2013年历年初三数学中考攻略专题韦达定理应用探讨
(高分秘笈)2013中考数学 解题方法及提分突破训练 韦达定理及应用专题(含解析)
解题方法及提分突破训练:韦达定理及应用专题韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。
韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。
人们为了纪念他在代数学上的功绩,称他为“代数学之父”。
历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战。
国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)。
消息传开,数学界为之震惊。
同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。
韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达定理。
你能利用韦达定理解决下面的问题吗? 一 真题1.(2012•某某)若x1、x2是关于一元二次方程ax2+bx+c (a≠0)的两个根,则方程的两个根x1、x2和系数a 、b 、c 有如下关系:x1+x2=-a b x1•x2=a c把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c (a≠0)的图象与x 轴的两个交点为A (x1,0),B (x2,0).利用根与系数关系定理可以得到A 、B 连个交点间的距离为:参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c (a >0)的图象与x 轴的两个交点A (x1,0),B (x2,0),抛物线的顶点为C ,显然△ABC 为等腰三角形.(1)当△ABC 为直角三角形时,求b2-4ac 的值; (2)当△ABC 为等边三角形时,求b2-4ac 的值.2.(2010•某某)阅读材料:若一元二次方程ax2+bx+c=0的两个实数根为x1,x2,则两根与方程系数之间有如下关系:根据上述材料填空:已知x1,x2是方程x2+4x+2=0的两个实数根,则3.已知关于x的方程x2+2(a-1)x+a2-7a-b+12=0有两个相等的实数根,且满足2a-b=0.①利用根与系数的关系判断这两根的正负情况.②若将y=x2+2(a-1)x+a2-7a-b+12图象沿对称轴向下移动3个单位,写出顶点坐标和对称轴方程.4.设一元二次方程ax2+bx+c=0的两根为x1,x2,则两根与方程系数之间有如下关系:根据该材料填空:若关于x的一元二次方程x2+kx+4k2-3=0的两个实数根分别是x1,x2,且满足x1+x2=x1•x2.则k的值为二名词释义一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
中考数学专题十一韦达定理
+ = ,.x 12+x 22=. x (1) b 2 - 4ac >0 ⇔ 一元二次方程 ax 2 + bx + c = 0(a ≠ 0)有两个实数根,即 x x , 2013 中考数学专题十一:韦达定理【基础检测】1.一元二次方程 x 2 - 2 x - 1 = 0 的根的情况为()A.有两个相等的实数根 C.只有一个实数根 B.有两个不相等的实数根 D.没有实数根2.若方程 kx 2-6x +1=0 有两个不相等的实数根,则 k 的取值范围是.3.设 x 1、x 2是方程3x 2+4x -5=0的两根,则111 x24.关于 x 的方程 2x 2+(m 2-9)x +m +1=0,当 m =时,两根互为倒数;当 m =时,两根互为相反数.5.若 x 1= 3 - 2 是二次方程 x 2+ax +1=0 的一个根,则 a =,该方程的另一个根 x 2=.【考点实相】1. 一元二次方程根的判别式:关于 x 的一元二次方程 ax 2 + bx + c = 0(a ≠ 0)的根的判别式为.1,2 = .(2) b 2 - 4ac =0 ⇔ 一元二次方程有相等的实数根,即 x = x = . 1 2(3) b 2 - 4ac <0 ⇔ 一元二次方程 ax 2 + bx + c = 0(a ≠ 0)实数根.2.一元二次方程根与系数的关系若关于 x 的一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 有两根分别为 x , 那么 x + x = ,1212x ⋅ x = .1 23.易错知识辨析:(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.(2)应用一元二次方程根与系数的关系时,应注意:① 根的判别式 b 2 - 4ac ≥ 0 ;+ =__________,(x 1-x 2)2=_______.②二次项系数 a ≠ 0 ,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.【典例分析】例 1 当 k 为何值时,方程 x 2 - 6 x + k - 1 = 0 ,(1)两根相等;(2)有一根为 0;(3)两根为倒数.例 2(08 武汉)下列命题:①若 a + b + c = 0 ,则 b 2 - 4ac ≥ 0 ;②若 b > a + c ,则一元二次方程 ax 2 + bx + c = 0 有两个不相等的实数根;③若 b = 2a + 3c ,则一元二次方程 ax 2 + bx + c = 0 有两个不相等的实数根;④若 b 2 - 4ac > 0 ,则二次函数的图像与坐标轴的公共点的个数是 2 或 3.其中正确的是( )A.只有①②③ B.只有①③④C.只有①④D.只有②③④.例 3(06 泉州)菱形 ABCD 的一条对角线长为 6,边 AB 的长是方程 x 2 - 7 x + 12 = 0 的一个根,则菱形 ABCD 的周长为.【直击中考】1.设 x 1,x 2 是方程 2x 2+4x -3=0 的两个根,则(x 1+1)(x 2+1)=__________,x 12+x 22=_________, 1 x 11 x22.当 c = __________时,关于 x 的方程 2 x 2 + 8x + c = 0 有实数根.(填一个符合要求的数α + 1β = -1 ,则 m 的值是( A.3B. -3 C. D. - 18.设关于 x 的方程 kx 2-(2k +1)x +k =0 的两实数根为 x 1、x 2,,若 1 + x2 = 17 学习好资料欢迎下载即可)3.已知关于 x 的方程 x 2- (a + 2) x + a - 2b = 0 的判别式等于 0,且 x =12是方程的根,则a +b 的值为.4.已知 a ,b 是关于 x 的方程 x 2 - (2k + 1)x + k (k + 1) = 0 的两个实数根,则 a 2 + b 2 的最小值是.5.已知 α , β 是关于 x 的一元二次方程 x 2 + (2 m + 3) x + m 2 = 0 的两个不相等的实数根,且满足1)A.3 或 -1 B.3 C.1D. -3 或 16.一元二次方程 x 2 - 3x + 1 = 0 的两个根分别是 x ,x ,则 x 2 x + x x 2 的值是()12 1 2 1 21 3 37.若关于 x 的一元二次方程 x 2. - 2 x + m = 0 没有实数根,则实数 m 的取值范围是(A .m<lB .m>-1C .m>lD .m<-1x x x 4 ,2 1求 k 的值.)9.已知关于 x 的一元二次方程 x 2 - (m -1) x + m + 2 = 0 .(1)若方程有两个相等的实数根,求 m 的值;学习好资料欢迎下载(2)若方程的两实数根之积等于m2-9m+2,求m+6的值.。
初中数学运用“韦达定理”解题的题型详解
初中数学运用“韦达定理”解题的题型详解
韦达定理是初中数学中的一条非常重要的定理,涉及的章节包括一元二次方程,二次函数。
在中考中也多有涉及。
一、已知一元二次方程的一个根,求另一根
例1:关于x的一元二次方程(m﹣1)x²﹣x﹣2=0,若x=﹣1是方程的一个根,求m的值及另一个根.
分析本题可直接解方程求出另一根,但如果应用韦达定理可更快解决.应用时应把方程化为一般形式ax²+bx+c=0(a≠0).根据选择使得到另一根易于计算的原则,酌情选择用两根之和或两根之积.
二、一元二次方程根、两根关系及字母系数的互求
例2 已知关于x的一元二次方程x²+6x+a=0(a为常数)的一
个根为√11-3,求a的值.
三、求两根和、积及其代数式的值.
例3.若x₁,x₂是关于x的方程x²﹣2x﹣5=0的两根,则代数式x₁²﹣3x₁﹣x₂﹣6的值是_________.
分析:通过韦达定理求出x₁+x₂与x₁x₂的值,将其整体代入到所求的代数式中求值。
四、检验某两数是否为已知一元二次方程的两根
例4 试检验4+3√2与4-3√2是不是方程x²-8x+4=0的两根。
分析本题可分别把两数代入检验,但计算量大,如果应用韦达定理,可只检验两数之和是否为8,两数之积是否为4,若都符合则为原方程两根,否则不是.
五、结合一元二次方程根的判别式判定一元二次方程实根的符号
例5 m为何值时,关于x的一元二次方程(m+3)x²-mx+1=0的两个根,
(1)均为正数; (2)一正一负; (3)均为负数,
分析本题用常规方法有一定难度.利用一元二次方程根的判别式与韦达定理相结合,比较容易确定两根的符号.。
韦达定理初三常考题型
韦达定理初三常考题型1. 引言韦达定理是初中数学中的一个重要定理,常常出现在初三的考试中。
它是一种用于解决三角形中的边长和角度关系的工具,通过利用正弦定理和余弦定理来推导出未知量之间的关系。
在本文中,我们将介绍韦达定理的基本概念、推导过程以及常见的应用题型。
2. 韦达定理的定义与推导2.1 定义韦达定理,也称作三角形法则,是指在任意三角形ABC中,设边长a、b、c分别对应角A、B、C,则有以下关系成立:a² = b² + c² - 2bc * cosA b² = a² + c² - 2ac * cosB c² = a² + b² - 2ab * cosC2.2 推导过程我们可以通过正弦定理和余弦定理来推导出韦达定理。
#### 正弦定理:在任意三角形ABC中,设边长a、b、c分别对应角A、B、C,则有以下关系成立:sinA/a = sinB/b = sinC/c余弦定理:在任意三角形ABC中,设边长a、b、c分别对应角A、B、C,则有以下关系成立:cosA = (b² + c² - a²) / 2bc cosB = (a² + c² - b²) / 2ac cosC = (a² + b² - c²) / 2ab通过将正弦定理和余弦定理结合起来,我们可以推导出韦达定理的三个公式。
3. 韦达定理的应用题型3.1 已知两边和夹角,求第三边这是韦达定理最常见的应用题型之一。
当我们已知一个三角形的两边长度和它们之间的夹角时,可以利用韦达定理来求解第三边的长度。
例如,已知一个三角形ABC,其中AB = 5cm,AC = 8cm,∠BAC = 60°,求BC的长度。
根据韦达定理公式b² = a² + c² - 2ac * cosB,代入已知条件计算得到:BC² = 5² + 8² - 2 * 5 * 8 * cos60° BC = √(25 + 64 -80cos60°) BC ≈ √(89 -40) BC ≈ √49 BC ≈ 7cm3.2 已知三边,求夹角另一个常见的应用题型是已知一个三角形的三边长度,求解它们之间的夹角。
韦达定理的应用专题(供初三复习用)
韦达定理的应用专题训练★热点专题诠释1.熟练掌握一元二次方程根与系数的关系(韦达定理及逆定理). 2.能够灵活运用一元二次方程根与系数关系确定字母系数的值;求关于两根的对称式的值;根据已知方程的根,构作根满足某些要求的新方程.★典型例题精讲考点1 求待定字母的值或范围【例1】关于x 的一元二次方程2210x x k +++=的实数解是1x 、2x .如果12121x x x x +-<-,且k 为整数,求k 的值.解:由韦达定理,得122x x +=-,121x x k =+. ∵12121x x x x +-<-,∴2(1)1k --+<-,∴2k >-. 又∵原方程有实数解,∴224(1)0k -+≥,0k ≤. ∴20k -<≤.而k 为整数,∴1,0k =-.【方法指导】当运用一元二次方程的根与系数的关系时,前提条件是方程有根,即判别式△≥0. 【例2】(2012·包头)关于x 的一元二次方程25(5)0x mx m -+-=的两个正实数根分别为1x 、2x ,且1227x x +=,则m 的值是( B )A .2B .6C .2或6D .7解:由韦达定理,得12125(5)x x mx x m +=⎧⎨=-⎩ ,消去m ,得121255250x x x x --+=,∴12(5)(5)0x x --= ,∴15x =或25x =.又∵1227x x +=,∴1253x x =⎧⎨=-⎩或1215x x =⎧⎨=⎩.又∵原方程有两个正实根,12125(5)0x x m x x m +=>⎧⎨=->⎩,∴5m >.∴126m x x =+=.【方法指导】对一元二次方程的根与系数的关系要善于从方程(组)的角度来把握.【例3】已知方程22(2)430x m x m ++++=,根据下列条件求m 的取值范围或值. (1)方程两根互为相反数; (2)方程有两个负根;(3)方程有一个正根,一个负根.解:(1)2(2)0430m m -+=⎧⎨+≤⎩,∴2m =-.(2)2[2(2)]4(43)02(2)0430m m m m ⎧+-+≥⎪-+<⎨⎪+>⎩,∴34m >-.(3)430m +<,∴34m <-. 【方法指导】一元二次方程:有两个正根:△≥0且120x x +>,120x x >;有两个负根:△≥0且120x x +<,120x x >; 一正一负根:120x x <;两根互为相反数:120x x +=,120x x ≤; 两根互为倒数:△≥0且121x x =.考点2 求两根的对称式的值【例4】设1x 、2x 是方程2310x x +-=的两个实数根,求下列代数式的值:(1)2221x x +; (2)2112x x x x +; (3)212()x x - 解:由韦达定理,得123x x +=-,121x x =-.(1)2212x x +=21212()2x x x x +-=11(2)2112x x x x +=2121212()2x x x x x x +-=-11 (3)212()x x -=21212()4x x x x +-=13【方法指导】只要代数式符合两根的对称式,经过适当的变形可得到只含“两根和”、“两根积”的代数式,代入求值即可.考点3 利用根与系数的关系及根的定义求代数式的值【例5】已知m 、n 是一元二次方程2210x x --=的两个实数根.求下列代数式的值. (1)222441m n n +--; (2)35m n +.解:(1)∵m 、n 是一元二次方程2210x x --=的两个实数根,∴2m n +=,1mn =-,221n n -=. ∴222441m n n +--=2222()2(2)1m n n n ++-- =222[()2]2(2)1m n mn n n +-+-- =2(42)211++⨯-=13.(2)∵m 、n 是一元二次方程2210x x --=的两个实数根,∴2m n +=,221m m =+.∴35m n +=(21)5m m n ++=225m m n ++ =2(21)5m m n +++=5()2m n ++=522⨯+=10. 【方法指导】此类代数式不属于对称式,仅仅用根与系数的关系是不够的.常常需要结合根的定义,将式中的高次降低,直至出现对称式,再利用根与系数的关系求值.考点4 构造一元二次方程求值【例6】 (1)已知21550a a --=,21550b b --=,求a bb a+的值; (2) 已知22510m m --=,21520nn +-=,且m n ≠,求11m n+的值.解:(1)当a b =时,2a bb a+=; 当a b ≠时,由已知可把a 、b 看作是一元二次方程21550x x --=的两根.∴15a b +=,5ab =-.∴222()2a b a b a b ab b a ab ab ++-+===2152(5)5-⨯--=47-. (2)由21520n n +-=,得22510n n --=,而22510m m --=,m n ≠,∴可把m 、n 看作是一元二次方程22510x x --=的两根.∴52m n +=,12mn =-. ∴11m n +=m nmn+=5-. 【方法指导】构造一元二次方程的依据是方程根的定义,能用此法解题,必须是题目中两个方程的形式相同,或经过适当的变形后可变成形式相同的两个方程,便可利用根与系数的关系.考点5 韦达定理与抛物线的结合 【例7】若1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的两个根,则方程的两个根1x 、2x 和系数a 、b 、c 有如下关系:12b x x a +=-,12cx x a=.把它称为一元二次方程根与系数关系定理.如果设二次函数2(0)y ax bx c a =++≠的图象与x 轴的两个交点A (1x ,0),B (2x ,0).利用根与系数关系定理可以得到A 、B 两个交点间的距离为:AB=12||x x -=21212()4x x x x +-=24()bc a a--=24||b aca -.参考以上定理和结论,解答下列问题:设二次函数2(0)y ax bx c a =++>的图象与x 轴的两个交点A (1x ,0),B (2x ,0),抛物线的顶点为C ,显然△ABC 为等腰三角形.(1)当△ABC 为直角三角形时,求24b ac -的值; (2)当△ABC 为等边三角形时,求24b ac -的值.解:(1)当△ABC 为直角三角形时,过C 作CE ⊥AB 于E ,则AB =2CE .∵抛物线与x 轴有两个交点,∴240b ac ∆=->,则22|4|4ac b b ac -=-.∵0a >,∴2244b ac b acAB --==又∵2244||44ac b b acCE a a--==, ∴224424b ac b aca--=⨯, ∴22442b ac b ac --,∴222(4)44b ac b ac --=,而240b ac ->,∴244b ac -=.(2)当△ABC 为等边三角形时,由(1)知3CE AB =, ∴224344b ac b ac a --=240b ac ->, ∴2412b ac -=.★解题方法点睛一元二次方程根与系数关系作为升学考试的考点之一,在试卷中频频出现,只要同学们掌握了根与系数的关系的常见应用,就能化难为易迅速找到解题的方法.运用中: 1.要善于运用整体思想求两根的对称式的值; 2.已知两根的有关代数式的值求待定字母的值时,一定别忘了判别式的限制作用; 3.要注意从方程(组)的角度看待韦达定理.4.注意由此及彼的思维方法的运用.★中考真题精练1.(2014·玉林)1x 、2x 是关于x 的一元二次方程220x mx m -+-=的两个实数根,是否存在实数m 使12110x x +=成立?则正确的结论是( A ) A .0m =时成立 B . 2m =时成立 C .0m =或2时成立 D .不存在2.(2014·呼和浩特)已知函数1||y x =的图象在第一象限的一支曲线上有一点A (a ,c ),点B (b ,c +1)在该函数图象的另外一支上,则关于一元二次方程20ax bx c ++=的两根1x 、2x 判断正确的是( C ) A .121x x +>,120x x > B .120x x +<,120x x > C .1201x x <+<,120x x >D .12x x +与12x x 的符号都不能确定 3.(2015·泸州)设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 27 .4.(2015·江西)已知一元二次方程2430x x --=的两根是m ,n ,则22m mn n -+= 25 .5.(2014·德州)方程222210x kx k k ++-+=的两个实数根1x 、2x 满足22124x x +=,则k 的值为 1 .6.(2014·济宁)若一元二次方程2(0)ax b ab =>的两个根分别是1m +与24m -,则ba= 4 . 7.已知关于x 的一元二次方程2(3)10x m x m ++++=.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若1x 、2x 是原方程的两根,且12||22x x -=,求m 的值.(1)证明:△=2(3)4(1)m m +-+=225m m ++ =2(1)4m ++.无论m 取何值,2(1)440m ++≥>,即0∆>. ∴无论m 取何值,原方程总有两个不相等的实数根. (2)由韦达定理,得12(3)x x m +=-+,121x x m =+, ∴2121212||()4x x x x x x -=+-=2[(3)]4(1)m m -+-+=225m m ++,而12||22x x -=,∴22522m m ++=,即2230m m +-=, ∴1m =或3m =-.8.已知关于x 的方程222(1)0x k x k --+=有两个实数根1x 、2x .(1)求k 的取值范围;(2)若1212||1x x x x +=-,求k 的值. 解:(1)由已知,得0∆≥,即22[2(1)]40k k ---≥,∴12k ≤. (2)∵12k ≤,∴122(1)10x x k +=-≤-<,∴1212||()2(1)x x x x k +=-+=--.而212x x k =,1212||1x x x x +=-, ∴2221k k -+=-,即2230k k +-= , ∴1k =或3k =-.而12k ≤,∴3k =-. 9.请阅读下列材料:问题:已知方程210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x = ,∴2y x =. 把2y x =代入已知方程,得2()1022y y+-=,化简,得2240y y +-=.故所求方程为2240y y +-=.这种利用方程根的代换求新方程的方法,我们称为“换根法”. 请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式): (1)已知方程220x x +-=,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为: ;(2)己知关于x 的一元二次方程20(0)ax bx c a ++=≠有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数. 解:(1)设所求方程的根为y ,则y x =-,∴x y =-. 把x y =-代入已知方程,得220y y --=,∴所求方程为220y y --=;(2)设所求方程的根为y ,则1y x=(0x ≠), ∴1x y=(0y ≠ ) 把1x y =代入方程20ax bx c ++=,得20a bc y y++=,∴20cy by a ++=.若0c =,有20ax bx +=,∴方程20ax bx c ++=有一个根为0,不符合题意,∴0c ≠.∴所求方程为20cy by a ++=(0c ≠). 10.(2014•孝感)已知关于x的方程22(23)10x k x k --++=有两个不相等的实数根1x 、2x .(1)求k 的取值范围;(2)试说明10x <,20x <;(3)若抛物线22(23)1y x k x k =--++与x 轴交于A 、B 两点,点A 、点B 到原点的距离分别为OA 、OB ,且23OA OB OA OB +=⋅-,求k 的值. 解:(1)由题意,得0∆>,即22[(23)]4(1)0k k ---+> ,解得512k <. (2)∵512k <,∴12230x x k +=-<, 而21210x x k =+>,∴10x <,20x <.(3)由题意,不妨设A (1x ,0),B (2x ,0). ∴OA +OB =1212|||()(23)x x x x k +=-+=--,21212||||1OA OB x x x x k ⋅===+.∵23OA OB OA OB +=⋅-,∴2(23)2(1)3k k --=+-,解得1k =或2k =-.而512k <,∴2k =-. ★课后巩固提高1.已知方程23(4)10x m x m ++++=的两根互为相反数,则m = -42.关于x 的方程222(1)0x m x m +++=的两根互为倒数,则m = 1 .已知12x x ≠,且满足211320x x +-=,222320x x +-=,则12(1)(1)x x -- = 2 .3.(2014·呼和浩特)已知m ,n 是方程2250x x +-=的两个实数根,则23m mn m n -++= 8 . 4.(2015·荆门)已知关于x 的一元二次方程2(3)10x m x m ++++=的两个实数根为1x ,2x ,若22124x x +=,则m 的值为 -1或-3 .5.(2014•襄阳)若正数a 是一元二次方程250x x m -+=的一个根,a -是一元二次方程250x x m +-=的一个根,则a的值是 5 .6.设2210a a +-=,42210b b --=,且210ab -≠,则22531()ab b a a+-+= -32 .7.(2014·扬州)已知a 、b 是方程230x x --=的两个根,则代数式32223115a b a a b ++--+的值为 23 .8.已知方程230x x k ++=的两根之差为5,则k = -4 .9.已知抛物线2y x px q =++与x 轴交于A 、B 两点,且过点(-1,-1),设线段AB 的长为d ,当p = 2 时,2d 取得最小值,最小值为 4 .10.已知1x 、2x 是关于x 的方程22(21)(1)0x m x m ++++=的两个实数根.(1)用含m 的代数式表示2212x x +; (2)当221215x x +=时,求m 的值.解:由韦达定理,得12(21)x x m +=-+,2121x x m =+. ∴2212x x +=21212()2x x x x +-=22[(21)]2(1)m m -+-+ =2241m m +-.(2)由(1)得,224115m m +-=,解得14m =-,22m =. 当4m =-时,原方程无实根;当2m =时,原方程有实根. ∴2m =.11.(2014·鄂州)一元二次方程2220mx mx m -+-=. (1)若方程有两实数根,求m 的范围.(2)设方程两实数根为1x 、2x ,且12||1x x -=,求m . 12.已知方程23730x x -+=的两根1x 、2x (12x x >).求下列代数式的值. (1(2)2212x x -.解:由韦达定理,得1273x x +=,121x x =. (1. (2)∵12x x >,∴120x x ->.∴12x x -=∴2212x x -=1212()()x x x x +-=73=13.(2015·湖北孝感)已知关于x 的一元二次方程:2(3)0x m x m ---=.(1)试判断原方程根的情况;(2)若抛物线2(3)y x m x m =---与x轴交于1(,0)A x ,2(,0)B x 两点,则A ,B 两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由. 解:(1)22[(3)]4()29m m m m ∆=----=-+ =2(1)8m -+ ∵2(1)m -≥0,∴2(1)80m ∆=-+> ∴原方程有两个不相等的实数根. (2)存在.由题意知1x 、2x 是原方程的两根. ∴12123,x x m x x m +=-=- ∵12||AB x x =-∴222121212()()4AB x x x x x x =-=+- 22(3)4()(1)8m m m =---=-+ ∴当1m =时,2AB 有最小值8 ∴AB有最小值,即AB =14.(2014·荆门)已知函数2(31)21y ax a x a =-+++(a 为常数).(1)若该函数图象与坐标轴只有两个交点,求a 的值; (2)若该函数图象是开口向上的抛物线,与x 轴相交于点A (1x ,0),B (2x ,0)两点,与y 轴相交于点C ,且212x x -=. ①求抛物线的解析式;② 作点A 关于y 轴的对称点D ,连结BC 、DC ,求sin DCB ∠的值.解:(1)①当a =0时,1y x =-+,其图象与坐标轴有两个交点(0,1),(1,0);②当a ≠0且图象过原点时,210a +=,∴12a =-,有两个交点(0,0),(1,0);③当a ≠0且图象与x 轴只有一个交点时,令y =0,则有0∆=,即2[(31)]4(21)0a a a -+-+=.解得a =-1,有两个交点(0,-1),(1,0);综上:a =0或12-或1-时,函数图象与坐标轴有两个交点. (2)①由题意令y =0时,123a x x a ++=,1221a x x a+=.∵212x x -=,∴221()4x x -=,∴21212()44x x x x +-= ,则(24(21)31()4a a a a ++-=,解得113a =-,21a =由题意,得00a >⎧⎨∆>⎩,即20[(31)]4(21)0a a a a >⎧⎨-+-+>⎩, ∴13a =-应舍去.1a =符合题意. ∴抛物线的解析式为243y x x =-+.②令y =0得2430x x -+=,解得1x =或3x =.w W∴A (1,0),B (3,0).由已知可得,D (-1,0),C (0,3). ∴OB =OC =3,OD =1,BD =4. 如图,过D 作DE ⊥BC 于E ,则有∴sin 45DE BD =⋅︒=而CD∴在Rt △CDE 中,sin ∠DCB =DE CD.。
浅谈韦达定理在解题中的应用
浅谈韦达定理在解题中的应用韦达定理是反映一元二次方程根与系数关系的重要定理.纵观近年各省、市的中考(竞赛)试题可以发现,关于涉及此定理的题目屡见不鲜,且条件隐蔽.在证(解)题时,学生往往因未看出题目中所隐含的韦达定理的条件而导致思路闭塞,或解法呆板,过程繁琐冗长.下面举例谈谈韦达定理在解题中的应用,供大家参考.一、直接应用韦达定理若已知条件或待证结论中含有a+b和a·b形式的式子,可考虑直接应用韦达定理.例1 在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,D是AB边上一点,且BC=DC,设AD=d.求证:(1)c+d=2bcosA;(2)c·d=b2-a2.分析:观察所要证明的结论,自然可联想到韦达定理,从而构造一元二次方程进行证明.证明:如图,在△ABC和△ADC中,由余弦定理,有a2=b2+c2-2bccosA;a2=b2+d2-2bdcosA(CD=BC=a).∴ c2-2bccosA+b2-a2=0,d2-2bdcosA+b2-a2=0.于是,c、d是方程x2-2bxcosA+b2-a2=0的两个根.由韦达定理,有c+d=2bcosA,c·d=b2-a2.例2 已知a+a2-1=0,b+b2-1=0,a≠b,求ab+a+b的值.分析:显然已知二式具有共同的形式:x2+x-1=0.于是a和b可视为该一元二次方程的两个根.再观察待求式的结构,容易想到直接应用韦达定理求解.解:由已知可构造一个一元二次方程x2+x-1=0,其二根为a、b.由韦达定理,得a+b=-1,a·b=-1.故ab+a+b=-2.二、先恒等变形,再应用韦达定理若已知条件或待证结论,经过恒等变形或换元等方法,构造出形如a+b、a·b 形式的式子,则可考虑应用韦达定理.例3若实数x、y、z满足x=6-y,z2=xy-9.求证:x=y.证明:将已知二式变形为x+y=6,xy=z2+9.由韦达定理知x、y是方程u2-6u+(z2+9)=0的两个根.∵ x、y是实数,∴△=36-4z2-36≥0.则z2≤0,又∵z为实数,∴z2=0,即△=0.于是,方程u2-6u+(z2+9)=0有等根,故x=y.由已知二式,易知x、y是t2+3t-8=0的两个根,由韦达定理三、已知一元二次方程两根的关系(或系数关系)求系数关系(或求两根的关系),可考虑用韦达定理例5 已知方程x2+px+q=0的二根之比为1∶2,方程的判别式的值为1.求p与q之值,解此方程.解:设x2+px+q=0的两根为a、2a,则由韦达定理,有a+2a=-P,①a·2a=q,②P2-4q=1.③把①、②代入③,得(-3a)2-4×2a2=1,即9a2-8a2=1,于是a=±1.∴方程为x2-3x+2=0或x2+3x+2=0.解得x1=1,x2=2,或x1=-1,x2=-2.例6 设方程x2+px+q=0的两根之差等于方程x2+qx+p=0的两根之差,求证:p=q或p+q=-4.证明:设方程x2+px+q=0的两根为α、β,x2+qx+P=0的两根为α'、β'.由题意知α-β=α'-β',故有α2-2αβ+β2=α'2-2α'β'+β'2.从而有(α+β)2-4αβ=(α'+β')2-4α'β'.①把②代入①,有p2-4q=q2-4p,即p2-q2+4p-4q=0,即(p+q)(p-q)+4(p -q)=0,即(p-q)(p+q+4)=0.故p-q=0或p+q+4=0,即p=q或p+q=-4.四、关于两个一元二次方程有公共根的题目,可考虑用韦达定理例7 m为问值时,方程x2+mx-3=0与方程x2-4x-(m-1)=0有一个公共根?并求出这个公共根.解:设公共根为α,易知,原方程x2+mx-3=0的两根为α、-m-α;x2-4x-(m-1)=0的两根为α、4-α.由韦达定理,得α(m+α)=3,①α(4-α)=-(m-1).②由②得m=1-4α+α2,③把③代入①得α3-3α2+α-3=0,即(α-3)(α2+1)=0.∵α2+1>0,∴α-3=0即α=3.把α=3代入③,得m=-2.故当m=-2时,两个已知方程有一个公共根,这个公共根为3.。
韦达定理及运用
韦达定理及运用韦达定理是法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。
历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
由代数基本定理可推得:任何一元n 次方程在复数集中必有根。
因此,该方程的左端可以在复数范围内分解成一次因式的乘积:其中是该方程的个根。
两端比较系数即得韦达定理。
韦达定理在方程论中有着广泛的应用。
韦达定理应用中的一个技巧在解有关一元二次方程整数根问题时,若将韦达定理与分解式αβ±(α+β)+1=(α±1)(β±1)结合起来,往往解法新颖、巧妙、别具一格.例说如下.例1 已知p+q=198,求方程x2+px+q=0的整数根.(94祖冲之杯数学邀请赛试题) 解:设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得x1+x2=-p,x1x2=q.于是x1x2-(x1+x2)=p+q=198,即x1x2-x1-x2+1=199.∴(x1-1)(x2-1)=199.注意到x1-1、x2-1均为整数,解得x1=2,x2=200;x1=-198,x2=0.例2 已知关于x的方程x2-(12-m)x+m-1=0的两个根都是正整数,求m的值.解:设方程的两个正整数根为x1、x2,且不妨设x1≤x2.由韦达定理得x1+x2=12-m,x1x2=m-1.于是x1x2+x1+x2=11,即(x1+1)(x2+1)=12.∵x1、x2为正整数,解得x1=1,x2=5;x1=2,x2=3.故有m=6或7.例3 求实数k,使得方程kx2+(k+1)x+(k-1)=0的根都是整数.解:若k=0,得x=1,即k=0符合要求.若k≠0,设二次方程的两个整数根为x1、x2,由韦达定理得∴x1x2-x1-x2=2,(x1-1)(x2-1)=3.因为x1-1、x2-1均为整数,所以例4 已知二次函数y=-x2+px+q的图像与x轴交于(α,0)、(β,0)两点,且α>1>β,求证:p+q>1.(97四川省初中数学竞赛试题)证明:由题意,可知方程-x2+px+q=0的两根为α、β.由韦达定理得α+β=p,αβ=-q.于是p+q=α+β-αβ,=-(αβ-α-β+1)+1=-(α-1)(β-1)+1>1(因α>1>β).。
韦达定理初三常考题型
韦达定理初三常考题型
【原创版】
目录
1.韦达定理的概述
2.初三阶段韦达定理的常考题型
3.应对韦达定理题型的解题技巧
4.总结
正文
【1.韦达定理的概述】
韦达定理,又称 Vieta 定理,是由法国数学家弗朗索瓦·韦达(Franois Viète)提出的一种有关多项式的定理。
该定理主要描述了多项式的系数与其根之间的关系。
简单来说,韦达定理就是一个关于多项式方程根与系数的性质定理。
【2.初三阶段韦达定理的常考题型】
在初三数学阶段,韦达定理常常出现在各类题型中,主要包括以下几种:
1) 求解多项式方程的根
2) 根据多项式的根与系数关系,判断多项式的性质
3) 利用韦达定理解决有关多项式的最大值、最小值问题
4) 结合其他数学知识点,如代数余子式、韦达定理与行列式的关系等
【3.应对韦达定理题型的解题技巧】
面对韦达定理相关题型,同学们可以运用以下技巧来解题:
1) 熟练掌握韦达定理的基本内容,了解多项式系数与根之间的关系
2) 学会利用韦达定理快速求解多项式方程的根
3) 对于涉及多项式性质判断的题目,要善于运用韦达定理进行分析
4) 对于求解多项式的最值问题,可以利用韦达定理将问题转化为求解线性方程组
【4.总结】
韦达定理是初三数学阶段的一个重要知识点,同学们需要掌握其基本内容和应用技巧。
中考数学复习韦达定理应用复习[人教版]
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a
,
如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则x1、x2为根的一元二次方程 (二次项系数为1)是
x2-( x1+x2 )x+ x1·x2 =0.
如果方程ax2+bx+c=0(a≠0)的两根 为x1、x2,则 ax2+bx+c可因式分解为
a(x- x1 )(x- x2).
1.设x1、x2是方程2x2-6x+3=0的根, 则
(1) x2 x1 x1 x2
(2)(x1 2)(x2 2)
(3) x1 x2
(4).x1 x2
书〉益处:~益|无~于事(对事情没有益处)。 形容非常高兴)。后代多有增建或整修。 【标致】biāo?花淡紫色,②副表示连续地:~努力,如俄语 中的P就是舌尖颤音。【才刚】cáiɡānɡ〈方〉名刚才:他~还在这里,【 】(饆)bì[ ?【惨败】cǎnbài动惨重失败:敌军~◇客队以0比9~。
5.已知一元二次方程x2+mx-
m-2=0;当m
时,有两
个互为相反数的实根;当m
时,有一个根为零.
2.若方程x2-3x-2=0的两根为x1、
x2;则
①以 1 , 1 为两根的方程
为
x。1 x2
②以- x1、-x2 为两根的方程
为
。
③以x12、x2 2为两根的方程
为
。
3.分解因式; ①-3m3+4m2+5m ②3(x+y)2-4x(x+y)-x2
韦达定理的应用及推广
韦达定理的应用及推广 一、 韦达定理概述根据记载,在韦达那个年代,有一个角落们的比例是数学家提出了一个45次方程各国数学家挑战各国数学家挑战。
法国国王便将这个充满挑战的问题交给了韦达,韦达当即就得出了一个正根,再由他研究了一晚上时间就得出了23个正根(另外的22个负根被他舍了),消息传开,让当时整个数学界都为之震惊。
在他阶梯式发现方程的根似乎与某些系数有关联,因此他就对此进行了一系列的研究,在不久以后发现了伟大的韦达定理。
韦达定理:在一元二次方程ax 2+bx+c=0(a ≠0)中,当∆≥b 2−4ac 时,则原方程的两根满足以下规律{x 1+x 2=−bax 1x 2=ca 韦达定理的逆定理:如果x 1,x 2满足{x 1+x 2=−ba x 1x 2=c a,那么x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两个根 二、 韦达定理的证明 1.求根公式法:根据将ax 2+bx+c=0(a ≠0)配方得到的x 1,2=−b±√b 2−4ac2a可得x 1+x 2=−b +√b 2−4ac 2a +−b −√b 2−4ac 2a =−2b 2a =−bax 1×x 2=(−b +√b 2−4ac 2a ×−b −√b 2−4ac 2a )=b 2−(b 2−4ac)4a 2=4ac 4a 2=ca2. 同解方程法 : 若ax 2+bx+c=0(a ≠0)的两根为x 1,x 2,那么知道ax 2+bx+c=a(x −x 1)(x −x 2)左边=ax 2−ax ×x 1−ax ×x 2+ax 1x 2=ax 2−a(x 1+x 2)x +ax 1x 2 比较系数知:−a (x 1+x 2)=b ax 1x 2=c ⟹ x 1+ x 2=−ba ,x 1×x 2=c a与韦达定理有关的推论:|x 1−x 2|=√b 2−4ac |a|三、 韦达定理的应用1. 已知A 、B 为一元二次方程ax 2+bx+c=0的两根A ≠B (1)求A 2+B 2,A 3+B 3,1A2+1B 2,A −B(2)求以1A、1B 为根的方程和以(A 2+A +1)、(B 2+B +1)为根的方程解(1):由韦达定理知{A +B =−b aA ×B =c a∴A 2+B 2=(A +B)2−2AB =b 2a2−2c a=b 2−2ac a 2A 3+B 3=(A +B)3−3AB (A +B )=−b 3a 3+3bc a 2=−b 3+3abca 31A 2+1B 2=A 2+B 2A 2B 2=b 2−2ac a 2÷c 2a 2=b 2−2acc 2A −B =|√(A −B )2|=|√A 2+B 2−2AB|=|√b 2−2ac a 2−2ca|=√b 2−4ac a 2=√b 2−4ac|a |解(2):由韦达定理知{A +B =−ba A ×B =c a⟹ A 2+A +1+B 2+B +1=b 2−2ac a 2−ba+2=b 2−2ac−ab+2a 2a 2(A 2+A +1)(B 2+B +1)=c 2a 2+ac −bc a 2−b a +1+b 2−2ac a 2=a 2+b 2+c 2−ab −bc −caa 2∴此方程为a 2x 2−(b 2+2a 2−2ac −ab )x +(a 2+b 2+c 2−ab −bc −ca)=02. 证明恒等式:x 1n+1+x 2n+1=(x 1+x 2)(x 1n +x 2n )−x 1x 2(x 1n−1+x 2n−2) 证明:设x 1+x 2=A x 1x 2=B ,则x 1、x 2为方程x 2+Ax+B=0的两根∴{x 12=Ax 1−B x 22=Ax 2−B ⟹{x 1n+1=Ax 1n −Bx 1n−1x 2n+1=Ax 2n −Bx 2n−1⟹x 1n+1+x 2n+1=A (x 1n +x 1n)−B(x 1n−1+x 2n−1) ⟹x 1n+1+x 2n+1=(x 1+x 2)(x 1n +x 1n)− x 1x 2(x 1n−1+x 2n−1)3. 已知A 、B 是方程4ax 2−4ax +a +4=0的两个实数根○1适当选取实数a 的值,问能否使(A −2B)(B −2A)的值等于54 ○2求使A 2B2+B 2A 2的值为整数的整数a解○1:此必为一元二次方程,那么a ≠0 △=16a 2-16a(a+4)=-64a ≥0⟹a ≤0由韦达定理知{A +B =−1A ×B =a+44a 若(A −2B )(B −2A )= 54 ⟹ 9AB −2(A +B )2=54⟹9×a+44a−2=54⟹ 52a =36a +36⟹ a =9∵a ≤0又∵a =9>0∴无满足条件的a解○2 原式=(A+B )3−3AB (A+B )AB=1a+44a−3=4a a+4−3a+12a+4=1−16a+4所以a+4被16整除 所以a+4=±1、±2、±4、±8、±16且a ≤0所以满足条件的a=-3,-5,-2,-6,-8,-12,-204. 求证:不存在整数a 、b 、c 使得方程ax 2+bx +c =0与方程(a +1)x 2+(b +1)x +(c +1)=0都有两个整数根。
初中数学韦达定理
初中数学韦达定理韦达定理是初中数学中的重要内容之一,它被广泛应用于代数求解和几何问题中。
韦达定理又称为韦达三角法则,它的基本思想是通过构造一个带有重心的三角形,利用各边与重心的连线之间的比例关系来求解未知量。
本文将详细介绍韦达定理的定义、原理以及应用实例。
一、定义和原理韦达定理是指在一个三角形中,确定三个顶点所对应边的长度和重心之间的关系。
其中,重心是指三角形三条中线的交点,它将全部三条中线按照长度等分。
韦达定理表示如下:设在一个三角形ABC中,AD为三角形的一条中线,将其分为两条相等的线段,由D可以构造三条平行于三边的线段BE、CF和AG,那么有以下关系成立:AB + AC = 2ADBC + BA = 2BECA + CB = 2CF二、韦达定理的证明我们来证明一下韦达定理。
设三角形ABC的重心为G,连接GD,并且延长至与AB相交于E,与AC相交于F。
由于G是三条中线的交点,所以AG=2GD。
同样的,通过类似的角度对应关系可以得到BE=2AB、CF=2AC。
根据平行线原理,我们知道三角形AGB与三角形GCF是相似的,所以可以写出一个比例等式:AB/AG = GC/CF将AG和CF的值代入后,我们得到:AB/2GD = GC/2AC通过移项可以得到:AC/GD = GC/AB同理,可以得到:AB/GD = GB/AC将这两个等式相加,我们得到:AC/GD + AB/GD = GC/AB + GB/AC化简后得到:(AB + AC)/GD = (GC + GB)/AB再次移项可得:AB + AC = 2GD同样的方法可以得到BC + AB = 2BE和CA + CB = 2CF,证明韦达定理成立。
三、韦达定理的应用实例韦达定理在代数求解和几何问题中具有广泛的应用。
下面给出几个具体的应用实例。
1. 已知三边长求重心若已知一个三角形的三条边的长度为a、b、c,可以利用韦达定理求解重心的坐标。
设重心的坐标为(x, y),我们可以得到以下关系:x = (ax1 + bx2 + cx3)/(a + b + c)y = (ay1 + by2 + cy3)/(a + b + c)其中,(x1, y1)、(x2, y2)、(x3, y3)分别是三个顶点的坐标。
中考数学复习韦达定理应用复习[人教版]
韦达定理及 其应用(一)
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
3;q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
以x1、x2为根的一元二次方程 (二次项系数为1)是
x2-( x1+x2 )x+ x1·x2 =0.
4.如果2-√3是方程2x2-8x+c=0的一 个根,则方程的另一个根为 .
5.已知一元二次方程x2+mx-
m-2=0;当m
时,有两
个互为相反数的实根;当m
时,有一个根为零.
6.若关于x的方程x2+(2k+1)x+k2-
2=0的两根的平方和是11,则
k=
.
7.若方程x2+2x+m=0的两根之差 为√6,则m= .
8.若2x2-ax+a-1可分解成两个相等
的一次因式,则a的取值
是
.
9.当m为何值时,方程 3x2+(m+1)x+m-4=0有两个负 数根.
10.*已知实数a、b满足2a2-a = 2b2-b=2,
求
a b
+
b a
的值.
11.已知一元二次方程ax2-√2 bx+c=0的两个根满足|x1x2|=2-√2,a、b、c分别是 △ABC中∠A、∠B、∠C 的对边,并且c=√2a,试判断 △ABC是什么三角形?并证 明.
;https:///index.html 斑马缝
2.若方程x2-3x-2=0的两根为x1、
专题4:韦达定理应用探讨
【2013年中考攻略】专题4:韦达定理应用探讨锦元数学工作室 编辑韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。
韦达第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。
韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。
人们为了纪念他在代数学上的功绩,称他为“代数学之父”。
韦达定理说的是:设一元二次方程()2ax +bx+c=0a 0≠有二实数根12x x ,,则1212bc x +x =x x =a a-⋅,。
这两个式子反映了一元二次方程的两根之积与两根之和同系数a ,b ,c 的关系。
其逆命题:如果12x x ,满足1212b cx +x =x x =a a-⋅,,那么12x x ,是一元二次方程()2ax +bx+c=0a 0≠的两个根也成立。
韦达定理的应用有一个重要前提,就是一元二次方程必须有解,即根的判别式2=b 4ac 0∆-≥。
韦达定理及其逆定理作为一元二次方程的重要理论在初中数学教学和中考中有着广泛的应用。
锦元数学工作室将其应用归纳为:①不解方程求方程的两根和与两根积; ②求对称代数式的值; ③构造一元二次方程; ④求方程中待定系数的值; ⑤在平面几何中的应用;⑥在二次函数中的应用。
下面通过近年全国各地中考的实例探讨其应用。
一、不解方程求方程的两根和与两根积:已知一元二次方程,可以直接根据韦达定理求得两根和与两根积。
典型例题:例1:(2012湖北武汉3分)若x 1、x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是【 】A .-2B .2C .3D .1例2:(2001湖北武汉3分)若x 1、x 2是一元二次方程x 2+4x +3=0的两个根,则x 1·x 2的值是【 】A.4.B.3.C.-4.D.-3.例3:(2012山东烟台3分)下列一元二次方程两实数根和为﹣4的是【 】 A .x 2+2x ﹣4=0 B .x 2﹣4x+4=0 C .x 2+4x+10=0 D .x 2+4x ﹣5=0例4:(2012广西来宾3分)已知关于x 的一元二次方程x 2+x+m=0的一个实数根为1,那么它的另一个实数根是【 】A .-2B .0C .1D .2练习题:1. (2007重庆市3分)已知一元二次方程22x 3x 10--=的两根为x 1、x 2,则x 1+x 2= ▲ 。
2013年中考数学专题复习题4韦达定理应用探讨
例 4:(2012 湖北鄂州 3 分)设 x1 、x 2 是一元二次方程
2
x+
5x- 3=0
的两个实根,
且
2 x 1 (x
2 2
6x 2
3)
a
谓对称式,即若将代数式中的任意两个字母交换,代数式不变(
f x , y =f y , x ),则称这个代数式为
完全对称式,如
2
x +y
2,
1
+
1
等。扩展后,可以视
x
y 中 x 与 y 对称。
xy
典型例题:
2
2
2
例 1: ( 2012 四川攀枝花 3 分) 已知一元二次方程: x ﹣ 3x﹣ 1=0 的两个根分别是 x1 、 x 2,则 x1 x2+x1x2 的
次方程根与系数关系的结论称为“韦达定理”) 。人们为了纪念他在代数学上的功绩,称他为“代数学之
父”。
韦达定理说的是: 设一元二次方程
2
ax +bx+c=0
a
0 有二实数根 x 1, x 2 ,则 x 1 +x2 =
b
c
, 1x 2x = 。
a
a
这两个式子反映了一元二次方程的两根之积与两根之和同系数
a,b,c 的关系。其逆命题:如果 x 1, x 2 满
B.
1
C.
1或 1
D.
2
7. ( 2011 贵州黔东南
4 分) 若 a 、 b 是一元二次方程
浅谈韦达定理的应用
浅谈韦达定理的应用【摘要】:一元二次方程根与系数的关系(韦达定理)在解题中的运用。
【关键词】:一元二次方程 韦达定理 运用由一元二次方程)04,0(022≥-≠=++ac b a c bx ax 的求根公式可以得到aac b b x a ac b b x 24,242221---=-+-=,此时a c x x a b x x =⋅-=+2121,。
这个结论就是韦达定理。
它揭示了一元二次方程根与系数的关系,应用十分广泛,我们在学习中应该掌握定理的本质意义。
一、根据题目条件,直接运用定理若问题要求一元二次方程字母系数的值,或求与一元二次方程的根的有关的代数式的值,或求作符合条件的一元二次方程等,可直接应用韦达定理。
例1 已知方程0652=-+kx x 的一根是2,求它的另一根及k 的值。
解:设方程的另一个根为x ,由韦达定理得:⎪⎪⎩⎪⎪⎨⎧-=-=+)2.(....................562)1.......(..........22x k x 由方程(2)得:)3(. (5)3-=x , 把(3)代入方程(1)得:514-=k 。
例2 求作一个一元二次方程,使它的两根分别是方程01322=--x x 的各根的倒数。
解:设方程01322=--x x 的两根为21,x x 则有:21,232121-=⋅=+x x x x 。
设所求方程为02=++q px x ,由题意知,该方程的两根分别为211,1x x 。
由韦达定理得: p x x x x p x x -=⋅+-=+21212111,即, 3=∴p 。
q x x =⋅2111,即q x x =211 2-=∴q 。
因此所求作的方程为0232=-+x x 。
例 3 设z y x 、、为实数且)0(22222>=++=++a a z y x a z y x ,,求证:z y x 、、都不能为负值且不大于a 32。
解:此题的证法很多,运用韦达定理也很巧妙,可把三个未知数中其中的一个当成常数如下:z a y x a z y x -=+∴=++, , 又xy z a z a xy z a y xy x a z y x 22)(222222222222222+-=-+-=++∴=++,, , 2)2(a z xy -=∴,利用韦达定理把y x ,看成关于m 的一元二次方程的两根,可作出方程,0)2()(22=-+--a z m z a m y x 、 为实数,0)32()2(4)(022≥-=---=∆≥∆∴z a z a z z a ,即 ⎩⎨⎧≤-<0320)1(z a z 可求出0032><a a 与题设矛盾。