平面向量与空间向量有关内容的比较

合集下载

利用空间向量证明空间中的直线和平面位置关系

利用空间向量证明空间中的直线和平面位置关系

利用空间向量证明空间中的直线和平面位置关系空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立。

空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广。

【知识回顾】1.确定空间直角坐标系必须有三个要素,即:原点、坐标轴方向、单位长。

2.从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴,则就建立了空间直角坐标系。

点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xoy 平面、 yoz 平面、和 Zox 平面.3.已知M 为空间一点.过点M 作三个平面分别垂直于x 轴、y 轴和z 轴,它们与x 轴、y 轴和z 轴的交点分别为P 、Q 、R,这三点在x 轴、y 轴和z 轴上的坐标分别为x,y,z.于是空间的一点M 就唯一确定了一个有序数组x,y,z.这组数x,y,z 就叫做点M 的坐标,并依次称x,y,z 为点M 的横坐标.纵坐标和竖坐标.坐标为x,y,z 的点M 通常记为M(x,y,z).4.空间向量的坐标运算:(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则:222123||a a a a a a =⋅=++,222123||b b b b b b =⋅=++a +b =(a 1+b 1,a 2+b 2,a 3+b 3),a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3,a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0,a ∥b ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ), cos 〈a ,b 〉=a ·b|a |·|b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. (2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB →=OB →-OA →=(x 2-x 1,y 2-y 1,z 2-z 1). 5.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量,则一条直线的方向向量可以有无数个. (2)平面的法向量①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.②确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0. 6. 共线向量:如果表示空间向量的有向线段所在直线互相平行或重合,则这些向量 7. 叫做共线向量(或平行向量),记作a ∥b . 8. 面向量:平行于同一平面的向量,叫做共面向量.9. 共面向量定理:如果两个向量a 、b 不共线,那么向量p 与向量a 、b 共面的 充要条件是存在有序实数组(x ,y ),使得p =x a + y b . 9.利用向量处理求解立体几何问题: (1)直线与平面的位置关系:①若a ∥n ,即a =λn , 则 L ∥ α ②若a ⊥n ,即a·n = 0,则a ∥ α.(2) 平面与平面的位置关系:平面α的法向量为n 1 ,平面β的法向量为n 2 ①若n 1∥n 2,即n 1=λn 2,则α∥β ; ②若n 1⊥n 2,即n 1 ·n 2= 0,则α∥β10.点到平面的距离:A 为平面α外一点, n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH.= = , 即:AB →在法向量n 上投影的绝对值。

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。

设向量为a=(a1,a2,a3)则其在x轴、y轴、z轴上的投影分别为a1、a2、a3即a=(a1,a2,a3)2)空间向量的模长:向量的模长是指其长度,即a|=√(a1²+a2²+a3²)3)向量的单位向量:一个向量的单位向量是指其方向相同、模长为1的向量。

设向量a的模长为a|则其单位向量为a/|a|4)向量的方向角:向量在空间直角坐标系中与三个坐标轴的夹角分别称为其方向角。

设向量a=(a1,a2,a3)则其方向角为α=cos⁻¹(a1/|a|)、β=cos⁻¹(a2/|a|)、γ=cos⁻¹(a3/|a|)5)向量的方向余弦:向量在空间直角坐标系中与三个坐标轴的夹角的余弦值分别称为其方向余弦。

设向量a=(a1,a2,a3)则其方向余弦为cosα=a1/|a|、cosβ=a2/|a|、cosγ=a3/|a|一、知识要点1.空间向量的概念:在空间中,向量是具有大小和方向的量。

向量通常用有向线段表示,同向等长的有向线段表示同一或相等的向量。

向量具有平移不变性。

2.空间向量的运算:空间向量的加法、减法和数乘运算与平面向量运算相同。

运算法则包括三角形法则、平行四边形法则和平行六面体法则。

3.共线向量:如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量。

共线向量定理指出,空间任意两个向量a、b(b≠0),a//b存在实数λ,使a=λb。

4.共面向量:能平移到同一平面内的向量叫做共面向量。

5.空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p有唯一的有序实数组x、y、z,使p=xa+yb+zc。

若三向量a、b、c不共面,则{a,b,c}叫做空间的一个基底,a、b、c叫做基向量。

6.空间向量的直角坐标系:在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。

用空间向量研究直线、平面的位置关系

用空间向量研究直线、平面的位置关系
向量名称

直线的方
向向量

l
a
B
A
平面的法
向量

α
l

① 取两点;② 定向量.
例题小结 直线的方向向量和平面的法向量的求法
向量名称

直线的方
向向量


l
a
B

① 取两点;② 定向量.
A
l
① 找到 ⊥ ;② l 的方向向
量即为平面的法向量.
u
平面的法
向量
α
α
a
b
例题小结 直线的方向向量和平面的法向量的求法
直观想象




逻辑推理
数学运算
课堂小结
问题5:本节课主要学习了哪些知识内容?
• 用向量表示点: OP
• 用向量表示直线:OP OA ta
• 用向量表示平面:OP OA x AB y AC
P

a AP 0 , 其中a是平面的法向量.
课堂小结
问题6:本节课主要学习了哪些思想方法?
问题3:如何用向量表示空间中的直线 l ?
OP OA ta ,

OP OA t AB. ②
都称为空间直线的向量表示式.
空间任意直线由直线上一点A及直线的方向向量a唯一确定.
问题3:如何用向量表示空间中的直线 l ?
OP OA ta
问题3:如何用向量表示空间中的直线 l ?
取向量b,b与a有什么关系?


所以 P a AP 0


P b AP 0.
P a AP 0

高中数学第二章空间向量与立体几何1从平面向量到空间向量ppt课件

高中数学第二章空间向量与立体几何1从平面向量到空间向量ppt课件

→ —→ (2)〈AB,C1A1〉; 解答 〈A→B,C—1→A1〉=π-〈A→B,A—1→C1〉=π-π4=34π.
→ —→ (3)〈AB,A1D1〉.
解答
〈A→B,A—1→D1〉=〈A→B,A→D〉=π2.
引申探求 →→
在本例中,求〈AB1,DA1〉. 解答
如图,衔接B1C,那么B1C∥A1D, →→
梳理
间向量的夹角
(1)文字表达:a,b是空间中两个非零向量,过空间恣意一点O,作
→ OA
=a,O→B=b,那么∠AOB 叫作向量a与向量b的夹角,记作〈a,b〉 .
(2)图形表示:
角度
表示
〈a,b〉=__0_
〈a,b〉是_锐__角__
〈a,b〉是_直__角__ 〈a,b〉是_钝__角__〈a,b〉 Nhomakorabea_π__
第二章 空间向量与立体几何
§1 从平面向量到空间向量
学习目的 1.了解空间向量的概念. 2.了解空间向量的表示法,了解自在向量的概 念. 3.了解空间向量的夹角. 4.了解直线的方向向量与平面的法向量的概念.
内容索引
问题导学 题型探求 当堂训练
问题导学
知识点一 空间向量的概念
思索1
类比平面向量的概念,给出空间向量的概念. 答案 在空间中,把具有大小和方向的量叫作空间向量.
答案 解析
研讨长方体的模型可知,一切顶点两两相连得到的线段中,长度为1 的线段只需4条,故模为1的向量有8个.
12345
5.在直三棱柱ABC-A1B1C1中,以下向量可以作为平面ABC法向量的 是②__③____.(填序号)答案
No Image
12345
规律与方法
在空间中,一个向量成为某直线的方向向量的条件包含两个方面:一是 该向量为非零向量;二是该向量与直线平行或重合.二者缺一不可. 给定空间中恣意一点A和非零向量a,就可以确定独一一条过点A且平行 于向量a的直线.

空间向量及其运算知识总结

空间向量及其运算知识总结
, ,, ,, . (2)若,,则. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的 坐标减去起点的坐标
4
模长公式:若,, 则,或
空间向量应用
一、直线的方向向量
把直线上任意两点的向量或与它平行的向量都称为直线的方向向量.在 空间直角坐标系中,由与确定直线的方向向量是.
角坐标系,则各点坐标为
A B C D P O x y z
④正三棱柱:如图所示,正三棱柱 的底面边长为,高为,一般选
择中点为原点,(或)、、(为在上的射影)所在直线分别为轴、轴、
轴建立空间直角坐标系,则各点坐标为
3.空间向量的直角坐标运算律:
(1)若,,则
B'
C' A' C A B x y z O E
平面法向量 如果,那么向量叫做平面
的法向量.
二、证明平行问题
1.线线平行:证明两直线平行可用或.
2.线面平行:直线的方向向量为,平面的法向量 为,且,若即则.
3.面面平行:平面的法向量为,平面的法向量为, 若即则.
三、证明垂直问题
1.线线垂直:证明两直线垂直可用
2.线面垂直:直线的方向向量为,平面的法向量为,且,若即则.
3.面面垂直:平面的法向量为,平面的法向量为, 若即则.
四、求夹角
1.线线夹角:设为一面直线所成角,则:;
;.
2.线面夹角:如图,已知为平面的一条斜线,为 平面的一个法向量,过作平面的垂线,连结则为斜
线和平面所成的角,记为易得
n O P A α θ
.
3. 面面夹角:设、分别是二面角两个半平面、的 法向量,
已知向量和轴,是上与同方向的单位向量,作点在上的射影,作 点在上的射影,则叫做向量在轴上或在上的正射影. 可以证明的长度. 13.空间向量数量积的性质: (1).(2).(3). 14.空间向量数量积运算律: (1).(2)(交换律).

推导向量的共线与共面关系的判定方法与平面向量的数量积与向量积的综合应用与空间解析几何的综合应用

推导向量的共线与共面关系的判定方法与平面向量的数量积与向量积的综合应用与空间解析几何的综合应用

推导向量的共线与共面关系的判定方法与平面向量的数量积与向量积的综合应用与空间解析几何的综合应用在几何学中,向量是一种具有大小和方向的量,可以表示位置、速度、力等物理量。

研究向量的共线与共面关系以及向量的数量积与向量积的综合应用,对于解决空间解析几何问题具有重要意义。

本文将介绍推导向量的共线与共面关系的判定方法,以及平面向量的数量积与向量积的综合应用和空间解析几何的综合应用。

一、推导向量的共线与共面关系的判定方法共线与共面是研究向量关系时常涉及到的问题,下面将介绍其判定方法。

1. 共线关系的判定方法给定向量A、A、A,判定它们是否共线的方法是通过计算向量间的比例关系。

如果存在实数A,使得向量A = AA,那么向量A、A、A就共线。

2. 共面关系的判定方法给定三个向量A、A、A,判定它们是否共面的方法是通过计算向量的混合积。

如果混合积等于零,即(A ×A)·A = 0,那么向量A、A、A 就共面。

二、平面向量的数量积与向量积的综合应用平面向量的数量积和向量积在求解几何问题中有广泛的应用。

1. 数量积的应用平面向量的数量积又称为点积,表示了两个向量之间的夹角关系和长度关系。

数量积可以用来计算向量的模长、夹角、投影等。

在实际应用中,例如力的分解,可以利用数量积求解力的分解方向和大小。

2. 向量积的应用平面向量的向量积又称为叉积,表示了两个向量之间的垂直关系和面积关系。

向量积可以用来计算向量与平面的垂直向量、三角形的面积、平行四边形的面积等。

在实际应用中,例如计算力矩和刚体的转动,可以利用向量积求解力矩和转动的方向和大小。

三、空间解析几何的综合应用空间解析几何是研究三维空间中点、直线、平面及它们之间的关系的数学分支。

向量的共线与共面关系以及数量积和向量积的综合应用在空间解析几何中有重要的应用。

1. 点和直线的关系利用向量的共线关系可以判断点是否在直线上。

给定直线上的两点A、A和一个点A,通过计算向量AA和向量AA的共线关系,可以判断点A是否在直线上。

(完整版)空间向量知识点归纳总结(经典)

(完整版)空间向量知识点归纳总结(经典)

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r运算律:⑴加法交换律:a b b a ϖϖϖρ+=+⑵加法结合律:)()(c b a c b a ϖϖϖϖρϖ++=++⑶数乘分配律:b a b a ϖϖϖϖλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a ρ平行于b ρ,记作b a ρϖ//。

(2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ=λb ρ。

(3)三点共线:A 、B 、C 三点共线<=>λ=<=>)1(=++=y x OB y OA x OC 其中(4)与a 共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b r r 不共线,p r与向量,a b r r 共面的条件是存在实数,x y 使p xa yb =+r r r。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP其中5. 空间向量基本定理:如果三个向量,,a b c r r r不共面,那么对空间任一向量p r ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r。

3.2.1直线的方向向量、平面的法向量以及空间线面关系的判定

3.2.1直线的方向向量、平面的法向量以及空间线面关系的判定

e
A
B
二、平面的法向量
由于垂直于同一平面的直线是互相平行的, 所以,可以 用垂直于平面的直线的方向向量来刻画平面的“方向”。 平面的法向量:如果表示向量 n 的有向线段所在直线垂 直于平面 ,则称这个向量垂直于平面 ,记作 n ⊥ , 如果 n⊥ ,那 么 向 量 n 叫做平面 的法向量.
线面平行 l1 // 1 e1 n1 e1 n1 0 ;
面面平行 1 // 2 n1 // n2 n1 n2 .
注意:这里的线线平行包括线线重合,线面平行 法向量为n (a2 , b2 , c2 ),则 包括线在面内,面面平行包括面面重合 .
设直线l的方向向量为e (a1 , b1 , c1 ), 平面的
1 2 2 求平面ABC的单位法向量为 ( , - ,) 3 3 3
1 n ( , 1,1), 2
3 | n | 2
练习 , 在 空 间 直 角 坐 标 系 中 , 已 知 A(3, 0, 0), B(0, 4, 0) , C (0,0, 2) ,试求平面 ABC 的一个法 向量.
由两个三元一次方程 组成的方程组的解是 解:设平面的法向量为n (x,y,z), 不惟一的,为方便起 见,取z=1较合理。 则n AB , n AC 其实平面的法向量不 是惟一的。 (x,y,z) (2, 2,1) 0,
单位法向量。
(x,y,z) (4,5,3) 0,
1 2 x 2 y z 0 x 即 , 取z 1,得 2 4 x 5 y 3 z 0 y 1
l // e n 0 a1a2 b1b2 c1c2 0;
l1
e1
e2

从平面向量基本定理到空间向量基本定理

从平面向量基本定理到空间向量基本定理

设计意图:帮助学生会根据求数量积的具体问题,选择 基底时兼顾向量的模和夹角,结合图形,应用向量的加 A1 法、相等向量和相反向量,将所涉及的向量均表示为基 向量的表示形式.
A
建议:根据基底的多种选择性,鼓励学生大胆表达自己 的思路.
D
C1
B1 C
B
活动一 “共线向量定理、平面向量基本定理推广到空间”设计思路及实施建议
➢ 问题:1.已知非零向量 a ,与 a 共线的任意向量是否都可以
表示成 a ( R )?
共线向量定理
2.上述 a 能否表示一个平面 内的所有向量?
平面向量基本定理 3.上面两个结论在空间中仍成立吗?
活动一 “共线向量定理、平面向量基本定理推广到空间”设计思路及实施建议
A1
D1
设计意图:帮助学生会用基底表示指定向量,掌握用向 量解决几何问题的基本途径.
c B1
建议:引导学生观察图形,利用向量的加法和减法,找 A
b
到所求向量的一个路径,再转化成基底表示.
a
B

例 3.如图所示,已知直三棱柱 ABC A1B1C1 中, D 为 A1C1 的中点, ABC 60, AB 2, BC CC1 1,求 AB1 CD .
建议:鼓励学生类比平面向量基本定理的唯一性证明进行自主探究和表 达,教师进行积极的评价.
活动二 “空间向量基本定理的应用”设计思路及实施建议
例1. 已知空间的一组基底 i, j,k, a i 2 j k , b i 3 j 2k .
(1)写出一个与向量 a 平行的向量 c1 ;
(2)向量 a , b 是否共线?是否共面?
➢ 课时分配: 第一课时 共线向量定理和平面向量基本定理向空间推广、共面向量定理、 以及空间向量基本定理的猜想 第二课时 空间向量基本定理的证明及应用

2023-2024高中数学人教A版赢在微点选择性必修二1.1.1第1课时空间向量及其线性运算 有答案

2023-2024高中数学人教A版赢在微点选择性必修二1.1.1第1课时空间向量及其线性运算 有答案

1.1.1 空间向量及其线性运算 第1课时 空间向量及其线性运算学习目标 1.经历由平面向量推广到空间向量的过程,了解空间向量的概念.2.经历由平面向量的运算及其运算律推广到空间向量的过程.3.掌握空间向量的线性运算. 一、空间向量的有关概念 知识梳理1.在空间,把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模. 空间向量用字母a ,b ,c ,…表示,也用有向线段表示,有向线段的长度表示空间向量的模,若向量a 的起点是A ,终点是B ,则向量a 也可以记作AB →,其模记为|a |或|AB →|. 2.几类特殊的空间向量名称 定义及表示零向量 规定长度为0的向量叫做零向量,记为0单位向量 模为1的向量叫做单位向量相反向量与向量a 长度相等而方向相反的向量,叫做a 的相反向量,记为-a 共线向量 如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:零向量与任意向量平行,即对于任意向量a ,都有0∥a相等向量 方向相同且模相等的向量叫做相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量注意点:(1)平面向量是一种特殊的空间向量.(2)两个向量相等的充要条件为长度相等,方向相同. (3)向量不能比较大小.(4)向量共线不具备传递性(非零向量除外).例1 下列关于空间向量的说法中正确的是( ) A .单位向量都相等B .若|a |=|b |,则a ,b 的长度相等而方向相同或相反C .若向量AB →,CD →满足|AB →|>|CD →|,则AB →>CD →D .相等向量其方向必相同 答案 D解析 A 中,单位向量长度相等,方向不确定; B 中,|a |=|b |只能说明a ,b 的长度相等而方向不确定; C 中,向量不能比较大小.反思感悟 空间向量的概念与平面向量的概念相类似,平面向量的其他相关概念,如向量的模、相等向量、平行向量、相反向量、单位向量等都可以拓展为空间向量的相关概念. 跟踪训练1 (多选)下列说法错误的是( ) A .任意两个空间向量的模能比较大小B .将空间中所有的单位向量移到同一个起点,则它们的终点构成一个圆C .空间向量就是空间中的一条有向线段D .不相等的两个空间向量的模必不相等 答案 BCD解析 对于选项A ,向量的模即向量的长度,是一个数量,所以任意两个向量的模可以比较大小;对于选项B ,其终点构成一个球面; 对于选项C ,零向量不能用有向线段表示;对于选项D ,两个向量不相等,它们的模可以相等. 二、空间向量的加减运算问题 空间中的任意两个向量是否共面?为什么?提示 共面,任意两个空间向量都可以平移到同一个平面内,因此空间中向量的加减运算与平面中一致. 知识梳理加法运算三角形法则语言叙述首尾顺次相接,首指向尾为和图形叙述平行四边形法则语言叙述共起点的两边为邻边作平行四边形,共起点对角线为和图形叙述减法运算 三角形 法则 语言叙述共起点,连终点,方向指向被减向量图形叙述加法运算交换律 a +b =b +a 结合律(a +b )+c =a +(b +c )注意点:(1)求向量和时,可以首尾相接,也可共起点;求向量差时,可以共起点. (2)三角形法则、平行四边形法则在空间向量中也适用.例2 (1)(多选)如图,在长方体ABCD -A 1B 1C 1D 1中,下列各式运算结果为BD 1—→的是( )A.A 1D 1——→-A 1A —→-AB →B.BC →+BB 1—→-D 1C 1——→C.AD →-AB →-DD 1—→D.B 1D 1——→-A 1A —→+DD 1—→(2)对于空间中的非零向量AB →,BC →,AC →,其中一定不成立的是( ) A.AB →+BC →=AC → B.AB →-AC →=BC → C .|AB →|+|BC →|=|AC →| D .|AB →|-|AC →|=|BC →| 反思感悟 空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加法、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.跟踪训练2 如图,已知空间四边形ABCD ,连接AC ,BD ,E ,F ,G 分别是BC ,CD ,DB 的中点,请化简以下式子,并在图中标出化简结果. (1)AB →+BC →-DC →;(2)AB →-DG →-CE →.三、空间向量的数乘运算 知识梳理定义与平面向量一样,实数λ与空间向量a 的乘积λa 仍然是一个向量,称为空间向量的数乘 几何意义λ>0λa 与向量a 的方向相同 λa 的长度是a 的长度的|λ|倍λ<0 λa 与向量a 的方向相反 λ=0 λa =0,其方向是任意的 运算律结合律λ(μa )=(λμ)a 分配律(λ+μ)a =λa +μa , λ(a +b )=λa +λb注意点:(1)当λ=0或a =0时,λa =0.(2)λ的正负影响着向量λa 的方向,λ的绝对值的大小影响着λa 的长度. (3)向量λa 与向量a 一定是共线向量.例3 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1—→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量: (1)AP →;(2)A 1N —→;(3)MP →. 解 (1)∵P 是C 1D 1的中点,∴AP →=AA 1—→+A 1D 1——→+D 1P —→=a +AD →+12D 1C 1——→=a +c +12AB →=a +12b +c .(2)∵N 是BC 的中点,∴A 1N —→=A 1A —→+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)∵M 是AA 1的中点,∴MP →=MA →+AP →=12A 1A —→+AP →=-12a +⎝⎛⎭⎫a +c +12b =12a +12b +c . 延伸探究1.例3的条件不变,试用a ,b ,c 表示向量PN →.2.若把例3中“P 是C 1D 1的中点”改为“P 在线段C 1D 1上,且C 1P PD 1=12”,其他条件不变,跟踪训练3 已知四边形ABCD 为正方形,P 是四边形ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形的中心O ,Q 是CD 的中点,求下列各题中x ,y 的值. (1)OQ →=PQ →+xPC →+yP A →;(2)P A →=xPO →+yPQ →+PD →.1.(多选)下列命题中,真命题是( )A .同平面向量一样,任意两个空间向量都不能比较大小B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等2.化简PM →-PN →+MN →所得的结果是( ) A .PM → B .NP → C .0D .MN →3.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( ) A .平行四边形 B .空间四边形 C .等腰梯形D .矩形4.在四棱锥P -ABCD 中,底面ABCD 是正方形,E 为PD 的中点,若P A →=a ,PB →=b ,PC →=c ,则BE →=________.课时对点练1.下列说法中正确的是( )A .空间中共线的向量必在同一条直线上B .AB →=CD →的充要条件是A 与C 重合,B 与D 重合 C .数乘运算中,λ既决定大小,又决定方向 D .在四边形ABCD 中,一定有AB →+AD →=AC →2.向量a ,b 互为相反向量,已知|b |=3,则下列结论正确的是( ) A .a =bB .a +b 为实数0C .a 与b 方向相同D .|a |=33.如图,在四棱柱的上底面ABCD 中,AB →=DC →,则下列向量相等的是( )A .AD →与CB → B .OA →与OC → C .AC →与DB →D .DO →与OB →4.如图,在直三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1—→=c ,则A 1B —→等于( )A .a +b -cB .a -b +cC .b -a -cD .b -a +c5.如图,在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M ,N 分别为OA ,BC 的中点,则MN →等于( )A .12a -12b +12cB .-12a +12b +12cC .12a +12b -23cD .12a +12b -12c6.(多选)已知平行六面体ABCD -A ′B ′C ′D ′,则下列四式中正确的有( ) A .AB →-CB →=AC → B .AC ′——→=AB →+B ′C ′———→+CC ′——→ C .AA ′——→=CC ′——→ D .AB →+BB ′——→+BC →+C ′C ——→=AC ′——→7.设A ,B ,C ,D 为空间任意四点,则AC →-BC →+BD →=________.8.在正方体ABCD -A 1B 1C 1D 1中,点M 是AA 1的中点,已知AB →=a ,AD →=b ,AA 1—→=c ,用a ,b ,c 表示CM →,则CM →=________. 9.如图,已知正方体ABCD -A 1B 1C 1D 1. (1)化简AB →+CC 1—→+B 1D 1——→;(2)若AA 1—→+x +BC →+C 1D ——→+D 1A 1——→=0,则x 可以是图中有向线段所示向量中的哪一个?(至少写出两个)10.如图,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE →=12OD →+xOB →+yOA →,求x ,y 的值.11.已知空间中任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AB → C .AC → D .BA →12.如图,在平行六面体ABCD -A ′B ′C ′D ′中,AC 与BD 的交点为O ,点M 在BC ′上,且BM =2MC ′,则OM →等于( )A .-12AB →+76AD →+23AA ′——→ B .-12AB →+56AD →+13AA ′——→C .12AB →+16AD →+23AA ′——→ D .12AB →-16AD →+13AA ′——→13.如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1—→表示OC 1—→,则OC 1—→=________________.14.如图,在四面体ABCD 中,E ,G 分别是CD ,BE 的中点,若记AB →=a ,AD →=b ,AC →=c ,则AG →=________.15.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′——→=xAB →+y 2BC →+z 3CC ′——→,则x +y +z =________.16.如图,在空间四边形SABC 中,AC ,BS 为其对角线,O 为△ABC 的重心. (1)求证:OA →+OB →+OC →=0; (2)化简:SA →+12AB →-32CO →-SC →.。

平面向量空间向量知识点

平面向量空间向量知识点

平面向量§2.1.1、向量的物理背景与概念1、了解四种常见向量:力、位移、速度、加速度.2、既有大小又有方向的量叫做向量.§2.1.2、向量的几何表示1、带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、向量AB的大小,也就是向量AB的长度(或称模),记作AB;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.§2.1.3、相等向量与共线向量1、长度相等且方向相同的向量叫做相等向量.§2.2.1、向量加法运算及其几何意义1、三角形加法法则和平行四边形加法法则.2++§2.2.2、向量减法运算及其几何意义1、与a长度相等方向相反的向量叫做a的相反向量.2、三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、 规定:实数λ与向量的积是一个向量,这种运算叫做向量的数乘.记作:λ,它的长度和方向规定如下:⑴=⑵当0>λ时, λ的方向与的方向相同;当0<λ时, λ的方向与的方向相反.2、 平面向量共线定理:向量()0≠a a 与b 共线,当且仅当有唯一一个实数λ,使a b λ=.§2.3.1、平面向量基本定理1、 平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数21,λλ,使2211e e λλ+=.§2.3.2、平面向量的正交分解及坐标表示1、 ()y x y x ,=+=.§2.3.3、平面向量的坐标运算1、 设()()2211,,,y x y x ==,则:⑴()2121,y y x x ++=+,⑵()2121,y y x x --=-,⑶()11,y x λλλ=,⑷1221//y x y x b a =⇔.2、 设()()2211,,,y x B y x A ,则:()1212,y y x x --=.§2.3.4、平面向量共线的坐标表示1、设()()()332211,,,,,y x C y x B y x A ,则⑴线段AB 中点坐标为()222121,y y x x ++,⑵△ABC 的重心坐标为()33321321,y y y x x x ++++.§2.4.1、平面向量数量积的物理背景及其含义1、 θ=⋅.2、 在θ.3、 2a =.4、 =.5、 0=⋅⇔⊥.§2.4.2、平面向量数量积的坐标表示、模、夹角1、 设()()2211,,,y x y x ==,则:⑴2121y y x x +=⋅2121y x +=⑶121200a b a b x x y y ⊥⇔⋅=⇔+=⑷1221//0a b a b x y x y λ⇔=⇔-=2、 设()()2211,,,y x B y x A ,则:()()212212y y x x -+-=.3、 两向量的夹角公式2c o s a b a bx θ⋅==+4、点的平移公式平移前的点为(,)P x y (原坐标),平移后的对应点为(,)P x y '''(新坐标),平移向量为(,)PP h k '=, 则.x x hy y k '=+⎧⎨'=+⎩函数()y f x =的图像按向量(,)a h k =平移后的图像的解析式为().y k f x h -=-§2.5.1、平面几何中的向量方法§2.5.2、向量在物理中的应用举例空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量.⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量.⑶.平面的法向量的求法(待定系数法):①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==.④根据法向量定义建立方程组0n a n b ⎧⋅=⎪⎨⋅=⎪⎩.⑤解方程组,取其中一组解,即得平面α的法向量.(如图)1、 用向量方法判定空间中的平行关系⑴线线平行设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.即:两直线平行或重合两直线的方向向量共线。

直线的方向向量、平面的法向量以及空间线面关系的判定

直线的方向向量、平面的法向量以及空间线面关系的判定

方程组
r nnr
• •
r ar b

0 0

aa12
x x

b1 y b2 y

c1z c2z

0 0
可。
(4)解方程组,取其中的一 个解,即得法向量。
例3. 在空间直角坐标系内,设平面 经过 点 P(x0 , y0 , z0 ) ,平面 的法向量为 e ( A, B, C), M (x, y, z) 为平面 内任意一点,求 x, y, z
三、平行关系:
ur ur
设直线
l1 , l2
的方向向量分别为
uur uur
e1 , e2
,平面
1
,
2
的法向量分别为
ur
nur1 ,
n2
,则
ur
ur
线线平行 l1 // l2 e1 // e2 e1 e2 ;
ur uur ur uur
线面平行 l1 // 1 e1 n1 e1 n1 0 ;
一、直线的方向向量
空间中任意一条直线 l 的位置可以由 l 上一 个定点 A 以及一个定方向确定.
l
r
r
r
e
直线l上的向量e 以及与e 共线
的向量叫做直线l的方向向量。
r
eB
A
二、平面的法向量
由于垂直于同一平面的直线是互相平行的, 所以,可以
用垂直于平面的直线的方向向量来刻画平面的“方向”。
平直如面于果的平nr⊥法面向,量,那:则如称么果这向表个量示向nr向量叫垂量做直nr平的于面有平向面 线的段法,记所向作在量nr直.⊥线垂,
平行
巩固性训练2
1.设 u, v 分别是平面α,β的法向量,根据

关于空间向量教学的反思

关于空间向量教学的反思

空间向量中共面定理教学的反思2019.9.29今天上课复习空间向量这一节。

之前在一课一研时,我们已经就相关问题进行了研讨,我在上课前也进行了充分的准备,感觉信心满满。

感觉这一节的时间比较充裕,所以开始上课后,我首先对前几节复习的直线和平面之间平行于垂直的判定和性质定理等进行了提问和总结。

当然有些学生记得不熟,提问这些定理时学生在下面飞速的翻书。

我还调侃说,虽然我们没有记住,但是我们小手翻得快啊,最终花了大概6分钟的时间。

然后,进入了本节课内容的学习环节。

首先是学生自学,对比平面向量和空间向量相关概念的异同。

比如定义、模、单位向量、零向量、共线向量、相等向量等内容,他们差别不大,只是把平面内改为了空间中。

但也有变化的,我重点让学生去思考:平面向量中的平面向量基本定理与空间向量中的共面向量定理之间的异同。

学生都去比较两个定理的文字描述,指出了一些文字上的不同,没有同学发现我预设的答案。

终于有个弱弱的声音说出了充要条件四个字,我如释重负的赶快说对,并进行了讲解。

然后开始继续讲解共面向量定理的推论。

空间中如果有AP xAB y AC =+(①式),则说明APBC 四点共面,灾难从此时开始了。

学生静悄悄,好像这是一节新授课一样崭新。

然后我有提问说:如果AB xCD yEF =+(②式),能否说明ABCDEF 六点共面呢?看学生不能回答,我解释道不可以,因为①式中表示向量的有向线段有共同的点,向量共面可以得到对应有向线段的起点和终点也是共面的,但是②式中的表示向量的有向线段没有公共的点,虽然向量共面,但不能说点共面。

学生似有所悟。

接着开始继续推下一个结论。

在空间中任选一点O,AP OP OA =-,结合①式,OP OA x AB y AC ∴=++(③式),也可以说明PABC 四点共面。

如果把③式中的向量都写成起点O ,那么可以得到OP OA xOB xOA yOC yOA =+-+-,整理可得()1O P x y O A x O B y O C=--++,OA OB OC 、、的系数之和为1,所以我们可以得到下面的式子OP xOA yOB zOC =++(④式),PABC 四点共面和1x y z ++=是等价的。

平面向量与空间向量比较

平面向量与空间向量比较

平面向量与空间向量比较
空间向量是在平面向量基础上进一步学习的知识内容,是平面向量及其研究方法在空间的推广和拓展,沟通了代数与几何的关 系,丰富了学生的认知结构.为学生学习立体几何提供了新的视角、新的观点和新的方法,给学生的思维开发提供了更加广阔的空间.为运用向量坐标运算解决立体几何问题奠定了知识和方法基础.下面从平面向量的基本公式类比总结空间向量的公式,熟记公式的区别与联系,使空间向量的理解与运用变得不再陌生。

一、 平面向量
1122(,)(,),a x y b x y ==若,则有
cos a b a b θ
⋅=a a a
=⋅1212
a b x x y y
⋅=+2
211
a x y
=+a b a b
⋅(0)
a b b λ=≠0
a b ⋅=11
2222
0y x y y =≠()1222
2
22
y y x y ++120
y y +=
二、空间向量
1212a b x x y y z ⋅=++2221
1
1
a x y z
=++1212
22
1
22y y z z z
x y +++11
22222
0y z x y z y z =≠()1212y y z z +=111222(,,)(,,)a x y z b x y z ==若,,则有cos a b a b θ
⋅=a a a
=⋅a b a b
⋅(0)
a b b λ=≠0
a b ⋅=。

空间向量知识点归纳总结

空间向量知识点归纳总结

空间向量知识点归纳总结空间向量知识点归纳总结知识要点。

1. 空间向量的概念:在空间,我们把具有⼤⼩和⽅向的量叫做向量。

注:(1)向量⼀般⽤有向线段表⽰同向等长的有向线段表⽰同⼀或相等的向量。

(2)空间的两个向量可⽤同⼀平⾯内的两条有向线段来表⽰。

2. 空间向量的运算。

定义:与平⾯向量运算⼀样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(3. 共线向量。

(1)如果表⽰空间向量的有向线段所在的直线平⾏或重合,那么这些向量也叫做共线向量或平⾏向量,a 平⾏于b ,记作b a//。

当我们说向量a 、b 共线(或a //b )时,表⽰a 、b的有向线段所在的直线可能是同⼀直线,也可能是平⾏直线。

(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a=λb 。

4. 共⾯向量(1)定义:⼀般地,能平移到同⼀平⾯内的向量叫做共⾯向量。

说明:空间任意的两向量都是共⾯的。

(2)共⾯向量定理:如果两个向量,a b 不共线,p 与向量,a b 共⾯的条件是存在实数,x y 使p xa yb =+。

5. 空间向量基本定理:如果三个向量,,a b c 不共⾯,那么对空间任⼀向量p ,存在⼀个唯⼀的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共⾯,我们把{,,}a b c 叫做空间的⼀个基底,,,a b c 叫做基向量,空间任意三个不共⾯的向量都可以构成空间的⼀个基底。

推论:设,,,O A B C 是不共⾯的四点,则对空间任⼀点P ,都存在唯⼀的三个有序实数,,x y z ,使OP xOA yOB zOC =++。

《空间向量》基础知识点

《空间向量》基础知识点

《空间向量及其运算》2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a +=+⑵加法结合律:()()a b c a b c ++=++⑶数乘分配律:()a b a b λλλ+=+3.平行六面体平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作ABCD-A B C D ''''它的六个面都是平行四边形,每个面的边叫做平行六面体的棱 4. 平面向量共线定理方向相同或者相反的非零向量叫做平行向量.由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量.向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b=λa .要注意其中对向量a的非零要求.5. 共线向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a//.当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线.6. 共线向量定理:空间任意两个向量a 、b (b ≠0),a //b 的充要条件是存在实数λ,使a =λb .推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式t OA OP +=a .其中向量a叫做直线l 的方向向量.空间直线的向量参数表示式:t OA OP +=a或)(OA OB t OA OP -+=OB t OA t +-=)1(,中点公式.)(21OB OA OP +=7.向量与平面平行:已知平面α和向量a ,作OA a =,如果直线OA 平行于α或在α内,那么我们说向量a 平行于平面α,记作://a α.通常我们把平行于同一平面的向量,叫做共面向量 说明:空间任意的两向量都是共面的8.共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB =+ ①或对空间任一点O ,有OP OM xMA yMB =++② 或,(1)OP xOA yOB zOM x y z =++++= ③ 上面①式叫做平面MAB 的向量表达式9.空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++10 ,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥.11.向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a .12.向量的数量积:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>.已知向量AB a =和轴l ,e 是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''叫做向量AB 在轴l 上或在e 上的正射影. 可以证明A B ''的长度||||cos ,||A B AB a e a e ''=<>=⋅.13.空间向量数量积的性质:(1)||cos ,a e a a e ⋅=<>.(2)0a b a b ⊥⇔⋅=. (3)2||a a a =⋅.14.空间向量数量积运算律:(1)()()()a b a b a b λλλ⋅=⋅=⋅.(2)a b b a ⋅=⋅(交换律). (3)()a b c a b a c ⋅+=⋅+⋅空间向量的直角坐标及其运算1(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量 ,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面;2.空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.常见坐标系①正方体如图所示,正方体''''ABCD A B C D -的棱长为a ,一般选择点D 为原点,DA 、DC 、'DD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,则各点坐标为亦可选A 点为原点.在长方体中建立空间直角坐标系与之类似. ②正四面体如图所示,正四面体A BCD -的棱长为a ,一般选择A 在BCD ∆上的射影为原点,OC 、OD (或OB )、OA 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -,则各点坐标为③正四棱锥如图所示,正四棱锥P ABCD -的棱长为a ,一般选择点P 在平面A A 'D B B ' D 'C C 'yzBC AD O z xyADP O x zABCD 的射影为原点,OA (或OC )、OB (或OD )、OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -,则各点坐标为④正三棱柱如图所示,正三棱柱 '''ABC A B C -的底面边长为a ,高为h ,一般选择AC 中点为原点,OC (或OA )、OB 、OE (E 为O 在''A C 上的射影)所在直线分别为x 轴、y轴、z 轴建立空间直角坐标系O xyz -,则各点坐标为3.空间向量的直角坐标运算律:(1)若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈,112233a b a b a b a b ⋅=++, 112233//,,()a b a b a b a b R λλλλ⇔===∈, 1122330a b a b a b a b ⊥⇔++=.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.4 123(,,)a a a a =,123(,,)b b b b =,则22123||a a a a a a =⋅=++,21||b b b b =⋅=+5.夹角公式:21cos ||||a ba b a b a ⋅⋅==⋅+6.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z , 则2||(AB AB ==,或,A B d =空间向量应用一、直线的方向向量把直线上任意两点的向量或与它平行的向量都称为直线的方向向量.在空间直角坐标系中,由111(,,)A x y z 与222(,,)B x y z 确定直线AB 的方向向量是212121(,,)AB x x y y z z =---.平面法向量 如果a α⊥,那么向量a 叫做平面α的法向量. 二、证明平行问题1.证明线线平行:证明两直线平行可用112233//,,()a b a b a b a b R λλλλ⇔===∈或312123//a a a a b b b b ⇔==. 2.证明线面平行直线l 的方向向量为a ,平面α的法向量为n ,且l α⊄,若a n ⊥即0a n ⋅=则//a α. 3.证明面面平行平面α的法向量为1n ,平面β的法向量为2n ,若12//n n 即12n n λ=则//αβ. 三、证明垂直问题 1.证明线线垂直证明两直线垂直可用1122330a b a b a b a b a b ⊥⇔⋅=++= 2.证明线面垂直直线l 的方向向量为a ,平面α的法向量为n ,且l α⊄,若//a n 即a n λ=则a α⊥. 3.证明面面垂直平面α的法向量为1n ,平面β的法向量为2n ,若12n n ⊥即120n n ⋅=则αβ⊥.x y四、夹角1.求线线夹角设123(,,)a a a a =,123(,,)b b b b =,(0,90]θ∈︒︒为一面直线所成角,则:||||cos ,a b a b a b ⋅=⋅⋅<>;21cos ,||||a ba b a b a ⋅<>==⋅+;cos |cos ,|a b θ=<>.2.求线面夹角如图,已知PA 为平面α的一条斜线,n 为平面α的一个法向量,过P 作平面α的垂线PO ,连结OA 则PAO ∠为斜线PA 和平面α所成的角,记为θ易得sin |sin(,)|2OP AP πθ=-<>|cos ,|OP AP =<>|cos ,|n AP =<>|cos ,|n PA =<>||||||n PA n PA ⋅=. 3.求面面夹角设1n 、2n 分别是二面角两个半平面α、β的法向量, 当法向量1n 、2n 同时指向二面角内或二面角外时,二面角θ的大小为12,n n π-<>;当法向量1n 、2n 一个指向二面角内,另一外指向二面角外时,二面角θ的大小为12,n n <>. 五、距离1.求点点距离设111(,,)A x y z ,222(,,)B x y z ,,A B d =||(AB AB AB x =⋅=2.求点面距离如图,A 为平面α任一点,已知PA 为平面α的一条斜线,n 为平面α的一个法向量,过P 作平面α的垂线PO ,连结OA 则PAO ∠为斜线PA 和平面α所成的角,记为θ易得||||sin |||cos ,|PO PA PA PA n θ=⋅=⋅<>||||||||PA n PA PA n ⋅=⋅⋅||||PA n n ⋅=. 3.求线线距离求异面直线间的距离可以利用向量的正射影性质直接计算.如图,设两条异面直线a 、b 的公垂线的方向向量为n , 这时分别在a 、b 上任取A 、B 两点,则向量在n 上的正射影长就是两条异面直线a 、b 的距离.即两异面直线间的距离等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.直线a 、b 的距离||||||||n AB n d AB n n ⋅=⋅=. 4.求线面距离一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离叫做这条直线到这个平面的距离.直线到平面的距离可转化为求点到平面的距离. 5.求面面距离和两个平行平面同时垂直的直线叫做两个平行平面的公垂线.公垂线夹在这两个平行平面间的部分叫做两个平行平面的公垂线段.公垂线段的长度叫做两个平行平面间的距离. 平面和平面间的距离可转化为求点到平面的距离.。

平面向量与空间向量有关内容的比较

平面向量与空间向量有关内容的比较

平面向量与空间向量有关内容的比较把平面向量和空间向量有关内容进行比较,有助于我们对空间向量的学习,也有助于我们加深对平面向量的理解.长度为0的向量叫做零向量,记作。

记作a则这些向量叫做共线向量边形法则为零向量;长度的λ倍。

加法交换律:a b b +=+(a b )c a (b ++=++(a b )a b λλλ+=+; a )()a μλμ=、b (0b ≠),a ∥b 的充要条件a b λ=. 共面的充要条件是存在实数对x ,y ,使p xa yb =+e e 对于这一平面内的任一向量.,存在一个唯一的有序实数组xa yb ++上表中,不共线的向量e 、e 叫做表示这一平面内如果三个向量a 、b 、c 不共面,叫做空间的一个基底,a 、b 、c b |a ||b |cos a,b =<其中a,b b,a <>=<>表示两个向量的夹角a (bc )a b ⋅+=⋅+a e e a |a |cos θ⋅=⋅=; 0a b a b ⊥⇔⋅=;a a |a |⋅=; a bcos |a ||b|θ⋅=;a ||b |.(x ,y ),b (x ,y ==1212b (x x ,y y )+=++;12b (x x ,y -=-12a b x x ⋅=+1a (x ,y λλλ=∥1b x ⇔12a b x x ⊥⇔+11233b (a b ,a b )=++;1a b (a b -=-11a b a b a ⋅=+1a (a ,λλλ=1b a ⇔=33a b (λλ=∈设a (x ,y )=,21|a |x =+, 222|b|x y =+, 222x cos x y θ=++(x =-设12a (a ,a ,a =21|a a =+,2|b|b =+22332a b a cos a,b ab ++<>=++),,(z y x ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量及其运算(一)
例1 已知平行六面体ABCD -D C B A ''''化简下列向量表达式: ⑴AB BC +

⑵AB AD AA '++

⑶12
AB AD CC '++
.
练习 1.已知空间四边形ABCD ,连结,AC BD ,设,M G 分别是,BC CD 的中点,化简下列各表达式:
(1)AB BC CD ++

(2)1()2AB BD BC ++
; (3)1()2
AG AB AC -+ .
例2.如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、DC 的中点.
(1)求AE 与D 1F 所成的角; (2)证明AE ⊥平面A 1D 1F .
B
C
D
M
G
A
练习2.在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求:异面直线BA 1与AC 所成的角.
课后练习
一、基础夯实
1.在下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OC OB OA OM --=2 B.
OC OB OA OM 2
13151++=
C.0=++MC MB MA
D.0=+++OC OB OA OM 2.与向量a =(12,5)平行的单位向量是( )
A.⎪⎭

⎝⎛135,1312
B.⎪⎭

⎝⎛--
135,13
12
C.⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛135
,1312135,
1312

D.⎪⎭
⎫ ⎝⎛±±
135,13
12
3.若向量{a , b ,c }是空间的一个基底,向量m =a +b ,n =a -b ,那么可以与m 、n 构成空
间另一个基底的向量是( )
A.a
B.b
C. c
D.2a 4. a 、b 是非零向量,则〈a ,b 〉的范围是 ( ) A.(0,
2
π) B.[0,
2
π] C.(0,π) D.[0,π]
5.若a 与b 是垂直的,则a ²b 的值是( )
A.大于0
B.等于零
C.小于0
D.不能确定 6.向量a =(1,2,-2),b =(-2,-4,4),则a 与b ( )
A.相交
B.垂直
C.平行
D.以上都不对 7. A (1,1,-2)、B (1,1,1),则线段AB 的长度是( ) A.1 B.2 C.3 D.4 8. m ={8,3,a },n ={2b ,6,5},若m ∥n ,则a +b 的值为( ) A.0 B.
2
5
C.
2
21 D.8
9. a ={1,5,-2},b ={m ,2,m +2},若a ⊥b ,则m 的值为( ) A.0 B.6 C.-6 D.±6
10. A (2,-4,-1),B (-1,5,1),C (3,-4,1),令a =CA ,b =CB ,则a +b 对应的点为( ) A.(5,-9,2) B.(-5,9,-2) C.(5,9,-2) D.(5,-9,2) 11. a =(2,-2,-3),b =(2,0,4),则a 与b 的夹角为( ) A.arc cos
85
854 B.85
69arcsin
C.85
854
arccos -π D.90°
12.若非零向量a ={x 1,y 1,z 1},b ={x 2,y 2,z 2},则
2
12121z z
y y x x ==是a 与b 同向或反向的( )
A.充分不必要条件
B.必要非充分条件
C.充要条件
D.不充分不必要条件。

相关文档
最新文档