=⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫b 1+b 2+…+b k -1+a k +a k +1k +⎝ ⎛⎭⎪⎫a k +1k +1-a k +1k ≤12-12k +⎪⎪⎪⎪⎪⎪a k +1k +1-a k +1k =12-12k +⎝⎛⎭⎫1k -1k +1|a k +1|≤12-12k +⎝⎛⎭⎫1k -1k +1×12 =12-12(k +1), 即当n =k +1时,结论成立. 综合(1)(2)可知,结论成立.归纳、猜想、证明[例3] (·n n n k C k n (x -k )n +…+(-1)n C nn (x -n )n ,其中x ∈R ,n ∈N *,k ∈N ,k ≤n .(1)试求f 1(x ),f 2(x ),f 3(x )的值;(2)试猜测f n (x )关于n 的表达式,并证明你的结论.[解] (1)f 1(x )=C 01x -C 11(x -1)=x -x +1=1;f 2(x )=C 02x 2-C 12(x -1)2+C 22(x -2)2=x 2-2(x 2-2x +1)+(x 2-4x +4)=2; f 3(x )=C 03x 3-C 13(x -1)3+C 23(x -2)3-C 33(x -3)3=x 3-3(x -1)3+3(x -2)3-(x -3)3=6. (2)猜测:f n (x )=n !. 而k Ckn=k ·n !k !(n -k )!=n !(k -1)!(n -k )!,n Ck -1n -1=n ·(n -1)!(k -1)!(n -k )!=n !(k -1)!(n -k )!,所以k C k n =n C k -1n -1.用数学归纳法证明结论成立.①当n =1时,f 1(x )=1,所以结论成立.②假设当n =k 时,结论成立,即f k (x )=C 0k x k -C 1k (x -1)k +…+(-1)k C k k (x -k )k =k !. 则当n =k +1时,f k +1(x )=C 0k +1x k +1-C 1k +1(x -1)k +1+…+(-1)k +1C k +1k +1(x -k -1)k +1 =C 0k +1x k +1-C 1k +1(x -1)k (x -1)+…+(-1)k C k k +1(x -k )k (x -k )+(-1)k +1C k +1k +1(x -k -1)k +1 =x [C 0k +1x k -C 1k +1(x -1)k +…+(-1)k C k k +1(x -k )k ]+[C 1k +1(x -1)k -2C 2k +1(x -2)k …+(-1)k +1k C k k +1(x -k )k ]+(-1)k +1C k +1k +1(x -k -1)k +1 =x [C 0k x k -(C 1k +C 0k )(x -1)k +…+(-1)k (C k k +C k -1k )(x -k )k ]+(k +1)[(x -1)k -C 1k (x -2)k …+(-1)k +1C k -1k (x -k )k ]+(-1)k +1C k +1k +1(x -k -1)k (x -k -1)=x[C0k x k-C1k(x-1)k+…+(-1)k C k k(x-k)k]-x[C0k(x-1)k+…+(-1)k-1C k-1(x-k)k]+(kk+1)[(x-1)k-C1k(x-2)k…+(-1)k+1C k-1(x-k)k]+x(-1)k+1C k k(x-k-1)k-(k+1)(-1)k+1(x-kk-1)k=x[C0k x k-C1k(x-1)k+…+(-1)k C k k(x-k)k]-x[C0k(x-1)k+…+(-1)k-1C k-1(x-k)k+(-k(x-k)k+(-1)k(x-k-1)k C k k(x-k-1)k]+(k+1)[C0k(x-1)k-C1k(x-2)k+…+(-1)k-1C k-1k1)k].(*)由归纳假设知(*)式等于x·k!-x·k!+(k+1)·k!=(k+1)!.所以当n=k+1时,结论也成立.综合①②,f n(x)=n!成立.[方法归纳]利用数学归纳法可以探索与正整数n有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.解“归纳—猜想—证明”题的关键是准确计算出前若干具体项,这是归纳、猜想的基础.否则将会做大量无用功.(·盐城模拟)记f(n)=(3n+2)(C22+C23+C24+…+C2n)(n≥2,n∈N*).(1)求f(2),f(3),f(4)的值;(2)当n≥2,n∈N*时,试猜想所有f(n)的最大公约数,并证明.解:(1)因为f(n)=(3n+2)(C22+C23+C24+…+C2n)=(3n+2)C3n+1,所以f(2)=8,f(3)=44,f(4)=140.(2)证明:由(1)中结论可猜想所有f(n)的最大公约数为4.下面用数学归纳法证明所有的f(n)都能被4整除即可.①当n=2时,f(2)=8能被4整除,结论成立;②假设n=k (k≥2,k∈N*)时,结论成立,即f(k)=(3k+2)C3k+1能被4整除,则当n=k+1时,f(k+1)=(3k+5)C3k+2=(3k+2)C3k+2+3C3k+2=(3k+2)(C3k+1+C2k+1)+(k+2)C2k+1=(3k+2)C3k+1+(3k+2)C2k+1+(k+2)C2k+1=(3k+2)C3k+1+4(k+1)C2k+1,此式也能被4整除,即n=k+1时结论也成立.综上所述,所有f(n)的最大公约数为4.[课时达标训练]1.(·南通三模)已知函数f 0(x )=cx +dax +b(a ≠0,bc -ad ≠0).设f n (x )为f n -1(x )的导数,n ∈N *.(1)求f 1(x ),f 2(x );(2)猜想f n (x )的表达式,并证明你的结论. 解:(1)f 1(x )=f 0′(x )=⎝ ⎛⎭⎪⎫cx +d ax +b ′=bc -ad (ax +b )2,f 2(x )=f 1′(x )=⎣⎢⎡⎦⎥⎤bc -ad (ax +b )2′=-2a (bc -ad )(ax +b )3. (2)猜想f n (x )=(-1)n -1·a n -1·(bc -ad )·n !(ax +b )n +1,n ∈N *. 证明:①当n =1时,由(1)知结论成立, ②假设当n =k (k ∈N *且k ≥1)时结论成立, 即有f k (x )=(-1)k -1·a k -1·(bc -ad )·k !(ax +b )k +1. 当n =k +1时,f k +1(x )=f k ′(x )=⎣⎢⎡⎦⎥⎤(-1)k -1·a k -1·(bc -ad )·k !(ax +b )k +1′ =(-1)k -1·a k -1·(bc -ad )·k ![(ax +b )-(k +1)]′=(-1)k ·a k ·(bc -ad )·(k +1)!(ax +b )k +2. 所以当n =k +1时结论成立.由①②得,对一切n ∈N *结论都成立.2.(·镇江模拟)证明:对一切正整数n,5n +2·3n -1+1都能被8整除. 证明:(1)当n =1时,原式等于8能被8整除, (2)假设当n =k (k ≥1,k ∈N *)时,结论成立, 则5k +2·3k -1+1能被8整除. 设5k +2·3k -1+1=8m ,m ∈N *, 当n =k +1时,5k +1+2·3k +1 =5(5k +2·3k -1+1)-4·3k -1-4 =5(5k +2·3k -1+1)-4(3k -1+1), 而当k ≥1,k ∈N *时,3k -1+1显然为偶数,设为2t ,t ∈N *,故5k +1+2·3k +1=5(5k +2·3k -1+1)-4(3k -1+1)=40m -8t (m ,t ∈N *),也能被8整除, 故当n =k +1时结论也成立;由(1)(2)可知对一切正整数n,5n +2·3n -1+1都能被8整除.3.已知S n =1+12+13+…+1n (n ≥2,n ∈N *),求证:S 2n >1+n2(n ≥2,n ∈N *).证明:(1)当n =2时,S 2n =S 4=1+12+13+14=2512>1+22,即n =2时命题成立;(2)假设当n =k (k ≥2,k ∈N *)时命题成立,即S 2k =1+12+13+…+12k >1+k2,则当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k +1>1+k 2+12k +1+12k +2+…+12k +1>1+k2+2k 2k +2k =1+k 2+12=1+k +12, 故当n =k +1时,命题成立.由(1)和(2)可知,对n ≥2,n ∈N *不等式S 2n >1+n2都成立.4.(·南京三模)已知数列{a n }共有3n (n ∈N *)项,记f (n )=a 1+a 2+…+a 3n .对任意的k ∈N *,1≤k ≤3n ,都有a k ∈{0,1},且对于给定的正整数p (p ≥2),f (n )是p 的整数倍.把满足上述条件的数列{a n }的个数记为T n .(1)当p =2时,求T 2的值;(2)当p =3时,求证:T n =13[8n +2(-1)n ].解:(1)由题意,当n =2时,数列{a n }共有6项.要使得f (2)是2的整数倍,则这6项中,只能有0项、2项、4项、6项取1,故T 2=C 06+C 26+C 46+C 66=25=32. (2)证明:T n =C 03n +C 33n +C 63n +…+C 3n 3n .当1≤k ≤n ,k ∈N *时,C 3k 3n +3=C 3k 3n +2+C 3k -13n +2=C 3k -13n +1+C 3k 3n +1+C 3k -13n +1+C 3k -23n +1 =2C 3k -13n +1+C 3k 3n +1+C 3k -23n +1=2(C 3k -13n +C 3k -23n )+C 3k -13n +C 3k 3n +C 3k -33n +C 3k -23n =3(C 3k -13n +C 3k -23n )+C 3k 3n +C 3k -33n ,于是T n +1=C 03n +3+C 33n +3+C 63n +3+…+C 3n +33n +3=C 03n +3+C 3n +33n +3+3(C 13n +C 23n +C 43n +C 53n +…+C 3n -23n +C 3n -13n )+T n -C 03n +T n -C 3n 3n=2T n +3(23n -T n ) =3×8n -T n .下面用数学归纳法证明T n =13[8n +2(-1)n ].当n =1时,T 1=C 03+C 33=2=13[81+2(-1)1],即n =1时,命题成立.假设n =k (k ≥1,k ∈N *) 时,命题成立, 即T k =13[8k +2(-1)k ].则当n =k +1时,T k +1=3×8k -T k =3×8k -13[8k +2(-1)k ]=13[9×8k -8k -2(-1)k ] =13[8k +1+2(-1)k +1], 即n =k +1时,命题也成立. 于是当n ∈N *,有T n =13[8n +2(-1)n ].5.(·扬州考前调研)在数列{a n }中,a n =cos π3×2n -2(n ∈N *). (1)试将a n +1表示为a n 的函数关系式;(2)若数列{b n }满足b n =1-2n ·n !(n ∈N *),猜想a n 与b n 的大小关系,并证明你的结论.解:(1)a n =cos π3×2n -2=cos 2π3×2n -1=2⎝⎛⎭⎫cos π3×2n -12-1,∴a n =2a 2n +1-1,∴a n +1=±a n +12, 又n ∈N *,n +1≥2,a n +1>0,∴a n +1=a n +12. (2)当n =1时,a 1=-12,b 1=1-2=-1,∴a 1>b 1;当n =2时,a 2=12,b 2=1-12=12,∴a 2=b 2;当n =3时,a 3=32,b 3=1-19=89,∴a 3<b 3. 猜想:当n ≥3时,a n <b n , 下面用数学归纳法证明:①当n =3时,由上知,a 3<b 3,结论成立.②假设n =k ,k ≥3,n ∈N *时,a k <b k 成立,即a k <1-2k ·k !,则当n =k +1,a k +1=a k +12< 2-2k ·k !2=1-1k ·k !,b k +1=1-2(k +1)·(k +1)!. 要证a k +1<b k +1, 即证⎝⎛⎭⎪⎫1-1k ·k !2<⎣⎡⎦⎤1-2(k +1)·(k +1)!2, 即证1-1k ·k !<1-4(k +1)·(k +1)!+⎣⎡⎦⎤2(k +1)·(k +1)!2, 即证1k ·k !-4(k +1)·(k +1)!+⎣⎡⎦⎤2(k +1)·(k +1)!2>0, 即证(k -1)2k (k +1)·(k +1)!+⎣⎡⎦⎤2(k +1)·(k +1)!2>0,显然成立. ∴n =k +1时,结论也成立.综合①②可知:当n ≥3时,a n <b n 成立.综上可得:当n =1时,a 1<b 1;当n =2时,a 2=b 2; 当n ≥3,n ∈N *时,a n <b n .6.(·南通二调)设n ≥2,n ∈N *.有序数组(a 1,a 2,…,a n )经m 次变换后得到数组(b m,1,b m,2…,b m ,n ),其中b 1,i =a i +a i +1,b m ,i =b m -1,i +b m -1,i +1(i =1,2,…,n ),a n +1=a 1,b m -1,n +1=b m -1,1(m ≥2).例如:有序数组(1,2,3)经1次变换后得到数组(1+2,2+3,3+1),即(3,5,4);经第2次变换后得到数组(8,9,7).(1)若a i =i (i =1,2,…,n ),求b 3,5的值;(2)求证:b m ,i =∑j =0ma i +j C j m ,其中i =1,2,…,n .(注:当i +j =kn +t 时,k ∈N *,t =1,2,…,n ,则a i +j =a t )解:(1)当n =2,3,4时,b 3,5值不存在; 当n =5时,依题意,有序数组为(1,2,3,4,5). 经1次变换为:(3,5,7,9,6), 经2次变换为:(8,12,16,15,9), 经3次变换为:(20,28,31,24,17), 所以b 3,5=17;当n =6时,同理得b 3,5=28; 当n =7时,同理得b 3,5=45; 当n ≥8时,n ∈N *时,依题意,有序数组为(1,2,3,4,5,6,7,8,…,n ). 经1次变换为:(3,5,7,9,11,13,15,…,n +1),21 / 21 经2次变换为:(8,12,16,20,24,28,…,n +4), 经3次变换为:(20,28,36,44,52,…,n +12), 所以b 3,5=52.(2)证明:下面用数学归纳法证明对m ∈N *,b m ,i =∑j =0m a i +j C j m,其中i =1,2,…,n . ①当m =1时,b 1,i =a i +a i +1=∑j =01a i +j C j 1,其中i =1,2,…,n ,结论成立; ②假设m =k (k ∈N *)时,b k ,i =∑j =0k a i +j C j k ,其中i =1,2,…,n .则m =k +1时,b k +1,i =b k ,i +b k ,i +1=∑j =0k a i +j C j k +∑j =0k a i +j +1C j k=∑j =0k a i +j C j k +∑j =1k +1a i +j C j -1k=a i C 0k +∑j =1k a i +j (C j k +C j -1k )+a i +k +1C k k=a i C 0k +1+∑j =1k a i +j C j k +1+a i +k +1C k +1k +1=∑j =0k +1a i +j C j k +1,所以结论对m =k +1时也成立.由①②知,m ∈N *,b m ,i =∑j =0ma i +j C j m ,其中i =1,2,…,n .。
人教A版高考总复习一轮理科数学精品课件 第8章 立体几何 指点迷津(八) 空间几何体的截面问题
所以截面面积为
+
S= 2
·h=
2+2 2
2
×
3 2
2
=
2 2
)
2
9
.故选
2
B.
=
9
2
=
3 2
,
2
本 课 结 束
3 3
因为 4
>
2 3
3
>
3 2
4
>
1
S=6·2
3
,选项
2
·
2
3 3
·sin 60° = 4 .
B,C,D 错误,故选 A.
(方法2)B1A1,B1B,B1C1与平面A1BC1所成的角都相等,如图所示,
在AB,BC,CC1,C1D1,D1A1,A1A上分别取点E,F,G,H,K,L.
设BE=BF=C1G=C1H=A1K=A1L=x,则CF=CG=D1H=D1K
和逻辑推理的数学素养有着较高的要求.
例题 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α
截此正方体所得截面面积的最大值为(
3 3
A. 4
3 2
C. 4
2 3
B. 3
3
D. 2
)
答案:A
解析:(方法1)正方体ABCD-A1B1C1D1的所有棱与截面α所成角相等,则过顶
点B1的三条棱B1A1,B1B,B1C1与平面α所成的角都相等,如质定理.
对点训练(2021内蒙古呼和浩特一模)在棱长为2的正方体ABCD-A1B1C1D1
中,E为B1C1的中点,则过B,D,E三点的平面截正方体ABCD-A1B1C1D1所得的
2020版高考理科数学突破二轮复习新课标通用讲义:专题八 第1讲 数学文化 Word版含答案
第1讲数学文化函数中的数学文化题[典型例题]中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.定义:图象能够将圆O的周长和面积同时等分成两部分的函数称为圆O的一个“太极函数”,给出下列命题:①对于任意一个圆O,其“太极函数”有无数个;②函数f(x)=ln(x2+x2+1)可以是某个圆的“太极函数”;③正弦函数y=sin x可以同时是无数个圆的“太极函数”;④函数y=f(x)是“太极函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题为()A.①③B.①③④C.②③D.①④【解析】过圆心的直线都可以将圆的周长和面积等分成两部分,故对于任意一个圆O,其“太极函数”有无数个,故①正确;函数f(x)=ln(x2+x2+1)的图象如图1所示,故其不可能为圆的“太极函数”,故②错误;将圆的圆心放在正弦函数y =sin x 图象的对称中心上,则正弦函数y =sin x 是该圆的“太极函数”,从而正弦函数y =sin x 可以同时是无数个圆的“太极函数”,故③正确;函数y =f (x )的图象是中心对称图形,则y =f (x )是“太极函数”,但函数y =f (x )是“太极函数”时,图象不一定是中心对称图形,如图2所示,故④错误.故选A .【答案】 A中华太极图,悠悠千古昭著于世,像朝日那样辉煌宏丽,又像明月那样清亮壮美.它是我们华夏先祖的智慧结晶,它是中国传统文化的骄傲象征,它更是中华民族献给人类文明的无价之宝.试题通过太极图展示了数学文化的民族性与世界性.[对点训练] (2019·福建泉州两校联考)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.”其意思为:“今有人持金出五关,第1关所收税金为持金的12,第2关所收税金为剩余持金的13,第3关所收税金为剩余持金的14,第4关所收税金为剩余持金的15,第5关所收税金为剩余持金的16,5关所收税金之和恰好重1斤.”则在此问题中,第5关所收税金为( )A .136斤 B .130斤 C .125斤 D .120斤 解析:选C .设此人持金x 斤,根据题意知第1关所收税金为x 2斤; 第2关所收税金为x 6斤;第3关所收税金为x 12斤; 第4关所收税金为x 20斤; 第5关所收税金为x 30斤. 易知x 2+x 6+x 12+x 20+x 30=1, 解得x =65.则第5关所收税金为125斤.故选C .数列中的数学文化题[典型例题](1)(2019·湖南长沙雅礼中学模拟)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”设该金箠由粗到细是均匀变化的,其重量为M ,现将该金箠截成长度相等的10段,记第i 段的重量为a i (i =1,2,…,10),且a 1<a 2<…<a 10,若48a i =5M ,则i =( )A .4B .5C .6D .7(2)(2019·河北辛集中学期中)中国古代数学著作《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里.”其意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里.”若该匹马按此规律继续行走7天,则它这14天内所走的总路程为( )A .17532里 B .1 050里 C .22 57532里 D .2 100里【解析】 (1)由题意知,由细到粗每段的重量组成一个等差数列,记为{a n },设公差为d ,则有⎩⎪⎨⎪⎧a 1+a 2=2,a 9+a 10=4⇒⎩⎪⎨⎪⎧2a 1+d =2,2a 1+17d =4⇒⎩⎨⎧a 1=1516,d =18. 所以该金箠的总重量 M =10×1516+10×92×18=15. 因为48a i =5M ,所以有48[1516+(i -1)×18]=75,解得i =6,故选C .(2)由题意可知,马每天行走的路程组成一个等比数列,设该数列为{a n },则该匹马首日行走的路程为a 1,公比为12,则有a 1[1-(12)7]1-12=700,则a 1=350×128127,则a 1[1-(12)14]1-12=22 57532(里).故选C .【答案】 (1)C (2)C(1)数列中的数学文化题一般以我国古代数学名著中的等差数列和等比数列问题为背景,考查等差数列和等比数列的概念、通项公式和前n 项和公式.(2)解决这类问题的关键是将古代实际问题转化为现代数学问题,掌握等比(差)数列的概念、通项公式和前n 项和公式.[对点训练]1.《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为:已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列,问五人各得多少钱?(“钱”是古代的一种重量单位)在这个问题中,丙所得为( )A .76钱 B .56钱 C .23钱 D .1钱解析:选D .因为甲、乙、丙、丁、戊每人所得依次成等差数列,设每人所得依次为a -2d 、a -d 、a 、a +d 、a +2d ,则a -2d +a -d +a +a +d +a +2d =5,解得a =1,即丙所得为1钱,故选D .2.(一题多解)《九章算术》中有一题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何.其意思是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”若按此比例偿还,牛、马、羊的主人各应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿( )A .507斗粟 B .107斗粟 C .157斗粟 D .207斗粟 解:选C .法一:设羊、马、牛主人赔偿的粟的斗数分别为a 1,a 2,a 3,则这3个数依次成等比数列,公比q =2,所以a 1+2a 1+4a 1=5, 解得a 1=57,故a 3=207,a 3-a 1=207-57=157,故选C . 法二:羊、马、牛主人赔偿的比例是1∶2∶4,故牛主人应赔偿5×47=207(斗),羊主人应赔偿5×17=57(斗),故牛主人比羊主人多赔偿了207-57=157(斗),故选C .三角函数中的数学文化题[典型例题]《数书九章》中给出了“已知三角形三边长求三角形面积的求法”,填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代人具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.若把这段文字写成公式,即S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222,现有周长为22+5的△ABC 满足sin A ∶sin B ∶sin C =(2-1)∶5∶(2+1),用上面给出的公式求得△ABC 的面积为( )A .32 B .34 C .52 D .54【解析】 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =(2-1)∶5∶(2+1),可设三角形的三边分别为a =(2-1)x ,b =5x ,c =(2+1)x ,由题意得(2-1)x +5x +(2+1)x =(22+5)x =22+5,则x =1,故由三角形的面积公式可得△ABC 的面积S =14⎣⎢⎡⎦⎥⎤(2+1)2(2-1)2-⎝ ⎛⎭⎪⎫3+22+3-22-522=34,故选B . 【答案】 B我国南宋数学家秦九韶发现的“三斜求积术”虽然与海伦公式(S =p (p -a )(p -b )(p -c ),其中p =12(a +b +c ))在形式上不一样,但两者完全等价,它填补了我国传统数学的一项空白,从中可以看出我国古代已经具有很高的数学水平,人教A 版《必修5》教材对此有专门介绍.本题取材于教材中出现的“三斜求积”公式,考查了运算求解能力,同时也传播了中华优秀传统文化.[对点训练](2019·济南市学习质量评估)我国《物权法》规定:建造建筑物,不得违反国家有关工程建设标准,妨碍相邻建筑物的通风、采光和日照.已知某小区的住宅楼的底部均在同一水平面上,且楼高均为45 m,依据规定,该小区内住宅楼楼间距应不小于52 m.若该小区内某居民在距离楼底27 m高处的某阳台观测点,测得该小区内正对面住宅楼楼顶的仰角与楼底的俯角之和为45°,则该小区的住宅楼楼间距实际为________m.解析:设两住宅楼楼间距实际为x m.如图,根据题意可得,tan∠DCA=27x,tan∠DCB=45-27x=18x,又∠DCA+∠DCB=45°,所以tan(∠DCA+∠DCB)=27x+18x1-27x·18x=1,整理得x2-45x-27×18=0,解得x=54或x=-9(舍去).所以该小区住宅楼楼间距实际为54 m.答案:54立体几何中的数学文化题[典型例题](1)(2019·高考浙江卷)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324(2) (2018·郑州第二次质量预测)我国古代数学专著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如“鳖臑”意指四个面都是直角三角形的三棱锥.某“鳖臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知该几何体的高为22,则该几何体外接球的表面积为________.【解析】 (1)如图,该柱体是一个五棱柱,棱柱的高为6,底面可以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3.则底面面积S =2+62×3+4+62×3=27. 因此,该柱体的体积V =27×6=162.故选B .(2)由该几何体的三视图还原其直观图,并放入长方体中,如图中的三棱锥A -BCD 所示,其中AB =22,BC =CD =2,易知长方体的外接球即三棱锥A BCD 的外接球,设外接球的直径为2R ,所以4R 2=(22)2+(2)2+(2)2=8+2+2=12,则R 2=3,因此外接球的表面积S =4πR 2=12π.【答案】 (1)B (2)12π立体几何中的数学文化题一般以我国古代发现的球的体积公式、圆柱的体积公式、圆锥的体积公式、圆台的体积公式和“牟合方盖”“阳马”“鳖臑”“堑堵”“刍薨”等中国古代几何名词为背景考查空间几何体的三视图、几何体的体积与表面积等. [对点训练]1.《九章算术》中有这样一个问题:“今有圆堢壔,周四丈八尺,高一丈一尺.问积几何?术曰:周自相乘,以高乘之,十二而一.”这里所说的圆堢壔就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,意思是圆柱体的体积为V =112×底面圆的周长的平方×高,由此可推得圆周率π的取值为( )A .3B .3.1C .3.14D .3.2解析:选A .设圆柱体的底面半径为r ,高为h ,由圆柱的体积公式得体积为V =πr 2h .由题意知V =112×(2πr )2×h ,所以πr 2h =112×(2πr )2×h ,解得π=3.故选A . 2.我国古代数学名著《数书九章》中有“天池盆测雨”题,与题中描绘的器具形状一样(大小不同)的器具的三视图如图所示(单位:寸).若在某地下雨天时利用该器具接的雨水的深度为6寸,则这一天该地的平均降雨量约为(注:平均降雨量等于器具中积水的体积除以器具口的面积.参考公式:圆台的体积V =13πh (R 2+r 2+R ·r ),其中R ,r 分别表示上、下底面的半径,h 为高)( )A .2寸B .3寸C .4寸D .5寸解析:选A .由三视图可知,该器具的上底面半径为12寸,下底面半径为6寸,高为12寸.因为所接雨水的深度为6寸,所以水面半径为12×(12+6)=9(寸), 则盆中水的体积为13π×6×(62+92+6×9)=342π(立方寸), 所以这一天该地的平均降雨量约为342ππ×122≈2(寸),故选A .算法中的数学文化题[典型例题](1)公元三世纪中期,数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并因此创立了割圆术.利用割圆术,刘徽得到了圆周率精确到小数点后两位的近似值 3.14,这就是著名的“徽率”.如图是利用刘徽的割圆术设计的程序框图,则输出的n为(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5)()A.12B.24C.36 D.48(2)我国古代的劳动人民曾创造了灿烂的中华文明,戍边的官兵通过在烽火台上举火向国内报告,烽火台上点火表示数字1,不点火表示数字0,这蕴含了进位制的思想.图中的程序框图的算法思路就源于我国古代戍边官兵的“烽火传信”.执行该程序框图,若输入a=110011,k=2,n=7,则输出的b=()A.19 B.31C.51 D.63【解析】(1)按照程序框图执行,n=6,S=3sin 60°=332,不满足条件S≥3.10,执行循环;n=12,S=6sin 30°=3,不满足条件S≥3.10,执行循环;n=24,S=12sin 15°≈12×0.258 8=3.105 6,满足条件S≥3.10,跳出循环,输出n的值为24,故选B.(2)按照程序框图执行,b依次为0,1,3,3,3,19,51,当b=51时,i=i+1=7,跳出循环,故输出b=51.故选C.【答案】(1)B(2)C辗转相除法、更相减损术、秦九韶算法、进位制和割圆术都是课本上出现的算法案例.其中,更相减损术和秦九韶算法是中国古代的优秀算法,课本上的进位制案例原本不渗透中国古代数学文化,但命题人巧妙地将烽火戍边的故事作为背景,强化了试题的“文化育人”功能.[对点训练]《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”翻译为现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数.若是,用2约简;若不是,执行第二步;第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.现给出“更相减损术”的程序框图如图所示,如果输入的a=114,b=30,则输出的n为()A.3 B.6C.7 D.30解析:选C.a=114,b=30,k=1,n=0,a,b都是偶数,a=57,b=15,k=2,a,b 不满足都为偶数,a=b不成立,a>b成立,a=57-15=42,n=0+1=1;a=b不成立,a>b 成立,a=42-15=27,n=1+1=2;a=b不成立,a>b成立,a=27-15=12,n=2+1=3;a=b不成立,a>b不成立,a=15,b=12,a=15-12=3,n=3+1=4;a=b不成立,a>b不成立,a =12,b =3,a =12-3=9,n =4+1=5;a =b 不成立,a >b 成立,a =9-3=6,n =5+1=6;a =b 不成立,a >b 成立,a =6-3=3,n =6+1=7;a =b 成立,输出的kb =6,n =7.概率中的数学文化题[典型例题](1)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,田忌获胜的概率是( )A .13B .14C .15D .16(2)太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被函数y =3sin π6x 的图象分割为两个对称的鱼形图案,如图所示,其中小圆的半径均为1,现从大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .118C .112D .19【解析】 (1)从双方的马匹中随机选一匹马进行一场比赛,对阵情况如下表:齐王的马 上 上 上 中 中 中 下 下 下 田忌的马上中下上中下上中下双方马的对阵中,有3种对抗情况田忌能赢,所以田忌获胜的概率P =39=13.故选A .(2)函数y =3sin π6x 的图象与x 轴相交于点(6,0)和点(-6,0),则大圆的半径为6,面积为36π,而小圆的半径为1,两个小圆的面积和为2π,所以所求的概率是2π36π=118.故选B .【答案】 (1)A (2)B(1)本例(1)选取田忌赛马这一为人熟知的故事作为背景,考查了古典概型,趣味性很强,利于缓解考生在考场的紧张心理,体现了对考生的人文关怀.(2)本例(2)以中国优秀传统文化太极图为背景,考查几何概型,角度新颖,所给图形有利于考生分析问题和解决问题,给出了如何将抽象的数学问题形象化的范例.[对点训练]1.我国数学家陈景润在哥德巴赫猜想的研究中做出了重大贡献.哥德巴赫猜想是“任一大于2的偶数都可写成两个质数的和”,如32=13+19.在不超过32的质数中,随机选取两个不同的数,其和等于30的概率是( )A .111B .211C .355D .455解析:选C .不超过32的质数有2,3,5,7,11,13,17,19,23,29,31,共11个,随机选取两个不同的数,共有C 211=55种不同的选法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种选法,所以概率为355,故选C .2.(2019·广州市综合检测(一))刘徽是我国魏晋时期的数学家,在其撰写的《九章算术注》中首创“割圆术”.所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.如图所示,圆内接正十二边形的中心为圆心O ,圆O 的半径为2,现随机向圆O 内投放a 粒豆子,其中有b 粒豆子落在正十二边形内(a ,b ∈N *,b <a ),则圆周率的近似值为( )A .b aB .a bC .3a bD .3b a解析:选C .依题意可得360°12=30°,则正十二边形的面积为12×12×2×2×sin 30°=12.又圆的半径为2,所以圆的面积为4π,现向圆内随机投放a 粒豆子,有b 粒豆子落在正十二边形内,根据几何概型可得124π=b a ,则π=3ab,选C .一、选择题1.“干支纪年法”是中国自古以来就一直使用的纪年方法.干支是天干和地支的总称.天干、地支互相配合,配成六十组为一周,周而复始,依次循环.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号为天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为地支.如:公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年.则2049年为农历( )A .己亥年B .己巳年C .己卯年D .戊辰年解析:选B .法一:由公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年,可知以公元纪年的尾数在天干中找出对应该尾数的天干,再将公元纪年除以12,用除不尽的余数在地支中查出对应该余数的地支,这样就得到了公元纪年的干支纪年.2049年对应的天干为“己”,因其除以12的余数为9,所以2049年对应的地支为“巳”,故2049年为农历己巳年.故选B .法二:易知(年份-3)除以10所得的余数对应天干,则2 049-3=2 046,2 046除以10所得的余数是6,即对应的天干为“己”.(年份-3)除以12所得的余数对应地支,则2 049-3=2 046,2 046除以12所得的余数是6,即对应的地支为“巳”,所以2049年为农历己巳年.故选B .2.北宋数学家沈括的主要成就之一为隙积术,所谓隙积,即“积之有隙”者,如累棋、层坛之类,这种长方台形状的物体垛积.设隙积共n 层,上底由a ×b 个物体组成,以下各层的长、宽依次增加一个物体,最下层(即下底)由c ×d 个物体组成,沈括给出求隙积中物体总数的公式为s =n 6[(2a +c )b +(2c +a )d ]+n6(c -a ),其中a 是上底长,b 是上底宽,c 是下底长,d 是下底宽,n 为层数.已知由若干个相同小球粘黏组成的隙积的三视图如图所示,则该隙积中所有小球的个数为( )A .83B .84C .85D .86解析:选C .由三视图知,n =5,a =3,b =1,c =7,d =5,代入公式s =n6[(2a +c )b +(2c+a )d ]+n6(c -a )得s =85,故选C .3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其意思为:“有一个人要走378里路,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,走了六天后(第六天刚好用完)到达目的地.”若将此问题改为“第6天到达目的地”,则此人第二天至少走了( )A .96里B .48里C .72里D .24里解析:选A .根据题意知,此人每天行走的路程构成了公比为12的等比数列.设第一天走a 1里,则第二天走a 2=12a 1(里).易知a 1[1-⎝⎛⎭⎫126]1-12≥378,则a 1≥192.则第二天至少走96里.故选A .4.《数术记遗》相传是汉末徐岳(约公元2世纪)所著,该书主要记述了:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算、计数共14种计算方法.某研究性学习小组3人分工搜集整理该14种计算方法的相关资料,其中一人4种,其余两人每人5种,则不同的分配方法种数是( )A .C 414C 510C 55A 33A 22B .C 414C 510C 55A 22C 55A 33 C .C 414C 510C 55A 22D .C 414C 510C 55解析:选A .先将14种计算方法分为三组,方法有C 414C 510C 55A 22种,再分配给3个人,方法有C 414C 510C 55A 22×A 33种.故选A . 5.我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(ɡuǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四个节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是( )A .五寸B .二尺五寸C .三尺五寸D .四尺五寸解析:选B .设从夏至到冬至的晷长依次构成等差数列{a n },公差为d ,a 1=15,a 13=135,则15+12d =135,解得d =10.所以a 2=15+10=25,所以小暑的晷长是25寸.故选B .6.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )A .π15B .2π5C .2π15D .4π15解析:选C .因为该直角三角形两直角边长分别为5步和12步,所以其斜边长为13步,设其内切圆的半径为r ,则12×5×12=12(5+12+13)r ,解得r =2.由几何概型的概率公式,得此点取自内切圆内的概率P =4π12×5×12=2π15.故选C .7.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤 000 0 艮 001 1 坎 010 2 巽0113依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( )A .33B .34C .36D .35解析:选B .由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B .8.《九章算术》中有如下问题:“今有卖牛二、羊五,以买一十三豕,有余钱一千;卖牛三、豕三,以买九羊,钱适足;卖六羊、八豕,以买五牛,钱不足六百,问牛、羊、豕价各几何?”依上文,设牛、羊、豕每头价格分别为x 元、y 元、z 元,设计如图所示的程序框图,则输出的x ,y ,z 的值分别是( )A .1 3009,600,1 1203B .1 200,500,300C .1 100,400,600D .300,500,1 200解析:选B .根据程序框图得:①y =300,z =4603,x =6 4009,i =1,满足i <3;②y =400,z =6803,x =8 6009,i =2,满足i <3;③y =500,z =300,x =1 200,i =3,不满足i <3; 故输出的x =1 200,y =500,z =300.故选B .9.(2019·洛阳市统考)如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为30°,若向弦图内随机抛掷200颗米粒(大小忽略不计,取3≈1.732),则落在小正方形(阴影)内的米粒数大约为( )A .20B .27C .54D .64解析:选B .设大正方形的边长为2,则小正方形的边长为3-1,所以向弦图内随机投掷一颗米粒,落入小正方形(阴影)内的概率为(3-1)24=1-32,向弦图内随机抛掷200颗米粒,落入小正方形(阴影)内的米粒数大约为200×(1-32)≈27,故选B . 10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈7264L 2h 相当于将圆锥体积公式中的π近似取为( )A .227B .258C .15750D .355113解析:选A .依题意,设圆锥的底面半径为r ,则V =13πr 2h ≈7264L 2h =7264(2πr )2h ,化简得π≈227.故选A .11.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A .392B .752C .39D .6018解析:选B .设下底面的长为x ⎝⎛⎭⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝⎛⎭⎫922+92×172+392=752.故选B .12.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,如图所示,鳖臑ABCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则函数y =f (x )的图象大致是( )解析:选A .如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则PQ ∥AB ,QR ∥CD .因为PQ ⊥BD ,又PQ ∩QR =Q ,所以BD ⊥平面PQR ,所以BD ⊥PR ,即PR 为△PBD 中BD 边上的高.设AB =BD =CD =1,则CP AC =x 3=PQ 1,即PQ =x3,又QR 1=BQ BC =APAC =3-x 3,所以QR =3-x 3, 所以PR =PQ 2+QR 2=⎝⎛⎭⎫x 32+⎝ ⎛⎭⎪⎫3-x 32=332x 2-23x +3, 所以f (x )=362x 2-23x +3=66⎝⎛⎭⎫x -322+34,故选A .二、填空题13.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n ,3)=12n 2+12n ;正方形数 N (n ,4)=n 2; 五边形数 N (n ,5)=32n 2-12n ;六边形数 N (n ,6)=2n 2-n ; ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________. 解析:易知n 2前的系数为12(k -2),而n 前的系数为12(4-k ).则N (n ,k )=12(k -2)n 2+12(4-k )n ,故N (10,24)=12×(24-2)×102+12×(4-24)×10=1 000.答案:1 00014. (2019·湖南师大附中模拟)庄子说:“一尺之棰,日取其半,万世不竭.”这句话描述的是一个数列问题,现用程序框图描述,如图所示,若输入某个正整数n 后,输出的S ∈⎝⎛⎭⎫1516,6364,则输入的n 的值为________.解析:框图中首先给累加变量S 赋值0,给循环变量k 赋值1, 输入n 的值后,执行循环体,S =12,k =1+1=2.若2>n 不成立,执行循环体,S =34,k =2+1=3.若3>n 不成立,执行循环体,S =78,k =3+1=4.。
2019年高考数学(理科)大二轮复习练习:专题二 函数与导数 专题能力训练8
专题能力训练8利用导数解不等式及参数的取值范围一、能力突破训练1.设f(x)=x ln x-ax2+(2a-1)x,a∈R.(1)令g(x)=f'(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.2.(2018全国Ⅲ,理21)已知函数f(x)=(2+x+ax2)·ln(1+x)-2x.(1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.3.已知函数f(x)=ax+x ln x的图象在x=e(e为自然对数的底数)处的切线的斜率为3.(1)求实数a的值;(2)若f(x)≤kx2对任意x>0成立,求实数k的取值范围;(3)当n>m>1(m,n∈N*)时,证明:.4.设函数f(x)=ax2-a-ln x,其中a∈R.(1)讨论f(x)的单调性;(2)确定a的所有可能取值,使得f(x)> -e1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).5.设函数f(x)=a ln x,g(x)=x2.(1)记g'(x)为g(x)的导函数,若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]内有解,求实数a的取值范围;(2)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.6.已知函数f(x)=-2(x+a)ln x+x2-2ax-2a2+a,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.二、思维提升训练7.已知函数f(x)= x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈,使得f(x0)=f.专题能力训练8利用导数解不等式及参数的取值范围一、能力突破训练1.解(1)由f'(x)=ln x-2ax+2a,可得g(x)=ln x-2ax+2a,x∈(0,+∞).则g'(x)=-2a=,当a≤0时,x∈(0,+∞)时,g'(x)>0,函数g(x)单调递增;当a>0时,x时,g'(x)>0,函数g(x)单调递增,x时,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)单调增区间为,单调减区间为(2)由(1)知,f'(1)=0.①当a≤0时,f'(x)单调递增,所以当x∈(0,1)时,f'(x)<0,f(x)单调递减.当x∈(1,+∞)时,f'(x)>0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.②当0<a<时,>1,由(1)知f'(x)在区间内单调递增,可得当x∈(0,1)时,f'(x)<0,x时,f'(x)>0.所以f(x)在区间(0,1)内单调递减,在区间内单调递增,所以f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f'(x)在区间(0,1)内单调递增,在区间(1,+∞)内单调递减,所以当x∈(0,+∞)时,f'(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当x时,f'(x)>0,f(x)单调递增,当x∈(1,+∞)时,f'(x)<0,f(x)单调递减,所以f(x)在x=1处取极大值,合题意.综上可知,实数a的取值范围为a>2.解(1)当a=0时,f(x)=(2+x)ln(1+x)-2x,f'(x)=ln(1+x)-,设函数g(x)=f'(x)=ln(1+x)-,则g'(x)=,当-1<x<0时,g'(x)<0;当x>0时,g'(x)>0.故当x>-1时,g(x)≥g(0)=0,且仅当x=0时,g(x)=0,从而f'(x)≥0,且仅当x=0时,f'(x)=0.所以f(x)在(-1,+∞)内单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)①若a≥0,由(1)知,当x>0时,f(x)≥(2+x)·ln(1+x)-2x>0=f(0),这与x=0是f(x)的极大值点矛盾.②若a<0,设函数h(x)= =ln(1+x)-由于当|x|<min时,2+x+ax2>0,故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x=0是f(x)的极大值点当且仅当x=0是h(x)的极大值点.h'(x)=若6a+1>0,则当0<x<-,且|x|<min时,h'(x)>0,故x=0不是h(x)的极大值点.若6a+1<0,则a2x2+4ax+6a+1=0存在根x1<0,故当x∈(x1,0),且|x|<min时,h'(x)<0,所以x=0不是h(x)的极大值点.若6a+1=0,则h'(x)=则当x∈(-1,0)时,h'(x)>0;当x∈(0,1)时,h'(x)<0.所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点.综上,a=-3.解(1)∵f(x)=ax+x ln x,∴f'(x)=a+ln x+1.又f(x)的图象在点x=e处的切线的斜率为3,∴f'(e)=3,即a+ln e+1=3,∴a=1.(2)由(1)知,f(x)=x+x ln x,若f(x)≤kx2对任意x>0成立,则k对任意x>0成立.令g(x)=,则问题转化为求g(x)的最大值,g'(x)==-令g'(x)=0,解得x=1.当0<x<1时,g'(x)>0,∴g(x)在区间(0,1)内是增函数;当x>1时,g'(x)<0,∴g(x)在区间(1,+∞)内是减函数.故g(x)在x=1处取得最大值g(1)=1,∴k≥1即为所求.(3)证明:令h(x)=,则h'(x)=由(2)知,x≥1+ln x(x>0),∴h'(x)≥0,∴h(x)是区间(1,+∞)内的增函数.∵n>m>1,∴h(n)>h(m),即,∴mn ln n-n ln n>mn ln m-m ln m,即mn ln n+m ln m>mn ln m+n ln n,∴ln n mn+ln m m>ln m mn+ln n n.整理,得ln(mn n)m>ln(nm m)n.∴(mn n)m>(nm m)n,4.解(1)f'(x)=2ax-(x>0).当a≤0时,f'(x)<0,f(x)在区间(0,+∞)内单调递减.当a>0时,由f'(x)=0,有x=此时,当x时,f'(x)<0,f(x)单调递减;当x时,f'(x)>0,f(x)单调递增.(2)令g(x)=,s(x)=e x-1-x.则s'(x)=e x-1-1.而当x>1时,s'(x)>0,所以s(x)在区间(1,+∞)内单调递增.又由s(1)=0,有s(x)>0,从而当x>1时,g(x)>0.当a≤0,x>1时,f(x)=a(x2-1)-ln x<0.故当f(x)>g(x)在区间(1,+∞)内恒成立时,必有a>0.当0<a<时,>1.由(1)有f<f(1)=0,而g>0,所以此时f(x)>g(x)在区间(1,+∞)内不恒成立.当a时,令h(x)=f(x)-g(x)(x≥1).当x>1时,h'(x)=2ax--e1-x>x->0.因此,h(x)在区间(1,+∞)单调递增.又因为h(1)=0,所以当x>1时,h(x)=f(x)-g(x)>0,即f(x)>g(x)恒成立.综上,a5.解(1)不等式f(x)+2g'(x)≤(a+3)x-g(x),即a ln x+2x≤(a+3)x-x2,化简,得a(x-ln x)x2-x.由x∈[1,e]知x-ln x>0,因而a设y=,则y'=∵当x∈(1,e)时,x-1>0,x+1-ln x>0,∴y'>0在x∈[1,e]时成立.由不等式有解,可得a≥y min=-,即实数a的取值范围是(2)当a=1时,f(x)=ln x.由m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,得mg(x1)-x1f(x1) >mg(x2)-x2f(x2)恒成立, 设t(x)=x2-x ln x (x>0).由题意知x1>x2>0,则当x∈(0,+∞)时函数t(x)单调递增,∴t'(x)=mx-ln x-1≥0恒成立,即m恒成立.因此,记h(x)=,得h'(x)=∵函数在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,∴函数h(x)在x=1处取得极大值,并且这个极大值就是函数h(x)的最大值.由此可得h(x)max=h(1)=1,故m≥1,结合已知条件m∈Z,m≤1,可得m=1.6.(1)解由已知,函数f(x)的定义域为(0,+∞),g(x)=f'(x)=2(x-a)-2ln x-2,所以g'(x)=2-当0<a<时,g(x)在区间内单调递增, 在区间内单调递减;当a时,g(x)在区间(0,+∞)内单调递增.(2)证明由f'(x)=2(x-a)-2ln x-2=0,解得a=令φ(x)=-2ln x+x2-2x-2则φ(1)=1>0,φ(e)=--2<0.故存在x0∈(1,e),使得φ(x0)=0.令a0=,u(x)=x-1-ln x(x≥1).由u'(x)=1-0知,函数u(x)在区间(1,+∞)内单调递增.所以0==a0<<1.即a0∈(0,1).当a=a0时,有f'(x0)=0,f(x0)=φ(x0)=0.由(1)知,f'(x)在区间(1,+∞)内单调递增,故当x∈(1,x0)时,f'(x)<0,从而f(x)>f(x0)=0;当x∈(x0,+∞)时,f'(x)>0,从而f(x)>f(x0)=0.所以,当x∈(1,+∞)时,f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.二、思维提升训练7.解(1)f'(x)=x2+2x+a,方程x2+2x+a=0的判别式为Δ=4-4a,①当a≥1时,Δ≤0,则f'(x)≥0,此时f(x)在R上是增函数;②当a<1时,方程x2+2x+a=0两根分别为x1=-1-,x2=-1+,解不等式x2+2x+a>0,解得x<-1-或x>-1+,解不等式x2+2x+a<0,解得-1-<x<-1+,此时,函数f(x)的单调递增区间为(-∞,-1-)和(-1+,+∞),单调递减区间为(-1-,-1+).综上所述,当a≥1时,函数f(x)的单调递增区间为(-∞,+∞);当a<1时,函数f(x)的单调递增区间为(-∞,-1-)和(-1+,+∞),单调递减区间为(-1-,-1+).(2)f(x0)-f+ax0+1--a-1=+a=+a+x0+(4+14x0+7+12a).若存在x0,使得f(x0)=f,则4+14x0+7+12a=0在内有解.由a<0,得Δ=142-16(7+12a)=4(21-48a)>0,故方程4+14x0+7+12a=0的两根为x1'=,x'2=由x0>0,得x0=x'2=,依题意,0<<1,即7<<11,所以49<21-48a<121,即-<a<-, 又由得a=-,故要使满足题意的x0存在,则a≠-综上,当a时,存在唯一的x0满足f(x0)=f,当a时,不存在x0满足f(x0)=f。
甘肃省兰州市第六十一中学(兰化一中)2023届高三第八次阶段考试数学理科试题
甘肃省兰州市第六十一中学(兰化一中)2023届高三第八
次阶段考试数学理科试题
学校:___________姓名:___________班级:___________考号:___________
2
⎝2⎭A.B.C.D.
28
二、填空题
三、解答题
17.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.
(1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.
18.某工厂采购了一批新的生产设备.经统计,设备正常状态下,生产的产品正品率为0.98.为监控设备生产过程,检验员每天从该设备生产的产品中随机抽取10件产品,并检测质量.规定:抽检的10件产品中,若至少出现2件次品,则认为设备生产过程出现了异常情况,需对设备进行检测及修理.
(1)假设设备正常状态,记X 表示一天内抽取的10件产品中的次品件数,求(2)P X ≥,并说明上述监控生产过程规定的合理性;
(2)该设备由甲、乙两个部件构成,若两个部件同时出现故障,则设备停止运转;若只有一个部件出现故障,则设备出现异常.已知设备出现异常是由甲部件故障造成的概率为p ,由乙部件故障造成的概率为1p -.若设备出现异常,需先检测其中一个部件,如果
AF。
(高三理科数学第一轮复习)第八章 第2节 空间几何体的表面积和体积
25
知识衍化体验
考点聚集突破
核心素养提升
@《创新设计》
【训练 2】 (1)如图所示,正三棱柱 ABC-A1B1C1 的底面边长为 2,侧棱长为 3,D 为 BC 中点,则三棱锥 A-B1DC1 的体积为( )
A.3
26
B.32
C.1
知识衍化体验
D.
3 2
考点聚集突破
核心素养提升
(2)某几何体的三视图如图所示,则该几何体的体积为( )
典例迁移
【例3】 (经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V
的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
A.4π
角度3 不规则几何体的体积 【例2-3】 如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,
△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )
2 A. 3
23
3 B. 3
4 C.3
知识衍化体养提升
解析 如图,分别过点A,B作EF的垂线,垂足分别为G,H,
)
解析 (1)锥体的体积等于底面面积与高之积的三分之一,故不正确.
(2)球的体积之比等于半径比的立方,故不正确.
答案 (1)× (2)× (3)√ (4)√
6
知识衍化体验
考点聚集突破
核心素养提升
@《创新设计》
2.(必修2P27练习1改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则
所以 EH∥FG,EH=FG,所以四边形 EHGF 为平行四边形,又 EG=HF,EH=HG,
所以四边形 EHGF 为正方形.又点 M 到平面 EHGF 的距离为12,所以四棱锥 M-EFGH
理工科大学生人文社会科学知识(之八)
第八章理工科大学生人文社会科学知识(之八)第Ⅰ卷客观题(共200分)一、判断题(每小题1分,共20分)在下列每小题的两个备选答案中选出一个正确答案。
1.世界上所有宗教信仰都只信奉代表善的神。
A.正确B.不正确2.存在主义哲学崛起于20世纪20年代,是西方哲学中一个非理性、主观主义的哲学派别,萨特、加缪等是其代表人物。
A.正确B.不正确3.“谎言重复百次便成了真理”。
这句话正确地阐释了真理与谬误在一定条件下是可以互相转化的道理。
A.正确B.不正确4.马克思是义务论伦理学的主要代表人物之一,因此我国的宪法规定公民除了拥有法律规定的基本权利之外,也要履行法律规定的基本义务。
A.正确B.不正确5.日本明治宪法颁行后,按英国和德国的模式建立了普通法院和行政法院系统。
A.正确B.不正确6.《左传》全称为《春秋左氏传》,又名《左氏春秋》,是我国第一部纪传体史书。
A.正确B.不正确7.张天翼在其作品中揭露了抗战中的破坏分子,如《华威先生》中的华威先生。
A.正确B.不正确8.文艺复兴运动的指导思想是人文主义,提倡以人为中心。
A.正确B.不正确9.古代汉语词汇之间存在着同义、反义、同音、同行、同源等各种关系,就同源词而言,必须是音同或音近并且意义相关,但意义相关的却并不都是同源词,如“关”与“闭”,意义相关但不同源,其音也相距甚远。
A.正确B.不正确10.同音词是指音相同而意义不同的词,古代汉语单音词多,因而同音词也相应的多一些。
同音词又可分为同音同形词和同音异形词两种,在古代汉语中,同音异形词比同音同形词要多一些。
A.正确B.不正确11.同形词是指两个词书写形式一样,但意思却不同。
古代汉语中同形词的产生有偶合、合并、假借三类。
A.正确B.不正确12.独舞对表演者的要求特别严格,独舞演员应有良好的身体素质、娴熟的技术技巧、高超的表现能力和全面的艺术修养。
A.正确B.不正确13.文革期间,一大批所谓的革命样板戏都是悲剧。
北师版高考总复习一轮理科数精品课件 第8章 立体几何 指点迷津(七) 空间几何体外接球的五种常见模型
相关信息集中到某一个直角三角形内,利用勾股定理求解,如图.
例4已知三棱锥M-ABC的四个顶点均在表面积为32π的球面上,AB=BC=
2 2 ,AC=4,则三棱锥M-ABC的体积的最大值为(
A.8 2
B.4+4 2
8+8 2
C. 3
16 2
R,cos∠ABC=
9 2
R= ,所以球的表面积为
8
=
1
2 2
,sin∠ABC= ,2R=
3
3
sin ∠
2
S=4πR =4π×
9 2 2 81π
= .
8
8
=
3
2 2
3
=
9 2
,
4
五、“双心”模型
“双心”模型:无法利用上面四种模型求解的问题,可利用球心、三角形(或
四边形等)外接圆的圆心以及外接圆与球的交点所构成的直角三角形进行
三、“汉堡”模型
“汉堡”模型是指对于直棱柱,应用数学建模素养,结合球与直棱柱的有关性
质,建立“汉堡”模型,上、下底面外接圆的圆心连线构成的线段的中点即为
直棱柱外接球球心,球心到各个顶点的距离都等于外接球的半径,如图.
例3(2022陕西榆林一模)我国古代数学名著《九章算术》中,将底面为直角
三角形,且侧棱垂直于底面的三棱柱称为堑堵.已知堑堵ABC-A1B1C1中,
球,∴球O的直径为长方体对角线的长,
即 2R= 2 + 2 + 2 = 4 + 9 + 16 = 29,
∴球O的表面积S=4πR2=29π.故选B.
高考理科数学总复习第八章 第六节 双曲线 (2)
1.双曲线的定义中易忽视 2a<|F1F2|这一条件.若 2a=|F1F2|, 则轨迹是以 F1,F2 为端点的两条射线,若 2a>|F1F2|,则轨迹 不存在. 2.注意区分双曲线中的 a,b,c 大小关系与椭圆中的 a,b,c 关系,在椭圆中 a2=b2+c2,而在双曲线中 c2=a2+b2. 3.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在 x 轴上,渐近线斜率为±ba,当焦点在 y 轴上,渐近线斜率为±ab.
2.双曲线的标准方程和几何性质
标准方程
xa22-by22=1(a>0,b>0)
ay22-xb22=1(a>0,b>0)
图形
标准方程
xa22-by22=1(a>0,b>0) ay22-xb22=1(a>0,b>0)
范围 x≤-a 或 x≥a,y∈R y≤-a 或 y≥a,x∈R
对称轴: 坐标轴 性 对称性 对称中心: 原点
第八章 平面解析几何 第六节 双曲线
C目录 ONTENTS
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业
高考·导航
1.了解双曲线的定义、几何图形和标准方程. 2.知道双曲线的简单几何性质.
主干知识 自主排查
1.双曲线的定义 满足以下三个条件的点的轨迹是双曲线: (1)在平面内; (2)与两定点 F1,F2 的距离的差的绝对值 等于非零常数; (3)非零常数 小于 |F1F2|.
mn
m1 ,n1异号,所以 mn<0.综上,“mn<0”是“方程 mx2+ny2=1 表示双曲线”的充要条件.
答案:C
3.(2017·高考全国卷Ⅲ)已知双曲线C:
x2 a2
高考总复习数学(理科)第八章 第五节第1课时椭圆的概念及其性质(基础课)
第五节 椭圆
最新考纲
1.了解椭圆的实际背景, 了解椭圆在刻画现实世界 和解决实际问题中的作 用. 2.掌握椭圆的定义、几何 图形、标准方程及简单几 何性质. 3.理解数形结合思想. 4.了解椭圆的简单应用.
考情索引
2018·全国卷Ⅰ,
T19 2018·全国卷Ⅱ,
T12 2018·全国卷Ⅲ,
4.已知F1,F2是椭圆C:
x2 a2
+
y2 b2
=1(a>b>0)的两个
焦点,P为椭圆C上的一点,且
P→F1⊥
→ PF2
.若△PF1F2的面
积为解9,析则:b=由定__义__,___|P_F.1|+|PF2|=2a,且P→F1⊥P→F2, 所以|PF1|2+|PF2|2=|F1F2|2=4c2, 所以(|PF1|+|PF2|)2-2|PF1||PF2|=4c2, 所以2|PF1||PF2|=4a2-4c2=4b2, 所以|PF1||PF2|=2b2. 所以S△PF1F2=12|PF1||PF2|=12×2b2=9,因此b=3
A.x32+y2=1
B.x32+y22=1
C.x92+y42=1
D.x92+y52=1
(3)(2018·全国卷Ⅰ)已知椭圆C:
x2 a2
+
y2 4
=1的一个焦
点为(2,0),则C的离心率为( )
1
1
2
22
A.3
B.2
C. 2
D. 3
解析:(1)F1(- 3,0),因为PF1⊥x轴,
所以P-
3,±12,所以|PF1|=12,
P到x轴的距离为1,所以y=±1,把y=±1代入
x2 5
物理专题8:分子动理论、热和功及气体状态参量考点例析
专题八:分子动理论、热和功及气体状态参量考点例析本部分主要包括分子动理论、内能、热力学第一定律、热力学第二定律、气体的状态参量及定性关系。
在高考中多以选择题、填空题的形式出现,理科综合一般只考一道选择题,占分比例较小,试题难度属于容易题或中档题,因此只要能识记和理解相关知识点,得到本部分试题的分数并不困难。
一、夯实基础知识1、理解并识记分子动理论的三个观点描述热现象的一个基本概念是温度。
凡是跟温度有关的现象都叫做热现象。
分子动理论是从物质微观结构的观点来研究热现象的理论。
它的基本内容是:物体是由大量分子组成的;分子永不停息地做无规则运动;分子间存在着相互作用力。
2、了解分子永不停息地做无规则运动的实验事实物体里的分子永不停息地做无规则运动,这种运动跟温度有关,所以通常把分子的这种运动叫做热运动。
(1)扩散现象和布朗运动都可以很好地证明分子的热运动。
(2)布朗运动是指悬浮在液体中的固体微粒的无规则运动。
关于布朗运动,要注意以下几点:①形成条件是:只要微粒足够小。
②温度越高,布朗运动越激烈。
③观察到的是固体微粒(不是液体,不是固体分子)的无规则运动,反映的是液体分子运动的无规则性。
④实验中描绘出的是某固体微粒每隔30秒的位置的连线,不是该微粒的运动轨迹。
3、了解分子力的特点分子力有如下几个特点:①分子间同时存在引力和斥力;②引力和斥力都随着距离的增大而减小;③斥力比引力变化得快。
4、深刻理解物体内能的概念⑴做热运动的分子具有的动能叫分子动能。
温度是物体分子热运动的平均动能的标志。
温度越高,分子做热运动的平均动能越大。
⑵由分子间相对位置决定的势能叫分子势能。
分子力做正功时分子势能减小;分子力作负功时分子势能增大。
(所有势能都有同样结论:重力做正功重力势能减小、电场力做正功电势能减小。
)由上面的分析可以得出:当r=r0即分子处于平衡位置时分子势能最小。
不论r从r0增大还是减小,分子势能都将增大。
分子势能与物体的体积有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-������ 2
> 2, ������ > 0,
∴ 2-������ > 4,
(������-2) -4(5-m) > 0,
2
热点重点难点专题透析·数学(理科)
������ > -5,
∴ ������ < -2,
������ > 4 或������ < -4, 【答案】(-5,-4)
∴-5<m<-4.
.
热点重点难点专题透析·数学(理科)
【解析】设出点 D 的坐标,求出点 D 的轨迹后求解. 设 D(x,y),由������������=(x-3,y)及|������������|=1 知(x-3) +y =1,即
2 2
动点 D 的轨迹为以点 C 为圆心的单位圆. 又������������+������������+������������ =(-1,0)+(0, 3)+(x,y)=(x-1,y+ 3),
热点重点难点专题透析·数学(理科)
需书写过程,因而解选择题的有关策略、方法有时也适 合于填空题. 填空题大多数能在课本中找到原型和背景,故可以化 归为我们熟知的题目或基本题型.填空题不需过程,不设中 间分值,更易失分,因而在解答过程中应力求准确无误. 填空题虽题小,但跨度大,覆盖面广,形式灵活,可以有 目的、和谐地结合一些问题,突出训练学生准确、严谨、全 面、灵活地运用知识的能力和基本运算能力,突出以图助算、 列表分析、精算与估算相结合等计算能力.要想又快又准地 答好填空题,除直接推理计算外,还要讲究一些解题策略, 有时要尽量避开常规解法.
热点重点难点专题透析·数学(理科)
【题型示例】 常规填空题的解法 方法一:直接求解法 所谓直接法,就是直接从题设条件出发 ,运用有关概念、 性质、定理、法则和公式等知识,通过严密的推理和准确的 运算,从而得出正确的结论.直接法是填空题最基本的解法 , 是解决大多数填空题的解法. 复数(
1+i 1 -i
C(5,6),B(2,2),A(5,-5)构成的三角形内部及边界区
域,m2+n2 的几何意义是点(m,n)到原点的距离的平方,易见 点 C 到原点的距离最大,故 m2+n2 的最大值为 61,利用点到
1 3
7
6
热点重点难点专题透析·数学(理科)
直线的距离公式可得原点到直线 3m+n-3=0 的距离为
.
热点重点难点专题透析·数学(理科)
【解析】 不妨设点 M(0,2),则点 M 关于椭圆 C 的焦点的 对称点分别为 A(-2 5,-2),B(2 5,-2),设线段 MN 的中点为 (0,-2),则点 N(0,-6),所以 ������������ + ������������ =12. 【答案】12 在△ABC 中,∠BAC=120°,AB=2,AC=1,D 是边 BC 上的一点(包括端点),则������������²������������ 的取值范围是
-1≤x0≤1,所以������������ ²������������ 的取值范围是[-5,2].
【答案】[-5,2] 已知△ABC 中,角 A,B,C 所对的边长分别为 a,b,c, 且角 A,B,C 成等差数列,△ABC 的面积 S= 的值为
������ 2 -(a -c ) ������
2
,则实数 k
.
热点重点难点专题透析·数学(理科)
【解析】 建立平面直角坐标系,不妨设 A(0,0),C(1,0), 则 B(-1, 3),则 BC 所在的方程为 y=- x+ ,设点 D 的坐标
2 2 3 3 7 2 3 2
为(x0,y0),则-1≤x0≤1,所以������������ ²������������ =2x0- 3y0= x0- ,因为
热点重点难点专题透析·数学(理科)
方法四:等价转化法 通过“化复杂为简单,化陌生为熟悉”将问题等价转化 成便于解决的问题,从而迅速准确地得到结果. (2014 湖南卷)在平面直角坐标系中,O 为原 点,A(-1,0),B(0, 3),C(3,0),动点 D 满足 ������������ =1,则 ������������ + ������������ + ������������²������������的取值范围是
.
热点重点难点专题透析·数学(理科)
【解析】建立平面直角坐标系如下图,设点 P 的坐标为 (x,y), 则������������=(1,0),������������=(x,y),所以������������² ������������=x,因为点 P 在圆 上,所以-5≤x≤5,即-5≤������������²������������≤5. 【答案】[-5,5]
=
,1+tan ������ + ������ =1+cos ������sin ������+ sin ������ =0,所以有 cos Asin B+sin
tan ������ 2������
sin ������ cos ������ 2sin ������
Acos B+2sin Ccos A=0,即 sin(A+B)+2sin Ccos A=0,在三 角形中 sin(A+B)=sin C≠0,于是有 1+2cos A=0,cos A=-2,A=
热点重点难点专题透析·数学(理科)
数学填空题的类型 根据填空时所填写的内容形式,可以将填空题分成两 种类型: 一是定量型,要求考生填写数值、数集或数量关系,如: 方程的解,不等式的解集,函数的定义域、值域、最大值或 最小值,线段的长度,角度的大小,等等.由于填空题和选择 题相比,缺少选择的信息,所以高考题中多数是以定量型问 题出现. 二是定性型,要求填写的是具有某种性质的对象或者 填写给定的数学对象的某种性质,如:给定二次曲线的焦点 坐标、离心率等.近几年出现了定性型的具有多重选择性的 填空题.
���� 2
≤2.
π
(0≤x≤1)的图象如图所示.要使不等
≥kx 在[0,1]上恒成立,则 k≤1.
【答案】k≤1
热点重点难点专题透析·数学(理科)
如图,A 是半径为 5 的圆 O 上的一个定点,单位向 量������������在 A 点处与圆 O 相切,点 P 是圆 O 上的一个动点,且点
.
热点重点难点专题透析·数学(理科)
【解析】(法一)因为角 A,B,C 成等差数列,即 2B=A+C, 又 A+B+C=π,所以 B= ,S= acsin B= ac,又
π 1 3 ������ 2 -(a -c ) ������
2
S=
=
3 2 -2������������ cos ������ +2������������ ������������ ������
热点重点难点专题透析·数学(理科)
解数学填空题的原则 解答填空题时,由于不反映过程,只要求结果,故对正 确性的要求比解答题更高、更严格.《考试说明》中对解答 填空题提出的基本要求是“正确、合理、迅速”.为此在解 填空题时要做到:快——运算要快,力戒小题大做;稳—— 变形要稳,不可操之过急;全——答案要全,力避残缺不齐; 活——解题要活,不要生搬硬套;细——审题要细,不能粗 心大意.
热点重点难点专题透析·数学(理科)
(2014 辽宁卷)已知椭圆 C: 9 + 4 =1,点 M 与椭圆 C 的焦点不重合.若点 M 关于椭圆 C 的焦点的对称点分别为
������ 2 ������ 2
A,B,线段 MN 的中点在 C 上,则 ������������ + ������������ =
热点重点难点专题透析·数学(理科)
【引言】 填空题是将一个数学真命题,写成其中缺少一些语句 的不完整形式,要求学生在指定的空位上,将缺少的语句填 写清楚、准确.它是一个不完整的陈述句形式,填写的可以 是一个词语、数字、符号、数学语句等. 数学填空题的特点 填空题缺少选择的信息,故解答题的求解思路可以原 封不动地移植到填空题上.但填空题既不用说明理由,又无
1
【答案】2 在△ABC 中,角 A、B、C 所对的边分别为 a、b、
1
c.若 1+tan ������ + ������ =0,则 A=
tan ������ 2������
.
热点重点难点专题透析·数学(理科)
【解析】由正弦定理可得
������ sin ������ ������ sin ������
������-������������ + ������ ≥ 0, 若点(1,1)在不等式组 2������������-������������-4 ≤ 0,所表示 ������������ ≥ 3������-3������ 的平面区域内,则 m +n 的取值范围是
2 2
.
热点重点难点专题透析·数学(理科)
1 2π 3
.
2π 3
【答案】
(2014 湖北卷)设向量 a=(3,3),b=(1,-1),若(a+
λb)⊥(a-λb),则实数λ=
.
热点重点难点专题透析·数学(理科)
【解析】 因为 a+λb=(3+λ,3-λ),a-λb=(3-λ,3+λ), 因为(a+λb)⊥(a-λb),所以(3+λ)(3-λ)+(3-λ)(3+ λ)=0,解得λ=±3. 【答案】±3 方法二:特殊化求解法 当答案是定值且用的特殊值是题意的某种情况时,那 么我们用特例求解就能达到好的效果.特殊化求解就是用 特殊值(特殊图形、特殊位置)代替题设中的普遍条件,得出 一般的结论.常用的特例有特殊数值、特殊角、特殊数列、 特殊函数、特殊图形、特殊位置等.这种方法实际上是一种 “小题小做”的解题策略,对解答某些填空题有时往往十分 奏效.