LM331应用手册2

合集下载

(频压转换电路)lm331应用

(频压转换电路)lm331应用

5.1 频率/电压变换器* 一、概述本课题要求熟悉集成频率——电压变换器LM331的主要性能和一种应用; 熟练掌握运算放大器基本电路的原理,并掌握它们的设计、测量和调整方法。

二、技术要求当正弦波信号的频率f i 在200Hz~2kHz 范围内变化时,对应输出的直流电压V i 在1~5V 范围内线形变化;正弦波信号源采用函数波形发生器的输出(见课题二图5-2-3); 采用±12V 电源供电. 三、设计过程 1.方案选择可供选择的方案有两种,它们是:○1用通用型运算放大器构成微分器,其输出与输入的正弦信号频率成正比. ○2直接应用F/V 变换器LM331,其输出与输入的脉冲信号重复频率成正比. 因为上述第○2种方案的性能价格比较高,故本课题用LM331实现. LM331的简要工作原理LM331的管脚排列和主要性能见附录LM331既可用作电压――频率转换(VFC ) 可用作频率――电压转换(FVC )LM331用作FVC 时的原理框如图5-1-1所示.R +V CC此时,○1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○7脚接比较电平. 工作过程(结合看图5-1-2所示的波形)如下:2/3V CCv ctV 0vCLp-pVCC1st图5-1-2当输入负脉冲到达时,由于○6脚电平低于○7脚电平,所以S=1(高电平),Q =0(低电平)。

此时放电管T 截止,于是C t 由V CC 经R t 充电,其上电压V Ct 按指数规律增大。

与此同时,电流开关S 使恒流源I 与○1脚接通,使C L 充电,V CL 按线性增大(因为是恒流源对C L 充电)。

经过1.1R t C t 的时间,V Ct 增大到2/3V CC 时,则R 有效(R=1,S=0),Q =0,C t 、C L 再次充电。

然后,又经过1.1R t C t 的时间返回到C t 、C L 放电。

以后就重复上面的过程,于是在R L 上就得到一个直流电压V o (这与电源的整流滤波原理类似),并且V o 与输入脉冲的重复频率f i 成正比。

IC资料-精密压_频转换器 LM331_331A

IC资料-精密压_频转换器 LM331_331A

0.15
0.50
V
0.10
0.40
V
±0.05
1.0
uA
3.0
6.0
mA
4.0
8.0
mA
注 1:表中按达到的精度和温度稳定性的不同,分别有 LM331 和 LM331A 两种型号 注 2:表一和表二中所有特性均是按图 5 电路,及 4.0V≤VS≤40V 的条件下测得。(除非另 有说明)
LM331/331A
额定满量程频率
VIN=-10V
10.0
长期增益稳定性 (1000小时)
TMIN≤TA≤TMAX
超限频率(相对于标 准频率范围)
VIN=-11V
10
输入比较器
失调电压
TMIN≤TA≤TMAX
LM331 LM331A
偏置电流Βιβλιοθήκη 失效电流共模范围TMIN≤TA≤TMAX
-0.2
计时器
计时器阈值电压 (第5脚)
1.10 ±150 ±50
kHz/V ppm/℃
0.01
0.1
%/V
0.006 0.06 %/V
kHz
±0.02
%量程
%
±3
±10
±4
±14
mV
±3
±10
-80
-300
nA
±8 ±100 nA
VCC-2.0
V
0.667
±10 200 200 0.22
0.70
±100 1000 500 0.5
* VS nA V
LM331/331A
电参数(二)
Ta=25℃,除其它特殊说明外
参数
测试条件
电流源(第1脚) 输出电流 电压变化引起的变化

3312电子油门使用说明书(a5)

3312电子油门使用说明书(a5)

简介3312感应式加速器(The inductive throttle sensor)是专门为电动车辆(如电动游览车、电动高尔夫车及电动汽车)设计的电子油门。

它结构简单、可靠性高。

是电动车的理想的选择。

典型应用用于以电动车(如电动游览车、电动高尔夫车及电动汽车)。

特点输入电源范围宽:15-85Vdc输入电流:5mA最大(输入电压14V),2mA最大(输入电压85V) 输入电源的电压瞬态保护,使加速器更可靠输出短路保护特性全密封,可靠性高内置电路采用MCU控制,使输出信号保持良好的线性,使加速特性更精确可根据用户的需要订制输出曲线(无特殊要求,输出为线性)线圈感应结构,非接触调速特性灵敏度和线性度高、非接触、可靠性好、长寿命、无噪音、响应快环境要求工作温度范围:-20℃-+85℃储存温度范围:-40℃-+90℃测试温度范围:23℃±5℃电气参数输入电压范围::15-85Vdc输出电压:5Vdc或10Vdc(用户二者选一) 机械行程:30mm有效机械行程:27mm机械行程和输出电压曲线图如下订购需知用户定购,可参照3312电子油门的零部件表中的代号。

下图为零件示意图。

3312电子油门组成零部件列表序 号 代 号 名 称 数量1 3312-10000 感应器 12 3311-20000 感应杆 13 3311-00001 调节螺母 14 GB829-M4×8 开槽定位螺钉 1电器连接及接线配套连接器:连接器 AMP P / NO: 1-1123722-3(CAP)端子AMP P / NO: 1123721-1(PLUG)接线安装尺寸及方法安装尺寸如下图所示。

安装说明第一步:按右图所示,将图中序号②的连杆和M6螺母、感应器连接,调节感应杆到要求的位置后(用户根据要求的起始角调节),然后锁紧螺母。

第二步:调整调节螺母⑤的位置,使感应器起步之前,微动开关①接通。

LM331及其应用

LM331及其应用

L M331及其应用张苑农(十堰职业技术学院 电子工程系,湖北十堰 442000)[摘 要] 简要介绍了LM331及其V/F (F/V )基本转换电路的连接方法;并通过检测与转换中的三种应用实例来分析与说明LM331的应用价值。

[关键词] D/A 转换;非电量电测;LM331;V/F 转换器[中图分类号] TP212.9 [文献标识码] A [文章编号] 100824738(2004)022*******Ξ DAC 和ADC 在数字化仪表、现代测控技术以及微机应用等方面有着十分重要的地位和广泛的用途。

本文不对传统的A/D 转换器(如:ADC0809、ICL7106等)和D/A 转换器(如:DAC0832、AD7520等)作讨论,而是对现代测试技术中运用越来越多的V/F 转换器LM331作较详细分析。

V/F 转换器是把输入的电压转换为脉冲输出的一种电路。

输出脉冲的频率能与输入的电压成线性关系,并可通过测量其输出端的脉冲频率来间接测量输入的电压值。

它实际上也是一种A/D 转换器。

1 V/F 转换器LM331LM331为单片V/F 转换器,电源电压范围较宽(4V ~20V );输出为集电极开路形式,温度稳定性好;功耗低(5V 电源供电时,功耗为15mW );体积小(标准8脚DIP 塑封)。

其引脚排列如图1所示:图1 LM331引脚排列图1脚:I O ,电流输出端。

它是内部一个精密电流源的输出端,该脚流出的电流为基本电路中的CL 充电。

2脚:I S ,参考电流。

该引脚由内部的一个电流泵提供50μA ~500μA 的电流,该端外接一个电阻RS 到地,实际应用时取4kΩ~150k Ω可调。

3脚:f out ,脉冲频率输出端。

输入电压经过V/F 转换后的矩形波由此输出,其内部是一个晶体管的集电极,且为集电极开路输出,因此外部必须接有上拉电阻到正电源。

4脚:GND ,接地端。

5脚:R/C ,外接定时电阻R t 和定时电容C t ,它们是内部单稳态定时电路的定时元件。

ELM331中文资料(ELM Electronics)中文数据手册「EasyDatasheet - 矽搜」

ELM331中文资料(ELM Electronics)中文数据手册「EasyDatasheet - 矽搜」

逻辑电路.正在进行脚测量可以
然后,可以使用任一中断,或作为一个忙标志
在这新结果能时钟下降沿...
备用电池是另一种选择可能是
加入到这个电路,但后来考虑应该是 给使用ELM341低功率恒温器...
+12V
0.1µF
78L05
RTEMP 10KΩ @25°C
0.1µF
1
2 见文
3
4
RSET 18KΩ
8 7 6 5
10KΩ
0.1µF
1N400电器
到 加热 控制
2N3904
560Ω LED
图1.备份加热控制温控器
8 VSS 7 Out 6 MIP 5 Cap
框图 R1
reset 4
2 3
R2
5
VDD
控制
看家狗
Timer
测量过程中(繁忙)
超量程
模拟到 数位 变流器
R1 R 2 3连续
测量
6 MIP 7 Out
芯片中文手册,看全文,戳
引脚说明
VDD (引脚1) 该引脚为正电源引脚,应始终在电路中最产品极 一点.
300 mil Plastic DIP............................... ELM331P
200 mil SOIC..................................... ELM331SM
芯片中文手册,看全文,戳
ELM331
绝对最大额定值
复位(引脚4)
该低电平有效复位输入.内部上拉
电阻提供方便.如果未使用,
该管脚可被连接到V
DD 或悬空.
ELM331
盖(引脚5)
温度测量是通过确定充电和放电该产

(重要)利用LM331进行频率电压转换

(重要)利用LM331进行频率电压转换

频率/电压变换器实验报告设计一、实验目的熟悉集成频率——电压变换器LM331的主要性能和一种应用;熟练掌握运算放大器基本电路的原理,并掌握它们的设计、测量和调整方法。

二、技术要求当方波信号的频率f i在200Hz~2kHz范围内变化时,对应输出的直流电压V i在1~5V范围内线形变化;方波信号源采用函数波形发生器的输出(见课题二图5-2-3);采用±12V电源供电.三、设计报告要求1.列出已知条件,技术指标。

2.分析电路原理。

3.写出设计步骤:(1)电路形式选择。

(2)电路设计,对所选电路中的各元件值进行计算式估算,并标于图中。

4.测试与调整:(1)按技术要求测试数据,对不满足技术指标的参数进行调整,并整理列出表格,在方格纸上绘出波形。

(2)故障分析几说明。

5.误差分析。

四、实验仪器及主要器件1.仪器双踪示波器 1台直流稳压电源 1台毫伏表 1台万用表 1台低频信号发生器 1台2.元器件µA741 1只LM331 1只LM324 1只电位器、电阻、电容若干五、设计过程1.方案选择可供选择的方案有两种,它们是:○1用通用型运算放大器构成微分器,其输出与输入的正弦信号频率成正比.○2直接应用F/V变换器LM331,其输出与输入的脉冲信号重复频率成正比.因为上述第○2种方案的性能价格比较高,故本课题用LM331实现.LM331的简要工作原理LM331的管脚排列和主要性能见附录LM331既可用作电压――频率转换(VFC ) 可用作频率――电压转换(FVC )LM331用作FVC 时的原理框如图5-1-1所示.-输入比较器定时比较器++567QTC tR tV CC 2/3V CC9/10V CCs置“1”端置“0”端Rfi 图5-1-1Q此时,○1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○7脚接比较电平.工作过程(结合看图5-1-2所示的波形)如下:当输入负脉冲到达时,由于○6脚电平低于○7脚电平,所以S=1(高电平),Q =0(低电平)。

LM331压频变换器的原理及应用2

LM331压频变换器的原理及应用2

器件在线LM331压频变换器的原理及应用广东湛江师范学院林汉PrincipleandApplicationsofTheVoltageFrequencyConverterLM331LinHan摘要:介绍了集成电路LM331的结构和特点,分析了V/F和F/V电路的工作原理。

同时也给出了一些应用的例子。

关键词:电压-频率变换;频率-电压变换;LM331分类号:TN79+2文献标识:B文章编号:1006-6977(1999)11-0020-031.概述LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。

LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。

LM331的动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。

LM331的内部电路组成如图1所示。

由输入比较器、定时比较器、R-S触发器、输出驱动管、复零晶体管、能隙基准电路、精密电流源电路、电流开关、输出保护管等部分组成。

输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。

LM331可采用双电源或单电源供电,可工作在4.0~40V之间,输出可高达40V,而且可以防止Vcc短路。

2.工作原理2.1电压频率变换器图2是由LM331组成的电压椘德时浠坏缏贰M饨拥缱鑂t、Ct和定时比较器、复零晶体管、R-S触发器等构成单稳定时电路。

当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,Q输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时,电流开关打向右边,电流源IR对电容CL充电。

LM331中文资料_中文手册_芯片中文资料_芯片中文手册

LM331中文资料_中文手册_芯片中文资料_芯片中文手册

LM331中文资料_中文手册_芯片中文资料_芯片中文手册电压-频率变换器LM331LM331是美国NS公司生产的性能价格比较高的集成芯片。

LM331可用作精密的频率电压(F/V)转换器、A/D转换器、线性频率调制解调、长时间积分器以及其他相关的器件。

LM331为双列直插式8脚芯片,其引脚如图3所示。

LM331内部有(1)输入比较电路、(2)定时比较电路、(3)R-S触发电路、(4)复零晶体管、(5)输出驱动管、(6)能隙基准电路、(7)精密电流源电路、(8)电流开关、(9)输出保护点路等部分。

输出管采用集电极开路形式,因此可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,从而适应TTL、DTL和CMOS等不同的逻辑电路。

此外,LM331可采用单/双电源供电,电压范围为4,40V,输出也高达40V。

引脚1(PIN1)为电流源输出端,在f(PIN3)输出逻辑低电平时,电流源,输出对电容,充电。

,,,引脚2(PIN2)为增益调整,改变,的值可调节电路转换增益的大小。

,引脚3(PIN3)为频率输出端,为逻辑低电平,脉冲宽度由,和,决定。

tt引脚4(PIN4)为电源地。

引脚5(PIN5)为定时比较器正相输入端。

引脚6(PIN6)为输入比较器反相输入端。

引脚7(PIN7)为输入比较器正相输入端。

引脚8(PIN8)为电源正端。

LM331频率电压转换器V/F变换和F/V变换采用集成块LM331,LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器用。

LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。

同时它动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01,,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。

LM3316B 6通道交流电流测量模块使用说明书

LM3316B 6通道交流电流测量模块使用说明书

通道参数
点击LM3316B的某个AI通道,显示该通道参数配置界面,如图6所示。
图6
LM3316B 通道参数配置界面
通道使能(Channel_Enable)参数:选择 Enable,则使能交流电流量采集,选择 Disable 则禁 止电流量采集,通道数据默认为 0; 用户校准系数(Calibration)参数:用户可根据需要填入 1~200 数据。具体使用方法请参考: 功能说明->用户校准系数设定。
第 2 页 共 9 页
LM3316B 6通道交流电流测量模块
用户校准系数设定
为适应不同的应用场合, LM3316B 为用户提供通道校准系数设定接口,可在通道参数 Calibration 中设定,如图 4 所示:
图 4 用户校准系数设定
通道校准系数范围为:0.01~2.00(对应取值为 1~200),PowerPro 默认为 100,即 1.00。例 如:若某通道在默认校准系数(100,即 1.0)下采样值为 200,则当用户改变校准数据为 150 后, 该通道采样数据将乘以 1.5 倍,通道显示约为 300。
功能说明
输入模式设定
LM3316B 模块有两种输入模式, 分别为 2 相输入模式和 3 相输入模式。 对应的选择位置在 “模 块参数”选项中,如图 3 所示:
图 3 LM3316B 输入模式选择
两种模式的区别为: A.选择 3 相输入模式(3 Phase)时,则 LM3316B 依次采样 UA~UF 输入通道,所得值为实际 采样值,三相输入模式是 PowerPro 软件默认值; B.选择 2 相输入模式(2 Phase)时,针对第一组三相交流电流输入,LM3316B 采样 UA,UB 通道,通过软件计算得出第三相电流;针对第二组三相交流电流输入,LM3316B 采样 UD,UE 通道,通过软件计算得出第三相电流。(注意:选择 2 相输入模式时,信号输入端只能选择接入 UA,UB,UD,UE)

LM331在AD转换电路中的应用

LM331在AD转换电路中的应用

LM331在AD转换电路中的应用摘要:本文主要介绍一种应用V/F转换器LM331实现A/D转换的电路,本电路价格低廉,外围电路简单, 适合应用在转换速度不太高的场合应用.本文包括硬件电路和软件程序的实现.关键词:A/D转换器,V/F转换器, 高精度.引言: 数据的采集与处理广泛地应用在自动化领域中,由于应用的场合不同,对数据采集与处理所要求的硬件也不相同.在控制过程中,有时要对几个模拟信号进行采集与处理,这些信号的采集与处理对速度要求不太高,一般采用AD574或ADC0809等芯片组成的A/D转换电路来实现信号的采集与模数转换,而AD574和ADC0809等A/D转换器价格较贵,线路复杂,从而提高了产品价格和项目的费用.在本文中,从实际应用出发,给出了一种应用V/F转换器LM331芯片组成的A/D转换电路,V/F转换器LM331芯片能够把电压信号转换为频率信号,而且线性度好,通过计算机处理,再把频率信号转换为数字信号,就完成了A/D转换。

它与AD574等电路相比,具有接线简单,价格低廉,转换精度高等特点,而且LM331芯片在转换过程中不需要软件程序驱动,这与AD574等需要软件程序控制的A/D转换电路相比,使用起来方便了许多。

一. 芯片简介LM331是美国NS公司生产的性能价格比比较高的集成芯片。

它是当前最简单的一种高精度V/F转换器、A/D转换器、线性频率调制解调、长时间积分器以及其它相关的器件。

LM331为双列直插式8引脚芯片,其引脚框图如图1所示。

图1 LM331逻辑框图LM331各引脚功能说明如下:脚1 为脉冲电流输出端,内部相当于脉冲恒流源,脉冲宽度与内部单稳态电路相同;脚2 为输出端脉冲电流幅度调节,RS 越小,输出电流越大;脚3 为脉冲电压输出端,OC 门结构,输出脉冲宽度及相位同单稳态,不用时可悬空或接地;脚4 为地;脚5 为单稳态外接定时时间常数RC ;脚6 为单稳态触发脉冲输入端,低于脚7 电压触发有效,要求输入负脉冲宽度小于单稳态输出脉冲宽度Tw ;脚7 为比较器基准电压,用于设置输入脉冲的有效触发电平高低;脚8 为电源Vcc , 正常工作电压范围为4~40V。

LM331中文资料_数据手册_参数

LM331中文资料_数据手册_参数
Product Folder
Sample & Buy
Technical Documents
Tools & Software
ቤተ መጻሕፍቲ ባይዱ
Support & Community
LM231, LM331
SNOSBI2C – JUNE 1999 – REVISED SEPTEMBER 2015
LMx31x Precision Voltage-to-Frequency Converters
1 Hz to 100 kHz • Low-Cost
2 Applications
• Voltage to Frequency Conversions • Frequency to Voltage Conversions • Remote-Sensor Monitoring • Tachometers
LM231, LM331
SNOSBI2C – JUNE 1999 – REVISED SEPTEMBER 2015

Table of Contents
1 Features .................................................................. 1 2 Applications ........................................................... 1 3 Description ............................................................. 1 4 Revision History..................................................... 2 5 Description continued ........................................... 3 6 Pin Configuration and Functions ......................... 4 7 Specifications......................................................... 4

331IC手册

331IC手册
a 175 C a 150 C b 7 0V to a 0 5V
Recommended Operating Conditions
Case Temperature (TC) Commercial Industrial Military Supply Voltage (VEE) 0 C to a 85 C b 40 C to a 85 C b 55 C to a 125 C
3
Commercial Version (Continued) DIP AC Electrical Characteristics
VEE e b4 2V to b5 7V VCC e VCCA e GND (Continued) Symbol fmax tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL tTLH tTHL tS Transition Time 20% to 80% 80% to 20% Setup Time Dn CDn SDn (Release Time) MS MR (Release Time) Hold Time Dn Pulse Width HIGH CPn CPC CDn SDn MR MS Propagation Delay MS MR to Output Parameter Toggle Frequency Propagation Delay CPC to Output Propagation Delay CPn to Output Propagation Delay CDn SDn to Output TC e 0 C Min 375 0 75 0 75 0 70 0 70 1 10 1 10 0 35 0 40 1 30 2 30 05 2 00 2 00 2 00 1 70 2 00 2 60 2 80 1 30 Max TC e a 25 C Min 375 0 75 0 75 0 70 0 70 1 10 1 10 0 35 0 40 1 30 2 30 05 2 00 2 00 2 00 1 70 2 00 2 60 2 80 1 30 Max TC e a 85 C Min 375 0 75 0 75 0 70 0 70 1 10 1 10 0 35 0 40 1 30 2 30 07 2 00 2 00 2 00 1 80 ns 2 00 2 60 ns 2 80 1 30 ns CPn CPC e H CPn CPC e H CPn CPC e L Max Units MHz ns Conditions

3311电子负载使用说明书

3311电子负载使用说明书
mode于固定电压工作模式时3310c系列电子负载所流入的负载电流依据所设定之负载电压而定此时负载电流的大小将会增加直到负载电压等于设定值为止如图18所示意即负载电压保持设定值不变
PRODIGIT
目录
目录
第一章、概 论 .............................................................................................. 3
3310C 系列直流电子负载手册
1目录ຫໍສະໝຸດ PRODIGIT图形
图1.1 3310C 0-60V / 0-30A 150W 电子负载功率曲线图.......................................................3 图1.2 3311C 0-60V/0-60A 300W 电子负载功率曲线图 ........................................................3 图1.3 3312C 0-250V/0-10A 300W 电子负载功率曲线图 ......................................................4 图1.4 3314C 0-500V/0-5A 200W 电子负载功率曲线图 ........................................................4 图1.5 3315C 0-60V/0-15A 75W 电子负载功率曲线图...........................................................4 图1.6 固定电流模式特性图.............................................................................................................5 图1.7 固定电阻模式特性图.............................................................................................................5 图1.8 固定电压模式特性图.............................................................................................................6 图1.9 固定功率模式特性图.............................................................................................................6 图1.10 动态负载模式特性图 ..........................................................................................................7 图1.11 3310C 系列电子负载之方块图 ...................................................................................... 11 图2.1 负载输入连接器与固定镙丝............................................................................................ 12 图2.2 电子负载装入及拔出........................................................................................................ 13 图2.3 3310C 系列电子负载操作流程图 ................................................................................. 14 图3.1 前面板图................................................................................................................................. 15 图3.2 典型的 3310C 系列电子负载连接方式........................................................................ 21 图3.3 负载电流之类比设定输入 ................................................................................................ 22 图4.1 本地/远地电压检知连接图 .............................................................................................. 29 图4.2 远地电压检知连接图.......................................................................................................... 30 图4.3 固定电流操作模式之应用 ................................................................................................ 31 图4.4 动态负载电流 ....................................................................................................................... 32 图4.5 固定电阻操作模式之应用 ................................................................................................ 33 图4.6 固定电压操作模式之应用 ................................................................................................ 34 图4.7 固定功率操作模式之应用 ................................................................................................ 35 图4.8 多组输出电源供应器与电子负载之连接图 ................................................................ 36 图4.9 电子负载多组并联之连接图............................................................................................ 37

331中文操作安装手册

331中文操作安装手册

MODEL331型H2S分析仪操作和安装手册目录1介绍--------------------------------------------------------------------3 2说明--------------------------------------------------------------------3 3操作原理----------------------------------------------------------------3 4安装和启动--------------------------------------------------------------5 4.1选择取样点------------------------------------------------------------5 4.2取样的量和流速--------------------------------------------------------5 4.3样气状态--------------------------------------------------------------5 4.3.2稀释面板------------------------------------------------------------7 4.3.3测量总硫选项--------------------------------------------------------8 4.3.4测总硫的预检和启动--------------------------------------------------8 4.4安装程序-------------------------------------------------------------11 4.5喷射口的安装---------------------------------------------------------12 5操作界面---------------------------------------------------------------13 6标定和报警-------------------------------------------------------------14 7纸带更换---------------------------------------------------------------15 8用户连接---------------------------------------------------------------16 9维护和故障处理---------------------------------------------------------18 10推荐的备件清单--------------------------------------------------------19 11可选择电脑图形界面GUI------------------------------------------------20 12图片------------------------------------------------------------------25 13转换因素--------------------------------------------------------------27 14工厂标定数据----------------------------------------------------------27 15系统图----------------------------------------------------------------27图表目录图1:样气流动示意图------------------------------------------------------4图2:取样室和部件--------------------------------------------------------4图3:传感器模块和芯片----------------------------------------------------5图4:典型的隔膜取样系统,c/w自动螺线管标定------------------------------6图5:典型的带过滤的取样系统---------------------------------------------6图6:纸带盘的背面图-----------------------------------------------------7图7:稀释的取样系统,在16"*24"的面板上---------------------------------7图8:Model331总硫分析仪和流程示意图------------------------------------8图9:反应炉的泄漏检查----------------------------------------------------9图10:更换反应管--------------------------------------------------------10图11:喷射器连接--------------------------------------------------------13图13:纸带更换程序------------------------------------------------------16图14:旁路和菜单---------------------------------------------------------14图15:卷轴按钮-----------------------------------------------------------14图16:控制电路板---------------------------------------------------------17图17:4-20mA电源选择-----------------------------------------------------17图19:继电器输出原理图---------------------------------------------------18表1:备件----------------------------------------------------------------19图20:通讯线缆-----------------------------------------------------------20图21:主板---------------------------------------------------------------25图22:显示板-------------------------------------------------------------26图23:传感器输入板-------------------------------------------------------26图24:纸带内部台板-------------------------------------------------------27表2:H2S测量时常用的单位换算---------------------------------------------271.介绍331型H2S分析仪通过软件和硬件的配置,能够测量气体和液体中的宽范围高浓度的H2S 含量。

【最新2018】中文资料-范文word版 (9页)

【最新2018】中文资料-范文word版 (9页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==中文资料篇一:LM331中文资料当前位置:首页 >> lm331中文资料LM331是美国NS公司生产的性能价格比高、外围电路简单、可单电源供电、低功耗的精密电压/频率转换器集成电路。

LM331动态范围宽达100dB,工作频率低到0.1Hz时尚有较好的线性度,数字分辨率达12位。

LM331的输出驱动器采用集电极开路形式,因此可通过选择逻辑电流和外接电阻来灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同逻辑电路。

LM331可工作在4.0V~40V之间,输出可高达40V,而且可以防止VCC短路。

特点:?保证线性:0.01%(最大) ?低功耗:15mW 5V?广泛的全面频率:1Hz to 100kHz ?脉冲输出兼容所有的逻辑形式 ?宽动态范围:100db图1 LM331引脚图功能说明:1, CURRENT UOT PUT电流输入2 ,REFERENCE CURRENT VOLTAGE 参考电压3 ,LOGIC OUTPUT 逻辑输出4 ,GND5 ,R-C 定时器6 ,THRESHOLD 阈值输入7 ,COMPARATOR比较器输入 8 ,VCC应用电路:图2 高精度电压频率转换器,100kHz的满量程图3 光照强度变换器图4 简单的频率对电压转换器,100kHz的满量程图5 M331封装图篇二:UCC28019 中文资料UCC28019内部结构如图1-2所示。

图1-2 UCC28019内部结构图UCC28019具体功能介绍如下:(1)系统保护系统的保护使系统工作在安全工作范围内,系统保护主要包括软启动、Vcc欠压锁定(UVLO)、输人掉电保护(IBOP)、输出过压保护(OVP)、开环保护/待机模式(OLP/Standby)、输出欠压检测(UVD)/增强动态响应(EDR)、过流保护、软过流(SOC)、峰值电流限制(PCL)等。

常用IC_L系列_LM_LM331 在AD 转换电路中的应用

常用IC_L系列_LM_LM331 在AD 转换电路中的应用

LM331在A/D转换电路中的应用赫飞¹,汪玉凤¹,刘雨刚¹, 石平²(1.辽宁工程技术大学电气工程系, 辽宁阜新123000; 2.优利特集团公司,广西桂林,541001)摘要:本文主要介绍一种应用V/F转换器LM331实现A/D转换的电路,本电路价格低廉,外围电路简单, 适合应用在转换速度不太高的场合应用.本文包括硬件电路和软件程序的实现.关键词:A/D转换器,V/F转换器, 高精度.中图号:TP274+.2Application of LM331 in the A/D convert circuitHE_Fei¹, WANG Yu_feng¹, LIU Yu_gang¹,SHI_Ping²(1.Department of Electrical Engeering,Liaoning Techcal University,Fuxin,123000,China;2.Limited Computer of Youlite Medical Treatment Electron,Guilin 541001,China)abstract: the application of V/F convertor of LM331 in the A/D convert circuit is mainly introduced in this paper ,this circuit is cheap in price ,is simple in peripheral equipment and applies to the field which the demand of speed is not too high .this paper includes the realization of hardware circuit and software program.Keywords: A/D convertor, V/F convertor , high precision.引言:数据的采集与处理广泛地应用在自动化领域中,由于应用的场合不同,对数据采集与处理所要求的硬件也不相同.在控制过程中,有时要对几个模拟信号进行采集与处理,这些信号的采集与处理对速度要求不太高,一般采用AD574或ADC0809等芯片组成的A/D转换电路来实现信号的采集与模数转换,而AD574和ADC0809等A/D转换器价格较贵,线路复杂,从而提高了产品价格和项目的费用.在本文中,从实际应用出发,给出了一种应用V/F转换器LM331芯片组成的A/D转换电路,V/F转换器LM331芯片能够把电压信号转换为频率信号,而且线性度好,通过计算机处理,再把频率信号转换为数字信号,就完成了A/D转换。

LM331压频变换器英文数据手册

LM331压频变换器英文数据手册

LM231A/LM231/LM331A/LM331Precision Voltage-to-Frequency ConvertersGeneral DescriptionThe LM231/LM331family of voltage-to-frequency converters are ideally suited for use in simple low-cost circuits for analog-to-digital conversion,precision frequency-to-voltage conversion,long-term integration,linear frequency modula-tion or demodulation,and many other functions.The output when used as a voltage-to-frequency converter is a pulse train at a frequency precisely proportional to the applied in-put voltage.Thus,it provides all the inherent advantages of the voltage-to-frequency conversion techniques,and is easy to apply in all standard voltage-to-frequency converter appli-cations.Further,the LM231A/LM331A attain a new high level of accuracy versus temperature which could only be at-tained with expensive voltage-to-frequency modules.Addi-tionally the LM231/331are ideally suited for use in digital systems at low power supply voltages and can provide low-cost analog-to-digital conversion in microprocessor-controlled systems.And,the frequency from a battery powered voltage-to-frequency converter can be easily channeled through a simple photoisolator to provide isolation against high common mode levels.The LM231/LM331utilize a new temperature-compensated band-gap reference circuit,to provide excellent accuracyover the full operating temperature range,at power supplies as low as 4.0V.The precision timer circuit has low bias cur-rents without degrading the quick response necessary for 100kHz voltage-to-frequency conversion.And the output are capable of driving 3TTL loads,or a high voltage output up to 40V,yet is short-circuit-proof against V CC .Featuresn Guaranteed linearity 0.01%maxn Improved performance in existing voltage-to-frequency conversion applicationsn Split or single supply operation n Operates on single 5V supplyn Pulse output compatible with all logic formsn Excellent temperature stability,±50ppm/˚C max n Low power dissipation,15mW typical at 5Vn Wide dynamic range,100dB min at 10kHz full scale frequencyn Wide range of full scale frequency,1Hz to 100kHz n Low costTypical ApplicationsTeflon ®is a registered trademark of DuPontDS005680-1*Use stable components with low temperature coefficients.See Typical Applications section.**0.1µF or 1µF,See “Principles of Operation.”FIGURE 1.Simple Stand-Alone Voltage-to-Frequency Converterwith ±0.03%Typical Linearity (f =10Hz to 11kHz)June 1999LM231A/LM231/LM331A/LM331Precision Voltage-to-Frequency Converters©1999National Semiconductor Corporation Absolute Maximum Ratings(Note1)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.LM231A/LM231LM331A/LM331 Supply Voltage40V40VOutput Short Circuit to Ground Continuous ContinuousOutput Short Circuit to V CC Continuous ContinuousInput Voltage−0.2V to+V S−0.2V to+V ST MIN T MAX T MIN T MAX Operating Ambient Temperature Range−25˚C to+85˚C0˚C to+70˚CPower Dissipation(P D at25˚C)and Thermal Resistance(θjA)(N Package)P D 1.25W 1.25WθjA100˚C/W100˚C/W Lead Temperature(Soldering,10sec.)Dual-In-Line Package(Plastic)260˚C260˚CESD Susceptibility(Note4)N Package500V500VElectrical CharacteristicsT A=25˚C unless otherwise specified(Note2)Parameter Conditions Min Typ Max Units VFC Non-Linearity(Note3) 4.5V≤V S≤20V±0.003±0.01%Full-ScaleT MIN≤T A≤T MAX±0.006±0.02%Full-Scale VFC Non-Linearity V S=15V,f=10Hz to11kHz±0.024±0.14%Full-In Circuit of Figure1Scale Conversion Accuracy Scale Factor(Gain)V IN=−10V,R S=14kΩLM231,LM231A0.95 1.00 1.05kHz/V LM331,LM331A0.90 1.00 1.10kHz/V Temperature Stability of Gain T MIN≤T A≤T MAX,4.5V≤V S≤20VLM231/LM331±30±150ppm/˚C LM231A/LM331A±20±50ppm/˚C Change of Gain with V S 4.5V≤V S≤10V0.010.1%/V10V≤V S≤40V0.0060.06%/V Rated Full-Scale Frequency V IN=−10V10.0kHz Gain Stability vs Time T MIN≤T A≤T MAX±0.02%Full-(1000Hrs)Scale Overrange(Beyond Full-Scale)Frequency V IN=−11V10% INPUT COMPARATOROffset Voltage±3±10mV LM231/LM331T MIN≤T A≤T MAX±4±14mV LM231A/LM331A T MIN≤T A≤T MAX±3±10mV Bias Current−80−300nA Offset Current±8±100nA Common-Mode Range T MIN≤T A≤T MAX−0.2V CC−2.0V TIMERTimer Threshold Voltage,Pin50.630.6670.70x V S Input Bias Current,Pin5V S=15VAll Devices0V≤V PIN5≤9.9V±10±100nA LM231/LM331V PIN5=10V2001000nA LM231A/LM331A V PIN5=10V200500nA2Electrical Characteristics(Continued)T A=25˚C unless otherwise specified(Note2)Parameter Conditions Min Typ Max Units TIMERV SAT PIN5(Reset)I=5mA0.220.5V CURRENT SOURCE(Pin1)Output Current R S=14kΩ,V PIN1=0LM231,LM231A126135144µA LM331,LM331A116136156µA Change with Voltage0V≤V PIN1≤10V0.2 1.0µA Current Source OFF LeakageLM231,LM231A,LM331,LM331A0.0210.0nA All Devices T A=T MAX 2.050.0nA Operating Range of Current(Typical)(10to500)µA REFERENCE VOLTAGE(Pin2)LM231,LM231A 1.76 1.89 2.02V DC LM331,LM331A 1.70 1.89 2.08V DC Stability vs Temperature±60ppm/˚C Stability vs Time,1000Hours±0.1% LOGIC OUTPUT(Pin3)V SAT I=5mA0.150.50VI=3.2mA(2TTL Loads),T MIN≤T A≤T MAX0.100.40V OFF Leakage±0.05 1.0µA SUPPLY CURRENTLM231,LM231A V S=5V 2.0 3.0 4.0mA LM331,LM331A V S=40V 2.5 4.0 6.0mAV S=5V 1.5 3.0 6.0mAV S=40V 2.0 4.08.0mA Note1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.Note2:All specifications apply in the circuit of Figure4,with4.0V≤V S≤40V,unless otherwise noted.Note3:Nonlinearity is defined as the deviation of f OUT from V IN x(10kHz/−10V DC)when the circuit has been trimmed for zero error at10Hz and at10kHz,over the frequency range1Hz to11kHz.For the timing capacitor,C T,use NPO ceramic,Teflon®,or polystyrene.Note4:Human body model,100pF discharged through a1.5kΩresistor.3Functional Block DiagramDS005680-2 Pin numbers apply to8-pin packages only.FIGURE2.4Typical Performance Characteristics(All electrical characteristics apply for the circuit of Figure4,unless otherwise noted.)Nonlinearity Erroras Precision V-to-FConverter(Figure4)DS005680-25Nonlinearity ErrorDS005680-26Nonlinearity Error vs PowerSupply VoltageDS005680-27Frequency vs TemperatureDS005680-28V REF vs TemperatureDS005680-29Output Frequency vsV SUPPLYDS005680-30100kHz Nonlinearity Error (Figure5)DS005680-31Nonlinearity Error(Figure1)DS005680-32Input Current(Pins6,7)vsTemperatureDS005680-33 5Typical Performance Characteristics(Continued)Typical ApplicationsPRINCIPLES OF OPERATION OF A SIMPLIFIED VOLTAGE-TO-FREQUENCY CONVERTERThe LM231/331are monolithic circuits designed for accu-racy and versatile operation when applied as voltage-to-frequency (V-to-F)converters or as frequency-to-voltage (F-to-V)converters.A simplified block diagram of the LM231/331is shown in Figure 3and consists of a switched current source,input comparator,and 1-shot timer.The operation of these blocks is best understood by going through the operating cycle of the basic V-to-F converter,Figure 3,which consists of the simplified block diagram of the LM231/331and the various resistors and capacitors con-nected to it.The voltage comparator compares a positive input voltage,V1,at pin 7to the voltage,V x ,at pin 6.If V1is greater,the comparator will trigger the 1-shot timer.The output of the timer will turn ON both the frequency output transistor and the switched current source for a period t =1.1R t C t .During this period,the current i will flow out of the switched current source and provide a fixed amount of charge,Q =i x t,into the capacitor,C L .This will normally charge V x up to a higher level than V1.At the end of the timing period,the current i will turn OFF,and the timer will reset itself.Now there is no current flowing from pin 1,and the capacitor C L will be gradually discharged by R L until V x falls to the level of V1.Then the comparator will trigger the timer and start an-other cycle.The current flowing into C L is exactly I AVE =i x (1.1xR t C t )x f,and the current flowing out of C L is exactly V x /R L ≅V IN /R L .If V IN is doubled,the frequency will double to maintain this balance.Even a simple V-to-F converter can provide a fre-quency precisely proportional to its input voltage over a wide range of frequencies.DETAIL OF OPERATION,FUNCTIONAL BLOCK DIAGRAM (Figure 2)The block diagram shows a band gap reference which pro-vides a stable 1.9V DC output.This 1.9V DC is well regulated over a V S range of 3.9V to 40V.It also has a flat,low tem-perature coefficient,and typically changes less than 1⁄2%over a 100˚C temperature change.The current pump circuit forces the voltage at pin 2to be at 1.9V,and causes a current i =1.90V/R S to flow.For R s =14k,i =135µA.The precision current reflector provides a current equal to i to the current switch.The current switch switches the current to pin 1or to ground depending on the state of the R S flip-flop.The timing function consists of an R S flip-flop,and a timer comparator connected to the external R t C t network.When the input comparator detects a voltage at pin 7higher than pin 6,it sets the R S flip-flop which turns ON the current switch and the output driver transistor.When the voltage at pin 5rises to 2⁄3V CC ,the timer comparator causes the R S flip-flop to reset.The reset transistor is then turned ON and the current switch is turned OFF.However,if the input comparator still detects pin 7higher than pin 6when pin 5crosses 2⁄3V CC ,the flip-flop will not be reset,and the current at pin 1will continue to flow,in its at-tempt to make the voltage at pin 6higher than pin 7.ThisPower Drain vs V SUPPLYDS005680-34Output Saturation Voltage vs I OUT (Pin 3)DS005680-35Nonlinearity Error,Precision F-to-V Converter (Figure 7)DS005680-36DS005680-4FIGURE 3.Simplified Block Diagram of Stand-AloneVoltage-to-Frequency Converter andExternal Components 6Typical Applications(Continued)condition will usually apply under start-up conditions or in the case of an overload voltage at signal input.It should be noted that during this sort of overload,the output frequency will be0;as soon as the signal is restored to the working range,the output frequency will be resumed.The output driver transistor acts to saturate pin3with an ON resistance of about50Ω.In case of overvoltage,the output current is actively limited to less than50mA.The voltage at pin2is regulated at1.90V DC for all values of i between10µA to500µA.It can be used as a voltage ref-erence for other components,but care must be taken to en-sure that current is not taken from it which could reduce the accuracy of the converter.PRINCIPLES OF OPERATION OF BASIC VOLTAGE-TO-FREQUENCY CONVERTER(Figure1)The simple stand-alone V-to-F converter shown in Figure1 includes all the basic circuitry of Figure3plus a few compo-nents for improved performance.A resistor,R IN=100kΩ±10%,has been added in the path to pin7,so that the bias current at pin7(−80nA typical)will cancel the effect of the bias current at pin6and help provide minimum frequency offset.The resistance R S at pin2is made up of a12kΩfixed resis-tor plus a5kΩ(cermet,preferably)gain adjust rheostat.The function of this adjustment is to trim out the gain tolerance of the LM231/331,and the tolerance of R t,R L and C t.For best results,all the components should be stable low-temperature-coefficient components,such as metal-film resistors.The capacitor should have low dielectric absorp-tion;depending on the temperature characteristics desired, NPO ceramic,polystyrene,Teflon or polypropylene are best suited.A capacitor C IN is added from pin7to ground to act as a filter for V IN.A value of0.01µF to0.1µF will be adequate in most cases;however,in cases where better filtering is required,a1µF capacitor can be used.When the RC time constants arematched at pin6and pin7,a voltage step at V IN will causea step change in f OUT.If C IN is much less than C L,a step atV IN may cause f OUT to stop momentarily.A47Ωresistor,in series with the1µF C L,is added to givehysteresis effect which helps the input comparator providethe excellent linearity(0.03%typical).DETAIL OF OPERATION OF PRECISION V-TO-FCONVERTER(Figure4)In this circuit,integration is performed by using a conven-tional operational amplifier and feedback capacitor,C F.When the integrator’s output crosses the nominal thresholdlevel at pin6of the LM231/331,the timing cycle is initiated.The average current fed into the op amp’s summing point(pin2)is i x(1.1R t C t)x f which is perfectly balanced with−V IN/R IN.In this circuit,the voltage offset of the LM231/331input comparator does not affect the offset or accuracy of theV-to-F converter as it does in the stand-alone V-to-F con-verter;nor does the LM231/331bias current or offset cur-rent.Instead,the offset voltage and offset current of the op-erational amplifier are the only limits on how small the signalcan be accurately converted.Since op amps with voltage off-set well below1mV and offset currents well below2nA areavailable at low cost,this circuit is recommended for best ac-curacy for small signals.This circuit also responds immedi-ately to any change of input signal(which a stand-alone cir-cuit does not)so that the output frequency will be anaccurate representation of V IN,as quickly as2output pulses’spacing can be measured.In the precision mode,excellent linearity is obtained be-cause the current source(pin1)is always at ground potentialand that voltage does not vary with V IN or f OUT.(In thestand-alone V-to-F converter,a major cause of non-linearityis the output impedance at pin1which causes i to change asa function of V IN).The circuit of Figure5operates in the same way as Figure4,but with the necessary changes for high speed operation. 7Typical Applications(Continued)DS005680-5*Use stable components with low temperature coefficients.See Typical Applications section.**This resistor can be5kΩor10kΩfor V S=8V to22V,but must be10kΩfor V S=4.5V to8V.***Use low offset voltage and low offset current op amps for A1:recommended type LF411AFIGURE4.Standard Test Circuit and Applications Circuit,Precision Voltage-to-Frequency Converter 8Typical Applications(Continued)DETAILS OF OPERATION,FREQUENCY-TO-VOLTAGE CONVERTERS(Figure6and Figure7)In these applications,a pulse input at f IN is differentiated by a C-R network and the negative-going edge at pin6causes the input comparator to trigger the timer circuit.Just as with a V-to-F converter,the average current flowing out of pin1is I AVERAGE=i x(1.1R t C t)x f.In the simple circuit of Figure6,this current is filtered in the network R L=100kΩand1µF.The ripple will be less than10 mV peak,but the response will be slow,with a0.1second time constant,and settling of0.7second to0.1%accuracy.In the precision circuit,an operational amplifier provides a buffered output and also acts as a2-pole filter.The ripple will be less than5mV peak for all frequencies above1kHz,and the response time will be much quicker than in Figure6. However,for input frequencies below200Hz,this circuit will have worse ripple than Figure6.The engineering of the filter time-constants to get adequate response and small enough ripple simply requires a study of the compromises to be made.Inherently,V-to-F converter response can be fast,but F-to-V response can not.DS005680-6*Use stable components with low temperature coefficients.See Typical Applications section.**This resistor can be5kΩor10kΩfor V S=8V to22V,but must be10kΩfor V S=4.5V to8V.***Use low offset voltage and low offset current op amps for A1:recommended types LF411A or LF356.FIGURE5.Precision Voltage-to-Frequency Converter,100kHz Full-Scale,±0.03%Non-Linearity9Typical Applications(Continued)DS005680-7*Use stable components with low temperature coefficients.FIGURE6.Simple Frequency-to-Voltage Converter,10kHz Full-Scale,±0.06%Non-LinearityDS005680-8*Use stable components with low temperature coefficients.FIGURE7.Precision Frequency-to-Voltage Converter,10kHz Full-Scale with2-Pole Filter,±0.01%Non-Linearity MaximumLight Intensity to Frequency ConverterDS005680-9*L14F-1,L14G-1or L14H-1,photo transistor(General Electric Co.)or similarTemperature to Frequency ConverterDS005680-1010Typical Applications(Continued)Long-Term Digital Integrator Using VFCDS005680-11Basic Analog-to-Digital Converter UsingVoltage-to-Frequency ConverterDS005680-12Analog-to-Digital Converter with MicroprocessorDS005680-13Remote Voltage-to-Frequency Converter with 2-Wire Transmitter and ReceiverDS005680-1411Typical Applications(Continued)Voltage-to-Frequency Converter with Square-Wave Output Using÷2Flip-FlopDS005680-15Voltage-to-Frequency Converter with IsolatorsDS005680-16Voltage-to-Frequency Converter with IsolatorsDS005680-17 12Typical Applications(Continued)Connection Diagram Voltage-to-Frequency Converter with IsolatorsDS005680-18Voltage-to-Frequency Converter with IsolatorsDS005680-19Dual-In-Line PackageDS005680-21Order Number LM231AN,LM231N,LM331AN,or LM331NSee NS Package Number N08E13Schematic DiagramD S 005680-22 14Physical Dimensions inches(millimeters)unless otherwise notedLIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices orsystems which,(a)are intended for surgical implantinto the body,or(b)support or sustain life,andwhose failure to perform when properly used inaccordance with instructions for use provided in thelabeling,can be reasonably expected to result in asignificant injury to the user.2.A critical component is any component of a lifesupport device or system whose failure to performcan be reasonably expected to cause the failure ofthe life support device or system,or to affect itssafety or effectiveness.National SemiconductorCorporationAmericasTel:1-800-272-9959Fax:1-800-737-7018Email:support@National SemiconductorEuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)180-5308585English Tel:+49(0)180-5327832Français Tel:+49(0)180-5329358Italiano Tel:+49(0)180-5341680National SemiconductorAsia Pacific CustomerResponse GroupTel:65-2544466Fax:65-2504466Email:sea.support@National SemiconductorJapan Ltd.Tel:81-3-5639-7560Fax:81-3-5639-7507 Dual-In-Line Package(N)Order Number LM231AN,LM231N,LM331AN,or LM331NNS Package N08ELM231A/LM231/LM331A/LM331PrecisionVoltage-to-FrequencyConverters National does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。

ST LMV331, LMV393, LMV339 数据手册

ST LMV331, LMV393, LMV339 数据手册

December 2011Doc ID 16866 Rev 31/17LMV331, LMV393, LMV339General-purpose low voltage comparatorsFeatures■Supply operation from 2.7 to 5V ■Low current consumption: 20μA■Input common mode range includes ground ■Wide temperature range: -40°C to +85°C ■Low output saturation voltage ■Propagation delay: 200ns ■Open drain output■ESD tolerance: 2kV HBM / 200V MM ■SMD packagesApplications■Mobile phones ■Notebooks and PDAs ■Battery supplied electronics ■General-purpose portable devices ■General-purpose low voltage applicationsDescriptionThe LMV331, LMV393 and LMV339 are the single/dual/quad and low voltage versions of the industry standard LM339 and LM393. They can operate with a supply voltage ranging from 2.7 to 5V , and exhibit a lower current consumption than their predecessors LM339 and LM393. These devices are a perfect choice for low-voltage applications.The LMV3xx are available in tiny packages, making them ideal for applications where space saving is a constraint.The devices are designed to operate in the temperature range of -40°C to +85°C and are suitable for a variety of applications.SO14 / TSSOP14Package pin connections LMV331, LMV393, LMV3392/17Doc ID 16866 Rev 3LMV331, LMV393, LMV339Absolute maximum ratings and operating conditionsDoc ID 16866 Rev 33/172 Absolute maximum ratings and operating conditionsTable 1.Absolute maximum ratingsSymbol ParameterValue Unit V CC Supply voltage (1)1.All voltage values, except the differential voltage, are referenced to V cc -. 5.5V V ID Differential input voltage ± 5.5V V IN Input voltage range (V CC -) - 0.3 to (V CC +) + 0.3V V outOutput voltage (1)5.5VR thjaThermal resistance junction to ambient (2)SC70-5SOT23-5SO-8MiniSO-8SO14TSSOP142.Short-circuits can cause excessive heating. These values are typical.205250125190105100°C/WR thjcThermal resistance junction to case (2)SC70-5SOT23-5SO-8MiniSO-8SO14TSSOP141728140393132°C/WT stg Storage temperature -65 to +150°C T j Junction temperature150°C T LEADLead temperature (soldering 10 seconds)260°CESDHuman body model (HBM)(3)3.Human body model: a 100pF capacitor is charged to the specified voltage, then discharged through a1.5k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 2000V Machine model (MM)(4)4.Machine model: a 200pF capacitor is charged to the specified voltage, then discharged directly betweentwo pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations while the other pins are floating.200Charged device model (CDM)(5)5.Charged device model: all pins and package are charged together to the specified voltage and thendischarged directly to ground through only one pin. This is done for all pins.1500Latch-up immunity200mA Table 2.Operating conditionsSymbol ParameterValue Unit T oper Operating temperature range -40 to +85°C V CCSupply voltage-40°C < T amb < +85°C2.7 to 5.0VElectrical characteristics LMV331, LMV393, LMV3394/17Doc ID 16866 Rev 33 Electrical characteristicsTable 3.V CC +=+2.7V,V CC -=0V,T amb = +25°C, full V ICM range (unless otherwise specified)(1)1.All values over the temperature range are guaranteed through correlation and simulation. No production tests have beenperformed at the temperature range limits.Symbol ParameterTest conditionsMin.Typ.Max.Unit V IO Input offset voltage 17mV ΔV IO Input offset voltage drift -40°C < T amb < +85°C 5μV/°C I IB Input bias current (2)-40°C < T amb < +85°C25250400nA I IO Input offset current (2)2.Maximum values include unavoidable inaccuracies of the industrial tests.-40°C < T amb < +85°C150150nA V ICM Common mode input voltage -0.1V 2.0V OL Output voltage low I SINK = 1mA 20mV I SINK Output sink current V OUT = 1.5V547mA I CC Supply current No load, output high, V ICM =0V 20100μA I OH Output current leakage -40°C < T amb < +85°C0.0031μATP HLPropagation delayHigh to low output level V ICM =0V , R L =5.1k Ω, C L =50pF Overdrive = 10mV Overdrive = 100mV300200nsTP LHPropagation delayLow to high output levelV ICM = 0 V , R L = 5.1 k Ω, C L = 50 pF Overdrive = 10 mV Overdrive = 100 mV550400nsLMV331, LMV393, LMV339Electrical characteristicsDoc ID 16866 Rev 35/17Table 4.V CC +=+5V, V CC -= 0 V, T amb = +25°C, full V ICM range (unless otherwise specified)(1)Symbol ParameterTest conditionsMin.Typ.Max.Unit V IO Input offset voltage -40°C < T amb < +85°C 179mV ΔV IO Input offset voltage drift -40°C < T amb < +85°C 5μV/°C I IB Input bias current (2)-40°C < T amb < +85°C25250400nA I IO Input offset current (2)-40°C < T amb < +85°C250150nA V ICM Common mode input voltage -0.1V 4.2A V Voltage gain 2050V/mV V OL Output voltage low I SINK < 4mA-40°C < T amb < +85°C 50400700mV I SINK Output sink current V OUT < 1.5V1093mA I CC Supply current No load, output high, V ICM = 0 V -40°C < T amb < +85°C 25120150μA I OH Output current leakage -40°C < T amb < +85°C0.0031μATP HLPropagation delayHigh to low output level V ICM = 0 V , R L = 5.1 k Ω, C L = 50 pF Overdrive = 10 mV Overdrive = 100 mV375275nsTP LHPropagation delayLow to high output levelV ICM = 0 V , R L = 5.1 k Ω, C L = 50 pF Overdrive = 10 mV Overdrive = 100 mV550425ns1.All values over the temperature range are guaranteed through correlation and simulation. No production tests have beenperformed at the temperature range limits.2.Maximum values include unavoidable inaccuracies of the industrial tests.Electrical characteristicsLMV331, LMV393, LMV3396/17Doc ID 16866 Rev 3Figure 2.Supply current versus supplyFigure 3.Supply current versus supply Figure 4.Output voltage versus outputFigure 5.Output voltage versus output Figure 6.Input bias current versus supplyFigure 7.Response time versus overdriveLMV331, LMV393, LMV339Electrical characteristicsDoc ID 16866 Rev 37/17Figure 8.Response time versus overdriveFigure 9.Response time versus overdrive Figure 10.Response time versus overdrivePackage information LMV331, LMV393, LMV3398/17Doc ID 16866 Rev 34 Package informationIn order to meet environmental requirements, ST offers these devices in different grades ofECOPACK ® packages, depending on their level of environmental compliance. ECOPACK ® specifications, grade definitions and product status are available at: . ECOPACK ® is an ST trademark.LMV331, LMV393, LMV339Package informationDoc ID 16866 Rev 39/174.1 SOT23-5 packageFigure 11.SOT23-5 package mechanical drawingTable 5.SOT23-5 package mechanical dataRef.DimensionsMillimetersInches Min.Typ.Max.Min.Typ.Max.A 0.901.201.450.0350.0470.057A10.150.006A20.90 1.05 1.300.0350.0410.051B 0.350.400.500.0130.0150.019C 0.090.150.200.0030.0060.008D 2.80 2.90 3.000.1100.1140.118D1 1.900.075e 0.950.037E 2.60 2.80 3.000.1020.1100.118F 1.50 1.60 1.750.0590.0630.069L 0.100.350.600.0040.0130.023K0 degrees 10 degreesPackage information LMV331, LMV393, LMV33910/17Doc ID 16866 Rev 34.2 SC70-5 (SOT323-5) packageTable 6.SC70-5 (or SOT323-5) package mechanical dataRefDimensionsMillimetersInches MinTypMax Min TypMax A 0.801.100.3150.043A10.100.004A20.800.901.000.3150.0350.039b 0.150.300.0060.012c 0.100.220.0040.009D 1.80 2.00 2.200.0710.0790.087E 1.80 2.10 2.400.0710.0830.094E1 1.15 1.25 1.350.0450.0490.053e 0.650.025e1 1.300.051L 0.260.360.460.0100.0140.018<0°8°LMV331, LMV393, LMV339Package informationDoc ID 16866 Rev 311/174.3 SO-8 package informationTable 7.SO-8 package mechanical dataRef.DimensionsMillimetersInches Min.Typ.Max.Min.Typ.Max.A 1.750.069A10.100.250.0040.010A2 1.250.049b 0.280.480.0110.019c 0.170.230.0070.010D 4.80 4.90 5.000.1890.1930.197E 5.80 6.00 6.200.2280.2360.244E1 3.803.904.000.1500.1540.157e 1.270.050h 0.250.500.0100.020L 0.40 1.270.0160.050L1 1.040.040k 08°1°8°ccc0.100.004Package information LMV331, LMV393, LMV33912/17Doc ID 16866 Rev 34.4 MiniSO-8 package informationTable 8.MiniSO-8 package mechanical dataRef.DimensionsMillimetersInches Min.Typ.Max.Min.Typ.Max.A 1.10.043A100.1500.006A20.750.850.950.0300.0330.037b 0.220.400.0090.016c 0.080.230.0030.009D 2.80 3.00 3.200.110.1180.126E 4.65 4.90 5.150.1830.1930.203E1 2.803.00 3.100.110.1180.122e 0.650.026L 0.400.600.800.0160.0240.031L10.950.037L20.250.010k 0°8°0°8°ccc0.100.004LMV331, LMV393, LMV339Package information 4.5 SO-14 package informationTable 9.SO-14 package mechanical dataDimensionsMillimeters InchesRef.Min.Typ.Max.Min.Typ.Max.A 1.35 1.750.050.068A10.100.250.0040.009A2 1.10 1.650.040.06B0.330.510.010.02C0.190.250.0070.009D8.558.750.330.34E 3.80 4.00.150.15e 1.270.05H 5.80 6.200.220.24h0.250.500.0090.02L0.40 1.270.0150.05k8° (max.)ddd0.100.004Doc ID 16866 Rev 313/17Package information LMV331, LMV393, LMV33914/17Doc ID 16866 Rev 34.6 TSSOP14 package informationTable 10.TSSOP14 package mechanical dataRef.DimensionsMillimetersInches Min.Typ.Max.Min.Typ.Max.A 1.200.047A10.050.150.0020.0040.006A20.80 1.001.050.0310.0390.041b 0.190.300.0070.012c 0.090.200.0040.0089D 4.90 5.00 5.100.1930.1970.201E 6.20 6.40 6.600.2440.2520.260E1 4.304.40 4.500.1690.1730.176e 0.650.0256L 0.450.600.750.0180.0240.030L1 1.000.039k 0°8°0°8°aaa0.100.004LMV331, LMV393, LMV339Ordering informationDoc ID 16866 Rev 315/175 Ordering informationTable 11.Order codesPart number TemperaturerangePackage PackagingMarking LMV331ILT -40°C, +85°CSOT23-5Tape & reel K503LMV331ICT SC70-5K50LMV393IDT SO-8393I LMV393IST MiniSO-8K508LMV339IDT SO14339I LMV339IPTTSSOP14339IRevision history LMV331, LMV393, LMV33916/17Doc ID 16866 Rev 36 Revision historyTable 12.Document revision historyDate RevisionChanges08-Dec-20091Initial release.03-May-20102Corrected Icc unit in Figure 2 and Figure 3.12-Dec-20113–Added LMV393 and LMV339 devices to the datasheet.–Added V out parameter in Table 1: Absolute maximum ratings .–Removed note "The magnitude of input and output voltages must never exceed the supply rail ±0.3 V ." from Table 1.LMV331, LMV393, LMV339Please Read Carefully:Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.All ST products are sold pursuant to ST’s terms and conditions of sale.Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.ST and the ST logo are trademarks or registered trademarks of ST in various countries.Information in this document supersedes and replaces all information previously supplied.The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.© 2011 STMicroelectronics - All rights reservedSTMicroelectronics group of companiesAustralia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of AmericaDoc ID 16866 Rev 317/17。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AN-673
TL DD 10788 – 1
FIGURE 1 System Diagram
TRI-STATE is a registered trademark of National Semiconductor Corporation C1995 National Semiconductor Corporation
TL DD10788
RRD-B30M75 Printed in U S A
A capacitive or resistive sensor’s weight related capacitance or resistance change is transformed by a 555 timer (in astable mode) to a change of frequency The output frequency f is determined by the formula f e 1 44 ((Ra a 2Rb) C) The output high time is given by t1 e 0 693 (Ra a Rb) C The output low time is given by t2 e 0 693 Rb C This frequency is measured using the COP800 16-bit timer in the ‘‘input capture’’ mode After calculation the weight is displayed on a 2-way multiplexed LCD Using this configuration a complete scale can be built using only two ICs and a few external passive components For more information on V F converters generally used with voltage output sensors refer to the literature listed in the reference section Frequency Measurement The COP 16-bit timer is ideally suited for precise frequency measurements with minimum software overhead This timer has three programmable operating modes of which the ‘‘input capture’’ mode is used for the frequency measurement Allocated with the timer is a 16-bit ‘‘autoload capture register’’ The G3-I O-pin serves as the timer capture input (TIO) In the ‘‘input capture’’ mode the timer is decremented with the instruction cycle frequency (tc) Each positive going edge at TIO (also neg edge programmable) causes the timer value to be copied automatically to the autoload capture register without stopping the timer or destroying its
LM331
AN-673 2-Way Multiplexed LCD Drive and Low Cost A/D-Converter Using V/F Techniques with COP8 Microcontror: SNOA150
2-Way Multiplexed LCD Drive and Low Cost A D Converter Using V F Techniques with COP8 Microcontrollers
2-Way Multiplexed LCD Drive and Low Cost A D Converter Using V F Techniques with COP8 Microcontrollers
ABSTRACT This application note is intended to show a general solution for implementing a low cost A D and a 2-way multiplexed LCD drive using National Semiconductor’s COP840C 8-bit microcontroller The implementation is demonstrated by means of a digital personal scale Details and function of the weight sensor itself are not covered in this note Also the algorithms used to calculate the weight from the measured frequency are not included as they are too specific and depend on the kind of sensor used Typical Applications Y Weighing scales Y Sensors with voltage output Y Capacitive or resistive sensors Y All kinds of measuring equipment Y Automotive test and control systems Features Y 2-way multiplexed LCD drive capability up to 30 segments (4 digit and 2 dot points) Y Precision frequency measurement Y Low current consumption Y Current saving HALT mode Y Additional computing power for application specific tasks
contents The ‘‘timer pending’’ flag (TPND) in the PSW-register is set to indicate a capture has occurred and if the timer-interrupt is enabled an interrupt is generated The frequency measurement routine listed below executes the following operations (refer to the RAM register definition file listed at the beginning for symbolic names used in the routines) The timer is preset with FFFF Hex and is started by setting the TRUN bit after which the software checks the TPNDflag in a loop (timer interrupt is disabled) When the TPND flag is set the first time the contents of the capture register is saved in RAM locations STALO and STAHI (start value) The TPND pending flag now must be reset by the software Then another 255 positive going edges are counted (equal to 255 pulses) before the capture register is saved in RAM locations ENDLO ENDHI (end value) The shortest time period that can be measured depends on the number of instruction cycles needed to save the capture register because with the next positive going edge on TIO the contents of the capture register is overwritten (worst case is 18 instruction cycles which equals a max frequency of 55 5 kHz at tc e 1 ms) The end-value is subtracted from the start-value and the result is restored in RAM locations STALO STAHI This value can then be used to calculate the time period of the frequency applied to TIO (G3) by multiplying it with the tctime and dividing the result by the number of pulses measured (N e 255) T e (startvalueb endvalue) tc N
相关文档
最新文档