ANSYS 13.0 低频电磁场分析

合集下载

ANSYS低频电磁场的场路耦合分析功能

ANSYS低频电磁场的场路耦合分析功能
rh=dh/2/1000 ! 转子轴向孔半径,转化为国际单位制
!
!定义定子槽尺寸参数
!(如果采用与前面一样的方式,这些数据也可以由菜单界面输入)
!
ss_h=72/1000 !槽高,转化为国际单位制(下同)
ss_w=17/1000 !槽宽
ss_ci=2/1000 !绕组层间绝缘厚度
ss_turn=48/2 !定子每个绕组导线根数
mp,rsvx,2,0.0434e-6 !导体电阻率
mp,murx,3,1 !导体导磁率,用于转子导条
mp,rsvx,3,0.0434e-6 !导体电阻率
!
!mp,murx,4,2000 !调试程序时,用线性材料,省时间些
tb,bh,4,,18 !铁芯,输入BH曲线
tbpt,,31.85,0.1
!!! !!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
finish
/clear
*cset,16,18,d4, 'Diameter of Rotor Axis(mm)', 280 !转子轴直径
multipro,'end'
r1=d1/2/1000 ! 定子外半径,转化为国际单位制
r2=d2/2/1000 ! 定子内半径,转化为国际单位制
gap=gap/1000 ! 定转子间气隙高度,转化为国际单位制
感应电机场路耦合分析应用实例
4、 两极三相感应电机场路耦合分析应用实例

ANSYS电磁分析解决方案

ANSYS电磁分析解决方案

ANSYS 电磁分析解决方案——最完整的电磁分析技术产品关键字⏹ 完整的电磁分析技术 ⏹ 独特的耦合场分析特性⏹ 良好的易用性和统一的软件结构⏹ 精确求解电大尺寸电磁辐射/散射问题 ⏹系统级EMC/EMI概述自电子电气产品进入生活以来,产品设计师们就一致关心着能够满足用户各种需求的指标。

对于产品性能的可靠性分析,由最初的经验预估、理论计算,发展到了如今的计算机仿真,产品设计朝着计算机实现虚拟设计、虚拟实验的必然方向前进。

性能相对简单、测试成本较低的电子电气产品,可以通过原型或者简化实验完成性能评估。

对于具有复杂性能和复杂结构的电子电气产品,往往要求昂贵的测试设备,较长的实验周期,并对周围的测试环境有较强的依赖性。

这样条件下要完成某种产品在多种状态的性能评估,需要较高成本,并且难以满足一致性标准。

而现代电子电气产品的复杂性,需要在产品设计阶段就能给出指导产品设计的原则和标准,并完成产品的优化、更新设计。

计算机硬件条件的飞速发展和工程实际的市场需求,促进了计算机数值分析方法的不断进步,使计算机仿真对产品设计的指导意义愈加明显。

1970年,市场的广泛需求促使了专业的仿真软件公司——ANSYS 成立,并开始向用户提供在结构场、温度场、流体场和电磁场等领域的全面解决方案。

复杂电子电气产品中的电磁场往往具有结构材料复杂、具有复杂的激励和边界条件等挑战,因此在工程实践和科学研究中出现了针对不同问题的分析方法:按照数学方程的不同,分为微分方程方法(代表性的如有限元FEM ,时域有限差分方法FDTD 等)和积分方程方法(代表性的如矩量法MOM 等);按照计算的电尺寸大小,分为高频渐近方法(物理光学方法PO ,一致渐近绕射理论UTD 等)和“低频”数值方法(有限元FEM ,矩量法MOM )。

对于复杂的电磁问题,往往单一的方法不能完全解决问题,需要多种方法,多种工具混合使用。

产品特色● 最完整的电磁分析技术ANSYS 充分利用各种电磁计算方法的优点,发展了多个适用于不同领域的电磁分析模块,这些模块优势互补、在统一的软件界面(ANSYS PrepPost )下共同解决各种复杂的电磁分析问题。

ANSYS电磁场分析规范指南规范.doc

ANSYS电磁场分析规范指南规范.doc

ANSYS电磁场分析指南(共17章)ANSYS电磁场分析指南第一章磁场分析概述:ANSYS电磁场分析指南第二章2-D静态磁场分析:ANSYS电磁场分析指南第三章2-D谐波(AC)磁场分析:ANSYS电磁场分析指南第四章2-D瞬态磁场分析:ANSYS电磁场分析指南第五章3-D静态磁场分析(标量法):ANSYS电磁场分析指南第六章3-D静态磁场分析(棱边元方法):ANSYS电磁场分析指南第七章3-D谐波磁场分析(棱边单元法):ANSYS电磁场分析指南第八章3-D瞬态磁场分析(棱边单元法):ANSYS电磁场分析指南第九章3-D静态、谐波和瞬态分析(节点法):ANSYS电磁场分析指南第十章高频电磁场分析:ANSYS电磁场分析指南第十一章磁宏:ANSYS电磁场分析指南第十二章远场单元:ANSYS电磁场分析指南第十三章电场分析:ANSYS电磁场分析指南第十四章静电场分析(h方法):ANSYS电磁场分析指南第十五章静电场分析(P方法):ANSYS电磁场分析指南第十六章电路分析:ANSYS电磁场分析指南第十七章其它分析选项和求解方法:第一章磁场分析概述1.1磁场分析对象利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器·变压器·波导·螺线管传动器·谐振腔·电动机·连接器·磁成像系统·天线辐射·图像显示设备传感器·滤波器·回旋加速器在一般电磁场分析中关心的典型的物理量为:·磁通密度·能量损耗·磁场强度·磁漏·磁力及磁矩· S-参数·阻抗·品质因子Q·电感·回波损耗·涡流·本征频率存在电流、永磁体和外加场都会激励起需要分析的磁场。

ansys有限元法电磁分析

ansys有限元法电磁分析
箱体外施加平面波
高频-电磁兼容(续)
EMC/RFI 护罩屏蔽性能分析
EMC/RFI 防护罩 Z 向电场
高频-电磁兼容(续)
某系统屏蔽性能分析
器件用于卫星上,要求具有高的抗干扰 能力同时辐射尽量小.因此需要分析外 壳的屏蔽能力.
实物模型,外壳上有若干个小孔和 一个接口.计算表明在1.2GHz附 近的抗干扰能力较差,与实验结果 完全吻合
EMC认证已日益成为产品的一个重要质量标志.
高频-电磁兼容
带有两个PCB板开口机箱
板级分析
两PCB板之间 为空气区域, 相对磁导率:1 相对介电常数:1 线迹材料:铜 相对磁导率:1 导电率:3e8
无限远边界
介质衬底: 相对磁导率:1 相对介电常数:2.5
箱壁考虑 为电壁
系统级分析
高频-电磁兼容(续)
二,分析实例
高频器件 天线分析 电磁散射 电磁兼容
高频-电磁兼容
电磁兼容:E1ectromagnetic Compatibility (EMC)
电子系统的电磁兼容应满足 以下三个条件: – 本系统不产生对其它系统 的电磁干扰 – 本系统不易被其它系统产 生的电磁辐射干扰 – 系统自身不存在相互间的 电磁干扰(串扰-信号完整 性,多天线工作). 机箱的电磁泄漏分析
低频应用-复杂电机
低频应用-复杂电机(续)
低频应用-高压开关
低频应用-高压开关(续)
Part II
ANSYS
高频电磁场分析
高频电磁场分析
一,ANSYS高频电磁分析功能 二,应用实例
高频器件 天线设计 电磁散射 电磁兼容
高频-功能特点
优点: 对任意几何形状和复杂材料构成的复杂高频电磁场问题仿真, 如空气,无耗介质,有耗介质等均匀或者非均匀介质等. 分析方法: –模态分析(如本征值求解) –时谐分析

ANSYS电磁场分析指南磁宏

ANSYS电磁场分析指南磁宏

ANSYS电磁场分析指南磁宏磁宏分析是ANSYS中的一种电磁场分析方法,用于模拟磁场中的行为。

它基于麦克斯韦方程组和磁性材料的本质特性,可以用来研究磁场的分布、场强和磁通量等。

以下是使用ANSYS进行磁宏分析的一般步骤:1.创建几何模型:使用ANSYS的几何建模工具创建您要分析的几何体。

您可以使用ANSYS的二维或三维建模功能,根据您的需求选择适当的几何形状。

2.设置材料属性:在进行磁宏分析之前,您需要为模型中的材料定义磁性属性。

这包括磁导率、磁饱和和磁滞等。

可以通过库中的材料属性进行选择,或者根据实际材料的特性手动输入。

如果您使用的是标准材料,可以轻松从ANSYS材料库中选择。

3.设置边界条件:确定分析的边界条件非常重要。

根据您的应用场景,您可以设置边界条件为固定零磁场、非磁性条件或具有特定磁场分布的条件。

对于二维问题,您可以设置边界上的磁通量。

这些边界条件将在后续计算中起作用。

4.生成网格:ANSYS使用有限元方法进行分析,因此需要生成适当的网格。

您可以选择不同的网格生成技术,例如自动网格细化、手动加密和剖面网格。

网格的质量对分析结果的准确性和计算时间都有重要影响。

5.定义分析类型和求解器:在ANSYS中,您可以选择不同的分析类型和求解器来求解磁场问题。

例如,您可以选择求解静态磁场、谐振频率或非线性磁场等。

根据您的需求选择适当的求解器,以获得准确的结果。

6.运行计算:在设置了适当的材料属性、边界条件和网格后,您可以运行计算。

ANSYS将使用选择的求解器进行计算,并在计算结束后生成结果。

7.分析结果:计算完成后,您可以查看和分析生成的结果。

这包括磁场分布图、场强、感应电流和磁通量等。

ANSYS提供了丰富的后处理工具,可以帮助您更好地理解分析结果。

除了这些基本步骤,在进行磁宏分析时还有一些注意事项和技巧:1.材料特性选择:选择适当的磁性材料特性对分析结果至关重要。

根据实际材料数据进行选择,并注意磁导率的非线性特性。

ANSYS电磁场分析例子

ANSYS电磁场分析例子

ANSYS电磁场分析例子我们将考虑一个简单的电磁场问题,即一个平行板电容器的电场分布。

这个问题可以很容易地通过ANSYS进行建模和求解。

首先,我们需要进行几何建模。

在ANSYS的建模界面中,我们可以使用几何建模工具来创建一个具有平行板结构的电容器。

我们可以定义平行板的尺寸、间距以及材料属性等。

接下来,我们需要定义边界条件。

在这个问题中,平行板上的电势是已知的。

我们可以在边界条件中指定平行板上的电势值,然后在求解过程中,ANSYS将根据这些边界条件计算电势分布。

然后,我们需要设置求解器选项。

ANSYS提供了多种求解器选项,包括有限元法、有限差分法等。

我们可以根据我们的具体问题选择合适的求解器。

接下来,我们需要应用材料属性。

我们可以在材料库中选择合适的材料,并将其应用于电容器的几何模型中,以便ANSYS可以根据这些材料属性计算电场分布。

最后,我们可以运行求解器并分析结果。

一旦求解器完成计算,我们可以在ANSYS的后处理界面中查看电场分布结果。

ANSYS提供了丰富的后处理工具,包括可视化和数据分析工具,可以帮助我们更好地理解和解释电场分布结果。

通过以上步骤,我们可以使用ANSYS进行电磁场分析,并得到电场分布结果。

根据这些结果,我们可以评估电容器的性能,例如电势分布、电场强度等。

这些信息对于设计和优化电容器以及解决其他电磁问题非常有价值。

总结起来,ANSYS电磁场分析是一种强大的工具,可以用于解决各种电磁问题。

通过几何建模、边界条件设置、求解器选项设置、应用材料属性和结果分析等步骤,我们可以使用ANSYS获得准确和可靠的电场分布结果,为问题的解决和优化提供有力支持。

ANSYS电磁场分析

ANSYS电磁场分析

基于ANSYS的连铸坯感应加热温度场数值模拟目前,连铸技术虽然已经得到了广泛的应用,但连铸与后续轧制工序的衔接仍然普遍采用高能耗、高污染、低效率的加热炉重新加热的工艺,因而造成了巨大的钢材损失和能源浪费。

而连铸坏直轧技术(Continuous Casting- Direct Rolling,简称CC-DR)则很好地解决了这个问题。

它在连铸工序和轧制工序之间采用在线电磁感应加热工艺将连铸和轧制直接联系起来。

刚刚从连铸结晶器拉出的铸坯,在温度尚未大幅度下降之前,利用电磁感应加热工艺进行补热及温度均匀化处理,使铸坯完全满足轧制需要,并直接送人轧制工序,从而完成连铸热直轧过程。

感应加热技术应用于钢厂热轧平板钢坏边部均温加热的研究,起步比较早的有法国和日本的一些公司,它们均已投入大量的人力和财力在进行研究,我国起步较晚。

1 数学模型的建立1.1电磁场数学模型与边界条件的确定因为感应加热装置的频率都是基于中低频的,此时各种场域中的位移电流密度幅值远小于传导电流幅值,故对于感应加热线圈中的电磁场,可忽略位移电流效应。

当感应线圈中通入正弦交变电流时,其产生的交变电磁场为动态位电磁场,涡流场的数学模型为正弦似稳态问题。

为了简化概念以简便地构造数学模型,在此引入复矢量磁位A和复标量电位Φ两个位函数,根据向量微积分法则,引入库仑规范,通过麦克斯韦力一程组可求得描述正弦电磁场的复矢量动态位微分方程为:式中,为拉普拉斯运算符号(算子);为梯度算子;j为复数的基本单位;ω为角速度;μ为材料磁导率;σ为电导率;为激励源施加电流密度复数形式。

在坯料与空气的交接面S1与S2上,必须满足磁通连续性条件,即:式中,A1与A2分别为坯料与空气两种介质的复矢量位。

联立方程(1)—(3)可以得出涡电流的分布,涡流场的电流密度表达式为式中,J为电流密度的复数形式。

1.2 温度场数学模型与边界条件的确定感应加热过程中工件温度场的求解不同于一般的热传导问题。

ANSYS教程:ANSYS电磁场分析

ANSYS教程:ANSYS电磁场分析

ANSYS教程:ANSYS电磁场分析静态磁场分析:用于分析不随时间变化的磁场,主要包括三类情况:用磁场的磁场,稳恒电流产生的磁场,匀速运动的导体所产生的磁场。

对于三位静态磁场分析,ansys程序采用了两种方法:标量势法(scalar method)和单元边法(edge-based-method),其中标量势法根据其标量势方程的不同又可分为三种不同的标量势分析方法:简化标量势法(RSP)、微分标量势法(DSP)和广义标量势法(GSP)。

使用单元边法时,电流源是作为整个系统的一部分一起进行网格划分的,由此使用该方法不仅能计算常规物流量(如磁场、磁动势等),还能计算诸如焦耳热损、洛伦兹力等。

根据以下原则选择不同的分析方法:当所分析的问题中不含铁芯区域或虽含铁芯区域但不含电流源时,采用RSP法,在含有铁芯和电流源的模型分析中通常不使用RSP 法。

对于“单连通”铁芯区域模型,使用DSP法,对于“多连通”铁芯区域模型,使用GSP法。

单连通区域指的是带有空气隙的磁路不封闭的铁芯系统,没有空气隙的则为磁路封闭多连通铁芯区域系统。

对于非连续介质模型一般采用单元边法进行求解。

提示:单元边法中使用的单元的节点自由度矢量磁势是沿单元边切向积分的结果,其求解精度高于标量势法的求解精度。

单元边法不仅适用于三维静态磁场分析中,也适用于三维谐性和瞬态磁场分析中。

1 电磁场分析中的默认单位制为MKS单位制,即米、安培和秒。

可以定义其他的单位制:main menu/preprocessor/material props/electromag units2 电磁场分析中大多材料的磁性能可以从ansys程序的材料库中读入,用于也可以自己定义材料性能,方法如下:2.1 定义路径main menu/preprocessor/material props/material library/library path2.2 读入材料参数main menu/preprocessor/material props/material library/import librarymain menu/preprocessor/loads/load step opts/change mat props2.3 修正材料参数main menu/preprocessor/material props/material library/export library2.4 定义材料B-H曲线main menu/preprocessor/material props/material models/electomagnetics/BH curve2.5 在模型上施加电流密度载荷main menu/preprocessor/loads/define loads/apply/magnetic/excitation/current density/on elements2.6 施加电压载荷main menu/preprocessor/loads/define loads/apply/magnetic/excitation/volt drop/on elements2.7 进行求解main menu/solution/solve/electromagnet/static analysis/opt&solv2.8 退出求解器main menu/finish谐性磁场分析:用于分析激励源按正弦或余弦规律变化的磁场问题,如变压器、感应式电机,感应加热炉等电磁装置引发的磁场均属于谐性磁场问题。

ANSYS电磁场分析指南共99页文档

ANSYS电磁场分析指南共99页文档

第一章磁场分析概述1.1磁场分析对象利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器·变压器·波导·螺线管传动器·谐振腔·电动机·连接器·磁成像系统·天线辐射·图像显示设备传感器·滤波器·回旋加速器在一般电磁场分析中关心的典型的物理量为:·磁通密度·能量损耗·磁场强度·磁漏·磁力及磁矩· S-参数·阻抗·品质因子Q·电感·回波损耗·涡流·本征频率存在电流、永磁体和外加场都会激励起需要分析的磁场。

1.2ANSYS如何完成电磁场分析计算ANSYS以Maxwell方程组作为电磁场分析的出发点。

有限元方法计算的未知量(自由度)主要是磁位或通量,其他关心的物理量可以由这些自由度导出。

根据用户所选择的单元类型和单元选项的不同,ANSYS计算的自由度可以是标量磁位、矢量磁位或边界通量。

1.3静态、谐波、瞬态磁场分析利用ANSYS可以完成下列磁场分析:·2-D静态磁场分析,分析直流电(DC)或永磁体所产生的磁场,用矢量位方程。

参见本书“二维静态磁场分析”·2-D谐波磁场分析,分析低频交流电流(AC)或交流电压所产生的磁场,用矢量位方程。

参见本书“二维谐波磁场分析”·2-D瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,包含永磁体的效应,用矢量位方程。

参见本书“二维瞬态磁场分析”·3-D静态磁场分析,分析直流电或永磁体所产生的磁场,用标量位方法。

参见本书“三维静态磁场分析(标量位方法)”·3-D静态磁场分析,分析直流电或永磁体所产生的磁场,用棱边单元法。

ANSYS电磁场分析指南

ANSYS电磁场分析指南

ANSYS电磁场分析指南引言一、准备工作在进行电磁场分析之前,需要准备以下材料和信息:1.CAD模型:电磁场分析通常需要一个几何模型,可以是CAD软件创建的三维模型。

2.材料参数:需要知道模型中各个部分的材料参数,包括导体材料的电导率和非导体材料的介电常数等。

3.边界条件:需要定义模型的边界条件,例如电磁辐射的入射条件和模型表面的电磁辐射条件等。

二、建立模型在ANSYS中建立模型的方法有很多,可以根据需要选择适合的方法。

最常用的方法是通过导入CAD模型。

将CAD模型导入ANSYS后,可以对几何模型进行修剪、划分等操作,以确保模型的准确性和可靠性。

三、设置材料参数设置材料参数是电磁场分析中的重要步骤之一、根据模型中各个部分的材料,可以在ANSYS中设置对应的材料参数。

对于导体材料,需要设置其电导率;对于非导体材料,需要设置其介电常数。

四、设置边界条件在电磁场分析中,边界条件的设置非常重要。

边界条件决定了电磁场在模型中的传播方式和行为。

根据具体情况,可以设置不同的边界条件,包括入射条件、辐射条件、开路条件等。

五、设置求解器ANSYS提供了多种求解器用于求解电磁场问题,常用的有静态场和频率域两种求解器。

静态场求解器适用于求解稳态电磁场问题,而频率域求解器适用于求解频率响应问题。

根据具体问题的需求,选择适合的求解器进行分析。

六、设置分析参数在进行电磁场分析之前,需要设置一些分析参数,以确保分析的准确性和有效性。

可以设置初始条件、收敛准则、迭代次数等参数,以优化分析的效果。

同时,还需要设置输出参数,以便在分析结束后获取所需的结果。

七、进行分析设置好所有参数后,可以开始进行电磁场分析。

根据分析类型和求解器的不同,分析过程可能需要一定时间。

一般情况下,ANSYS会提供进度条显示分析的进展情况。

分析结束后,可以查看分析结果,并根据需要进行后续处理。

八、结果处理与后处理在进行电磁场分析之后,可以通过ANSYS提供的后处理工具进行处理和分析结果。

ANSYS电磁场分析规范指南规范.doc

ANSYS电磁场分析规范指南规范.doc

ANSYS电磁场分析指南(共17章)ANSYS电磁场分析指南第一章磁场分析概述:ANSYS电磁场分析指南第二章2-D静态磁场分析:ANSYS电磁场分析指南第三章2-D谐波(AC)磁场分析:ANSYS电磁场分析指南第四章2-D瞬态磁场分析:ANSYS电磁场分析指南第五章3-D静态磁场分析(标量法):ANSYS电磁场分析指南第六章3-D静态磁场分析(棱边元方法):ANSYS电磁场分析指南第七章3-D谐波磁场分析(棱边单元法):ANSYS电磁场分析指南第八章3-D瞬态磁场分析(棱边单元法):ANSYS电磁场分析指南第九章3-D静态、谐波和瞬态分析(节点法):ANSYS电磁场分析指南第十章高频电磁场分析:ANSYS电磁场分析指南第十一章磁宏:ANSYS电磁场分析指南第十二章远场单元:ANSYS电磁场分析指南第十三章电场分析:ANSYS电磁场分析指南第十四章静电场分析(h方法):ANSYS电磁场分析指南第十五章静电场分析(P方法):ANSYS电磁场分析指南第十六章电路分析:ANSYS电磁场分析指南第十七章其它分析选项和求解方法:第一章磁场分析概述1.1磁场分析对象利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器·变压器·波导·螺线管传动器·谐振腔·电动机·连接器·磁成像系统·天线辐射·图像显示设备传感器·滤波器·回旋加速器在一般电磁场分析中关心的典型的物理量为:·磁通密度·能量损耗·磁场强度·磁漏·磁力及磁矩· S-参数·阻抗·品质因子Q·电感·回波损耗·涡流·本征频率存在电流、永磁体和外加场都会激励起需要分析的磁场。

Ansys教程电磁场分析

Ansys教程电磁场分析
• 对称面 (B-B)边界条件 • 2D磁矢量势(MVP)方式,无须处理 • 加载电流与全模型相同
第5页/共19页
B
B
Quarter symmetry model of
the simple magnetizer
• 1/4模型与全模型比较 • 磁通密度分布相同 • 贮能为1/4 • 所示线圈上的Lorentz力 1/2 • 作用在极面上力为1/2
平面: +Z 电流方向出平面
铁板
轴对称: +Z 电流方向进平面
磁流密度矢 量显示
铁环
线圈
两种情况都是施 加正向电流
第12页/共19页
• 磁力线描述 • 平面: AZ等值线 • 轴对称: r AZ 等值线
平面或 轴 对称 ?
电枢
线圈
定子
第13页/共19页
平面或 轴 对称 ?
• 力、能量、电感的描述 • 平面: 单位长度 • 轴对称: 整个圆周上的值
• 沿A-A必须加约束
A
(1/2)对称模型
第3页/共19页
• 半对称模型与全模型比较: • 磁通量密度是相同的 • 线圈上Lorentz 力是相同的 • 贮能为 1/2 • 极面上力为 1/2 • 加载电流密度与全模型相同
简单导磁体的半对称模型
第4页/共19页
线圈 (象征性的)
• 沿B-B磁通量垂直边条件需满足 • B-B线上下两边如下参数是相同的 • 几何形状 • 材料性质 • B-B线上下两边励磁相同
• 轴对称 • 平面 • 点取单元选项
第10页/共19页
• 选择 OK
用于定义平面属性的参考号 用于直流模拟
几何体型 式
因为plane13 用于耦合场模拟,故该 单元可以具有应力/应变结构选项

ANSYS低频电磁场的场路耦合分析应用实例20458

ANSYS低频电磁场的场路耦合分析应用实例20458

ANSYS低频电磁场的场路耦合分析使用实例.txt生活是过出来的,不是想出来的。

放得下的是曾经,放不下的是记忆。

无论我在哪里,我离你都只有一转身的距离。

ANSYS低频电磁场的场路耦合分析功能及感应电机场路耦合分析使用实例ANSYS程序的电磁场分析功能分为低频和高频这两个主要的分析模块,在低频电磁场分析部分,其功能涵盖静态磁场分析、谐波(交流)磁场分析、瞬态磁场分析、静电场分析、电流传导分析、电路分析、场路耦合分析等内容。

本文重点介绍场路耦合分析的一些使用技巧,并以一个两极三相感应电机启动状态的场路耦合分析为例予以简要说明。

对于其它分析类型,可参考ANSYS相应的技术说明手册。

1、择合适的单元对于场路耦合分析,场分析模型中有两种类型的终端条件实现和电路的联接:电路供电绞线圈和电路供电块导体。

在二维状态下,场分析中和电路联接的部分必须用53号单元,而三维时必须用97号单元,这两种单元的第一关键选项设置为3时,表示电路供电绞线圈,其第一关键选项设置为4时,表示电路供电块导体。

在路分析模型中的124号电路单元里,也有两种类型的单元选项和上面两种形式对应,以实现“联接”,当其第一关键选项设置为5时,为二维或三维绞线圈单元,设置为6时,为二维块导体单元,设置为7时,为三维块导体单元。

当这些电路单元的类型设置和场单元的一致、并共享某些节点后,即实现了联接,如下所述。

2、实现联接对于二维场路耦合分析,场分析模型中的每一个电路耦合绞线圈(53号单元的Keyopt(1)=3)和电路耦合块导体(53号单元的Keyopt(1)=4)上,必须分别耦合所有节点的电流自由度(CURR)和电动势自由度(EMF)。

在定义电路中的绞线圈单元(124号单元的Keyopt(1)=5)或块导体单元(124号单元的Keyopt(1)=6)时(这两种单元都只有I、J、K三个节点),其K节点必须为场模型中相应绞线圈或相应块导体上的一个节点。

对于三维场路耦合分析,场分析模型中的每一个电路耦合绞线圈(97号单元的Keyopt(1)=3)上,必须耦合所有节点的电流自由度(CURR)和电动势自由度(EMF)。

ANSYS电磁场分析例子

ANSYS电磁场分析例子
• 选择 OK (退出材料数据输入菜单)
• 建立衔铁面 Preprocessor>Create>Rectangle>By Dimensions
• 选择Apply (重复显示和输入) • 建立线圈面
利用TAB 键移动输 入窗口
• 选择 Apply
• 选择 OK 衔铁
到了这步,建立了全部平 面,但它们还没有连接起 来.
• 点 OK
• 加通量平行边界条件 Preprocessor>loads>apply>-magnetic-boundary-flux-par’l
• 选On Lines并选取相应的线 • 选 OK
“所选取的线” 注:未划分单元前,加
上这种边界条件
“所选取的线”
• 生成有限元网格 • 利用智能尺寸选项来控制网格大小
• 定义材料 Preprocessor>Material Props>Isotropic
• 定义空气为1号材料(MURX = 1)
• 选择OK
• 选择 Apply (自动循环地定义下一个材料号)
• 定义衔铁为2号材料 • 选择OK
• 选择 Apply (自动循环地选择下一个材料号)
• 定义线圈为3号材料 (自由空间导磁率,MURX=1) • 选择 OK
线圈
• 用Overlap迫使全部平面连接在一起 Preprocessor>Operate> Overlap>Areas
• 按Pick All
现在这些平面被连接了,因此当 生成单元时,各区域将共享区域 边界上节点
这种操作后,原先平面被删除, 而新的平面被重新编号
• 这些平面要求与物理区和材料联系起来 Preprocessor>-Attributes-Define>Picked Areas

ANSYS低频电磁场的场路耦合分析应用实例-推荐下载

ANSYS低频电磁场的场路耦合分析应用实例-推荐下载

ANSYS低频电磁场的场路耦合分析功能及感应电机场路耦合分析应用实例ANSYS程序的电磁场分析功能分为低频和高频这两个主要的分析模块,在低频电磁场分析部分,其功能涵盖静态磁场分析、谐波(交流)磁场分析、瞬态磁场分析、静电场分析、电流传导分析、电路分析、场路耦合分析等内容。

本文重点介绍场路耦合分析的一些应用技巧,并以一个两极三相感应电机启动状态的场路耦合分析为例予以简要说明。

对于其它分析类型,可参考ANSYS相应的技术说明手册。

1、择合适的单元对于场路耦合分析,场分析模型中有两种类型的终端条件实现与电路的联接:电路供电绞线圈和电路供电块导体。

在二维状态下,场分析中与电路联接的部分必须用53号单元,而三维时必须用97号单元,这两种单元的第一关键选项设置为3时,表示电路供电绞线圈,其第一关键选项设置为4时,表示电路供电块导体。

在路分析模型中的124号电路单元里,也有两种类型的单元选项与上面两种形式对应,以实现“联接”,当其第一关键选项设置为5时,为二维或三维绞线圈单元,设置为6时,为二维块导体单元,设置为7时,为三维块导体单元。

当这些电路单元的类型设置与场单元的一致、并共享某些节点后,即实现了联接,如下所述。

2、实现联接对于二维场路耦合分析,场分析模型中的每一个电路耦合绞线圈(53号单元的Keyopt(1)=3)和电路耦合块导体(53号单元的Keyopt(1)=4)上,必须分别耦合所有节点的电流自由度(CURR)和电动势自由度(EMF)。

在定义电路中的绞线圈单元(124号单元的Keyopt(1)=5)或块导体单元(124号单元的Keyopt(1)=6)时(这两种单元都只有I、J、K三个节点),其K节点必须为场模型中相应绞线圈或相应块导体上的一个节点。

对于三维场路耦合分析,场分析模型中的每一个电路耦合绞线圈(97号单元的Keyopt(1)=3)上,必须耦合所有节点的电流自由度(CURR)和电动势自由度(EMF)。

ANSYS软件对电磁场的分析

ANSYS软件对电磁场的分析

ANSYS软件对电机磁场的分析徐海峰辛慧源(浙江大学,浙江杭州 310027)摘要:本文重点介绍了用ANSYS软件分析电机磁场,使ANSYS软件具有"计算和分析"电机磁场的功能,从而进行电机的优化设计。

关键词: ANSYS;电机磁场;优化设计中图分类号:TP21 文献标识码:A1 前言磁路设计是电机设计的主要部分,磁路量对电机的主要性能起决定性的影响,电机的转矩和反电势直接取决于主磁通量。

因此磁路法是工程上最适用的电机计算方法。

所以从根本上讲,电机问题是一个电磁场的问题,由于永磁材料的引入,使许多传统的分析方法感到力不从心,所以对无刷直流电机进行磁场的研究还是非常必要的。

ANSYS软件是世界上著名的大型通用有限元计算软件,具有强大的求解器和前、后处理功能,为我们解决复杂、庞大的工程项目和致力于高水平的科研攻关提供了一个有两地工作环境,更使我们从繁琐、单调的常规有限元编程中解脱出来。

2ANSYS分析电机磁场的基本原理工程上的磁场分析一般采用数值计算方法。

常见的数值计算方法有有限差分法和有限元法。

差分法不适合于边界条件复杂、边界不规则(外部或内部)的情况。

为了充分发挥永磁材料的磁性能。

特别是稀土永磁的优导磁性能,用很少的永磁材料和加工费用制造出高性能的永磁电机,就不能简单套用传统的结构和设计计算方法。

必须应用现代设计思想,研究新的分析计算方法,以提高设计计算的准确度。

为此,本文采用有限元分析法。

使用有限元分析,目前一般有三种作法:a)用数学关系式建模,用计算机算法语言编制了网格自动剖分程序、有限元分析程序、相关的前后处理程序、电磁计算程序;这是传统的有限元分析方法。

b)采用有限元分析软件对电机内的电磁场进行简单的分析计算,完成电机设计中的磁路部分的设计,利用MATLAB等类似软件编制了电磁计算等其他设计程序。

c)大量工作均用高级的有限元分析软件完成,诸如力矩、电感、磁力线、磁通、磁场强度均一次性得出,使设计真正成为一种优化设计,设计过程即为分析过程。

ANSYS电磁场分析规范指南规范.doc

ANSYS电磁场分析规范指南规范.doc

ANSYS电磁场分析指南(共17章)ANSYS电磁场分析指南第一章磁场分析概述:ANSYS电磁场分析指南第二章2-D静态磁场分析:ANSYS电磁场分析指南第三章2-D谐波(AC)磁场分析:ANSYS电磁场分析指南第四章2-D瞬态磁场分析:ANSYS电磁场分析指南第五章3-D静态磁场分析(标量法):ANSYS电磁场分析指南第六章3-D静态磁场分析(棱边元方法):ANSYS电磁场分析指南第七章3-D谐波磁场分析(棱边单元法):ANSYS电磁场分析指南第八章3-D瞬态磁场分析(棱边单元法):ANSYS电磁场分析指南第九章3-D静态、谐波和瞬态分析(节点法):ANSYS电磁场分析指南第十章高频电磁场分析:ANSYS电磁场分析指南第十一章磁宏:ANSYS电磁场分析指南第十二章远场单元:ANSYS电磁场分析指南第十三章电场分析:ANSYS电磁场分析指南第十四章静电场分析(h方法):ANSYS电磁场分析指南第十五章静电场分析(P方法):ANSYS电磁场分析指南第十六章电路分析:ANSYS电磁场分析指南第十七章其它分析选项和求解方法:第一章磁场分析概述1.1磁场分析对象利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器·变压器·波导·螺线管传动器·谐振腔·电动机·连接器·磁成像系统·天线辐射·图像显示设备传感器·滤波器·回旋加速器在一般电磁场分析中关心的典型的物理量为:·磁通密度·能量损耗·磁场强度·磁漏·磁力及磁矩· S-参数·阻抗·品质因子Q·电感·回波损耗·涡流·本征频率存在电流、永磁体和外加场都会激励起需要分析的磁场。

ANSYS电磁场分析规范指南规范.doc

ANSYS电磁场分析规范指南规范.doc

ANSYS电磁场分析指南(共17章)ANSYS电磁场分析指南第一章磁场分析概述:ANSYS电磁场分析指南第二章2-D静态磁场分析:ANSYS电磁场分析指南第三章2-D谐波(AC)磁场分析:ANSYS电磁场分析指南第四章2-D瞬态磁场分析:ANSYS电磁场分析指南第五章3-D静态磁场分析(标量法):ANSYS电磁场分析指南第六章3-D静态磁场分析(棱边元方法):ANSYS电磁场分析指南第七章3-D谐波磁场分析(棱边单元法):ANSYS电磁场分析指南第八章3-D瞬态磁场分析(棱边单元法):ANSYS电磁场分析指南第九章3-D静态、谐波和瞬态分析(节点法):ANSYS电磁场分析指南第十章高频电磁场分析:ANSYS电磁场分析指南第十一章磁宏:ANSYS电磁场分析指南第十二章远场单元:ANSYS电磁场分析指南第十三章电场分析:ANSYS电磁场分析指南第十四章静电场分析(h方法):ANSYS电磁场分析指南第十五章静电场分析(P方法):ANSYS电磁场分析指南第十六章电路分析:ANSYS电磁场分析指南第十七章其它分析选项和求解方法:第一章磁场分析概述1.1磁场分析对象利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器·变压器·波导·螺线管传动器·谐振腔·电动机·连接器·磁成像系统·天线辐射·图像显示设备传感器·滤波器·回旋加速器在一般电磁场分析中关心的典型的物理量为:·磁通密度·能量损耗·磁场强度·磁漏·磁力及磁矩· S-参数·阻抗·品质因子Q·电感·回波损耗·涡流·本征频率存在电流、永磁体和外加场都会激励起需要分析的磁场。

Ansys电磁场分析简介

Ansys电磁场分析简介

8、什么是磁矢势(MVP)法?
是基于节点方法中的一种(标势法是另一种
节点法),矢势法中的节点自由度要比标势 法多:AX、AY和AZ,亦即X、Y和Z方向的 磁矢量势。在载压或电路耦合分析中还可以 引入另外三个自由度:电流(CURR),电 动势降(EMF)和电势(VOLT)。2-D磁分 析必须采用矢势法,此时主自由度只有AZ。 在矢势法中,电流源(导电区域)要作为整 个有限元模型的一部分。因为它的节点自由 度更多,所以它的运算速度较慢。

2-D轴对称分析: 模型位于X-Y平面 电流方向只沿X-Y面的 法线方向(圆周Z方向) 磁场只有X-Y面内的分 量

4、什么时候要用三维分析?
要计算的设备不具有对称性 电流不知沿着一个方向流动 可描述2-D分析无法实现的计算

5、自由度情况

有限元计算中的主自由度是磁势或磁通量,其他的 磁场量都由这些主自由度给出。具体问题中的自由 度可以是磁矢势、磁标势和磁通量,这要根据所选 择的单元类型和单元选项来选择。
工程问题
搜集相关资料 决定分析项目 获取材料的机械性质及几何条 件、外力、边界条件 建立有限元模型 材料性质 几何形状的定义 元素切割的产生 加边界条件 加负荷条件 加时间变化情形 分析 分析结果显示与打印 不合理 不合理 结果研判 合理 提出改进方法 问题解决或得到最佳设计 解题程序 Solution 后置处理 Post processing
有限元分析流程
有限元 程序
前置处理 Preprocessing

在Ansys/Emag或Ansys/Multiphysics中Ansys程序的电磁能力 可用来分析电磁场的多方面问题,如电感、电容、阻抗、磁 通量密度、磁场强度、磁通泄漏、涡流、电场分布、磁力线、 品质因数、特征频率、磁力和力矩、运动效应、电路和能量 损失等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档