高中数学专项训练3
高中数学3符号专项测试同步训练
高中数学3符号专项测试同步训练2020.031,定义在R 上的函数)(x f 满足2)21()21(=-++x f x f ,则)83()82()81(f f f ++ )81(f ++Λ= 。
2,在占地3250亩的荒山上建造森林公园,2000年春季开始植树100亩,以后每年春季都比上一年多植树50亩,直到荒山全部绿化完为止。
(1)哪一年春季才能将荒山全部绿化完?(2)如果新植的树每亩木材量是2m 3,树木每年自然增长率是20%,那么全部绿化完,该森林公园的木材蓄量是多少m 3?3,已知数列}{n a 的首项11=a ,其前n 项的和为n S ,且对于任意的正整数n ,有n n S a n ,,成等差数列。
(1)求证:数列}2{++n S n 成等比数列;(2)求数列}{n a 的通项公式。
4,设函数)(x f y =的图象与x y 2=的图象关于直线0=-y x 对称,则函数)6(2x x f y -=的递增区间为 。
5,设n S 是等差数列{}n a 的前n 项和,已知366=S ,324=n S ,若)6(1446>=-n S n ,则n = 。
6,设函数)0()(2>++=a c bx ax x f ,满足)1()1(x f x f +=-,则)2(x f 与)3(x f 的大小关系是( )A . )3()2(x x f f >B .)3()2(x x f f < C . )3()2(x x f f ≥ D .)3()2(x x f f ≤7,函数13)(+-=x ax x f ,若它的反函数是x x x f -+=-13)(1,则a = 。
8,函数1log )(log 221212+-=x x y 的单调递增区间是( )A .⎪⎪⎭⎫⎢⎣⎡+∞,284 B .⎥⎦⎤ ⎝⎛41,0 C . ⎥⎦⎤ ⎝⎛22,0 D . ⎥⎦⎤ ⎝⎛22,41 9,若443322104)1(x a x a x a x a a x ++++=+,则4321a a a a +++的值为( )A .0B .15C .16D .1710,已知x x g f x x x f -=+=4)]([(,35)(,(1)求)(x g 的解析式;(2)求)5(g 的值。
高中数学等差数列选择题专项训练专题复习含解析(3)
一、等差数列选择题1.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60 B .120C .160D .240解析:B 【分析】利用等差数列的性质,由7916+=a a ,得到88a =,然后由15815S a =求解. 【详解】因为7916+=a a ,所以由等差数列的性质得978216a a a +==, 解得88a =, 所以()11515815151581202a a S a +===⨯=. 故选:B2.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13 B .26C .52D .56解析:B 【分析】利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=, 因为()()3589133224a a a a a ++++=, 可得410322324a a ⨯+⨯=,即4104a a +=, 故数列的前13项之和()()11341013131313426222a a a a S ++⨯====. 故选:B.3.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103 B .107C .109D .105解析:B 【分析】根据题意可知正整数能被21整除余2,即可写出通项,求出答案.【详解】根据题意可知正整数能被21整除余2,21+2n a n ∴=, 5215+2107a ∴=⨯=.故选:B.4.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12 B .20C .40D .100解析:B 【分析】由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:1011045100S a d =+=,12920a d ∴+=, 4712920a a a d ∴+=+=.故选:B.5.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .13解析:B 【分析】设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B6.已知数列{}n a 的前项和221n S n =+,n *∈N ,则5a =( )A .20B .17C .18D .19解析:C 【分析】根据题中条件,由554a S S =-,即可得出结果. 【详解】因为数列{}n a 的前项和2*21,n S n n N =+∈, 所以22554(251)(241)18a S S =-=⨯+-⨯+=. 故选:C .7.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220aa a +++=( )A .10B .145C .300D .320解析:C 【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解。
高中数学第三章函数的概念与性质专项训练题(带答案)
高中数学第三章函数的概念与性质专项训练题单选题1、若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f(a)−f(b)a−b>0成立,则必有( )A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )先增后减D .函数f (x )先减后增 答案:A分析:根据条件可得当a <b 时,f (a )<f (b ),或当a >b 时,f (a )>f (b ),从而可判断. 由f(a)−f(b)a−b>0知f (a )-f (b )与a -b 同号,即当a <b 时,f (a )<f (b ),或当a >b 时,f (a )>f (b ),所以f (x )在R 上是增函数. 故选:A.2、若函数y =√ax 2+4x +1的值域为[0,+∞),则a 的取值范围为( ) A .(0,4)B .(4,+∞)C .[0,4]D .[4,+∞) 答案:C分析:当a =0时易知满足题意;当a ≠0时,根据f (x )的值域包含[0,+∞),结合二次函数性质可得结果. 当a =0时,y =√4x +1≥0,即值域为[0,+∞),满足题意; 若a ≠0,设f (x )=ax 2+4x +1,则需f (x )的值域包含[0,+∞), ∴{a >0Δ=16−4a ≥0,解得:0<a ≤4;综上所述:a 的取值范围为[0,4]. 故选:C.3、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B4、已知幂函数y =x m 2−2m−3(m ∈N ∗)的图象关于y 轴对称,且在(0,+∞)上单调递减,则满足(a +1)−m3<(3−2a )−m 3的a 的取值范围为( )A .(0,+∞)B .(−23,+∞) C .(0,32)D .(−∞,−1)∪(23,32)答案:D分析:由条件知m 2−2m −3<0,m ∈N ∗,可得m =1.再利用函数y =x −13的单调性,分类讨论可解不等式. 幂函数y =x m2−2m−3(m ∈N ∗)在(0,+∞)上单调递减,故m 2−2m −3<0,解得−1<m <3.又m ∈N ∗,故m =1或2.当m =1时,y =x −4的图象关于y 轴对称,满足题意; 当m =2时,y =x −3的图象不关于y 轴对称,舍去,故m =1. 不等式化为(a +1)−13<(3−2a )−13,函数y =x −13在(−∞,0)和(0,+∞)上单调递减,故a +1>3−2a >0或0>a +1>3−2a 或a +1<0<3−2a ,解得a <−1或23<a <32.故应选:D .5、已知函数f (x +1)的定义域为(−1,1),则f (|x |)的定义域为( ) A .(−2,2)B .(−2,0)∪(0,2) C .(−1,0)∪(0,1)D .(−12,0) 答案:B分析:根据抽象函数定义域的求法求得正确答案. 依题意函数f (x +1)的定义域为(−1,1), −1<x <1⇒0<x +1<2, 所以0<|x |<2,解得−2<x<0或0<x<2,所以f(|x|)的定义域为(−2,0)∪(0,2).故选:B6、已知函数f(x)是定义在R上的偶函数,f(x)在[0,+∞)上单调递减,且f(3)=0,则不等式(2x−5)f(x−1)<0的解集为()A.(−2,52)∪(4,+∞)B.(4,+∞)C.(−∞,−2)∪[52,4]D.(−∞,−2)答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x−5>0f(x−1)<0、{2x−5<0f(x−1)>0求解集即可. 由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0,对于(2x−5)f(x−1)<0,当{2x−5>0f(x−1)<0,即{x>52x−1<−3或{x>52x−1>3,可得x>4;当{2x−5<0f(x−1)>0,即{x<52−3<x−1<3,可得−2<x<52;综上,解集为(−2,52)∪(4,+∞).故选:A7、已知函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),当x∈(0,1]时,f(x)=x2,则f(−2021)+f(2022)=()A.−4B.4C.−1D.1答案:C分析:由已知条件可得x>1时f(x+2)=f(x),然后利用f(−2021)+f(2022)=−f(1)+f(0)求解即可.因为函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),所以f(0)=0,f(2−x)=−f(x)=f(−x),即可得x>1时f(x+2)=f(x),因为当x∈(0,1]时,f(x)=x2,所以f(−2021)+f(2022)=−f(2×1010+1)+f(2×1011+0)=−f(1)+f(0)=−1+0=−1, 故选:C 8、函数f (x )=√−x 2+5x+6x+1的定义域( )A .(−∞,−1]∪[6,+∞)B .(−∞,−1)∪[6,+∞)C .(−1,6]D .[2,3] 答案:C分析:解不等式组{−x 2+5x +6≥0x +1≠0得出定义域.{−x 2+5x +6≥0x +1≠0,解得−1<x ⩽6即函数f (x )的定义域(−1,6] 故选:C 多选题9、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C[0,1]项错误,D项正确.故选:ABD10、下列各组函数是同一函数的是()A.y=|x|x与y=1B.y=√(x−1)2与y=x−1C.y=(√x)2x 与y=(√x)2D.y=x3+xx2+1与y=x答案:CD分析:根据同一函数的概念,逐一分析各个选项,即可得答案.对于A:函数y=|x|x的定义域为x≠0,函数y=1定义域为R,两函数定义域不同,故不是同一函数;对于B:函数y=√(x−1)2定义域为R,化简可得y=|x−1|,与y=x−1解析式不同,故不是同一函数;对于C:函数y=(√x)2x 定义域为x>0,化简可得y=1(x>0),函数y=(√x)2定义域为x>0,化简可得y=1(x>0),故为同一函数;对于D:函数y=x3+xx2+1定义域为R,化简可得y=x,与y=x为同一函数.故选:CD11、如图所示是函数y=f(x)的图象,图中x正半轴曲线与虚线无限接近但是永不相交,则以下描述正确的是()A.函数f(x)的定义域为[−4,4)B.函数f(x)的值域为[0,+∞)C.此函数在定义域内是增函数D.对于任意的y∈(5,+∞),都有唯一的自变量x与之对应答案:BD分析:利用函数的图象判断.由图象知:A.函数f(x)的定义域为[−4,0]∪[1,4),故错误;B.函数f(x)的值域为[0,+∞),故正确;C. 函数f(x)在[−4,0],[1,4)上递增,但在定义域内不单调,故错误;D.对于任意的y∈(5,+∞),都有唯一的自变量x与之对应,故正确;故选:BD12、已知函数y=(m−1)x m2−m为幂函数,则该函数为()A.奇函数B.偶函数C.区间(0,+∞)上的增函数D.区间(0,+∞)上的减函数答案:BC分析:由幂函数的概念可得m的值,根据幂函数的性质可得结果.由y=(m−1)x m2−m为幂函数,得m−1=1,即m=2,则该函数为y=x2,故该函数为偶函数,且在区间(0,+∞)上是增函数,故选:BC.13、已知函数f(x)是定义在[−4,0)∪(0,4]上的奇函数,当x∈(0,4]时,f(x)的图象如图所示,那么满足不等式f(x)−3x+1−3≥0的x的可能取值是()3A .-4B .-1C .12D .2 答案:AC分析:把“求f(x)−3x+1−33≥0的解集”转化为“求f (x )≥3x −1的解集”,进而转化为观察两个函数图象的特征,即可求出不等式的解集.因为函数f (x )是定义在[−4,0)∪(0,4]上的奇函数,由题意,画出函数f (x )在[−4,0)∪(0,4]上的图象(如图),在同一坐标系内画出y =3x −1的图象,因为f (2)=89,所以f (−2)=−f (2)=−89=3−2−1,又f (1)=2=31−1,所以f (x )的图象与y =3x −1的图象交于(−2,−89)和(1,2)两点,f (x )−3x+1−33≥0即为f (x )≥3x −1,由图象可得,只需−4≤x ≤−2或0<x ≤1,故A ,C 可能取到故选:AC . 填空题14、函数y =√x 2−1的单调递减区间为___________. 答案:(−∞,−1](或(−∞,−1)都对)解析:利用复合函数的单调性,同增异减,即可得到答案; 令t =x 2−1,则y =√t ,∵ t =x 2−1在(−∞,−1)单调递减,y =√t 在(0,+∞)单调递增, 根据复合函数的单调性可得:y =√x 2−1在(−∞,−1)单调递减,所以答案是:(−∞,−1).15、为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,的大小评价在[a,b]这段时间内企业污水治理设企业的污水排放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是____________________.答案:①②③分析:根据定义逐一判断,即可得到结果表示区间端点连线斜率的负数,−f(b)−f(a)b−a在[t1,t2]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,甲企业在[t1,t2]这段时间内,甲的斜率最小,其相反数最大,即在[t1,t2]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;所以答案是:①②③小提示:本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.16、已知幂函数f(x)的图象过点(3,13),则此函数的解析式为______.答案:f(x)=x−1##f(x)=1x分析:设出幂函数f(x),代入点(3,13)即可求解.由题意,设f(x)=xα,代入点(3,13)得13=3α,解得α=−1,则f(x)=x−1.所以答案是:f(x)=x−1.解答题17、已知函数f(x)=x2x2+1(1)证明:f(x)为偶函数;(2)判断g(x)=f(x)+x的单调性并用定义证明;(3)解不等式f(x)−f(x−2)+2x>2答案:(1)证明见解析(2)g(x)为R上的增函数,证明见解析(3)(1,+∞)分析:(1)根据奇偶性的定义证明即可;(2)首先得到g(x)的解析式,再利用定义法证明函数的单调性,按照设元、作差、变形、判断符号,下结论的步骤完成即可;(3)根据函数的单调性将函数不等式转化为自变量的不等式,解得即可;(1)证明:f(x)的定义域为R,又f(−x)=(−x)2(−x)2+1=x2x2+1=f(x),故f(x)为偶函数;(2)解:g(x)=f(x)+x=x2x2+1+x,所以g(x)为R上的增函数,证明:任取x1,x2∈R,且x1>x2,g(x1)−g(x2)=x12x12+1+x1−(x22x22+1+x2)=x1−x2+x12x12+1−x22x22+1=x1−x2+x12(x22+1)−x22(x12+1) (x12+1)(x22+1)=x1−x2+x12−x22(x12+1)(x22+1)=(x1−x2)[1+x1+x2(x12+1)(x22+1)]=(x1−x2)[x12x22+x12+x22+1+x1+x2 (x12+1)(x22+1)]=(x1−x2)[x12x22+(x1+12)2+(x2+12)2+12(x12+1)(x22+1)].∵x1>x2,∴x2−x2>0,又x12x22+(x1+12)2+(x2+12)2+12(x12+1)(x22+1)>0,∴(x1−x2)[x12x22+(x1+12)2+(x2+12)2+12(x12+1)(x22+1)]>0,即g(x1)>g(x2),∴g(x)为R上的增函数;(3)解:不等式f(x)−f(x−2)+2x>2,等价于f(x)+x>f(x−2)+2−x=f(2−x)+2−x即g(x)>g(2−x),∵g(x)为R上的增函数,∴x>2−x,解得x>1,故不等式的解集为(1,+∞).18、函数f(x)对任意x,y∈R,总有f(x+y)=f(x)+f(y),当x<0时,f(x)<0,且f(1)=13.(1)证明f(x)是奇函数;(2)证明f(x)在R上是单调递增函数;(3)若f(x)+f(x−3)≥−1,求实数x的取值范围.答案:(1)证明见解析;(2)证明见解析;(3)[0,+∞).分析:(1)先用赋值法求出f(0)=0,令y=−x,即可根据定义证明f(x)是奇函数;(2)利用定义法证明f(x)是R上的增函数;(3)先把f(x)+f(x−3)≥−1转化为f(2x−3)≥f(−3),利用单调性解不等式即可.(1)令x =y =0,则f (0)=f (0)+f (0),解得f (0)=0,令y =−x ,则f (0)=f (x )+f (−x ),即f (x )+f (−x )=0,即f (−x )=−f (x ), 易知f (x )的定义域为R ,关于原点对称,所以函数f (x )是奇函数;(2)任取x 1,x 2∈R ,且x 1<x 2,则x 1−x 2<0,因为当x <0时,f (x )<0,所以f (x 1−x 2)<0,则f (x 1)−f (x 2)=f (x 1)+f (−x 2)=f (x 1−x 2)<0,即f (x 1)<f (x 2),所以函数f (x )是R 上的增函数;(3)由f (1)=13,得f (2)=23,f (3)=1,又由f (x )是奇函数得f (−3)=−1. 由f (x )+f (x −3)≥−1,得f (2x −3)≥f (−3),因为函数f (x )是R 上的增函数, 所以2x −3≥−3,解得x ≥0,故实数x 的取值范围为[0,+∞).。
高中数学选择性必修一 高考训练 练习习题 课时作业(三)
课时作业(三) 空间向量基本定理[练基础]1.下列说法正确的是( )A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .直线的方向向量有且仅有一个2.设向量{a ,b ,c }是空间一个基底,则一定可以与向量p =a +b ,q =a -b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a 或b3.如图,在三棱柱ABC A 1B 1C 1中,M 为A 1C 1的中点,若AB → =a ,BC →=b ,AA 1⃗⃗⃗⃗⃗⃗⃗ =c ,则BM →可表示为( )A .-12 a -12 b +cB .12 a +12 b +cC .-12 a +12 b +cD .12 a -12 b +c4.如图,在四面体OABC 中,OA → =a ,OB → =b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →可用向量a ,b ,c 表示为( )A .12 a +12 b +12 cB .12 a +14 b +14 cC .14 a +12 b +14 cD .14 a +14 b +12c5.(多选)若向量{a ,b ,c }构成空间的一个基底,则下列向量共面的是( ) A .a +b ,a -b ,a +2b B .a -b ,a +c ,b +c C .a -b ,c ,a +b +cD .a -2b ,b +c ,a +c -b6.在平行六面体ABCD A 1B 1C 1D 1中,设AB → =a ,AD →=b ,AA 1⃗⃗⃗⃗⃗⃗⃗ =c ,用a 、b 、c 作为基底向量表示D 1B ⃗⃗⃗⃗⃗⃗⃗ =________.7.已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 平行,则x =______,y =________.8.如图,在单位正方体ABCD A 1B 1C 1D 1中,点E ,F 分别是棱B 1C 1,CC 1的中点.设AB →=i ,AD → =j ,AA 1⃗⃗⃗⃗⃗⃗⃗ =k ,试用向量i ,j ,k 表示AE → 和AF → .[提能力]9.如图,平行六面体ABCD A ′B ′C ′D ′,其中AB =4,AD =3,AA ′=3,∠BAD =90°,∠BAA ′=60°,∠DAA ′=60°,则AC ′的长为( )A .55B .65C .85D .9510.(多选)如图,一个结晶体的形状为平行六面体ABCD A 1B 1C 1D 1,其中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法中正确的是( )A .AC 1=66B .AC 1⊥DBC .向量B 1C ⃗⃗⃗⃗⃗⃗⃗ 与AA 1⃗⃗⃗⃗⃗⃗⃗ 的夹角是60°D .BD 1与AC 所成角的余弦值为6311.如图所示,三棱柱ABC A 1B 1C 1中,M ,N 分别是A 1B 和B 1C 1上的点,且BM =3A 1M ,C 1N =2B 1N .设MN → =xAA 1+yAB → +zAC →(x ,y ,z ∈R ),则x +y +z 的值为________.12.如图,在直三棱柱ABC A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.[培优生]13.在四面体O ABC 中,G 是底面△ABC 的重心,且OG → =xOA → +yOB → +zOC →,则log 3|xyz |等于( )A .-3B .-1C .1D .3。
高中数学不等式训练习题(3套)
不等式训练1A 一、选择题(六个小题,每题5分,共30分)1.若02522>-+-x x ,则221442-++-x x x 等于( )A .54-xB .3-C .3D .x 45-2.函数y =log 21(x +11+x +1) (x > 1)的最大值是 ( )A .-2B .2C .-3D .33.不等式xx --213≥1的解集是 ( ) A .{x|43≤x ≤2} B .{x|43≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( )小,二、填空题(五个小题,每题6分,共30分)1.不等式组⎩⎨⎧->-≥32x x 的负整数解是____________________。
2.一个两位数的个位数字比十位数字大2,若这个两位数小于30,则这个两位数为____________________。
3.不等式0212<-+xx 的解集是__________________。
4.当=x ___________时,函数)2(22x x y -=有最_______值,其值是_________。
5.若f(n)=)(21)(,1)(,122N n nn n n n g n n ∈=--=-+ϕ,用不等号 连结起来为____________.三、解答题(四个小题,每题10分,共40分)1.解log (2x – 3)(x 2-3)>02.不等式049)1(220822<+++++-m x m mx x x 的解集为R,求实数m 的取值范围。
B 一、选择题1.一元二次不等式ax 2+bx +2>0的解集是(-21,31),则a +b 的值是_____。
和 84>x 0)>-x .②、③和④3.关于x 的不等式(k 2-2k +25)x <(k 2-2k +25)1–x 的解集是 ( ) A .x >21 B .x <21 C .x >2 D .x <2 4.下列各函数中,最小值为2的是 ( ) A .y=x +x 1 B .y= sinx +x sin 1,x ∈(0,2π) C .y=2322++x x D .y=x +12-x5.如果x 2+y 2=1,则3x -4y 的最大值是 ( )A .3B .51 C .4 D .5 6.已知函数y=ax 2+bx +c(a ≠0)的图象经过点(-1,3)和(1,1)两点,若0<c <1,则a 的取值范围是 ( )A .(1,3)B . (1,2)C .[2,3)D .[1,3]二、填空题1.设实数x 、y 满足x 2+2xy -1=0,则x +y 的取值范围是___________。
高二高三数学专项练习题推荐
高二高三数学专项练习题推荐数学在高中阶段是一门非常重要的学科,也是学生们常常觉得难以掌握的一门学科。
为了帮助高二高三的学生们更好地学习数学,提高数学水平,本文将推荐一些适合做专项练习的数学题。
一、代数与函数1. 二次函数的性质:求解二次函数的定义域、值域,以及最值等问题。
这些题目有助于理解和掌握二次函数的基本性质,并提高解题能力。
2. 三角函数的运算:包括角度和弧度的互相转化、正弦、余弦、正切等三角函数的定义、性质以及运算等。
这些题目有利于加深对三角函数概念的理解,并提高计算和推导的能力。
3. 幂函数与指数函数的应用:涉及到幂函数与指数函数的图像、性质及其应用问题。
这些题目可以帮助学生掌握幂函数与指数函数的特点,并培养抽象思维和数学建模能力。
二、几何与立体几何1. 平面几何基础:重点包括平面上的图形性质、直线、圆的性质、面积和周长的计算等。
这些题目能够帮助学生巩固和提高平面几何的基本概念和计算技巧。
2. 三角形的性质与判定:如三角形的内角和定理、外角和定理,以及三角形相似、全等的判定等。
这些题目可以加深对三角形性质和判定方法的理解。
3. 空间几何:包括立体图形的面积与体积的计算、平行四边形体的性质、球的性质和圆柱、圆锥、棱柱等立体图形的特点与计算等。
通过练习这些题目,学生可以提升对空间几何的理解和解题能力。
三、概率与统计1. 事件与概率:包括事件的概念、概率的性质、计算等。
这些题目有助于培养学生对事件与概率的敏感性和分析问题的能力。
2. 统计分析:主要涉及数据收集、整理、分析和解读等。
练习这些题目可以帮助学生提高统计分析的能力,并培养良好的数据处理和解读的思维习惯。
四、数列与数学归纳法1. 等差数列与等比数列:重点包括数列的通项公式、求和公式等。
这些题目能够帮助学生加深对数列的理解,并提高运用数学归纳法解题的能力。
2. 数列与函数的关系:涉及到数列与函数的图像、性质的联系与应用等。
练习这些题目可以加深对数列与函数的关系的理解,并提高数学建模能力。
【高中数学竞赛专题大全】 竞赛专题3 三角函数(50题竞赛真题强化训练)解析版+原卷版
【高中数学竞赛专题大全】 竞赛专题3 三角函数 (50题竞赛真题强化训练)一、单选题1.(2018·吉林·高三竞赛)已知()sin 2cos xf x x=+,则对任意x ∈R ,下列说法中错误的是( ) A .()1sin 3f x x ≥B .()f x x ≤C .()f x ≤D .()()0f x f x ππ++-=【答案】A 【解析】 【详解】由()1sin 3f x x ≥得sin (1cos 01cos 0x x x ),-≥-≥,所以该式不一定成立,sinx 有可能是负数,所以选项A 错误; ()sin sin 2cos x f x x x x =≤≤+.所以选项B 正确;()sin 2cos x f x x=+=sin 0||cos (2)x x ---表示单位圆上的点和(-2,0)所在直线的斜率的绝对值,数形结合观察得到()f x ≤C 正确; ()()f x f x ππ++-=sin sin 002-cos 2-cos 2-cos x x x x x-+==,所以选项D 正确.故答案为A2.(2018·四川·高三竞赛)函数()()()sin 1cos 12sin 2x x y x R x--=∈+的最大值为( ).A .2B .1C .12+D【答案】B 【解析】 【详解】因为()sin cos sin cos 122sin cosxx x x x y x ⋅-++=+⋅,令sin cos 4t x x x π⎛⎫⎡=+=+∈ ⎪⎣⎝⎭, 则()21sin cos 12x x t ⋅=-,于是()()22211112.2121t t t y t t --+==-++- 令()(21t g t t t =+,则()()22211t g t t '-=+. 由()0g t '=知1t =-或1.因为(()()111,1,22g g g g =-=-==()g t 的最小值是()112g -=-,所以y 的最大值是11122⎛⎫--= ⎪⎝⎭.故答案为:B3.(2019·全国·高三竞赛)函数[][]sin cos sin cos y x x x x =⋅++的值域为( )([]x 表示不超过实数x 的最大整数). A .{}2,1,0,1,2-- B .{}2,1,0,1-- C .{}1,0,1- D .{}2,1,1--【答案】D 【解析】 【详解】1sin224y x x π⎤⎡⎤⎛⎫=++ ⎪⎥⎢⎥⎣⎦⎝⎭⎦..下面的讨论均视k Z ∈. (1)当222k x k πππ≤≤+时,1y =; (2)当32224k x k ππππ+<≤+时,1y =-; (3)当3224k x k ππππ+<<+时,2y =-; (4)当2x k ππ=+或322k ππ+时,1y =-;(5)当3222k x k ππππ+<<+时,2y =-; (6)当372224k x k ππππ+<<+时,2y =-; (7)当72224k x k ππππ+≤<+时,1y =-. 综上,{}2,1,1y ∈--. 故答案为D4.(2010·四川·高三竞赛)已知条件43p =和条件4:sin cos 3q αα+=.则p 是q 的( ). A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】 【详解】sin cos αα+,所以,p 是q 的充要条件.5.(2018·全国·高三竞赛)在ABC ∆中,A B C ∠≤∠≤∠,sin sin sin cos cos cos A B CA B C++=++则B 的取值范围是( ).A .,32ππ⎛⎫ ⎪⎝⎭B .0,2π⎛⎫ ⎪⎝⎭C .3π D .,43ππ⎛⎫ ⎪⎝⎭【答案】C 【解析】 【详解】由条件有)sin sin sin cos cos cos A B C A B C ++=++2sincos sin 22A C A C B +-⇒︒+ 2cos cos cos 22A C A C B +-⎫=︒+⎪⎭2sin cos222A C A C A C ++-⎛⎫⇒- ⎪⎝⎭ sin B B =. 利用辅助角公式有2sin cossin 3223A C A C B ππ+-⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭2sin cos 262B A C π-⎛⎫⇒- ⎪⎝⎭ 2sin cos 2626B B ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭60602sin cos cos 0222B A C B -︒--︒⎛⎫⇒-= ⎪⎝⎭606060sinsin sin 0244B AC B B A C -︒-+-︒-+-︒⇒︒︒=, 所以,600B ∠-︒=或者600A C B ∠-∠+∠-︒=或者600B A C ∠-∠+∠-︒=, 即60B ∠=︒或者60C ∠=︒或者60A ∠=︒,亦即A B C ∠∠∠、、中有一个为60︒.若60B ∠<︒,则60A B ∠≤∠<︒,所以,只能60C ∠=︒,此时,180A B C ∠+∠+∠<︒,矛盾; 若60B ∠>︒,则60C B ∠≥∠>︒,所以,只能60A ∠=︒,从而,180A B C ∠+∠+∠>︒,亦矛盾. 选C. 二、填空题6.(2018·江西·高三竞赛)若三个角x 、y 、z 成等差数列,公差为π3,则tan tan tan tan tan tan x y y z z x ++=______.【答案】3- 【解析】 【详解】 根据π3x y =-,π3z y =+,则tan x =tan z =所以tan tan x y tan tan y z 22tan 3tan tan 13tan y z x y -=-. 则229tan 3tan tan tan tan tan tan 313tan y x y y z z x y-++==--. 故答案为-37.(2018·广东·高三竞赛)已知△ABC 的三个角A 、B 、C 成等差数列,对应的三边为a 、b 、c ,且a 、c成等比数列,则2:ABC S a ∆=___________.【解析】 【详解】因为A 、B 、C 成等差数列,2B A C =+,3180B A B C =++=︒,因此60B =︒.又因为a 、c成等比数列,所以c qa =,b =由正弦定理()sin sin 120a qa A A ==︒-,整理得22sin A q =221A q q=-,()()232235420q q q q ⎡⎤-+++-=⎣⎦. 所以2q =,1sin 2A =,30A =︒,90C =︒.故212ABC S ab ∆==,所以2:ABC S a ∆=8.(2019·全国·高三竞赛)设锐角α、β满足αβ≠,且()()22cos cos 1tan tan 2αβαβ++⋅=,则αβ+=__________. 【答案】90 【解析】 【详解】由已知等式得()()()()22222tan tan 1tan tan 21tan 1tan αβαβαβ+++⋅=++,()()2tan tan tan tan 10αβαβ-⋅-=.但锐角αβ≠,故tan tan 10αβ⋅-=()cos 090αβαβ⇒+=⇒+=︒.故答案为909.(2021·全国·高三竞赛)函数sin 1tan tan 2x y x x ⎛⎫=+⋅ ⎪⎝⎭的最小正周期为____________.【答案】2π 【解析】 【详解】解析:当=2,x k k Z π∈时,sin 1tan tan 02x y x x ⎛⎫=+⋅= ⎪⎝⎭,当2,x k k Z π≠∈时,sin 1cos sin 1tan cos sin x x y x x x x -⎛⎫=+⋅= ⎪⎝⎭,其中2x k ππ≠+且2x k ππ≠+,画出图象可得函数周期为2π.故答案为:2π.10.(2021·浙江金华第一中学高三竞赛)设()()πcos 2243x f x x x =++为定义在R 上的函数.若正整数n 满足()12021nk f k ==∏,则n 的所有可能值之和为______.【答案】12121 【解析】 【详解】()cos cos cos 2222()41(1)(3)xxxf k k k k k πππ=++=++,111()(11)(13)(21)(23)nk f k --==++++⨯∏00(431)(433)m m ⨯-+-+11(421)(423)m m --⨯-+-+0011(411)(413)(41)(43)m m m m ⨯-+-+++,考虑cos2x π的周期为4,分四种情况考虑(1)当43k m =-(m 为正整数)时,4311111001()(21)(23)(41)(43)(443)(431)(433)m k f k m m m ---==++++⨯-+-+-+∏13(41)2021m -=⨯-=,所以416063,436061m n m -==-=;(2)当42k m =-时,42111()3(41)2021m k f k m ---==⨯+=∏,无正整数解;(3)当41k m =-时,41111()3(41)2021m k f k m ---==⨯+=∏,无正整数解;(4)当4k m =时,41111()3(43)2021m k f k m --==⨯+=∏,此时46060n m ==,综上,6060n =或6061n =, 故答案为:12121.11.(2021·全国·高三竞赛)在ABC 中,1155,tantantan222AC AC B =+-=,则+BC AB 的值为__________. 【答案】7 【解析】 【详解】解析:记ABC 中A 、B 、C 所对的边分别是a 、b 、c , 如图,设内切圆的半径为r ,则tan22A r b c a =+-,tan 22C r a b c =+-,tan 22B r a c b =+-,故5()b c a a b c a c b +-++-=+-,故()57a c b +=, 即7a c +=, 故答案为:712.(2021·全国·高三竞赛)已知ABC 满足2sin sin 2sin A B C +=,则59sin sin A C+的最小值是_______. 【答案】16 【解析】【详解】解析:2sin sin 2sin sin 2(sin sin )A B C B C A +=⇒=-2sincos 4sin cos 2222A C A C C A A C ++-+⇒⋅=⋅sin 2sin tan 3tan 2222A C C A C A+-⇒=⇒=. 令tan 2A t =,则222259595527326sin sin 22191t t t t A C t t t t +++=+=+++216416t t +=≥=.当113,tan ,tan 22222A C t ===时,tan02A C+>,所以180A C +<︒, 故min5916sin sin A C ⎛⎫+= ⎪⎝⎭. 故答案为:1613.(2020·浙江·高三竞赛)已知,,0,2παβγ⎡⎤∈⎢⎥⎣⎦,则cos 2cos cos cos()2cos()αβγαγβγ++-+-+的最大值为___________.【答案】【解析】 【详解】()cos cos 2sin sin 2sin 222γγγααγα⎛⎫-+=+≤ ⎪⎝⎭,同理()cos cos 2sin2γββγ-+≤,故cos 2cos cos cos()6sin22cos()cos αβγαγβγγγ++-+-++≤,而22cos 2sin 3116sin 6sin 12sin 222222γγγγγ⎛⎫+++=--+ -⎪=⎝⎭,因为0sin 2γ≤≤23112sin 222γ⎛⎫--+≤ ⎪⎝⎭当且仅当,24ππγαβ===时,各等号成立,故答案为:14.(2021·全国·高三竞赛)已知三角形ABC 的三个边长a b c 、、成等比数列,并且满足a b c ≥≥.则A ∠的取值范围为___________.【答案】2[,)33ππ【解析】 【详解】由条件2b ac =,结合余弦定理222cos 2a c b B ac+-=,则有11cos (1)22a c B c a =+-≥,从而(0,]3B π∈,而A 是最大角,从而2,33A ππ⎡⎫∈⎪⎢⎣⎭.故答案为:2,33ππ⎡⎫⎪⎢⎣⎭. 15.(2021·全国·高三竞赛)设02πθ<<,且333cos sin 1(cos sin 1)m θθθθ++=++,则实数m 的取值范是___________.【答案】14⎫⎪⎣⎭ 【解析】 【详解】解析:333cos sin 1(cos sin 1)m θθθθ++=++ ()223(cos sin )cos cos sin sin 1(cos sin 1)θθθθθθθθ+-++=++.令cos sin x θθ=+,则4x πθ⎛⎫=+∈ ⎪⎝⎭,且21sin cos 2x θθ-=, 于是2323321112232231(1)2(1)2(1)2(1)2(1)2x x x x x x x m x x x x x ⎛⎫--+ ⎪+-+--⎝⎭=====-+++++, 为然m是上的减函数,所以()(1)f f m f ≤<,即14m ⎫∈⎪⎣⎭.故答案为:41,24⎡⎫⎪⎢⎣⎭. 16.(2021·浙江·高三竞赛)在ABC 中,30B C ∠=∠=︒,2AB =.若动点P ,Q 分别在AB ,BC 边上,且直线PQ 把ABC 的面积等分,则线段PQ 的取值范围为______.【答案】 【解析】 【分析】【详解】如图所示,设,BP x BQ y ==,所以113sin 30222BPQBBCSxy S ︒===,所以23xy =由余弦定理可得,2222222312266PQ x y xy x y x x=+-=+-=+-, 易得[1,2]x ∈,所以2[1,4]x ∈, 所以2367PQ ≤≤,则PQ 的取值范围为[436,7]-. 故答案为:[436,7]-.17.(2021·浙江·高三竞赛)若π3,π44x ⎛⎫∈- ⎪⎝⎭,则函数4sin cos 3sin cos x x y x x +=+的最小值为______.【答案】22【解析】 【分析】 【详解】令(sin cos 224t x x x π⎛⎫=+=+∈ ⎪⎝⎭, ()22213211222t t y t tt t-++===+≥当且仅当12t t =即2t =.故答案为:2218.(2021·全国·高三竞赛)已知等腰直角PQR 的三个顶点分别在等腰直角ABC 的三条边上,记PQR 、ABC 的面积分别为PQR S、ABCS,则PQR ABCS S的最小值为__________.【答案】15【解析】 【分析】 【详解】(1)当PQR 的直角顶点在ABC 的斜边上,如图1所示,则P ,C 、Q ,R 四点共圆,180APR CQR BQR ∠=∠=︒-∠,所以sin sin APR BQR ∠=∠.在APR △、BQR 中分别应用正弦定理得,sin sin sin sin PR AR QR BRA APRB BQR==∠∠. 又45,A B PR QR ∠=∠=︒=,故AR BR =,即R 为AB 的中点. 过R 作RH AC ⊥于H ,则12PR RH BC ≥=, 所以22221124PQR ABCBC SPR SBC BC ⎛⎫ ⎪⎝⎭=≥=,此时PQR ABCS S 的最小值为14.(2)当PQR 的直角顶点在ABC 的直角边上,如图2所示.设1,(01),02BC CR x x BRQ παα⎛⎫==≤≤∠=<< ⎪⎝⎭,则90CPR PRC BRQ α∠=︒-∠=∠=. 在Rt CPR 中,sin sin CR xPR αα==,在BRQ 中, 31,,sin 4x BR x RQ PR RQB QRB B ππαα=-==∠=-∠-∠=-, 由正弦定理,11sin 3sin sin sin cos 2sin sin sin 44x RQ RB x x B RQB απαααπα-=⇔=⇔=∠+⎛⎫- ⎪⎝⎭,因此222111122sin 2cos 2sin PQRx SPR ααα⎛⎫⎛⎫=== ⎪ ⎪+⎝⎭⎝⎭. 这样,()()2222111cos 2sin 512cos sin PQR ABCS Sαααα⎛⎫=≥= ⎪+++⎝⎭,当且仅当arctan 2α=时取等号,此时PQR ABCS S的最小值为15.故答案为:15.19.(2021·全国·高三竞赛)满足方程223cos cos 22cos cos2cos4,[0,2]4x x x x x x π+-=∈的实数x 构成的集合的元素个数为________. 【答案】14 【解析】 【分析】 【详解】将方程变形为,1cos2cos44cos cos2cos42x x x x x +-=-.两边同乘2sin x ,运用积化和差和正弦的倍角公式,得:(sin3sin )(sin5sin3)sin8sin x x x x x x -+--=-,即sin5sin8x x =,故58(21),x x k k π+=+∈Z 或852,x x k k π=+∈Z , 即21,13k x k π+=∈Z 或2,3k x k π=∈Z . 又因为在方程两边同时乘sin x 时,所以引入了增根,x k k π=∈Z (代入原方程检验可得). 再结合[0,2]xπ,得所求结果为14.故答案为:14.20.(2021·全国·高三竞赛)设ABC 的三内角A 、B 、C 所对的边长分别为a 、b 、c ,若2b c a +-=,则2222sin sin 2sin sin sin 22222C B A B Cb c bc +-值为_________. 【答案】1 【解析】 【分析】 【详解】2222sin sin 2sin sin sin 22222C B A B Cb c bc +- 2211(1cos )(1cos )12(cos cos cos 1)22b Cc B bc A B C =-+--++- 22(2)(cos cos 1114)(cos cos 22)b c bc b C b c B c c B b C =++-+-+221(2cos )4b c bc A ++-22221111(2)()142242b c a b c bc ba ca a +-=++--+==. 故答案为:1.21.(2021·全国·高三竞赛)ABC 中,A 、B 、C 的对边分别为a 、b 、c ,O 是ABC 的外心,点P 满足OP OA OB OC =++,若3B π=,且4BP BC ⋅=,则ABC 的面积为_________.【答案】【解析】 【分析】 【详解】由OP OA OB OC =++,得OP OA OB OC -=+,即AP OB OC =+. 注意到()OB OC BC +⊥,所以AP BC ⊥. 同理,BP AC ⊥,所以P 是ABC 的垂心, ()BP BC BA AP BC BA BC ⋅=+⋅=⋅,所以cos 4ac B =,8ac =,所以1sin 2ABC S ac B ==△故答案为:22.(2021·全国·高三竞赛)设ABC 的三个内角分别为A 、B 、C ,并且sin cos sin A B C 、、成等比数列,cos sin cos A B C 、、成等差数列,则B 为____________. 【答案】23π【解析】 【分析】 【详解】依题意,2sin sin cos ,cos cos 2sin A C B A C B =+=, 前一式积化和差可得2cos()2cos cos A C B B -=-,后一式和差化积可得cos2cos 22A C B-=, 所以22cos()2cos18cos 14cos 322A CB AC B --=-=-=+,联立两式得1cos 2B =-或3(舍去),所以23B π=. 故答案为:23π. 23.(2021·全国·高三竞赛)如果三个正实数x y 、、z 满足2225x xy y ++=,22144y yz z ++=,22169z zx x ++=,则xy yz zx ++=_________.【答案】【解析】 【分析】 【详解】易知三个等式可化为2222222222cos1205,2cos12012,2cos12013.x y xy y z yz z x zx ⎧+-︒=⎪+-︒=⎨⎪+-︒=⎩构造Rt ABC ,其中13,5,12AB BC CA ===.设P 为ABC 内一点,使得,,,120PB x PC y PA z BPC CPA APB ===∠=∠=∠=︒. 因BPCCPAAPBABCSSSS++=,则11()sin12051222xy yz zx ++︒=⨯⨯,所以xy yz zx ++=故答案为:24.(2021·全国·高三竞赛)设()cos ()cos 30xf x x =︒-,则()()()1260f f f ︒+︒++︒=_________.【解析】 【分析】 【详解】 因为()cos ()cos 30xf x x =︒-,所以:()()()()cos 60cos ()60cos 30cos 30x xf x f x x x ︒-+︒-=+︒--︒()()()()cos cos 602cos30cos 30cos 30cos 30x x x x x +︒-︒-︒===-︒-︒令:()()()1259s f f f =︒+︒++︒,① ()()()()595821s f f f f =︒+︒++︒+︒,②①+②得::()()()()()()2159258591s f f f f f f =︒+︒+︒+︒++︒+︒=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦所以s =()()()59312592f f f +++=.又()()1cos6060cos 3060f ︒︒==︒=︒-,则()()()()125960f f f f ︒+︒++︒+︒==. 25.(2021·全国·高三竞赛)已知cos cos 1x y +=,则sin sin xy -的取值范围是________. 【答案】⎡⎣【解析】 【分析】 【详解】设sin sin x y t -=,易得2cos in sin 1cos s 2y x y t x --=,即21cos()2t x y -+=. 由于()1cos 1x y -≤+≤,所以21112t --≤≤,解得t≤故答案为:⎡⎣.26.(2020·全国·高三竞赛)在ABC中,6,4AB BC ==,边AC 66sin cos 22A A+的值为_______. 【答案】211256. 【解析】【分析】由中线长公式计算出AC 的长度,然后运用余弦定理计算出cos A 的值,化简后即可求出结果. 【详解】记M 为AC 的中点,由中线长公式得()222242BM AC AB BC +=+,可8AC ==.由余弦定理得2222228647cos 22868CA AB BC A CA AB +-+-===⋅⋅⋅,所以66224224sin cos sin cos sin sin cos cos 22222222A A A A A A A A ⎛⎫⎛⎫+=+-+ ⎪⎪⎝⎭⎝⎭22222sin cos 3sin cos 2222A A A A ⎛⎫=+- ⎪⎝⎭231sin 4A =-213211cos 44256A =+=. 故答案为:211256【点睛】关键点点睛:解答本题关键是能够熟练运用中线长公式、余弦定理、倍角公式等进行计算,考查综合能力.27.(2019·江苏·高三竞赛)已知函数()4sin 23cos 22sin 4cos f x x x a x a x =+++的最小值为-6,则实数a 的值为________ .【答案】【解析】 【详解】令sin 2cos x x t +=,则[t ∈, ∴224sin 23cos 25t x x =++,∴2()()225,[f x g t t at t ==+-∈,当2a-≤a ≥函数的最小值为:(((22256g a =⨯+⨯⨯-=-,解得:a =当2a-a ≤-函数的最小值为:22256g a =⨯+⨯⨯-=-,解得:a =,不合题意,舍去;当2a-<a -< 函数的最小值为:22256222a a a g a ⎛⎫⎛⎫⎛⎫-=⨯-+⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得:a =.故答案为:28.(2019·福建·高三竞赛)在△ABC中,若AC =AB =25tan 12π=,则BC =____________ .【解析】 【详解】5tan 12π=,得2sin 56tan 122cos 6A A πππ⎛⎫+ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭,即5tan tan 612A ππ⎛⎫+= ⎪⎝⎭,所以5,612A k k πππ+=+∈Z . 结合0A π<<,得5,6124A A πππ+==. 所以由余弦定理,得:2222cos BC AC AB AC AB A =+-⋅⋅⋅22222cos4π=+-⋅2=所以BC29.(2018·全国·高三竞赛)设 A B C ∠∠∠、、是ABC 的三个内角.若sin ,A a =cos B b =,其中,a >0,0b >,且221a b +≤,则tan C =______.【解析】 【详解】因为cos 0B b =>,所以,B ∠为锐角,sin B又221a b +≤,则sin sin A a B =≤. 于是()sin sin A B π-≤. 若A ∠为钝角,则A π-∠为锐角.又B ∠为锐角,则A B A B ππ-∠≤∠⇒∠+∠≥矛盾.从而,A ∠为锐角,且cos A .故sin tan cos A A A ==sin tan cos B B B ==则tan tan tan tan tan 1A B C A B +==⋅-30.(2018·全国·高三竞赛)在ABC ∆中,已知a 、b 、c 分别是A ∠、B 、C ∠的对边.若4cos a b C b a +=,()1cos 6A B -=,则cos C ______. 【答案】23【解析】 【详解】由题设及余弦定理知222222422a b a b c a b c b a ab+-+=⋅⇒+=()()2221cos21cos22sin sin sin 1cos cos 22A BC A B A B A B --⇒=+=+=-+⋅-()2111cos 1cos 21cos 66C C C =+⇒+=-2cos 3C ⇒=或34-. 而()3cos cos 2sin sin 0cos 4C A B A B C ++=⋅>⇒=-(舍去).因此,2cos 3C =. 31.(2018·全国·高三竞赛)若对任意的ABC ∆,只要()+p q r p q R 、+=∈,就有222sin sin sin p A q B pq C +>,则正数r 的取值范围是______.【答案】01r <≤ 【解析】 【详解】设的三边长分别为a 、b 、c . 则222sin sin sin p A q B pq C +>①22211a b c q p⇔+>. 若1r ≤,则()22221111a b q p a b q p qp ⎛⎫+≥++ ⎪⎝⎭ ()22a b c ≥+>;若1r >,令2rp q ==. 当a b =,C π∠→时,2221 22a b rc +→<,式①不成立.综上,01r <≤.32.(2018·全国·高三竞赛)在锐角ABC ∆中,cos cos sin sin A B A B +--的取值范围是______. 【答案】()2,0- 【解析】 【详解】由02A B C π<∠∠∠<、、 22A B AB πππ⇒<∠+∠⇒∠-∠,2B A π∠>-∠.则0cos sin 1A B <<<,0cos sin 1B A <<<故2cos cos sin sin 0A B A B -<+--<. 所以取值范围是()2,0-.33.(2019·全国·高三竞赛)已知单位圆221x y +=上三个点()11,A x y ,()22,B x y ,()33,C x y满足1231230x x x y y y ++=++= .则222222123123x x x y y y ++=++=__________.【答案】32【解析】 【详解】设1cos x α=,2cos x β=,3cos x γ=,1sin y α=,2sin y β= 3sin y γ=. 由题设知ABC ∆的外心、重心、垂心重合,其为正三角形.故()222313cos cos cos cos2cos2cos2222αβγαβγ++=+++=, ()222313sin sin sin cos2cos2cos2222αβγαβγ++=-++=. 故答案为3234.(2021·全国·高三竞赛)在ABC 中,2cos 3cos 6cos A B C +=,则cos C 的最大值为_______________.【解析】 【分析】 【详解】令cos ,cos ,cos A x B y C z ===,则236x y z +=,即223y z x =-. 因为222cos cos cos 2cos cos cos 1A B C A B C +++=, 所以22222212233x z x z x z x z ⎛⎫⎛⎫+-+=-- ⎪ ⎪⎝⎭⎝⎭,整理得222134********z x z z x z ⎛⎫⎛⎫-+-+-= ⎪ ⎪⎝⎭⎝⎭,()2228134Δ44510393z z z z ⎛⎫⎛⎫=----≥ ⎪ ⎪⎝⎭⎝⎭,化简得2413(1)(1)4039z z z z ⎛⎫+-+-≥ ⎪⎝⎭, 于是24134039z z +-≤,得z ≤ 所以cos C.16. 35.(2021·全国·高三竞赛)已知正整数n p 、,且2p ≥,设正实数12,,,n m m m 满足1111npi im ==+∑,则12n m m m 的最小值为_______.【答案】(1)mp n - 【解析】 【分析】【详解】令2tan ,0,,1,2,,2p i i i m x x i n π⎛⎫=∈= ⎪⎝⎭.由题设可得22212cos cos cos 1n x x x +++=,于是:2222121cos cos cos sin n n x x x x -+++=,222221221cos cos cos cos sin n n n x x x x x --++++=,……2222231cos cos cos sin n x x x x +++=,将上述各式利用均值不等式得:2221(1)cos sin n n n x x --≤, 22221(1)cos sin n n n x x ---≤,……2231(1)cos sin n n x x -≤,再把上述n 个不等式相乘,得()2222221212(1)cos cos cos sin sin sin n n n n x x x x x x -≤,即22212tan tan tan (1)n n x x x n ≥-.由于2tan ,1,2,,p i i m x i n ==,故12(1)n pn m mm n ≥-,当且仅当1(1)p i m n =-时上式等号成立.故答案为:(1)mp n -.36.(2021·全国·高三竞赛)设锐角ABC 的三个内角、、A B C ,满足sin sin sin A B C =⋅,则tan tan tan A B C ⋅⋅的最小值为_______.【答案】163【解析】 【分析】 【详解】由题设可知,0,,2A B C π<<,则cos 0,cos 0B C >>.又由A B C π++=及sin sin sin A B C =⋅ 得()()sin sin sin B C B C π-+=⋅, 即()sin sin sin B C B C +=⋅,则sin cos cos sin sin sin B C B C B C +=⋅, ① 由cos 0,cos 0B C >>,①式两边同时除以cos cos B C ⋅, 可得tan tan tan tan B C B C +=⋅. 设tan tan B C s +=,则tan tan B C s ⋅=, 由0,2B C π<<知,tan 0,tan 0B C >>,则0s >. 于是有()tan tan B s B s ⋅-=,故2tan tan 0B s B s -+=,从而有22(tan )(4)244s s sB s s -=-=-.又2(tan )02s B -≥,得(4)04s s -≥,而0s >.所以4s ≥.故4s ≥.tan tan tan tan(())tan tan A B C B C B C π⋅⋅=-+⋅⋅2tan tan tan tan 1tan tan 1B C s B C B C s +=-⋅⋅=-⋅-. 因为4s ≥,于是求tan tan tan A B C ⋅⋅的最小值转化为求函数2()(4)1x f x x x =≥-的最小值.考虑函数221()(4),()(1)2(4)111x x f x x f x x x x x x =≥==-++≥---,即()f x 在[)4,+∞上单调递增,从而()()4,4x f x f ≥≥. 因此()f x 的最小值在4x =时取得,为2416(4)413f ==-. 由tan tan tan tan 4B C B C +=⋅=得,tan tan 2B C ==,从而4tan 3A =, 故当4tan 3A =,tan tan 2BC ==时,tan tan tan A B C ⋅⋅取得最小值163. 故答案为:163. 37.(2019·贵州·高三竞赛)在△ABC 中,0,0GA GB GC GA GB ++=⋅=.则(tan tan )tan tan tan A B CA B+⋅=____________ .【答案】12 【解析】 【详解】设△ABC 中角A 、B 、C 所对的边分别为a 、b 、c .由0,0GA GB GC GA GB ++=⋅=,知G 为△ABC 的重心. 又GA ⊥GB ,所以22222222211221122GA GB c GA GB a GB GA b ⎧⎪+=⎪⎪⎪⎛⎫⎛⎫+=⎨ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎛⎫⎛⎫⎪+= ⎪ ⎪⎪⎝⎭⎝⎭⎩.得到2225a b c +=.故:(tan tan )tan (sin cos cos sin )sin tan tan sin sin cos A B C A B A B C A B A B C++=⋅2sin sin sin cos C A B C =()22222abc ab a b c =+-2222212c a b c ==+-. 故答案为:12.38.(2019·江西·高三竞赛)△ABC 的三个内角A 、B 、C 满足:A =3B =9C ,则cos cos A B +cos cos cos cos B C C A +=____________ .【答案】14-【解析】 【详解】设,3,9C B A θθθ===,由39θθθπ++=得13πθ=,所以cos cos cos cos cos cos S A B B C C A =++9339coscos cos cos cos cos 131313131313ππππππ=++112642108cos cos cos cos cos cos 2131313131313ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 注意括号中的诸角度构成公差为213π的等差数列,两边同乘4sin 13π,得到 246810124sin2sincos cos cos cos cos cos 1313131313131313S ππππππππ⎛⎫⋅=+++++⎪⎝⎭35375sin sin sin sin sin sin 131313131313ππππππ⎛⎫⎛⎫⎛⎫=-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭971191311sin sin sin sin sin sin 131313131313ππππππ⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ sin13π=-.所以,14S =-.故答案为:14-.三、解答题39.(2021·全国·高三竞赛)在ABC 中,三内角A 、B 、C 满足tan tan tan tan tan tan A B B C C A =+,求cos C 的最小值.【答案】23【解析】 【分析】 【详解】由tan tan tan tan tan tan A B B C C A =+,得: sin sin sin sin sin sin cos cos cos cos cos cos A B B C C AA B B C C A =+sin (sin cos sin cos )cos cos cos C B A A B A B C +=sin sin()cos cos cos C A B A B C+=2sin cos cos cos C A B C=, 所以2sin sin cos sin A B C C =.由正余弦定理,得22222a b c abc ab+-=, 所以2222222sin 223,cos sin sin 333C c a b ab a b c C A B ab ab ab ++====≥=, 当且仅当a b =时等号成立,所以cos C 的最小值为23.40.(2021·全国·高三竞赛)解关于实数x 的方程:{}202020201arctan k x x k==∑(这里{}[][],x x x x =-为不超过实数x 的最大整数) 【答案】{}0 【解析】 【分析】 【详解】(1)当0x <时,{}202020201arctan 0(1,2,,2020),arctan 0k x x k x k k =<=<≤⋅⋅⋅∑,此时原方程无解.(2)当0x =时,有{}202020001arctan0k x x k===∑. (3)当01x <<时,令arct ()1)2an (0x xf x x =-<<,则211()0(01)12f x x x '=-><<+, 故()f x 在()0,1上递增.有()()00f x f >=,即arctan 2x x > 于是,此时{}202020204202020201111125arctan 2224k k k x x x xx x x k k k =====>>=>∑∑∑,即1x >,矛盾.故无解.(4)当1≥x 时,注意到111123tan(arctan arctan )112316++==-, 且由110arctan arctan arctan1arctan1232π<+<+=,知11arctan arctan 234+=π.则{}20202020202011111arctan arctan arctan1arctan arctan 1232k k x x k k π===≥>++=>∑∑,与{}202001x <<,矛盾.故此时无解.由(1)(2)(3)(4),知原方程的解集为{}0.41.(2021·全国·高三竞赛)已知点(2cos ,sin ),(2cos ,sin ),(2cos ,sin )A B C ααββγγ,其中,,[0,2)αβγπ∈,且坐标原点O 恰好为ABC 的重心,判断ABCS是否为定值,若是,求出该定值;若不是,请说明理由.【答案】三角形ABC【解析】 【分析】 【详解】先证明一个引理:若()()1122,,,,(0,0)A x y B x y C ,则122112ABCS x y x y =-. 因为()()1122,,,CA x y CB x y ==, 所以21cosCA CB C CA CBx⋅==⨯所以sin C ==所以:1sin 2ABCSCACB C =⋅⋅ 12211122x y x y ==-回到原题,连结OA 、OB 、OC ,则: ABCOABOBCOACSSSS=++112cos sin 2sin cos 2cos sin 2sin cos 22αβαββγβγ=-+- 12cos sin 2sin cos 2αγαγ+- sin()sin()sin()αββγαγ=-+-+-.由三角形的重心为原点得sin sin sin 0,2cos 2cos 2cos 0.αβγαβγ++=⎧⎨++=⎩即sin sin sin ,cos cos cos .αβγαβγ+=-⎧⎨+=-⎩ 所以两式平方相加可得1cos()2αβ-=-,所以sin()αβ-=,同理sin()sin()βγαγ-=-=, 所以sin()sin()sin()3ABCSαββγαγ=-+-+-==故三角形ABC 42.(2019·上海·高三竞赛)已知,0,2A B π⎛⎫∈ ⎪⎝⎭,且sin sin A B =()sin A B +,求tanA 的最大值.【答案】43【解析】 【详解】由题设等式可得sin sin (sin cos cos sin )A B A B A B =+, 所以tan sin (tan cos sin )A B A B B =+. 令tan t A =,则2sin cos sin t t B B B =+,于是2sin 21cos2t t B B =+-,21)t B θ--, 这里θ是锐角,sin θ=.所以2|21|1t t -+,注意到t >0,可得43t. 当413arctan ,arcsin 3225A B π⎛⎫==+ ⎪⎝⎭时,题设等式成立.所以,tanA 的最大值为43.43.(2018·全国·高三竞赛)在ABC ∆中,证明:coscos cos cos cos cos 222222cos cos cos 222B C C A A BA B C ⋅⋅⋅++≥ABC ∆为正三角形时,上式等号成立.【答案】见解析 【解析】 【详解】如图,对ABC ∆,作其相伴111A B C ∆. 则11cos 2B E B B O =,111cos 2C G C A C =,111cos 2C G A B C =. 故11111111111111coscos 22cos2B E C G B C B O A C B E B C A C G B O A C B C ⋅⋅⋅==⋅. 由O 、E 、1C 、F 四点共圆得11111B E B C B O B F ⋅=⋅则111cos cos 22cos 2B C B F A AC ⋅=.类似地,111coscos 22cos 2B C C G A A B ⋅=,111cos cos 22cos2B C A E A B C ⋅= 记111A B C ∆的三边111111B C C A A B 、、分别为111a b c 、、,相应边上的高111A E B F C G 、、分别为123h h h 、、,且其面积为S 、则312222222111111111cos cos 222111222cos2B C h h h S S S S A a b c a b c a b c ⋅⎛⎫∑=++=++=++ ⎪⎝⎭.其中,“∑”表示轮换对称和.由熟知的不等式222111111334a b c S++≥,得coscos 33222cos 2B CA ⋅∑≥. 当且仅当ABC ∆为正三角形时,上式等号成立.44.(2019·全国·高三竞赛)在△ABC 中,若cos cos 2sin sin A BB A+=,证明:∠A +∠B =90° 【答案】见解析 【解析】 【详解】由sin cos sinB sin sin sin sinB 0A A cosB A B A ⇒⋅+⋅-⋅-⋅=()()sin cos sin sinB cosB sinA 0A A B ⇒-+-=()()sinA sin 90sinB sinB sin 90sinA 0A B ⎡⎤⎡⎤⇒︒--+︒--=⎣⎦⎣⎦909090902sinA cossin 2sin cos sin 2222A B A B B A B AB ︒-+︒--︒-+︒--⇒⋅⋅+⋅⋅ 902sin sin cos 45?sin cos 450222A B A B A B A B ⎡⎤︒----⎛⎫⎛⎫⎛⎫⇒⋅︒-+⋅︒+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=0902A B ︒--⎛⎫⇒ ⎪⎝⎭sin cos sin sin cos sin 02222A B A B A B A B A B ⎡⎤----⎛⎫⎛⎫++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.()()90cos sin sin sin sin sin 0222A B A B A B A B A B ︒----⎛⎫⎡⎤⇒++-= ⎪⎢⎥⎝⎭⎣⎦222cos sin 2sin cos 02222A B A B A B A B -+-+⋅+⋅>sin cos sin sin cos sin 02222A B A B A B A B A B ⎡⎤----⎛⎫⎛⎫++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 90sin 02A B ︒--⎛⎫⇒= ⎪⎝⎭ 90A B ⇒∠+∠=︒()10A a a a ⎛⎫> ⎪⎝⎭,. 45.(2018·全国·高三竞赛)已知ABC 的三个内角满足2A C B ∠+∠=∠,cos cos A C +=cos 2A C -的值.【解析】 【详解】由题设知60,B ∠= 120A C ∠+∠=︒. 设2A Cα∠-∠=,则2A C α∠-∠=,于是,60,60A C αα∠=+∠=-. 故()()cos cos cos 60cos 602cos60cos cos A C αααα+=++-=⋅=.()()()260cos 6032cos2cos120cos cos604αααα+⋅-⎫==+︒=-⎪⎭.故223cos cos 2cos 04αααα⎫=--⇒+-=⎪⎭()(32cos 0αα⇒+=.若3cos 1αα+⇒=<-舍,从而,2cos 0cos αα=⇒=. 46.(2018·全国·高三竞赛)已知函数()()()3333sin cos sin cos f x x x m x x =+++在0,2x π⎡⎤∈⎢⎥⎣⎦有最大值2.求实数m 的值.【答案】1m =- 【解析】 【详解】注意到,()()233sin cos sin cos sin cos 3sin cos x x x x x x x x ⎡⎤+=++-⋅⎣⎦()()()223sin cos sin cos sin cos 12x x x x x x ⎧⎫⎡⎤=++-+-⎨⎬⎣⎦⎩⎭.令sin cos 4t x x x π⎛⎫⎡=+=+∈ ⎪⎣⎝⎭. 则()()()223333931222f x t t t mt m t t g t ⎡⎤⎛⎫=--+=-+∆ ⎪⎢⎥⎣⎦⎝⎭.由()233322g t m t ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦',有以下两种情形.(1)32m ≥. 由()0g t '>,知()max 92322g t g m ⎫==-+=⎪⎭ 230m ⇒-<,矛盾.(2)32m <. 若32132m -<-,即0m <时,()()max 1321g t g m m ==+=⇒=-;若32132m -≤≤-3012m ⎛≤≤ ⎝⎭时, ()max271523248g t g m m ==⇒=-⇒=-,矛盾;若3232m ->-33122m ⎛<< ⎝⎭时,()max 3 222g t g m ⎫==+=⎪⎭34m ⇒=-. 综上,1m =-.47.(2019·全国·高三竞赛)求(),f xy =【答案】42 【解析】 【详解】注意到,2cos472cos 26x x +=+ ()2222cos 16x =-+ ()428cos cos 1x x =-+,同理,()42cos478cos cos 1y y y +=-+,而22cos4cos48sin sin 6x y x y +-⋅+ ()()22cos47cos478sin sin 8x x x y =+++-⋅-()428cos cos 1x x =-++ ()428cos cos 1y y -+- ()()2281cos 1cos 8x y ---()44228cos cos 8cos cos x y x y =+-⋅,()()42424422,8cos cos 1cos cos 1cos cos cos cos f x y x x y y x y x y =-++-+++-⋅,如图,作边长为1的正SAB ∆、SBC ∆、SCD ∆,在SB 、SC 上分别取点X 、Y 使得2cos SX x =,2cos SY y =,联结AX 、AY ,则(),f x y ()8AX XY YD =++,其最小值就是线段ASD 的长度,即当2x y π==时,min 2842f ==.48.(2021·全国·高三竞赛)求证:对任意的n +∈N ,都有21111arctan arctan arctanarctan 37114n n n π++++=+++.【答案】证明见解析. 【解析】 【详解】由于1111tan arctan 1412111n n n n n π-⎛⎫+-== ⎪++⎝⎭+⨯+,只需证: 2111arctan arctan arctanarctan 3712nn n n +++=+++.设*(),2nf n n n =∈+N ,注意到:21()(1)12111()(1)1121n n f n f n n n n n f n f n n n n n ----++==-+-+++⋅++,即21tan[arctan ()arctan (1)]tan arctan 1f n f n n n ⎛⎫--= ⎪++⎝⎭, 又由于()f n 、(1)f n -、211n n ++均大于0,则21[arctan ()arctan (1)],,arctan 0,2212f n f n n n πππ⎛⎫⎛⎫--∈-∈ ⎪ ⎪++⎝⎭⎝⎭, 从而21arctanarctan ()arctan (1)1f n f n n n =--++. 所以2111arctan arctan arctan371n n +++=++arctan ()arctan (0)arctan 2nf n f n -=+,所以对任意的n +∈N ,都有21111arctan arctan arctanarctan 37114n n n π++++=+++.49.(2021·全国·高三竞赛)设αβγ、、是锐角,满足αβγ+=,求证:cos cos cos 1αβγ++-≥【答案】证明见解析 【解析】 【详解】2cos cos cos 12coscos2sin 222αβαβγαβγ+-++-=⋅- 2cos cos sin sin 2222γαβγαβ-+⎛⎫=⋅-⋅ ⎪⎝⎭.由于0,224αβγπ+⎛⎫=∈ ⎪⎝⎭,所以cos cos cos sin 2222αβαβγγ-+>=>. 由恒等式()()222222()()ac bd ad bc a b c d ---=--可知,如果0a b >>且0c d >>,则ac bd -≥cos cossinsin2222γαβγαβ-+⋅≥-⋅===所以cos cos cos 1αβγ++-≥50.(2019·河南·高二竞赛)锐角三角形ABC 中,求证:cos()cos()cos()8cos cos cos B C C A A B A B C ---.【答案】证明见解析 【解析】 【详解】 原不等式等价于cos()cos()cos()8cos cos cos B C C A A B A B C---.在三角形ABC 中,tan tan tan tan tan tan A B C A B C ++=, cos()sin sin cos cos cos sin sin cos cos B C B C B C A B C B C -+=-tan tan 1tan tan 1B C B C +=-tan (tan tan 1)tan tan A B C B C +=+2tan tan tan tan tan A B CB C++=+.令tan tan tan tan tan tan A B xB C y C A z+=⎧⎪+=⎨⎪+=⎩,则原不等式等价于()()()8z x y z x y yxz +++. 而上式左边228zx yxz⋅=,故原不等式得证【高中数学竞赛专题大全】 竞赛专题3 三角函数 (50题竞赛真题强化训练)一、单选题1.(2018·吉林·高三竞赛)已知()sin 2cos xf x x=+,则对任意x ∈R ,下列说法中错误的是( ) A .()1sin 3f x x ≥B .()f x x ≤C .()f x ≤D .()()0f x f x ππ++-=2.(2018·四川·高三竞赛)函数()()()sin 1cos 12sin 2x x y x R x--=∈+的最大值为( ).A .2B .1C .12+D3.(2019·全国·高三竞赛)函数[][]sin cos sin cos y x x x x =⋅++的值域为( )([]x 表示不超过实数x 的最大整数). A .{}2,1,0,1,2-- B .{}2,1,0,1-- C .{}1,0,1-D .{}2,1,1--4.(2010·四川·高三竞赛)已知条件43p =和条件4:sin cos 3q αα+=.则p 是q 的( ). A .充分但不必要条件 B .必要但不充分条件 C .充要条件D .既不充分也不必要条件5.(2018·全国·高三竞赛)在ABC ∆中,A B C ∠≤∠≤∠,sin sin sin cos cos cos A B CA B C++=++则B 的取值范围是( ).A .,32ππ⎛⎫ ⎪⎝⎭B .0,2π⎛⎫ ⎪⎝⎭C .3π D .,43ππ⎛⎫ ⎪⎝⎭二、填空题6.(2018·江西·高三竞赛)若三个角x 、y 、z 成等差数列,公差为π3,则tan tan tan tan tan tan x y y z z x ++=______.。
高中数学必修一1.2 集合间的基本关系-单选专项练习(3)(人教A版,含答案及解析)
1.2 集合间的基本关系1.下列集合与集合{2,3}A =相等的是( ) A .{(2,3)}B .{(,})|2,3}x y x y ==C .{}2|560x x x -+=D .{}290x N x ∈-≤2.设集合A={x|1<x<2},B={x|x<a }满足A ⊆B ,则实数a 的取值范围是( ) A .[2,+∞) B .(-∞,1] C .(2,+∞) D .(-∞,2]3.已知集合{1A =,2},{|10}B x mx =-=,若A B B =,则符合条件的实数m 的值组成的集合为( ) A .{1,1}2B .{1-,1}2 C .{1,0,1}2 D .{1,1}2-4.已知集合{}1,0,1,2A =-,{}2xB y y ==,M A B =,则集合M 的子集个数是( )A .2B .3C .4D .85.下列集合中不同于另外三个集合的是( )A .{}3|1x x =B .2|1x xC .{}1D .1|1x x ⎧⎫=⎨⎬⎩⎭6.若集合{}0A x x =<,且B A ⊆,则集合B 可能是 A .{}1x x >-B .RC .{}2,3--D .{}3,1,0,1--7.下列各组集合中,表示同一个集合的是( )A .(){}(){}3223M N ==,,, B .(){}{}3232M N ==,,, C .{}{}11M x x y N y x y =+==+=,D .(){}(){}2121M x y x y N y x x y =+==+=,,,8.设集合A ={x|x 2−x < 0},B ={x|−2<x <2 }则( ) A .A ∪B =AB .A ∪B =RC .A ∩B =AD .A ∩B =∅9.下列四个关系:①{}{},,a b b a ⊆;②{}0=∅;③{}0∅∈;④{}00∈,其中正确的个数为( ) A .1个B .2个C .3个D .4个10.从集合{},,a b c 的所有子集中任取一个,这个集合恰是集合{}a 子集的概率是( ) A .35B .25C .14D .1811.已知{1,3}{1,2,3,4,5}M ⊂⊆≠的集合M 的个数是( ) A .5 B .6C .7D .812.已知集合{}*3A x N x =∈<∣,则集合A 的子集个数为( ) A .3B .4C .5D .613.设集合1,4A x x k k Z ⎧⎫==+∈⎨⎬⎩⎭,1,24k B y y k Z ⎧⎫==-∈⎨⎬⎩⎭,则它们之间最准确的关系是( ). A .A B = B .A B ⊄ C .A BD .A B ⊆14.若集合A =1,2,3},若集合B ⊆A ,则满足条件的集合B 有( ) A .3个 B .7个 C .8个 D .9个15.已知{}22A y y x ==-,{}22B y y x ==-+,则A B =( )A .()){},B .⎡⎣C .[]22-,D .{16.已知集合{|20}A x x =-<,{|}B x x a =<,若A B B ⋃=,则实数a 的取值范围是 A .(,2]-∞-B .[2,)-+∞C .(,2]-∞D .[2,)+∞17.如果{}2A x x =>-,那么( ) A .{}0A ⊆B .0A ⊆C .{}0A ∈D .A ∅∈18.设集合{}14A x x =-<<,集合{}5B x x =<,则( ) A .A B ∈ B .A B ⊆C .B A ∈D .B A ⊆19.已知[]{}2,2,A B x x a =-=≤,若A B A ⋂=,则实数a 的取值范围为( )A .{}2a a >B .{}2a a >-C .{}2a a ≥D .{}2a a ≤-20.已知集合2{|320,},{|07,}A x x x x R B x x x N =-+=∈=<<∈ , 则满足条件A C B ≠⊂⊆的集合C 的个数为 A .16 B .15C .14D .4参考答案1.C 2.A 3.C 4.C 5.B 6.C 7.C 8.C 9.B 10.C 11.C 12.B 13.C 14.C 15.C 16.D 17.A 18.B 19.C 20.B【参考解析】1.解析:根据各选项对于的集合的代表元素,一一判断即可; 详解:解:集合{2,3}A =,表示含有两个元素2、3的集合, 对于A :{(2,3)},表示含有一个点(2,3)的集合,故不相等; 对于B :{(,})|2,3}x y x y ==,表示的是点集,故不相等;对于C :{}2|560x x x -+=,表示方程2560x x -+=的解集,因为2560x x -+=的解为2x =,或3x =,所以{}{}2|5602,3x x x -+==对于D :{}{}2903,2,1,0,1,2,3x N x ∈-≤=---,故不相等故选:C2.解析:根据子集的定义、以及A 、B 两个集合的范围,建立实数a 的不等式,求解即可得到a 的取值范围. 详解:由于 集合A =x|1<x <2},B =x|x <a},且满足A ⊆B , ∴a≥2, 故选:A . 点睛:本题主要考查集合间的关系,子集的定义,属于基础题.3.解析:A B B =等价于B A ⊆,分B φ=和B φ≠两类情况,分别求出m 的值,得出答案. 详解:A B B =,B A ∴⊆,当0m =时,B φ=满足要求;当B φ≠时,10m +=或210m -=,1m =-或12,∴综上,{1m ∈,0,1}2.故选:C 点睛:本题考查集合间的关系,考查转化思想和分类讨论思想,属于基础题.4.解析:求出集合M ,由此可计算出集合M 的子集个数. 详解:{}{}20x B y y y y ===>,{}1,0,1,2A =-,{}1,2M A B ∴=⋂=,因此,集合M 的子集个数是224=. 故选:C. 点睛:本题考查集合子集个数的计算,一般要求出集合的元素个数,考查计算能力,属于基础题.5.解析:分别计算每个集合再分析即可. 详解:由题, {}{}3|11x x ==,2|11,1x x,{}1|11x x ⎧⎫==⎨⎬⎩⎭.故选:B 点睛:本题主要考查了集合间的基本关系,属于基础题型.6.解析:通过集合{}0A x x =<,且B A ⊆,说明集合B 是集合A 的子集,对照选项即可求出结果. 详解:解:因为集合集合{}0A x x =<,且B A ⊆,所以集合B 是集合A 的子集, 当集合{}1B x x =>-时,1A ∉,不满足题意, 当集合B R =时,1A ∉,不满足题意, 当集合{}2,3B =--,满足题意,当集合{}3,1,0,1B -=-时,1A ∉,不满足题意, 故选:C . 点睛:本题考查集合的基本运算,集合的包含关系判断及应用,属于基础题.7.解析:根据集合相等的概念,判断选项即可求出答案. 详解:对于A,两个集合中的元素分别是数对(3,2),(2,3),不相同,故错误;对于B ,M 中一个元素为数对(3,2),N 中两个元素实数3和2,不相同,故错误;对于C ,M=R, N=R,故相同,正确;对于D ,(){}21M x y x y =+=,,(){}21N y x x y =+=,分别表示满足方程21x y +=的数对()x y ,和()y x ,,显然不完全相同,故错误.故选:C 点睛:本题主要考查了集合的元素,集合相等的概念,属于中档题.8.解析:首先通过解不等式求得集合A ,再利用子集的定义得到A ⊆B ,从而得到集合A 中的元素都在集合B 中,利用子集的性质,对选项逐一对比,得到正确答案. 详解:解不等式x 2−x <0,得0<x <1,即A ={x|0<x <1}, 又因为B ={x|−2<x <2},所以A ⊆B ,从而可得A ∪B =B,A ∩B =A ,对选项逐一分析,可得C 正确, 故选C. 点睛:该题考查的是有关集合的问题,涉及到的知识点有一元二次不等式的解法,子集的概念以及子集的性质,属于简单题目.9.解析:根据集合包含关系和元素与集合关系可知①④正确;根据∅含义可知②③错误. 详解:①中,{}{},,a b b a =,可知{}{},,a b b a ⊆成立,①正确; ②中,∅是不包含任何元素的集合,{}0≠∅,②错误; ③中,∅表示空集,不是{}0中元素,③错误; ④中,0是集合{}0中的元素,④正确. 故选B 点睛:本题考查元素与集合的关系、集合之间的包含关系等知识,属于基础题.10.解析:根据集合元素个数可确定子集的个数,根据古典概型概率公式可求得结果. 详解:集合{},,a b c 的子集共有328=个,集合{}a 的子集共有2个,则从{},,a b c 的所有子集中任取一个,恰是集合{}a 子集的概率为2184=. 故选:C . 点睛:本题考查古典概型概率问题求解,涉及到集合子集个数的求解,属于基础题.11.解析:依题意1M ∈且3M ∈且2,4,5至少有一个属于集合M ,再一一列举出来即可; 详解:解:因为{1,3}{1,2,3,4,5}M ⊂⊆≠,所以1M ∈且3M ∈且2,4,5至少有一个属于集合M ,可能有{}1,2,3,{}1,4,3,{}1,4,3,{}1,2,4,3,{}1,2,5,3,{}1,4,5,3,{}1,2,3,4,5共7个,故选:C 点睛:本题考查集合的包含关系,求集合的子集,属于基础题.12.解析:先化简集合A ,再求得其子集即可. 详解:因为集合{}{}*31,2A x N x =∈<=∣,所以集合A 的子集为{}{}{},1,2,1,2∅,所以集合A 的子集个数为4, 故选:B13.解析:利用列举法可判断集合A 、B 的包含关系. 详解: 由集合A 得414k x +=,k Z ∈,则73159,,,,,44444A ⎧⎫=⋅⋅⋅--⋅⋅⋅⎨⎬⎩⎭, 由集合B 得214k y -=,k Z ∈,则31135,,,,,44444B ⎧⎫=⋅⋅⋅--⋅⋅⋅⎨⎬⎩⎭,所以,A B , 故选:C .14.解析:由B 是A 的子集及集合A =1,2,3},可求出集合B 的个数 详解:由集合B ⊆A ,则B 是A 的子集, 则满足条件的B 有23=8个, 故选:C15.解析:求出集合A 、B ,利用交集的定义可求得结合A B . 详解:因为{}{}222A y y x y y ==-=≥-,{}{}222B y y x y y ==-+=≤,因此,[]2,2A B =-. 故选:C.16.解析:先根据A B B ⋃=得到A B 、之间的关系,然后利用不等式确定a 的范围. 详解:因为A B B ⋃=,所以A B ⊆,又因为{}{|20}|2A x x x x =-<=<,{|}B x x a =<,所以2a ≥,即[)2,a ∈+∞,故选:D. 点睛:本题考查根据集合间的包含关系求解参数范围,难度一般.集合间运算的性质:A B B A B ⋃=⇒⊆,A B B A B ⋂=⇒⊇.17.解析:对各项表述判断是否正确后可得正确的选项.详解:0为集合A 中的元素,{},0∅均为集合,它们不是A 中的元素,故B 、C 、D 均错误,{}0是一个集合,它是A 的子集,故A 正确.故选:A. 点睛:本题考查元素与集合以及集合与集合关系,前者用属于不属于来考虑,后者用包含不包含来考虑,本题为基础题.18.解析:根据集合的包含关系定义直接得答案. 详解:解:集合{}14A x x =-<<,集合{}5B x x =<, 则A B ⊆. 故选:B 点睛:本题考查集合的包含关系,注意属于是表示元素与集合之间的关系,是基础题.19.解析:根据A B A =得到A B ⊆,再根据范围大小关系得到答案. 详解:A B A A B ⋂=∴⊆[]{}2,2,A B x x a =-=≤,故2a ≥故选:C 点睛:本题考查了根据集合的包含关系求参数范围,判断A B ⊆是解题的关键.20.解析:由A C B ≠⊂⊆可知,A 是C 的真子集,C 是B 的子集,根据子集、真子集的个数即可进行判断即可 详解:由2{|320,}{1,2}A x x x x R A =-+=∈⇒={|07,}{1,2,3,4,5,6}B x x x N B =<<∈⇒=因为A C B ≠⊂⊆,所以C 中一定有1,2两个元素,即求出集合{3,4,5,6}的子集再减去∅即可,即42-1=15个答案选B 点睛:本题考查子集与真子集的判断,真子集个数的求法,若一个集合中元素个数为n个,则子集个数为2n个,真子集的个数为21n-个n-个,非空真子集的个数为22。
人教A版高中数学选修一第三章《圆锥曲线的方程》提高训练 (3)(含答案解析)
选修一第三章《圆锥曲线的方程》提高训练 (3)一、单选题1.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别是1F 和2F ,点1F 关于渐近线0bx ay -=的对称点恰好落在圆222()x c y c -+=上,则双曲线的离心率为( )AB .2C .D .32.双曲线2222:1(0,0)x y E a b a b -=>>过点12P ⎛ ⎝⎭,且离心率为2,F 为双曲线右焦点,双曲线位于第一象限的渐近线与抛物线()220y px p =>相交于点A (异于原点O ).若OA OF =,则p 的值为( )A B C D .3.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,过2F 且斜率为l与C 在第一象限交于N 点,若17NF a =,则双曲线的离心率为( ) A .2B .4C .5D .64.已知1F 、2F 分别是双曲线2222:1x y C a b-=(0,0)a b >>的左、右焦点,双曲线C 的右支上一点Q 满足1||OQ OF =,直线1F Q 与该双曲线的左支交于P 点,且P 恰好为线段1F Q 的中点,则双曲线C 的渐近线方程为( )A .12y x =±B .2y x =±C .y =±D .y =±5.已知椭圆M 的左、右焦点分别为12,F F ,若椭圆M 与坐标轴分别交于,,,A B C D 四点,且从12,,,,,F F A B C D 这六点中,可以找到三点构成一个直角三角形,则椭圆M 的离心率的可能取值为( )A B C D .126..如图为陕西博物馆收藏的国宝一唐·金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.该杯的主体部分可以近似看作是双曲线2222:1(0,0)x y C a b a b-=>> 的右支与直线0,4,2x y y ===-围成的曲边四边形ABMN 绕y 轴旋转一周得到的几何体,若该金杯主体,则双曲线C 的离心率为( )A .2BCD .37.过双曲线2222:1x y C a b-=的右焦点F 作渐近线b y x a =的垂线,垂足为A ,交另外一条渐近线于点B ,若3FB FA =,则双曲线C 的离心率为( )A B C D 8.点A ,B 的坐标分别是()()1010-,,,,直线AM 与BM 相交于点M ,且直线AM 与BM 的斜率的商是()1λλ≠,则点M 的轨迹是( ) A .有一个间断点的直线 B .圆 C .椭圆D .抛物线9.直线2y x =与抛物线W :22y px =交于A ,B 两点,若AB A ,B 两点到抛物线W 的准线的距离之和为( ) A .1B .2C .3D .410.已知双曲线C :22221x y a b-=(0a >,0b >)的两条渐近线为1l ,2l ,若双曲线C 的右支上存在一点P ,使得点P 到1l ,2l 的距离之和为b ,则双曲线C 离心率的取值范围是( )A .)+∞B .C .[2,)+∞D .(1,2]11.设抛物线)(220y px p =>的焦点为)(1,0F ,准线为l ,过焦点的直线交抛物线于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,若4AF BF =,则CDF 的面积为( ) A .254B .203C .5D .25312.已知1F ,2F 是双曲线Ω:22221(0,0)x y a b a b-=>>的左右焦点,曲线Γ:2222x y a b +=+与曲线Ω在二、四象限的交点分别是P ,Q ,四边形12PFQF 的周长L 和面积S 满足L =Ω的离心率是( )A .2B CD13.已知1F ,2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点P ,Q 是C 上位于x 轴上方的任意两点,且12//PF QF .若12PF QF b +≥,则C 的离心率的取值范围是( ) A .10,2⎛⎤⎥⎝⎦B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .⎫⎪⎪⎣⎭14.已知双曲线22221x y a b-=的左右焦点为1F ,2F ,过2F 的直线交双曲线于M ,N 两点(M 在第一象限),若12MF F △与12NF F △的内切圆半径之比为3:2,则直线MN 的斜率为( )AB .CD .15.P 是椭圆()222210x y a b a b+=>>上的一点,A 为左顶点,F 为右焦点,PF x ⊥轴,若1tan 2PAF ∠=,则椭圆的离心率e 为( )A B C D .1216.椭圆2222:1(0,0)x y M a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆M 上任一点,且12PF PF ⋅最大值取值范围为222,3c c ⎡⎤⎣⎦(其中222c a b =+),则椭圆M 的离心率的取值范围是( )A .⎣⎦B .⎫⎪⎪⎣⎭ C .⎤⎥⎣⎦D .11,32⎡⎤⎢⎥⎣⎦172222:1(,0)x y C a b a b-=>,恒有两个公共点,则双曲线的离心率的取值范围( )A .(1,2)B .(2,)+∞C .(D .18.过原点O 的直线l 与椭圆C :()222210x y a b a b+=>>交于M ,N 两点,P 是椭圆C 上异于M ,N 的任一点.若直线PM ,PN 的斜率之积为13-,则椭圆C 的方程可能为( )A .2212x y +=B .2213x y +=C .22132x y +=D .22143x y +=二、多选题19.已知曲线222:1()2x y C m R m m+=∈+,则下列结论正确的是( )A .若曲线C 是椭圆,则其长轴长为B .若0m <,则曲线C 表示双曲线C .曲线C 可能表示一个圆D .若1m =,则曲线C 20.已知直线l 过抛物线()2:20C y px p =->的焦点,且与该抛物线交于M ,N 两点.若线段MN 的长是16,MN 中点到y 轴的距离是6,O 为坐标原点,则( ) A .抛物线C 的方程是28y x =- B .抛物线C 的准线为3x =C .直线l 的斜率为1D .MON △的面积为21.已知直线l 过抛物线2:4C x y =-的焦点F ,且直线l 与抛物线C 交于,A B 两点,过,A B 两点分别作抛物线C 的切线,两切线交于点G ,设(),A A x y Λ,(),B B B x y ,(),G G G x y .则下列选项正确的是( ) A .4A B y y ⋅=B .以线段AB 为直径的圆与直线32y =相离 C .当2AF FB =时,92AB =D .GAB △面积的取值范围为[4,)+∞ 22.已知12,F F 是双曲线2222:1(0,0)x y E a b a b -=>>的左、右焦点,过1F 作倾斜角为6π的直线分别交y 轴、双曲线右支于点M 、点P ,且1||MP MF =,下列判断正确的是( ) A .123F PF π∠=B .EC .12PF F △1D .若,A B 为E 上的两点且关于原点对称,则,PA PB 的斜率存在时其乘积为2三、填空题23.过抛物线M :24y x =的焦点F 作两条相互垂直的弦AB ,CD ,分别交M 于A ,B ,C ,D ,则AB CD +的最小值为___________.24.如图,焦点在x 轴上的椭圆2221(0)2x ya a +=>的左、右焦点分别为1F ,2F ,P 是椭圆上位于第一象限内的一点,且直线2F P 与y 轴的正半轴交于A 点,1APF △的内切圆在边1PF 上的切点为Q ,若14FQ =,则该椭圆的离心率为___________.25.已知12F F 、是椭圆22196x y +=的左、右焦点,P 在椭圆上运动,当1214PF PF +的值最小时,12PF F △的面积为_______.26.已知抛物线2y x =上一点(1,1)A ,过点A 作抛物线的两条弦AB ,AC ,且AC AB ⊥,则直线BC 经过定点为________.四、解答题27.设椭圆22:195x y C +=长轴的左,右顶点分别为A ,B .(1)若P 、Q 是椭圆上关于x 轴对称的两点,直线,AP BQ 的斜率分别为()1212,0k k k k ≠,求12k k +的最小值;(2)已知过点()0,3D -的直线l 交椭圆C 于M 、N 两个不同的点,直线,AM AN 分别交y 轴于点S 、T ,记,DS DO DT DO λμ==(O 为坐标原点),当直线1的倾斜角θ为锐角时,求λμ+的取值范围.28.已知动点P 到点()11,0F -的距离与到点()21,0F的距离之和为P 形成的轨迹为曲线C .(1)求曲线C 的方程;(2)过1F 作直线l 与曲线C 分别交于两点M ,N ,当22F M F N ⋅最大时,求2MF N 的面积. 29.椭圆2222:1(0)x y E a b a b +=>>右焦点为()2,0F c ,点P 在椭圆上运动,且2PF 的最大值为2 (1)求椭圆E 的方程;(2)过()0,1A 作斜率分别为1k ,2k 的两条直线分别交椭圆于点M ,N ,且124k k +=,证明:直线MN 恒过定点.30.已知圆22:(1)16,(1,0)A x y B ++=,M 为圆A 上任意一点,线段BM 的垂直平分线交AM 于点N,点N 的轨迹为W .(1)求轨迹W 的方程;(2)过点B 的直线12,l l 的斜率分别为12,k k ,121k k +=-,1l 交W 于点C D 、,2l 交W 于点E F 、,线段CD 与EF 的中点分别是G H 、,判断直线GH 是否过定点,若过定点,求出该定点,若不过定点,说明理由.31.已知椭圆C :()222210x y a b a b +=>>的离心率e =y x =+C 的左焦点.(1)求椭圆C 的标准方程;(2)若不经过右焦点F 的直线l :()0,0y kx m k m =+><与椭圆C 相交于A ,B 两点,且与圆O :221x y +=相切,试探究ABF 的周长是否为定值,若是求出定值;若不是请说明理由.32.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为1F ,2F ,焦距为2,椭圆C 的上顶点为D ,12DF F △为正三角形,过点1F 的直线l 与椭圆相交于A B 、两点(1)求椭圆C 的标准方程;(2)若112AF F B →→=,求直线AB 的一般方程.33.已知双曲线C :2221x y a-=(0a >)的左、右焦点分别为1F ,2F ,(0,1)E ,过焦点2F ,且斜率为16的直线与C 的两条渐近线分别交于A ,B 两点,且满足12AF BO =. (1)求C 的方程;(2)过点3,02D ⎛⎫- ⎪⎝⎭且斜率不为0的直线2l 交C 于M ,N 两点,且EM EN =,求直线2l 的方程.34.已知抛物线T :()22y px p N +=∈和椭圆C :2215x y +=,过抛物线T 的焦点F 的直线l 交抛物线于A ,B 两点,线段AB 的中垂线交椭圆C 于M ,N 两点.(1)若F 恰是椭圆C 的焦点,求p 的值;(2)若MN 恰好被AB 平分,求OAB 面积的最大值.35.已知抛物线C :()220y px p =>经过点()1,2.(1)求抛物线C 的方程及其准线方程;(2)设过点()2,0P 的直线l 与抛物线C 交于A ,B 两点,若2AB AM =,MN y ⊥轴.垂足为N ,求证:PM PN ⊥.36.已知椭圆C :22213x y b+=,直线l 经过椭圆C 的左焦点()1,0F -与其交于点A ,B .(1)求椭圆C 的方程和离心率;(2)已知点()1,0M ,()2,0N ,直线MA ,MB 与直线2x =分别交于点P ,Q ,若1NP NQ =,求直线l 的方程.37.在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b+=>>的焦距为4,且过点(2,-. (1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于,M N 两点,问是否存在直线l ,使得F 为BMN △的垂心,若存在,求出直线l 的方程;若不存在,请说明理由.38.已知抛物线C :()220y px p =>的焦点到直线l :440x y -+=(1)求抛物线C 的方程及准线方程;(2)设P 是直线l 上的动点,过点P 作抛物线C 的两条切线,切点分别为A 、B ,求PAB △面积的最小值.39.已知椭圆2222:1(0)x y E a b a b +=>>.(1)求椭圆E 的标准方程;(2)直线:l y kx m =+与椭圆E 交于,A B 两点,G 为椭圆E 上的点,且满足OG OA OB =+,求证:四边形OAGB 的面积为定值.40.已知椭圆2222:1x y C a b+=()0a b >>的焦距是 4.(1)椭圆C 的方程;(2)过点1(F 的直线l 交椭圆C 于,M N 两点,2F 是椭圆的右焦点,求2F MN 的面积.41.已知椭圆2222:1(0)x y C a b a b +=>>F 的距离为2.(1)求椭圆C 的方程;(2)若直线:l y x m =+与椭圆C 相交于A ,B 不同两点,且1OA OB ⋅>(O 为坐标原点),求m 的取值范围.42.已知椭圆C :22221x y a b +=(0a b >>(1)求椭圆C 的方程;(2)若P 为椭圆C 上异于椭圆C 端点的任意一点,过点()0,2Q -且平行于OP 的直线l 与椭圆C 相交于A ,B 两点(点O 为坐标原点),是否存在实数λ,使得2QA QB OP λ⋅=⋅成立?若存在,求出λ的值;若不存在,请说明理由.43.设椭圆22221x y a b+=(0a b >>)上的任意一点动点M ,上顶点为A .(1)当上顶点A 坐标为()0,1MA 的最大值; (2)过点M 作圆2223b x y +=的两条切线,切点分别为P 和Q ,直线PQ 与x 轴和y 轴的交点分别为E 和F ,求EOF △面积的最小值.44.已知抛物线C :()220y px p =>的焦点为F ,准线与x 轴交于D 点,过点F 的直线与抛物线C交于A ,B 两点,且FA FB FA FB ⋅=+. (1)求抛物线C 的方程;(2)设P ,Q 是抛物线C 上的不同两点,且PF x ⊥轴,直线PQ 与x 轴交于G 点,再在x 轴上截取线段GE GD =,且点G 介于点E 点D 之间,连接PE ,过点Q 作直线PE 的平行线l ,证明l 是抛物线C 的切线.45.已知椭圆2222:1(0)x y C a b a b +=>>1F ,2F 是椭圆C 的左右焦点,P 为椭圆上的一个动点,且12PF F △面积的最大值为(1)求椭圆C 的方程;(2)过椭圆C 的右焦点2F 作与x 轴不垂直的直线1l 交椭圆于A ,B 两点,第一象限点M 在椭圆上且满足2MF x ⊥轴,连接MA ,MB ,记直线AB ,MA ,MB 的斜率分别为k ,1k ,2k ,探索122k k k +-是否为定值,若是求出;若不是说明理由.46.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(2,0)F ,一条渐近线方程为0x -=.(1)求双曲线C 的方程;(2)记C 的左、右顶点分别为A B 、,过F 的直线l 交C 的右支于,M N 两点,连结MB 交直线32x =于点Q ,求证:A Q N 、、三点共线.47.在直角坐标系xOy 中,过动点(,)P x y 的直线与直线1y =-垂直,垂足为Q ,点(0,1)F 满足FP FQ QP QF ⋅=⋅.(1)求点(,)P x y 的轨迹方程;(2)直线l 与(1)中的轨迹交于A B 、两点,如果线段AB 的中点为(1,1),求直线l 的方程.48.已知椭圆1C :()222210x y a b a b +=>>的离心率为2,抛物线2C :24y x =-的准线被椭圆1C 截(1)求椭圆1C 的方程;(2)如图,点A ,F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M ,N (M ,N 都在x 轴上方).且AFM OFN ∠=∠.直线l 是否恒过定点?若是,求出该定点的坐标;若否,说明之.49.已知椭圆2222:1(0)x y C a b a b+->>的左、右焦点分别是F 1、F 2,上、右顶点分别是A 、B ,满足∠F 1AF 2=120°,||AB = (1)求椭圆C 的标准方程;(2)与圆x 2+y 2=1相切的直线l 交椭圆C 于P 、Q 两点,求|PQ |的最大值及此时直线l 的斜率.50.已知椭圆E :2222x y a b +=1(a >b >1,依次连结E 的四个顶点所构成的四边形面积为O 为坐标原点. (1)求E 的方程;(2)设F 为E 的右焦点,A 是E 上位于第一象限的点,且AF ⊥x 轴,直线l 平行于OA 且与E 交于B ,C 两点,设直线AB ,AC 的斜率分别为k 1,k 2,证明:k 1+k 2=0.【答案与解析】1.B 【解析】首先求出F 1到渐近线的距离,利用F 1关于渐近线的对称点恰落在圆上,可得直角三角形,利用勾股定理得到关于ac 的齐次式,即可求出双曲线的离心率由题意可设()()12,0,,0F c F c -,则1F 到渐近线0bx ay -=b =.设1F 关于渐近线0bx ay -=的对称点为M ,F 1M 与渐近线交于A , ∴MF 1=2b ,A 为F 1M 的中点. 又O 是F 1P 的中点,∴OA ∥F 2M , ∴12F MF ∠为直角,所以△12F MF 为直角三角形,由勾股定理得:22244c c b =+,所以()22234c c a =-,所以224c a =,所以离心率2ce a== 故选:B. 2.A 【解析】根据2ce a==,得到双曲线过第一象限的渐近线方程为y =,与抛物线联立,求得点A ,再根据OA OF c ==,得到43p c =,从而23p a =,b =12P ⎛ ⎝⎭代入双曲线方程求解. 依题2ce a==, 所以22222243c a a b a b a =⇒+=⇒=.又0a >,0b >,所以b =,所以双曲线过第一象限的渐近线方程为y =,联立2223232p y x px x y px ⎧=⎪⇒=⇒=⎨=⎪⎩或0x =(舍去).当23p x =时,y =23p A ⎛ ⎝⎭.又因为OA OF c =⇒=, 解得43p c =,从而23p a =,b = 所以双曲线方程为222293144x y p p -=.因为点12P ⎛ ⎝⎭在双曲线上,所以22129344144p p ⨯⨯-=,解得p = 故选:A 3.B 【解析】由双曲线的定义可知25NF a =,再由余弦定理建立,a c 的关系,即可求解 作出双曲线的大致图象,如图所示:由题意可知:213F NF π∠=,212725NF NF a a a a =-=-=,122F F c =,由余弦定理可得:222212112212cos 2NF F F NF F N NF F F F +-=⨯⨯∠即()()()22252712252a c a a c+-=⨯⨯,整理得:2225120c ac a --=, 所以225120e e --=,解得4e =或32e =-(舍),故选:B 4.C 【解析】根据给定条件导出12QF QF ⊥,再利用双曲线定义结合勾股定理计算作答. 依题意,令12||||||OQ OF OF c ===,则有12QF QF ⊥,令2||2QF t =,由双曲线定义得1||22QF a t =+,而点P 是QF 1中点且在双曲线左支上,则12||||,||3PQ PF a t PF a t ==+=+,在2Rt PQF 中,22222||||||PQ QF PF +=,即222()(2)(3)a t t a t ++=+,解得2t a =,则2||4QF a =,1||6QF a =,在12Rt FQF 中,2221212||||||QF QF F F +=,即22236164a a c +=,2213c a =,于是得2212b a =,ba=所以双曲线C 的渐近线方程为y =±. 故选:C 5.A 【解析】结合椭圆的对称性,只需要考虑三种情况:2DC CF ⊥,12CF CF ⊥,22CF AF ⊥,分别计算每一种情况的离心率即可求解.结合椭圆的对称性,只需要考虑三种情况:若以2,,D C F 作为直角三角形的三个顶点,则2DC CF ⊥,由勾股定理可得:()()2222a b a a c ++=+,将222b a c =-代入可得:220c ac a +-=,所以210e e +-=,因为01e <<,所以e =若以12,,C F F 作为直角三角形的三个顶点,则12CF CF ⊥,所以245OCF ∠=,则c e a ==若以2,,C A F 作为直角三角形的三个顶点,则22CF AF ⊥, 所以245CF O ∠=,c e a ==, 综上所述:椭圆M, 故选项A 正确; 故选:A. 6.A 【解析】由已知得出点M ,N 的坐标,然后代入双曲线方程求出a ,b 的值,由此求出c 的值,即可求解.解:由题意可知M 4),N 2)-, 故双曲线C 经过M ,N 两点,则222257161921419a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩,解得a =3b =,所以c =则双曲线的离心率为2c e a ===, 故选:A . 7.B 【解析】求出渐近线方程,设直线AB 的方程为()ay x c b=--,联立直线AB 与渐近线方程可得,A B 两点坐标,由3FB FA =可得3B A y y =,结合222b c a =-即可求解. 如图,因为直线AB 经过右焦点F 且与渐近线by x a=垂直, 所以直线AB 的方程为()ay x c b=--, 由()b y x a a y x c b ⎧=⎪⎪⎨⎪=--⎪⎩可得A ab y c =,由()b y x aa y x cb ⎧=-⎪⎪⎨⎪=--⎪⎩可得22B abc y b a =-,因为3FB FA =,所以3B A y y =,即223abc abb a c=-即()2223b a c -=,因为222b c a =-,所以223c a =,解得e = 故选:B. 8.A 【解析】设点M 的坐标,利用直线AM 与BM 的斜率的商是()1λλ≠,建立方程,即可求得点M 的轨迹方程. 设点M 的坐标为()x y ,,则点A ,B 的坐标分别是()()1010-,,,, 直线AM 与BM 的斜率的商是()1λλ≠,1111yx x y x x λλ-+∴==+-,,可得10x x λλ-++=,即()()1100x y λλ-++=≠.则点M 的轨迹是有一个间断点的直线. 故选:A 9.C 【解析】直线2y x =与抛物线W :22y px =联立,可得()0,0A ,,2p B p ⎛⎫⎪⎝⎭,再利用两点之间的距离公式求得2p =,再利用抛物线的性质即可得解.联立222y x y px =⎧⎨=⎩,整理得:220x px -=,解得:120,2p x x ==即直线与抛物线交于()0,0,,2p p ⎛⎫⎪⎝⎭两点,且0p >由AB 2245p p ,解得:2p =或2p =-(舍)所以抛物线方程为24y x =,准线方程为1x =-故A ,B 两点到抛物线W 的准线的距离之和为()1113++=,故选:C.关键点点睛:解题的关键是熟悉抛物线的性质. 10.C 【解析】设()00,P x y ,求出两条渐近线方程,根据点到直线的距离公式求出点P 到1l ,2l 的距离之和,再根据点P 到1l ,2l 的距离之和为b ,化简整理结合0x a ≥即可求出答案. 解:两条渐近线方程为:by x a=±,设()00,P x y ,则点P 到1l ,2l 的距离之和为12d d b +==P 在双曲线C 的右支上一点,故000bx ay +>,000bx ay ->, 所以0122bx d d b c +==,所以02cx a =≥, 所以2ca≥,即双曲线C 离心率的取值范围是[2,)+∞ 故选:C. 11.C 【解析】根据给定条件写出抛物线方程,借助抛物线定义及已知求出直线AB 方程,联立直线AB 与抛物线方程,求出A ,B 的纵坐标即可作答. 依题意,12p=,即2p =,抛物线方程为:24y x =,准线l :1x =-, 如图,过点B 作直线BM//l 交AC 于M ,由抛物线定义知:||||4||4||AC AF BF BD ===,显然四边形BMCD 是矩形,则||AM =||||||||3||AC CM AC BD BF -=-=,而||5||AB BF =,则4BM BF =,于是得直线AB 的斜率4tan 3k BAM =∠=,直线AB 方程314x y =+,由23144x y y x⎧=+⎪⎨⎪=⎩消去x 得:2340y y --=,解得14y =,21y =-,于是得点A ,B 纵坐标分别为4,-1,则(1,4),(1,1)CD ---,从而得||5CD =,而点F 到直线l 的距离为h =2, 所以CDF 的面积为11||52522S CD h =⋅=⋅⋅=. 故选:C 12.C 【解析】由双曲线的定义知212PF PF a -=,结合四边形的周长知122LPF PF +=,得到1PF ,2PF 的长度,从而得到矩形12PFQF的面积,再利用L =2221212PF PF F F +=得到,a c 关系,即可求得离心率.由双曲线的定义可知212PF PF a -=,又OP OQ =,12OF OF =,可知四边形12PFQF 是平行四边形,所以122LPF PF += 联立解得24L PF a =+,14LPF a =-, 又线段12F F 为圆的直径,由双曲线的对称性可知四边形12PFQF 为矩形,所以四边形12PFQF 的面积221216L S PF PF a =⋅=-,又L =248L S =,即2224816L L a ⎛⎫=- ⎪⎝⎭,解得2224L a =,由2221212PF PF F F +=,得222248L a c +=,即2254a c =,即e =故选:C. 13.C 【解析】根据题意延长1PF 交椭圆另一交点为A ,由条件结合椭圆性质可知11PF F A PA +=, 再通过通径的性质有2min2PA b b a=≤即可得解. 由点P ,Q 是C 上位于x 轴上方的任意两点, 延长1PF 交椭圆另一交点为A , 由12//PF QF 再结合椭圆的对称性,易知11PF F A =, 所以11PF F A PA +=, 由椭圆过焦点的弦通径最短, 所以当PA 垂直x 轴时,PA 最短, 所以2min2PA b b a=≤, 所以22ab b ≤,解得0e <≤. 故选:C 14.B 【解析】数形结合,设MA MC m ==,11AF BF n ==,22BF CF t ==,依据双曲线定义可知n a c =+,利用直线l 的倾斜角θ与21O O D ∠大小相等,简单计算即可设圆1O 与12MF F △的三边的切点分别为,,A B C ,如图, 令MA MC m ==,11AF BF n ==,22BF CF t ==,根据双曲线的定义可得()()22m n m t an t c +-+=⎧⎨+=⎩,化简得n a c =+,由此可知,在12F F M ∆中,1O B x ⊥轴于B ,同理2O B x ⊥轴于B ,12O O x ∴⊥轴过圆心2O 作1CO 的垂线,垂足为D ,易知直线l 的倾斜角θ与21O O D ∠大小相等,不妨设圆1O 的半径13R =,设圆2O 的半径22R =,则215O O =,11O D =,所以根据勾股定理,2O D =所以,tan θ= 故选:B关键点睛:得到n a c =+是关键,说明12O O x ⊥轴,同时直线l 的倾斜角θ与21O O D ∠大小相等便于计算 15.D 【解析】求出PF 、AF ,由1tan 2PAF ∠=可求得e 的值. 不妨设点P 在第一象限,因为PF x ⊥轴,所以P x c =,将P x c =代入椭圆方程得22221P y c a b +=,因为0P y >,可得2P b y a =,即2b PF a=,因为AF a c =+,所以,()2221tan 12b PF ac a c a PAF e AF a c a a c a --∠=====-=++,解得12e =.故选:D. 16.A 【解析】根据基本不等式可得12PF PF ⋅的最大值,根据题意,列出不等式,即可求得答案. 由基本不等式及椭圆定义可知2122122PF PF PF PF a ⎛+⎫⋅≤= ⎪⎝⎭,12PF PF ∴⋅的最大值为2a ,由题意知22223c a c ≤≤,a ≤≤,e ≤≤故选:A 17.D 【解析】的直线与双曲线2222:1(,0)x y C a b a b-=>由此可求离心率的范围.∵2222:1(,0)x y C a b a b-=>恒有两个公共点,∴ba>∴ca> ∴双曲线的离心率的取值范围是)+∞, 故选:D. 18.B 【解析】设()(),,,M x y N x y --,()00,P x y ,求得,PM PN 的斜率,根据直线,PM PN 的斜率之积为13-列方程,求得22b a的值,即可得解.设()(),,,M x y N x y --,()00,P x y ,则222222220022,b x b x y b y b a a=-=-,所以222000222222200220022022PM PNy y y y y y b x b x b b a b k k x x x x x x x x aa -+-⋅=⋅==⎛⎫---=- ⎪-⎝⎭-+-, 所以2213b a -=-即2213b a=.故选:B. 19.BD 【解析】因为220m m +->恒成立,所以22m m +≠,曲线C 不可能为圆,可判断选项C 错误,当0m >时为椭圆,且焦点在x 轴上,可判断选项A 错误,0m <时为双曲线,所以选项B 正切,1m =时,曲线方程确定,需要用弦长公式求解弦长的最小值解:由题意,若曲线C 是椭圆,则0m >,因为220m m +->恒成立,所以椭圆222:12x y C m m+=+的焦点在x轴上,所以其长轴长为,故A 错误;若0m <,根据双曲线的定义可知曲线C 表示双曲线,故B 正确;因为220m m -+>对任意的m 恒成立,所以曲线C 不可能表示一个圆,故C 错误; 若1m =,则曲线C 为椭圆,方程为2213x y +=,焦点坐标为(,若过焦点的直线斜率为0时,此时该直线截椭圆C的弦长为若过焦点的直线斜率不为0时,不妨设该直线过椭圆C的右焦点,方程为x ny =C 的两个交点分别为()()1122,,,A x y B x y ,由2213x y x ny ⎧+=⎪⎨⎪=+⎩,可得22(3)10n y ++-=,则有2221212284(3)12(1)012n n n y y y y n ⎧=++=+>⎪⎪⎪+=⎨⎪⎪=-⎪+⎩12|||AB y y =-==22212)33n n n +==-≥++当0n =时,上式不等式可取等号,即min ||AB =综上,可知椭圆22:13x C y +=D 正确;故选:BD 20.AD 【解析】结合抛物线的定义求得p ,由此判断AB 选项的正确性.设出直线l 的方程,联立直线l 的方程和抛物线方程,结合弦长求得直线l 的斜率,由此判断C 选项的正确性.求得MON △的面积,由此判断D 选项的正确性.依题意直线l 过抛物线的焦点,16MN =,MN 中点到y 轴的距离是6,结合抛物线的定义可知621642p p ⎛⎫+⨯=⇒= ⎪⎝⎭,所以抛物线方程为28y x =-,准线为2x =,所以A 正确,B 错误. 抛物线焦点坐标为()2,0F -,设直线l 的方程为2x my =-, 228x my y x=-⎧⎨=-⎩,消去x 并化简得28160y my +-=, 设()()1122,,,M x y N x y ,则()21212128,484y y m x x m y y m +=-+=+-=--.所以284416MN m =++=,解得1m =±.所以C 错误.当1m =时,直线l 的方程为2x y =-,即20x y -+=,原点到直线l=,所以1162MON S=⨯=当1m =-时,同理求得MONS =D 正确.故选:AD 21.BCD 【解析】求出抛物线的焦点及准线,设直线l 的方程为1y kx =-,与抛物线方程联立,利用韦达定理,计算可判断A ;利用定义及直线与圆的位置可判断B ;由向量共线求出弦长判断C ;求出点G 的坐标及GAB △面积的函数式即可判断作答.抛物线2:4C x y =-的焦点(0,1)F -,准线方程为1y =,设直线l 的方程为1y kx =-,由214y kx x y=-⎧⎨=-⎩消去y 得:2440x kx +-=,于是得4,4A B A B x x k x x +=-=-, 22144A BA B x x y y ⋅=⋅=--,A 不正确;以线段AB 为直线的圆的圆心00(,)x y ,则20()22122A B A B y y k x x y k ++-===--,点 00(,)x y 到直线32y =距离2522d k =+, 由抛物线定义得2||||||2()44A B AB AF BF y y k =+=-+=+,显然1||2d AB >,即以线段AB 为直径的圆与直线32y =相离,B 正确; 当2AF FB =时,有02(0)A B x x -=-,即2A B x x =-,而4,4A B A B x x k x x +=-=-,于是得218k =,29||442AB k =+=,C 正确;由214y x =-求导得12y x '=-,于是得抛物线C 在A 处切线方程为:()2A A A x y y x x -=--,即2124A A x y x x =-+, 同理,抛物线C 在B 处切线方程为:2124B B x y x x =-+,联立两切线方程解得1()22G A B x x x k =+=-,114G A B y x x =-=,点(2,1)G k -到直线l :10kx y --=的距离h ==,于是得GAB △面积322211||(44)4(1)422GABSAB h k k ==+⋅=+≥,当且仅当0k =时取“=”,GAB △面积的取值范围为[4,)+∞,D 正确. 故选:BCD 22.ABD 【解析】根据题意画出对应的图像,A 选项根据图像可得,B 选项要结合图像以及双曲线的定义,性质进行化简计算,C 选项根据内切圆半径的公式计算即可,D 选项设点表示斜率,结合双曲线方程进行化简如上图所示,因为,M O 分别是112,PF F F 的中点,所以12PF F △中,2//PF MO ,所以2PF x ⊥轴 A 选项中,因为直线1PF 的倾斜角为6π,所以123F PF π∠=,故A 正确B 选项中,12Rt PF F 中,12212,,F F c PF PF ===,所以122PF PF a -==,得:==c e a B 正确C 选项中,12PF F △的周长为(2c +,设内切圆为r ,根据三角形的等面积法,有(22cr c =,得:1r c ⎛= ⎝⎭,是与c 有关的式子,所以C 错误D 选项中,,A B 关于原点对称,可设()(),,,A m n B m n --,P c ⎛⎫ ⎪ ⎪⎝⎭,根据==ce a),2Pa ,所以当斜率存在时,PAk =,PB k =,222243PA PB a n k k a m -⋅=-,因为,A B 在双曲线上,所以22221m n a b -=,即222212m n a a-=,得:22222n m a =- , 所以22222222462233PA PB a n a m k k a m a m --⋅===--,故D 正确 故选:ABD题目比较综合,涉及到图像特点的应用;通过找到,a c 之间的等量关系求解离心率;等面积法计算内切圆半径;设点法证明斜率乘积为定值 23.16 【解析】设出直线AB 的方程()()10y k x k =-≠,与抛物线方程联立,消元,写出两根之和; 根据焦点弦公式求出弦AB 和CD ,从而利用基本不等式求AB CD +的最小值. 易知直线AB 的斜率存在且不为0,所以设直线AB 的方程为()()10y k x k =-≠,()11,A x y ,()22,B x y ,直线AB 的方程与抛物线方程24y x =联立,消y ,得:()2222240k x k x k -++=,∴212224k x x k ++=,12244AB x x p k =++=+, 同理244=+CD k ,∴2248416AB CD k k +=++≥,当且仅当1k =±时等号成立. 故答案为:16.24【解析】由1APF ∆的内切圆在边1PF 上的切点为Q ,根据切线长定理,可得12||||||F M PQ PF =+,再结合1||4F Q =,求得12||||8PF PF +=,即4a =,再由隐含条件求得c ,则可求椭圆的离心率. 解:如图,1APF ∆的内切圆在边1PF 上的切点为Q∴根据切线长定理可得||||AM AN =,11||||4F M FQ ==,||||PN PQ = 12||||AF AF =,12||||||||||AM F M AN PN PF ∴+=++,122||||||||||4F M PN PF PQ PF ∴=+=+=,则1212111||||||||||||||2||8PF PF FQ PQ PF FQ F M FQ +=++=+==,即28a =,4a =, 又22b =,22214c a b ∴=-=,则c∴椭圆的离心率4c e a ==.25. 【解析】根据椭圆定义得出12||||6PF PF +=,进而对()121214||||||||PF PF PF PF ⎛⎫++ ⎪⎝⎭进行化简,结合基本不等式得出1214||||PF PF +的最小值,并求出12||,||PF PF 的值,进而求出面积. 由椭圆定义可知,12||||26PF PF a +==,所以()21121212||4||14||||559||||||||PF PF PF PF PF PF PF PF ⎛⎫++=++≥+⎪⎝⎭, 121493=||||62PF PF +≥,当且仅当2112||4||||||PF PF PF PF =,即12||2,||4PF PF ==时取“=”.又2223c a b c =-=⇒=12||F F =所以2221122||||||PF F F PF +=,由勾股定理可知:112PF F F ⊥,所以12122PF F S=⨯=故答案为:26.()2,1- 【解析】设211(,)B y y ,222(,)C y y ,应用直线方程的两点式并整理得直线BC 为1212()0x y y y y y -++=,再由12221211111y y y y --⋅=---确定1212,y y y y +的关系,即可知BC 的定点坐标. 由题设,令211(,)B y y ,222(,)C y y ,则直线BC 为112222112y y y y x y y y --=--,又12y y ≠且均不为1, ∴BC :121121y y x y y y -=-+,整理得1212()0x y y y y y -++=, 又12221212111111(1)(1)y y y y y y --⋅==---++,即121220y y y y +++=,得1212(2)y y y y =-++, ∴BC 为12()(1)2x y y y =+++,即BC 经过定点()2,1-. 故答案为:()2,1-关键点点睛:通过设,B C 的坐标,利用两点式化简整理出直线BC 的方程,再由垂直关系有1⋅=-AC AB k k 确定参数关系,并代入所得BC 的方程,即可确定定点坐标.27.(1(2)4,23⎛⎫ ⎪⎝⎭.【解析】(1)设点()00,P x y ,则可表示出12k k +,然后结合椭圆的性质即可求出最小值;(2)由题意可设直线():3,0l y kx k =->,与椭圆方程联立,设()()1122,,M x y N x y 、,则利用韦达定理可得两根和、两根积,及斜率的取值范围,然后结合条件可以用斜率表示出λμ+,即可求出其取值范围.(1)设点()00,P x y ,由椭圆的对称性知()00,Q x y -,不妨令00y >, 由已知()(),3,03,0A B -,则001200,33y y k k x x -==+-,显然有033x <<-, 则0001220006339y y y k k x x x +=+=+--, 22220000919955x y y x +=⇒-=,则120103k k y +=,因为00y <120103k k y +=≥当且仅当0y 12k k +(2)当直线l 的倾斜角θ为锐角时,设()()1122,,M x y N x y ,,设直线():3,0l y kx k =->, 由223195y kx x y =-⎧⎪⎨+=⎪⎩得22(59)54360k x kx +-+=,从而22(54)436(59)0k k ∆=-⨯⨯+>,又0k >,得23k >,所以1212225436,9595k x x x x k k +==++, 又直线AM 的方程是:()1133y y x x =++,令0x =,解得1133y y x =+,所以点S 为1130,3y x ⎛⎫⎪+⎝⎭; 直线AN 的方程是:()22333y y x x =++,同理点T 为2230,3y x ⎛⎫ ⎪+⎝⎭· 所以()1212330,3,0,3,0,333y y DS DT DO x x ⎛⎫⎛⎫=+=+= ⎪ ⎪++⎝⎭⎝⎭, 因为,DS DO DT DO λμ==,所以12123333,3333y y x x λμ+=+=++, 所以()()()12121212121212122311833222333339kx x k x x y y kx kx x x x x x x x x λμ+-+---+=++=++=++++++++ ()222223654231181019595223654921399595k k k k k k k k k k k ⎛⎫⋅+-- ⎪+++⎝⎭=+=-⨯+++⎛⎫+⨯+ ⎪++⎝⎭()()2110101229911k k k +=-⨯+=-⨯+++ ∵23k >,∴4,23λμ⎛⎫+∈ ⎪⎝⎭, 综上,所以λμ+的范围是4,23⎛⎫ ⎪⎝⎭.28.()(221122x y +=;【解析】(1)根据椭圆的定义可得动点P 的轨迹是以12F F 、为焦点的椭圆,求出a 、b 的值即可得出结果. (2)对直线l 的斜率分类讨论,若斜率不存在,直接求出22F M F N ⋅和2MF NS的值;若斜率不存在,设直线方程和点M 、N 坐标,联立方程组并消元得到一元二次方程,根据韦达定理表示出121212x x x x y y +、、,进而表示出22F M F N ⋅,化简求值即可得出结果.(1)动点P 到两定点12(10)(10)F F -,,,的距离之和为所以12122PF PF F F +=>=, 则动点P 的轨迹是以12F F 、为焦点的椭圆,所以21a c ==,即2221a b a c ==-=,(2)①当直线l 的斜率不存在时,x =-1,则(1(1M N --,,,此时2272F M F N ⋅=,212()2MF NS =⨯-=②当直线l 的斜率存在时,设为(1)(0)y k x k =+≠,()()1122M x y N x y ,,,, 联立方程222222(1)(21)422012y k x k x k x k x y =+⎧⎪⇒+++-=⎨+=⎪⎩, 所以2212122242(1)2121k k x x x x k k -+=-=++,,有22121212122(1)(1)(1)21k y y k x k x k x x x x k =+⨯+=+++=-+,221212(1)(1)F M F N x x y y ⋅=--+121212()1x x x x y y =-+++222222222(1)42121212121k k k k k k k k -+=++-++++ 22271797=212422k k k -=-<++, 综合①②可得,当直线l :x =-1时22F M F N ⋅取得最大值,所以2MF NS=29.(1)2214x y +=;(2)证明见解析.【解析】(1)根据2max 2PF a c =+=c e a ==(2)当直线MN 斜率不存在时,设直线方程为x m =,由124k k +=求解;当直线MN 斜率存在时,设直线MN 的方程为y kx t =+,联立方程组2244x y y kx t⎧+=⎨=+⎩,由124k k +=,利用韦达定理,求得k ,t 的关系,代入y kx t =+求解.(1)由题意得2max 2PF a c =+=①又c a =c =,②由①②得2a =,c = 又2221b a c =-=,(2)当直线MN 斜率不存在时,设直线方程为x m =,则(,)M m n ,(,)N m n -, 则11n k m -=-,21n k m +=-,所以121124n n k k m m m-++=+==---, 解得12m =-.当直线MN 斜率存在时,设直线MN 的方程为y kx t =+, 联立方程组2244x y y kx t ⎧+=⎨=+⎩,得()222418440k x ktx t +++-=.设()11,M x y ,()22,N x y ,则122841kt x x k +=-+,21224441t x x k -⋅=+,则()1212121212121211y x x y x x y y k k x x x x +-+--+=+==()12122122(1)88444kx x t x x kt kx x t +-+-==-, 即(22)(1)0k t t ---=,依题可知1t ≠,所以()21k t =+,代入直线MN 方程,得()()21212y t x t t x x =++=++, 即()2120t x x y ++-=,联立方程组1210221x x y x y ⎧+==-⎧⎪⇒⎨⎨=⎩⎪=-⎩, 综上所述可知直线MN 恒过定点1,12⎛⎫-- ⎪⎝⎭.30.(1)22143x y +=;(2)过定点31,4⎛⎫ ⎪⎝⎭.【解析】(1)根据椭圆的定义可得N 的轨迹是以,A B 为焦点的椭圆,从而得到24,22a c ==,即可得答案; (2)由题意设直线12,l l 的方程分别是:12(1),(1)y k x y k x =-=-,设()33,C x y ,()44,D x y .根据直线斜率关系和韦达定理,可求得直线GH 的方程为221111221133434434k k y k k x k k ⎛⎫⎛⎫+=++- ⎪ ⎪++⎝⎭⎝⎭,并整理得21133(1)44y k k x ⎛⎫=++-+ ⎪⎝⎭,即可得答案;(1)解:4AN BN AN BM AB +=+=>N ∴的轨迹是以,A B 为焦点的椭圆,24,22a c == 2,1a b c ∴=== W ∴的方程为22143x y +=(2)由题意设直线12,l l 的方程分别是:12(1),(1)y k x y k x =-=-,设()33,C x y ,()44,D x y . 联立122(1)143y k x x y =-⎧⎪⎨+=⎪⎩,得()22221113484120k x k x k +-+-=,所以213421834k x x k +=+,则211221143,3434k k G k k ⎛⎫- ⎪++⎝⎭,同理222222243,3434k k H k k ⎛⎫- ⎪++⎝⎭, 所以12221212221212221233334344443434GHk k k k k k k k k k k k k ----++==+-++, 由121k k +=-得()11314GH k k k =++, 所以直线GH 的方程为221111221133434434k k y k k x k k ⎛⎫⎛⎫+=++- ⎪ ⎪++⎝⎭⎝⎭整理得21133(1)44y k k x ⎛⎫=++-+ ⎪⎝⎭,所以直线GH 过定点31,4⎛⎫⎪⎝⎭.31.(1)2214x y +=;(2)ABF 的周长为定值4.【解析】(1)先由直线方程,得到左焦点坐标,得出c =a ,b ,进而可得椭圆方程;(2)根据直线与圆相切,得到221m k =+;设()11,A x y ,()22,B x y ,联立直线与椭圆方程,根据韦达定理,以及弦长公式,表示出AB ;根据两点间距离公式,分别表示出AF ,BF ,三角形三边求和,即可得出结果.(1)因为直线y x =C 的左焦点, 所以椭圆C的左焦点坐标为(),故c =又∵e =∴2a =,1b =,故椭圆的标准方程为:2214x y +=;(2)是定值,理由如下:因为直线l :()0,0y kx m k m =+<>与圆221x y +=相切,1=,即221m k =+,设()11,A x y ,()22,B x y ,联立2214y kx m x y =+⎧⎪⎨+=⎪⎩, 消去y 整理得()222418440k x kmx m +++-=,所以()2221641480k m k ∆=-+=>,122841km x x k +=-+,21224441m x x k -=+,所以AB === 又221m k =+,所以AB =由于0k >,0m <,所以102x <<,202x <<,因为12AF x =,同理22BF =,所以)122844441km AF B k F x x =+==++,所以44AF BF AB ++==, 故ABF 的周长为定值4. 思路点睛:求解椭圆中的定值问题时,一般需要联立直线与椭圆方程,结合韦达定理、弦长公式,以及题中条件等,进行求解即可.32.(1)22143x y +=;(2)550x -+=或550x ++=.【解析】(1)由题知1c =,2a =,进而根据222b a c =-即可得答案;(2)设直线AB 的方程为1x my =-,()12,A x x ,()22,B x y ,进而根据向量关系得122y y =-,再将直线与椭圆联立方程组并结合韦达定理可解得m =,进而得答案.。
高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)
1、函数与导数(1)2、三角函数与解三角形3、函数与导数(2)4、立体几何5、数列(1)6、应用题7、解析几何8、数列(2)9、矩阵与变换10、坐标系与参数方程11、空间向量与立体几何12、曲线与方程、抛物线13、计数原理与二项式分布14、随机变量及其概率分布15、数学归纳法高考压轴大题突破练 (一)函数与导数(1)1.已知函数f (x )=a e xx+x .(1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值;(2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.解 (1)∵f ′(x )=a e x (x -1)+x 2x 2,∴f ′(1)=1,f (1)=a e +1.∴函数f (x )在(1,f (1))处的切线方程为 y -(a e +1)=x -1,又直线过点(0,-1),∴-1-(a e +1)=-1, 解得a =-1e.(2)若a <0,f ′(x )=a e x (x -1)+x 2x 2,当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值.方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0),则⎩⎪⎨⎪⎧x 0>1,f (x 0)>0,f ′(x 0)=0,则0000200201,e 0,e (1)0,x x x a x x a x x x ⎛> +> -+ = ⎝①②③由③得0e x a =-x 20x 0-1,代入②得-x 0x 0-1+x 0>0,结合①可解得x 0>2,再由f (x 0)=0e x a x +x 0>0,得a >-020e x x ,设h (x )=-x 2e x ,则h ′(x )=x (x -2)e x ,当x >2时,h ′(x )>0,即h (x )是增函数, ∴a >h (x 0)>h (2)=-4e2.又a <0,故当极大值为正数时,a ∈⎝⎛⎭⎫-4e 2,0, 从而不存在负整数a 满足条件.方法二 当x ∈(1,+∞)时,令H (x )=a e x (x -1)+x 2, 则H ′(x )=(a e x +2)x ,∵x ∈(1,+∞),∴e x ∈(e ,+∞), ∵a 为负整数,∴a ≤-1,∴a e x ≤a e ≤-e , ∴a e x +2<0,∴H ′(x )<0, ∴H (x )在(1,+∞)上单调递减.又H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0, ∴∃x 0∈(1,2),使得H (x 0)=0, 且当1<x <x 0时,H (x )>0,即f ′(x )>0; 当x >x 0时,H (x )<0,即f ′(x )<0.∴f (x )在x 0处取得极大值f (x 0)=0e x a x +x 0.(*)又H (x 0)=0e x a (x 0-1)+x 20=0, ∴00e x a x =-x 0x 0-1,代入(*)得f (x 0)=-x 0x 0-1+x 0=x 0(x 0-2)x 0-1<0, ∴不存在负整数a 满足条件.2.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且∃x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围. 解 (1)∵函数f (x )=ax 3-3x 2+1, ∴f ′(x )=3ax 2-6x =3x (ax -2), 令f ′(x )=0,得x 1=0或x 2=2a ,∵a >0,∴x 1<x 2,当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的极大值为f (0)=1,极小值为f ⎝⎛⎭⎫2a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2, ∵∃x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在[1,2]上有解, 即不等式2a ≤1x 3+3x在[1,2]上有解,设y =1x 3+3x =3x 2+1x3(x ∈[1,2]),∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∴y =1x 3+3x 在[1,2]上单调递减,∴当x =1时,y =1x 3+3x 的最大值为4,∴2a ≤4,即a ≤2.高考中档大题规范练 (一)三角函数与解三角形1.(2017·江苏宿迁中学质检)已知函数f (x )=sin 2x +23sin x cos x +sin ⎝⎛⎭⎫x +π4sin ⎝⎛⎭⎫x -π4,x ∈R . (1)求f (x )的最小正周期和值域;(2)若x =x 0⎝⎛⎭⎫0≤x 0≤π2为f (x )的一个零点,求sin 2x 0的值. 解 (1)易得f (x )=sin 2x +3sin 2x +12(sin 2x -cos 2x )=1-cos 2x 2+3sin 2x -12cos 2x =3sin 2x -cos 2x +12=2sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为π,值域为⎣⎡⎦⎤-32,52. (2)由f (x 0)=2sin ⎝⎛⎭⎫2x 0-π6+12=0,得 sin ⎝⎛⎭⎫2x 0-π6=-14<0, 又由0≤x 0≤π2,得-π6≤2x 0-π6≤5π6,所以-π6≤2x 0-π6<0,故cos ⎝⎛⎭⎫2x 0-π6=154, 此时sin 2x 0=sin ⎣⎡⎦⎤⎝⎛⎭⎫2x 0-π6+π6 =sin ⎝⎛⎭⎫2x 0-π6cos π6+cos ⎝⎛⎭⎫2x 0-π6sin π6 =-14×32+154×12=15-38.2.(2017·江苏南通四模)已知向量m =⎝⎛⎭⎫sin x 2,1,n =⎝⎛⎭⎫1,3cos x2,函数f (x )=m ·n . (1)求函数f (x )的最小正周期;(2)若f ⎝⎛⎭⎫α-2π3=23,求f ⎝⎛⎭⎫2α+π3的值. 解 (1)f (x )=m ·n =sin x 2+3cos x2=2⎝⎛⎭⎫12sin x 2+32cos x 2=2⎝⎛⎭⎫sin x 2cos π3+cos x 2sin π3 =2sin ⎝⎛⎭⎫x 2+π3,所以函数f (x )的最小正周期为T =2π12=4π.(2)由f ⎝⎛⎭⎫α-2π3=23,得2sin α2=23,即sin α2=13. 所以f ⎝⎛⎭⎫2α+π3=2sin ⎝⎛⎭⎫α+π2=2cos α =2⎝⎛⎭⎫1-2sin 2α2=149. 3.(2017·江苏南师大考前模拟)已知△ABC 为锐角三角形,向量m =⎝⎛⎭⎫cos ⎝⎛⎭⎫A +π3,sin ⎝⎛⎭⎫A +π3,n =(cos B ,sin B ),并且m ⊥n . (1)求A -B ;(2)若cos B =35,AC =8,求BC 的长.解 (1)因为m ⊥n ,所以m ·n =cos ⎝⎛⎭⎫A +π3cos B +sin ⎝⎛⎭⎫A +π3sin B =cos ⎝⎛⎭⎫A +π3-B =0. 因为0<A ,B <π2,所以-π6<A +π3-B <5π6,所以A +π3-B =π2,即A -B =π6.(2)因为cos B =35,B ∈⎝⎛⎭⎫0,π2,所以sin B =45, 所以sin A =sin ⎝⎛⎭⎫B +π6=sin B cos π6+cos B sin π6 =45×32+35×12=43+310, 由正弦定理可得BC =sin A sin B×AC =43+3.4.(2017·江苏镇江三模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a -c )(sin A +sin C )=(b -3c )sin B . (1)求角A ;(2)若f (x )=cos 2(x +A )-sin 2(x -A ),求f (x )的单调递增区间. 解 (1)由(a -c )(sin A +sin C )=(b -3c )sin B 及正弦定理, 得(a -c )(a +c )=(b -3c )b ,即a 2=b 2+c 2-3bc . 由余弦定理,得cos A =32, 因为0<A <π,所以A =π6.(2)f (x )=cos 2(x +A )-sin 2(x -A ) =cos 2⎝⎛⎭⎫x +π6-sin 2⎝⎛⎭⎫x -π6 =1+cos ⎝⎛⎭⎫2x +π32-1-cos ⎝⎛⎭⎫2x -π32=12cos 2x , 令π+2k π≤2x ≤2π+2k π,k ∈Z , 得π2+k π≤x ≤π+k π,k ∈Z . 则f (x )的单调增区间为⎣⎡⎦⎤π2+k π,π+k π,k ∈Z .(二)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的一条切线. (1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2. ①试求b 的取值范围; ②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12.解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0), 则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0.(2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点. h ′(x )=1x -1x-b =-bx +x -1x ,令h ′(x )=0,得bx -x +1=0(x >0). 令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于⎩⎨⎧Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b >0,解得0<b <14.当0<b <14时,设h ′(x )=0的两正根为x 1,x 2,且x 1<x 2,则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2).当x ∈(0,x 1)时,h ′(x )<0; 当x ∈(x 1,x 2)时,h ′(x )>0; 当x ∈(x 2,+∞)时,h ′(x )<0.所以x 1,x 2是h (x )=f (x )-g (x )的极值点, ∴b 的取值范围是⎝⎛⎭⎫0,14. ②由①知x 1x 2=x 1+x 2=1b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b ,所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b .记k (b )=12-b ln b -b ⎝⎛⎭⎫0<b <14, 则k ′(b )=-ln b -2,令k ′(b )=0,得b =1e 2∈⎝⎛⎭⎫0,14,且当b ∈⎝⎛⎭⎫0,1e 2时,k ′(b )>0,k (b )单调递增; 当b ∈⎝⎛⎭⎫1e 2,14时,k ′(b )<0,k (b )单调递减, 且当b =1e 2时,k (b )取最大值1e 2+12,所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12.2.设函数f (x )=2ax +bx+c ln x .(1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1<x 2. ①求a 的取值范围; ②求f (x 2)的取值范围.解 (1)f (x )=2ax +bx+c ln x ,x >0,f ′(x )=2a -b x 2+c x =2ax 2+cx -bx 2.当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x >0恒成立,所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a ;令f ′(x )=2ax +1x <0,解得x >-12a,所以,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. 综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6, 所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3,所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-ax 2,函数f (x )有两个极值点x 1,x 2,x 1<x 2,则方程2ax 2-ax +3-a =0有两个大于0的解,⎩⎪⎨⎪⎧Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a 2a >0,解得83<a <3.所以a 的取值范围是⎝⎛⎭⎫83,3. ②2ax 22-ax 2+3-a =0, x 2=a +9a 2-24a 4a =14⎝⎛⎭⎫1+9-24a ,由83<a <3,得x 2∈⎝⎛⎭⎫14,12, 由2ax 22-ax 2+3-a =0,得a =-32x 22-x 2-1.f (x 2)=2ax 2+a -3x 2-a ln x 2=a ⎝⎛⎭⎫2x 2+1x 2-ln x 2-3x 2 =-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t2t 2-t -1-3t ,t ∈⎝⎛⎭⎫14,12, φ′(t )=-3⎝⎛⎭⎫2-1t 2-1t (2t 2-t -1)-⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2=-31t 2(2t 2-t -1)2+3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2.当t ∈⎝⎛⎭⎫14,12时,2t +1t -ln t >0,4t -1>0,φ′(t )>0, 所以φ(t )在⎝⎛⎭⎫14,12上单调递增, φ(t )∈⎝⎛⎭⎫163ln 2,3+3ln 2, 所以f (x 2)的取值范围是⎝⎛⎭⎫163ln 2,3+3ln 2. (二)立体几何1.(2017·江苏扬州调研)如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,CD ∥AB ,AB =2CD ,AC 交BD 于O ,锐角△P AD 所在平面⊥底面ABCD ,P A ⊥BD ,点Q 在侧棱PC 上,且PQ =2QC .求证:(1)P A ∥平面QBD ; (2)BD ⊥AD .证明 (1)如图,连结OQ ,因为AB ∥CD ,AB =2CD ,所以AO =2OC . 又PQ =2QC ,所以P A ∥OQ . 又OQ ⊂平面QBD ,P A ⊄平面QBD , 所以P A ∥平面QBD .(2)在平面P AD 内过P 作PH ⊥AD 于点H ,因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PH ⊂平面P AD ,所以PH ⊥平面ABCD .又BD ⊂平面ABCD ,所以PH ⊥BD .又P A⊥BD,P A∩PH=P,所以BD⊥平面P AD.又AD⊂平面P AD,所以BD⊥AD.2.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC与BD交于点O,PC⊥底面ABCD,E为PB上一点,G为PO的中点.(1)若PD∥平面ACE,求证:E为PB的中点;(2)若AB=2PC,求证:CG⊥平面PBD.证明(1)连结OE,由四边形ABCD是正方形知,O为BD的中点,因为PD∥平面ACE,PD⊂平面PBD,平面PBD∩平面ACE=OE,所以PD∥OE.因为O为BD的中点,所以E为PB的中点.(2)在四棱锥P-ABCD中,AB=2PC,因为四边形ABCD是正方形,所以OC=22AB,所以PC=OC.因为G为PO的中点,所以CG⊥PO.又因为PC⊥底面ABCD,BD⊂底面ABCD,所以PC⊥BD.而四边形ABCD是正方形,所以AC⊥BD,因为AC,PC⊂平面P AC,AC∩PC=C,所以BD⊥平面P AC,因为CG⊂平面P AC,所以BD⊥CG.因为PO,BD⊂平面PBD,PO∩BD=O,所以CG⊥平面PBD.3.(2017·江苏怀仁中学模拟)如图,在四棱锥E-ABCD中,△ABD为正三角形,EB=ED,CB=CD.(1)求证:EC⊥BD;(2)若AB⊥BC,M,N分别为线段AE,AB的中点,求证:平面DMN∥平面BCE.证明(1)取BD的中点O,连结EO,CO.∵CD=CB,EB=ED,∴CO⊥BD,EO⊥BD.又CO∩EO=O,CO,EO⊂平面EOC,∴BD⊥平面EOC.又EC⊂平面EOC,∴BD⊥EC.(2)∵N是AB的中点,△ABD为正三角形,∴DN⊥AB,∵BC⊥AB,∴DN∥BC.又BC⊂平面BCE,DN⊄平面BCE,∴DN∥平面BCE.∵M为AE的中点,N为AB的中点,∴MN∥BE,又MN⊄平面BCE,BE⊂平面BCE,∴MN∥平面BCE.∵MN∩DN=N,∴平面DMN∥平面BCE.4.(2017·江苏楚水中学质检)如图,在三棱锥P -ABC 中,点E ,F 分别是棱PC ,AC 的中点.(1)求证:P A ∥平面BEF ;(2)若平面P AB ⊥平面ABC ,PB ⊥BC ,求证:BC ⊥P A . 证明 (1)在△P AC 中,E ,F 分别是棱PC ,AC 的中点, 所以P A ∥EF .又P A ⊄平面BEF ,EF ⊂平面BEF , 所以P A ∥平面BEF .(2)在平面P AB 内过点P 作PD ⊥AB ,垂足为D .因为平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,PD ⊂平面P AB ,所以PD ⊥平面ABC , 因为BC ⊂平面ABC ,所以PD ⊥BC ,又PB ⊥BC ,PD ∩PB =P ,PD ⊂平面P AB ,PB ⊂平面P AB ,所以BC ⊥平面P AB , 又P A ⊂平面P AB ,所以BC ⊥P A .(三)数 列(1)1.已知数列{a n }的前n 项和为S n ,且S n +a n =4,n ∈N *. (1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列,若存在,求出C 的值;若不存在,请说明理由.(3)若数列{b n },对于任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝⎛⎭⎫12n -n +22成立,求证:数列{b n }是等差数列. (1)解 a 1=4-a 1,所以a 1=2,由S n +a n =4,得当n ≥2时,S n -1+a n -1=4, 两式相减,得2a n =a n -1,所以a n a n -1=12,数列{a n }是以2为首项,公比为12的等比数列,所以a n =22-n (n ∈N *). (2)解 由于数列{d n }是常数列, d n =c n +log C a n =2n +3+(2-n )log C 2 =2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数, 则2-log C 2=0, 解得C =2,此时d n =7.(3)证明 b 1a n +b 2a n -1+b 3a n -2+…+b n a 1 =⎝⎛⎭⎫12n -n +22,①当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=⎝⎛⎭⎫12n -1-n +12,②②式两边同时乘以12,得b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=⎝⎛⎭⎫12n -n +14,③由①-③,得b n a 1=-n -34,所以b n =-n 8-38(n ∈N *,n ≥2),且b n +1-b n =-18,又b 1=-12=-18-38,所以数列{b n }是以-12为首项,公差为-18的等差数列.2.在数列{a n }中,已知a 1=13,a n +1=13a n -23n +1,n ∈N *,设S n 为{a n }的前n 项和.(1)求证:数列{3n a n }是等差数列; (2)求S n ;(3)是否存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列?若存在,求出p ,q ,r 的值;若不存在,说明理由.(1)证明 因为a n +1=13a n -23n +1,所以3n +1a n +1-3n a n =-2. 又因为a 1=13,所以31·a 1=1,所以{3n a n }是首项为1,公差为-2的等差数列. (2)解 由(1)知3n a n =1+(n -1)·(-2)=3-2n , 所以a n =(3-2n )⎝⎛⎭⎫13n,所以S n =1·⎝⎛⎭⎫131+(-1)·⎝⎛⎭⎫132+(-3)·⎝⎛⎭⎫133+…+(3-2n )·⎝⎛⎭⎫13n , 所以13S n =1·⎝⎛⎭⎫132+(-1)·⎝⎛⎭⎫133+…+(5-2n )·⎝⎛⎭⎫13n +(3-2n )·⎝⎛⎭⎫13n +1, 两式相减,得23S n =13-2⎣⎡⎦⎤⎝⎛⎭⎫132+⎝⎛⎭⎫133+…+⎝⎛⎭⎫13n -(3-2n )·⎝⎛⎭⎫13n +1=13-2⎣⎢⎡⎦⎥⎤19×1-⎝⎛⎭⎫13n -11-13+(2n -3)·⎝⎛⎭⎫13n +1 =2n ·⎝⎛⎭⎫13n +1, 所以S n =n 3n .(3)解 假设存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列,则2S q =S p +S r ,即2q3q =p 3p +r 3r. 当n ≥2时,a n =(3-2n )⎝⎛⎭⎫13n<0,所以数列{S n }单调递减. 又p <q ,所以p ≤q -1且q 至少为2,所以p 3p ≥q -13q -1,q -13q -1-2q 3q =q -33q .①当q ≥3时,p 3p ≥q -13q -1≥2q 3q ,又r 3r >0,所以p 3p +r 3r >2q3q ,等式不成立. ②当q =2时,p =1,所以49=13+r 3r ,所以r 3r =19,所以r =3({S n }单调递减,解惟一确定). 综上可知,p ,q ,r 的值为1,2,3.(三)应用题1.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少? 解 (1)当9天购买一次时,该厂用于配料的保管费用 P =70+0.03×200×(1+2)=88(元).(2)①当x ≤7时,y =360x +10x +236=370x +236,②当x >7时,y =360x +236+70+6[(x -7)+(x -6)+…+2+1]=3x 2+321x +432,∴y =⎩⎪⎨⎪⎧370x +236,x ≤7,3x 2+321x +432,x >7,∴设该厂x 天购买一次配料平均每天支付的费用为f (x )元.f (x )=⎩⎪⎨⎪⎧370x +236x ,x ≤7,3x 2+321x +432x,x >7.当x ≤7时,f (x )=370+236x ,当且仅当x =7时,f (x )有最小值2 8267≈404(元);当x >7时,f (x )=3x 2+321x +432x =3⎝⎛⎭⎫x +144x +321≥393.当且仅当x =12时取等号.∵393<404,∴当x =12时f (x )有最小值393元.2.南半球某地区冰川的体积每年中随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年的数据,冰川的体积(亿立方米)关于t 的近似函数的关系式为V (t )=⎩⎪⎨⎪⎧-t 3+11t 2-24t +100,0<t ≤10,4(t -10)(3t -41)+100,10<t ≤12.(1)该冰川的体积小于100亿立方米的时期称为衰退期.以i -1<t <i 表示第i 月份(i =1,2,…,12),问一年内哪几个月是衰退期? (2)求一年内该地区冰川的最大体积.解 (1)当0<t ≤10时,V (t )=-t 3+11t 2-24t +100<100,化简得t 2-11t +24>0,解得t <3或t >8.又0<t ≤10,故0<t <3或8<t ≤10,当10<t ≤12时,V (t )=4(t -10)(3t -41)+100<100, 解得10<t <413,又10<t ≤12,故10<t ≤12.综上得0<t <3或8<t ≤12.所以衰退期为1月,2月,3月,9月,10月,11月,12月共7个月. (2)由(1)知,V (t )的最大值只能在(3,9)内取到.由V ′(t )=(-t 3+11t 2-24t +100)′=-3t 2+22t -24, 令V ′(t )=0,解得t =6或t =43(舍去).当t 变化时,V ′(t )与V (t )的变化情况如下表:由上表,V (t )在t =6时取得最大值V (6)=136(亿立方米). 故该冰川的最大体积为136亿立方米.3.如图,某城市有一条公路从正西方AO 通过市中心O 后转向东偏北α角方向的OB .位于该市的某大学M 与市中心O 的距离OM =313 km ,且∠AOM =β.现要修筑一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,且经过大学M .其中tan α=2,cos β=313,AO =15 km.(1)求大学M 与站A 的距离AM ; (2)求铁路AB 段的长AB .解 (1)在△AOM 中,AO =15,∠AOM =β且cos β=313,OM =313, 由余弦定理,得AM 2=OA 2+OM 2-2OA ·OM ·cos ∠AOM =152+(313)2-2×15×313×313=13×9+15×15-2×3×15×3=72.∴AM =62,即大学M 与站A 的距离AM 为6 2 km. (2)∵cos β=313,且β为锐角,∴sin β=213, 在△AOM中,由正弦定理,得AM sin β=OMsin ∠MAO ,即62213=313sin ∠MAO ,sin ∠MAO =22, ∴∠MAO =π4,∴∠ABO =α-π4,∵tan α=2,∴sin α=25,cos α=15, ∴sin ∠ABO =sin ⎝⎛⎭⎫α-π4=110, 又∠AOB =π-α,∴sin ∠AOB =sin(π-α)=25. 在△AOB 中,OA =15,由正弦定理,得 AB sin ∠AOB =OA sin ∠ABO,即AB 25=15110,∴AB =302,即铁路AB 段的长为30 2 km.4.(2017·江苏苏州大学指导卷)如图,某地区有一块长方形植物园ABCD ,AB =8(百米),BC =4(百米).植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为HBCEFG ,满足下列要求:E 在CD 的延长线上,H 在BA 的延长线上,DE =0.5(百米),AH =4(百米),N 为AH 的中点,FN ⊥AH ,EF 为曲线段,它上面的任意一点到AD 与AH 的距离的乘积为定值,FG ,GH 均为线段,GH ⊥HA ,GH =0.5(百米).(1)求四边形FGHN 的面积;(2)已知音乐广场M 在AB 上,AM =2(百米),若计划在EFG 的某一处P 开一个植物园大门,在原植物园ABCD 内选一点Q 为中心建一个休息区,使得QM =PM ,且∠QMP =90°,问点P 在何处时,AQ 最小.解 (1)以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系如图所示.则E ⎝⎛⎭⎫-12,4,因为E 到AD 与AH 距离的乘积为2, 所以曲线EF 上的任意一点都在函数y =-2x 的图象上.由题意,N (-2,0),所以F (-2,1).四边形FGHN 的面积为12×⎝⎛⎭⎫12+1×2=32(平方百米). (2)设P (x ,y ),则MP →=(x -2,y ),MQ →=(y ,-x +2),AQ →=(y +2,-x +2),因为点Q 在原植物园内,所以⎩⎪⎨⎪⎧0≤y +2≤8,0≤2-x ≤4,即-2≤x ≤2.又点P 在曲线EFG 上,x ∈⎣⎡⎦⎤-4,-12, 所以-2≤x ≤-12,则点P 在曲线段EF 上, AQ =(y +2)2+(2-x )2, 因为y =-2x,所以AQ = ⎝⎛⎭⎫-2x +22+(2-x )2 = x 2+4x 2-4x -8x +8 = ⎝⎛⎭⎫x +2x 2-4⎝⎛⎭⎫x +2x +4 = ⎝⎛⎭⎫x +2x -22=-x +2-x +2≥22+2. 当且仅当-x =-2x,即x =-2时等号成立. 此时点P (-2,2),即点P 在距离AD 与AH 均为2百米时,AQ 最小.(四)解析几何1.已知点A (x 1,y 1),B (x 2,y 2)(x 1x 2≠0),O 是坐标原点,P 是线段AB 的中点,若C 是点A 关于原点的对称点,Q 是线段BC 的中点,且OP =OQ ,设圆P 的方程为x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.(1)证明:线段AB 是圆P 的直径;(2)若存在正数p 使得2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2成立,当圆P 的圆心到直线x -2y =0的距离的最小值为255时,求p 的值. (1)证明 由题意知,点P 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,点A (x 1,y 1)关于原点的对称点为C (-x 1,-y 1),那么点Q 的坐标为⎝⎛⎭⎪⎫-x 1+x 22,-y 1+y 22, 由OP =OQ ,得OP 2=OQ 2,即⎝ ⎛⎭⎪⎫x 1+x 222+⎝ ⎛⎭⎪⎫y 1+y 222=⎝ ⎛⎭⎪⎫-x 1+x 222+⎝ ⎛⎭⎪⎫-y 1+y 222, 得(x 1+x 2)2+(y 1+y 2)2=(x 1-x 2)2+(y 1-y 2)2,从而x 1x 2+y 1y 2=0,由此得OA ⊥OB ,由方程x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0知,圆P 过原点,且点A ,B 在圆P 上,故线段AB 是圆P 的直径.(2)解 由2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2,得x 1+x 2=12p[(y 1+y 2)2+8p 2], 又圆心P ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22到直线x -2y =0的距离为 d =⎪⎪⎪⎪⎪⎪x 1+x 22-(y 1+y 2)5 =⎪⎪⎪⎪14p [(y 1+y 2)2+8p 2]-(y 1+y 2)5=[(y 1+y 2)-2p ]2+4p 245p ≥4p 245p, 当且仅当y 1+y 2=2p 时,等号成立,所以4p 245p=255, 从而得p =2.2.如图,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,O 是坐标原点,OF =5,过点F 作OF 的垂线交椭圆C 于P 0,Q 0两点,△OP 0Q 0的面积为453.(1)求椭圆的标准方程;(2)若过点M (-5,0)的直线l 与上、下半椭圆分别交于点P ,Q ,且PM =2MQ ,求直线l 的方程.解 (1)由题设条件,P 0F =00OP Q S OF ∆=4535=43. 易知P 0F =b 2a ,所以b 2a =43. 又c =OF =5,即a 2-b 2=5,因此a 2-43a -5=0,解得a =3或a =-53, 又a >0,所以a =3,从而b =2.故所求椭圆的标准方程为x 29+y 24=1. (2)设P (x 1,y 1),Q (x 2,y 2),由题意y 1>0,y 2<0,并可设直线l :x =ty -5, 代入椭圆方程得(ty -5)29+y 24=1, 即(4t 2+9)y 2-85ty -16=0.从而y 1+y 2=85t 4t 2+9,y 1y 2=-164t 2+9. 又由PM =2MQ ,得y 1-y 2=PM MQ=2,即y 1=-2y 2. 因此y 1+y 2=-y 2,y 1y 2=-2y 22, 故-164t 2+9=-2⎝ ⎛⎭⎪⎫-85t 4t 2+92,可解得t 2=14. 注意到y 2=-85t 4t 2+9且y 2<0,知t >0,因此t =12. 故满足题意的直线l 的方程为2x -y +25=0.3.如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线l :y =-12x 与椭圆E 相交于A ,B 两点,AB =210,C ,D 是椭圆E 上异于A ,B 的两点,且直线AC ,BD 相交于点P ,直线AD ,BC 相交于点Q .(1)求椭圆E 的标准方程;(2)求证:直线PQ 的斜率为定值.(1)解 因为e =c a =32, 所以c 2=34a 2,即a 2-b 2=34a 2, 所以a =2b .所以椭圆方程为x 24b 2+y 2b2=1. 由题意不妨设点A 在第二象限,点B 在第四象限,由⎩⎨⎧ y =-12x ,x 24b 2+y 2b 2=1,得A (-2b ,22b ). 又AB =210,所以OA =10,则2b 2+12b 2=52b 2=10, 得b =2,a =4.所以椭圆E 的标准方程为x 216+y 24=1. (2)证明 由(1)知,椭圆E 的方程为x 216+y 24=1, A (-22,2),B (22,-2).①当直线CA ,CB ,DA ,DB 的斜率都存在,且不为零时,设直线CA ,DA 的斜率分别为k 1,k 2,C (x 0,y 0),显然k 1≠k 2.从而k 1·k CB =y 0-2x 0+22·y 0+2x 0-22=y 20-2x 20-8=4⎝⎛⎭⎫1-x 2016-2x 20-8=2-x 204x 20-8=-14,所以k CB =-14k 1.同理k DB =-14k 2. 所以直线AD 的方程为y -2=k 2(x +22),直线BC 的方程为y +2=-14k 1(x -22), 由⎩⎪⎨⎪⎧y +2=-14k 1(x -22),y -2=k 2(x +22), 解得⎩⎪⎨⎪⎧ x =22(-4k 1k 2-4k 1+1)4k 1k 2+1,y =2(-4k 1k 2+4k 2+1)4k 1k 2+1,从而点Q 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 1+1)4k 1k 2+1,2(-4k 1k 2+4k 2+1)4k 1k 2+1. 用k 2代替k 1,k 1代替k 2得点P 的坐标为⎝ ⎛22(-4k 1k 2-4k 2+1)4k 1k 2+1,所以k PQ =2(-4k 1k 2+4k 2+1)4k 1k 2+1-2(-4k 1k 2+4k 1+1)4k 1k 2+122(-4k 1k 2-4k 1+1)4k 1k 2+1-22(-4k 1k 2-4k 2+1)4k 1k 2+1=42(k 2-k 1)82(k 2-k 1)=12. 即直线PQ 的斜率为定值,其定值为12. ②当直线CA ,CB ,DA ,DB 中,有直线的斜率不存在时,由题意得,至多有一条直线的斜率不存在,不妨设直线CA 的斜率不存在,从而C (-22,-2).设DA 的斜率为k ,由①知,k DB =-14k. 因为直线CA :x =-22,直线DB :y +2=-14k(x -22), 得P ⎝⎛⎭⎫-22,-2+2k .又直线BC :y =-2,直线AD :y -2=k (x +22),得Q ⎝⎛⎭⎫-22-22k ,-2, 所以k PQ =12. 由①②可知,直线PQ 的斜率为定值,其定值为12. 4.(2017·江苏预测卷)平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,右准线的方程为x =433.(1)求椭圆C 的方程;(2)已知点P ⎝⎛⎭⎫12,2,过x 轴上的一个定点M 作直线l 与椭圆C 交于A ,B 两点,若三条直线P A ,PM ,PB 的斜率成等差数列,求点M 的坐标.解 (1)因为椭圆的离心率为32,右准线的方程为x =433, 所以e =c a =32,a 2c =433,则a =2,c =3,b =1, 椭圆C 的方程为x 24+y 2=1. (2)设M (m,0),当直线l 为y =0时,A (-2,0),B (2,0),P A ,PM ,PB 的斜率分别为 k P A =45,k PM =41-2m,k PB =-43, 因为直线P A ,PM ,PB 的斜率成等差数列,所以81-2m =45-43,m =8. 证明如下:当M (8,0)时,直线P A ,PM ,PB 的斜率构成等差数列,设AB :y =k (x -8),代入椭圆方程x 2+4y 2-4=0,得x 2+4k 2(x -8)2-4=0,即(1+4k 2)x 2-64k 2x +256k 2-4=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=64k 21+4k 2,x 1x 2=256k 2-41+4k 2, 又k PM =0-28-12=-415, 所以k P A +k PB =y 1-2x 1-12+y 2-2x 2-12=kx 1-8k -2x 1-12+kx 2-8k -2x 2-12=2k +⎝⎛⎭⎫-152k -2⎝⎛⎭⎪⎫1x 1-12+1x 2-12 =2k +⎝⎛⎭⎫-152k -2(x 1+x 2)-1x 1x 2-12(x 1+x 2)+14=2k +⎝⎛⎭⎫-152k -264k 21+4k 2-1256k 2-41+4k 2-12×64k 21+4k 2+14=2k +⎝⎛⎭⎫-152k -260k 2-1154(60k 2-1)=-815=2k PM ,即证. (四)数 列(2)1.已知{a n },{b n },{c n }都是各项不为零的数列,且满足a 1b 1+a 2b 2+…+a n b n =c n S n ,n ∈N *,其中S n 是数列{a n }的前n 项和,{c n }是公差为d (d ≠0)的等差数列.(1)若数列{a n }是常数列,d =2,c 2=3,求数列{b n }的通项公式;(2)若a n =λn (λ是不为零的常数),求证:数列{b n }是等差数列;(3)若a 1=c 1=d =k (k 为常数,k ∈N *),b n =c n +k (n ≥2,n ∈N *),求证:对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减. (1)解 因为d =2,c 2=3,所以c n =2n -1.因为数列{a n }是各项不为零的常数列,所以a 1=a 2=…=a n ,S n =na 1.则由c n S n =a 1b 1+a 2b 2+…+a n b n 及c n =2n -1,得n (2n -1)=b 1+b 2+…+b n ,当n ≥2时,(n -1)(2n -3)=b 1+b 2+…+b n -1,两式相减得b n =4n -3.当n =1时,b 1=1也满足b n =4n -3.故b n =4n -3(n ∈N *).(2)证明 因为a 1b 1+a 2b 2+…+a n b n =c n S n ,当n ≥2时,c n -1S n -1=a 1b 1+a 2b 2+…+a n -1b n -1,两式相减得c n S n -c n -1S n -1=a n b n ,即(S n -1+a n )c n -S n -1c n -1=a n b n ,S n -1(c n -c n -1)+a n c n =a n b n ,所以S n -1d +λnc n =λnb n .又S n -1=λ+λ(n -1)2(n -1)=λn (n -1)2, 所以λn (n -1)2d +λnc n =λnb n , 即(n -1)2d +c n =b n ,(*) 所以当n ≥3时,(n -2)2d +c n -1=b n -1, 两式相减得b n -b n -1=32d (n ≥3), 所以数列{b n }从第二项起是公差为32d 的等差数列. 又当n =1时,由c 1S 1=a 1b 1,得c 1=b 1.当n =2时,由(*)得b 2=(2-1)2d +c 2=12d +(c 1+d )=b 1+32d , 得b 2-b 1=32d . 故数列{b n }是公差为32d 的等差数列. (3)证明 由(2)得当n ≥2时,S n -1(c n -c n -1)+a n c n =a n b n ,即S n -1d =a n (b n -c n ). 因为b n =c n +k ,所以b n =c n +kd ,即b n -c n =kd ,所以S n -1d =a n ·kd ,即S n -1=ka n ,所以S n =S n -1+a n =(k +1)a n .当n ≥3时,S n -1=(k +1)a n -1,两式相减得a n =(k +1)a n -(k +1)a n -1,即a n =k +1k a n -1, 故从第二项起数列{a n }是等比数列,所以当n ≥2时,a n =a 2⎝ ⎛⎭⎪⎫k +1k n -2, b n =c n +k =c n +kd =c 1+(n -1)k +k 2=k +(n -1)k +k 2=k (n +k ),另外由已知条件得(a 1+a 2)c 2=a 1b 1+a 2b 2.又c 2=2k ,b 1=k ,b 2=k (2+k ),所以a 2=1,因而a n =⎝ ⎛⎭⎪⎫k +1k n -2. 令d n =b n a n ,则d n +1d n =b n +1a n a n +1b n =(n +k +1)k (n +k )(k +1). 因为(n +k +1)k -(n +k )(k +1)=-n <0,所以d n +1d n<1,所以对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减. 2.已知数列{a n }的前n 项和为S n ,且a 1=1,a 2=2,设b n =a n +a n +1,c n =a n ·a n +1(n ∈N *).(1)若数列{b 2n -1}是公比为3的等比数列,求S 2n ;(2)若数列{b n }是公差为3的等差数列,求S n ;(3)是否存在这样的数列{a n },使得{b n }成等差数列和{c n }成等比数列同时成立,若存在,求出{a n }的通项公式;若不存在,请说明理由.解 (1)b 1=a 1+a 2=1+2=3,S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 3+…+b 2n -1=3(1-3n )1-3=3n +1-32. (2)∵b n +1-b n =a n +2-a n =3,∴{a 2k -1},{a 2k }均是公差为3的等差数列,a 2k -1=a 1+(k -1)·3=3k -2,a 2k =a 2+(k -1)·3=3k -1,当n =2k (k ∈N *)时,S n =S 2k =(a 1+a 3+…+a 2k -1)+(a 2+a 4+…+a 2k )=k (1+3k -2)2+k (2+3k -1)2=3k 2=3n 24; 当n =2k -1(k ∈N *)时,S n =S 2k -1=S 2k -a 2k =3k 2-3k +1=3×⎝ ⎛⎭⎪⎫n +122-3·n +12+1=3n 2+14. 综上可知,S n =⎩⎪⎨⎪⎧ 3n 24,n =2k ,k ∈N *,3n 2+14,n =2k -1,k ∈N *.(3)∵{b n }成等差数列,∴2b 2=b 1+b 3,即2(a 2+a 3)=(a 1+a 2)+(a 3+a 4),a 2+a 3=a 1+a 4,①∵{c n }成等比数列,∴c 22=c 1c 3.即(a 2a 3)2=(a 1a 2)·(a 3a 4),∵c 2=a 2a 3≠0,∴a 2a 3=a 1a 4,②由①②及a 1=1,a 2=2,得a 3=1,a 4=2,设{b n }的公差为d ,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=d ,即a n +2-a n =d ,即数列{a n }的奇数项和偶数项都构成公差为d 的等差数列,又d =a 3-a 1=a 4-a 2=0, ∴数列{a n }=1,2,1,2,1,2,…,即a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *.此时c n =2,{c n }是公比为1的等比数列,满足题意.∴存在数列{a n },a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *,使得{b n }成等差数列和{c n }成等比数列同时成立.高考附加题加分练 1.矩阵与变换1.已知矩阵M =⎣⎢⎡⎦⎥⎤a 1b0,点A (1,0)在矩阵M 对应的变换作用下变为A ′(1,2),求矩阵M 的逆矩阵M -1. 解 ∵⎣⎢⎡⎦⎥⎤a 1b 0 ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤12,∴a =1,b =2.∴M =⎣⎢⎡⎦⎥⎤1 12 0,∴M -1=⎣⎢⎡⎦⎥⎤0121 -12. 2.(2017·江苏徐州一中检测)已知曲线C :y 2=12x ,在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0 11 0 ⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0,设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ), 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x .又点P (x ′,y ′)在曲线C :y 2=12x 上,∴⎝⎛⎭⎫-12x 2=12y ,即x 2=2y . 3.已知矩阵M =⎣⎢⎡⎦⎥⎤122x 的一个特征值为3,求M 的另一个特征值及其对应的一个特征向量. 解 矩阵M 的特征多项式为f (λ)=⎣⎢⎢⎡⎦⎥⎥⎤λ-1 -2-2 λ-x =(λ-1)(λ-x )-4. 因为λ1=3是方程f (λ)=0的一根,所以x =1. 由(λ-1)(λ-1)-4=0,得λ2=-1.设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y ,则⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0,得x =-y . 令x =1,则y =-1,所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤ 1-1.4.(2017·江苏江阴中学质检)若点A (2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.解 M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎢⎡⎦⎥⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1,解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.由M -1M =⎣⎢⎡⎦⎥⎤1 00 1,得M -1=⎣⎢⎡⎦⎥⎤0 1-1 0.2.坐标系与参数方程1.(2017·江苏兴化中学调研)已知曲线C 1的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=-1,曲线C 2的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4,判断两曲线的位置关系. 解 将曲线C 1,C 2化为直角坐标方程,得 C 1:x +3y +2=0,C 2:x 2+y 2-2x -2y =0, 即C 2:(x -1)2+(y -1)2=2. 圆心到直线的距离d =|1+3+2|12+(3)2=3+32>2,∴曲线C 1与C 2相离.2.(2017·江苏金坛一中期中)已知在极坐标系下,圆C :ρ=2cos ⎝⎛⎭⎫θ+π2与直线l :ρsin ⎝⎛⎭⎫θ+π4=2,点M 为圆C 上的动点,求点M 到直线l 的距离的最大值. 解 圆C 化为直角坐标方程,得x 2+(y +1)2=1. 直线l 化为直角坐标方程,得x +y =2. 圆心C 到直线l 的距离d =|-1-2|2=322,所以点M 到直线l 的距离的最大值为1+322.3.已知直线l :⎩⎪⎨⎪⎧ x =1+t ,y =-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数. (1)当m =0时,求线段AB 的长;(2)当圆C 上恰有三点到直线的距离为1时,求m 的值. 解 (1)直线l :x +y -1=0,曲线C :x 2+y 2=4,圆心到直线的距离d =12, 故AB =2r 2-d 2=14.(2)圆C 的直角坐标方程为x 2+(y -m )2=4, 直线l :x +y -1=0,由题意,知圆心到直线的距离d =|m -1|2=1,∴m =1± 2.4.(2017·江苏昆山中学质检)已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为ρ2cos 2θ+3ρ2sin 2θ=3,直线l 的参数方程为⎩⎨⎧x =-3t ,y =1+t(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大. 解 曲线C 的普通方程是x 23+y 2=1,直线l 的普通方程是x +3y -3=0.设点M 的直角坐标是(3cos θ,sin θ),则点M 到直线l 的距离是d =|3cos θ+3sin θ-3|2=3⎪⎪⎪⎪2sin ⎝⎛⎭⎫θ+π4-12.因为-2≤2sin ⎝⎛⎭⎫θ+π4≤2, 所以当sin ⎝⎛⎭⎫ θ+π4=-1,即θ=2k π-3π4(k ∈Z )时,d 取得最大值.此时3cos θ=-62,sin θ=-22. 设点M 的极角为φ,则⎩⎨⎧ρcos φ=-62,ρsin φ=-22,所以⎩⎪⎨⎪⎧ρ=2,φ=7π6.综上,当点M 的极坐标为⎝⎛⎭⎫2,7π6时,该点到直线l 的距离最大.3.空间向量与立体几何1.(2017·江苏南通中学月考)如图,已知三棱锥O -ABC 的侧棱OA ,OB ,OC 两两垂直,且OA =1,OB =OC =2,E 是OC 的中点.(1)求异面直线BE 与AC 所成角的余弦值; (2)求二面角A -BE -C 的正弦值.解 (1)以O 为原点,分别以OB ,OC ,OA 为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,1),B (2,0,0),C (0,2,0),E (0,1,0). EB →=(2,-1,0),AC →=(0,2,-1), ∴cos 〈EB →,AC →〉=-25,即异面直线BE 与AC 所成角的余弦值为25.(2)AB →=(2,0,-1),AE →=(0,1,-1), 设平面ABE 的法向量为n 1=(x ,y ,z ), 则由n 1⊥AB →,n 1⊥AE →,得⎩⎪⎨⎪⎧2x -z =0,y -z =0,取n 1=(1,2,2), 平面BEC 的法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23,∴二面角A -BE -C 的余弦值cos θ=23,∴sin θ=53,即二面角A -BE -C 的正弦值为53.2.(2017·江苏宜兴中学质检)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,AA 1=3,D 是BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1-A 1D -C 1的正弦值.解 (1)由题意知,B (2,0,0),C (0,4,0),D (1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3),则A 1D →=(1,2,-3),A 1C 1→=(0,4,0),DB 1→=(1,-2,3). 设平面A 1C 1D 的一个法向量为n =(x ,y ,z ). 由n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0, 得y =0,x =3z ,令z =1,得x =3,n =(3,0,1).设直线DB 1与平面A 1C 1D 所成的角为θ, 则sin θ=|cos 〈DB 1→,n 〉|=|3+3|10×14=33535.(2)设平面A 1B 1D 的一个法向量为m =(a ,b ,c ),A 1B 1→=(2,0,0). 由m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0, 得a =0,2b =3c ,令c =2,得b =3,m =(0,3,2). 设二面角B 1-A 1D -C 1的大小为α, |cos α|=|cos 〈m ,n 〉|=|m ·n ||m ||n |=265, sin α=3765=345565.所以二面角B 1-A 1D -C 1的正弦值为345565.3.(2017·江苏运河中学质检)在四棱锥P -ABCD 中,侧面PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =π2,AB =AD =PD =1,CD =2.设Q 为侧棱PC 上一点,PQ →=λPC →.试确定λ的值,使得二面角Q -BD -P 为π4.解 因为侧面PCD ⊥底面ABCD , 平面PCD ∩平面ABCD =CD ,PD ⊥CD , 所以PD ⊥平面ABCD ,所以PD ⊥AD , 又∠ADC =π2,故DA ,DC ,DP 两两互相垂直.如图,以D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立直角坐标系,A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,1),则平面PBD 的一个法向量为n =(-1,1,0), PC →=(0,2,-1),PQ →=λPC →,λ∈(0,1), 所以Q (0,2λ,1-λ).设平面QBD 的一个法向量为m =(a ,b ,c ), 由m ·BD →=0,m ·DQ →=0,得⎩⎪⎨⎪⎧a +b =0,2λb +(1-λ)c =0,所以取b =1,得m =⎝ ⎛⎭⎪⎫-1,1,2λλ-1,所以cos π4=|m ·n ||m ||n |,即22·2+⎝ ⎛⎭⎪⎫2λλ-12=22. 注意到λ∈(0,1),解得λ=2-1.4.在三棱锥S -ABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 是AC 的中点,侧棱SB 和底面成45°角.(1)若D 为棱SB 上一点,当SDDB为何值时,CD ⊥AB ; (2)求二面角S -BC -A 的余弦值的大小.解 以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系. 由题意知∠SBO =45°,SO =3.所以O (0,0,0),C (0,3,0),A (0,-3,0),S (0,0,3),B (3,0,0). (1)设BD →=λBS →(0≤λ≤1),则OD →=(1-λ)OB →+λOS →=(3(1-λ),0,3λ), 所以CD →=(3(1-λ),-3,3λ). 因为AB →=(3,3,0),CD ⊥AB , 所以CD →·AB →=9(1-λ)-3=0,解得λ=23.故SD DB =12时,CD ⊥AB .。
高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)(3)
1.1 集合的概念1.下列说法正确的有( )①NBA 联盟中所有优秀的篮球运动员可以构成集合;②*0N ∈;③集合{}2| 1 y y x =-与集合(){}2,| 1 x y y x =-是同一个集合;④空集是任何集合的真子集.A .0个B .1个C .2个D .3个答案:A解析:根据集合的定义,元素与集合的关系,列举法和描述法的定义以及空集的性质分别判断命题的真假.详解:对于①,优秀的篮球队员概念不明确,不能构成集合,错误;对于②,元素与集合的关系应为属于或不属于,即0∉N *,错误;对于③,集合{}2|1{|1}y y x y y =-=≥-是数集,集合(x ,y )|y=x 2-1}表示的是满足等式的所有点,不是同一个集合,错误;对于④,空集是任何非空集合的真子集,错误;故选A .点睛:本题考查集合的确定性,元素与集合的关系,列举法和描述法表示集合以及空集的有关性质,属于基础题.2.设集合{|4},M x x a =≥= )A .a M ∈B .a M ∉C .{}a M ∈D .{}a M ∉答案:B 解析:首先确定是元素与集合的关系,然后根据4的大小关系即可完成判断. 详解: 因为4>a M ∉,故选:B.点睛:本题考查元素与集合的关系,难度较易.元素与集合的关系只有两种:属于和不属于,集合与集合之间不存在属于关系.3.下列能构成集合的是( )A .中央电视台著名的节目主持人B .我市跑得快的汽车C .上海市所有的中学生D .香港的高楼答案:C解析:根据集合的定义可直接确定结果.详解:构成集合的元素具有确定性 ,,A B D ∴中没有明确标准,不符合集合定义,C 正确故选:C点睛:本题考查集合的定义,属于基础题.4.集合{}|(31)(4)0x Z x x ∈--=可化简为( )A .13⎧⎫⎨⎬⎩⎭ B .{}4 C .1,43⎧⎫⎨⎬⎩⎭ D .1,43⎧⎫--⎨⎬⎩⎭答案:B解析:通过解方程,根据Z 的含义进行求解即可.详解:解方程(31)(4)0x x --=,得121,43x x ==,因为x ∈Z ,所以{}|(31)(4)0x Z x x ∈--={}4=,故选:B5.下列各组对象中能构成集合的是( )A B .数学成绩比较好的同学C .小于20的所有自然数D .未来世界的高科技产品答案:C解析:根据集合中元素的确定性,即可得解.详解:选项A 、B 、D 中集合的元素均不满足确定性,只有C 中的元素是确定的,满足集合的定义,故选:C.点睛:本题考查了集合中元素的特征,考查了集合中元素的确定性,是概念题,属于基础题.6.设集合A=x|x 2–4≤0},B=x|2x+a≤0},且A∩B=x|–2≤x≤1},则a=( )A .–4B .–2C .2D .4答案:B解析:由题意首先求得集合A,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.详解:求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-.故选:B.点睛:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.7.下列各组中的M 、P 表示同一集合的是①{}3,1M =-,(){}3,1P =-;②(){}3,1M =,(){}1,3P =; ③{}21M y y x ==-,{}21P t t x ==-; ④{}21M y y x ==-,(){}2,1P x y y x ==-. A .①B .②C .③D .④答案:C 解析:对四组集合逐一分析,可选出答案.详解:对于①,集合M 表示数集,集合P 表示点集,两个集合研究的对象不相同,故不是同一个集合;对于②,两个集合中元素对应的坐标不相同,故不是同一个集合;对于③,两个集合表示同一集合.对于④,集合M 研究对象是函数值,集合P 研究对象是点的坐标,故不是同一个集合. 故选:C.点睛:本题考查相同集合的判断,属于基础题.8.已知集合{21,}A xx x Z =-<≤∈∣,则集合A 中元素的个数为( ) A .0B .1C .2D .3答案:D 解析:根据x ∈Z 求得集合A ,从而判定出集合中元素个数.详解:{21,}{1,0,1}A x x x Z =-<≤∈=-∣,所以集合A 中元素的个数为3.故选:D.点睛:本题主要考查集合的表示法,意在考查学生的数学抽象的学科素养,属基础题.9.已知集合{}1,0,1A =-,(),|,,x B x y x A y A y ⎧⎫=∈∈∈⎨⎬⎩⎭N ,则集合B 中所含元素的个数为( ) A .3B .4C .6D .9答案:B 解析:根据几何A 中的元素,可求得集合B 中的有序数对,即可求得B 中元素个数. 详解:因为x A ∈,y A ,x y∈N , 所以满足条件的有序实数对为()1,1--,()0,1-,()0,1,()1,1.故选:B.点睛:本题考查集合中元素个数的求法,属于基础题.10.下列对象能构成集合的是( )A .2016年央视春节联欢晚会上的所有好看的节目B .我国从1991~2016年发射的所有人造卫星C .2015年夏季世界大学生运动会中的高个子女运动员D .5,4,4,7答案:B解析:对选项A ,“好看的节目”是不确定的,所以这些对象不能构成集合;对选项B ,满足集合元素的确定性,所以这些对象可以构成集合;对选项C ,“高个子”是不确定的,所以这些对象不能构成集合;对选项D ,含有相同的元素“4”,不满足集合元素的互异性,所以不能构成集合.详解:对选项A ,2016年央视春节联欢晚会上的所有好看的节目,“好看的节目”是不确定的,所以这些对象不能构成集合;对选项B ,我国从1991~2016年发射的所有人造卫星,满足集合元素的确定性,所以这些对象可以构成集合;对选项C ,2015年夏季世界大学生运动会中的高个子女运动员,“高个子”是不确定的,所以这些对象不能构成集合;对选项D ,5,4,4,7,含有相同的元素“4”,不满足集合元素的互异性,所以不能构成集合.故选:B点睛:本题主要考查集合的元素,意在考查学生对这些知识的理解掌握水平.11.已知集合2|10A x x ,则下列式子表示正确的有( )①1A ∈②{1}A -∈③A ∅∈④{1,1}A -⊆A .1个B .2个C .3个D .4个答案:B解析:先求出集合A 中的元素,然后逐项分析即可.详解:因为{}2|10{1,1}A x x =-==-,则1A ∈,所以①正确;{1}A -⊆,所以②不正确;A ∅⊆,所以③不正确;{1,1}A -⊆,所以④正确,因此,正确的式子有2个.故选:B.12.方程组31x y x y +=⎧⎨-=-⎩的解集不可以表示为( ) A .(x ,y)|31x y x y +=⎧⎨-=-⎩ } B .(x ,y)|12x y =⎧⎨=⎩} C .1,2}D .(1,2)}答案:C 解析:根据集合元素的特征进行判断求解可得结论.详解:由于方程组的解集中最多含有一个元素,且元素是一个有序实数对,所以A,B,D 符合题意,C 不符合题意.故选C .点睛:本题考查集合元素的特征,解题时要注意方程组的解的特点,属于基础题.13.已知集合={|1}A x x >-,{|2}B x x =<,则A∩B=A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅答案:C解析:本题借助于数轴,根据交集的定义可得.详解:由题知,(1,2)A B =-,故选C .点睛:本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.14.有下列说法:(1)与表示同一个集合; (2)由组成的集合可表示为{}1,2,3或{}3,2,1; (3)方程2(1)(2)0x x --=的所有解的集合可表示为{}1,1,2;(4)集合{}|45x x <<是有限集.其中正确的说法是A .只有(1)和(4)B .只有(2)和(3)C .只有(2)D .以上四种说法都不对答案:C详解:试题分析:(1)不正确:0是数字不是集合,但{}00∈;(2)正确:集合元素满足无序性,即{}{}1,2,33,2,1=;(3)不正确:集合元素具有互异性,方程的解集应为{}1,2;(4)不正确:满足不等式45x <<的x 有无数个,所以集合{}|45x x <<是无限集.故C 正确.考点:1元素与集合的关系;2集合元素的特性.15.已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则A .8k >B .8k ≥C .16k >D .16k ≥ 答案:C详解: 试题分析:因为{}21log A x N x k =∈<<中到少有3个元素,即集合A 中一定有2,3,4三个元素,所以4216k >=,故选C.考点:1.集合的运算;2.对数函数的性质.16.下列四个集合中,是空集的是( )A .{}0B .{8x x >∣,且}5x <C .{}210x x ∈-=N ∣D .{}4x x >答案:B解析:根据空集的定义判断.详解:A 中有元素0,B 中集合没有任何元素,为空集,C 中有元素1,D 中集合,大于4的实数都是其中的元素.故选:B .17.下列说法中正确的有( )个:①很小的数的全体组成一个集合:②全体等边三角形组成一个集合;③{}R 表示实数集;④不大于3的所有自然数组成一个集合.A .1B .2C .3D .4答案:B解析:利用集合的元素的特征判断.详解:①很小的数不确定,不能组成一个集合,故错误:②全体等边三角形组成一个集合,故正确;③{}R 表示以实数集为元素的集合,不表示实数集,故错误;④不大于3的所有自然数是0,1,2,3,组成一个集合,故正确.故选:B18.已知集合M=1,2,3,4},N=1,3,6},P=M∩N,则P 的子集共有( )个.A .2B .4C .6D .8答案:B解析:先求P M N =⋂,根据子集个数公式计算结果.详解:集合M=1,2,3,4},N=1,3,6},{}1,3P M N ∴==,共2个元素, 所以P 的子集共有224=个.故选:B19.已知集合{}0,1,2A =,那么( )A .0A ⊆B .0A ∈C .1AD .{}0,1,2A ⋃答案:B解析:根据元素与集合的关系、集合与集合的关系判断即可.详解:由{}0,1,2A =,则0A ∈,{}1A ⊆故选:B20.已知集合(){}21220A x R a x x =∈+-+=,且A 中只有一个元素,则实数a 的值为 A .12-B .0或12C .1-D .1-或12-答案:D 解析:由条件可得方程()21220a x x +-+=只有一个实数解,对二次项系数是否为0,结合根的判别式,即可求解.详解:A 中只有一个元素,所以方程()21220a x x +-+=只有一个实数解, 当10,1a a +==-时,方程为220,1x x -+==,满足题意;当10,1a a +≠≠-时,148(1)840,2a a a ∆=-+=--==-,所以1a =-或12a =-.故选:D.点睛:本题考查集合的表示,以及对集合元素的理解,属于基础题.。
高中数学必修一训练题(3)
高中数学《必修1》训练题(3)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}1,2M =,则满足条件{}1,2,3,4M N =的集合N 的个数是( )A. 1B.3C. 4D.82. 函数)1(log 2-=x y 的定义域是( )A. ()1,2B.()2,1-C.[2,+∞)D.(-∞,2)3. lg 2lg5+=( )A. 7lgB.25lgC. 1D.lg324. 既不是奇函数也不是偶函数的是( )A.23y x = B.33x x y -=+C.lg(y x = D.21log 1y x=+ 5. 下列函数中为奇函数,且在(-∞,+∞)上是增函数的是( )A.3)(x x f = B.1)(2+=x x f C.x x f sin )(= D.x x f lg )(=6. 下列图像表示的函数中能用二分法求零点的是( )7. 下列关系中,成立的是( ) A.03131log 4()log 105>> B.01331log 10()log 45>> C.03131log 4log 10()5>> D.01331log 10log 4()5>> 8. 某学生从家里去学校上学,骑自行车一段时间,因自行车爆胎,后来推车步行,下图中横轴表示出发后的时间,纵轴表示该生离学校的距离,则较符合该学生走法的图是( )9. 若偶函数)(x f 在(],1-∞-上是增函数,则下列不等式中成立的是( ) A.( 1.5)(1)(2)f f f -<-< B.(1)( 1.5)(2)f f f -<-<C.(2)(1)( 1.5)f f f <-<- D.(2)( 1.5)(1)f f f <-<-10. 若函数2()f x x =,则对任意实数12,x x ,下列不等式总是成立的是( ) A.1212()()()22x x f x f x f ++≤ B.1212()()()22x x f x f x f ++< C.1212()()()22x x f x f x f ++≥ D. 1212()()()22x x f x f x f ++>二、填空题:本大题共4小题,每小题5分,满分20分.11. 50名学生参加体能和智能测验,已知体能优秀的有40人,智能优秀的有31人,两项都不优秀的有4人,问这两项测验都优秀的有________人.12. 若340,27a a >=,则13log a =________________.13. 设函数22,(,1),()log ,[1,).x x f x x x -⎧∈-∞=⎨∈+∞⎩ 则=)2(f _______,若4)(>x f ,则x 的取值范围为________.14. 已知奇函数)(x f 对任意的正实数1212,()x x x x ≠,恒有1212()(()())0x x f x f x -->,则(3)f -与()f π-的大小关系是___________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(本小题满分12分)已知集合{|37},{|210},{|}A x x B x x C x x a =≤<=<<=<,全集为实数集R(1)求A B ,()R C A B ; (2)如果A C ≠∅,求实数a 的取值范围.16.(本小题满分12分) 已知函数||()1(22)2x x f x x -=+-<≤.(1)用分段函数的形式表示该函数;(2)画出该函数的草图;(3)写出该函数的值域、单调递减区间.17. (本小题满分14分) 已知函数11()(0,0)f x a x a x=->>(1)求证:()f x 在()0,+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.18.(本小题满分14分)某蛋糕厂生产某种蛋糕的成本为40元/个,出厂价为60元/个,日销售量为1000个,为适应市场需求,计划提高蛋糕档次,适度增加成本.若每个蛋糕成本增加的百分率为(01)x x <<,则每个蛋糕的出厂价相应提高的百分率为x 5.0,同时预计日销售量增加的百分率为0.8x ,已知日利润 =(出厂价-成本)×日销售量,且设增加成本后的日利润为y .(1)写出y 与x 的关系式;(2)为使增加成本后的日利润有所增加,求x 的取值范围.19.(本小题满分14分)已知函数()log (1),()log (42)(0a a f x x g x x a =+=->,且1)a ≠.(1)求函数()()f x g x -的定义域;(2)求使函数()()f x g x -的值为正数的x 的取值范围.。
江苏省苏州市2020届高三数学二轮复习专题训练 3 不等式
专题3 不等式一、填空题例1 已知集合A ={}0,1,B ={}a 2,2a ,其中a ∈R .定义A ×B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },若集合A ×B 中的最大元素为2a +1,则a 的取值范围是________.解析 A ×B ={a 2,2a ,a 2+1,2a +1}.由题意,得2a +1>a 2+1,解得0<a <2. 答案 (0,2)例2 .设123log 2,ln 2,5a b c -===则c b a ,,三者的大小关系 解析 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-=222log 4log 3>=>,所以c<a,综上c<a<b. 答案c a b <<例3 .对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2), 解关于x 的不等式ax 2-bx +c >0”.给出如下一种解法:解 由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1). 参考上述解法,若关于x 的不等式kx +a +x +b x +c <0的解集为⎝⎛⎭⎪⎫-1,-13∪⎝ ⎛⎭⎪⎫12,1,则关于x 的不等式kx ax +1+bx +1cx +1<0的解集为________. 解析 不等式kx ax +1+bx +1cx +1<0可化为k 1x +a +1x +b 1x+c<0,所以有1x ∈⎝⎛⎭⎪⎫-1,-13∪⎝ ⎛⎭⎪⎫12,1,即x ∈(-3,-1)∪(1,2),从而不等式kx ax +1+bx +1cx +1<0的解集为(-3,-1)∪(1,2).答案 (-3,-1)∪(1,2)例 4 .设不等式组x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于解析 由题意知,所求的||AB 的最小值,即为区域1Ω中的点到直线3490x y --=的距离的最小值的两倍,画出已知不等式表示的平面区域,如图所示,可看出点(1,1)到直线3490x y --=的距离最小,故||AB 的最小值为|31419|245⨯-⨯-⨯=。
2023-2024学年湖北省武汉市高中数学人教A版 必修二第九章 统计专项提升-3-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年湖北省武汉市高中数学人教A 版 必修二第九章 统计专项提升(3)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 要从4名女生和2名男生中选出3名学生组成课外学习小组,则是按分层抽样组成的课外学习小组的概率为( )A.B.C.D.①②①③②③①②③2. 气象意义上从春季进入夏季的标志为“连续5天的日平均温度均不低于22℃”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数,单位:℃):①甲地:5个数据的中位数为24,极差不超过2;②乙地:5个数据的中位数为27,总体均值为24;③丙地:5个数据中有1个数据是32,总体均值为26,总体方差为10.8.其中肯定进入夏季的地区有( )A. B. C. D. 众数平均数中位数标准差3.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A. B. C. D. 4. 某项针对我国《义务教育数学课程标准》的研究中,列出各个学段每个主题所包含的条目数(如下表),下图是统计表的条目数转化为百分比,按各学段绘制的等高条形图,由图表分析得出以下四个结论,其中错误的是( )除了“综合实践”外,其它三个领域的条目数都随着学段的升高而增加,尤其“图象几何” 在第三学段增加较多,约是第二学段的倍.所有主题中,三个学段的总和“图形几何”条目数最多,占50%,综合实践最少,约占4% .第一、二学段“数与代数”条目数最多,第三学段“图形几何”条目数最多.“数与代数”条目数虽然随着学段的增长而增长,而其百分比却一直在减少.“图形几何”条目数,百分比都随学段的增长而增长.A. B. C. D. 12345. 某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则的值为( ) A. B. C. D. 94%6%88%12%6. 有一个样本容量为50的样本数据分布如下,估计小于30的数据大约占有( )3; 8; 9; 11;10;6; 3.A. B. C. D. 7.如图是某班50位学生期中考试数学成绩的频率分布直方图,其中成绩分组区间是:,,,,,,则图中的值等于 ( )A. B. C. D.平均数为3,中位数为2中位数为3,众数为2平均数为2,方差为2.4中位数为3,方差为2.88. 四名同学各掷骰子五次,分别记录每次骰子出现的点数.根据四名同学的统计结果,可以判断出一定没有出现点数6的是( ).A. B. C. D. 9. 在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )A.B.C.D.3.544.5510. 现有甲、乙两组数据,每组数据均由六个数组成,其中甲组数据的平均数为 , 方差为 , 乙组数据的平均数为 , 方差为 . 若将这两组数据混合成一组,则新的一组数据的方差为( )A. B. C. D. 735251511. 某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样从中抽取样本,若样本中青年职工为7人,则样本容量为( )A. B. C. D. 一样稳定变得比较稳定变得比较不稳定稳定性不可以判断12. 已知数据 , ,,, 的平均值为 ,则数据 ,,,相对于原数据( )A. B. C. D. 13. 已知样本数据x 1 , x 2 , …,x n 的均值=10,则样本数据3x 1﹣1,3x 2﹣1,…,3x n ﹣1的均值为 .14. 如图是2019年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为15. 为了解高一学生的体能情况,某校随机抽取了200名高一学生进行了1分钟跳绳测试,统计测试成绩并绘制如图的频率分布直方图,则这200名学生1分钟跳绳次数的中位数为 .16. 数据 , ,…, 的均值为 ,方差为2,现增加一个数据 后方差不变,则 的可能取值为 .17. 汽车尾气中含有一氧化碳 ,碳氢化合物 等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气之中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废,某环境组织为了解公众对机动车强制报废标准的了解情况,随机调查了100人,所得数据制成如下列联表:附:,0.150.100.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.828(1) 若从这100人中任选人,选到了解强制报废标准的人的概率为,问是否在犯错的概率不超过5%的前提下认为“机动车强制报废标准是否了解与性别有关”?(2) 该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中浓度的数据,并制成如图所示的折线图,若该型号汽车的使用年限不超过年,可近似认为排放的尾气中浓度 %与使用年限线性相关,确定与的回归方程,并预测该型号的汽车使用年排放尾气中的浓度是使用年的多少倍.18. 某跳绳训练队需对队员进行限时的跳绳达标测试.已知队员的测试分数与跳绳个数的关系如下:测试规则:每位队员最多进行两次测试,每次限时1分钟,当第一次测完,测试成绩达到60分及以上时,就以此次测试成绩作为该队员的成绩,无需再进行后续的测试,最多进行两次测试.根据以往的训练效果,教练记录了队员甲在一分钟内限时测试的成绩,将数据分成组,并整理得到如下频率分布直方图:(1) 计算值,并根据直方图计算队员甲在1分钟内跳绳个数的平均值;(同一组中的数据用该组区间中点值作为代表)(2) 将跳绳个数落人各组的频率作为概率,并假设每次跳绳相互独立,求队员甲达标测试不低于80分的概率.19. 某微小企业员工的年龄分布茎叶图如图所示:(1) 求该公司员工年龄的极差和第25百分位数;(2) 从该公司员工中随机抽取一位,记所抽取员工年龄在区间内为事件,所抽取员工年龄在区间内为事件,判断事件与是否互相独立,并说明理由;20. 某高级中学今年高一年级招收“国际班”学生720人,学校为这些学生开辟了直升海外一流大学的绿色通道,为了逐步提高这些学生与国际教育接轨的能力,将这720人分为三个批次参加国际教育研修培训,在这三个批次的学生中男、女学生人数如下表:第一批次第二批次第三批次女72男180132已知在这720名学生中随机抽取1名,抽到第一批次、第二批次中女学生的概率分别是 .(1) 求的值;(2) 为了检验研修的效果,现从三个批次中按分层抽样的方法抽取名同学问卷调查,则三个批次被选取的人数分别是多少?(3) 若从第(2)小问选取的学生中随机选出两名学生进行访谈,求“参加访谈的两名同学至少有一个人来自第一批次”的概率.21. 某校数学教研组,为更好地提高该校高三学生《圆锥曲线》的选填题的得分率,对学生《圆锥曲线》的选填题的训练运用最新的教育技术做了更好的创新,其学校教务处为了检测其质量指标,从中抽取了100名学生的训练成绩(总分50分),经统计质量指标得到如图所示的频率分布直方图.(1) 求所抽取的样本的众数、中位数、平均数;(2) 将频率视为概率,从该校高三学生中任意抽取3名学生,记这3个学生《圆锥曲线》的选填题的训练的质量指标值位于内的人数为,求的分布列和数学期望.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.(1)(2)20.(1)(2)(3)21.(1)(2)。
2023-2024学年湖南省郴州市高中数学人教A版选修一直线和圆的方程专项提升-3-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年湖南省郴州市高中数学人教A 版选修一直线和圆的方程专项提升(3)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)21.已知直线:与圆 : 交于 、 两点且 ,则 ( )A. B. C. D. 22. 设是双曲线 ( )的左,右焦点,是坐标原点。
过 作C 的一条渐近线的垂线,垂足为P 。
若 ,则的离心率为()A. B.C. D.34563. 已知直线3x+4y ﹣24=0与坐标轴的两个交点及坐标原点都在一个圆上,则该圆的半径为( )A. B. C. D. 8或-26或-44或-62或-84. 直线2x-y+c=0按向量平移后与圆相切,则c 的值等于( )A. B. C. D. 5. 过直线和 的交点,且与 垂直的直线方程是( )A. B. C. D.0.5小时1小时 1.5小时2小时6. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( )A. B. C. D.217. 点P(-1,2)到直线 的距离为( )A. B. C. D.8. 数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线.已知的顶点,, 若其欧拉线的方程为 , 则顶点的坐标为( )A. B. C. D. 1或-21-29. 直线 与直线 平行,则m 的值为( )A. B. C. D.必要不充分条件充分不必要条件充要条件既不充分也不必要条件10. 已知直线和圆 ,则“ ”是“直线 与圆 相切”的( ).A. B. C. D. [﹣ ,2][0, ][﹣ , ][2,4]11. 点M (x ,y )在函数y=﹣2x+8的图象上,当x ∈[2,5]时, 的取值范围是( )A. B. C. D. 点一定在单位圆内点一定在单位圆上点一定在单位圆外当且仅当时,点在单位圆上12. 过坐标原点O 作单位圆的两条互相垂直的半径 , 若在该圆上存在一点 , 使得(),则以下说法正确的是( )A. B. C. D. 13. 已知圆C 与圆相切于原点,且过点 , 则圆的标准方程为 .14. 直线与圆交于、两点,为坐标原点,则的面积为 .15. 经过点 且圆心是直线 与直线 的交点的圆的标准方程为 .16. 已知函数 ,若函数 在点 处切线与直线 平行,则 17. 已知平行四边形 的三个顶点的坐标为 .(Ⅰ)在中,求边中线所在直线方程(Ⅱ)求的面积.18. 椭圆的一个焦点为,离心率.(1) 求椭圆的标准方程.(2) 定点,为椭圆上的动点,求的最大值,并求出取最大值时点的坐标;(3) 定直线,为椭圆上的动点,证明点到的距离与到定直线的距离的比值为常数,并求出此常数值.19. 过点A(4,1)的圆C与直线x﹣y﹣1=0相切于点B(2,1),求圆C的方程,并确定圆心坐标和半径.20. 已知两定点M(0,1),N(1,2),平面内一动点P到M的距离与P到N的距离之比为,直线y=kx﹣1与点P的轨迹交于A,B两点.(1) 求点P的轨迹方程,并指出是什么图形;(2) 求实数k的取值范围;(3) 是否存在k使得 • =11(O为坐标原点),若存在求出k的值,若不存在,请说明理由.21. 直线经过两直线和的交点.(1) 若直线与直线垂直,求直线的方程;(2) 若点到直线的距离为5,求直线的方程.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.(1)(2)(3)19.20.(1)(2)(3)21.(1)(2)第 11 页 共 11 页。
2023-2024学年上海市静安区高中数学人教A版 必修二第九章 统计专项提升-3-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年上海市静安区高中数学人教A 版 必修二第九章 统计专项提升(3)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 如图所示的茎叶图记录了某产品 天内的销售量,则该组数据的众数为( )A. B. C. D.平均数为3,众数为4平均数为4,中位数为3中位数为3,方差为2.5平均数为3,方差为2.52. 四名同学各掷骰子4次,记录每次骰子出现的点数并分别对每位同学掷得的点数进行统计处理,在四名同学以下的统计结果中,可以判断该同学掷出的骰子一定没有出现点数1的是( )A. B. C. D. 080701063. 总体由编号为01,02,…,19,20的20个个体组成。
利用下面的随机数表选取7个个体,选取方法是从随机数表第1行的第3列和第4列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为( ) 7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 7481A. B. C. D. 9091.59190.54. 以下数据为参加数学竞赛决赛的15人的成绩: (单位:分) 78、70、72、86、88、79、80、81、94、84、56、98、83、90、91,则这15人成绩的第80百分位数是( )A. B. C. D.5. 将甲、乙两个篮球队5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是( )甲队平均得分高于乙队的平均得分中乙甲队得分的中位数大于乙队得分的中位数甲队得分的方差大于乙队得分的方差甲乙两队得分的极差相等A. B.C. D.4573282530726. 某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号001,002,…,599,600.从中抽取60个样本,根据提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()33 21 18 34 29 78 64 56 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45A. B. C. D.不全相等均不相等都相等,且为都相等,且为7. 从2013名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2013人中剔除13人,剩下的20 00人再按系统抽样的方法抽取50人,则在2013人中,每人入选的机会()A. B. C. D.989999.51008. 体育老师记录了班上10名同学1分钟内的跳绳次数,得到如下数据:88,94,96,98,98,99,100,101,101,116.这组数据的60%分位数是()A. B. C. D.9. 为了增加学生的锻炼机会,某中学决定每年举办一次足球和乒乓球比赛,据统计,近10年来,参加足球比赛的学生人数分别为、、、、,它们的平均数为,已知这10年,参加乒乓球比赛的学生人数分别为、、、、,它们的平均数为()A. B. C. D.,,,,10. 甲乙两名同学6次考试的成绩统计如下图,甲乙两组数据的平均数分别为、,标准差分别为,则()A. B. C. D.1011121411. 某班有男生28人,女生16人,用分层抽样的方式从中抽取容量为的样本,若男生抽取了7人,则的值为()A. B. C. D.2418161212. 某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )一年级二年级三年级女生373x y男生377370zA. B. C. D.13. 在由CCTV﹣3举办的歌唱比赛中,由l2位评委现场给每位歌手打分,然后将去掉其中的一个最高分和一个最低分之后的其余分数的平均数作为该歌手的最后得分.已知12位评委给某位歌手打出的分数是:9.6,9.2,9.4,9.3,9.7,9.6,9.2,9.3,9.2,9.5,9.4,9.5,那么这位歌手的最后得分是.14. 若一组数据的平均数为10,方差为2,则 .15. 已知样本的平均数是,标准差是,则的值为16. 在某次数学测验中,5位学生的成绩如下:78、85、a、82、69,他们的平均成绩为80,则他们成绩的方差等于 .17. 2023年某省参加学业水平测试的高一学生有80万人,现随机抽1万名学生的地理成绩(所有成绩均为整数分)进行统计得到频率分布直方图.(1) 根据该图估计这次地理成绩的众数和平均数:(2) 学业水平测试划分A,B,C,D四个等级,其中A,B,C等级为合格,D等级为不合格,单科成绩合格比例为95%.若学生甲本次的地理成绩为60分,该学生本次地理成绩是否合格?18. 几年来,网上购物风靡,快递业迅猛发展,某市的快递业务主要由两家快递公司承接,即圆通公司与申通公司:“快递员”的工资是“底薪+送件提成”:这两家公司对“快递员”的日工资方案为:圆通公司规定快递员每天底薪为70元,每送件一次提成1元;申通公司规定快递员每天底薪为120元,每日前83件没有提成,超过83件部分每件提成10元,假设同一公司的快递员每天送件数相同,现从这两家公司各随机抽取一名快递员并记录其100天的送件数,得到如下条形图:(1) 求申通公司的快递员一日工资y(单位:元)与送件数n的函数关系;(2) 若将频率视为概率,回答下列问题:①记圆通公司的“快递员”日工资为X(单位:元),求X的分布列和数学期望;②小王想到这两家公司中的一家应聘“快递员”的工作,如果仅从日收入的角度考虑,请你利用所学过的统计学知识为他作出选择,并说明理由.19. 从某城市抽取100户居民进行月用电量调查,发现他们的用电量都在50到350度之间,将数据按照分成6组,画出的频率分布直方图如下图所示.(1) 求直方图中的值和月平均用电量的众数;(2) 已知该市有200万户居民,估计居民中用电量落在区间内的总户数,并说明理由.20. 2020年10月1日既是中华人民共和国第71个国庆日,又是农历中秋节,双节同庆,很多人通过短视频或微信、微博表达了对祖国的祝福.某调查机构为了解通过短视频或微信、微博表达对祖国祝福的人们是否存在年龄差异,通过不同途径调查了数千个通过短视频或微信、微博表达对祖国祝福的人,并从参与者中随机选出200人,经统计这200人中通过微信或微博表达对祖国祝福的有160人.将这160人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示:附:0.150.100.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.828(1) 求的值并估计这160人的平均年龄;(2) 把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,选出的200人中通过短视频表达对祖国祝福的中老年人有26人,问是否有的把握认为是否通过微信或微博表达对祖国的祝福与年龄有关?21. 某校举行环保知识竞赛,为了了解本次竞赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为正数,满分100分),进行统计,请根据频率分布表中所提供的数据,解答下列问题:(Ⅰ)求a、b的值;(Ⅱ)若从成绩较好的第3、4、5组中,按分层抽样的方法抽取6人参加社区志愿者活动,并从中选出2人做负责人,求2人中至少有1人是第四组的概率.组号分组频数频率第1组[50,60]50.05第2组[60,70]a0.35第3组[70,80]30b第4组[80,90]200.20第5组[90,100]100.10合计100 1.00答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.(1)(2)20.(1)(2)21.。
2021年高中数学 3对称问题专题训练 新人教A版必修2
2021年高中数学 3对称问题专题训练新人教A版必修2目标:能运用直线方程的知识解决与直线有关的对称和最值问题。
一、基本对称:二、点对称(中心对称)——图像旋转180°后重合1、举出中心对称的例子:如:正方形、正多边形、圆、奇函数的图像。
2、点与点对称:例1:点M(4,3)关于N(5,– 3)的对称点是。
一般结论:点P (x0 , y0) 关于点Q (a , b) 的对称点是。
解题思路:中点坐标公式。
3、直线关于点对称:例2:直线y = 3x - 4关于点 (1 , 1) 对称的直线方程是。
解题思路:(1)直线上任取两点,求关于 (1 , 1) 的对称点——确定一条直线;(2)两对称直线平行,直线的方程可设为3x – y + m = 0,由点到直线的距离相等可得;(3)设P (x0 , y0)为直线y = 3x - 4上任一点,∴y0= 3x0–4 ……①,又P (x0 , y0)关于 (1 , 1) 的对称点为P (x , y),得代入①即得。
注:本题用(2)较简单,但(3)为一般解法,适用于所有的函数和方程。
练习:1、方程x2+ y2= 1关于点(1,1)对称的方程为。
2、点A (3,– 1) 关于点B(2,1)的对称点是。
3、直线2x –y + 1 = 0关于点(2 , 4) 对称的直线方程是。
直线x + y + 1 = 0关于点(2 , 3) 对称的直线方程是。
三、轴对称(直线)——沿直线翻折后图像重合1、举出轴对称的例子:如:正多边形、圆、偶函数的图像、互为反函数的图像。
2、点关于直线对称:例3:点M (2 , 4) 关于直线l: 2x –y + 1 = 0的对称点是。
解题思路:设N (x0 , y0),则l为MN的垂直平分线,得⎪⎪⎩⎪⎪⎨=++-+⨯⇒++-=⨯-⇒⊥0124222)24,22()2(122)1(000000y x l y x M PQ x l PQ 上在直线的中点 联立方程组求解。
2021年四川省成都市高中阶段教育学校统一招生考试数学B卷专项突破训练(3)含参考解答
2021年四川省成都市高中阶段教育学校统一招生考试数学B卷专项突破(三)(满分50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)1.小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4dm,则图2中h的值为dm.2.定义运算x★y=,则的计算结果是.3.点P,Q,R在反比例函数y=(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为.4.如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D,若BC=6,sin∠BAC =,则AC=,CD=.5.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C',AB',AC'分别交对角线BD 于点E,F,若AE=4,则EF•ED的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)6.(本小题满分8分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.7.(本小题满分10分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B 两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线l上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.8.(本小题满分12分)抛物线y=ax2+bx﹣5的图象与x轴交于A、B两点,与y轴交于点C,其中点A坐标为(﹣1,0),一次函数y=x+k的图象经过点B、C.(1)试求二次函数及一次函数的解析式;(2)如图1,点D(2,0)为x轴上一点,P为抛物线上的动点,过点P、D作直线PD 交线段CB于点Q,连接PC、DC,若S△CPD=3S△CQD,求点P的坐标;(3)如图2,点E为抛物线位于直线BC下方图象上的一个动点,过点E作直线EG⊥x 轴于点G,交直线BC于点F,当EF+CF的值最大时,求点E的坐标.2021年四川省成都市高中阶段教育学校统一招生考试数学B卷专项突破(三)(满分50分)参考答案与试题解析一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)1.小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4dm,则图2中h的值为(4+)dm.【分析】根据七巧板的特征,依次得到②④⑥⑦的高,再相加即可求解.【解答】解:∵正方形ABCD的边长为4dm,∴②的斜边上的高是2dm,④的高是1dm,⑥的斜边上的高是1dm,⑦的斜边上的高是dm,∴图2中h的值为(4+)dm.故答案为:(4+).【点评】本题考查正方形的性质,七巧板知识,解题的关键是得到②④⑥⑦的高解决问题.2.定义运算x★y=,则的计算结果是20.【分析】由已知定义逐项求出部分结果,从而得到所求式子的规律为==20.【解答】解:∵x★y=,∴2020★2020=,2020★2020★2020=★2020=,2020★2020★2020★2020=★2020=,…,∴==20,故答案为20.【点评】本题考查数字的变化规律;运用定义,通过逐步求出部分结果,从而总结出所求式子的规律是解题的关键.3.点P,Q,R在反比例函数y=(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为.【分析】设CD=DE=OE=a,则P(,3a),Q(,2a),R(,a),推出CP=,DQ=,ER=,推出OG=AG,OF=2FG,OF=GA,推出S1=S3=2S2,根据S1+S3=27,求出S1,S3,S2即可.【解答】解:∵CD=DE=OE,∴可以假设CD=DE=OE=a,则P(,3a),Q(,2a),R(,a),∴CP=,DQ=,ER=,∴OG=AG,OF=2FG,OF=GA,∴S1=S3=2S2,∵S1+S3=27,∴S3=,S1=,S2=,解法二:∵CD=DE=OE,∴S1=,S四边形OGQD=k,∴S2=(k﹣×2)=,S3=k﹣k﹣k=k,∴k+k=27,∴k=,∴S2==.故答案为.【点评】本题考查反比例函数系数k的几何意义,矩形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.4.如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D,若BC=6,sin∠BAC =,则AC=3,CD=.【分析】连接BO延长BO交⊙O于H,连接CH,连接AO延长AO交BC于T.设OD =x,AD=y.首先解直角三角形求出BH,CH,利用三角形的中位线定理求出OT,利用勾股定理求出AC,再利用相似三角形的性质构建方程组求出x即可解决问题.【解答】解:连接BO延长BO交⊙O于H,连接CH,连接AO延长AO交BC于T.设OD=x,AD=y.∵BH是直径,∴∠BCH=90°,∵∠BAC=∠BHC,∴sin∠BAC=sin∠BHC==,∵BC=6,∴BH=10,CH===8,∵AB=AC,∴=,∴AT⊥BC,∴BT=CT=3,∵BO=OH,BT=TC,∴OT=CH=4,∴AT=AO+OT=5+4=9,∴AC===3,∵AB=AC,AT⊥BC,∴∠DAO=∠CAO,∵OA=OC,∴∠CAO=∠OCA,∴∠DAO=∠OCA,∵∠ADO=∠CDA,∴△DAO∽△DCA,∴==,∴==,解得x=,∴CD=OD+OC=+5=,故答案为3,.【点评】本题考查三角形的外接圆与外心,圆周角定理,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程组解决问题,属于中考填空题中的压轴题.5.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C',AB',AC'分别交对角线BD 于点E,F,若AE=4,则EF•ED的值为16.【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.【点评】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)6.(本小题满分8分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【分析】(1)把点(0,30),(10,180)代入y1=k1x+b,得到关于k1和b的二元一次方程组,求解即可;(2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出k2的值;(3)将x=8分别代入y1、y2关于x的函数解析式,比较即可.【解答】解:(1)∵y1=k1x+b过点(0,30),(10,180),∴,解得,k1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元,b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),则k2=25×0.8=20;(3)选择方案一所需费用更少.理由如下:由题意可知,y1=15x+30,y2=20x.当健身8次时,选择方案一所需费用:y1=15×8+30=150(元),选择方案二所需费用:y2=20×8=160(元),∵150<160,∴选择方案一所需费用更少.【点评】本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出y1、y2关于x的函数解析式.7.(本小题满分10分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B 两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线l上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.【分析】(1)由轴对称的性质可得CA=CA',可得AC+BC=A'C+BC=A'B,AC'+C'B=A'C'+BC',由三角形的三边关系可得A'B<A'C'+C'B,可得结论;(2)①由(1)的结论可求;②由(1)的结论可求解.【解答】证明:(1)如图②,连接A'C',∵点A,点A'关于l对称,点C在l上,∴CA=CA',∴AC+BC=A'C+BC=A'B,同理可得AC'+C'B=A'C'+BC',∵A'B<A'C'+C'B,∴AC+BC<AC'+C'B;(2)如图③,在点C处建燃气站,铺设管道的最短路线是AC+CD+DB;(其中点D是正方形的顶点);如图④,在点C处建燃气站,铺设管道的最短路线是AC+CD++EB,(其中CD,BE都与圆相切)【点评】本题是四边形综合题,考查了正方形的性质,圆的有关知识,轴对称的性质,三角形的三边关系,熟练运用这些性质解决问题是本题的关键.8.(本小题满分12分)抛物线y=ax2+bx﹣5的图象与x轴交于A、B两点,与y轴交于点C,其中点A坐标为(﹣1,0),一次函数y=x+k的图象经过点B、C.(1)试求二次函数及一次函数的解析式;(2)如图1,点D(2,0)为x轴上一点,P为抛物线上的动点,过点P、D作直线PD 交线段CB于点Q,连接PC、DC,若S△CPD=3S△CQD,求点P的坐标;(3)如图2,点E为抛物线位于直线BC下方图象上的一个动点,过点E作直线EG⊥x 轴于点G,交直线BC于点F,当EF+CF的值最大时,求点E的坐标.【分析】(1)首先确定点C的坐标,代入一次函数求出k,可得点B的坐标,设抛物线的解析式为y=a(x+1)(x﹣5)=ax2﹣4ax﹣5a,构建方程求出a即可解决问题.(2)分两种情形:①当点P在直线BC的上方时,如图2﹣1中,作DH∥BC交y轴于H,过点D作直线DT交y轴于T,交BC于K,作PT∥BC交抛物线于P,直线PD交抛物线于Q.②当点P在直线BC的下方时,如图2﹣2中,分别求解即可解决问题.(3)设E(m,m2﹣4m﹣5),则F(m,m﹣5),构建二次函数,利用二次函数的性质解决问题即可.【解答】解:(1)∵抛物线y=ax2+bx﹣5的图象与y轴交于点C,∴C(0,﹣5),∵一次函数y=x+k的图象经过点B、C,∴k=﹣5,∴B(5,0),设抛物线的解析式为y=a(x+1)(x﹣5)=ax2﹣4ax﹣5a,∴﹣5a=﹣5,∴a=1,∴二次函数的解析式为y=x2﹣4x﹣5,一次函数的解析式为y=x﹣5.(2)①当点P在直线BC的上方时,如图2﹣1中,作DH∥BC交y轴于H,过点D作直线DT交y轴于T,交BC于K,作PT∥BC交抛物线于P,直线PD交抛物线于Q.∵S△CPD=3S△CQD,∴PD=3DQ,∵PT∥DH∥BC,∴===3,∵D(2,0),B(5,0),C(﹣5,0),∴OC=OB=5,OD=OH=2,∴HC=3,∴TH=9,OT=7,∴直线PT的解析式为y=x+7,由,解得或,∴P(,)或(,),②当点P在直线BC的下方时,如图2﹣2中,当点P与抛物线的顶点(2,﹣9)重合时,PD=9.DQ=3,∴PQ=3DQ,∴S△CPD=3S△CQD,过点P作PP′∥BC,此时点P′也满足条件,∵直线PP′的解析式为y=x﹣11,由,解得或,∴P′(3,﹣8),综上所述,满足条件的点P的坐标为(,)或(,)或(2,﹣9)或(3,﹣8).(3)设E(m,m2﹣4m﹣5),则F(m,m﹣5),∴EF=(m﹣5)﹣(m2﹣4m﹣5)=5m﹣m2,CF=m,∴EF+CF=﹣m2+6m=﹣(m﹣3)2+9,∵﹣1<0,∴m=3时,EF+CF的值最大,此时E(3,﹣8).【点评】本题属于二次函数综合题,考查了待定系数法,二次函数的性质,一次函数的性质,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会用转化的思想思考问题,属于中考压轴题.。
高中数学三排序不等式专项测试同步训练
高中数学三排序不等式专项测试同步训练2020.031,某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( ) A .36万元 B .31.2万元 C .30.4万元 D .24万元2,在数列).21(,2,1,}{21-=≥=n n n n n S a S S n n a a 满足项其前时当中 (I )求n a ; (II )设nn nn T n b n S b 项和的前求数列}{,12+=;(III )是否存在自然数m ,使得对任意)8(41,*->∈m T N n n 都有成立?若存在,求出m 的最大值;若不存在,请说明理由3,若θθθ则角,542sin ,532cos-==的终边所在直线方程为4,如果直线a y x y ax 那么实数平行与直线,023022=--=++等于( ) A .-3 B .-6C .23-D .325,设O 是△ABC 内部一点,且.2-=+则△AOB 与△AOC 面积之比是 。
6,设,10<<<a b 则下列不等式成立的是( ) A .12<<b abB .log log 2121<<a bC .12<<ab aD .ba )21()21(21<<7,下列等式:①b a -=23lg ; ②c a +=5lg ; ③c a 3338lg --=; ④b a 249lg -=;⑤1315lg ++-=c b a ;其中有且只有一个是不成立的,则不成立的等式的序号为 8,函数))0(,0(cos sin )(f x x x f 在点+=处的切线方程为( ) A .01=+-y x B .01=--y x C .01=-+y x D .01=++y x9,已知向量)1,(cos ),23,(sin -==x x(I )当x x 2sin cos 2,2-求共线时与的值; (II )求]0,2[)()(π-⋅+=在x f 上的值域。
高中数学3二阶行列式与逆矩阵专项测试同步训练
高中数学3二阶行列式与逆矩阵专项测试同步训练2020.031,已知x>y>z ,且x+y+z=2,则下列不等式恒成立的是( ) A .xy>yz B .xz>yz C .xy>xz D .x|y|>z|y|2,a .b ∈R ,两个不等式a>b ,b a 11>同时成立的充要条件是( ) A .a>b>0 B .a>0>b C .011<<a b D .b a 11>3,设直线022:=++y x l 关于原点对称的直线为l ',若l '与椭圆1422=+y x 的交点为A .B ,点P 为椭圆上的动点,则使△PAB 的面积为21的点P 的个数为( )A .1B .2C .3D .44,已知P 是椭圆13422=+y x 上的一点,F 1.F 2是椭圆的两个焦点,且︒=∠6021PF F ,则21PF F ∆的面积是 ;5,直线1l .2l 分别过点P (-2,3),Q (3,-2),它们分别绕点P .Q 旋转但保持平行,那么它们之间的距离d 的取值范围是( )A .),0(+∞B .]25,0(C .),25(+∞D .)250[,6,若动点P 在122+=x y 上移动,则点P 与点Q (0,-1)连线中点的轨迹方程是7,若关于x 的不等式|x+3|+|x-1|>a 恒成立,则a 的取值范围( ) A .a ≤4 B .a<4 C .a>4 D .a ≥48,解关于x 的不等式:)(02R a a x ax ∈<--9,设a+b+c=1,a 2+b 2+c 2=1,且a>b>c ,求证:031<<-c10,已知R 、∈βα,给出四个论断:①||||||βαβα+=+ ②||||βαβα+≤- ③22||,22||>>βα ④5||>+βα以其中的两个论断为条件,其余两个论断作为结论,写出所有正确的命题 。