有理数的运算 7
有理数的运算
有理数的运算【基础知识精讲】1.有理数的加法法则:(1) 同号两数相加,取相同的符号,并把绝对值相加.(2) 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两数相加得0.(3) 一个数与0相加,仍得这个数.2.有理数减法法则:减去一个数等于加上这个数的相反数。
3.有理数的乘法(1)有理数的乘法法则是:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘,都得零。
(2)多个有理数乘积的确定:几个不等于零的有理数相乘,积的符号由负因数的个数确定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。
符号确定后,再分别把绝对值相乘。
4.除法的运算法则: 法则一:除以一个数等于乘上这个数的倒数,即:1a b a b ÷=⨯(b ≠0) 法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,得0.5.有理数的乘方:求几个相同因数的积的运算叫做乘方,即: na a a a =⋅⋅⋅⋅⋅ 乘方的符号法则:正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。
6.有理数的混合运算:有理数的运算顺序是:先算乘方,再算乘除,最后算加减,对于同级运算,一般从左到右依次进行。
如果有括号,就先算括号内的,且一般先算小括号内的,再算中括号内的,最后算大括号内的。
如果能利用运算律简化计算,可变更上面的运算顺序,灵活处理7.科学记数法:把一个大于10的数记成n a 10⨯的形式,这种记法叫科学记数法。
(其中101<≤a ,n 是比原数的整数位数小1的正整数)。
七年级数学有理数的乘除和乘方
____ 2 3 1
22 22 ____ 2 2 2
3.怀化市2006年的国民生产总值约为亿元,预计2007年比上一年增长, 用科学计数法表示2007年怀化市的国民生产总值. ____
4.某省有67440000人,按要求分别取这个数的近似数,并指出近似数的有效数字. (1)精确到十万位; (2)精确到百万位; (3)精确到千万位.
有理数除法法则: 1、两数相除,同号得正,异号得负,并把绝对值相除。零与任何不等 于0的数相除都得零。 2、除以一个数等于乘以这个数的倒数(0不能作除数) 倒数与倒数的性质: 1除以一个不为0的数得这个数的倒数(0没有倒数)。 倒数的性质有:(1)互为倒数两数的积为1; (2)有理数a(a≠0)的倒数为
用科学记数法写出下列各数:
10000, 800000, 56000000, 7400000
下列用科学记数法表示的、 由四舍五入法得到的近似数, 各精确到哪一位?各有几个 有效数字? 4 ① 3.79×10 ;
2 ②5.040×10 ;
用四舍五入法,按括号内 要求取近似值。
(2) -7.56×104 (保留2个有效数字);
64,
64,
3
64
1 1 1 1
10 11 12
13
(5) 3 (2)
3
4
(1) 2 (2) 4
10 3
计算
(0.25)
2003
(4)
2004
(1)
2007
1 1 2 2 1 2 1 3 3 1 2 3 3 4 4 4 2 1 2 3 4 2 5 5 5 5
1 a;
有理数的加减运算(含答案)
有理数的运算(加、减)教学目的:1、理解有理数的加法法则;掌握异号两数的加法运算的规律;2、会进行有理数的乘法、除法、乘方的运算,能灵活运用运算律进行简化运算。
教学重点:1、有理数的加法、减法法则;2、熟练的进行有理数乘法、除法、乘方运算。
教学难点:1、异号两数相加法则,把减法运算转换为加法运算;2、若干个有理数相乘,积的符号的确定,乘方的符号确定。
一、新课讲解(一)有理数的加法正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。
例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。
如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1)。
这里用到正数和负数的加法。
下面借助数轴来讨论有理数的加法。
负数+负数如果规定向东为正,向西为负,那么一个人向西走2米,再向西走3米,两次共向西走多少米?很明显,两次共向西走了6米.这个问题用算式表示就是:(-2)+(-4)=-6.这个问题用数轴表示就是如图1所示:负数+正数如果向西走2米,再向东走4米,那么两次运动后这个人从起点向东走2米,写成算式就是(—2)+4=2。
这个问题用数轴表示就是如图2所示:探究利用数轴,求以下情况时这个人两次运动的结果:(一)先向东走3米,再向西走5米,物体从起点向( )运动了( )米; (二)先向东走5米,再向西走5米,物体从起点向( )运动了( )米; (三)先向西走5米,再向东走5米,物体从起点向( )运动了( )米。
这三种情况运动结果的算式如下: 3+(—5)= —2; 5+(—5)= 0; (—5)+5= 0。
如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人 从起点向东(或向西)运动了5米。
写成算式就是 5+0=5 或(—5)+0= —5。
你能从以上7个算式中发现有理数加法的运算法则吗?有理数加法法则:1. 同号的两数相加,取相同的符号,并把绝对值相加. 2. 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. 互为相反数的两个数相加得零. 3.一个数同0相加,仍得这个数。
第7讲:有理数的运算
第7讲:有理数的运算知识梳理1、有理数加法法则:同号两数相加,取加数的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并把较大的绝对值减去较小的绝对值;互为相反数的两个数相加,和为0;—个数与0相加,仍得这个数。
2、有理数减法法则:减去一个数等于加上这个数的相反数。
3、有理数乘法法则:两个数相乘,同号得正,异号得负,并把绝对值相乘,任何数与0相乘得0。
多个非0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数个时,积为负,当负因数的个数为偶数个时,积为正。
4、有理数除法法则:除以一个数等于乘以这个数的倒数。
符号法则:两数相除,同号得正,异号得负,并把绝对值相除,0除以任何不等于0的数都得0。
几个非0的有理数相除,商的符号由负数的个数决定,当负数的个数为奇数个时,商为负,当负数的个数为偶数个时,商为正。
5、倒数的概念:乘积为1的两个数互为倒数。
6、有理数的乘方:求几个相同因数的积的简便运算叫做乘方.乘方的结果叫做幂.在中,a叫做底数,叫指数,读作a的次幂。
有理数的运算是中学数学中一切运算的基础,要求同学们在理解有理数有关概念、法则的基础上能根据法则、公式正确迅速地进行运算.典例精析考点1:有理数的加、减运算【例1】计算(1)(2)(3)分析:(1)可以运用加法法则和减法法则进行计算。
(2)加减混合运算,可先把减法转化为加法,再按加法法则进行计算。
(3)运用加法交换律、结合律把同号两数相加,互为相反数的、凑整的两个数相加,以简化计算。
解:(1)原式== 100 + +0=90(2)原式===0.2(3)原式= [( 3.5) + (3.5)] + [( 25) + ( + 35)] + ( 2) = +8跟踪训练1(1)(2)(3)跟踪训练1(1)199;(2);(3).考点2:有理数乘、除、乘方的计算【例2】计算:(1)(2)(3)分析:(1)可以运用分配律及其逆运算进行简化计算;(2)可以先将除法转化为乘法再用分配律简化计算;(3)先弄清运算顺序,先算乘方再算乘除,最后算加减,有括号的应先算括号里面的.解:(1)原式=(2)原式======(3)原式==点评:在进行有理数的乘除法的运算时,(1)要注意运算符号;(2)遇到除法运算应先转化为乘法;(3)能简便的要运用运算律简化计算.跟踪训练2(1)(2)(3)跟踪训练2(1);(2);(3)。
(完整版)初一有理数的运算法则
一、有理数的运算顺序:有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法。
有括号时、先算小括号里面的运算,再算中括号,然后算大括号。
在遇到相同类型的运算时,应从左往右运算二、有理数的运算:1)有理数加减法:1、同号相加和取相同的符号,并把绝对值相加例如:+2+3=5 (-2)+(-3)=-52、异号相加和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值例如:+2+(-3)=-1 (-2)+3=1一个数与零相加仍得这个数,两个互为相反数相加和为零3、减去一个数等于加上这个数的相反数例如:+2-(+3)=2+(-3)=-1 (-2)-(-3)=-2+3=14、异号相减可理解为同号相加例如:+2-(-3)=2+3=5 (-2)-(+3)=-2-3=-5 补充:去括号与添括号:去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;+(4+5+6)=4+5+6 +(4-5+6)=4-5+6括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
-(4+5+6)=-4-5-6 -(4-5+6)=-4+5-6添括号法则:在“+”号后边添括号,括到括号内的各项都不变;4+5+6=4+(5+6) 4-5+6-7=(4-5+6)-7=(4-5)+6-7在“-”号后边添括号,括到括号内的各项都要变号。
4-5+6=4-(5-6) 4-5+6-7=4-(5-6+7)2)有理数乘法法则:1、两数相乘,同号得正,异号得负,并把绝对值相乘例如:(+2)×(+3)=6 (-2)×(-3)=6 (+2)×(-3)=-6 (-2)×(+3)=-62、任何数与零相乘都得零3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;4、几个有理数相乘,若其中有一个为零,积就为零。
有理数的加减混合运算
有理数的加减混合运算有理数是数学中的一种数,包括正整数、负整数、零和分数。
有理数加减混合运算是对有理数进行加法和减法运算的组合,是基础的数学运算之一。
有理数的加减混合运算具有重要的意义和应用,不仅在日常生活中有实际应用,还在数学中有广泛应用。
有理数的加减混合运算可以用于解决实际问题,例如计算时间、温度、距离等。
在数学课堂中,有理数的加减混合运算也是研究其他数学概念和技巧的基础。
通过研究有理数的加减混合运算,可以培养学生的逻辑思维和计算能力,提高他们的数学素养。
在进行有理数的加减混合运算时,需要掌握有理数的正负规则,以及加法和减法的运算规则。
通过灵活运用这些规则,可以简化计算过程,提高计算效率。
综上所述,有理数的加减混合运算是数学中基础而重要的运算之一,具有广泛的应用和意义。
有理数是指能够用整数表示的数,包括正整数、负整数和零。
有理数具有以下定义、性质和表示方法:定义:有理数是可以写成两个整数的比的数,其中分母不为零。
性质:有理数的加减运算仍然是有理数。
对于任意两个有理数a和b,有a+b和a-b也是有理数。
表示方法:有理数可以用分数形式表示,分子是整数,分母是不为零的整数。
有理数的加减混合运算是指包含有理数的加法、减法以及同时进行加法和减法的运算。
在这种运算中,我们可以使用有理数的性质和表示方法来进行计算。
本文将讲解有理数的加减混合运算规则和计算步骤。
有理数是指可以用两个整数的比表示的数,包括正数、负数和零。
当两个有理数相加时,可以按照以下步骤进行计算:如果两个有理数的符号相同,则将它们的绝对值相加,并保持符号不变。
如果两个有理数的符号不同,则将它们的绝对值相减,并保持绝对值较大的有理数的符号。
当两个有理数相减时,可以按照以下步骤进行计算:将减数变为它的相反数(符号取反),然后将减法转化为加法运算。
按照加法运算的规则计算得出结果。
混合运算是指有理数之间的加法和减法同时进行。
在进行混合运算时,可以按照以下步骤进行计算:首先,从左到右按顺序计算加法和减法。
七年级数学有理数及其运算
负分数:如 -1/5、-3.5、-5/6、-2.8
规定了原点、正方向和单位长度的直线叫做数轴。 1、数轴的特点
(1)数轴是一条直线 (2)数轴有原点(0点) (3)数轴有正方向(通常取向右为正方向)
(4)数轴有单位长度
2、数形结合
任何一个有理数都可以用数轴上的一个点来表示。
3、数轴的画法
(1)取原点 (2)规定正方向,通常取向右为正方向 (3)选取适当的长度为单位长度
3、确定和的绝对值—较大的绝对值 减去较小的绝对值 1、判断加法类型—异号相加
2、确定和的符号—取绝对值较大的 符号“+”
3、确定和的绝对值—较大的绝对值 减去较小的绝对值
(+5)+( -5)= 0 异号相加,绝对值相等,和为0
3、一个数同零相加,仍得这个数。
( -5)+ 0 = -5
做一做
1、(-7.9) 4.3 2.9 ( 1.3)
有理数乘法法则
两数相乘,同号得正,异号得负,绝对值相乘。 任何数与0相乘,积仍未0。 当负因数有奇数个时,积为负;当负因数有偶数 个时,积为正;有因数为零时,积就为零。 倒数的概念
乘积为1的两个有理数互为倒数。 5 求 3、 、 6 、 0.5、 0.125的倒数 7
乘法的交换律:两个数相乘,交换因数的位置,积不
任何数的绝对值都是非负数。 1、一个数本身与它的绝对值的关系
正数的绝对值是它本身,|+3|=3 负数的绝对值是它的相反数,|-3|=3 0的绝对值是0,|0|=0
绝对值大于1而小于5的所有整数的和是______
2、利用绝对值比较两个负数的大小
两个负数比较大小,绝对值大的反而小。
例、比较-5和-8的大小
七年级上册数学: 有理数运算复习
若(a-3)2+|b+a|+(c-2)4=0,求ca+bc的值. 17
若m、n满足|3m-6|+(n+4)2=0 ,则mn=_-_8_.
19.若 a 3, b 5 (1)若ab 0,则a b __±__8_____ (2)若ab 0,则a b __±__2_____ (3)若a b 0,则ab __-1_5_或__-2___
)
C
(A) 1个 (B) 2个 (C) 3个 (D) 4个
近似数85.70的有效数字是(
)
D
(A)8,5,7 (B)7,0 (C)8,5 (D)8,5,7,0
用科学记数法表示-5670000B时,应为(
)
(A)-567×104
(B)-5.67×106
(C)-5.67×107 (D)-5.67×104
关系是-------------------------------------------------------( D )
(A)两个都正
(B)两个都负
(C)一正一负 且负的绝对值较大
(D)一正一负且正的绝对值较大
小明的爸爸买了一种股票,每股8元,下表记录了在一周内该 股票的涨跌情况:
一
二
三
四
五
星期
(C)零减去一个数仍得这个数 (D)减去一个负数,差一定大于被减数
一、选择题
1.两个有理数的和为负数,那么这两个数 一定()。
(A)都是负数 (B)至少有一个数是负数 (C)有一个是0 (D)绝对值不相等 2.如果减数是负数,那么()。 (A)差比被减数小 (B)差比被减数大 (C)差是正数
七年级数学有理数的加减法
(1)5 – (– 15)
( 2) 0– 7 – 5
1 1 (3)( – 1.3 )–( – 2.1) (4) 1 2 3 2
口算:
( 1) 3 – 5 ; (2)3 – ( – 5); (3)( – 3) – 5;
(4)( – 3) – ( –5);
(5)–6 –( –6); (6) – 7 – 0; (7)0 – ( –7) ;(8 )( – 6) – 6 (9)9 – ( –11)
(2)比2°C低8°C的温度是 ; 比-3°C低6°C的温度 ; (3)比0小4的数是 ; 比0 小-4的数是 ; (4)7.4比8.3小 ; 7.4比8.3大 。 4、若m>0,n<0,则m-n 0; 若m<0,n>0, 则m-n 0。
二、选择题 1、下面等式正确的是( ) A、a-b=(-a)+ b B、a-(-b)=(-a)+(-b) C、(-a)-(-b)=(-a)+(-b) D、a-(-b)=a+b 2、下列说法中下正确的是( ) A.两个数的差一定小于被减数 B、若两个数的差为0,则这两数必相等 C、零减去一个数一定得负数 D、一个负数减去一个负数结果仍是负数
2、据襄樊市气象台预报:2001年2 月7日我县的最高气温是4 °C,最 低气温是–3 °C, 请问这天温差是 多少?你是怎样算的?
4 – ( – 3) = 7 ( ° C )
比一比,议一议:
先请同学们计算以下两个式子: (1)11 +( –15); (2)4 + 3 比较上面的式子,你能发现其中的 规律吗?分小组讨论。
新知应用
例2 计算
10 4 1 ( ) ( 5.8) ( ) ( ) 11 5 11
有理数的运算&整式的加减
有理数的运算&整式的加减 (一)有理数的运算 一、有理数加法 法则:1、同号两数相加,取相同的正负号,并把绝对值相加;2、绝对值不等的异号两数想加,取绝对值较大的加数的正负号,并用较大的绝对值减去较小的绝对值;3、互为相反数的两个数相加得零;4、一个数与零相加,仍得这个数。
(有理数的加法仍满足加法交换律和结合律)例1:1.)2.0(3.1)9.0()7.0()8.1(-++-+++- 2.)326()434()313(41-+++-+二、有理数减法法则:减去一个数,等于加上这个数的相反数。
例2: 1.)5()]7()4[(--+-- 2.]12)3[(3---三、有理数加减混合运算 例3: 1.2111)43(412--+--- 2.)61(41)31()412(213+---+--练一练1:计算。
1、[1.8-(-1.2+2.1)-0.2]-(-1.5)2、-︱-32-(-23)︱-︱(-51)+(-52)︱四、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。
注:1、几个不等于零的数相乘,积的正负号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
2、几个数相乘,有一个因数为零,积就为零。
例4:1.53)8()92()4()52(8⨯-+-⨯---⨯ 2.)8(12)11(9-⨯-+⨯-五、有理数除法法则:两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不等于零的数,都得零。
例5: 2411)25.0(6⨯-÷- )21(31)32(-÷÷-六、有理数的乘方(一)概念:求几个相同因数的积的运算叫作乘方,乘方的结果叫作幂。
在23=8中,底数是2,指数是3。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
(二)同底数幂同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。
七年级数学有理数混合运算
分析:这个算式有哪几种运算?运算顺序又是怎么 样的?
1 解:原式 18 3 3 18 1
17
2 5 3 3 9
2
解(法一):原式
11 9 9 11
2
8 9 2 2 2 解: 100 2 2 8 18 3 18 8 10
3 100 4 2 2 25 3 22
有理数的回顾与思考
想一想:本节课你学到了什么?
严肃,目光凌厉,将月影吓咯壹大跳,嘁嘁哎哎地小声答复道:“仆役,您别生气,您当时昏睡别醒,爷正抱着您,就直接进咯里屋,然后将您放在咯床上。仆役,爷对您那么好, 您为啥啊要说别让爷进里屋来?”“我是问,问您,问您,我の衣裳怎么就变成咯中衣?我の衣裳都去咯哪儿咯!您?”月影壹听水清如此质问她,终于明白仆役为啥啊发咯那么大 の脾气,壹定是仆役误会咯,于是赶快解释道:“仆役,是爷走咯以后,奴婢给您换の中衣,您睡得沉极咯,奴婢和竹墨两各人费咯半天の劲儿才换好の。”“您保证是爷走咯以后 才换の?”“奴婢保证,当时还有竹墨呢。”至此,水清才明白咯事情の原委,刚刚那壹顿劈头盖脸の乱发脾气真是大错特错。可是那也别能怪水清,当时壹听说是爷亲自给盖の锦 被,她以为是按平时の顺序,先换の中衣,才盖の被子,羞愤交加之中别禁破天荒地冲月影火冒三丈起来。现在听月影解释清楚咯,原来是他先盖の锦被,然后才是月影她们重新给 换の中衣。错怪咯月影她们,水清非常别好意思,所以刚刚还气得脸色发白,现在立即因为惭愧而红通通地发起烧来,讪讪地说道:“那各,我错怪您咯,别往心里去,我那也是壹 时情急。”“仆役,没事情,奴婢没什么事儿。”水清嘴上给月影道歉,心中却是极为恼恨起咯王爷。上壹次,他醉宿在那里,事后她当场就让福晋给他传咯话,“请爷以后别要踏 进妹妹の房里壹步。”虽然当时她被气懵咯,别管别顾地说咯那句话,但是,她是真心别想再发生那种事情。上壹次是她の腿跪伤咯,那壹次是她累得昏睡别醒,虽然那壹次没什么 造成啥啊后果,可是她实在别想再跟他在卧房里见面。可是,那整各儿王府都是他の,她怎么可能禁止他去啥啊地方?刚刚因为他回府之后,她再也别用管理府务而心情大好,此刻 又因为被他抱回咯怡然居而陷入咯深深の苦恼之中。她实在是别想再跟他有啥啊瓜葛,他们井水别犯河水の生活有多好。希望昨天只是壹各意外,她只是睡昏咯,他只是非常行侠仗 义地帮咯她壹各忙,仅此而已,仅此而已。禁止他再进她房间里是别可能の事情,是大逆别道,是对夫君の大别敬行为,既然别能禁止他の行动范围,那只有严加管束好自己の行为, 从今往后,切别可再糊里糊涂地就睡着咯。想好咯对策,水清の心中暂时安定下来。别过,现在还别能算完全踏实,因为她还有壹件更重要の事情要做。王爷回来咯,虽然她可以立 即卸下管理府务の职责,但是他那次走咯四十三天,她代管咯四十三天の府务,无论如何都要对他有壹各交代。虽然小福子会及时向他汇报,但小福子是小福子,她是她,王爷可是 吩咐咯她,而别是吩咐小福子掌管府务。第壹卷 第532章 字贴其实那各汇报壹点儿也别难,水清早早就做好咯准备,在过去の那四十三天时间里,所有经过她手の大大小小事情, 她全部记忆在纸上,每天壹页,仔仔细细地记忆咯下来,壹共四十二页纸,此刻正整整齐齐地码放在书桌上。昨天因为忙咯壹别整天,还没什么来得及写那最后壹天の汇报。于是水 清赶快起咯床,梳洗完毕,喝咯些清粥,就赶快让月影将墨研好,等她坐到咯桌子前,马上就提笔唰唰地写咯起来。没壹会儿,那第四十三天の管家汇报也已经写好,与前面那四十 二页纸壹并放好,然后对月影说道:“月影,您将那各交到朗吟阁那里。”今天没什么啥啊事情,王爷回府很早,才过咯响午没多久,他就已经端坐在朗吟阁の书房里。只是刚壹坐 下,他就突然发现咯书桌の异样,远远地瞟咯壹眼,他随口问道:“秦顺儿,那是谁送来の字帖?”“回爷,没什么人送字帖。”“那那是啥啊?”他壹边说着,壹边将那叠纸拿咯 起来。当他仔细壹看内容才晓得,怪别得秦顺儿答别上来呢,确实别是字帖。可是,越看他越是诧异,那内容完全是每日府务情况记忆,可是小福子の汇报别是隔三差五给他递过去 咯嘛,怎么又有壹份更详细の报上来?可是那笔迹根本别是他前些日子看到の小福子汇报中の那种字体。小福子の字谈别上啥啊体,壹各只勉强念咯两三年私塾の奴才,能把字写成 那各样子已经很别错咯。而他眼前の那份汇报,用の是典型の簪花小楷,明显是长期研习倪瓒の结果,以至于他刚刚以为是谁送来の字帖呢。秦顺儿壹看爷问他那份东西,他实在别 明白侧福晋为啥啊要给爷送字帖。那也别能怨秦顺儿,他根本别识字,只晓得刚刚月影送过来の,说是侧福晋特意叮嘱要转让交给爷。因为别晓得是啥啊东西,他就直接放到咯书桌 上。现在听到爷在问是谁送来の字帖,秦顺儿才悄然大悟:原来年侧福晋也开始变着花样地讨爷の欢心咯,居然给爷送字帖。那可是所有主子里面,最特别の物件,别の主子别是送 荷包就是送帕子,那各年侧福晋可真是花咯别少心思,动咯别少脑筋,居然送给爷の礼物是字帖。“回爷,那是年侧福晋给您送来の。”“啥啊?年侧福晋?”“是の,怡然居の月 影刚刚亲自交来,说是侧福晋差她前来给爷送来の。”王爷那才晓得,那各达到咯字帖水平の汇报,居然是出自水清之手!那也实在是别能怨王爷,他以前见过の水清の字体,别是 初学の颜体大楷,就是初学の米芾狂草,害得他无数次地研习模仿她那似“猪猪爬”般の笔迹,以便炮制“年氏家书”寄给婉然。那各时候,他无数次地壹边费力地炮制“年氏家 书”,壹边嘲笑着她の字体:简直是比
初一有理数运算
有理数基本运算中考要求知识点睛板块一有理数加、减混合运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差.有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a+=+(加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.++=++(加法结合律)a b c a b c()()有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.有理数减法法则:减去一个数,等于加这个数的相反数.()a b a b-=+-有理数减法的运算步骤:①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.例如:()()()()()30.15951130.159511++-+-+++-=--+-,它的含义是正3,负0.15,负9,正5,负11的和.板块二有理数乘、除法有理数乘、除法Ⅰ:有理数乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数乘法运算律:①两个数相乘,交换因数的位置,积相等. ab ba=(乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. ()abc a bc=(乘法结合律)③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.()a b c ab ac+=+(乘法分配律)有理数乘法法则的推广:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.②几个数相乘,如果有一个因数为0,则积为0.③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数.Ⅱ:有理数除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.1a b ab÷=⋅,(0b≠)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.Ⅲ:倒数、负倒数倒数:乘积为1的两个数互为倒数. a,b互为倒数,则1a b⋅=;反之亦然.倒数是成对出现的,单独一个数不能称为倒数;互为倒数的两个数的乘积一定是1;0没有倒数;求一个非零有理数的倒数,把它的分子和分母颠倒位置即可(正整数可以看作分母为1的分数)负倒数:乘积为1-的两个数互为负倒数.a,b互为负倒数,则1a b⋅=-.反之亦然.板块一 有理数加、减混合运算【例1】计算:⑴5116( 2.39)( 1.57)(3)(5)(2)(7.61)(32)( 1.57)6767-+-+++-+-+-+-++⑵11(0.75)0.375(2)84+-++-【巩固】⑴21(4)(3)33-+- ⑵21(6)(9)|3|7.49.2(4)55-+-+-+++-⑶17(14)(5)( 1.25)88-+++- ⑷111(8.5)3(6)11332-++-+⑸5317(9)15(3)(22.5)(15)124412-++-+-+-【巩固】⑴0a >,0b <则a b - 0; ⑵0a <,0b >则a b - 0;⑶0a <,0b <,则()a b -- 0;⑷0a <,0b <,且||||a b <,则a b - 0.【例2】1997个不全相等的有理数之和为0,则这1997个有理数中( )A .至少有一个是零B .至少有998个正数C .至少有一个是负数D .至多有995个是负数【巩固】若0a b c d <<<<,则以下四个结论中,正确的是( )A .a b c d +++一定是正数.B .d c a b +--可能是负数.C .d c b a ---一定是正数.D .c d b a ---一定是正数.【例3】北京市2007年5月份某一周的日最高气温(单位:ºC )分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值为( ) A . 28ºCB . 29ºCC . 30ºCD . 31ºC【例4】出租车司机小李某天下午的营运全都是在东西方向的人民大街上进行的,如果规定向东为正, 向西为负,他这天下午行车里程表示如下:15+,2-,5+,1-,10+,3-,2-,12+,4+,5-,6+, ⑴将最后一名乘客送到目的地时,小李距离下午出车时的出发点多远? ⑵如果汽车耗油量为0.5升/千米,这天下午小李共耗油多少升?【例5】数轴的原点O 上有一个蜗牛,第1次向正方向爬1个单位长度,紧接着第2次反向爬2个单位长度,第3次向正方向爬3个单位长度,第4次反向爬4个单位长度……,依次规律爬下去,当它爬完第100次处在B 点. ① 求O 、B 两点之间的距离(用单位长度表示). ② 若点C 与原点相距50个单位长度,蜗牛的速度为每分钟2个单位长度,需要多少时间才能到达? ③ 若蜗牛的速度为每分钟2个单位长度,经过1小时蜗牛离O 点多远?【巩固】电子跳蚤在数轴上的某一点0K ,第一步0K 向左跳1个单位到点1K ,第二步由点1K向右跳2个单位到点2K ,第三步有点2K 向左跳3个单位到点3K ,第四步由点3K 向右跳4个单位到点4K ,...... ,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰好是19.94. 求电子跳蚤的初始位置点0K 所表示的数.【补充】在整数1,3,5,7,…,21k ,…,2005之间填入符号“+”和“-”号,依此运算,所有可能的代数和中最小的非负数是多少?【巩固】在1,3,5,…,101这51个奇数中的每个数的前面任意添加一个正号或一个负号,则其代数式的绝对值最小为多少?【巩固】在数1,2,3,……,1998前添符号“+”或“-”,并依次运算,所得结果中最小的非负数是多少?板块二有理数乘、除法【例6】看谁算的又对又快: ⑴()()()345826-⨯--⨯--⨯-⎡⎤⎡⎤⎣⎦⎣⎦⑵4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⑶1571(8)16-⨯- ⑷()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⑸111112211142612⎛⎫-⨯-+- ⎪⎝⎭【巩固】计算下列各题:⑴()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭; ⑵()110.0333323⎛⎫⎛⎫-⨯⨯- ⎪ ⎪⎝⎭⎝⎭;⑶735(1)(36)1246⎡⎤-+---⨯-⎢⎥⎣⎦; ⑷111(0.25)(5)( 3.5)()2244-⨯-+⨯-+-⨯;【例7】1111(1)(1)(1).....(1)_______1998199719961000----=【巩固】计算:11111 (1)(1)(1)(1)(1) 4916252500-⨯-⨯-⨯-⨯⨯-【例8】若a,b,c,d是互不相等的整数,且9abcd=则a b c d+++的值为( ) A.0B.4C.8D.无法确定.【巩固】如果4个不同的正整数m,n,p,q满足(7)(7)(7)(7)4m n p q----=,那么m n p q+++的值是多少?【例9】若19980a b+=,则ab是()A. 正数B. 非正数C. 负数D. 非负数【巩固】奇数个负数相乘,积的符号为,个负数相乘,积的符号为正.【补充】若a b c,,三个数互不相等,则在a b b c c ab c c a a b------,,中,正数一定有( )A.0个B.1个C.2个D.3个Ⅱ:有理数除法【例10】计算:⑴111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⑵()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭【巩固】⑴231(4)()324+÷⨯÷-;⑵71()2(3)93-÷⨯+;⑶11111()()234560-+-÷-;⑷44192()77÷-;⑸19(7)128(7)33(7)÷--÷-+÷-;⑹5315()( 1.25)(3) 1.4()24423--÷÷-⨯-÷⨯-.【例11】如果0acb>,0bc <,且()0a b c ->,试确定a 、b 、c 的符号.【巩固】如果0a b<,0bc <,试确定ac 的符号.【例12】a 和b 是满足0ab ≠的有理数,现有四个命题:①224a b -+的相反数是224a b -+; ②a b -的相反数是a 的相反数与b 的相反数的差; ③ab 的相反数是a 的相反数和b 的相反数的乘积;④ab 的倒数是a 的倒数和b 的倒数的乘积.其中真命题有( )A .1个B .2个C .3个D .4个家庭作业 【巩固】若(2)3x =-⨯,则x 的倒数是( )A .16-B .16C .6-D .6【巩固】正数的倒数是 数,负数的倒数是 数;正数的负倒数是 数,负数的负倒数是 数; 没有倒数, 的倒数等于它本身.【补充】若大于1的整数n 可以表示成若干个质数的乘积,则这些质数称为n 的质因数.则下面四个命题中正确的是( )A .n 的相反数等于n 的所有质因数的相反数之积.B .n 的倒数等于n 的所有质因数的倒数之积.C .n 的倒数的相反数等于n 的所有质因数的倒数的相反数之积.D .n 的相反数的倒数等于n 的所有质因数的相反数的倒数之积.【习题1】计算下列各题⑴23132[(12)()]273424273---+--+⑵212(738)(78.36)(53)(13.64)(43)2323+-+--+---⑶11110()()()()3462-----+--⑷9.3712.84 6.24 3.12--+- ⑸18961713142114735++--- ⑹112.75(3)(0.5)(7)42---+-+ ⑺1111|||0|||()||2394---+-----⑻11121717142412318-+--⑼11211 4.5352553-+-+- ⑽1223|()()||()|5532--+----+【习题2】有一串数:2003-,1999-,1995-,1991-,…,按一定的规律排列,那么这串数中前 个数的和最小.【习题3】超市新进了10箱橙子,每箱标准重量为50kg ,到货后超市复秤结果如下(超市标准重量的千克数记为正数,不足的千克数记为负数):+0.5,+0.3,-0.9,+0.1,+0.4,-0.2,-0.7,+0.8,+0.3,+0.1.那么超市购进的橙子共多少千克?【习题4】计算:1111111111(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)246810357911+⨯+⨯+⨯+⨯+⨯-⨯-⨯-⨯-⨯-【习题5】a 、b 、c 为非零有理数,它们的积必为正数的是( )A .0a >,b 、c 同号B .0b >,a 、c 异号C .0c >,a 、b 异号D .a 、b 、c 同号【习题6】用“>”或“<”填空⑴如果0ab c >,0ac <那么b 0 ; ⑵如果0a b>,0bc <那么ac 0 .【习题7】有理数a ,b ,c 在数轴上对应的点的位置如图所示,给出下面四个命题:①0abc <; ②||||||a b b c a c -+-=-;③()()()0a b b c c a --->; ④1a b c >-.其中正确的命题有( ) A .4个B .3个C .2个D . 1个【习题8】a 为有理数,下列说法中正确的是( )A .21()2003a +为正数B .21()2003a --为负数C .21()2003a +为正数 D .212003a +为正数【习题9】已知a 、b 互为相反数,c 、d 互为负倒数,x 的绝对值等于它相反数的2倍.求3x abcdx a bcd ++- 的值.。
有理数基本运算法则
The so-called happiness refers to the absence of pain in the body and the absence of disturbance in the soul.整合汇编简单易用(页眉可删)有理数基本运算法则有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
下面是为大家整理的有理数基本运算法则,欢迎阅读与收藏。
一、加法运算1、同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两数相加得0。
4、一个数同0相加仍得这个数。
5、互为相反数的两个数,可以先相加。
6、符号相同的数可以先相加。
7、分母相同的数可以先相加。
8、几个数相加能得整数的'可以先相加。
二、减法运算减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。
三、乘法运算1、同号得正,异号得负,并把绝对值相乘。
2、任何数与零相乘,都得零。
3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。
4、几个数相乘,有一个因数为零,积就为零。
5、几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。
四、除法运算1、除以一个不等于零的数,等于乘这个数的倒数。
2、两数相除,同号得正,异号得负,并把绝对值相除。
零除以任意一个不等于零的数,都得零。
注意:零不能做除数和分母。
有理数的除法与乘法是互逆运算。
在做除法运算时,根据同号得正,异号得负的法则先确定符号,再把绝对值相除。
若在算式中带有带分数,一般先化成假分数进行计算。
若不能整除,则除法运算都转化为乘法运算。
五、乘方运算1、负数的奇数次幂是负数,负数的偶数次幂是正数。
2、正数的任何次幂都是正数,零的任何正数次幂都是零。
七年级数学上册 有理数的运算
有理数第二讲有理数的运算一、梳理知识(一)有理数的加减法1、有理数的加法法则:①同号相加,符号不变,绝对值相加②绝对值不相等的异号相加,符号与较大绝对值的相同,绝对值大的减去小的③互为相反数的两个数相加得0④一个数与0相加,仍得这个数减去一个数等于加上这个数的相反数2、简化计算:①互为相反数的两数先相加②符号相同的数先相加③分母相同的先相加④几个数相加得到整数的先相加(带分数化为假分数,小数化为分数)(二)有理数的乘除法1、乘法法则:①两数相乘,同号得正,异号得负,绝对值相乘②几个不为0的数相乘,奇数个负因数积为负,偶数个负因数积为正(奇负偶正)任何数与0相乘得02、除法法则:①两数相除,同号得正,异号得负,绝对值相除②除以一个数等于乘以这个数的倒数0除以任何一个不等于0 的数得0乘法交换律:乘法结合律:乘法对加法的分配律:(三)有理数的乘方定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在n a中,a叫做底数,n叫做指数.n a读作a的n次方.(将n a看作是a的n次方的结果时,也可以读作a的n次幂.)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,按小括号、中括号、大括号依次进行.(四)科学记数法科学记数法形式:10na ⨯,其中110a ≤<,n 为正整数.有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式 二、例题 例1 计算1、12411()()()23523+-++-+- 2151()054(9)3663-+-+-+-2、54(3)(1)(0.25)65-⨯⨯-⨯- 1(12)()(100)12-÷-÷-3、 9181799⨯-33514(1)(8)(3)[(2)5]217---⨯+-÷-+课堂练习:计算20(14)1813-+---- 215[4(10.2)(2)]5---+-⨯÷-512557÷例21、某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:公里),依先后次序记录如下:+9、-3、-5、+6、-7、+10、-6、-4、+4、-3、+7(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每公里耗油量为0.1升,则这辆出租车每天下午耗油多少升?2、一辆货车从超市出发送货.先向南行驶30km到达A单位,继续向南行驶20km到达B单位.回到超市后,又给向北15km处的C单位送了3次货,然后回到超市休息.(1)C单位离A单位有多远?(2)该货车一共行驶了多少km?课堂练习:1、教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,-4,-8,+10,+3,-6,+7,-11.(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.20元/升,则小王共花费了多少元钱?2、小明去一水库进行水位变化的实地测量,他取警戒线作为0m ,记录了这个水库一周内的水位变化情况(测量前一天的水位达到警戒水位,单位:m ,正号表示水位比前一天上(1)这一周内,哪一天水库的水位最高?哪一天的水位最低?最高水位比最低水位高多少? (2)与测量前一天比,一周内水库水位是上升了还是下降了?例31、某市去年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值精确到 ,有效数字为 .2、国家提倡“低碳减排”,湛江某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为 ;41.2010⨯精确到 ,有效数字为 .3、用四舍五入法按括号里的要求对下列各数取近似值 60290(保留两个有效数字); 0.03057(保留3个有效数字) 2345000(精确到万位); 34.4972(精确到0.01)课堂练习:1、近似数2.75万精确到 ,有效数字有 个,分别为 .2、据《维基百科》最新统计,使用闽南语的人数在全世界数千语种中位列第21名,目前有约70010000人使用闽南语,70010000用科学记数法表示为 ;3、42.110⨯精确到 ,有效数字为 . 4、用四舍五入法按括号里的要求对下列各数取近似值 1250(保留两个有效数字); 0.1200(保留3个有效数字) 12050(精确到千位); 120.12(精确到0.001)作业1、计算:)611()212()31(1---++-- 21122()(2)2233-+⨯--2、据统计,今年春节期间,凤凰古城接待游客约为210000人,其中210000人用科学记数法表示为 人 3、近似数2.10万精确到 ,有效数字为 ;52.1010⨯精确到 ,有效数字为 .4、用四舍五入法按括号里的要求对下列各数取近似值 2014(保留两个有效数字); 0.3450(保留2个有效数字) 201305(精确到万位); 0.12450(精确到千分位)5、食品厂从袋装食品中抽出样品30袋,检测每袋的质量是否符合标准.超过和不足的部分分别用正、负数表示,记录如下:(1)这批样品的平均质量比每袋的标准质量是多还是少?多或少多少克? (2)食品袋中标有“净重100±2克”,这批抽样食品中共有几袋质量不合格?这批抽样食品的总质量是多少?。
有理数的概念和运算法则
有理数的概念和运算法则一、有理数的概念1.有理数的定义:有理数是可以表示为两个整数比的数,包括正整数、负整数、0、正分数和负分数。
2.整数:正整数、负整数和0。
3.分数:正分数和负分数,分子和分母都是整数,且分母不为0。
4.真分数:分子小于分母的分数。
5.假分数:分子大于或等于分母的分数。
6.带分数:由一个整数和一个真分数组成的数。
二、有理数的运算法则1.加法法则:a.同号相加,取相同符号,并把绝对值相加。
b.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
c.0加任何数等于任何数。
d.任何数加0等于任何数。
2.减法法则:a.减去一个数等于加上这个数的相反数。
b.减法可以转化为加法,即减去一个数等于加上这个数的相反数。
3.乘法法则:a.同号相乘,取相同符号,并把绝对值相乘。
b.异号相乘,取相反符号,并把绝对值相乘。
c.0乘任何数等于0。
d.任何数乘0等于0。
4.除法法则:a.同号相除,取相同符号,并把绝对值相除。
b.异号相除,取相反符号,并把绝对值相除。
c.除以0没有意义,除数不能为0。
5.乘方法则:a.正数的任何正整数次幂都是正数。
b.负数的任何正整数次幂都是负数。
c.正数的任何负整数次幂都是正数。
d.负数的任何负整数次幂都是正数。
e.0的任何正整数次幂都是0。
f.0的任何负整数次幂都没有意义。
三、有理数的混合运算1.运算顺序:a.先算乘方。
b.再算乘除。
c.最后算加减。
d.同级运算,从左到右依次进行。
e.如果有括号,先算括号里面的。
2.运算律:a.加法结合律:三个数相加,可以先算任意两个数的和,结果不变。
b.乘法结合律:三个数相乘,可以先算任意两个数的积,结果不变。
c.加法交换律:两个数相加,交换加数的位置,结果不变。
d.乘法交换律:两个数相乘,交换因数的位置,结果不变。
e.分配律:一个数乘以两个数的和,等于这个数分别乘以这两个加数,然后把乘积相加。
四、有理数的应用1.化简:将复杂的分数或带分数化为简化形式。
七年级有理数的运算知识点
七年级有理数的运算知识点在初中数学中,有理数是一个重要的概念,其运算也是学习数学的基础。
在七年级阶段,我们需要掌握有理数的加减乘除等基本运算方法。
接下来我们来简要介绍一下七年级有理数的运算知识点。
一、有理数
有理数包含整数和分数两部分,在数轴上可以表示为一个有向线段。
整数和分数都可以运用加、减、乘、除等基本运算方法进行计算。
二、有理数的加减运算
1.同号数的加减运算:保留符号不变,将绝对值相加。
2.异号数的加减运算:先取绝对值相加,再将大数的符号赋给和。
三、有理数的乘法
1.同号数的乘法:将绝对值相乘,符号为正。
2.异号数的乘法:将绝对值相乘,符号为负。
四、有理数的除法
有理数的除法可以转化为乘法,使其符号一致后再进行计算。
五、有理数的混合运算
当有理数之间出现加减乘除混合运算时,需要遵循“先乘除,后加减”的原则,并且要注意括号的作用。
六、有理数的比较
当比较两个有理数大小时,可以将它们化为相同的分数进行比较,也可以比较它们在数轴上的位置关系。
以上就是七年级有理数的运算知识点,掌握好这些知识,我们就能轻松进行有理数的计算,更好地理解数学的知识和应用。
第2章 7 第2课时 有理数的乘法运算律
5.计算: (1)(-172)×(-2)×(-4)×(-517)×(-25)×5; 解:原式=-(172×376)×(2×5)×(4×25) =-3×10×100 =-3000 (2)(1375-47+54)×(-35). 解:原式=1375×(-35)+(-47)×(-35)+54×(-35) =-17+20-28 =-25
1.填写计算过程中应用的运算律.
[(8×4)×125-5]×25
=[(4×8)×125-5]×25 =[4×(8×125)-5]×25
乘法交换律 乘法结合律
=4000×25-5×25
乘法分配律
2.计算:(-3.14)×5.597+(-31.4)×(-0.5597)= 0 .
3.计算:(12-56+152-274)×24 的结果是( D )
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
•
6.(-0.125)×20×(-8)×(-0.8)=[(-0.125)×(-8)]×[20×(-0.8)],运算
中没有运用的乘法运算律为( C )
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/32021/9/3Friday, September 03, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/32021/9/32021/9/39/3/2021 10:00:40 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/32021/9/32021/9/3Sep-213-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/32021/9/32021/9/3Friday, September 03, 2021
有理数的运算法则
有理数的运算法则⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
初一数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理 1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初一语文文言文一字多义注解与:1 与斗卮酒。
有理数(七):有理数的混合运算
【知识导学】 1. 概念回顾1.1. 如果a, b 互为相反数,那么___________________________; 1.2. 如果c, d 互为倒数, 那么____________________________ ; 1.3. 如果︱x ︱=a ,那么__________________________________; 1.4.b a = __________________;2. 运算顺序:有理数的混合运算顺序是先算___________,再算___________,最后算___________,如果有括号,就先算___________。
3. 运算技巧3.1. 正逆用运算定律;3.2. 归类组合:讲不同类数(如分母相同或易于通分的数)分别组合,将同类数(如正数或负数)归类计算;3.3. 凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消; 3.4. 分解:将一个数分解成几个数和的形式,或分解为它的因数相乘的形式; 3.5. 约简:将互为倒数的数或有倍数的数约简;3.6. 设元:用一个字母来代替一串有理数的代数和; 3.7. 转化:通过绝对值将加法,乘法在先确定符号的前提下,转化为小学里学的算术的加法,乘法;通过相反数将减法转化为加法; 通过倒数将除法转化为乘法;通过将乘方运算转化为积的形式;【课堂例题】例1. 计算25(6)(4)(8)⨯---÷-。
例2. 计算()32624416 6.81 3.255⎛⎫+---+-+- ⎪⎝⎭。
例3. 计算()()()320.12581553⎛⎫-⨯-⨯-⨯⨯- ⎪⎝⎭。
例4. 计算23122(3)(1)6293--⨯-÷-。
例5. 计算123456789979899+-++-++-+++-。
例6. 计算111111111111+1+1++232018232017232018232017⎛⎫⎛⎫⎛⎫⎛⎫+++++-+++++⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭例7. 已知,032=-++y x 求xy y x 435212+--的值。