【中考宝典】2019年中考数学真题分类汇编 模块六 圆
2019全国中考数学真题分类汇编:与圆有关的位置关系
A. 2 3
B.3
C.4
D. 4 3
【答案】 A 【解析】 ∵ O 与 AB,AC 相切 ,∴OD ⊥ AB,OE ⊥ AC, 又∵ OD =OE,∴∠ DAO =∠ EAO, 又∵ AB = AC, ∴ BO =CO, ∴∠ DAO = 30° ,BO= 4,∴ OD = OAtan ∠ DAO = 3 OA, 又∵在 Rt △ AOB 中 , AO AB2 OB 2 4 3 ,∴ OD = 2 3 ,故选 A.
于点 E,已知 BC= 3 , AC= 3.则图中阴影部分的面积是.
B D
C
O
E
A
【答案】 6 3 3 4
【解析】 在 Rt△ABC 中,∵ tan A BC AC
3
,∴∠ A= 30°.
3
∵⊙ O 与斜边 AB 相切于点 D,∴ OD⊥ AB.
设⊙ O 的半径为 r ,在 Rt△ADO 中, tan A OD
AP = 2 AD= 2 ;
③ 当 P 与 AB 相切时 ,点 P 到 AB 的距离为 6,即 PF= 6,PF⊥ AB, 过点 D 作 DG ⊥ AB 于点 G,∴△ APF∽△ ADG ∽
△ ABC, ∴ PF AP
AC AB ,其中 ,PF= 6,AC = 12,AB =
AC 2
BC 2 = 6 13 ,∴ AP = 3 13 ;
【答案】 2 3
【解析】连接 OQ ,如图所示,
∵ PQ 是⊙ O 的切线,∴ OQ ⊥ PQ ,根据勾股定理知:
PQ
2
=OP
2
-OQ
2,∴当
PO ⊥ AB 时,线段
PQ 最短,
∵在 Rt △AOB 中, OA=OB= 4 2 ,∴ AB=
专题06 圆-2019年山东省中考数学真题汇编(解析版)
专题06 圆一、选择题1.(2019山东聊城)如图,BC是半圆O的直径,D,E是BC上两点,连接BD,CE并延长交于点A,连接OD,OE.如果∠A=70°,那么∠DOE的度数为()A.35°B.38°C.40°D.42°【答案】C.【解析】解:连接CD,如图所示:∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°﹣∠A=20°,∴∠DOE=2∠ACD=40°,故选:C.2.(2019山东德州)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A. 130°B. 140°C. 150°D. 160°【答案】B.【解析】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.3.(2019山东临沂)如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°【答案】A.【解析】解:如图所示:连接OC、CD,∵PC是⊙O的切线,∴PC⊥OC,∴∠OCP=90°,∵∠A=119°,∴∠ODC=180°﹣∠A=61°,∵OC=OD,∴∠OCD=∠ODC=61°,∴∠DOC=180°﹣2×61°=58°,∴∠P=90°﹣∠DOC=32°;故选:A.4.(2019山东泰安)如图,将⊙O沿弦AB折叠,AB恰好经过圆心O,若⊙O的半径为3则AB的长为()A.12πB.πC.2πD.3π【答案】C.【解答】解:连接OA、OB,作OC⊥AB于C,由题意得,OC=12 OA,∴∠OAC=30°,∵OA=OB,∴∠OBA=∠OAC=30°,∴∠AOB=120°,∴AB的长=12032 180ππ⨯=,故选:C.5.(2019山东菏泽)如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD【答案】C.【解析】解:∵AB是⊙O的直径,BC平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A成立;∴AD⊥OC,选项B成立;∴AF=FD,选项D成立;∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,选项C不成立;故选:C.6.(2019山东枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD 于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣1 2π【答案】C.【解析】解:S阴=S△ABD﹣S扇形BAE=12×4×4﹣2454360π⨯=8﹣2π,故选:C.7.(2019山东青岛)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则CD的长度为()A.πB.2πC.2πD.4π【答案】B.【解析】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴CD的长度为:9042 180ππ⨯=,故选:B.8.(2019山东威海)如图,⊙P 与x 轴交于点A (﹣5,0),B (1,0),与y 轴的正半轴交于点C .若∠ACB=60°,则点C 的纵坐标为( )A 133B .223C .2D .2+2【答案】B .【解析】解:连接P A ,PB ,PC ,过P 作PD ⊥AB 于D ,PE ⊥BC 于E ,∵∠ACB =60°,∴∠APB =120°,∵P A =PB ,∴∠P AB =∠PBA =30°,∵A (﹣5,0),B (1,0),∴AB =6,∴AD =BD =3,∴PD 3P A =PB =PC =3,∵PD ⊥AB ,PE ⊥BC ,∠AOC =90°,∴四边形PEOD 是矩形,∴OE =PD 3,PE =OD =2,∴CE 2212422PC PE --=∴OC =CE +OE =223∴点C 的纵坐标为223,故选:B .9.(2019山东临沂)如图,⊙O 中,AB AC =,∠ACB =75°,BC =2,则阴影部分的面积是()A .2+23πB .323πC .4+23πD .2+43π 【答案】A.【解析】解:∵AB AC =,∴AB =AC ,∵∠ACB =75°,∴∠ABC =∠ACB =75°,∴∠BAC =30°,∴∠BOC =60°,∵OB =OC ,∴△BOC 是等边三角形,∴OA =OB =OC =BC =2,作AD ⊥BC ,∵AB =AC ,∴BD =CD ,∴AD 经过圆心O ,∴OD 3OB 3 ∴AD =3,∴S △ABC =12BC •AD =3,S △BOC =12BC •OD 3, ∴S 阴影=S △ABC +S 扇形BOC ﹣S △BOC =3+2602360π⨯32+23π, 故选:A .10.(2019山东潍坊)如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E ,连接AC 交DE 于点F .若sin ∠CAB =35,DF =5,则BC 的长为( )A.8 B.10 C.12 D.16 【答案】C.【解析】解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵∠AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=F A=5,在Rt△AEF中,∵sin∠CAB=EFAF=35,∴EF=3,∴AE=4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20,在Rt△ABC中,∵sin∠CAB=BCAB=35,∴BC=20×35=12.故选:C.二、填空题11.(2019山东德州)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,AB BF,CE=1,AB=6,则弦AF的长度为.【答案】485.【解析】解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=12AB=3,设⊙O的半径为r,则OE=r-1,OA=r,在Rt△OAE中,32+(r-1)2=r2,解得r=5,∵AB BF,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5-OG)2=62,②解由①②组成的方程组得到AG=245,∴AF=2AG=485.故答案为485.12.(2019山东青岛)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.【答案】54.【解析】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠F AD =18°,∴∠CDF =∠DAF =18°,∴∠BDF =36°+18°=54°,故答案为:54.13.(2019山东泰安)如图,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB 于点D ,若OA =3,则阴影都分的面积为 .【答案】34π. 【解析】解:连接OC ,作CH ⊥OB 于H ,∵∠AOB =90°,∠B =30°,∴∠OAB =60°,AB =2OA =6,由勾股定理得,OB 2233AB OA -=,∵OA =OC ,∠OAB =60°,∴△AOC 为等边三角形,∴∠AOC =60°,∴∠COB =30°,∴CO =CB ,CH =12OC =32, ∴阴影都分的面积=2260313133033333360222360ππ⨯⨯-⨯⨯+⨯-=34π, 故答案为:34π.14.(2019山东济宁)如图,O 为Rt △ABC 直角边AC 上一点,以OC 为半径的⊙O 与斜边AB 相切于点D ,交OA 于点E ,已知BCAC =3.则图中阴影部分的面积是 .【答案】6π. 【解析】解:在Rt △ABC 中,∵BC 3AC =3,∴AB =3,∵BC ⊥OC ,∴BC 是圆的切线,∵⊙O 与斜边AB 相切于点D ,∴BD =BC ,∴AD =AB ﹣BD =333 在Rt △ABC 中,∵sin A =31223BC AB ==,∴∠A =30°, ∵⊙O 与斜边AB 相切于点D ,∴OD ⊥AB ,∴∠AOD =90°﹣∠A =60°,∵OD AD =tan A =tan30°333=,∴OD =1, ∴S 阴影=26013606ππ⨯=. 故答案是:6π. 15.(2019山东菏泽)如图,直线334y x =--交x 轴于点A ,交y 轴于点B ,点P 是x 轴上一动点,以点P 为圆心,以1个单位长度为半径作⊙P ,当⊙P 与直线AB 相切时,点P 的坐标是.【答案】(73-,0). 【解析】解:∵直线334y =--交x 轴于点A ,交y 轴于点B ,∴令x=0,得y=﹣3,令y=0,得x=﹣4,∴A(﹣4,0),B(0.﹣3),∴OA=4,OB=3,∴AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,∵∠ADP=∠AOB=90°,∠P AD=∠BAO,∴△APD∽△ABO,∴PD APOB AB=,∴135AP=,∴AP=53,∴OP=73,∴P(73-,0),故答案为:(73-,0).16.(2019山东潍坊)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为.(n 为正整数)【答案】(n21n+.【解析】解:连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:在Rt△OA1P1中,OA1=1,OP1=2,∴A 1P 1==同理:A 2P 2A 3P 3,……,∴P 1的坐标为( 13),P 2的坐标为( 25,P 3的坐标为(37),……,…按照此规律可得点P n 的坐标是(n 22(1)n n +-,即(n 21n +故答案为:(n 21n +).三、解答题17.(2019山东菏泽)如图,BC 是⊙O 的直径,CE 是⊙O 的弦,过点E 作⊙O 的切线,交CB 的延长线于点G ,过点B 作BF ⊥GE 于点F ,交CE 的延长线于点A .(1)求证:∠ABG =2∠C ;(2)若GF =3GB =6,求⊙O 的半径.【答案】(1)见解析;(2)6.【解析】(1)证明:连接OE ,∵EG 是⊙O 的切线,∴OE ⊥EG ,∵BF ⊥GE ,∴OE ∥AB ,∴∠A =∠OEC ,∵OE =OC ,∴∠OEC =∠C ,∴∠A =∠C ,∵∠ABG =∠A +∠C ,∴∠ABG =2∠C ;(2)解:∵BF ⊥GE ,∵GF=,GB=6,∴BF3,∵BF∥OE,∴△BGF∽△OGE,∴BF BGOE OG=,∴366OE OE=+,∴OE=6,∴⊙O的半径为6.18.(2019山东枣庄)如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=2,DE=4,求圆的半径及AC的长.【答案】(1)见解析;(2)圆的半径为1.5,AC的长为32【解析】(1)证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD(SSS),∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴(4﹣r)2=r2+22,∴r=1.5,∵tan∠E=OB CDEB DE=,∴1.524CD=,在Rt△ABC中,AC=∴圆的半径为1.5,AC的长为3219.(2019山东聊城)如图,△ABC内接于⊙O,AB为直径,作OD⊥AB交AC于点D,延长BC,OD交于点F,过点C作⊙O的切线CE,交OF于点E.(1)求证:EC=ED;(2)如果OA=4,EF=3,求弦AC的长.【答案】(1)见解析;(2)55.【解析】(1)证明:连接OC,∵CE与⊙O相切,为C是⊙O的半径,∴OC⊥CE,∴∠OCA+∠ACE=90°,∵OA=OC,∴∠A=∠OCA,∴∠ACE+∠A=90°,∵OD⊥AB,∴∠ODA+∠A=90°,∵∠ODA=∠CDE,∴∠CDE+∠A=90°,∴∠CDE=∠ACE,∴EC=ED;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,在Rt △DCF 中,∠DCE +∠ECF =90°,∠DCE =∠CDE ,∴∠CDE +∠ECF =90°,∵∠CDE +∠F =90°,∴∠ECF =∠F ,∴EC =EF ,∵EF =3,∴EC =DE =3,∴OE =5,∴OD =OE ﹣DE =2,在Rt △OAD 中,AD 22224225OA OD +=+=在Rt △AOD 和Rt △ACB 中,∵∠A =∠A ,∠ACB =∠AOD ,∴Rt △AOD ∽Rt △ACB , ∴OA AD AC AB=,即425AC =, ∴AC =1655. 20.(2019山东临沂)如图,AB 是⊙O 的直径,C 是⊙O 上一点,过点O 作OD ⊥AB ,交BC 的延长线于D ,交AC 于点E ,F 是DE 的中点,连接CF .(1)求证:CF 是⊙O 的切线.(2)若∠A =22.5°,求证:AC =DC .【答案】(1)见解析;(2)见解析.【解答】(1)证明:∵AB 是⊙O 的直径,∴∠ACB =∠ACD =90°,∵点F 是ED 的中点,∴CF =EF =DF ,∴∠AEO =∠FEC =∠FCE ,∵OA =OC ,∴∠OCA =∠OAC ,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.21.(2019山东济宁)如图,AB是⊙O的直径,C是⊙O上一点,D是AC的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.(1)求证:AE是⊙O的切线;(2)若DH=9,tan C=34,求直径AB的长.【答案】(1)见解析;(2)20.【解析】解:(1)∵D是AC的中点,∴OE⊥AC,∴∠AFE=90°,∴∠E+∠EAF=90°,∵∠AOE=2∠C,∠CAE=2∠C,∴∠CAE=∠AOE,∴∠E+∠AOE=90°,∴∠EAO=90°,∴AE是⊙O的切线;(2)∵∠C=∠B,∵OD=OB,∴∠B=∠ODB,∴∠ODB=∠C,∴tan C=tan∠ODB=34 HFDF=,∴设HF=3x,DF=4x,∴DH=5x=9,∴x=95,∴DF=365,HF=275,∵∠C=∠FDH,∠DFH=∠CFD,△DFH∽△CFD,∴DF FHCF DF=,∴CF=363648552755⨯=,∴AF=CF=485,设OA=OD=x,∴OF=x﹣365,∵AF2+OF2=OA2,∴(485)2+(x﹣365)2=x2,解得:x=10,∴OA=10,∴直径AB的长为20.22.(2019山东德州)如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC3(1)用尺规在图中作一段劣弧,使得它在A、C两点分别与射线PB和PD相切.要求:写出作法,并保留作图痕迹;(2)根据(1)的作法,结合已有条件,请写出已知和求证,并证明;(3)求所得的劣弧与线段PA、PC围成的封闭图形的面积.【答案】(1)见解析;(2)2π.【解析】解:(1)如图,(2)已知:如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC3,过A、C 分别作PB、PD的垂线,它们相交于O,以OA为半径作⊙O,OA⊥PB,求证:PB、PC为⊙O的切线;证明:∵∠BPD=120°,PAC=30°,∴∠PCA=30°,∴PA=PC,如图,连接OP,∵OA⊥PA,PC⊥OC,∴∠PAO=∠PCO=90°,∵OP=OP,∴Rt△PAO≌Rt△PCO(HL)∴OA=OC,∴PB、PC为⊙O的切线;(3)∵∠OAP=∠OCP=90°-30°=60°,∴△OAC为等边三角形,∴OA=AC3,∠AOC=60°,∵OP平分∠APC,∴∠APO=60°,∴AP 332=,∴劣弧AC与线段PA、PC围成的封闭图形的面积为:S 四边形APCO-S扇形AOC=2160(23)2232432 2360ππ⨯⨯-=.23.(2019山东滨州)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC 交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:直线DF是⊙O的切线;(2)求证:BC2=4CF•AC;(3)若⊙O的半径为4,∠CDF=15°,求阴影部分的面积.【答案】(1)见解析;(2)见解析;(3)163π﹣3【解析】解:(1)如图所示,连接OD,∵AB=AC,∴∠ABC=∠C,而OB=OD,∴∠ODB=∠ABC=∠C,∵DF⊥AC,∴∠CDF+∠C=90°,∴∠CDF+∠ODB=90°,∴∠ODF=90°,∴直线DF是⊙O的切线;(2)连接AD,则AD⊥BC,则AB=AC,则DB=DC=12 BC,∵∠CDF+∠C=90°,∠C+∠DAC=90°,∴∠CDF=∠DCA,而∠DFC=∠ADC=90°,∴△CFD∽△CDA,∴CD2=CF•AC,即BC2=4CF•AC;(3)连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△OAE=12AE×OE sin∠OEA=12×2×OE×cos∠OEA×OE sin∠OEA=3S阴影部分=S扇形OAE﹣S△OAE=120360×π×42﹣3=163π﹣324.(2019山东淄博)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC 上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.【答案】(1)见解析;(2)3 2【解析】解:(1)①连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,∴∠DAO=∠ADO,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∴BC是⊙O的切线;②连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴CD2=CE•CA;(2)连接DE、OE,设圆的半径为R,∵点F是劣弧AD的中点,∴是OF是DA中垂线,∴DF=AF,∴∠FDA=∠F AD,∵DO∥AB,∴∠PDA=∠DAF,∴∠ADO=∠DAO=∠FDA=∠F AD,∴AF=DF=OA=OD,∴△OFD、△OF A是等边三角形,∴∠C=30°,∴OD=12OC=(OE+EC),而OE=OD,∴CE=OE=R=3,S阴影=S扇形DFO=60360×π×32=32π.25.(2019山东潍坊)如图,在平面直角坐标系xoy中,O为坐标原点,点A(4,0),点B(0,4),△ABO 的中线AC与y轴交于点C,且⊙M经过O,A,C三点.(1)求圆心M的坐标;(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=5P的坐标.【答案】(1)M(2,1);(2)y=2x﹣8;(3)P(143,193).【解析】解:(1)点B(0,4),则点C(0,2),∵点A(4,0),则点M(2,1);(2)∵⊙P与直线AD,则∠CAD=90°,设:∠CAO=α,则∠CAO=∠ODA=∠PEH=α,tan∠CAO=12OCOA==tanα,则sinα5cosα5AC CD=sin ACCDA=∠=10,则点D(0,﹣8),将点A、D的坐标代入一次函数表达式:y=mx+n并解得:直线AD的表达式为:y=2x﹣8;(3)抛物线的表达式为:y=a(x﹣2)2+1,将点B坐标代入上式并解得:a=34,故抛物线的表达式为:y=34x2﹣3x+4,过点P作PH⊥EF,则EH=12EF=5cos∠PEH=25cos5 EHPE PEα===,解得:PE=5,设点P(x,34x2﹣3x+4),则点E(x,2x﹣8),则PE=34x2﹣3x+4﹣2x+8=5,解得x=143或2(舍去2),则点P(143,193).26.(2019山东威海)(1)方法选择如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD.小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…小军认为可用补短法证明:延长CD至点N,使得DN=AD…请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,井证明你的结论.【探究2】如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是.(3)拓展猜想如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是.【答案】(1)见解析;(2)探究1:BD=CD2AD,证明见解析;探究2:BD3CD+2AD;(3)BD=BM+DM=cbCD+abAD.【解析】解:(1)方法选择:∵AB=BC=AC,∴∠ACB=∠ABC=60°,如图①,在BD上截取DEMAD,连接AM,∵∠ADB=∠ACB=60°,∴△ADM是等边三角形,∴AM=AD,∵∠ABM=∠ACD,∵∠AMB=∠ADC=120°,∴△ABM≌△ACD(AAS),∴BM=CD,∴BD=BM+DM=CD+AD;(2)类比探究:如图②,∵BC是⊙O的直径,∴∠BAC=90°,∵AB=AC,∴∠ABC=∠ACB=45°,过A作AM⊥AD交BD于M,∵∠ADB=∠ACB=45°,∴△ADM是等腰直角三角形,∴AM=AD,∠AMD=45°,∴DM AD,∴∠AMB =∠ADC =135°,∵∠ABM =∠ACD ,∴△ABM ≌△ACD (AAS ),∴BM =CD ,∴BD =BM +DM =CD 2AD ;【探究2】如图③,∵若BC 是⊙O 的直径,∠ABC =30°,∴∠BAC =90°,∠ACB =60°, 过A 作AM ⊥AD 交BD 于M ,∵∠ADB =∠ACB =60°,∴∠AMD =30°,∴MD =2AD ,∵∠ABD =∠ACD ,∠AMB =∠ADC =150°,∴△ABM ∽△ACD ,∴3BM AB CD AC == ∴BM 3,∴BD =BM +DM 3CD +2AD ;故答案为:BD 3CD +2AD ;(3)拓展猜想:BD =BM +DM =c b CD +a bAD ; 理由:如图④,∵若BC 是⊙O 的直径,∴∠BAC =90°,过A 作AM ⊥AD 交BD 于M ,∴∠MAD =90°,∴∠BAM =∠DAC ,∴△ABM ∽△ACD ,∴BM AB c CD AC b ==, ∴BM =c bCD , ∵∠ADB =∠ACB ,∠BAC =∠NAD =90°, ∴△ADM ∽△ACB ,∴AD AC b DM BC a ==, ∴DM =a bAD , ∴BD =BM +DM =c b CD +a bAD . 故答案为:BD =BM +DM =c b CD +a b AD .。
2019年全国中考数学真题精选分类汇编:圆(填空题)含答案解析
2019年全国中考数学真题精选分类汇编:圆(填空题)含答案解析一.填空题(共40小题)1.(2019•铁岭)如图,点A,B,C在⊙O上,∠A=60°,∠C=70°,OB=9,则的长为.2.(2019•盘锦)如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=.3.(2019•青海)如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为.4.(2019•莱芜区)用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是cm.5.(2019•鞍山)如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB =30°,则的长为.6.(2019•营口)圆锥侧面展开图的圆心角的度数为216°,母线长为5,该圆锥的底面半径为.7.(2019•锦州)如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为.8.(2019•湘潭)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为平方米.9.(2019•鄂尔多斯)如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.10.(2019•辽阳)如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=.11.(2019•娄底)如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD =.12.(2019•雅安)如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则∠A的度数为.13.(2019•陕西)若正六边形的边长为3,则其较长的一条对角线长为.14.(2019•宁夏)如图,AB是⊙O的弦,OC⊥AB,垂足为点C,将劣弧沿弦AB折叠交于OC的中点D,若AB=2,则⊙O的半径为.15.(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD 为直径的⊙O交AD于点E,则图中阴影部分的面积为.16.(2019•铜仁市)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为;17.(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在上.若OD=8,OE=6,则阴影部分图形的面积是(结果保留π).18.(2019•包头)如图,BD是⊙O的直径,A是⊙O外一点,点C在⊙O上,AC与⊙O相切于点C,∠CAB=90°,若BD=6,AB=4,∠ABC=∠CBD,则弦BC的长为.19.(2019•梧州)如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是.20.(2019•柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为.21.(2019•贵阳)如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是.22.(2019•鸡西)若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.23.(2019•齐齐哈尔)将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.24.(2019•绥化)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为.25.(2019•鸡西)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为.26.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.27.(2019•贺州)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.28.(2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.29.(2019•烟台)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.30.(2019•河池)如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.31.(2019•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.32.(2019•孝感)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=.33.(2019•十堰)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为.34.(2019•荆州)如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为.35.(2019•海南)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为度.36.(2019•福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)37.(2019•咸宁)如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).38.(2019•荆门)如图,等边三角形ABC的边长为2,以A为圆心,1为半径作圆分别交AB,AC边于D,E,再以点C为圆心,CD长为半径作圆交BC边于F,连接E,F,那么图中阴影部分的面积为.39.(2019•广元)如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是.40.(2019•河南)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC ⊥OA.若OA=2,则阴影部分的面积为.2019年去全国中考数学真题精选分类汇编:圆(填空题)含答案解析参考答案与试题解析一.填空题(共40小题)1.(2019•铁岭)如图,点A,B,C在⊙O上,∠A=60°,∠C=70°,OB=9,则的长为8π.【分析】连接OA,根据等腰三角形的性质求出∠OAC,根据题意和三角形内角和定理求出∠AOB,代入弧长公式计算,得到答案.【解答】解:连接OA,∵OA=OC,∴∠OAC=∠C=70°,∴∠OAB=∠OAC﹣∠BAC=70°﹣60°=10°,∵OA=OB,∴∠OBA=∠OAB=10°,∴∠AOB=180°﹣10°﹣10°=160°,则的长==8π,故答案为:8π.【点评】本题考查的是弧长的计算、圆周角定理,掌握弧长公式是解题的关键.2.(2019•盘锦)如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=4.【分析】根据垂径定理得到AD=DC,由等腰三角形的性质得到AB=2OD=2×2=4,得到∠BAE=∠CAE=∠BAC=90°=45°,求得∠ABD=∠ADB=45°,求得AD=AB=4,于是得到DC=AD=4,根据勾股定理即可得到结论.【解答】解:∵OD⊥AC,∴AD=DC,∵BO=CO,∴AB=2OD=2×2=4,∵BC是⊙O的直径,∴∠BAC=90°,∵OE⊥BC,∴∠BOE=∠COE=90°,∴=,∴∠BAE=∠CAE=∠BAC=90°=45°,∵EA⊥BD,∴∠ABD=∠ADB=45°,∴AD=AB=4,∴DC=AD=4,∴AC=8,∴BC===4.故答案为:4.【点评】本题考查了三角形的外接圆与外心,圆周角定理,垂径定理,勾股定理,正确的识别图形是解题的关键.3.(2019•青海)如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为1.【分析】直接利用正方形的性质结合转化思想得出阴影部分面积=S△CEB,进而得出答案.【解答】解:如图所示:连接BE,可得,AE=BE,∠AEB=90°,且阴影部分面积=S△CEB=S△ABC=S正方形ABCD=×2×2=1故答案为1【点评】本题考查正方形的性质,扇形的面积等知识,解题的关键是学会把不规则图形转化为规则图形,属于中考常考题型.4.(2019•莱芜区)用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是10cm.【分析】求得圆锥的母线的长利用勾股定理求得圆锥的高即可.【解答】解:设圆锥的母线长为l,则=10π,解得:l=15,∴圆锥的高为:=10,故答案为:10【点评】考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于圆锥的侧面扇形的弧长,难度不大.5.(2019•鞍山)如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB =30°,则的长为2π.【分析】根据圆周角定理求出∠AOB,得到∠BOC的度数,根据弧长公式计算即可.【解答】解:由圆周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的长==2π,故答案为:2π.【点评】本题考查的是圆周角定理、弧长的计算,掌握圆周角定理、弧长公式是解题的关键.6.(2019•营口)圆锥侧面展开图的圆心角的度数为216°,母线长为5,该圆锥的底面半径为3.【分析】设该圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,然后解关于r的方程即可.【解答】解:设该圆锥的底面半径为r,根据题意得2πr=,解得r=3.故答案为3.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.(2019•锦州)如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为.【分析】根据已知条件得到∠AOB=60°,推出△AOB是等边三角形,得到OA=OB=AB=2,根据扇形的面积公式即可得到结论.【解答】解:∵正六边形ABCDEF内接于⊙O,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=2,∴扇形AOB的面积==,故答案为:.【点评】本题考查了正多边形与圆及扇形的面积的计算,解题的关键是熟练掌握扇形的面积公式.8.(2019•湘潭)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为10平方米.【分析】根据垂径定理得到AD=4,由勾股定理得到OD==3,求得OA﹣OD=2,根据弧田面积=(弦×矢+矢2)即可得到结论.【解答】解:∵弦AB=8米,半径OC⊥弦AB,∴AD=4,∴OD==3,∴OA﹣OD=2,∴弧田面积=(弦×矢+矢2)=×(8×2+22)=10,故答案为:10.【点评】此题考查垂径定理的应用,关键是根据垂径定理和扇形面积解答.9.(2019•鄂尔多斯)如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是3π﹣.【分析】根据S阴影部分=S扇形OAE﹣S△OAE即可求解.【解答】解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△OAE=AE×OE sin∠OEA=×2×OE×cos∠OEA×OE sin∠OEA=,S阴影部分=S扇形OAE﹣S△OAE=×π×32﹣=3π﹣.故答案3π﹣.【点评】本题考查扇形的面积公式,等腰三角形的性质,三角形的面积等知识,解题的关键是学会用分割法求阴影部分的面积.10.(2019•辽阳)如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=60°.【分析】连接OB,求出∠D,利用三角形的外角的性质解决问题即可.【解答】解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.【点评】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.11.(2019•娄底)如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD =1.【分析】利用圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,然后根据含30度的直角三角形三边的关系求求AD的长.【解答】解:∵AB为直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴AD=AB=×2=1.故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.(2019•雅安)如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则∠A的度数为69°.【分析】直接利用圆周角定理得出∠BCD=90°,进而得出答案.【解答】解:∵△ABC内接于⊙O,BD是⊙O的直径,∴∠BCD=90°,∵∠CBD=21°,∴∠A=∠D=90°﹣21°=69°.故答案为:69°【点评】此题主要考查了三角形的外接圆与外心,正确掌握圆周角定理是解题关键.13.(2019•陕西)若正六边形的边长为3,则其较长的一条对角线长为6.【分析】根据正六边形的性质即可得到结论.【解答】解:如图所示为正六边形最长的三条对角线,由正六边形性质可知,△AOB,△COD为两个边长相等的等边三角形,∴AD=2AB=6,故答案为6.【点评】该题主要考查了正多边形和圆的性质及其应用问题;解题的关键是灵活运用正多边形和圆的性质来分析、判断、解答.14.(2019•宁夏)如图,AB是⊙O的弦,OC⊥AB,垂足为点C,将劣弧沿弦AB折叠交于OC的中点D,若AB=2,则⊙O的半径为3.【分析】连接OA,设半径为x,用x表示OC,根据勾股定理建立x的方程,便可求得结果.【解答】解:连接OA,设半径为x,∵将劣弧沿弦AB折叠交于OC的中点D,∴OC=,OC⊥AB,∴AC==,∵OA2﹣OC2=AC2,∴,解得,x=3.故答案为:3.【点评】本题主要考查了圆的基本性质,垂径定理,勾股定理,关键是根据勾股定理列出半径的方程.15.(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD 为直径的⊙O交AD于点E,则图中阴影部分的面积为.【分析】连接OE,作OF⊥DE,先求出∠COE=2∠D=60°、OF=OD=1,DF=OD cos ∠ODF=,DE=2DF=2,再根据阴影部分面积是扇形与三角形的面积和求解可得.【解答】解:如图,连接OE,作OF⊥DE于点F,∵四边形ABCD是平行四边形,且∠A=150°,∴∠D=30°,则∠COE=2∠D=60°,∵CD=4,∴CO=DO=2,∴OF=OD=1,DF=OD cos∠ODF=2×=,∴DE=2DF=2,∴图中阴影部分的面积为+×2×1=+,故答案为:+.【点评】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S=是解题的关键.16.(2019•铜仁市)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为100°;【分析】直接利用圆内接四边形的性质:外角等于它的内对角得出答案.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=100°,故答案为:100°【点评】考查圆内接四边形的外角等于它的内对角.17.(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在上.若OD=8,OE=6,则阴影部分图形的面积是25π﹣48(结果保留π).【分析】连接OC,根据同样只统计得到▱ODCE是矩形,由矩形的性质得到∠ODC=90°.根据勾股定理得到OC=10,根据扇形的面积公式和矩形的面积公式即可得到结论.【解答】解:连接OC,∵∠AOB=90°,四边形ODCE是平行四边形,∴▱ODCE是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=﹣8×6=25π﹣48.故答案为:25π﹣48.【点评】本题考查了扇形的面积的计算,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.18.(2019•包头)如图,BD是⊙O的直径,A是⊙O外一点,点C在⊙O上,AC与⊙O相切于点C,∠CAB=90°,若BD=6,AB=4,∠ABC=∠CBD,则弦BC的长为2.【分析】连接CD,由圆周角定理得出∠BCD=90°=∠CAB,证明△ABC∽△CBD,得出=,即可得出结果.【解答】解:连接CD,如图:∵BD是⊙O的直径,∴∠BCD=90°=∠CAB,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,∴BC2=AB×BD=4×6=24,∴BC==2;故答案为:2.【点评】本题考查了圆周角定理、相似三角形的判定与性质;熟练掌握圆周角定理,证明三角形相似是解题的关键.19.(2019•梧州)如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是.【分析】根据三角形外角的性质得到∠C=∠ADO﹣∠CAB=65°,根据等腰三角形的性质得到∠AOC=50°,由扇形的面积公式即可得到结论.【解答】解:∵∠ADO=85°,∠CAB=20°,∴∠C=∠ADO﹣∠CAB=65°,∵OA=OC,∴∠OAC=∠C=65°,∴∠AOC=50°,∴阴影部分的扇形OAC面积==,故答案为:.【点评】本题考查了扇形面积的计算,由等腰三角形的性质和三角形的内角和求出∠AOC 是解题的关键.20.(2019•柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为5.【分析】先根据题意画出图形,再连接OB、OC,过O作OE⊥BC,设此正方形的边长为a,由垂径定理及正方形的性质得出OE=BE=,再由勾股定理即可求解.【解答】解:如图所示,连接OB、OC,过O作OE⊥BC,设此正方形的边长为a,∵OE⊥BC,∴OE=BE=,即a=5.故答案为:5.【点评】本题考查的是正多边形和圆,解答此类问题的关键是根据题意画出图形,利用数形结合求解.21.(2019•贵阳)如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是4π.【分析】由题意得出:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,求出圆的半径,由圆的周长公式即可得出结果.【解答】解:由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,连接AB、BC、CD、AD,则四边形ABCD是正方形,连接OB,如图所示:则正方形ABCD的对角线=2OA=4,OA⊥OB,OA=OB=2,∴AB=2,过点O作ON⊥AB于N,则NA=AB=,∴圆的半径为,∴四叶幸运草的周长=2×2π×=4π;故答案为:4π.【点评】本题考查了正多边形和圆、正方形的性质以及圆周长公式;由题意得出四叶幸运草的周长=2个圆的周长是解题的关键.22.(2019•鸡西)若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是150°.【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可.【解答】解:∵圆锥的底面圆的周长是5πcm,∴圆锥的侧面展开扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.【点评】本题考查了圆锥的计算,解题的关键是根据圆锥的侧面展开扇形的弧长等于圆锥的底面周长来求出弧长.23.(2019•齐齐哈尔)将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为4cm.【分析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=3,然后根据勾股定理计算出圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=3,所以圆锥的高==4(cm).故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.24.(2019•绥化)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为12.【分析】根据底面周长等于圆锥的侧面展开扇形的弧长列式计算即可.【解答】解:设圆锥的母线长为l,根据题意得:=2π×4,解得:l=12,故答案为:12.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.25.(2019•鸡西)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为60°.【分析】利用圆周角与圆心角的关系即可求解.【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.【点评】此题考查了圆周角与圆心角定理,熟练掌握圆周角与圆心角的关系是解题关键.26.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为5或5.【分析】如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC =AB=5,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC =OB=5.【解答】解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD=OB=,∴BC=AB=5,如图2,当∠DOB=90°,∴∠BOC=90°,∴△BOC是等腰直角三角形,∴BC=OB=5,综上所述:若△OBD是直角三角形,则弦BC的长为5或5,故答案为:5或5.【点评】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.27.(2019•贺州)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是90度.【分析】先根据勾股定理求出圆锥的母线为4,进而求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:设圆锥的母线为a,根据勾股定理得,a=4,设圆锥的侧面展开图的圆心角度数为n°,根据题意得2π•1=,解得n=90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.28.(2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.【分析】利用弧长=圆锥的底面周长这一等量关系可求解.【解答】解:连接AB,过O作OM⊥AB于M,∵∠AOB=120°,OA=OB,∴∠BAO=30°,AM=,∴OA=2,∵=2πr,∴r=故答案是:【点评】本题运用了弧长公式和圆的周长公式,建立准确的等量关系是解题的关键.29.(2019•烟台)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为π﹣2.【分析】连接OB,作OH⊥BC于H,如图,利用等边三角形的性质得AB=BC=AC=2,∠ABC=60°,再根据三角形内切圆的性质得OH为⊙O的半径,∠OBH=30°,再计算出BH=CH=1,OH=BH=,然后根据扇形的面积公式,利用阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O进行计算.【解答】解:连接OB,作OH⊥BC于H,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB ﹣2S△ABC﹣S⊙O=3×﹣2××22﹣π×()2=π﹣2.故答案为π﹣2.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等边三角形的性质和扇形面积公式.30.(2019•河池)如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=76°.【分析】由切线的性质得出P A=PB,P A⊥OA,得出∠P AB=∠PBA,∠OAP=90°,由已知得出∠PBA=∠P AB=90°﹣∠OAB=52°,再由三角形内角和定理即可得出结果.【解答】解:∵P A,PB是⊙O的切线,∴P A=PB,P A⊥OA,∴∠P AB=∠PBA,∠OAP=90°,∴∠PBA=∠P AB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.【点评】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形内角和定理;利用切线的性质来解答问题时,解此类问题的一般思路是利用直角来解决问题.31.(2019•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.32.(2019•孝感)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=π﹣3.【分析】根据圆的面积公式得到⊙O的面积S=3.14,求得圆的内接正十二边形的面积S1=12××1×1×sin30°=3,即可得到结论.【解答】解:∵⊙O的半径为1,∴⊙O的面积S=π,∴圆的内接正十二边形的中心角为=30°,∴过A作AC⊥OB,∴AC=OA=,∴圆的内接正十二边形的面积S1=12××1×=3,∴则S﹣S1=π﹣3,故答案为:π﹣3.【点评】本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.33.(2019•十堰)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为6π.【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积.【解答】解:由图可得,图中阴影部分的面积为:=6π,故答案为:6π.【点评】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.34.(2019•荆州)如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为4和2.56.【分析】根据切线的性质得出△ABD是直角三角形,DB2=CD•AD,根据勾股定理求得AB,即可求得AE,然后分两种情况求得AP的长即可.【解答】解:∵过B点的切线交AC的延长线于点D,∴AB⊥BD,∴AB===8,当∠AEP=90°时,∵AE=EC,∴EP经过圆心O,∴AP=AO=4;当∠APE=90°时,则EP∥BD,∴=,∵DB2=CD•AD,∴CD===3.6,∴AC=10﹣3.6=6.4,∴AE=3.2,∴=,∴AP=2.56.综上AP的长为4和2.56.【点评】本题考查了切线的性质,勾股定理的应用,垂径定理的应用,平行线的判定和性质,分类讨论是解题的关键.35.(2019•海南)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为144度.【分析】根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.【解答】解:∵五边形ABCDE是正五边形,∴∠E=∠A==108°.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,故答案为:144.【点评】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.36.(2019•福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是π﹣1.(结果保留π)【分析】延长DC,CB交⊙O于M,N,根据圆和正方形的面积公式即可得到结论.【解答】解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O﹣S正方形ABCD)=×(4π﹣4)=π﹣1,。
2019中考数学试题及答案分类汇编:圆
2019中考数学试题及答案分类汇编:圆一、选择题1. (天津3分)已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是(A) 相交 (B) 相离 (C) 内切 (D) 外切 【答案】D 。
【考点】圆与圆位置关系的判定。
【分析】两圆半径之和3+4=7,等于两圆圆心距12O O =7,根据圆与圆位置关系的判定可知两圆外切。
2.(内蒙古包头3分)已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是A 、相交B 、外切C 、外离D 、内含【答案】B 。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
∵两圆的直径分别是2厘米与4厘米,∴两圆的半径分别是1厘米与2厘米。
∵圆心距是1+2=3厘米,∴这两个圆的位置关系是外切。
故选B 。
3,(内蒙古包头3分)已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点,过P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,则∠CDP 等于A 、30°B 、60°C 、45°D 、50°【答案】【考点】角平分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。
【分析】连接OC ,∵OC=OA,,PD 平分∠APC, ∴∠CPD=∠DPA,∠CAP=∠ACO。
∵PC 为⊙O 的切线,∴OC⊥PC。
∵∠CPD+∠DPA+∠CAP +∠ACO=90°,∴∠DPA+∠CAP =45°,即∠CDP=45°。
故选C 。
4.(内蒙古呼和浩特3分)如图所示,四边形ABCD 中,DC∥AB,BC=1,AB=AC=AD=2.则BD 的长为A. B. C. D.【答案】B 。
2019全国中考数学真题分类汇编:与圆的有关计算及参考答案
一、选择题1.(2019·德州)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°【答案】B.【解析】由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选B.2.(2019·滨州)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【答案】B【解析】如图,连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠A和∠BCD都是弧BD所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.3、(2019·遂宁)如图,△ABC 内接于⊙O ,若∠A=45°,⊙O 的半径r=4,则阴影部分的面积为 ( )A.4π-8B. 2πC.4πD. 8π-8 【答案】A【解析】由题意可知∠BOC=2∠A=45°2⨯=90°,S 阴=S 扇-S △OBC ,S 扇=14S 圆=14π42=4π, S △OBC =2142⨯=8,所以阴影部分的面积为4π-8,故选A. 4.(2019·广元)如图,AB,AC 分别是 O 的直径和弦,OD ⊥AC 于点D,连接BD,BC,且AB =10,AC =8,则BD 的长为( )A.B.4C.D.4.8第6题图 【答案】C【解析】∵AB 是直径,∴∠C =90°,∴BC =6,又∵OD ⊥AC,∴OD ∥BC,∴△OAD ∽△BAC,∴CD =AD=12AC =4,∴BD =故选C.5.(2019·温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( ) A .32π B .2π C .3π D .6π 【答案】D【解析】扇形的圆心角为90°,它的半径为6,即n=90°,r=6,根据弧长公式l=180n rπ,得6π.故选D. 6.(2019·绍兴 )如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为 ( )A.πB.π2C.π2D.π22【答案】A【解析】在△ABC 中,得∠A=180°-∠B -∠C=45°, 连接OB ,OC ,则∠BOC=2∠A=90°,设圆的半径为r ,由勾股定理,得22r r +=(22)2,解得r=2,所以弧BC 的长为902180π⨯=π.7.(2019·山西)如图,在Rt △ABC 中,∠ABC =90°,AB ==2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D,则图中阴影部分的面积为( )2π- 2πC.πD.2π第10题图 【答案】A【解题过程】在Rt △ABC 中,连接OD,∠ABC =90°,AB ==2,∴∠A =30°,∠DOB =60°,过点D 作DE ⊥AB 于点E,∵AB =∴AO =OD=∴DE =32,∴S 阴影=S △ABC -S △AOD -S扇形BOD=-2π2π-,故选A.8.(2019·长沙)一个扇形的半径为6,圆心角为120°,则该扇形的面积是【 】A .2π B.4π C.12π D.24π 【答案】C【解析】根据扇形的面积公式,S=120×π×62360=12π,故本题选:C .9.(2019·武汉) 如图,AB 是⊙O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN 上动点,∠ACB 的角平分线交⊙O 于点D ,∠BAC 的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( )A .2B .2πC .23 D .25【答案】A【解题过程】由题得∠1=∠2=12∠C =45°,∠3=∠4,∠5=∠6 设∠3=∠4=m ,∠5=∠6=n ,得m +n =45°,∴∠AEB =∠C +m +n90°+45°=135°∴E 在以AD 为半径的⊙D 上(定角定圆)4t 2t t165432QP EDAOBC MN如图,C的路径为MN,E的路径为PQ设⊙O的半径为1,则⊙D,∴MNPQ=42136022360ttππ⨯⨯⨯10. (2019·泰安)如图,将O沿弦AB折叠,AB恰好经过圆心O,若O的半径为3,则AB的长为A.12π B.π C.2π D.3π【答案】C【解析】连接OA,OB,过点O作OD⊥AB交AB于点E,由题可知OD=DE=12OE=12OA,在Rt△AOD中,sinA=ODOA=1 2,∴∠A=30°,∴∠AOD=60°,∠AOB=120°,AB=180n rπ=2π,故选C.11. (2019·枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD与点E,则图中阴影部分的面积是(结果保留π)A.8-πB.16-2πC.8-2πD.8-1 2π【答案】C【解析】在边长为4的正方形ABCD 中,BD 是对角线,∴AD =AB =4,∠BAD =90°,∠ABE =45°,∴S △ABD =12AD AB⋅⋅=8,S 扇形ABE =2454360π⋅⋅=8-2π,故选C.12. (2019·巴中)如图,圆锥的底面半径r =6,高h =8,则圆锥的侧面积是( )A.15πB.30πC.45πD.60π【答案】D【解析】圆锥的高,母线和底面半径构成直角三角形,其中r =6,h =8,所以母线为10,即为侧面扇形的半径,底面周长为12π,即为侧面扇形的弧长,所以圆锥的侧面积=12×10×12π=60π,故选D.13. (2019·凉山) 如图,在△AOC 中,OA =3cm ,OC =lcm ,将△AOC 绕点D 顺时针旋转90 °后得到△BOD ,则AC 边在旋转过程中所扫过的图形的面积为( ▲ )cm 2 A .2πB .2πC .178πD .198π【答案】B【解析】AC 边在旋转过程中所扫过的图形的面积=S △OCA +S 扇形OAB - S 扇形OCD - S △ODB ①,由旋转知:△OCA ≌△ODB ,∴S △OCA =S△ODB ,∴①式=S 扇形OAB - S 扇形OCD =3603902⨯π-3601902⨯π=2π,故选B .14.(2019·自贡)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A. B. C. D.【答案】C.【解析】由题意可知,⊙O是正方形ABCD的外接圆,过圆心O点作OE⊥BC于E,在Rt△OEC中,∠COE=45°,∴sin∠COE=,设CE=k,则OC=CE=k,∵OE⊥BC,∴CE=BE=k,即BC=2k.∴S正方形ABCD=BC2=4k2,⊙O的面积为πr2=π×(k)2=2πk2.∴正方形==≈.15.(2019·湖州)已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A.60πcm2 B.65πcm2 C.120πcm2 D.130πcm2【答案】B.【解析】∵r=5,l=13,∴S锥侧=πrl=π×5×13=65π(cm2).故选B.16. (2019·金华)如图,物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()32【答案】D.【解析】∵∠A=90°,∠ABC=105°,∴∠ABD=45°,∠CBD =60°,∴△ABD是等腰直角三角形,△CBD是等边三角形.设AB长为R,则BDR.∵上面圆锥的侧面积为1,即1=12lR,∴l=2R·∴下面圆锥的侧面积为12lR=12·2R.故选D.17.(2019·宁波)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则AB的长为A.3.5cmB.4cmC.4.5cmD.5cm【答案】BDCBA【解析】AE=124ABπ⋅⋅,右侧圆的周长为DEπ⋅,∵恰好能作为一个圆锥的底面和侧面,∴,124ABπ⋅⋅=DEπ⋅,AB=2DE,即AE=2ED,∵AE+ED=AD=6,∴AB=4,故选B.18. (2019·衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形。
【中考宝典】2019年中考数学真题分类汇编模块六圆
∴ CD=1.6m.
11. ( 2015 六盘水)赵洲桥是我国建筑史上的一大创举、它距今约
1400 年、历经无数次洪水冲击和 8 次
地震却安然无恙. 如图、若桥跨度 AB 约为 40 米、主拱高 CD约 10 米、则桥弧 AB所在圆的半径 R= 25 米.
解析:根据垂径定理、得 AD=1 AB=20 米.设圆的半径是 2,精选试题一、圆的有关性质
1. ( 2015 湘潭)如图、四边形 ABCD是⊙ O的内接四边形、若∠ DAB=60°、则∠ BCD的度数是( D )
A. 60° B . 90° C . 100° D . 120° 解析:∵四边形 ABCD是⊙ O的内接四边形、∴∠ DAB+∠DCB=18°0 . ∵∠ DAB=60 °、∴∠ BCD=180 °﹣ 60°=120°.故选 D. 2. ( 2015 广元)如图、已知⊙ O的直径 AB⊥ CD于点 E、则下列结论一定错误的是(
∵∠ AOC=2∠ B、且∠ AOD=∠ COD=1 ∠ AOC、∴∠ COD=∠ B=60°; 2
在 Rt △ COD中、 OC=4、∠ COD=60°、
∴ AC=2CD=4 3 .故选 A.
6. ( 2015 邵阳)如图、四边形 ABCD内接于⊙ O、已知∠ ADC=140°、则∠ AOC的大小是(
( 2)在 PC上截取 PD=AP、如图 1、
又∵∠ APC=60°、 ∴△ APD是等边三角形、 ∴ AD=AP=P、D ∠ ADP=60°、即∠ ADC=120°. 又∵∠ APB=∠ APC+∠BPC=120°、 ∴∠ ADC=∠APB、 在△ APB和△ ADC中、
∴△ APB≌△ ADC( AAS)、 ∴ BP=CD、 又∵ PD=AP、 ∴ CP=BP+A;P
2019年浙江省中考数学分类汇编专题圆(含2019中考真题)
2019年浙江省中考数学分类汇编专题:圆(含2019浙江省10套中考真题)一、单选题1.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.【答案】C【考点】弧长的计算【解析】【解答】解:把已知数导入弧长公式即可求得:。
故答案为:C。
【分析】求弧长,联想弧长公式,代入数字即可。
2.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A. 2B.C.D.【答案】B【考点】圆周角定理,切线的性质【解析】【解答】解:连接OA∵∠ABC=30°弧AC=弧AC∴∠AOC=2∠ABC=60°∵AP是圆O的切线,∴OA⊥AP∴∠OAP=90°∴AP=OAtan60°=1× =故答案为:B【分析】连接OA,利用圆周角定理可求出∠AOC的度数,再根据切线的性质,可证△AOP是直角三角形,然后利用解直角三角形求出PA的长。
3.如图,△ABC内接于⊙O,∠B=65°,∠C=70°,若BC=2 ,则的长为()A. πB. πC. 2πD. π【答案】A【考点】圆周角定理,弧长的计算【解析】【解答】解:连接OC、OB,∵∠A=180°-∠ABC-∠ACB∴∠A=180°-65°-70°=45°∵弧BC=弧BC∴∠BOC=2∠A=2×45°=90°∵OB=OC在Rt△OBC中,∠OBC=45°∴OC=BCsin45°= =2∴弧BC的长为:故答案为:A【分析】利用三角形内角和定理求出∠A,再根据圆周角定理,求出∠BOC的度数,就可证得△BOC是等腰直角三角形,利用解直角三角形求出OC的长,然后利用弧长公式计算可求出弧BC的长。
4.如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为()A. 2B. 3C. 4D. 4-【答案】A【考点】切线的性质,解直角三角形的应用,切线长定理【解析】【解答】解:设AB、AC的切点分别为D、E,连结OD、OE,如图,∵AB、AC与⊙O相切于点D、E,∴AD=AE,∠ODB=∠OEC=90°,又∵△ABC是边长为8的等边三角形,∴AB=AC=BC=8,∠B=60°,∴BD=CE,∵OD=OE,∴△ODB≌△OEC(SAS),∴OB=OC= BC=4,在Rt△ODB中,∴sin60°= ,即OD=OBsin60°=4× =2 ,∴⊙O的半径为2 .故答案为:A.【分析】设AB、AC的切点分别为D、E,连结OD、OE,根据切线的性质和切线长定理得AD=AE,∠ODB=∠OEC=90°,由等边三角形性质得AB=AC=BC=8,∠B=60°,等量代换可得BD=CE,根据全等三角形判定SAS 得△ODB≌△OEC,再由全等三角形性质得OB=OC=4,在Rt△ODB中,根据锐角三角函数正弦定义即可求得答案.5.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A. 60πcm2B. 65πcm2C. 120πcm2D. 130πcm2【答案】B【考点】圆锥的计算【解析】【解答】解:设圆锥母线为R,圆锥底面半径为r,∵R=13cm,r=5cm,∴圆锥的侧面积S= ·2 r.R= ×2 ×5×13=65 (cm2).故答案为:B.【分析】根据圆锥侧面展开图为扇形,再由扇形面积计算即可求得答案.6.如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A. 60°B. 70°C. 72°D. 144°【答案】C【考点】正多边形和圆【解析】【解答】解:∵五边形ABCDE为正五边形,∴∠ABC=∠C= (5−2)×180°=108°,∵CD=CB,∴∠CBD== (180°−108°)=36°,∴∠ABD=∠ABC-∠CBD=72°,故答案为:C.【分析】由正多边形的内角和公式可求得∠ABC和∠C的度数,又由等边对等角可知∠CBD=∠CDB,从而可求得∠CBD,进而求得∠ABD。
2019、2020年浙江中考数学试题分类(6)——圆答案
2019、2020年浙江中考数学试题分类(6)——圆参考答案与试题解析一.垂径定理(共2小题)1.【解答】解:过点O 作OH ⊥CD 于H ,连接OC ,如图,则CH =DH =12CD =4, 在Rt △OCH 中,OH =√52−42=3,所以CD 与AB 之间的距离是3.故答案为3.2.【解答】解:连接OD ,如图,∵CD ⊥OC ,∴∠DCO =90°,∴CD =√OO 2−OO 2=√O 2−OO 2,当OC 的值最小时,CD 的值最大,而OC ⊥AB 时,OC 最小,此时D 、B 两点重合,∴CD =CB =12AB =12×1=12,即CD 的最大值为12,故答案为:12.二.圆周角定理(共4小题)3.【解答】解:连接BE ,∵∠BEC =∠BAC =15°,∠CED =30°,∴∠BED =∠BEC +∠CED =45°,∴∠BOD =2∠BED =90°.故选:D .4.【解答】解:∵OA ⊥BC ,∴∠AOB =∠AOC =90°,∴∠DBC =90°﹣∠BEO =90°﹣∠AED =90°﹣α,∴∠COD =2∠DBC =180°﹣2α,∵∠AOD +∠COD =90°,∴β+180°﹣2α=90°,∴2α﹣β=90°,故选:D .5.【解答】解:∵一条弧所对的圆周角的度数是15°,∴它所对的圆心角的度数为2×15°=30°.故答案为30°.6.【解答】解:(1)∵∠ADC =∠G , ∴OÔ=OO ̂, ∵AB 为⊙O 的直径,∴OÔ=OO ̂, ∴∠1=∠2;(2)如图,连接DF ,∵OÔ=OO ̂,AB 是⊙O 的直径, ∴AB ⊥CD ,CE =DE ,∴FD =FC =10,∵点C ,F 关于DG 对称,∴DC =DF =10,∴DE =5,∵tan ∠1=25,∴EB =DE •tan ∠1=2, ∵∠1=∠2, ∴tan ∠2=25,∴AE =OO OOOO2=252, ∴AB =AE +EB =292, ∴⊙O 的半径为294. 三.圆内接四边形的性质(共2小题)7.【解答】解:∵四边形ABCD 内接于⊙O ,∠ABC =70°,∴∠ADC =180°﹣∠ABC =180°﹣70°=110°,故选:B .8.【解答】解:∵圆内接四边形ABCD ,∴∠D =180°﹣∠ABC =116°,∵点D 关于AC 的对称点E 在边BC 上,∴∠D =∠AEC =116°,∴∠BAE =116°﹣64°=52°.故答案为:52°.四.三角形的外接圆与外心(共4小题)9.【解答】解:作AM ⊥BC 于M ,如图:重合部分是正六边形,连接O 和正六边形的各个顶点,所得的三角形都是全等的等边三角形. ∵△ABC 是等边三角形,AM ⊥BC ,∴AB =BC =3,BM =CM =12BC =32,∠BAM =30°,∴AM =√3BM =3√32, ∴△ABC 的面积=12BC ×AM =12×3×3√32=9√34, ∴重叠部分的面积=69△ABC 的面积=69×9√34=3√32; 故选:C .10.【解答】解:连接OB ,OC .∵∠A =180°﹣∠ABC ﹣∠ACB =180°﹣65°﹣70°=45°,∴∠BOC =90°,∵BC =2√2,∴OB =OC =2,∴OO ̂的长为90⋅O ⋅2180=π,故选:A .11.【解答】解:(1)∵BC 平分∠ABD ,∴∠DBC =∠ABC ,∵∠CAD =∠DBC ,∴∠CAD =∠ABC ;(2)∵∠CAD =∠ABC ,∴OÔ=OO ̂, ∵AD 是⊙O 的直径,AD =6,∴OO ̂的长=12×12×π×6=32π. 12.【解答】(1)证明:连接AE ,∵∠BAC =90°,∴CF 是⊙O 的直径,∵AC =EC ,∴CF ⊥AE ,∵AD 是⊙O 的直径,∴∠AED =90°,即GD ⊥AE ,∴CF ∥DG ,∵AD 是⊙O 的直径,∴∠ACD =90°,∴∠ACD +∠BAC =180°,∴AB ∥CD ,∴四边形DCFG 是平行四边形;(2)解:由CD =38AB ,设CD =3x ,AB =8x ,∴CD =FG =3x ,∵∠AOF =∠COD ,∴AF =CD =3x ,∴BG =8x ﹣3x ﹣3x =2x ,∵GE ∥CF ,∴OO OO =OO OO =23, ∵BE =4,∴AC =CE =6,∴BC =6+4=10,∴AB =√102−62=8=8x ,∴x =1,在Rt △ACF 中,AF =3,AC =6,∴CF =√32+62=3√5,即⊙O 的直径长为3√5.五.切线的性质(共9小题)13.【解答】解:连接OA ,∵∠ABC =30°,∴∠AOC =2∠ABC =60°,∵过点A 作⊙O 的切线交OC 的延长线于点P ,∴∠OAP =90°,∵OA =OC =1,∴AP =OA tan60°=1×√3=√3,故选:B .14.【解答】解:设⊙O 与AC 的切点为E ,连接AO ,OE ,∵等边三角形ABC 的边长为8,∴AC =8,∠C =∠BAC =60°,∵圆分别与边AB ,AC 相切,∴∠BAO =∠CAO =12OBAC =30°,∴∠AOC=90°,∴OC=12AC=4,∵OE⊥AC,∴OE=√32OC=2√3,∴⊙O的半径为2√3,故选:A.15.【解答】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,∴∠C=55°.故答案为:55°.16.【解答】解:∵BC是⊙O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,∵当△OAC是直角三角形时,⊙∠AOC=90°,连接OB,∴OC=√2OB=2√2,∴AC=√OO2+OO2=√22+(2√2)2=2√3;⊙当△OAC是直角三角形时,∠OAC=90°,连接OB,∵BC是⊙O的切线,∴∠CBO=∠OAC=90°,∵BC=OA=OB,∴△OBC是等腰直角三角形,∴OO=2√2,故答案为:2√3或2√2.17.【解答】解:∵AB 是⊙O 的直径,BC 与⊙O 相切于点B ,∴AB ⊥BC ,∴∠ABC =90°,∵sin ∠BAC =OO OO =13, ∴设BC =x ,AC =3x , ∴AB =√OO 2−OO 2=√(3O )2−O 2=2√2x ,∴OB =12AB =√2x ,∴tan ∠BOC =OO OO =2O =√22, 故答案为:√22. 18.【解答】解:连接OE ,OF∵⊙O 分别切∠BAC 的两边AB ,AC 于点E ,F∴OE ⊥AB ,OF ⊥AC又∵∠BAC =66°∴∠EOF =114°∵∠EOF =2∠EPF∴∠EPF =57°故答案为:57°19.【解答】解:证法错误;证明:连结OC ,∵⊙O 与AB 相切于点C ,∴OC ⊥AB ,∵OA =OB ,∴AC =BC .20.【解答】解:(1)连接OC ,如图,∵CD 为切线,∴OC ⊥CD ,∴∠OCD =90°,∵∠D =30°,∴OD =2OC =2,∴AD =AO +OD =1+2=3;(2)添加∠DCB =30°,求AC 的长, 解:∵AB 为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC=12AB=1,∴AC=√3BC=√3.21.【解答】解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴OÔ的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=√2t,则HO=√OO2−OO2=√2O2−O2=t,∵OC=2OH,∴∠OCE=30°.六.切线的判定与性质(共2小题)22.【解答】解:∵在Rt △ABC 中,∠C =90°,AC =12,BD +CD =18, ∴AB =√122+182=6√13,在Rt △ADC 中,∠C =90°,AC =12,CD =5,∴AD =√OO 2+OO 2=13,当⊙P 于BC 相切时,点P 到BC 的距离=6,过P 作PH ⊥BC 于H ,则PH =6,∵∠C =90°,∴AC ⊥BC ,∴PH ∥AC ,∴△DPH ∽△DAC ,∴OO OO =OO OO , ∴OO 13=612,∴PD =6.5,∴AP =6.5;当⊙P 于AB 相切时,点P 到AB 的距离=6,过P 作PG ⊥AB 于G ,则PG =6,∵AD =BD =13,∴∠P AG =∠B ,∵∠AGP =∠C =90°,∴△AGP ∽△BCA ,∴OO OO =OO OO , ∴613=612, ∴AP =3√13,∵CD =5<6,∴半径为6的⊙P 不与△ABC 的AC 边相切,综上所述,AP 的长为6.5或3√13, 故答案为:6.5或3√13.23.【解答】(1)证明:连接OD ;∵OD =OC ,∴∠C =∠ODC ,∵AB =AC ,∴∠B =∠C ,∴∠B =∠ODC ,∴OD ∥AB ,∴∠ODE =∠DEB ;∵DE ⊥AB ,∴∠DEB =90°, ∴∠ODE =90°,即DE ⊥OD ,∴DE 是⊙O 的切线.(2)解:连接AD ,∵AC 是直径,∴∠ADC =90°,∵AB =AC ,∠C =30°,∴∠B =∠C =30°,BD =CD ,∴∠OAD =60°,∵OA =OD ,∴△AOD 是等边三角形,∴∠AOD =60°,∵DE =√3,∠B =30°,∠BED =90°,∴CD =BD =2DE =2√3,∴OD =AD =tan30°•CD =√33×2√3=2, ∴OO ̂的长为:60O ⋅2180=2O 3.七.切线长定理(共1小题)24.【解答】解:∵P 为圆O 外一点,P A ,PB 分别切圆O 于A ,B 两点,若P A =3, ∴PB =P A =3,故选:B .八.三角形的内切圆与内心(共1小题)25.【解答】解:如图,连接OE ,OF .∵⊙O 是△ABC 的内切圆,E ,F 是切点,∴OE ⊥AB ,OF ⊥BC ,∴∠OEB =∠OFB =90°,∵△ABC 是等边三角形,∴∠B =60°,∴∠EOF =120°,∴∠EPF =12∠EOF =60°, 故选:B .九.正多边形和圆(共1小题)26.【解答】解:∵五边形ABCDE 为正五边形,∴∠ABC =∠C =(5−2)×180°5=108°, ∵CD =CB ,∴∠CBD =180°−108°2=36°, ∴∠ABD =∠ABC ﹣∠CBD =72°,故选:C .一十.弧长的计算(共4小题)27.【解答】解:该扇形的弧长=90⋅O ⋅6180=3π.故选:C .28.【解答】解:∵折扇的骨柄长为27cm ,折扇张开的角度为120°,∴OÔ的长=120⋅O ×27180=18π(cm ), 故答案为:18π.29.【解答】解:根据弧长公式:l =45⋅O ×3180=34π, 故答案为:34π.30.【解答】解:(1)∵OÔ的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°, ∴AC =OA •sin60°=2×√32=√3,∴AB =2AC =2√3;(2)∵OC ⊥AB ,∠AOC =60°,∴∠AOB =120°,∵OA =2,∴OO ̂的长是:120O ×2180=4O 3.一十一.圆锥的计算(共5小题)31.【解答】解:设AB =xcm ,则DE =(6﹣x )cm ,根据题意,得90OO 180=π(6﹣x ),解得x =4.故选:B . 32.【解答】解:这个圆锥的侧面积=12×2π×5×13=65π(cm 2). 故选:B .33.【解答】解:∵∠A =90°,AB =AD ,∴△ABD 为等腰直角三角形,∴∠ABD =45°,BD =√2AB ,∵∠ABC =105°,∴∠CBD =60°,而CB =CD ,∴△CBD 为等边三角形,∴BC =BD =√2AB ,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB :CB , ∴下面圆锥的侧面积=√2×1=√2.故选:D .34.【解答】解:连接BC ,由∠BAC =90°得BC 为⊙O 的直径,∴BC =2√2,在Rt △ABC 中,由勾股定理可得:AB =AC =2,∴S 扇形ABC =90O ×4360=π;∴扇形的弧长为:90O ×2180=π,设底面半径为r ,则2πr =π,解得:r =12,故答案为:π,12. 35.【解答】解:这个冰淇淋外壳的侧面积=12×2π×3×12=36π≈113(cm 2).故答案为113.一十二.圆的综合题(共6小题)36.【解答】(1)证明:∵∠ACB =90°,将△ABC 沿直线AB 翻折得到△ABD , ∴∠ADB =∠ACB =90°,∵∠EFB =∠EDB ,∠EBF =∠EDF ,∴∠EFB +∠EBF =∠EDB +∠EDF =∠ADB =90°,∴∠BEF =90°,∴△BEF 是直角三角形.(2)证明:∵BC =BD ,∴∠BDC =∠BCD ,∵∠EFB =∠EDB ,∴∠EFB =∠BCD ,∵AC =AD ,BC =BD ,∴AB ⊥CD ,∴∠AMC =90°,∵∠BCD +∠ACD =∠ACD +∠CAB =90°,∴∠BCD =∠CAB ,∴∠BFE =∠CAB ,∵∠ACB =∠FEB =90°,∴△BEF ∽△BCA .(3)解:设EF 交AB 于J .连接AE .∵EF 与AB 互相平分,∴四边形AFBE 是平行四边形,∴∠EF A =∠FEB =90°,即EF ⊥AD ,∵BD ⊥AD ,∴EF ∥BD ,∵AJ =JB ,∴AF =DF ,∴FJ =12BD =O 2,∴EF =m ,∵△ABC ∽△CBM ,∴BC :MB =AB :BC ,∴BM =O 26, ∵△BEJ ∽△BME ,∴BE :BM =BJ :BE ,∴BE =2, ∵△BEF ∽△BCA , ∴OO OO =OO OO , 即√36−O 2O =O O √2,解得m =2√3(负根已经舍弃).37.【解答】解:(1)∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠E =∠ECD ﹣∠EBD =12(∠ACD ﹣∠ABC )=12OO =12α,(2)如图1,延长BC 到点T ,∵四边形FBCD 内接于⊙O ,∴∠FDC +∠FBC =180°,又∵∠FDE +∠FDC =180°,∴∠FDE =∠FBC ,∵DF 平分∠ADE ,∴∠ADF =∠FDE ,∵∠ADF =∠ABF ,∴∠ABF =∠FBC ,∴BE 是∠ABC 的平分线,∵OÔ=OO ̂, ∴∠ACD =∠BFD ,∵∠BFD +∠BCD =180°,∠DCT +∠BCD =180°,∴∠DCT =∠BFD ,∴∠ACD =∠DCT ,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)⊙如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠F AD,∴∠BEC=∠F AD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,⊙如图3,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,∵AC是⊙O的直径,∴∠ABC=90°,∵BE平分∠ABC,∴∠F AC=∠EBC=12∠ABC=45°,∵∠AED=45°,∴∠AED=∠F AC,∵∠FED=∠F AD,∴∠AED﹣∠FED=∠F AC﹣∠F AD,∴∠AEG=∠CAD,∵∠EGA=∠ADC=90°,∴△EGA∽△ADC,∴OO OO =OO OO ,∵在Rt △ABG 中,AB =8,∠ABG =45°,∴AG =√22OO =4√2,在Rt △ADE 中,AE =√2AD ,∴√2OO OO =4√25, ∴OO OO =45, 在Rt △ADC 中,AD 2+DC 2=AC 2,∴设AD =4x ,AC =5x ,则有(4x )2+52=(5x )2,∴x =53, ∴ED =AD =203, ∴CE =CD +DE =353, ∵∠BEC =∠FCE ,∴FC =FE ,∵FM ⊥CE ,∴EM =12CE =356,∴DM =DE ﹣EM =56,∵∠FDM =45°,∴FM =DM =56,∴S △DEF =12DE •FM =259.38.【解答】(1)解:∵OE ⊥AB ,∠BAC =30°,OA =1, ∴∠AOE =60°,OE =12OA =12,AE =EB =√3OE =√32,∵AC 是直径,∴∠ABC =90°,∴∠C =60°,∵OC =OB ,∴△OCB 是等边三角形,∵OF =FC ,∴BF ⊥AC ,∴∠AFB =90°,∵AE =EB ,∴EF =12AB =√32.(2)⊙证明:过点F 作FG ⊥AB 于G ,交OB 于H ,连接EH . ∵∠FGA =∠ABC =90°,∴FG ∥BC ,∴△OFH ∽△OCB ,∴OO OO =OO OO =12,同理OO OO =12, ∴FH =OE ,∵OE ⊥AB .FH ⊥AB ,∴OE ∥FH ,∴四边形OEHF 是平行四边形,∴PE =PF .⊙∵OE ∥FG ∥BC ,∴OO OO =OO OO =1,∴EG =GB ,∴EF =FB ,∵DF =EF ,∴DF =BF ,∵DO =OB ,∴FO ⊥BD ,∴∠AOB =90°,∵OA =OB ,∴△AOB 是等腰直角三角形,∴∠BAC =45°.39.【解答】解:(1)如图1,连接BC ,∵∠BOC =90°,∴点P 在BC 上,∵⊙P 与直线l 1相切于点B ,∴∠ABC =90°,而OA =OB ,∴△ABC 为等腰直角三角形,则⊙P 的直径长=BC =AB =3√2;(2)过点作CM ⊥AB ,由直线l 2:y =3x ﹣3得:点C (1,0),则CM=AC sin45°=4×√22=2√2=圆的半径,故点M是圆与直线l1的切点,即:直线l1与⊙Q相切;(3)如图3,⊙当点M、N在两条直线交点的下方时,由题意得:MQ=NQ,∠MQN=90°,设点Q的坐标为(m,3m﹣3),则点N(m,m+3),则NQ=m+3﹣3m+3=2√2,解得:m=3−√2;⊙当点M、N在两条直线交点的上方时,同理可得:m=3+√2;故点Q的坐标为(3−√2,6﹣3√2)或(3+√2,6+3√2).40.【解答】解:(1)⊙连接OB、OC,则∠BOD=12∠BOC=∠BAC=60°,∴∠OBC=30°,∴OD=12OB=12OA;⊙∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=3 2,△ABC面积的最大值=12×BC×AD=12×2OB sin60°×32=3√34;(2)如图2,连接OC,设:∠OED =x ,则∠ABC =mx ,∠ACB =nx ,则∠BAC =180°﹣∠ABC ﹣∠ACB =180°﹣mx ﹣nx =12∠BOC =∠DOC , ∵∠AOC =2∠ABC =2mx ,∴∠AOD =∠COD +∠AOC =180°﹣mx ﹣nx +2mx =180°+mx ﹣nx , ∵OE =OD ,∴∠AOD =180°﹣2x ,即:180°+mx ﹣nx =180°﹣2x ,化简得:m ﹣n +2=0.41.【解答】证明:(1)∵△ABC 是等边三角形,∴∠BAC =∠C =60°,∵∠DEB =∠BAC =60°,∠D =∠C =60°,∴∠DEB =∠D ,∴BD =BE ;(2)如图1,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC =6,∴BG =12OO =12OO =3,∴在Rt △ABG 中,AG =√3BG =3√3,∵BF ⊥EC ,∴BF ∥AG ,∴OO OO =OO OO , ∵AF :EF =3:2, ∴BE =23BG =2,∴EG =BE +BG =3+2=5,在Rt △AEG 中,AE =√OO 2+OO 2=√(3√3)2+52=2√13;(3)⊙如图1,过点E 作EH ⊥AD 于点H ,∵∠EBD =∠ABC =60°,∴在Rt △BEH 中,OO OO =OOO60°=√32, ∴EH =√32OO ,BH =12OO , ∵OO OO =OO OO =O , ∴BG =xBE ,∴AB =BC =2BG =2xBE ,∴AH =AB +BH =2xBE +12BE =(2x +12)BE ,∴在Rt △AHE 中,tan ∠EAD =OO OO =√32OO (2O +12)OO =√34O +1, ∴y =√34O +1; ⊙如图2,过点O 作OM ⊥BC 于点M ,设BE =a ,∵OO OO =OO OO =O , ∴CG =BG =xBE =ax ,∴EC =CG +BG +BE =a +2ax ,∴EM =12EC =12a +ax ,∴BM =EM ﹣BE =ax −12a ,∵BF ∥AG ,∴△EBF ∽△EGA ,∴OO OO =OO OO =O O +OO =11+O ,∵AG =√3OO =√3OO ,∴BF =1O +1OO =√3OO O +1, ∴△OFB 的面积=OO ⋅OO 2=12×√3OO O +1(OO −12O ), ∴△AEC 的面积=OO ⋅OO 2=12×√3OO (O +2OO ), ∵△AEC 的面积是△OFB 的面积的10倍,∴12×√3OO (O +2OO )=10×12×√3OO O +1(OO −12O ), ∴2x 2﹣7x +6=0,解得:O 1=2,O 2=32,∴O =√39或√37,。
2019中考数学试题及答案分类汇编:圆
2019中考数学试题及答案分类汇编:圆、选择题1. (天津3分)已知O O i 与O 。
2的半径分别为3 cm 和4 cm ,若OQ 2=7 cm ,则O O 1与O O 2的位置关系是(A ) 相交 (B ) 相离 (C ) 内切 (D ) 外切 【答案】Db【考点】圆与圆位置关系的判定。
【分析】两圆半径之和 3+4=7,等于两圆圆心距 OQ 2= 7,根据圆与圆位置关系的判定可知两圆外切。
2.(内蒙古包头3分)已知两圆的直径分别是 2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是A 、相交B 、外切C 、外离D 、内含【答案】B 。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两 圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半 径之差),内含(两圆圆心距离小于两圆半径之差)。
•••两圆的直径分别是 2厘米与4厘米,•••两圆的半径分别是 •••圆心距是1+2=3厘米,•这两个圆的位置关系是外切。
故选3, (内蒙古包头3分)已知AB 是OO 的直径,点P 是AB 延长线上的 动点,过P 作OO 的切线,切点为 C,Z APC 的平分线交AC 于点D, / CDP 等于A 、30°B 、60°C 、45°D 50°【答案】【考点】角平分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。
【分析】连接OC•/ OC=O , , PD 平分/ APC •••/ CPD M DPA / CAP d ACO •/ PC 为OO 的切线,• OCLPG•••/ CPD # DPA f CAP +/ ACO=90,•/ DPA f CAP =45,即/ CDP=45。
故选 G1厘米与2厘米。
B 。
4. (内蒙古呼和浩特3分)如图所示,四边形ABCD中, DC/ ABBC=1, AB=AC=AD=2 贝U BD 的长为A. 14B. .15C. 3 2D. 2.3【答案】Bo【考点】圆周角定理,圆的轴对称性,等腰梯形的判定和性质,勾股定理。
全国通用版2019年中考数学复习单元测试六圆
全国通用版2019年中考数学复习单元测试六圆(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.如图,在半径为5 cm的⊙O中,弦AB=6 cm,OC⊥AB于点C,则OC=(B) A.3 cmB.4 cm C.5 cm D.6 cm2.如图,⊙O是△ABC的内切圆,则点O是△ABC的(B)A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点D.三条高的交点3.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点,下列四个角中,一定与∠ACD互余的角是(D)A.∠ADCB.∠ABDC.∠BAC D.∠BAD4.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80 cm,则这块扇形铁皮的半径是(B)A.24 cm B.48 cm C.96 cmD.192 cm5.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是(C)A.60° B.65° C.70° D.75°6.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB,OD.若∠BOD=∠BCD,则的长为(C)A.π B.π C.2π D.3π7.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为(C)A.B.2 C.D.2238.如图,将矩形ABCD绕点A逆时针旋转90°至矩形AEFG,点D的旋转路径为.若AB=1,BC=2,则阴影部分的面积为(A)A.+B.1+C.D.+1二、填空题(每小题4分,共24分)9.如图,一块含有45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为90__°.10.已知△ABC在网格中的位置如图,那么△ABC对应的外接圆的圆心坐标是(2,0).11.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为2.12.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为2.13.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为2.14.在半径为1的⊙O中,弦AB,AC的长分别为1和,则∠BAC的度数为105__°或15__°.三、解答题(共44分)15.(8分)如图,在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.解:∵在⊙O中,D为圆上一点,∴∠AOC=2∠D.∴∠EOF=∠AOC=2∠D.在四边形FOED中,∠CFD+∠D+∠DEO+∠EOF=360 °,∴90 °+∠D+90 °+2∠D=360 °.∴∠D=60 °.16.(10分)如图,在△ABC中,以AC为直径的⊙O分别交AB,BC于点D,E,连接DE,AD=BD,∠ADE=120°.(1)试判断△ABC的形状并说明理由;(2)若AC=2,求图中阴影部分的面积.解:(1)△ABC是等边三角形.理由:连接CD.∵AC为⊙O的直径,∴CD⊥AB.∵AD=BD,∴AC=BC.∵∠ADE=120 °,∴∠ACE=60 °.∴△ABC是等边三角形.(2)∵△ABC是等边三角形,∴∠A=∠ACB=∠B=60 °.∴∠BED=∠BDE=∠B=60 °.∴△BDE是等边三角形.∴BD=ED.∵AD=BD,∴DE=AD.∴=.∴S弓形DE=S弓形AD.∴S阴影=S△DEB.∵AC=2,∴BD=1.∴S阴影=S△DEB=.17.(12分)如图,已知A,B,C是⊙O上的三个点,四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(1)求∠ADC的大小;(2)经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB 的大小.解:(1)∵CD是⊙O的切线,∴∠OCD=90 °,∵四边形OABC是平行四边形,∴OC∥AD.∴∠ADC=180 °-90 °=90 °.(2)连接OB.由圆的性质知,OA=OB=OC.∵四边形OABC是平行四边形,∴OC=AB.∴OA=OB=AB.∴△OAB是等边三角形.∴∠AOB=60 °.∵OF∥CD,∠ADC=90 °,∴OF⊥AB.由垂径定理,得=,∠AOF=∠BOF.∴∠FAB=∠BOF=∠AOB=15 °.18.(14分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC 的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2DE,求tan∠ABD的值.解:(1)∵AC为⊙O的直径,∴∠ADC=90 °.∴∠CDE=90 °.(2)证明:连接OD.∵∠CDE=90 °,点F为CE中点,∴DF=CE=CF.∴∠FDC=∠FCD.又∵OD=OC,∴∠ODC=∠OCD.∴∠ODC+∠FDC=∠OCD+∠FCD.∴∠ODF=∠OCF.∵EC⊥AC,∴∠OCF=90 °.∴∠ODF=90 °.又∵OD为⊙O的半径,∴DF为⊙O的切线.(3)在△ACD与△ACE中,∠ADC=∠ACE=90 °,∠CAD=∠EAC,∴△ACD∽△AEC.∴=,即AC 2=AD·AE.又AC=2DE,∴20DE2=(AE-DE)·AE.∴(AE-5DE)(AE+4DE)=0.∴AE=5DE.∴AD=4DE.在Rt△ACD中,AC 2=AD 2+CD 2,∴CD=2DE.又在⊙O中,∠ABD=∠ACD,∴tan∠ABD=tan∠ACD==2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、圆的有关性质1. (2015湘潭)如图,四边形ABCD 是⊙O 的内接四边形,若∠DAB=60°,则∠BCD 的度数是( D )A .60°B .90°C .100°D .120°解析:∵四边形ABCD 是⊙O 的内接四边形,∴∠DAB+∠DCB=180°.∵∠DAB=60°,∴∠BCD=180°﹣60°=120°.故选D .2.(2015广元)如图,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论一定错误的是( B )A .CE=DEB .AE=OE C. BD BC =D .△OCE ≌△ODE解析:∵⊙O 的直径AB ⊥CD 于点E ,∴CE=DE , BDBC =, 在△OCE 和△ODE 中,,∴△OCE ≌△ODE ,故选B3.(2015莆田)如图,在⊙O 中, AB AC=,∠AOB=50°,则∠ADC 的度数是( D )A .50°B .40°C .30°D .25°解析:°,∴A.80° B.1007.(2015云南)如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为30°.解析:∵OA=AB,OA=OB,∴OA=OB=AB,即△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°.8. (2015长沙)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD 的长为 4 .解析:∵OD⊥BC,∴BD=CD=12BC=3,∵OB=12AB=5,∴,二、与圆有关的位置关系1.(2015齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是( A )A.8≤AB≤10 B.8<AB≤10 C.4≤AB≤5 D.4<AB≤5解析:当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∵大圆的弦AB与小圆有公共点,即相切或相交,∴8≤AB≤10.故选A.2.(2015湘西州)⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为( B )A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定解析:∵⊙O的半径为5cm,点A到圆心O的距离为3cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选B.3.(2015张家界)如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是( C )A.相离 B.相交 C.相切 D.以上三种情况均有可能解析:过点C作CD⊥AO于点D,∵∠O=30°,OC=6,∴DC=3,∴以点C为圆心,半径为3的圆与OA的位置关系是相切.4.(2015黔西南州)如图,点P在⊙O外,PA、PB分别与⊙O相切于A、B两点,∠P=50°,则∠AOB等于( B )A.150°B.130°C.155°D.135°解析:∵PA、PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∵∠P=50°,∴∠AOB=130°.故选B.5. (2015嘉兴)如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为( B )A .2.3B .2.4C .2.5D .2.6解析:在△ABC 中,∵AB=5,BC=3,AC=4,∴AC 2+BC 2=32+42=52=AB 2,∴∠C=90°,如图:设切点为D ,连接CD ,∵AB 是⊙C 的切线,∴CD ⊥AB ,∵S △ABC =12 AC •BC=12AB •CD , ∴AC •BC=AB •CD ,故选B . 6.(2015梅州)如图,AB 是⊙O 的弦,AC 是⊙O 切线,A 为切点,BC 经过圆心.若∠B=20°,则∠C 的大小等于( D )A .20°B .25°C .40°D .50°解析:如图,连接OA ,∵AC 是⊙O 的切线,∴∠OAC=90°,∵OA=OB ,∴∠B=∠OAB=20°,∴∠AOC=40°,∴∠C=50°.故选D .7.(2015岳阳)如图,在△ABC 中,AB=CB ,以AB 为直径的⊙O 交AC 于点D .过点C 作CF ∥AB ,在CF 上取一点E ,使DE=CD ,连接AE .对于下列结论:①AD=DC ;②△CBA ∽△CDE ;③ BDAD ;④AE 为⊙O 的切线,一定正确的结论全部包含其中的选项是( D )A.①② B.①②③C.①④ D.①②④解析:∵AB为直径,∴∠ADB=90°,∴BD⊥AC,而AB=CB,∴AD=DC,所以①正确;∵AB=CB,∴∠1=∠2,而CD=ED,∴∠3=∠4,∵CF∥AB,∴∠1=∠3,∴∠1=∠2=∠3=∠4,∴△CBA∽△CDE,所以②正确;∵△ABC不能确定为直角三角形,∴∠1不能确定等于45°,∴ BD与 AD不能确定相等,所以③错误;∵DA=DC=DE,∴点E在以AC为直径的圆上,∴∠AEC=90°,∴CE⊥AE,而CF∥AB,∴AB⊥AE,∴AE为⊙O的切线,所以④正确.故选D.8.(2015兰州)已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是 30°或150°.解析:如图:连接BO,CO,∵△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,∴△OBC是等边三角形,∴∠BOC=60°,∴∠A=30°.若点A在劣弧BC上时,∠A=150°.∴∠A=30°或150°.25∵OD=OA,PO=PA+OA=2+OA(1)求证:直线FG是⊙O的切线;(2)若CD=10,EB=5,求⊙O的直径.解:(1)如图1,连接OE,∵OA=OE,∴∠EAO=∠AEO,∵AE平分∠FAH,∴∠EAO=∠FAE,∴∠FAE=∠AEO,∴AF∥OE,∴∠AFE+∠OEF=180°,∵AF⊥GF,∴∠AFE=∠OEF=90°,∴OE⊥GF,∵点E在圆上,OE是半径,∴直线FG是⊙O的切线.(2)∵四边形ABCD是矩形,CD=10,∴AB=CD=10,∠ABE=90°,设OA=OE=x,则OB=10﹣x,在Rt△OBE中,∠OBE=90°,BE=5,由勾股定理得:OB2+BE2=OE2,∴(10﹣x)2+52=x2,∴,,∴⊙O的直径为.三、圆的有关计算1. (2015云南)若扇形面积为3π,圆心角为60°,则该扇形的半径为( D )A.3 B.9 C.2 D.3解析:扇形的面积==3π.解得:r=3.故选D.2.(2015达州)如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是( B )A.12π B.24π C.∵由旋转性质可得:S=S扇形B′AB+S半圆O′-S半圆O A.4πB.2π∵CD⊥AB,sin60︒4.(2015大庆)底面直径和高都是1的圆柱侧面积为π.解析:圆柱的底面周长=π×1=π.圆柱的侧面积=底面周长×高=π×1=π.5.(2015天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF 的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是 4π.解析:6.(2015恩施)如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于 5π.解析:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为14圆的周长,然后沿着弧O1O2旋转14圆的周长,则圆心O运动路径的长度为:14×2π×5+14×2π×5=5π7.(2015昆明)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).解:(1)根据关于x轴对称点的坐标特点可知:A1(2,﹣4),B1(1,﹣1),C1(4,﹣3),如图下图:连接A1、B1、C1即可得到△A1B1C1.(2)如图:(3)由两点间的距离公式可知:BC=,∴点C旋转到C2点的路径长=.。