微波基本参数的测量实验报告
微波测量实验报告
微波测量实验报告一、实验背景微波测量是指利用微波技术对被测物体进行测量的一种方法。
微波是一种电磁波,其频率范围在300MHZ至300GHz之间。
微波测量广泛应用于通信、测距、雷达、卫星等领域。
本实验旨在通过对微波信号的发射、传播和接收进行实验,了解微波测量的基本原理和方法。
二、实验原理微波测量实验主要依赖于微波发射器和接收器的配合。
首先,发射器通过产生一个特定频率和幅度的微波信号,将信号输入到一个导波器(如开放式传输线)中。
信号在导波器中通过传播,并且可以根据特定的设计进行传播路径的调整。
接收器用来接收由被测物体反射或传播过来的微波信号,通过对信号进行处理,可以得到关于被测物体的信息。
在微波测量中,由于微波的特殊性质,测距、测速和测向等参数可以通过对微波信号的相位、频率和幅度进行分析来实现。
例如,利用多普勒频移原理,可以通过测量微波信号的频率变化来计算目标物体的速度;利用相位差原理,可以通过测量微波信号的相位差来计算目标物体的位置。
三、实验设备和材料1.微波发射器:用来产生微波信号的设备;2.导波器:用来传输微波信号的导向装置;3.微波接收器:用来接收被测物体反射或传播过来的微波信号并进行参数分析的设备;4.被测物体:用来反射或传播微波信号的物体。
四、实验步骤1.连接微波发射器和接收器,并对其进行相位校准;2.将被测物体放置在适当位置,调整微波接收器的位置和角度,以便接收到反射或传播过的微波信号;3.运行微波发射器和接收器,记录并分析接收到的微波信号的相位、频率和幅度等参数;4.根据参数分析的结果,计算并得出被测物体的测量结果。
五、实验结果与分析在实验中,我们成功地利用微波发射器和接收器对一块金属板进行了微波测量。
通过对接收到的微波信号的相位、频率和幅度进行实验结果的分析,我们得出了金属板的尺寸和位置等测量结果。
六、实验总结通过本实验,我们了解了微波测量的基本原理和方法。
微波测量广泛应用于通信、测距、雷达、卫星等领域,具有重要的实际应用价值。
微波基本参量测量实验报告
浙江师范大学实验报告实验名称微波基本参量测量班级物理092 姓名阮柳晖学号09180229同组人任亚萍实验日期11/10/24 室温/ 气温/微波基本参量测量摘要:微波系统中最基本的参数有频率、驻波比、功率等。
本实验通过了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,运用微波测量的基本技术,对微波的频率、驻波比、功率进行测量。
关键词:频率功率驻波比阻抗引言:微波成为一门技术科学,开始于20世纪30年代。
微波技术的形成以波导管的实际应用为其标志。
微波是指频率为300MHz-300GHz的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
微波的最重要应用是雷达和通信。
微波与其他学科互相渗透而形成若干重要的边缘学科,其中如微波天文学、微波气象学、微波波谱学、量子电动力学、微波半导体电子学、微波超导电子学等。
其应用及涉及领域仍在不断扩大。
正是由于微波的重要科技地位,学习其基础知识及工作原理等变得至关重要。
正文:一、实验原理微波介绍:微波及似声似光性微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热,微波炉就是利用这一特点制成的,而对金属类东西,则会反射微波。
微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多。
使得微波的特点与几何光学相似,即所谓的似光性。
因此使用微波工作,能使电路元件尺寸减小,使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。
微波测量技术实验报告
一、实验目的1. 理解微波测量技术的基本原理和实验方法;2. 掌握微波测量仪器的操作技能;3. 学会使用微波测量技术对微波元件的参数进行测试;4. 分析实验数据,得出实验结论。
二、实验原理微波测量技术是研究微波频率范围内的电磁场特性及其与微波元件相互作用的技术。
实验中,我们主要使用矢量网络分析仪(VNA)进行微波参数的测量。
矢量网络分析仪是一种高性能的微波测量仪器,能够测量微波元件的散射参数(S参数)、阻抗、导纳等参数。
其基本原理是:通过测量微波信号在两个端口之间的相互作用,得到微波元件的散射参数,进而分析出微波元件的特性。
三、实验仪器与设备1. 矢量网络分析仪(VNA)2. 微波元件(如微带传输线、微波谐振器等)3. 测试平台(如测试夹具、测试架等)4. 连接电缆四、实验步骤1. 连接测试平台,将微波元件放置在测试平台上;2. 连接VNA与测试平台,进行系统校准;3. 设置VNA的测量参数,如频率范围、扫描步进等;4. 启动VNA,进行微波参数测量;5. 记录实验数据;6. 分析实验数据,得出实验结论。
五、实验数据与分析1. 实验数据(1)微波谐振器的Q值测量:通过扫频功率传输法,测量微波谐振器的Q值,得到谐振频率、品质因数等参数;(2)微波定向耦合器的特性参数测量:通过测量输入至主线的功率与副线中正方向传输的功率之比,得到耦合度;通过测量副线中正方向传输的功率与反方向传输的功率之比,得到方向性;(3)微波功率分配器的传输特性测量:通过测量输入至主线的功率与输出至副线的功率之比,得到传输损耗。
2. 实验数据分析(1)根据微波谐振器的Q值测量结果,分析谐振器的频率选择性和能量损耗程度;(2)根据微波定向耦合器的特性参数测量结果,分析耦合器的性能指标,如耦合度、方向性等;(3)根据微波功率分配器的传输特性测量结果,分析功率分配器的传输损耗。
六、实验结论1. 通过实验,掌握了微波测量技术的基本原理和实验方法;2. 熟练掌握了矢量网络分析仪的操作技能;3. 通过实验数据,分析了微波元件的特性,为微波电路设计和优化提供了依据。
微波基本参数测量实验报告
微波基本参数测量实验报告摘要:微波系统中最基本的参数有频率,驻波比,功率等。
本实验通过了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,运用微波测量的基本技术,对微波的频率,驻波比,功率进行测量。
关键词:频率驻波比功率实验仪器引言:微波是一种用途极为广泛,也是我们日常生活必不可少的技术。
微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对金属类东西,则会反射微波。
微波能通常由直流电或50Hz交流电通过一特殊的器件来获得。
可以产生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。
电真空器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管。
在电真空器件中能产生大功率微波能量的有磁控器、多腔速调器、微波三、四极管、行波器等。
在目前微波加热领域特别是工业应用中使用的主要是磁控管及速调管。
微波技术是一门独特的现代科学技术,其重要地位不言而喻,因此掌握它的基本知识和实验方法变得尤为重要。
1.实验目的1.了解各种微波器件;2.了解微波工作状态机传输特性;3.熟悉驻波、衰减、波长(频率)和功率的测量;2实验原理1.1微波频率的测量频率是微波设备的重要参数,微波仪器通过测量其工作频率来检测其是否正常运行。
由于受到器件最高运行速度的限制(目前,高速计数器件PECL计数器的最高输入频率为2.2GHz),直接利用计数器测量频率,其测量范围有限。
不过在本实验中,我们将采用直接测量法。
使用外差式频率计或是数字频率计就能直接读出频率的数值。
微波的基本参数测量 实验报告
微波的基本参数测量【摘要】微波系统中最基本的参数有频率、驻波比、功率等。
在通过对微波测试系统的基本组成和工作原理的观察和研究后,我们需要对频率、功率以及驻波比等基本量进行测量。
了解了微波在波导中的传播特点,习用微波作为观测手段来研究物理现象,从而进一步认识微波。
【关键词】微波频率驻波比功率【引言】微波的用途极为广泛,已经成为我们日常生活中不可缺少的一项技术。
微波通常是指波长从1米(300MHZ)到1毫米(300GHZ)范围内的电磁波,其低频段与超短波波段相衔接,高频端与远红外相邻,由于它比一般无线电波的波长要短的多,故把这一波段的无线电波称为微波,可划分为分米波、厘米波和毫米波。
微波的基本特性明显,如波长极短、频率极高、具有穿透性、似光性等。
基本特性明显使得微波被广泛应用于各类领域。
微波技术不仅在国防、通讯、工农业生产的各个方面有着广泛的应用,而且在当代尖端科学研究中也是一种重要手段,如高能粒子加速器、受控热核反应、射电天文与气象观测、分子生物学研究、等离子体参量测量、遥感技术等方面。
近年来,微波技术与各类学科交叉衍生出各类微波边缘学科,如微波超导、微波化学、微波生物学、微波医学等,在各自领域都得到了长足的发展。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对金属类东西,则会反射微波。
从电子学和物理学观点来看,微波这段电磁频谱具有不同于其他波段的如下重要特点:穿透性:微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的穿透性。
微波透入介质时,由于介质损耗引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致。
似光性和似声性:微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多,或在同一量级上。
微波技术基础实验报告
微波技术基础实验报告一、实验目的1.掌握微波信号的基本特性和参数的测量方法;2.了解微波器件的性能指标和测试方法;3.加深对微波传输线和网络理论的理解和实践。
二、实验设备和原理实验设备:微波信号源、功率计、波导固有模发生器、波间仪、反射器等。
实验原理:微波技术是指在高频范围内进行电磁波的传输、控制和处理的一套技术体系,其频率范围通常为0.3GHz至300GHz。
微波技术具有频率高、信息容量大和传输距离远等优点,广泛应用于通信、雷达、航空航天等领域。
三、实验步骤和内容1.根据实验要求,搭建实验电路;2.测量微波信号源输出功率,通过功率计测量微波信号源输出功率;3.测量波导波导的传输特性,通过波间仪测量微波信号通过波导时的传输特性;4.测量波导器件的特性,通过波间仪测量波导器件的特性;5.测量波导管中的固有模,通过固有模发生器和反射器测量波导管中的固有模。
四、实验结果和数据分析1.根据实验条件,测量到微波信号源输出功率为10dBm;2.根据测量结果,绘制出波导波导的传输特性曲线,分析其传输性能;3.根据实验条件,测量到波导器件的插入损耗为3dB;4.根据实验条件和测量数据,计算出波导管中的固有模的频率范围和衰减值,并进行数据分析。
五、实验结论1.微波信号源输出功率为10dBm;2.波导波导的传输特性曲线显示了其良好的传输性能;3.波导器件的插入损耗为3dB,插入损耗越小,器件性能越好;4.波导管中的固有模的频率范围为0.3GHz至3GHz,衰减值为-10dB。
六、实验总结通过本次实验,我深入理解了微波技术的基本特性和参数的测量方法,掌握了微波器件的性能指标和测试方法,并加深了对微波传输线和网络理论的理解和实践。
通过实验数据的测量和分析,我对微波技术的应用和性能有了更深入的认识,实验收获颇丰。
微波基本测量实验报告
微波基本测量实验报告微波基本测量实验报告引言:微波技术是现代通信、雷达、天文学等领域的重要组成部分。
为了更好地了解微波的特性和应用,本实验旨在通过基本的测量实验,探索微波的传输、反射和干涉等现象,并对实验结果进行分析和讨论。
一、实验装置和原理本实验使用的实验装置包括微波发生器、微波导波管、微波检波器、微波衰减器等。
微波发生器产生微波信号,经由微波导波管传输到被测物体,再通过微波检波器接收并测量微波信号的强度。
微波衰减器用于调节微波信号的强度,以便进行不同强度的测量。
二、实验过程和结果1. 传输实验将微波发生器与微波检波器分别连接到微波导波管的两端,调节发生器的频率和功率,记录检波器的读数。
随着发生器功率的增加,检波器读数也相应增加,说明微波信号能够稳定传输。
2. 反射实验将微波发生器与微波检波器连接到微波导波管的同一端,将导波管的另一端暴露在空气中,调节发生器的功率,记录检波器的读数。
随着功率的增加,检波器读数也增加,表明微波信号在导波管与空气之间发生了反射。
3. 干涉实验将两根微波导波管分别连接到微波发生器和微波检波器上,将两根导波管的另一端合并在一起,调节发生器的功率,记录检波器的读数。
随着功率的增加,检波器读数呈现周期性的变化,表明微波信号在导波管之间发生了干涉。
三、实验结果分析1. 传输实验结果表明,微波信号能够稳定传输,说明微波导波管具有良好的传输特性。
传输实验中,微波信号的强度与发生器功率呈正相关关系,这与微波信号的传输损耗有关。
2. 反射实验结果表明,微波信号在导波管与空气之间发生了反射。
反射实验中,微波信号的强度与发生器功率呈正相关关系,说明反射信号的强度与输入信号的强度相关。
3. 干涉实验结果表明,微波信号在导波管之间发生了干涉。
干涉实验中,微波信号的强度呈现周期性的变化,这与导波管的长度和微波信号的频率有关。
当导波管的长度等于微波信号的波长的整数倍时,干涉现象最为明显。
四、实验总结通过本次微波基本测量实验,我们对微波的传输、反射和干涉等现象有了更深入的了解。
完整微波基本参数测量实验报告
(完整)微波基本参数测量实验报告微波基本参数测量实验报告【引言】微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,微波的基本性质通常呈现为穿透、反射、吸收三个特性。
微波成为一门技术科学,开始于20世纪30年代。
微波技术的形成以波导管的实际应用为其标志,若干形式的微波电子管(速调管、磁控管、行波管等)的发明,是另一标志。
在第二次世界大战中,微波技术得到飞跃发展。
因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。
至今,微波技术已成为一门无论在理论和技术上都相当成熟的学科,又是不断向纵深发展的学科。
【实验设计】一、实验原理1、微波微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热,微波炉就是利用这一特点制成的,而对金属类东西,则会反射微波。
2、微波的似声似光性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多。
使得微波的特点与几何光学相似,即所谓的似光性。
因此使用微波工作,能使电路元件尺寸减小,使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。
由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。
3、波导管波导管是一种空心的、内壁十分光洁的金属导管或内敷金属的管子。
微波测量技术实训报告
一、实训目的本次实训旨在让学生了解微波测量技术的基本原理、测量方法及设备,掌握微波测量技术的实际操作技能,提高学生对微波测量技术的认识和应用能力。
二、实训内容1. 微波测量技术基本原理(1)微波定义:微波是指频率在300MHz至300GHz之间的电磁波。
(2)微波传播特性:微波具有直线传播、反射、折射、散射等特性。
(3)微波测量方法:微波测量方法主要有反射法、传输法、干涉法等。
2. 微波测量设备(1)网络分析仪:用于测量微波网络的S参数、反射系数、驻波比等。
(2)频谱分析仪:用于测量微波信号的频率、功率、调制方式等。
(3)功率计:用于测量微波功率。
(4)示波器:用于观察微波信号的波形、频率、幅度等。
3. 实训项目(1)微波反射系数测量①连接网络分析仪和待测微波网络;②设置网络分析仪的测量频率和带宽;③启动测量,记录反射系数S11;④分析测量结果,判断微波网络的性能。
(2)微波驻波比测量①连接网络分析仪和待测微波网络;②设置网络分析仪的测量频率和带宽;③启动测量,记录驻波比S11;④分析测量结果,判断微波网络的性能。
(3)微波功率测量①连接功率计和待测微波网络;②设置功率计的测量频率和带宽;③启动测量,记录微波功率;④分析测量结果,判断微波网络的性能。
(4)微波信号频谱分析①连接频谱分析仪和待测微波网络;②设置频谱分析仪的测量频率和带宽;③启动测量,观察微波信号的频谱;④分析测量结果,判断微波信号的调制方式、频率成分等。
三、实训结果与分析1. 微波反射系数测量通过测量待测微波网络的反射系数S11,分析微波网络的性能。
根据测量结果,判断微波网络是否存在故障或性能下降。
2. 微波驻波比测量通过测量待测微波网络的驻波比S11,分析微波网络的性能。
根据测量结果,判断微波网络是否存在故障或性能下降。
3. 微波功率测量通过测量待测微波网络的功率,分析微波网络的性能。
根据测量结果,判断微波网络是否存在故障或性能下降。
微波基本参数测量实验报告
(实验报告)微波基本参量测量【摘要】微波技术是一门独特的现代科学技术,我们应掌握它的基本知识和测量的方法。
对微波测试系统的工作原理的分析研究与基本参量的测量,能使我们掌握微波的基本知识,了解其传播的特点,并且我们还能学会对功率、驻波比和频率等量的测量方法。
另外,在实验过程中我们还能熟悉功率计等实验器材的工作原理和物理学中对有关物理量的测量的思想方法。
【关键词】微波、功率、驻波比、频率、测量【引言】微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对金属类东西,则会反射微波。
微波的特点有以下几点:第一.微波波长很短。
具有直线传播的性质,能在微波波段制成方向性极强的无线系统,也可以接收到地面和宇宙空间各种物体发射回来的微弱回波,从而确定物体的方向和距离。
这使微波技术广泛的应用于雷达中。
第二.微波的频率很高 ,电磁振荡周期很短。
比电子管中电子在电极经历的时间还要小。
普通电子管不能用作微波振荡器、放大器和检波器,而必须用原理上完全不同的微波电子管来代替。
第三.许多原子和分子发射和吸收的电磁波的波长正好处在微波波内。
用这特点研究分子和原子的结构,发展了微波波谱学和量子无线电物理学等尖端学科, 还研制了低噪音的量子放大器和极为准确的分子钟与原子钟。
第四.微波可以畅通无阻的穿过地球上空的电离层。
微波波段为宇宙通讯、导航、定位及射电天文学的研究和发展提供了广阔的前景。
【正文】本实验中,我们首先要引入两个基本概念:反射系数与驻波比。
反射系数的定义:波导出某横截面出的电场反射波与入射波的复数比。
微波基本参量实验报告
近代物理实验报告微波基本参量学院班级姓名学号时间微波基本参量【摘要】本实验让我们学习微波基础知识和掌握微波基本测量技术;同时学习用微波作为观测手段来研究物理现象的基本原理和实验方法,最后了解微波测量系统的基本组成,学会用谐振腔波长表测量微波频率,掌握了微波功率、驻波比测量的基本实验方法与技术。
【关键词】微波、功率、驻波比、频率、特性阻抗【引言】微波是一种波长较短的电磁波,频率范围约为300 MHz-300GHz,对应波长范围约为1m-1mm。
在电磁波波谱表中,微波的波长介于无线电波与光波之间,如图1 所示。
微波波段还可以细分为“分米波”(波长为1m 至10cm),“厘米波”(波长10cm 至1cm)和“毫米波”(波长为1cm 至1mm)。
波长在1 毫米以下至红外线之间的电磁波称为“亚毫米波”或超微波,这是一个正在开发的波段。
波长较长的分米波和无线电波的性能相近,波长较短的毫米波则与光波的性质相一致。
微波技术是近代发展起来的一门尖端科学技术,其重要标志是雷达的发明与使用。
微波技术不仅在国防、通讯、工农业生产的各个方面有着广泛的应用,而且在高能粒子加速器、受控热核反应、射电天文与气象观测、分子生物学研究、等离子体参量测量、遥感技术等当代尖端科学研究中也是一种重要手段。
例如,微波所辐射的能量可与物质发生相互作用,使用微波直线加速器和微波频谱仪可对原子和分子结构进行研究,微波衍射仪可用来研究晶体结构;微波波谱仪可测定物质的许多基本物理量,微波谐振腔又可用来测量低损耗物质的介质损耗及介质常数,等等。
因此,微波测量技术是一门基本的实验技术。
【实验方案】一、实验原理1.微波的特点与波导传输特性微波的特点:与低频无线电波相比,微波频率很高,波长很短。
因此,微波具有许多特点。
(1)与几何光学中光波类似,波长很短的微波也具有直线传播的性质。
因此,在微波波段可制成方向性极高的天线系统,通过检测发射微波和接收空间各种物体反射回来的微波,从而确定物体的方向和距离。
微波实验报告频率测量
一、实验目的1. 理解微波的基本特性及其在实验中的应用。
2. 掌握微波频率测量的原理和方法。
3. 通过实验,验证微波频率测量方法的有效性。
4. 提高对微波测量仪器的操作能力。
二、实验原理微波是一种高频电磁波,其频率范围在300MHz到300GHz之间。
微波的频率测量对于雷达、通信、电子对抗等领域至关重要。
微波频率的测量通常采用以下几种方法:1. 波长-频率关系法:根据微波的波长和光速,通过公式 \( f =\frac{c}{\lambda} \) 计算频率,其中 \( f \) 为频率,\( c \) 为光速,\( \lambda \) 为波长。
2. 示波器测量法:利用示波器观察微波信号的周期,通过公式 \( f =\frac{1}{T} \) 计算频率,其中 \( T \) 为周期。
3. 频谱分析仪测量法:利用频谱分析仪直接测量微波信号的频率。
三、实验仪器与设备1. 微波信号发生器2. 波导3. 检波器4. 示波器5. 频谱分析仪6. 波长计7. 量角器8. 计时器四、实验步骤1. 波长-频率关系法:- 将微波信号发生器输出信号通过波导传输。
- 利用波长计测量微波信号在波导中的波长。
- 根据公式 \( f = \frac{c}{\lambda} \) 计算微波频率。
2. 示波器测量法:- 将微波信号发生器输出信号通过波导传输。
- 将微波信号连接到示波器上。
- 观察示波器上的波形,测量信号周期。
- 根据公式 \( f = \frac{1}{T} \) 计算微波频率。
3. 频谱分析仪测量法:- 将微波信号发生器输出信号通过波导传输。
- 将微波信号连接到频谱分析仪上。
- 观察频谱分析仪上的频谱图,找到微波信号的频率峰。
- 读取频率值。
五、实验结果与分析1. 波长-频率关系法:测量得到微波信号的波长为 \( \lambda = 10 \) cm,根据公式 \( f = \frac{c}{\lambda} \),计算得到微波频率为 \( f = 3 \times10^8 \) Hz。
微波基本测量技术实验报告
微波基本测量技术实验报告近代物理实验报告微波基本参量测定实验学院班级姓名学号时间 2014年4月12日微波基本参量测量实验实验报告图 1 电磁波的分类1.波长短(1m —1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用-9-12 2.频率高:微波的电磁振荡周期(10一10s)很短,已经和电子管中电子在电极间的飞-9越时间(约10s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻、电容、电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替3.微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量-6-3 4.量子特性:在微波波段,电磁波每个量子的能量范围大约是10~10eV,而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟,原子钟5.能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯,宇宙通讯和图 2 TE10波的电磁场结构,,(c) 及波导壁电流分布(d)波导管的工作状态:如果波导终端负载是匹配的,则入射波全部被负载吸收而无反射,传播到终端的电磁波的所有能量全部被吸收,这时波导中呈现的是行波,即此时波导管中的微波的将沿波导管无损耗的向前传播,传播时波的幅值不衰减,能量不衰减,就像在真空中传播一样,见图3当终端短路时,入射波被负载全部反射这时波导管中同时有两列频率相同、振幅相同、传播方向相反的微波,一列是入射波,一列是反射波,这两列波将在波导管中形成驻波,并且是“纯驻波”,波的波腹和波节点电场E的大小Emax?0,而Emin=0,见图3当波导终端不匹配时,就有一部分波被反射,形成所谓混合波混合波是一种“行驻波”,波的波腹和波节点电场E的大小Emax?0,并且Emin?0,见图3为描述电磁波,引入反射系数与驻波比的概念,反射系数?定义为??Er/Ei??ej?驻波比?定义为:??Emax,用驻波比?来描述传输线阻抗匹配的情况Emin其中:Emax和Emin分别为波腹和波节点电场E的大小不难看出:对于行波,?=1;对于驻波,?=∞;而当1测试输入端口用作测试的输入端,接头类型为BNC型前面板按键及功能菜单:起始频率键的功能是设置网络仪输出信号的起始频率当设置的起始频率小于网络仪最小起始频率值时,网络仪自动设置为最小起始频率值终止频率键的功能是设置网络仪输出信号的终止频率当设置的终止频率大于网络仪最大终止频率值时,网络仪自动设置为最大终止频率值中心频率键的功能是设置网络仪输出信号在屏幕中心的频率值当输入的中心频率值大于网络仪的最大频率值时,网络仪自动将中心频率设置为最大频率值并同时设置扫频带宽为0;当输入的中心频率值小于网络仪的最小频率值时,网络仪自动将中心频率设置为最小频率值,并同时设置扫频带宽为0扫频宽度键的功能是设置网络仪的扫频带宽,设置范围从50KHz到300MHz并可以任意设置,没有任何限制需要说明的是当中心频率设置为最大值或最小值时,扫频带宽自动设置为0Hz当扫频带宽的设置值超出网络仪频率范围的下限时,仪器将自动将中心频率到最小频率的范围向高端扩大一倍作为当前的扫频带宽,而不是所输入的扫频带宽值反之,当扫频带宽的设置值超出网络仪频率范围的上限时,仪器将自动将中心频率到最大频率的范围向低端扩大一倍作为当前的扫频带宽,而不是所输入的扫频带宽值点频软键用来设置单一输出频率,不进行频率扫描该软键用来设置源输出信号电平的大小,单位为dBm,范围从-73dBm到+7dBm缺省输出为0dBm数字键可用来对输出信号电平进行设定,设定时最后需按下确认键方可生效当所设定的输出信号电平大于仪器的最大输出电平时仪器会自动将输出信号电平设置为最大输出电平,而当所设定的输出信号电平小于仪器的最小输出电平时仪器会自动将输出电平设置为最小输出电平『测量』键按下该键后在屏幕的菜单区将出现一级选择菜单,根据其中的功能选项可以设置不同的测试方式它有五个功能选项,介绍如下:A/B)功能选项选中该功能选项设置当前逻辑通道为传输测量通道和反射测量通道交互进行A/R)功能选项选中该功能选项设置当前逻辑通道为反射测量通道此时屏幕顶部显示当前的测量通道为“REFL”进入下一级子菜单:。
微波测量专题实验报告
一、实验目的1. 理解微波测量的基本原理和方法。
2. 掌握微波测量仪器的基本操作。
3. 学习微波传输线、微波元件和微波系统的测量技术。
4. 分析实验数据,验证微波测量理论。
二、实验原理微波测量是指对微波频率、功率、相位、阻抗等参数的测量。
微波测量通常采用矢量网络分析仪(VNA)进行,VNA可以测量微波系统的S参数,通过S参数可以计算出微波系统的各种参数。
三、实验设备1. 矢量网络分析仪(VNA)2. 微波信号源3. 微波功率计4. 微波传输线5. 微波元件(如衰减器、定向耦合器、滤波器等)6. 微波测试平台四、实验内容1. 微波传输线测量- 测量目标:测量微波传输线的特性阻抗、衰减和反射系数。
- 实验步骤:1. 将微波传输线连接到VNA。
2. 调整信号源频率,使用VNA测量传输线的S11和S21参数。
3. 根据S参数计算传输线的特性阻抗、衰减和反射系数。
4. 分析实验数据,验证微波传输线理论。
2. 微波元件测量- 测量目标:测量微波元件的插入损耗、隔离度和方向性。
- 实验步骤:1. 将微波元件连接到VNA。
2. 调整信号源频率,使用VNA测量元件的S21、S12、S31和S41参数。
3. 根据S参数计算元件的插入损耗、隔离度和方向性。
4. 分析实验数据,验证微波元件理论。
3. 微波系统测量- 测量目标:测量微波系统的增益、带宽和线性度。
- 实验步骤:1. 将微波系统连接到VNA。
2. 调整信号源频率,使用VNA测量系统的S21参数。
3. 根据S参数计算系统的增益、带宽和线性度。
4. 分析实验数据,验证微波系统理论。
五、实验结果与分析1. 微波传输线测量结果- 实验测得微波传输线的特性阻抗为50Ω,与理论值相符。
- 实验测得微波传输线的衰减为0.1dB/m,与理论值相符。
- 实验测得微波传输线的反射系数为0.02,与理论值相符。
2. 微波元件测量结果- 实验测得微波衰减器的插入损耗为1dB,与理论值相符。
微波的测量实验报告
微波的测量实验报告微波的测量实验报告引言:微波技术是一门应用广泛的电磁波技术,它在通信、雷达、医疗等领域发挥着重要作用。
本实验旨在通过测量微波信号的传输特性和功率传输特性,探索微波的性质和应用。
实验一:微波信号的传输特性在实验一中,我们使用了一台微波信号发生器、一根微波传输线和一台微波功率计。
首先,我们将微波信号发生器的输出端连接到微波传输线的输入端,然后将微波传输线的输出端连接到微波功率计。
接下来,我们调节微波信号发生器的频率,并通过微波功率计测量微波信号的功率。
实验结果表明,微波信号的传输特性与频率密切相关。
当微波信号的频率增加时,传输线上的功率损耗也会增加。
这是因为微波信号在传输过程中会受到传输线的阻抗匹配、衰减和反射等因素的影响。
因此,在实际应用中,我们需要根据传输线的特性和工作频率来选择合适的传输线,以确保信号传输的稳定和可靠。
实验二:微波功率传输特性在实验二中,我们使用了一台微波信号发生器、一根微波传输线、一台微波功率计和一个负载。
首先,我们将微波信号发生器的输出端连接到微波传输线的输入端,然后将微波传输线的输出端连接到负载。
接下来,我们调节微波信号发生器的功率,并通过微波功率计测量微波信号在传输线和负载上的功率。
实验结果表明,微波功率的传输特性与功率和负载的阻抗匹配程度密切相关。
当功率和负载的阻抗匹配较好时,微波功率能够有效地传输到负载上,并且功率损耗较小。
然而,当功率和负载的阻抗不匹配时,微波功率会发生反射和衰减,导致功率损耗增加。
因此,在微波电路设计中,我们需要注意功率和负载的阻抗匹配问题,以提高功率传输效率。
实验三:微波的应用微波技术在通信、雷达、医疗等领域有着广泛的应用。
在通信领域,微波信号可以传输大量的数据,并且具有较高的传输速率和稳定性。
在雷达领域,微波信号可以用于探测和测量目标物体的距离、速度和方位。
在医疗领域,微波信号可以用于医学成像和治疗,如MRI和微波消融术等。
微波的测量 实验报告
微波的测量实验报告微波的测量实验报告引言:微波技术在现代通信、雷达、无线电频谱分析等领域中起着重要的作用。
测量微波信号的参数是了解和分析微波系统性能的基础。
本实验旨在通过一系列测量,探究微波的特性和性能,并分析测量结果的准确性和可靠性。
实验一:微波信号的频率测量在本实验中,我们使用频率计来测量微波信号的频率。
首先,将微波信号源与频率计连接,并设置频率计的测量范围。
然后,调节微波信号源的频率,记录频率计的测量结果。
通过多次测量,我们可以得到微波信号的频率范围和频率分布情况。
实验结果显示,微波信号的频率在特定范围内波动较小,表明微波信号源的频率稳定性较好。
同时,我们还发现微波信号的频率分布呈正态分布,符合统计规律。
这些结果对于微波系统的设计和优化具有重要的参考价值。
实验二:微波信号的功率测量微波信号的功率是衡量其强度和传输性能的重要指标。
在本实验中,我们使用功率计来测量微波信号的功率。
首先,将微波信号源与功率计连接,并设置功率计的测量范围。
然后,调节微波信号源的输出功率,记录功率计的测量结果。
通过多次测量,我们可以得到微波信号的功率范围和功率分布情况。
实验结果显示,微波信号的功率与微波信号源的输出功率呈线性关系,即功率随输出功率的增加而增加。
同时,我们还发现微波信号的功率分布呈正态分布,表明微波信号的功率稳定性较好。
这些结果对于微波系统的功率控制和传输性能的优化具有重要的参考价值。
实验三:微波信号的衰减测量在微波传输过程中,由于信号传播介质和传输线的损耗,信号的强度会逐渐减弱。
在本实验中,我们使用衰减器来模拟微波信号的衰减情况,并使用功率计测量衰减后的微波信号的功率。
通过调节衰减器的衰减量,我们可以探究微波信号的衰减规律和衰减程度。
实验结果显示,微波信号的衰减与衰减器的衰减量呈线性关系,即衰减随衰减量的增加而增加。
同时,我们还发现微波信号的衰减程度与传输介质和传输线的特性有关,不同介质和线路的衰减程度不同。
微波基本参数的测量实验报告
微波基本参数的测量【目的要求】1.学习微波的基本知识,了解波导测量系统,熟悉基本微波元件的作用;2.了解微波在波导中传播的特点,掌握微波基本测量技术;3.掌握驻波测量线的正确使用方法;4.掌握电压驻波系数的测量原理和方法。
【仪器用具】微波参数测试系统,包括:三厘米固态信号源,三厘米驻波测量线,选频放大器,精密衰减器,隔离器,谐振式频率计(波长表),匹配负载,晶体检波器,单螺调配器等。
【原理】微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。
从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。
与无线电波相比,微波有下述几个主要特点图1 电磁波的分类1.波长短(1m —1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。
2.频率高:微波的电磁振荡周期(10-9一10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。
另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻、电容、电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。
3.微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。
实验一微波测量基础知识实验报告
实验一微波测量基础知识实验报告一、实验目的1.掌握微波测量的基本知识和实验方法;2.学习使用微波测量仪器进行实验测量;3.理解微波信号的传输、衰减和反射特性。
二、实验仪器1.微波发射器2.微波接收器3.微波衰减器4.微波定向耦合器5.微波功率表6.射频信号发生器7.微波频率计三、实验原理1.微波信号的产生:通过射频信号发生器产生微波信号。
2.微波衰减实验:通过微波衰减器来调节微波信号的功率,测量不同衰减设置下微波功率表的读数,从而了解衰减器的功率测量特性。
3.微波定向耦合器实验:通过微波定向耦合器,将微波信号分为一定比例的前向和反射波,测量两者的功率比值,了解其分配特性。
4.微波传输和反射实验:通过改变接收器和发射器之间的距离,测量不同距离下接收信号的功率,了解微波信号的传输和反射特性。
四、实验步骤1.将实验仪器连接好,并进行校准和调试。
2.使用射频信号发生器产生微波信号,设置频率和功率。
3.通过微波衰减器调节微波信号的功率,测量不同衰减设置下微波功率表的读数。
4.使用微波定向耦合器将微波信号分为前向和反射波,并分别测量两者的功率。
5.改变接收器和发射器之间的距离,测量不同距离下接收信号的功率。
五、数据记录与分析1.微波衰减实验结果记录如下表所示:衰减设置(dB),功率表示数(dBm)------------,--------------0,-1010,-2020,-3030,-40通过绘制功率-衰减设置的曲线图,可以得到微波衰减器的功率传输特性。
2.微波定向耦合器实验结果记录如下表所示:前向功率(dBm),反射功率(dBm)-------------,--------------10,-20-5,-25-8,-22-11,-19通过计算前向功率与反射功率的比值,可以得到微波定向耦合器的功率分配特性。
3.微波传输和反射实验结果记录如下表所示:距离(cm) ,接收功率(dBm)---------,-------------10,-2020,-3030,-4040,-50通过绘制功率-距离的曲线图,可以了解微波信号的传输和反射特性。
微波基本参数测量
微波基本参数测量物理081摘要:本实验中,我们要利用微波产生的电磁场的研究和分析以及相关的仪器对微波的频率、功率、驻波比进行测量,以掌握微波技术的基本知识和实验方法。
关键字:微波参数测量正文:微波的基本特征:1、微波的波长极短,具有“似光性”直线传播的特点。
2、微波的频率极高。
3、微波可以毫无阻碍地穿过电离层,具有穿透性。
4、在微波波段,电磁波每个量子的能量范围为10-6—10-3eV。
5、研究方法和测量技术上,微波电路与低频电路中采用“路”的概念和方法有很大的不同。
常用波导元件:1、衰减器,衰减器是一段波导,在垂直波导宽边并沿纵向向插入吸收片,使通过波的损耗达到衰减,可调节吸收片进入波导的深度以改变衰减量。
2、匹配负载,匹配负载一般做成波导段的形式,终端短路,并包含有一些安置在电场平面内的吸收片,吸收片做成特殊的劈形以实现与波导间的缓变过度匹配。
3、隔离器,是一种氧气非互易元件,具有单向衰减特性,即波从正面通过,衰减极小,而反面通过时衰减很大,常用于振荡器与负载之间,起隔离作用,使振荡器工作稳定。
4、可变短路器,可变短路器由短路活塞与传动读书装置构成,是一个可变电抗。
5、环行器,环形器是一种具有非互易特征的分支传输系统。
固态信号源:固态信号源产生微波信号输出,实现内方波周制,由体效应管振荡器,可变衰减器,PIN调制器组成。
选频放大器:主要用于放大微弱低频交流信号。
驻波测量线:它是一段开有长槽的波导与一个可沿线移动的带有晶体检波器的探针和调谐机构组成。
功率计:由功率探头和指示器两部分组成。
实验步骤初步设计:1、测试前的准备工作:根据讲义中介绍的常用微波器件和实验室提供的仪器使用说明书,掌握它们的工作原理及使用方法。
开启反射速调管微波源电源开关。
将微安表接在测量线输出端,适当选择微安表量程和可变衰减器位置,使测量线调在驻波波腹时,微安表能指示到表盘中以上的读数。
2、驻波比的测量:先接通电源使用测量线测试驻波比,可直接由测量线探针分别处于驻波波腹及波节位置时的电流表读数及,求出驻波比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波基本参数的测量【目的要求】1.学习微波的基本知识,了解波导测量系统,熟悉基本微波元件的作用;2.了解微波在波导中传播的特点,掌握微波基本测量技术;3.掌握驻波测量线的正确使用方法;4.掌握电压驻波系数的测量原理和方法。
【仪器用具】微波参数测试系统,包括:三厘米固态信号源,三厘米驻波测量线,选频放大器,精密衰减器,隔离器,谐振式频率计(波长表),匹配负载,晶体检波器,单螺调配器等。
【原理】微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。
从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。
与无线电波相比,微波有下述几个主要特占八、、A /it |钏1 I「F X-io®LU 1 1 1 1 1i I J KT* IN JQ-U1 1 』」1p\\r in 1 1 1 n i 1 1 II P1 卿]□'"阿見充¥卅电恢图1电磁波的分类1 •波长短(1m1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。
2 •频率高:微波的电磁振荡周期(10-9—10-12s)很短,已经和电子管中电子在电极间-9器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。
另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻、电容、电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。
3.微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。
4.量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6〜10-3eV, 而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内。
人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟,原子钟。
5.能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯,宇宙通讯和射电天文学的研究和发展提供了广阔的前途。
综上所述微波具有自己的特点,不论在处理问题时运用的概念和方法上,还是在实际应用的微波系统的原理和结构上,都与普通无线电不同。
微波实验是近代物理实验的重要组成部分。
在微波波段,随着工作频率的升高,导线的趋肤效应和辐射效应增大,使得普通的导线不能完全传输微波能量,而必须改用微波传输线。
常用的微波传输线有平行双线、同轴线、带状线、微带线、金属波导管及介质波导等多种形式的传输线,本实验用的是矩形波导管,波导是指能够引导电磁波沿一定方向传输能量的传输线。
根据电磁场的普遍规律——Maxwell 方程组以及具体波导的边界条件,可以严格求解出只有两大类波能够在矩形波导中传播:①横电波(又称为磁波),简写为TE 波(或H 波),磁场可以有纵向和横向的分量,但电场只有横向分量。
② 横磁波(又称为电波),简写为TM 波(或E 波),电场可以有纵向和横向的分 量,但磁场只有横向分量。
在实际应用中,一般让波导中存在一种波型,而且只传输一种波型,本实验采用TE io 波,是矩形波导中常用的一种波型。
TE o 型波:场分量为a :波导截面宽边的长度;:微波沿传输方向的相位常数g :波导波长(在波导管里面,某些特定波长的电磁波与波导谐振,其中最长的一个波长被称为波导的特征波长,也称波导波长):微波在自由空间波长。
以上表明,TE o 波具有如下特点:① 存在一个临界波长c 2a ,(矩形波导中传播的TE 波和TM 波,都有一定的临界波长”,能在矩形波导中传播的波长最长的电磁波的波长称为波导管的临界波长)。
只有波长 c 的电磁波才能在波导管中传播② g ,即波导波长入g 大于自由空间波长入,(TE 波和TM 波在波导中的波长用g 表示)。
波导内由入射波与反射波叠加而成的合成波,其相平面传播的速 度称为相速V ,群速V c 是表示能量沿波导纵向传播的速度, 其关系为V V c C 2 因为,波导中电磁波是成 之”字形并以光速传播的,所以,波导波长g 将大于自由空间的波长在一个均匀、无限长和无耗的矩形波导中, 沿z 方向传播的TE o 型波的各个H x E x ■ a X j( t z)j sin( )e , H ya o a . / x j ( sin( )e a j-^cosH X )e j( t z)a其中: 为电磁波的角频率, t Z),E zf , f 是微波频率;g图1电磁波在波导中的传播③电场只存在横向分量,电力线从一个导体壁出发,终止在另一个导体壁上,并且始终平行于波导的窄边(坐标xyz的x轴沿波导横截面的宽边,y轴沿波导横截面的窄边,z轴沿波导的纵方向)。
④磁场既有横向分量,也有纵向分量,磁力线环绕电力线。
⑤电磁场在波导的纵方向(z)上形成行波。
在z方向上,E y和H x的分布规律相同,也就是说E y最大处H x也最大,E y为零处H x也为零,场的这种结构是行波的特点。
图2 TE o波的电磁场结构(a), (b),(c)及波导壁电流分布(d)波导管的工作状态:(1)如果波导终端负载是匹配的(波导终端接入负载后,由于负载性质的不同,电磁波就将在终端产生不同程度的反射。
如果用Z C表示传输线的特性阻抗,用Z L 表示负载阻抗,若波导终端负载是匹配的,则Z C = Z L),则入射波全部被负载吸收而无反射,传播到终端的电磁波的所有能量全部被吸收,这时波导中呈现的是行波,即此时波导管中的微波的将沿波导管无损耗的向前传播,传播时波的幅值不衰减,能量不衰减,就像在真空中传播一样,见图3(a)。
(2)当终端短路(微波技术中的短路是指系统终端接入全反射负载,即:Z 0)时,入射波被负载全部反射。
这时波导管中同时有两列频率相同、振幅相同、传播方向相反的微波,一列是入射波,一列是反射波,这两列波将在波导管中形成驻波,并且是纯驻波”波的波腹和波节点电场E的大小E max 0,而E min = 0,见图3 (C)。
(3)当波导终端不匹配时(任意负载下),就有一部分波被反射(波导中的任何不均匀性也会产生反射),形成所谓混合波。
混合波是一种行驻波”波的波腹和波节点电场E的大小E max0,并且E min0,见图3 (b)。
为描述电磁波,引入反射系数与驻波比的概念,反射系数定义为E r/E i I |e j。
驻波比定义为:也,用驻波比来描述传输线阻抗匹配的情况。
E min其中:E max和E min分别为波腹(驻波电场最大值处)和波节(驻波电场最小值处)点电场E的大小。
不难看出:对于行波,=1;对于驻波,=*;而当1< v x,是混合波。
图3为行波、混合波和驻波的振幅分布波示意图。
图3 (a)行波,(b)混合波,(c)驻波微波系统中最基本的参数有频率、驻波比、功率等。
而阻抗、波长、驻波比和功率等微波参数的测量方法有其独特之处。
微波阻抗的测量是通过检测电场强度的相对值(即:驻波比)来实现。
波长的测量可用谐振腔来进行(即通常所称的吸收式波长计”。
功率的测量是利用微波的热效应,通过热电换能器进行间接的量测本实验是使用厘米波中的X波段,其标称波长为 3.2cm,中心频率为9375MHz。
其它主要设备有:测量线:三厘米驻波测量线由开槽波导、不调谐探头和滑架组成。
其内腔尺寸为a= 22.86mm, b= 10.16mm。
其主模频率范围为〜,对于TE o波而言,截止波长c 2a = 45.72mm,截止频率为c c c 。
开槽直波导位于波导宽边的正中央,平行于波导轴线,不切割高频电流,因此对波导内的电磁场分布影响很小,开槽波导中的场由不调谐探针取样,探针感应出的电动势经过晶体检波器变成电信号输出,可以显示沿波导轴线的电磁场变化信息。
实验中就是通过探测测量线中电磁场的分布达到测量微波的各种参数目的。
图4 DH364A00型3cm测量线外形直波导管:型号为BJ-100,其内腔尺寸为a= 22.86mm,b= 10.16mm。
其主模频率范围为〜,对于TE10波而言,截止波长c 2a = 45.72mm,截止频率为c c c ,实验中作为连接件使用。
隔离器:位于磁场中的某些铁氧体材料对于来自不同方向的电磁波有着不同的吸收,经过适当调节,可使其对微波具有单方向传播的特性。
实验中隔离器用于振荡器与负载之间,起隔离和单向传输作用。
可变衰减器:把一片能吸收微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。
衰减器起调节系统中微波功率以及去耦合的作用。
波长表:电磁波通过耦合孔从波导进入波长表的空腔中,当波长表的腔体失谐时,腔里的电磁场极为微弱,此时,它基本上不影响波导中波的传输。
当电磁 波的频率满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化, 相应地,通过波导中的电磁波信号强度将减弱, 输出幅度将出现明显的跌落,从 刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振波长。
匹配负载:波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。
单螺调配器:插入矩形波导中的一个深度可以调节的螺钉, 并沿着矩形波导 宽壁中心的无辐射缝作纵向移动,通过调节探针的位置使负载与传输线达到匹配 状态。
调匹配过程的实质,就是使调配器产生一个反射波,其幅度和失配元件产 生的反射波幅度相等而相位相反,从而抵消失配元件在系统中引起的反射而达到 匹配。
【实验步骤】1. 驻波比的测量:小驻波比(1. 05< <的测量产生驻波的原因是由于负载阻抗与波导特性阻抗不匹配。
因此,通过对驻波 比的测量,就能检查系统的匹配情况,进而明确负载的性质。
驻波测量是微波测 量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q 值等其他参量。
本实验是在小信号状态下进行测试的,这时驻波测量线中的检波晶体二极管工作在平方律检波区域,检波电流I E 2,可设:I kE 2,因此:通过测量测量线开槽波导中微波驻波波腹处和波节处的最大电压值及最小电压值,就可以计算出波导中微波驻波的驻波比步骤:(1) 按图5所示的框图连接成微波实验系统E max E min \ Imin k 1 maxF k ; 1 max. j U max R L, j U max 石 \U mij R L Y U Zmaxmax min(2) 开启微波信号源(DH1121。